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Summary 

In this thesis we are concerned with the development of complete Computer Aided Design 
frameworks. CAD frameworks enable designers to create complex systems by rnanaging 
their design processes. These processes are managed by the design management system 
component of a CAD framework. In orderfora CAD framework to be considered complete 
it has to provide support for all three design management sub-activities, so for design data, 
design tooi, and design flow management. The design management component of a CAD 
framework is a dynamic system which is updated regularly, for instanee by the addition 
of new tools or design flows. The persons creating and updating the design management 
system are referred to as design management system developers. Besides supporting the 
designers, a complete CAD framework should also assist the design management system 
developers in performing their job. This thesis proposes a metbod to efficiently develop 
such complete CAD frameworks. 

For a long time there bas been a lot of confusion regarding what design management is. 
As a result, it was even less apparent what the structure of CAD frameworks providing 
this service had to be. Notwithstanding this, a number of systems were made. Most of 
these systems however, provided only a part of the CAD framework functionality, usually 
some form of design data management. Some of these systems were extended later on to 
provide support for the other design management activities as weJL Since these systems 
were originally created with the first activity in mind, this often resulted in non-uniform 
systems which are difficult to use. In order to design a complete CAD framework it is 
essential to have a good picture of the complete system. Therefore, this thesis presents a 
detailed CAD framework model. This model can be used to reason about CAD frameworks 
and can also serve as a guideline for the implementation of such a system. 

The existing CAD frameworks provide hardly any support to the design management 
system developers. In this thesis the CAD framework model is used to show how this 
aspect of framework completeness can be implemented. This model points out that their 
exists an analogy between IC designers and design management system developers, namely 
that all these people are designers. The only difference between these designers is what 
they design, namely ICs and design management systems, respectively. Like IC designers, 
DMS developers produce lots of data and use a variety of tools while creating their DMS 
descriptions. Therefore, the support provided by the framework to DMS developers should 
include management of their data, tools and flows. A CAD framework can realise this 
by making the support facilities it provides to the IC designers available to the DMS 
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developers. 

Besides assisting all participants, complete CAD frameworks feature a design management 
system which provides support for all design management sub-activities. Despite this, the 
design management systems of most of the existing CAD frameworks do either not support 
all three activities or Jack a good integration of these. The main reason for this is that 
these systems were directly implemented based on an often incomplete and informal notion 
about what design management is, how the different design management activities have to 
be integrated and how to construct a system providing support for these. To avoid these 
problems, the CAD framework model presented in this thesis features a mathematica! de
scription of its design management system. The model is based on an analogy between 
design management systems and digital systems. This abstract design management system 
model describes both the behaviour of the system's three main components, i.e., the design 
data, the design tooi and the design flow management systems and their interaction. This 
model can be used as a guideline for the construction of complete design management 
systems featuring a seamless integration of design data, design tooi and design flow man
agement. The feasibility of this model is demonstrated by using it to represent a design 
management system for the LOCAM logic synthesis system developed by Philips. 

The time required for the development of a CAD framework is almost entirely consumed 
by the construction and maintenance of its central component, i.e., the design management 
system. Therefore, the efficiency of CAD framework development can be greatly improved 
by providing better assistance to the design management system developers. Currently 
these developers implement their design management systems using a general purpose 
programming language. Since such a language does not feature special constructs for CAD 
framework construction, the creation of a design management system wiJl be very time 
consuming task. Moreover, the resulting system wiJl be difficult to maintain and extend 
with new functionality. Therefore, the CAD framework development time can be greatly 
reduced if it is programmed using a dedicated design management system description 
language. Using such a language, the system under development can be represented at 
a higher level of abstraction. As far as we know, there are currently no suitable design 
management system description languages available. In this thesis it is demonstrated 
how such a language can he defined. Using the presented CAD framework model as a 
guideline, first the requirements for a design management system description language 
are formulated. Subsequently interactive hierarchirol coloured Petri nets are introduced. 
Furthermore it is demonstrated that languages based on this extension of the hierarchical 
coloured Petri net concept satisfy the presented requirements. The suitability of such 
a language is demonstrated by showing how it can be used to create executable design 
management system representations. 



Samenvatting 

In dit proefschrift behandelen we de ontwikkeling van complete Computer Ondersteund 
Ontwerp ( COO) framewerken. COO-framewerken beheren de ontwerpprocessen van ont
werpers en stellen hen daardoor in staat om complexe systemen te maken. Deze ser
vice wordt verleend door de OntwerpBeheerSysteem (OBS) component van een COO
framewerk. Het OBS van een compleet COO-framewerk verleent drie soorten services, 
namelijk ontwerpdata-, ontwerpprogramma-en ontwerpmethodologiebeheer. Een OBS is 
een dynamisch systeem dat regelmatig gewijzigd wordt, bijvoorbeeld door de toevoeging 
van nieuwe ontwerpprogramma's of methodologieën. De personen die ontwerpbeheersyste
men maken en/ of wijzigen worden ontwerpbeheersysteemontwikkelaars genoemd. Naast het 
assisteren van ontwerpers moet een compleet COO-framewerk ook de werkzaamheden van 
deze CBS-ontwikkelaars ondersteunen. In dit proefschrift zal een methode geïntroduceerd 
worden welke gebruikt kan worden om op een efficiënte manier complete COO-framewerken 
te ontwikkelen. 

Er is gedurende een lange periode veel verwarring geweest over wat ontwerpbeheer nu ei
genlijk inhoudt. Het gevolg was dat er nog minder duidel~jkheid bestond over de structuur 
van de bijbehorende COO-framewerken. Ondanks dit zijn er toch een aantal van deze 
systemen gemaakt. De meeste van deze framewerken verleenden echter maar een gedeelte 
van de gewenste COO-framewerk functionaliteit, veelal een bepaalde vorm van ontwerp
databeheer. Sommige van deze systemen zijn later uitgebreid met ontwerpprogramma
enlof ontwerpmethodologiebeheer. Doordat deze systemen echter oorspronkelijk ontwor
pen waren voor ontwerpdatabeheer, zijn de meeste niet-uniform en moeilijk te gebruiken. 
Om een compleet COO-framewerk te kunnen ontwerpen is het absoluut noodzakelijk om 
een goed beeld te hebben van het complete systeem. Dit is de reden waarom we in dit 
proefschrift een gedetailleerd COO-framewerkmodel presenteren. Dit model kan niet alleen 
gebruikt worden om over COO-framewerken te redeneren, maar geeft ook richtlijnen voor 
de realisatie van zo'n systeem. 

De bestaande COO-framewerken verlenen erg weinig ondersteuning aan de ontwerpbeheer
systeemontwikkelaars. In dit proefschrift gebruiken we het COO-framewerkmodel om te 
laten zien hoe dit aspect van framewerkcompleetheid gerealiseerd kan worden. Het model 
laat zien dat er een analogie bestaat tussen IC-ontwerpers en CBS-ontwikkelaars, namelijk 
dat beiden te beschouwen zijn als ontwerpers. Het enige verschil tussen beide typen ont
werpers is wat zij ontwerpen, namelijk respectievelijk IC's en ontwerpbeheersystemen. Net 
zoals IC-ontwerpers, produceren CBS-ontwikkelaars grote hoeveelheden data en gebruiken 

V 



vi Samenvatting 

ze allerlei programma's om hun OBS-beschrijvingen te creëren. De ondersteuning welke 
door het framewerk verleend wordt aan de OBS-ontwikkelaars zou daarom ook het beheer 
van hun data, programma's en methodologieën moeten inhouden. Dit kan gerealiseerd wor
den door de ondersteuningsfaciliteiten welk een framewerk aanbiedt aan de IC-ontwerpers 
ook beschikbaar te maken voor de OBS-ontwikkelaars. 

De meeste bestaande COO-framewerken zijn incompleet in de zin dat ze niet alle drie de 
ontwerpbeheerservices verlenen. Bovendien zijn deze services vaak niet goed geïntegreerd. 
De belangrijkste oorzaak hiervan is dat deze systemen geïmplementeerd zijn gebaseerd op 
een vaak incompleet en informeel idee over wat ontwerpbeheer is en hoe het bijbehorende 
ontwerpbeheersysteem gemaakt zou moeten worden. Om deze problemen te vermijden 
maakt het in dit proefschrift gepresenteerde COO-framewerkmodel gebruik van een wis
kundige beschrijving van het bijbehorende ontwerpbeheersysteem. Deze beschrijving is 
gebaseerd op een analogie tussen ontwerpbeheersystemen en digitale systemen. Dit leidt 
tot een abstract ontwerpbeheersysteemmodel welk een beschrijving geeft van zowel het ge
drag van de drie OBS componenten, dus van het ontwerpdata-, het ontwerpprogramma-, 
en het ontwerpmethodologiebeheersysteem, als van hun interactie. Dit model kan dienen 
als een richtlijn voor de constructie van complete ontwerpbeheersystemen welke de drie 
ontwerpbeheerservices op een naadloze manier integreren. De bruikbaarheid van dit model 
wordt gedemonstreerd door het te gebruiken tijdens de beschrijving van een ontwerpbe
heersysteem voor het LOCAM logische-synthese systeem ontwikkeld door Philips. 

De ontwikkeltijd van een COO-framewerk wordt bijna geheel gebruikt voor de constructie 
en het onderhoud van het bijbehorende ontwerpbeheersysteem. De efficiëntie van COO
framewerkontwikkeling kan daarom sterk verbeterd worden door de OBS-ontwikkelaars 
beter te ondersteunen. De huidige ontwerpbeheersystemen zijn geprogrammeerd in een 
universele programmeertaal. Aangezien dergelijke talen geen speciale constructies voor 
OBS-ontwikkeling bevatten, zal het programmeren van een ontwerpbeheersysteem in een 
dergelijke taal een tijdrovend karwei zijn. Een ander nadeel is dat het resulterende systeem 
zowel moeilijk te onderhouden als uit te breiden zal zijn. De ontwikkeltijd van een COO
framewerk kan daarom sterk gereduceerd worden door het bijbehorende OBS te program
meren in een speciaal ontworpen ontwerpbeheersysteembeschrijvingstaal. In een dergelijke 
taal kan het te ontwikkelen systeem beschreven worden op een hoger niveau van abstractie. 
Zover we weten zijn er op het moment echter geen geschikte ontwerp beheersysteembeschrij
vingstalen beschikbaar. In dit proefschrift laten we daarom zien hoe een dergelijke taal 
gedefinieerd kan worden. Gebruik makend van de richtlijnen verkregen uit het COO
framewerkmodel, definiëren we eerst de eisen waaraan de OBS-beschrijvingstaal moet vol
doen. Vervolgens worden interactieve hiërarchische gekleurde Petri-netten geïntroduceerd. 
Daarna laten we zien dat talen gebaseerd op deze uitbreiding van het hiërarchische ge
kleurde Petri-net concept voldoen aan de gestelde eisen. De bruikbaarheid van een der
gelijke taal wordt gedemonstreerd door te laten zien hoe deze gebruikt kan worden om 
executeerbare ontwerpbeheersysteembeschrijvingen te creëren. 
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Chapter 1 

Introduetion 

In this thesis we are concerned with the development of Computer Aided Design (CAD) 
frameworks. In literature [tBBvW91], [RW95], [HNSB90], [KGMB94J, [vW93], [vW94], 
[ZG96], there is still a lot of confusion about the nature of CAD frameworks. Despite this, 
the following facts are agreed u pon. A CAD framework should assist designers in rnanaging 
their design processes. We refer to the CAD framework component which is responsible 
for this as the Design Management System (DMS). This design management system is 
not a static system, but is updated regularly, for instanee by the addition of new tools 
or design flows. The persons updating the design management system are referred to as 
design management system developers. Besides supporting the designers, a CAD framework 
should also assist the design management system developers in performing their job. 

CAD frameworks enable designers to design complex systems. The creation of complex 
designs is a complicated and time-consuming task. Designers are still able to do this by 
making u se of the following complexity handling methods: Abstraction and decomposition. 
The time required for creating complex designs can be kept within realistic boundaries by 
making use of the following design-time reduction methods: Design reuse, teamwork, and 
automation. In Section 1.1 these complexity handling and time reduction methods are 
illustrated. 

The use of the previously mentioned complexity management methods comes at a price; 
designers only benefit from these methods if they are applied correctly. The activity of 
supporting the designer in making proper use of these methods is referred to as design 
management. Design management is the topic discussed in Section 1.2. 

The development of CAD frameworks is an active area of research. Currently, there are 
no commercially available CAD frameworks that can handle all the aspects of design man
agement. In Section 1.3 the problems associated with currently available CAD frameworks 
are discussed. Section 1.4 gives an overview of the approach presented in this thesis to 
solve these problems and of the main results. Finally Section 1.5 gives an outline of the 
organisation of the remainder of this thesis. 

1 



2 Introduetion 

1.1 The design of complex systems 

Befare we can start to discuss about how CAD frameworks should assist designers in 
rnanaging their design processes, we first have to know what a design process is. For 
general models ofthe IC design process we refer to [Ail90], [Koo91], and [Sie91]. In [Yos81] 
and [TY86] the design process is considered from a mechanica! engineering viewpoint. 
[Das89] presents the structure of design processes in generaL However, for our discussions 
about design management, the detailed models presentedinthese articles are not required; 
it is sufficient to know how the previously presented complexity management methods 
enable designers to create complex designs. In this section these methods are introduced. 
Although these methods can be used for the design of complex systems in genera!, they 
will be illustrated using examples taken from the area of Integrated Circuit (IC) design. 

1.1.1 Abstraction 

ICs are characterised by their behaviour and by properties such as speed, power dissipation 
and size. Befare the manufacturing process of an IC can start, a description of its layout 
must be created. Due to the complexity of state of the art ICs, it is nearly impossible 
to design them starting at the layout level. The layout description simply contains too 
much detail, whilst not explicitly representing the IC behaviour. Therefore, other, more 
abstract, representations of the IC are used. These descriptions provide a more explicit 
representation of some aspects of either the IC's behaviour and/or structure. 

Figure 1.1 depiets how a multiple abstraction level design process is performed. A design 
process starts by formulating the requirements, which are a number of statements about 
the properties the system is required to have. After the requirements have been formulated, 
a first representation of the system is created, which describes the system at the highest 
level of abstraction. The properties of the system that are explicitly represented at this 
level of abstraction are optimised at that level. When, after a number of optimisation 
steps, these properties satisfy the requirements, the optimised description is transformed 
using a detailing step to a more detailed description at the next level of abstraction. This 
description farms the starting point for the optimisation of the properties specific for this 
lower abstraction level. This process repeats itself until a description at the lowest level 
of abstraction is obtained. The multiple abstraction level design process will only produce 
correct designs if the design representations at the different levels of abstraction are consis
tent. Detailing and the subsequent optimisations should nat invalidate the optimisations 
made at the higher abstraction levels. Therefore, the optimisations are usually foliowed 
by a verification step during which it is verified that an optimised design representation is 
consistent with the more abstract representation it was derived from. 

Figure 1.2 shows the abstraction levels that are most frequently used during the design of 
digital ICs ([MPC90]). The first two levels are not specific for IC design, but can be used 
to represent information processing systems in generaL The system level is the top level of 
abstraction. At this level the general structure of the system is described. Typically the 
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Figure 1.1: A multiple abstraction level design process. 
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system is described as a composition of a number of related sub-systems, which are either 
implemented in hardware or in software. At the functionallevel, an algorithmic description 
of the behaviour of these sub-systems is given. For the sub-systems implemented in an IC, 
the next abstraction level will be the Register Transfer Level. At this level the system is 
described in terms of a number of registers, an output function and a next state function. 
The registers determine the state of the system. Given the system's current state and input, 
the output and next state functions determine what the system's output and next state 
are, respectively. At the logicallevel, these functions are described in terms of a number 
of logical expressions. During the detailing step, which transforms a logical level to a gate 
level description, these expresslons are mapped to a collection of interconnected gates, such 
as AND, OR, NOT, NAND and NOR gates. At the transistor level the interconnected 
registers and gates are described in terms of a transistor netlist. During the last detailing 
step, this transistor netlist is transformed into a layout, which implements it in silicon. 
The layout describes the IC in terms of a number of layers, each representing the areas 
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where a certain type of material should be deposited or removed. The layout description 
is used to produce the masks employed during the IC fabrication process. 

System Level 

Functional (Algorithmic) Level 

High Little 

i Register Transfer Level (RTL) i 
Abstraction 

Logica! Level Detail Level 

1 1 Gate Level 

Low Much 

Transistor Level 

Layout level 

Figure 1.2: Abstraction levels used during IC design. 

1.1.2 Decomposition 

Another way to handle complex designs is by making use of decomposition [Nie86]. De
composition reduces the complexity ofthe design process by splittingup the original design 
into a number of components, which can then be designed separately. Often these design 
components are still very complex. Therefore, some of these wil! again be decomposed. 
This process of decomposition continnes until each component is small enough to be han
dled conveniently as a single unit. The result of the decomposition process is a hierarchy 
of design components. In Figure 1.3 the decomposition hierarchy of a microprocessor is 
shown. The design of this microprocessor has been split into two parts, namely a datapath 
and a controller. The datapath has again been decomposed into an arithmetic logic unit 
(ALU), a memory and a multiplier. 



1.1 The design of complex systems 5 

Figure 1.3: A design hierarchy. 

1.1.3 Design reuse 

An obvious method for reducing the time required to create a design is by reusing other 
designs. The following three modes of reuse can be distinguished [AOS94]: Reuse by adap
tation, reuse by instantiation, and reuse by generation. In the case of reuse by adaptation 
an existing design is adapted such that it satisfies a given requirements specification. For 
example, if a 15-bit multiplier is required, it can very quickly be obtained by stripping the 
most significant output from a 16-bit multiplier. RTL synthesis [BRSVW87] [BHMSV84] 
is a good example of a design process that makes use of reuse by instantiation. During 
RTL synthesis the objects to be reused are pre-designed logic gates and registers stored 
in a library. Starting from a RTL level design description, the synthesis system will cre
ate a functionally equivalent netlist of interconnected library element instantiations. This 
netlist is converted to a layout by using a placement and a routing program. The placement 
program determines where the pre-designed pieces of layout representing the instantiated 
library elements wil! be put on the layout. The routing program completes the layout 
by generating the required interconnections. The concept of reuse by generation can be 
illustrated using architecture synthesis [MPC90] [Sto91] as an example. For architecture 
synthesis the designs to be reused are not simple blocks like gates and registers, but pa
rameterised blocks such as memories or arithmetic logic units. The designer selects which 
blocks he or she requires in his or her design and determines the desired parameters for 
these blocks. In contrast to RTL synthesis, the layout of the employed blocks is not taken 
from a library, but generated using a module generator. In this case, the module generator 
implicitly represents a complete class of reusable blocks, namely one block for each possible 
parameter setting. 
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1.1.4 Teamwork 

Teamwork will only result in a reduction of the required design time if the design process 
can be split up into a number of relatively independent sub-processes, each of which can be 
performed by one of the team members. Wh en teamwork is combined with the previously 
introduced complexity and design timereduction methods, this results in a natura! division 
of the total design task. 

The use of multiple abstraction levels splits the total design process into a number of sub
processes, namely one for each employed abstraction level. For example, the transistor 
netlist and the layout imptementing this netlist are sometimes created by different people. 
This means that designers do not have to know all the details of the complete design 
process, but can become experts on some of the design subtasks. 

Decomposition splits a design into a number of smaller design components, which can be 
developed separately. Except for the interfaces to their own component, designers do not 
participate in the development of the other design parts. 

Design reuse also results in a natura! di vision of the total design task. The first task is the 
creation of the basic building blocks to be reused, e.g. the libraries and module generators 
used in RTL and architectural synthesis, respectively. The second task is the maintenance 
of these basic building blocks. The last task is designing by making use of these building 
blocks. All these tasks can be performed by different people. 

1.1.5 Automation 

For certain steps of the design process an algorithm can be found descrihing how it is 
performed. These design steps are candidates for being automated. Design process au
tomation means that the design step is performed by a piece of software rather than by 
the designer. The programs automating such a design step are commonly referred to as 
synthesis tools. Design automation not only reduces the design time, but also enables the 
designer to carry out a design step without the need to have much knowledge about how 
it is done. The drawback of design automation is that (partly) automatically generated 
designs are, in genera!, less efficient than custom made designs. For many applications 
however, the performance of the generated designs suffices. 

Automation is very common for software design, where programs are written using a high 
level programming language. For execution of the program, however, a machine language 
representation is required. These !ow-level representations are automatically generated 
from the high level program using a tooi referred to as a compiler. 

Examples of highly automated design processes in the IC design domain are RTL and 
architectmal synthesis. In the case of RTL synthesis the designer will first create a register 
transfer level representation of bis design. After the behaviour described by this design 
representation is validated using simulation, the rest of the design process is completely 
automated. In the first step of this process the RTL description is converted into a more 
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detailed logica) level design representation. Subsequently the number of expressions in 
this design representation is reduced using a tooi referred to as a logic optimise. The 
resulting description is mapped by a mateher tooi onto a network of interconnected gate 
level elements, i.e. gates and registers. The conesponding layout is created by a placement 
and routing tooi. In the placement step, the pre-designed pieces of layout of the employed 
gate level elements are put at a certain location in the layout. · In the routing step the 
layout is completed by adding new pieces of layout, which implement the connections of 
the gate level network. 

1.2 Design management 

Design management is a combination of three sub-activities, namely design data, design 
tooi, and design flow management [SD96]. These three activities are the topic of the 
remainder of this section. 

Design data management is the activity of keeping track of all the design data and their 
relations and the u se of these relations for cantrolling the access to data by multiple design
ers. The need for design data management is directly related to the use of the complexity 
handling and time reduction methods introduced above. These methods not only enable 
designers to create complex designs within a reasanabie amount of time, but also give rise 
to substantial overhead. Insteadof one description of the IC, there is a collection of design 
components, each represented at multiple levels of abstraction. The situation is worsened 
by the fact that during the design process many different versions of these design parts 
are created. Unless the designer is able to keep track of the relations between all these 
pieces of data, abstraction and decomposition will be useless. Libraries are only useful if 
the designers are able to find the desired library elements. When a team of designers is 
working on a design the situation becomes even more complex. In this case a data access 
control mechanism is required, preventing designers from making mistakes such as over
writing other designers' data or using the wrong version of another person's design part in 
a simulation. 

Design tool management is the activity of assisting the designer in making proper use of 
the available tools. Although design automation tools potentially reduce the design time, 
a real reduction is only achieved if the designers know how to use these tools. For instance, 
the designers have to.know what a certain tooi can be used for, how the tooi is invoked and 
how to fine-tune the tooi for their specific application. A design tooi management system 
will typically abstract from tooi invocation related information and will provide its users 
with tooi characterisation information to be used for tooi selection. 

If the designer's data and tools are managed, the only task remaining for the designer 
is to decide how the required design can be obtained using these tools and data. This 
involves selection of the tools to invoke, determination of the order of these invocations 
and selection of the data to which these tools are applied. Although the terms design 
methodology management [HNSB90] [KGMB94] and design process management (JD92] 
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[SD96] are frequently encountered in literature, we refer to the activity of assisting the 
designer in making these decisions as design flow management [tB95] [vW93] [vW94]. 

1.3 Problem definition 

Development of a CAD framework is not a trivia! task; it usually takes a lot of painstaking 
work to create such a system. This is especially true when, like in the case of most of the 
currently available CAD frameworks, such a system has to he build from scratch using a 
general purpose programming language, which does not feature special constructs for CAD 
framework construction. In addition to the fact that their construction requires a lot of 
effort, the resulting systems willoften he difficult to maintain andfor to extend with new 
functionality. Therefore it would he very useful to have a metbod enabling us to develop 
CAD frameworks more efficiently. 

Another problem associated with the currently available CAD frameworks is that most of 
these are not complete; they either do not provide support for all three design management 
sub-activities andfor they provide little or no assistance to the design management system 
developers. Typically, CAD frameworks originated as a design data management system 
[vW93] [vW94]. Despite the difficulties encountered, some of these systems were then 
extended to provide support for the design tooi and design flow management activities as 
wel!. However, due to the fact that these systems were originally designed with design 
data management in mind, it was not always possible to achieve a good integration of the 
different design management system components. So even though some CAD frameworks 
in principle support all three activities, these systems willoften he non-uniform and difficult 
to use. The main reason why CAD frameworks are created is to improve the efficiency of 
designers. Realisation of a framework doing this is already a very difficult task. Therefore, 
less urgent features such as design management system developer support received little 
or no attention during the development of the currently available CAD frameworks. As 
a consequence most of these systems are very designer oriented and provide only poor 
assistance to the design management system developers. 

1.4 Towards a solution 

In thesis we propose a metbod to solve the probieros described above, i.e., a metbod 
enabling us to efficiently develop complete CAD frameworks. 

One of the charaderistics of a complete CAD framework is that it provides support and 
uniform interfaces to all participants, so to both the designers and design management 
system developers. In this thesis we will show how this aspect of framework completeness 
can he implemented. Our approach is based on an analogy between IC designers and 
design management system developers, which stresses that all these people are designers, 
who only differ in what they design, namely ICs and design management systems, respec
tively. Like IC designers, DMS developers produce lots of data and use a variety of tools 
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while creating their DMS descriptions. Therefore, the support provided by the framework 
to DMS developers should include management of their data, tools and flows. A CAD 
framework can realise this by making the support facilities it provides to the IC designers 
available to the DMS developers. These facilities are provided by the design management 
system component of the CAD framework, so design management system developers will 
be assisted by the same system they are helping to develop. 

When the CAD framework's design management system provides support to all partici
pants, it becomes the central component of the CAD framework. In the past there has 
been only little consensus about what the structure of such a system should be. Therefore, 
the design management systems of most of the existing CAD frameworks were directly im
plemented based on some informal and often incomplete description of this system. This 
is the main reason for the incompleteness and lack of uniformity of these systems. To 
avoid these problems we will create a mathematica! description of the design management 
system. This abstract design management system model shows how a good integration of 
design data, design tooi and design flow management can be achieved. This model is based 
on the analogy existing between design management systems and digital systems. 

The time required for the development of a CAD framework is mainly consumed by the 
construction of its central component; the design management system. The design time of 
this system can be greatly reduced if it is not programmed in a general purpose language, 
but instead, is implemented using a dedicated design management system description lan
guage, which features special constrocts for CAD framework construction. Using such a 
language, a design management system can be represented at a higher level of abstraction. 
As a result, it not only becomes easier to create design management system descriptions, 
but also to maintain and extend these and will therefore lead to a big improvement of 
the CAD framework development efficiency. However, currently there is no suitable de
sign management system description language available. Therefore, in this thesis we wil! 
demonstrate how such a language can be defined. 

1.5 Thesis organisation 

In Chapter 2 we present an overview of the state of the art for CAD frameworks. This 
chapter introduces the current ideas about what a CAD framework is, presents some of the 
techniques developed for design management and shows how these techniques have been 
integrated in the existing CAD frameworks. 

In Chapter 3 up to and including Chapter 6 a CAD framework model is presented, which 
clearly demonstrates how a CAD framework can be constructed which not only achieves a 
good integration of design data, design tooi and design flow management, but also provides 
support to all participants. 

Chapter 3 introduces the IC designer- DMS developer analogy and showshow this anal
ogy leads to a CAD framework in which the design management system is the central 
component. In addition it features a model of the design management system basedon an 
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analogy with digital systems. This model is illustrated using a design management system 
for the LOCAM logic synthesis system. The LOC AM system is described in this chapter 
and will he used throughout this thesis to illustrate the concepts we introduce. 

In Chapter 3 the design management system is described in terms of three interacting sub
systems. In the following three chapters, more detailed models of these three sub-systems 
will he presented, where Chapter 4 covers the design data management system, Chapter 5 
the design tooi management system and Chapter 6 the design flow management system. 

Chapter 7 demonstrates how to define a suitable design management system description 
language. First the requirements for such a language are formulated. To do this it is 
essential to have very good picture of what a design management system is. Fortunately, 
we have already presented a detailed design management model in the previous chapters, 
which can he used as a guideline. Finally we introduce a class of languages based on 
an extension of hierarchical coloured Petri nets and demonstrate that these satisfy the 
formulated requirements. 

Finally in Chapter 8 we present our conclusions and we discuss the topics to be addressed 
by future research. 



Chapter 2 

CAD frameworks: State of the art 

In this chapter an overview of the state of the art for CAD frameworks is given. Besides 
for giving information about the compieteness of the currently available CAD frameworks, 
this overview will also be used to informally introduce the concepts involved. 

Section 2.1 presents the current ideas about what a CAD framework is and about what it 
is supposed to do. In order to be able to discuss the kind of support a CAD framework 
has to provide, we have to know what people are involved. Section 2.2 introduces these 
CAD framework participants. Likewise, discussions about how to integrate the different 
design management activities only make sense if we know what design data, design tooi 
and design flow management are. Section 2.3 presents the current ideas about these three 
design management activities. In Section 2.4 we demonstrate how these ideas have been 
implemented in some of the existing CAD frameworks. Section 2.5 discusses the current 
ideas regarding the architecture of CAD frameworks. The architectures presented in this 
section describe a CAD framework in terms of a number of interconnected components, 
which either assist designers by performing one of the three design management activities 
or provide support to the other participants. Therefore, Section 2.5 will aiso present some 
of the ideas regarding the integration of the three design management activities and the 
kind of support which should be provided to the CAD framework participants. 

2.1 CAD framework definition 

Like stated in [KGMB94], defining the term CAD frameworkis a difficult task. Although 
the term CAD framework is not exactly defined, the following definitions roughiy cover 
the contents. In [CFI90] the following definition is encountered: "A CAD framework is a 
software infrastructure that provides a common operating environment for CAD tools." In 
[tBBvW91] a CAD frameworkis defined as: "A CAD framework serves as a basis for CAD 
tooi integration and provides the designer with assistance for data organisation and design 
management." In [HNSB90] the following alternative definition is found: "The term CAD 
framework has come to mean all of the underlying facilities provided to the CAD tooi de
veloper, the CAD system integrator, and the end-user (IC or system designer) necessary to 
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facilitate their tasks." Finally in [KG MB94] the following statement is encountered: "Typ
ically, CAD frameworks include some form of design data management, a consistent user 
interface, and inter tooi communication, in addition to design methodology management." 

Despite the confusion regarding the definition of what a CAD framework is, the following 
things are clear. Firstly, a CAD framework should provide the designer with support for 
all three design management activities, so for design data, design tooi and design flow 
management. Secondly, besides supporting the designer, the CAD framework should also 
assist the design management system deveiopers, such as the tooi developers and the CAD 
system integrators mentioned above, in performing their jobs. Therefore, we adopt the 
following definition: "A CAD framewerk is a software infrastructure which assists designers 
by rnanaging their design data, design toois and design flows and which provides support 
to the design management system developers maintaining it." 

Providing support to the Design Management System (DMS) developers is an essential 
characteristic of CAD frameworks. Many CAD frameworks provide only little assistance 
tothese DMS developers. An extreme example of this is the type of design support system 
referred to as a design environment. Design environments consist of a number of tightly 
integrated tools eperating on a common design data representation. Addition of new tools 
or alteratien of the built in design flow is nearly impossible in these systems. Although a 
design environment provides design management support, it is usually not considered to 
he a CAD framework [Dan89J, because it completely lacks DMS developer support. 

2.2 CAD framework participants 

In addition to the confusion about what a CAD framewerk is, there is also little agreement 
about how to classify the partleipants invoived. In [HNSB90] the CAD tooi developer, the 
CAD system integrator, and the end-user (IC or system designer) are introduced as the 
CAD framework participants. In [KG MB94] design tooi and flow management are referred 
to as actlvities involving the following groups of users: 

• Designers - the ultimate end-users, people who produce design data by executing 
CAD tools in a design flow, 

• Tooi Deveiopers - people who write CAD programs, 

• Tooi Integrators- people whocombine tools and hide the dependendes between tools. 
They also customise vendor tools to tailor them to the needs of a specific site, 

• Flow Developers - design experts who describe the design methodology to be used, 
and 

• Managers - those who supervise all of the above. 
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To make the situation even more complex, [LJ92] introduces framework administrators, de
sign methodology managers, project managers and design engineers as the CAD framework 
participants. 

We introduce two types of participants: Designers and design management system devel
opers. The DMS developers can again be divided into five groups: Tooi developers, flow 
developers, design data management system developers, integrators, and CAD framework 
managers. As their narnes suggest, tool developers and flow developers create the design 
management system's tools and flows, respectively. Design data management system de
velopers structure the design data management system by defining a useful organisation 
for the design data managed by this system. Normally tooi developers create tools inde
pendent from the CAD frameworks in which these wil! potentially be used. Therefore, in 
order for a tooi to be used in a CAD framework, the tooi wil! have to be integrated with 
it. This is the task of the integrators. In contrast to tools, flows will usually be devel
oped using the flow description language provided by the CAD framework. In this case 
no integration is required. A CAD framework stores lts data in its local database andfor 
in external databases. In the last case these external databases will have to be integrated 
with the CAD framework by the integrators. The last partleipants we introduce are the 
CAD framework managers. It is the task of these managers to ensure that the framework 
created by the other DMS developers functions correctly. One of their tasks is to add new 
users to the CAD framework and to grant them with the privileges required for performing 
their tasks. 

2.3 The design management activities 

Discusslons about how to integrate the different design management actlvities only make 
sense if we know what these actlvities encompass. In the following three sub-sections we 
introduce the current ideas about design data, design tooi and design flow management, 
respectively. 

2.3.1 Design data management 

Design data management is concerned with two types of design data, i.e., 

1. raw data, and 

2. meta data. 

Raw data are the design descriptions and the auxiliary data, such as simulation and analysis 
results, used and/or produced during the design process. These often large amounts of 
data are stored in files residing at some location on a computer network. A design data 
management system should provide the designer with logica! rather than physical access 
to these data. This means that the system should abstract from information about the 
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actual location of the data on the network and of the operating system specific methods 
used to store and retrieve these data. 

Meta data is information about the design representations and the design activities. A 
design data management system uses meta data to represent raw data properties and to 
keep track of the relations existing between the different pieces of raw data. A design data 
management system collects the meta data by monitoring the design process and uses these 
data to perform its services. 

In [RRvHK93:1 [vHL96] design data management is described as a multi-dimensional prob
lem. In Table 2.1 the six dimensions presented in [RRvHK93] are listed. 

Table 2.1: Design data management dimensions. 

I Dimension I Representation of: I Why? I Example 
Versions Modifications Keep history Optimisation 
Hierarchy (De )composition Divide and Conquer Subcircuits 
Views Other representation Abstraction Layout, schematic 
Derivation Input ~ Output Tooi flow Simulation results 
Workspaces Team-work Access control Library 
Variants Product options Parallel developments Mains or battery supply 

During the design process many different versions of a design representation are created. 
The reason is that design representations are almost never "first time right". They ei
ther contain functional errors or do not satisfy the formulated requirements. A correct 
design representation is usually obtained after a number of modifications of the original 
description, each time resulting in a new version. A hierarchy represents how the different 
components of a decomposed design are related. During the design process a number of 
different views of the design are created, each uniquely characterised by the abstraction 
level at which the design is described and/or by the representation language employed. 
Derivation is concerned with the management of tooi invocation results. This is done by 
association of the resulting outputs with the inputs they were derived from. For example, 
derivation relates the results of a simulation run to the conesponding design representa
tion and input vectors. For rnanaging team-work, design data management systems employ 
workspaces, which provide a means to control access to data. A product may have different 
variants, which, although they provide almost identical functionality, have different imple
mentations, because they have to operate under different circumstances. For example, 
CD-players are produced in three variants, namely a home, a car, and a portable version. 
Because the portable version has to run on a battery supply, the ICs used in this variant 
have to be optimised with respect to power consumption. However, because the remaining 
functionality is almost identical for all three applications, the design processes of all three 
variants wil! have a large part in common. The design data management system has to 
keep track of to which variant a piece of data belongs. 
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It is not difficult to build a design data management system which handles one or more 
dimensions separately. However, creation of a system which is able to deal with more 
dimensions simultaneously, without causing data inconsistencies, is not a trivia! task. Most 
of the existing systems only support a few dimensions and have difficulties taking the 
interaction between these dimensions into account. For a sumrnary of how sorne of the 
existing design data management systerns handle multiple dirnensions we again refer to 
[RRvHK93]. 

Most of the existing design data management systerns are based on an approach sirnilar to 
the one introduced by Randy Katz [KBC+87], whoproposes an organisation of the design 
data space based on design objects. He introduces the following two classes of design 
objects. 

Representation objects are associated with raw data representing a design part at sorne level 
of abstraction. These objects are uniquely identified by their name, version nurnber and 
type. For exarnple the second version of a layout representation of a datapath is referred 
to as "Datapath[2].Layout". Representation objects are either composite or primitive. 
Prirnitive objects are associated with a complete representation of a design part. Cornposite 
objects on the other hand, correspond to representations descrihing a design part in terrus 
of how it connects the subsysterns it is composed of. Since such a representation does 
not contain the descriptions of these subsysterns, a cornposite object only provides an 
incomplete description of the corresponding design part. 

Structural objects are systern rnaintained objects introduced with the purpose of introducing 
a useful structure on the design database. Structural objects can be used to create an 
explicit representation of design data management dirnension related inforrnation. Having 
such an explicit representation is essential for each design data management systern. 

Katz represents objects and their relations using directed graphs. Nodes represent objects 
and the labelled edges the relations between these objects. As an exarnple consider the 
datapath layout version history graph shown in Figure 2.1. Such a graph can be used 
to represent information about versions, derivations and variants. The top node of this 
graph represent the "Datapath.Layout" structural object. This object, referred to as a 
version object, groups all the versions of the layout level datapath representation produced 
during the design process and can be used to represent information which all these versions 
have in cornrnon. The version history graph associates the datapath layout versions to 
the corresponding version object "Datapath.Layout" using the is-a-version-ofrelationship. 
The version history is represented using the is-a-derivative-of relationship, which relates 
a version to the design representation it was derived from. Design variants are often 
functionally equivalent and only differ by the way they are optirnised. For exarnple, the 
ICs used in a portable product wiJl usually be optirnised for power, whereas products 
which are not powered by a battery are.rnost likely to be optirnised for speed and/or area. 
This results in situations like that for the "Datapath.Layout" versions "1" and "2", which 
are derived frorn the same ancestor object, possibly by the same tooi but using different 
settings. 
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Figure 2.1: Datapath layout version history. 

Katz represents information about hierarchy and views using declaration graphs like the one 
shown in Figure 2.2. The top node of this graph represents an equivalence object, which is a 
structural object combining all the different views of the Datapath design. The equivalence 
object combines sub-graphs, referred to as representation hierarchies, which represent the 
structure of the design representations at a certain level of abstraction. For example, the 
layout representation hierarchy declares the layout level datapath representation objects 
as being composite objects defined in terms of an "ALU", "Rfile" (register file) and a 
"Shifter" subsystem. 

To manage the interaction between hierarchy and versions Katz introduces configuration 
graphs. Using the different versions of the design part representations created during a 
design process, many versions of the total design representation can be created. Such com
binations are called configurations and are created by relating a version of a composite 
representation object to versionsof its components. An example of a graph representing a 
configuration is presented in Figure 2.3, which combines version "2" of the composite "Dat
apath.Layout" object with version "1", "1" and "3" ofthe primitive objects "Rfile.Layout", 
"Shifter.Layout" and "ALU.Layout", respectively. 

For rnanaging team-work Katz uses the workspace concept. He defines a workspace as a 
named collection of design objects. There are several types of workspaces, characterised 
by their access rights (check-out/export privileges) and how severe objects are verified 
before they can be placed into a workspace (check-in/import restrictions). Examples of 
the different kinds of workspaces employed are the archive, group, and private workspaces. 
Archive workspaces, also referred to as library workspaces, contain information which is 
frequently used by lots of designers. Therefore, this information has to be correct and 
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Figure 2.2: A hierarchy and view declaration graph. 
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accessible to all designers. This is achieved by nearly unrestricted check-outs and very 
restrictive check-ins. Private workspaces are owned by only one designer. Objects can 
only be checked out by the designer who owns such a workspace. Of the three types of 
workspaces presented bere, private workspaces have the most restrictive check-outs and the 
most liberal check-ins. Group workspaces are owned by the memhers of a design group. In a 
group workspace the design part representations made by the group memhers are combined 
to form the complete design representation. The check-in and check-out restrictions of such 
a group fall somewhere between those of archive and private workspaces. 

Workspaces can be organised in the form of a workapace hierarchy. A workspace hierarchy 
describes the communication structure of its workspaces, i.e., workspaces can only export 
to and import from workspaces they are related to by the workspace hierarchy. 

Figure 2.4 shows a workspace hierarchy employed during the design of the microproces
sor of Figure 1.3. It represents that the microprocessor is created by a team consisting 
of the designers "desl", "des2", "des3" and "des4". The design of the datapath is a 
joint activity of "desl" and "des2". These designers make their datapath representa
tions in their private workspaces "desl WS" and "des2WS". Their work is co-ordinated 
using the group workspace "datapath WS", which contains data shared by both design
ers. The datapath is designed using the information stared in the library workspace "li-
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Figure 2.3: Datapath layout configuration. 

braryWS". Designers "des3" and "des4" are responsible for the design of the controller 
and the top-level microprocessor description. Their co-operation is co-ordinated using 
group workspace "miccon WS". The work performed in the datapath and the micropro
cessor/controller workspaces is co-ordinated using the project workspace "p,PProjectWS". 
A project workspace [RRvHK93] is a higher-level group workspace which co-ordinates the 
work performed in a number of group workspaces. 

Usually the workspace hierarchy reflects how the total design task is split into a number of 
smaller design sub-tasks. In our example the decomposition of the microprocessor design 
task into a datapath design task and a controller design task formed the basis for the 
workspace hierarchy. However, the workspace hierarchy can also be based on any of the 
other ways to divide the design task, e.g., according to abstraction level or, in the case of 
design reuse, the type of work performed. 

2.3.2 Design tooi management 

As the name suggests, a design tool management system manages the toois of a CAD 
framework. A tool is an executable program used to support the designer in bis design tasks 
[LJ92] [vW93] [vW94]. Design tooi management can be divided into three sub-activities: 
Tooi integration, tooi characterisation, and tooi invocation. 

Tool integration [CFI90] [FBM94:1 [HWS92] [Sim93] deals with the addition of new toois to 
the CAD framework. Design tools are usually developed as stand-aione programs, which 
are independent from the CAD frameworks in which they are used. Therefore, for most of 
the toois it will not be possibie to directly interface them to the CAD framework. Some 
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Figure 2.4: A workspace hierarchy. 

toois are integrated by modification of the souree code, allowing these toois, referred to as 
integrated tools, to directiy access theservices provided by the CAD framework. However, 
the souree code of a tooi is not aiways avaiiable. In this case, the tooi is integrated using 
encapsulation [Sch94] [Sch95], i.e., a special program is written, referred to as a wrapper, 
which interfaces the encapsulated tool to the CAD framework. To facilitate encapsulation 
the Tooi Encapsulation Specification language TES [CFI91] was developed. This language 
enables tooi developers to the specify tooi encapsulation information required by tooi inte
grators for writing a tooi wrapper. To support the integration of tools, a CAD framework 
should feature a tool interface, consisting of a number of functions via which the tools can 
access theservices provided by the framework. In [vW93] and [HWS92] two proposals for 
such a tooi interface are presented. 

As stated in [DD89], a designer should be able to query the design tooi management system 
about the existence of tools suitable for a given task. This is only possible if the tools are 
able to accurately represent their general abilities to their potential users. The activity of 
charting the abilities of a tooi is referred to as tooi characterisation. Except for [DD89], 
there is not much literature about this topic, probably because it strongly depends on the 
type of tooi being characterised. 

Once a designer bas selected a tooi, he should not be bothered with details about how to 
invoke the tooi. This means that the system should abstract from tool invocation related 
information such as: 

• The location of the conesponding executable, 

• the parameters to be supplied to this program during invocation, and 

• the location of the inputs and outputs of the program. 
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Like for tooi characterisation, [DD89] is about the only artiele addressing this problem. 
The reason is probably that tooi invocation deals with low level operating system specific 
issues. 

Tooi integration, tooi characterisation and representation of tooi invocation related infor
mation are actlvities performed by the DMS integrator referred to as a tool integrator. 
Sometimes the tooi integrator is assisted by the developer of the tooi. 

2.3.3 Design flow management 

Besides rnanaging their data and tools, a CAD framework should also assist designers in 
applying the tools to the data in such a way that the desired design is obtained. This 
involves selection of the tools to invoke, determination of the order of these invocations 
and selection of the data to which these tools are applied. A description of how to make 
these decisions is referred to as a flow. The activity of assisting the designer in making these 
decisions is referred to as design flow management. For a good overview of the existing 
approaches for design flow management we refer to [tB95) and [KGMB94]. 

A design flow management system should provide a language to represent flows. Using 
this language, design flow developers either create an explicit flow representation [vHT90] 
[vW93] [vW94] [tB95] or a description of a flow generator [BC94] [BC95] [SBD93], which 
can be used to dynarnically define flows. The knowledge required for constructing such a 
flow is obtained by consulting design experts. The resulting flow representations can be 
used to document design processes. However, if the flow description language is executable, 
then these representations can be used to automate the part of he design process the flow 
describes. In fact, such a flow acts as a higher level tooi, to be used by a designer instead 
of the tools invoked by the flow. This enables managerstoenforce a design policy sirnply 
by selecting the tools and flows which a designer is allowed to use. 

[KG MB94] uses directed graphs as a intuitive metaphor to discuss flows. A directed graph 
is composed of a set of vertices or nodes, a set of edges or arcs, and a mapping of every 
edge onto an ordered pair of vertices. A design flow can now be represented by a graph, 
where each node represents a design activity, such as the application of a CAD tooi, and 
each are describes a dependency, tempora), data or control, the destination node has on 
the souree node. 

Flows describe decisions regarding which tools are to be invoked on what data. If a flow 
directly refers to the tools to be executed, changes to the set of available tools will require 
sorne of the flows to be updated. This makes the flows descriptions very volatile. A possible 
solution is to have the flow refer totooi abstractions like tasks [BD91] [HD96] [KGMB94] 
or activities [LJ92] [BtBvW92] instead. These tooi abstractions correspond to abstract 
design functions and abstract frorn information about how these are implernented in terms 
of tooi invocations. When flows are defined in terrus of tooi abstractions, then changes 
to the collection of available tools will only affect the tooi abstraction definitions and will 
leave the flows unchanged. 
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2.4 Existing CAD frameworks 

In this section we wil! demonstrate how the ideas about the three design management 
actlvities presented in the previous section have been implemented in existing CAD frame
works. As an example of how design data management can be implemented we present 
the Nelsis CAD framework [vWSBD90] [vW93] [vW94]. Tooi management is illustrated 
using the Cadweid framework [DD89], which features an object-oriented approach towards 
tooi management. There exist a large number of systems imptementing a certain form of 
design flow management. [KGMB94] tries to establish a classification of these systems. 
We illustrate design flow management again using Cadweid [DD89] and Nelsis [tBBvW91] 
[BtBvW92], because these are good representatives of the blackboard and the data flow ap
proach of design flow management, respectively. Other systems, e.g., Monitor [Jan86] and 
Decor [KT92], use some sort of Petri Net to represent design flows. Since these formalisms 
are very similar to the dataflow formalism, we will nat treat these systems here. 

2.4.1 Nelsis 

Nelsis was developed at the Delft University ofTechnology and is one ofthe most complete 
existing CAD frameworks. In contrast to Katz, who uses an informal approach, Nelsis uses 
the OTO-D data model to formally structure the design data management information. 
OTO-D [tB92] is an acronym for Object Type Oriented Data model. OTO-D is a powerlul 
semantic data model, which can be used to define object types and their relations. This 
has resulted in the OTO-D data schema shown in Figure 2.5, which forms the basis of 
Nelsis' design data management system. 

The OTO-D data model defines object types in terms of their attributes. Figure 2.5 shows 
how an OTO-D data schema can be represented graphically. In this tigure boxes are used 
to represent object types. An object type is related to its attributes by lines running from 
the bottorn of the conesponding box to the top of the boxes representing its attribute 
types. 

The central type in the Nelsis data schema of Figure 2.5 is the "Design Object". The design 
object is the equivalent of the representation objects used by Katz, because it has a design 
description associated with it. Design objects belang to a certain module. The "Module" 
type is the equivalent of Katz's version object, because it is used to group the different 
versions of a certain design part representation. In order to represent the relation between 
a composite representation object and the design part representations it is composed of, the 
"Hierarchy" type has been introduced, which relates a Father-DesignObject (F) toa Sun
DesignObject (S). The "Equivalence" type is used to related an Original-DesignObject (0) 
toa Derived-DesignObject (D) tagether with the "Tooi" used toperfarm the "Transaction". 
Finally, the object types "lmportedDO" and "Export" are used to model the workspace 
mechanism. 

Nelsis originated as a design data management system. Later on, a design flow management 
system was added to it [tBBvW91] [BtBvW92] [tB95], which uses data flow graphs for 



22 CAD frameworks: State of the art 

Figure 2.5: OTO-D data schema used by Nelsis. 

design flow representation. 

One of the difficulties flow management systems have to face is the fact that tooi behaviour 
may vary due to several external variables, such as cammand line arguments (options and 
parameters), control files and user interaction. Due tothese variables the number and type 
of the input and output data consumed and produced during a tooi run may vary. lf this 
is the case, it is impossible to check whether all input data necessary for running a tooi are 
available. It also disables the possibility to check for tooi termination by monitoring the 
produced output data. Because ofthis, design flow management becomes nearly impossible. 
This problem can he tackled by using tooi abstractions referred to as activities in flow 
descriptions rather than the tools themselves. Nelsis creates activities by combining a tooi 
with assumptions about its external variables, such that its input and output files are fixed. 
For each different input/output contiguration of a tooi an activity is defined. However, it 
is also possible to create multiple activities having the same input/output configuration. 
In genera!, a tooi wil! he split into that set of activities representing the different design 
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functions of a tooi. 

As stated before, Nelsis uses data flow graphs for design flow management. An example 
of such a graph is given in Figure 2.6. Nelsis' data flow graphs consist of a nurnber of 
interconnected functional units. These functional units, denoted by rectangles, can be used 
to model activities. By additionally allowing these unitstorepresent subdataflows, like the 
Extract sub dataflow in Figure 2.6, hierarchy is introduced in the data flow graphs. The 
information transfer between the functional units of a data flow graph is represented using 
ports, denoted by the diamonds, circles and squares at the edges of the functional units, 
and channels which are graphically depicted using arrows. A port explicitly represents the 
presence of an input or output of a certain datatype for the conesponding functional unit. 
Forts are connected by channels. The arrows depicting the channels point from the output 
ports, at which the produced data are available, to input ports of the same datatype, which 
consume these data. 

Schematic Ex pand 
Edit 

svs 

Layout Extract 
Edit 

8 ExpMd H DRC H Extr~t 8 
Figure 2.6: Layout Versus Schematic dataflow. 

Nelsis uses these data flow graphs in the following way to perform design flow management. 
Activities represented by functional units with no input ports can always be executed. The 
output data produced by such an activity are transferred from the output ports via the 
channels to the connected input ports. After this, those actlvities which have data on all 
their input ports, can be executed. The termination of an activity can be determined by 
checking if data have been produced for all its output ports. The generated outputs are 
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again transferred to the corresponding input ports, thus enabling other activities to be 
activated. 

The input and output ports of functional units are again subdivided into two different 
types. Activities can only be executed if data of the correct type are available on the 
input ports. However, for some activities certain inputs are allowed but not required for 
their proper execution. To represent these kind of inputs Nelsis introduces optional ports 
(denoted by solid circles), which in contrast to the normal mandatoryinput ports (denoted 
by diamonds), do not have to contain data at the moment the corresponding activity is 
activated. In order to support versioning Nelsis uses two types of output ports. For the 
ports denoted by diamonds, also referred to as extension ports, the new data which become 
available for this port overwrite the existing data. As an alternative for this, modification 
ports are introduced (represented by solid squares), for which the new data does not 
invalidate the old data present at this port. 

In Figure 2.6 the flow of a Layout Versus Schematic (LVS) verification is represented. The 
schematic and the layout are created using an editor. Schematics and layouts generated 
using these editors are stored at the corresponding modification output port. The optional 
input port denotes that the editors either create a new design representation (no input) or 
a modification of an existing one (input taken from theeditor's output port). When both 
a schematic and the layout implementing it are present, a Schematic Versus Schematic 
(SVS) consistency check can be performed. This verification is done by comparison of 
the flat schematic (created by Expand) and the flat schematic extracted from the layout. 
The Extract sub flow describes the sequence of steps involved in this extraction: A layout 
expansion, a Design Rule Check (DRC), and a netlist extraction. 

2.4.2 Cadweid 

Cadweid is a CAD framework developed at the Carnegie Meiion University by James 
Danielland Stephen W. Director [DD89] [Dan89]. It features an object oriented approach 
totooi management and a blackboard mechanism for design flow management. The general 
structure of Cadweid is shown in Figure 2. 7. 

Like Ulysses [BD89], from which it inherited some ofits features, Cadweid uses a blackboard 
mechanism to support communication between the designers and the CAD tools. If a 
designer wants to perform a certain task, he posts the description of this task on the 
blackboard. In reaction to this, some tools volunteer for a chance to activate. Using 
the description of the abilities of these tools, the designer wil! piek one of the tools to 
perform the task. After its completion, the tooi wil! post the results on the blackboard for 
examination by the designer. After this the process wil! repeat itself. 

Cadweld's tooi management system is basedon the so-called CAD Tooi Knowledge Ob
ject (CTKO). CTKOs are created by linking a representation of the corresponding tooi 
knowledge to a CAD tooi. A CTKO consists of two basic components: The frame body 
and the control body. The frame body is collection of information which represents tooi 
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Figure 2. 7: Cadweld's overall architecture. 
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invocation and tooi characterisation related information. The tooi characterisation part is 
used by the designer during tooi selection. The control body consists of a set of activation 
patterns to which the tooi can respond. It is used to control the activation of the CTKO 
in response to the state of the blackboard. 

Cadweid CTKOs are organised by using a "CAD tooi" class hierarchy like the one shown 
in Figure 2.8. lnformation in common to a certain "class" of CTKOs is concentrated in 
the corresponding class definition. "CAD Tooi" is the most general class of the hierarchy 
presented in Figure 2.8. It describes tooi invocation information which is common to all 
the tools. From the general CAD Tooi class a number of subclasses are derived, which 
represent information in common to simulation, verification, inspeetion and design capture 
tools, respectively. From these classes even more specialised classes are derived, e.g., the 
"Simulators" class features three subclasses "Circ Sim", "Switch Sim", and "Timing Sim". 
CTKOs inherit information from the classes they belong to, e.g., the CTKO of a timing 
simulator is characterised by the information it inherits from the "Timing Sim", "Simula
tors" and "CAD Tooi" classes. This prevents unnecessary duplication of this information 
and provides us with a mechanism to keep this information consistent for all the CTKOs 
belonging to a class. Further down the class hierarchy, the information bocomes more 
specific. Control related information is usually found at the lowest levels. 

Design flow management was added to Cadweid by the introduetion of the so-called CAD 
Tasks. A CAD Task is a script, which describes a sequence of design steps as presented 
above. Because of the blackboard mechanism, these descriptions will not have to contain 
explicit information about the available CTKOs. Therefore, tools can be freely added 
or removed from the system without having any impact on the validity of the CAD Task 
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Design Capture 

Figure 2.8: A CAD Tool class hierarchy. 

descriptions. Like the basic tools, CAD Tasks can volunteer to performa certain assignment 
posted on the blackboard, making them a kind of higher level tools. 

2.5 The architecture of CAD frameworks 

There is still much confusion about the general architecture of CAD frameworks. In this 
section we discuss two architecture proposals. The first proposal is treated because it gives 
a very detailed picture of a possible CAD framework structure. The second, much less 
detailed proposal, is considered because it has been widely accepted. 

In [HNSB90] the very detailed structure of Figure 2.9 is proposed. According to this 
proposal a well designed CAD framework should have many layers of abstraction, of which 
the corresponding services are provided to the CAD framework users. 

At the lowest abstraction layer we find the "Operating System", which provides facilities 
for manipulation and organisation of files (File Services), execution of programs (Process 
Services), communication via networks (Network Services) and interaction with the users 
of the system (User I/0 Services). 

The second layer is the "Abstract Operating System" view. This layer is required because 
not all operating systems provide the same services. The single abstract operating system 
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Figure 2.9: Components of a modern engineering framework. 

eliminates these differences, thereby making the rest of the framework code independent of 
the specific operating system used. The services provided by this layer are "Physical Data 
Management" and "Process Management". These services enable the framework users to 
access raw data and to execute (CAD) programs without the need to know where these 
are stored on the network. 

The third layer provides facilities for building user interfaces (User Interface Services), 
rnanaging the CAD data associated with designs and co-ordinating access to these data by 
multiple designers ot CAD tools (Data Management Services), rnanaging the history of a 
design (Version Services), and facilities for descrihing what data items represent by giving 
the type of and the relations between these pieces of data (Data Representation Services). 

The third layer enables the framework's users to retrieve the desired data and to activate 
CAD programs. However, these CAD programs have to be supplied with the data toop
erate on. As long as they are of the correct type, the tooi arguments may be arbitrarily 
chosen. However, for most tools a fixed method is used to select the data they are ap
plied to. By combining information about tooi activation and the data selection method 
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more abstract tools can be created. Data selection methods can be described in terms 
of interactions with the third layer. The tooi integration interface provides a language to 
describe these interactions. When the souree code of a tooi is available it can he integrated 
directly into the framework by replacing its normal data access procedures by data selec
tion methods. For many tools however the souree code is not available. Such tools can 
be integrated into the framework by encapsulating them in such a way that the tooi sees 
the input and output file formats it expects, while the data is actually being handled by 
the framework. The software which implements that encapsulation is referred to as the 
"Foreign Tooi Interface". 

Using the abstract tools as building blocks, Methodology Management Services can be 
provided. These services enable the system integrator or the end user to specify recipes, 
which describe in which order (sequentially or concurrently) tools have to be activated to 
create the desired design. 

A more general but less detailed proposal is presented in Figure 2.10. This architecture has 
been widely accepted by standardisation bodies [LJ92] [CFI92] and by industry [Dig91]. 
This proposal explicitly distinguishes between "Domain Neutral Data" and "Domain Spe
cific Data". The former are the meta data and the framework data the framework uses to 
provide its services. The latter are the raw design and tool data. The "Framework Kemel" 
features framework services like those provided by the lowest four layers of the previous 
proposal (up to and including the Tooi lntegration Interface) and the higher level services, 
like Methodology Management and Design Management, derived from these. Besides the 
integrated and the encapsulated design tools special "Framework Tools" like meta data 
browsers are distinguished. 
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Figure 2.10: A general CAD framework architecture. 
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As an example of a real CAD framework complying with this general architecture, the 
structure of the Nelsis framework is presented in Figure 2.11 [vWBD90] (BvW90]. The 
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storage component and tools depicted in Figure 2.11 can directly be mapped on those of 
Figure 2.10. Nelsis' framework kemel consistsof a number of components which provide the 
framework services and a tooi interface, referred to as the "Data Management Interface", 
which enables tools to use these services. 
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Figure 2.11: The Nelsis IC Design System architecture. 

2.6 Summary 

In this chapter we have presented the current ideas about what a CAD framework is and 
about what it is supposed to do, we have introduced the CAD framework participants 
and the current ideas about the three design management activities. This was foliowed by 
the presentation of two of the most complete existing CAD frameworks. The chapter was 
concluded by a discussion about the architecture of CAD frameworks. 
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Most design data management approaches are based on the ideas presented by Katz. As 
an example of how these ideas can be implemented in a real framework, the design data 
management system used for the Nelsis CAD framework was treated. Tool management 
was illustrated using the object oriented approach employed by the Cadweid CAD frame
work. Design flow management was demonstrated using the data flow and blackboard 
approaches employed by Nelsis and Cadweld, respectively. In the last part of this chapter 
two different proposals for the general structure of a CAD framework were presented, in
duding a demonsteation of how the structure of Nelsis can be mapped onto one of these 
general structures. 

The general condusion to be drawn from the literature regarding CAD frameworks is that 
there is a lot of confusion regarding the terminology employed, about what a CAD frame
work is, about who the participants are and about what the general architecture of a CAD 
framework should be. This despite the fact that some overview articles appeared trying 
to darify these issues [HNSB90] [LJ92] [KGMB94]. Additionally, literature demonstrated 
that most of the existing CAD frameworks are not complete. This is illustrated by the fact 
that we had to use examples taken from different frameworks to introduce the design man
agement and CAD framework concepts. Although providing support to all participants 
is one of the major characteristics of a complete CAD frameworks, this aspect receives 
relatively little attention in the existing literature and CAD frameworks. Another con
dusion which can be drawn from literature is that there are lots of similarities between 
the different approaches. However, these similarities are douded by differences in the em
ployed terminology and by the fact that most papers mix implementation details with the 
underlying fundamental ideas. In this thesis we use the ideas these approaches have in 
common to create an abstract model of complete CAD frameworks. Th is model, which is 
presented in the coming four chapters, will enable us to reason about CAD frameworks 
without being bothered by implementation details. 



Chapter 3 

A CAD framework model 

In this and the coming three chapters a CAD framework model is presented, which clearly 
demonstrates how a CAD framework can be constructed which not only provides support 
to all participants, i.e., to both the designers and DMS developers, but also features a 
good integration of design data, design tooi and design flow management. As depicted 
in Figure 3.1, a CAD framework consists of two interacting components: A Design Man
agement System (DMS) and a DMS developer support system. The design management 
system assists designers during their design management tasks. This system uses the data 
storage, data access and tooi execution facilities of the operating system to provide its 
services. The DMS developer support system assists the DMS developers in their job of 
updating the design management system. 
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Figure 3.1: A CAD framework. 

In Beetion 3.2 we demonstrate how a CAD framework can be constructed which provides 
assistance and a uniform interface to all participants. To achieve this, we use an analogy 

31 



32 A CAD framework model 

between designers and design management system developers. In this analogy all CAD 
framework partielpants are oonsidered as designers who require the same kind of support. 

The DMS of a complete CAD framework should not only provide support for design data, 
design tooi and design flow management, but also bas to feature a good integration of 
these three activities. In the last section of this chapter (Section 3.3) and the coming 
three chapters we present a DMS model whkh demonstrates how this integration can be 
achieved. Th is model is constructed by employing an analogy between digital systems and 
design management systems. lt describes the design management system in terms ofthree 
interacting systems: A design data, a design tooi, and a design flow management system. 

We illustrate the DMS model by creating a description of a design management system 
automating the LOCAM timing-driven matching process. LOCAM, whkh is a logic 
synthesis system developed and distributed by Philips, wiJl be used throughout this thesis 
to illustrate the concepts we introduce. In Section 3.1 a description of this synthesis system 
is given. 

3.1 The LOCAM logic synthesis system 

We will illustrate the concepts introduced in this thesis using LOCAM [Phi92]. LOCAM 
can be used to automatkally synthesise a description of an IC in a High-level Design 
Language (HDL) into an optimised gate-level network. The general structure of LOCAM 
is depicted in Figure 3.3. 

Currently the following three HDL input formats are supported: 

• The Philips Hardware COmpiler language PHACO, a simple Pascal-like language, 

• the Electronk Logic LAnguage ELLA [BGL92], a powerlul and simulatable (UK
MoD) standard, and 

• the VHSIC Hardware Description Language VHDL [VHD93], a powerful and exten
sive IEEE standard, simulatable on various levels. 

Additionally, synthesis from netlists is supported via the Electronk Design Interchange 
Format (EDIF) [EDI93] and the hierarchical Netlist Description Language (NDL). 

The heart of the LOCAM system is the Optimiser and MAteher tooi OMA. OMA is 
used to optimise Boolean expresslons and to subsequently map these onto a standard cell 
library. The general structure of OMA is depicted in Figure 3.2. 

OMA basically operates on designs represented using the Philips Logk And NETwork 
Specification format (PLANETS), which combines Boolean equations with structural de
scriptions. The different HDL and netlist descriptions are interfaced to OMA using the 
appropriate compiler totranslate these representations to PLANETS. Additionally, OMA 
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can handle !ow-level input in the farm of PLA tables and logic expressions. The opera
tion of 0 MA is controlled by a control file. Among others, this file will denote the input 
file, determine how the design will be optimised, control whether or not matching will be 
performed, and if so, the library to be used, and finally what output will be generated. 
If matching is switched on, OMA requires an extra input, which is a library defining the 
standard cells onto which the logic expressions are to be mapped. The output of OMA 
consists of a file containing the optimised design (in PLANETS, PLA table or logic ex
pressions format), a NDL netlist representation of the results of the matcher, and a report 
file Iisting all the messages produced during the OMA run. The NDL netlist produced by 
OMA can be converted using the OMA2<language> programs to the standard HDL and 
netlist formats or to the formats employed by design stations such as Mentor Graphics, et 
cetera. 

3.2 The designer- DMS developer analogy 

In order to construct a CAD framework which provides assistance and a uniform interface 
to all participants, we employ the following analogy between the actlvities of the two types 
of partielpants a CAD framework has to deal with: Designers and design management 
system developers. A CAD framework assists designers by rnanaging their data, tools and 
flows. This task is performed by the corresponding design management system. The DMS 
is constructed and rilaintained by the DMS developers. Despite the differences between 
the tasks performed by all participants, they have one thing in common; they are all 
designers. The basic difference lies in what they design rather than how they design it. 
DMS developers design (parts of) a design management system. They do this by making 
or updating a description of (a part of) the design management system. These descriptions 
represent (a part of) the DMS at a certain level of abstraction and are expressed in an 
appropriate DMS description language. Like designers, DMS developers produce lots of 
data and use a variety of tools to do this. Therefore, DMS developers also require the CAD 
framework to assist them in rnanaging their data, tools and flows. A CAD framework can 
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realise this by making the support facilities provided by its design management system 
available to the DMS developers. 

Basedon the designer DMS developer analogy, we propose the CAD framework structure 
presented in Figure 3.4. In this proposal the design management system and the DMS 
developer support system of Figure 3.1 have been combined to form a more general de
sign management system, which marrages the data, tools and flows of both the designers 
and the DMS developers. Since all partleipants are supported by the same system, this 
automatically results in a uniform interface for everybody involved. 

The way the D MS of Figure 3.4 marrages the design process is not hard-coded into it. In
stead, it consists of a DMS core which is independent from the design management strategy 
to be employed. This core is programmed by the DMS developers to perfarm its design 
management system services. Besides rnanaging the data, tools and flows of the DMS 
developers, the DMS core also assists the DMS developers during its own programming 
process. lt achieves this by allowing the DMS developers to program it by downloading 
DMS representations, rather than by modification of its souree code. These representations 
describe a part of the DMS structure and/or behaviour at a certain level of abstraction 
and are expressed in one of the DMS description languages supported by the DMS core. 
In the rest of this thesis we present a detailed model of the DMS core and we show how 
this system can be programmed by the DMS developers to perform design management 
services. 

3.3 The digital system analogy 

Most CAD frameworks were constructed based on an informal and often incomplete model 
of the structure and behaviour of the conesponding design management system. The 
frameworks which use a forma! approach are either based on a forma! model of the design 
process [JD96] [SD96] or on a model of the design management activity [ASS95] [vW94]. 
Although these models are very useful because they lead to a better understanding about 
what a design management system is supposed to do, they give us little information about 
how this system should achieve this. Our approach features an explicit and mathematica! 
model of the design management system. The model presented in this chapter highlights 
the relation between .design data, design tooi and design flow management. lt is a gener
alisation of the models we presented previously [Rov90b], [Rov90a], [Rov94], which where 
based on the ideas presented in [Koo91] and which addressed design tooi and design flow 
management rather than design data management. 

Mehendale [Meh91] introduces a design flow management approach which is based on a 
parallel that can be established between the design flow and logic design domains. He 
uses this parallel to map design flows to logic level digital system representations (see 
Table 3.1 ), thereby enabling him to use the techniques and algorithms developed for the 
design of digital systems for the specification, representation and synthesis of design flows. 
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Like Mehendale we make use of an analogy with digital systems. However, we use this 
analogy to model the complete design management system rather than for design flow 
representation. In Section 3.3.1 the general structure of digital systems is introduced. In 
Section 3.3.2 we use the digital system analogy to create a design management system 
model. This model describes the design management system in terms of three interacting 
components: A design data, a design tooi, and a design flow management system. These 
three components, of which detailed models wiJl be presented in the coming three chapters, 
are connected using busses. In Section 3.3.3 we show how these busses can be modelled. 

3.3.1 Digital systems 

The general structure of a digital system is presented in Figure 3.5 [Ein89]. 

Every digital system can be split into an Information Processing Unit (IPU), also referred 
to as a datapathor operational unit, and a Control Unit (CU), alternatively called timing 
unit or controller. Computations are performed by the IPU under control of the CU. 
The CU issues commands to the IPU using a number of control signals. It monitors the 
resulting operation of the IPU using the status signals supplied by the IPU. 
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Table 3.1: Design flow- logic design mappings. 

J design flow domain Jlogic design domain 
tooi logic primitive 
tooi data ports 
data flow direction port direction 
program pathname model 
program options model parameters 
design flow higher level cel! 
tooi interconnects nets 
tooi/subflow library standard cell/mega modules library 
repetitive flows port arrays, cel! arrays 
iterative flows sequentia! logic 

The general structure of information processing units is depicted in Figure 3.6. IPUs 
consist of a data store, a data transformation unit and some data transportation channels 
connecting these. 

Like its name suggests, the data transformation unit is used to perform transformations on 
data. It usually consists of a number of components, which we will refer to as data trans
farmers. Data transformers, also referred to as operators, are the elements which execute 
the calculations performed by a digital system. Examples are combinatorial elements such 
as adders, multipliers and multiplexers. The operation of a data transfarmer is supervised 
by its control inputs, which determine what transformation it will performat a certain mo
ment in time. For example, consider the Arithmetic Logic Unit (ALU) data transformer of 
a microprocessor. An ALU can performa number of operations on the data available at its 
data inputs (e.g. addition, subtraction, incrementation and decrementation). The control 
inputs of an ALU determine which of these transformations are actually being applied. 

The data store consistsof a number of storage elements {e.g. registers). Read and write 
access of these stores is supervised by the control signals. The data store supplies the data 
transformation unit with the required input data and stores the results for later use. 

Data, control and status information is transported from and to the data transformation 
unit, the data store and the IPU environment by the data transportation channels connect
ing these. The operation of the data transformation unit and the data store is supervised 
using control signals. These IPU componentsin turn report their progress totheir environ
ment by producing status information. Hierarchy can be introduced in our digital system 
model by allowing data transfarmers and storage elements which are not primitive, but 
digital systems on their own, each characterised by their own CU and IPU. 

The operation of the control unit can be represented using a state transition graph. A state 
transition graph is a labelled directed graph. The nodes and edges of such a graph can be 
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Figure 3.5: General structure of a digital system. 

used to represent the states and transitions of the control unit, respectively. For the CU 
examples presented in this chapter, the labelling is done as follows. Every node is labelled 
with the output produced by the CU when it is in the corresponding state. Every edge is 
labelled with the CU input enabling the corresponding transition. 

Digital systems are either synchronous or asynchronous. These systems differ in the way 
they change state. For a synchronous system the values of the IPU storage elements and 
the state of the CU change simultaneously. This synchronisation is achieved by making 
the occurrence of state transitions depend on a single signa!, referred to as the clock. 
Asynchronous systems on the other hand, do not have such a centralised state transition 
mechanism, and therefore transitions will occur asynchronously. 

As an example of a digital system, consider a small synchronous system which calculates 
the factorial of a natura! number N (N 2: 2), denoted by N!, which is defined by 

N! N * (N 1) * (N- 2) * ... * 2 * 1 . 

A possible algorithm to calculate N-factorial is given by 

Factorial(N) Fac(N-1,N), 

where 

{ 
Product if Counter = 1 

Fac (Counter, Product) = L' ( C t rac oun er 1, Counter* Product) otherwise 

The structure of a synchronous digital system implementing this algorithm is represented 
in Figure 3. 7. The data store of the factorial IPU consists of the registers Counter and 
Product, which are used to contain the values associated with the corresponding argument 
of the Fac function. The outputs of these registers are always enabled, so the stored val u es 
can be read at any time. Write access to the data store is supervised using the hold control 
signa), of which the inverted value is presented to the write enable inputs of the registers. 
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The data transformation unit of our IPU contains three types of data transformers. The 
operators Deer and Times perform the actual calculations. They are used to decrement the 
value of Counter by one and to obtain the next value of Product by multiplying its old value 
with number stored in Counter, respectively. The multiplexers MUX1 and MUX2 select 
from which souree the data is to be obtained from. The One? unit monitors the value 
presented to Counter and generates the status signa! one, indicating whether this value is 
one or not. The components of the IPU are connected using data busses (thick arrows) 
and control and status lines (normal arrows). The arrowheads indicate the direction in 
which these data flow. 

The factorial IPU is controlled by a control unit, which is a state machine with three 
states. In the start state Ready of this machine, the IPU performs no calculations. This 
is effectuated by the hold control signa!, which disables the inputs of the Counter and 
Product registers. When the external control signa! start is activated, the machine proceeds 
to the Init state. While the circuit is in this state, the init control signa! wil! direct the 
multiplexers to select the external data input. This results in the initialisation of the 
registers Counter and Product to N- 1 and N, respectively. After the initialisation the 
Calc state is reached. In this state the recursive Fac function is calculated. The recursion 
is supposed to stop when Counter becomes equal to one. This is effectuated by the one 
status signa!, which signals the CU that the calculation has finished. In response to the 
one status signa!, the state machine wil! make a transition to the Ready state. In this state 
it wil! hold the IPU and raise the external status signa! ready, indicating that the factorial 
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N 

Figure 3.7: A synchronous digital system for factorial computation. 

calculation has finished and that the value of N! is available at the data output. 

3.3.2 A design management system model 

A complete design management system will in general consist of three co-operating sub
systems, one for each design management activity. But how should these systems be 
combined? Making use of the digital system analogy, we arrive at the DMS structure 
presented in Figure 3.8. This tigure shows a decomposed version of the DMS of Figure 3.4 
consisting of three interacting subsystems: A design data management system, a design 
tooi management system, and a design flow management system. 

Like the data store of a digital system, the design data management system (DDMS) will 
store and control access to the data produced by the design management system. The 
design data management system consists of a number of design data storage elements (e.g. 
databases). The design and the integration into the DMS of these storage elements is the 
task of the design data management system developers. 

The design tool management system (DTMS) is the equivalent of the data transformation 
unit in digital systems. The basic components of such a system, the tools, are designed 
by CAD tool developers. These tools are integrated into the DMS by tool integrators. The 
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tooi integrators hide tool invocation related information, thereby converting these tools into 
black boxes, which can be supervised using their control inputs and their status outputs. 
We also refer to these encapsulated CAD tools as design data transformers. 

Like the digital system controller, the design flow management system (DFMS) can be 
represented by a state machine, which controls the operation of the DDMS and DTMS. 
This state machine is designed by the design flow developers. Based on the information it 
receives via the "Status" input, it guides the operation of the other two components by 
providing these with control input via its "Control" output. 

Like the total design management system shown in Figure 3.4, its three components can 
also be programmed by the DMS developers. Therefore, in addition to the structure based 
on the digital system analogy, Figure 3.8 features some dasbed lines indicating that the 
three design management components can be programmed by supplying these with DMS 
representations retrieved from the design data management system. 

As an example of a DMS we present the asynchronous system depicted in Figure 3.9. This 
system supports the designer in using OMA toperfarm a form of timing driven matching, 
resulting in a good trade-off between area and timing. Designers can influence the OMA 
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matching process by specifying timing constraints in the OMA control file. Our DMS 
example is basedon a timing driven matching procedure described in [Phi92]. During the 
first step of this procedure the design is optimised (no matching performed). In the second 
step the optimised design is matebed using overspecified timing constraints by requiring 
the maximum delay to be zero. This results in a circuit which is fast, but which occupies a 
large area. In the third step, the maximum delay of this circuit, obtained from the 0 MA 
report file, is used as a more realistic timing constraint for a new matching run. The 
resulting circuit will in general exhibit a good trade-off between area and timing. 

Design 

Matebed Design 

CU 

mode="match" 
constr = delay 
os tart 

ready 

Figure 3.9: The OMA timing driven matching DMS. 

The design data management system of the DMS of Figure 3.9 consists of a number of 
design data stores, one for each OMA input and output type. The outputs of these stores 
are always enabled, so their contents can be read at any time. Write access to these stores 
is controlled by a write enable input. 

Like the data transformation unit of our factorial digital system, the tool management 
system contains three types of data transformers (tools), i.e., transformers which perform 
the actual calculations, transformers which select the souree data is to be obtained from, 
and transformers which produce the IPU status signa) by analysing the results of the 
calculations. The tools OMA and Control Modifier perform the actual calculations. They 
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are used to optimise/match the input design and to fine tune the control file guiding this 
optimisationjmatching process. OMA is activated by the OMA start signa! start and 
reports its completion to its environment using the OMA data available signa) oda. The 
behaviour of Control Modifier is controlled by its mode and constr inputs. The value 
associated with mode is either equal to "opt" or "match". This results in control files 
which put OMA in the optimisation or the matching mode, respectively. The timing 
constraint input constr is only meaningful in matching mode. The value of this input is a 
number which determines the timing constraint defined in the OMA control file. Like the 
multiplexers of the factorial system, the design data transformer MUX selects the souree 
data is to be obtained from. When the selected design data become available at its output, 
the multiplexer signals this to its environment using the multiplexer data available signa) 
mda. The Report Analyseris an example of a status generation tooi. It is used to extract 
the maximum delay of a matched design from the corresponding report file. 

The design flow management system of our timing driven matching system is represented 
by a state machine with five states. The machine is activated once it receives the external 
start command. In response it leaves its start-state Wait and goes to the initialisation 
state Init. In this state the control signa! init is used to have the multiplexer select the 
externally presented design. In response to the mda signa! this design is stored in Omaln 
(the write enable input of this data store is connected to mda) and the state machine 
proceeds to the optimisation state Opt. In this state the design is optimised by OMA, 
which is achieved by setting mode to "opt" and by starting OMA using ostart. Once OMA 
is finished (denoted by oda), the machine proceeds to the Overspecified Timing Constraints 
0 TC state. In this state the design is matebed (mode = "match") with a timing constraint 
of zero ( constr 0). The resulting delay of the matebed design is used in the Realistic 
Timing Constraints RTC state as a more realistic timing constraint ( constr delay) for 
the matching process corresponding to this state. After this, the machine returns to the 
Wait state and raises the external status signa! ready to indicate its completion. 

3.3.3 Bosses 

As shown in Figure 3.8, the design flow management system controls the design data and 
design tooi management systems by supplying these with control inputs via the control 
bus. It monitors the operation of these systems using the resulting status information 
received via the status bus. However, the situation sketched in this figure is a little bit 
too abstract. For example, if an active design flow sends a control input to the design 
data management system via the control bus, then how do the DDMS and DTMS know 
which one of them has to process it. Likewise, the design flow management system will 
not known whether the information available at the status bus was produced by the design 
data or the design tooi management system. 

There are two ways to solve the problem described above: Ad dressing or bus decomposition. 
In the first case address information is added to the messages send via the control, status 
and data busses. The DMS components connected tothese busses then use this information 
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to determine whether a message is meant for them or not. A disadvantage of addressing 
is that it results in an implicit representation of the communication structure. Another 
disadvantage is that it provides no protection; neither against messages being read by 
components they were not meant for, nor against control messages being produced by 
components which do not have the right to do this. In this thesis we wil! use an approach 
based on bus decomposition, which does not have these disadvantages. For an illustration 
of this approach, consider the design management system for the OMA Timing Driven 
Matching (OTDM) process depicted in Figure 3.9. For this DMS the control, status, and 
data busses depicted in Figure 3.8 have been decomposed into a number of smaller busses, 
which directly conneet a data souree to a data destination. The components of the OTDM 
DMS can only communicate with the components they are connected to via one of these 
busses. This not only results in an explicit representation of the communication structure 
of the OTDM DMS but in addition restricts communication to the components involved. 

In contrast to the OTDM DMS, the design management system model of Figure 3.8 does 
not describe the design data and design tooi management system in termsof a number of 
separate units, which can be connected using busses. Despite this, the problem described 
above can be solved by decomposing the design data, control and status busses of Figure 3.8 
into a number of more specialised busses. Before we show how this can be done, we wil! 
first give a detailed description of what a bus is. Basically, busses are connections between 
a number of data sourees and a number of data drains and are defined as follows. 

Definition 3.3.1 Bus 

A bus is a pair <Cant, BusDef>, ofwhich Cant denotes the current contents and BusDef 
denotes the definition of the bus, respectively. 

A bus definition is a 4-tuple <Name, Sources, Drains, BusType>, where 

• Name- the bus identifier, 

• Sourees - a set containing the outputs via which data are put onto the bus, 

• Drains - a set descrihing the inputs which get data from the bus, and 

• BusType- the type of this bus. 

A bus type is a 4-tuple <ContType, RF, DF, WF>, where 

• CantType- the bus contents type, 

• RF - the read function, which when invoked will read data from the bus, 

• DF- the deletion function, which will result in the removal of data from the bus, and 

• WF- the write function, which determines how new data are added to the bus. 
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The potential data sourees in the DMS model of Figure 3.8 are the outputs of the three 
design management system components and the inputs of the DMS itself. Likewise, the 
data drains are the inputs of the three DMS components and the outputs of the DMS. From 
now on we will use the following narnes to refer to these sourees and drains. The design data 
and design tooi management system status outputs are referred to using "ddms.status" and 
"dtms.status", the corresponding design data outputs are named "ddms.data.out" and 
"dtms.data.out", the design flow management system control output "dfms.control", and 
the external control and design data DMS inputs "ext.control" and "ext.data.in". Likewise, 
we introduce the following narnes for the data drains: "ddms.control" and "dtms.control", 
"ddms.data.in" and "dtms.data.in", "dfms.status", and "ext.status" and "ext.data.out". 

If a bus with a single souree "dfms.control" and only one drain "ddms.control" is created, 
then it can be used by an active flow tosend control inputs to the design data management 
system. The resulting status information can be delivered to the design flow management 
system using a bus with souree "ddms.status" and drain "dfms.status. Busses like these, 
which only have a one souree and drain, will also be referred to as channels. 

The contents Cont of a bus is to a large extend determined by the values it currently 
transports. To illustrate this consider a bus which behaves like a One Place Buffer (OPB). 
Such a bus is only able totransport one value at a time. If a new value is written to an OPB 
bus, then the old value will be overwritten by the new one. The contents of an OPB bus 
is given by the value currently transported by it. Besides the data it currently transports, 
the contents Cont also depends on the way the bus organises these data. As an example, 
consider a bus which operates according to the First In First Out (FIFO) principle. A 
FIFO bus has to maintain the relative order of the data it currently transports. It can 
do this by grouping these data using a sequence, which represents this ordering. As an 
example consider a FIFO bus transporting naturals. If "1" was the first value put on this 
bus, foliowed by "2", "3", "4" and finally "5", then a possible way to represent this is by 
making the bus contents equal to the sequence < 1, 2, 3, 4, 5 >. If a value is retrieved from 
this bus, then the contents will change to < 2, 3, 4, 5 >. When subsequently the value "6" 
is written to it, the bus contents will become equal to < 2, 3, 4, 5, 6 >. In genera!, the 
contents Cant wil! not only represent what data are currently transported by the bus, but 
also how the bus organises these data. The type of Cant is determined by the bus contents 
type CantType, which are related as follows 

Cont E ContType . (3.1) 

For an OPB bus transporting naturals the type is given by IN. The contentsof our FIFO bus 
is given by a natura! number sequence of arbitrary length, including the empty sequence, 
which is represented by a type equal to IN*. 

Data can be read from, deleted from and written to a bus using the read function RF, 
the deletion function DF and the write function WF, respectively. When applied to the 
bus' contents, the read function will return one of the values currently transported by the 
bus. For a OPB bus, this function will return its current contents. For a FIFO bus, the 
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read function will return the "first in" value. For example, if the bus contents is given 
by < 1, 2, 3, 4, 5 >, then the read function will return the value "1". If a bus is not 
transporting data at the moment its contents is read, then the undefined value l.. will be 
returned. Application of the read function wiJl never alter the contents of a bus; it can only 
be used to inspeet the contents. The deletion function DF however, will change the bus, 
namely by removing one of the transported values. In case of an OPB bus, application of 
the deletion function will change the bus' contents to l... For a FIFO bus with contents 
equal to < 1, 2, 3, 4, 5 >, application of the deletion function wiJl change these contents to 
< 2, 3, 4, 5 >. New data are added to a bus using the write function WF. For OPB and 
FIFO busses, the write function wiJl have one argument, which is the value to be added to 
this bus. If a value is written to an OPB bus, then it will become the new contents of the 
bus. When invoked for a FIFO bus with contents < 2, 3, 4, 5 > using an argument equal 
to "6", the bus contents will be changed to < 2, 3, 4, 5, 6 >. 

The read, delete and write functions of a bus are invoked by the components connected 
to it. A component is only allowed to read and/or delete elements from a bus if this bus 
is connected to one of its inputs. For example, the design flow management system of 
Figure 3.8 can only read from those busses which are connected to either its "dfms.status" 
or "ext.control" input. A component is only able to write to those busses which are 
connected to one of its outputs. For example, the design flow management system is only 
allowed to write to the busses connected to either its "dfms.control" or "ext.status" output. 

Fora bus bus, we wiJl use bus? to refer to the value returned by the read function. Moreover, 
bus- will be utilised to denote the bus bus after invocation of the deletion function. In case 
the write function of a bus bus has only one argument val, then bus/val will be used to refer 
to this bus after val has been added to it by invocation of the write function. 

3.4 Summary 

In this chapter a CAD framework model was presented. This model clearly demonstrates 
how a CAD framework can be constructed which provides assistance and a uniform in
terface to all participants, i.e., to both the designers using it and the DMS developers 
maintaining it. To achieve this a CAD framework should feature a design management 
system to support the designers and a DMS developer support system to assist the DMS 
developers. For the CAD framework model presented in this chapter, we have made use of 
an analogy between designers and design management system developers, which considers 
all these CAD framework participants as designers requiring the same kind of support. 
Based on this designer DMS developer analogy, we have proposed a CAD framework 
structure in which the design management system and the DMS developer support system 
have been combined to form a more general design management system, which manages 
the data, tools and flows of both the designers and the DMS developers. Since all partici
pants are supported by the same system, this automatically results in a uniform interface 
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for everybody involved. 

The way the combined DMS marrages design processes is not hard-coded into it. lnstead, 
it consists of a DMS core which is independent from the design management strategy 
to be employed. This core is programmed by the DMS developers to perform its design 
management system services. Besides rnanaging the data, tools and flows of the DMS 
developers, the DMS core also assists the DMS developers during its own programming 
process. lt achieves this by allowing the DMS developers to program it by downloading 
DMS representations, rather than by modification of its souree code. These representations 
describe a part of the DMS structure and/or behaviour at a certain level of abstraction 
and are expressed in one of the DMS description languages supported by the DMS core. 

The design management system of a complete CAD framework should provide support 
for design data, design tooi and design flow management. In this chapter we have in
troduced a DMS model which demonstrates how a CAD framework can be constructed 
which provides support for all three activities. This model is constructed by employing an 
analogy between digital systems and design management systems. lt describes the design 
management system in terms of three interacting systems: A design data, a design tooi, 
and a design flow management system. In the following three chapters we wil! develop 
more detailed models of the design data, the design tooi and the design flow management 
systems occurring in this design management system model, respectively. The three DMS 
components communicate via busses. In the last part of this chapter we have presented a 
detailed model of these busses. 

We have illustrated the DMS model by creating a description of a design management 
system automating the LOCAM timing-driven matching process. LOCAM, which is a 
logic synthesis system developed and distributed by Philips, was described in this chapter 
and wil! be used throughout this thesis to illustrate the concepts we introduce. 
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Chapter 4 

The design data management system 

In this chapter a detailed model is presented of the Design Data Management System 
(DDMS). Figure 4.1 shows how the DDMS is positioned within the design management 
system. The model presented in this chapter gives us guidelines of how to construct a 
design data management system which provides support and a uniform interface to bath 
the designers and the design data management system developers. 
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Figure 4.1: Environment of the design data management system. 

Like the name suggests, a design data management system assists designers by rnanaging 
their design data. Design data management can be considered as an activity invalving 
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• design data storage, 

• design data retrieval, and 

• design data protection. 

Design data storage and retrieval are strongly related activities. Data storage is useless 
if these data can not be retrieved afterwards. If a piece of design data is stored at a 
certain location, then this location has to be remembered until the moment these data are 
needed again. Typically a design data system will be concurrently accessed by multiple 
designers. This will lead to problems Iike designers trying to modify the same piece of 
data simultaneously. To avoid these problems most design data management systems will 
feature a design data proteetion mechanism. 

The way a data store of a digital system organises its data is fixed, i.e., the available 
storage elements and their access mechanism do not change over time. This in contrast to 
the design data system. This DMS counterpart of the data store features a highly flexible 
design data organisation. For example, if a DDMS structures its design data space using 
workspaces, then this structure can be changed during its operation by addition or deletion 
of workspaces. It is the task of the design data management system developer to create 
and maintain a good DDMS organisation. A complete design data management system 
should support its developers in performing this task. 

In Figure 4.2 the general structure of our DDMS model is depicted. lt shows that the 
DDMS is modelled as consisting of two interading components: The design data store 
(DDS) and the control interpreter (Cl). 
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Figure 4.2: The design data management system model. 
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The design data store is the equivalent of the digital system data store. It will be used 
to model those aspects of design data management which are related to either design data 
storage, retrieval, proteetion or organisation. The design data store is a simple system 
featuring three inputs. These inputs are: The cammand input, which determines what 
action the DDS will perform (e.g. read, write or delete design data), the addre88 input, 
which is used to (al)locate the data manipulated by such a command, and a de8ign data 
input, via which the data to be stored are received. The DDS features two outputs, which 
present the status of the store and the design data read from the store to the store's 
environment. 

The design data store provides a very simple interface to its environment. Each interaction 
consistsof a single read, write ordeletion operation. However, a design data management 
system will in general provide a more complex and higher level interface to its environment. 
We have modelled this by the introduetion of a control interpreter. This DDMS component 
interprets the abstract control signals and the corresponding design data it receives from 
the DDMS's environment, by translating these into a sequence of simpler design data store 
inputs. It subsequently uses the resulting design data store output to generate the design 
data management system output, which consists of the design data retrieved from the 
DDMS and the DDMS status. 

As indicated by the dasbed arrow, the control interpreter can be programmed by the design 
data management system developers. The reason is that the answer to the question "Which 
abstract control signals should the control interpreter support?" is strongly determined by 
the design data management strategy to be employed. Therefore, the control interpreter 
will feature a language enabling the DDMS developers to specify which control signals it 
accepts and how these have to be translated into sequences of simpler design data store 
inputs. 

In the first section of this chapter a detailed model of the design data store is presented. In 
Section 4.2 a detailed model of the control interpreter will be given. In the last section of 
this chapter, it will be demonstrated how the interaction of these two components results 
in the behaviour of the total design data management system. 

4.1 The design data store 

The operation of a design data store can be modelled by a state machine Iike the one 
depicted in Figure 4.3. 

The data store of a digital system has a structure which does not change over time. There
fore, its state is completely determined by the data it currently stores. This in contrast 
to the design data store, which features a highly flexible design data organisation. For 
example, if a DDS structures its design data space using workspaces, then this structure 
can be changed during its operation by addition or deletion of workspaces. Therefore, the 
state of a design data store will not only be determined by the design representations it 
currently stores, but also by the way these data are currently organised. 
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Figure 4.3: The design data store model. 

Like depicted in Figure 4.3, the state of the DDS can characterised by two components: 
The raw data set and the meta data set. Raw data are the often large pieces of design data 
used and/or produced by designers and tools during the design process. The raw data set 
contains the raw data currently stored by the DDS. The meta data set on the other hand, 
contains information about the raw data managed by the store and information about how 
the store has currently organised these data. 

For a design data store, the design data it stores and the status of its operation are made 
accessible to the store's environment by the output function. Wh en issued a read command, 
the output function will retrieve the data specified by the corresponding address from the 
store's state. In this case the address will be a statement about the required properties of 
the data to be retrieved. 

The state of a design data store is changed by its next state function. When issued a 
write command, the next state function will transform the store's state into a new state, 
containing the data presented at the store's design data input at the location specified by 
the value of the address input. Delete commands will result in data, located using the 
corresponding address, being deleted from the store's state by the next state function. 

In our design data store model meta data is used to describe how the store is organised. 
Since thesemetadata are part ofthe DDS, they can be accessed by the design management 
system developers in the same way the other raw and meta data are accessed by the 
designers. So the design data store provides support and a uniform interface to both the 
designers and the design management system developers. 

The output and next state functions of the design data store are independent from the 
design management strategy employed and can not be changed by the DMS developers. 
Therefore, these functions model a part of the DMS core. This in contrast to the store's 
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state, whose contents is entirely determined by the data it stores and by the way these 
data have been organised by the DMS developers. 

The rest of this section will be dedicated to the creation of more elaborate models of the 
different components of the design data store, which are: Raw data, metadata, the store's 
state, commands, addresses, the store's status, and finally the store's output and next 
state functions, respectively. Our treatment about meta data is split into three parts, 
each discussing a different type of meta data, namely raw data identifiers, attributes and 
relations. Raw data identifiers are labels used to uniquely identify every piece of raw 
data managed by the DDMS. Attributes are meta data used to represent the valnes of 
design data properties. Relations are meta data which are used to structure the DDS 
state by representing how the different state elements are related. We will show how these 
three types of meta data can be used to characterise raw data and to re present the store's 
organisation. Note however that the examples used to illustrate this are not part of our 
DDMS model and that the organisation presented by these examples is not meant as a 
description of the preferred way to structure the design data space. 

4.1.1 Raw data 

Raw data are the often large pieces of design data used and/or produced by designers 
and tools during the design process. The actual contents of the pieces of raw data differ 
greatly. Representations of a design at some level of abstraction expressed in a certain 
representation Ianguage, and auxiliary data, such as analysis results are all considered to 
be raw data. Raw data are distinguished from other design data by the fact that the actual 
contents of these data are of no importance for design management pur poses; raw data are 
treated as black boxes by the design management system. 

We will characterise a piece of raw data by specifying its type. Types can be represented 
by a set containing all the elements belonging to this type. For example, the GDS2-Layout 
type can be characterised by the following set 

GDS2-Layout = {layout jlayout is a GDS2layout}. (4.1) 

Usually such a set is not defined by enumeration of its elements, but by giving the syntax 
of the language in which these elements are expressed. 

For most design data management purposes, it is suflident to know what types exist and 
how these types are related, rather than how these types are defined. To illustrate this 
consider the types 1ayout, GDS2-1ayout and 1-1ayout, defining layouts in genera), layouts 
expressed in the GDS2, and layouts expressed in the L layout representation language, 
respectively. Although GDS2 and 1 descriptions are expressed in a different language, 
they are all layout representations. This fact can be represented by stating that 

GDS2-1ayout C 1ayout, and 

1-1ayout C 1ayout. 

(4.2) 

(4.3) 
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The types GDS2-Layout and L-Layout are said to be subtypes of the corresponding su
pertype Layout. Subtypes are usually created by defining a subset of an existing type. 
Supertypes are formed by unification of the corresponding subtype sets. For example the 
Layout set can be defined by 

Layout = GDS2-Layout U L-Layout. (4.4) 

This not only states that GDS2-Layout and L-Layout are subtypes of Layout, but also 
that no other layout subtypes are considered. 

Design descriptions are often hierarchical. A hierarchical design consist of a number of 
smaller designs. These design components are either primitive or composite. A primitive 
component is a complete description of one of subsystems the total system is composed 
of. A composite component on the other hand, describes a system in terms of a number of 
interconnected subsystems. Every subsystem used in such a component is not described 
there, but defined using a reference to one of the other (primitive or composite) design 
components. As an example consider the hierarchical microprocessor design depicted in 
Figure 1.3. At the top of this hierarchy we find the composite "microprocessor" design 
component, which describes how the controller and datapath subsystems interact. The 
primitive design component "controller" is a complete representation of the microproces
sor's controller. The composite "datapath" component is described in terms of how the 
ALU, memory and multiplier primitives are interconnected. 

Although it is possible to treat these hierarchical descriptions as a single piece of raw data, 
for design management purposes this is often impractical. To illustrate this consider a sit
uation where a large design is changed a number of times, each change only affecting some 
of the components rather than the complete design. In this case the design data manage
ment system would have to maintain a number of very similar design versions, requiring 
an unnecessary amount of disk space. Another situation, in which it is inconvenient to 
treat a hierarchical design as a single unit, occurs when a design is created by a team of 
designers. In this case, the design data management system would either have to restriet 
access to this piece of data to one designer at a time or provide the designers with copies of 
the design and feature some complicated scheme to the merge the changes made to these 
copies. 

A possible way to remedy these problems is to split up the hierarchical design description 
into a number of smaller but incomplete design descriptions. A natura! way to do this is 
to partition the hierarchical design into groups of design components, each representing a 
part of the total design intended to be treated individually. This approach however, only 
works if the relations between these design parts are maintained. 

We model the raw data storage of a design data store by the introduetion of a raw data 
set Raw. Since raw data are treated as black boxes by the design management system, 
raw data set elements are distinguished using their physical storage location and type 
rather than their actual contents. For example, when a piece of raw data is copied to an 
other location, then this will result in two pieces of raw data with the same contents, but 
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represented by different elements of the raw data set. Deletion of a piece of raw data is 
modelled by removing the conesponding element from the raw data set. If raw data is being 
overwritten by new data, then this is represented by replacement of the conesponding set 
element by a new element representing the new data. File move operations, e.g. using the 
UNIX command "mv", will in general only change the way a piece of raw data is referenced, 
i.e. they will not change the physical storage location of the raw data. Therefore, file move 
operations will in general have no effect on Raw. 

As an example of a raw data set, consider the situation after the completion of the OMA 
timing driven matching process. When applied to a design named Design expressed in the 
input format Format and matched using a library named Lib, OMA assumes its design, 
control and library inputs to be stored in files named Design .Format, Design .oma.ctr and 
Lib .omaJib, respectively. The optimised design, the netlist and the report file generated by 
OMA are storedinfiles named Design.oma_out, Design.oma.net and Design.omaJis, re
spectively. The OMA timing driven matching process consistsof three consecutive OMA 
runs, each overwriting the results of the previous run. We assume that no steps are taken 
to prevent this from happening. The result of the optimisation step Design .oma.out serves 
as the design input for the following two runs. This requires the optimised design to be 
moved to Design .Format. This will however overwrite the original input design, which is 
prevented by first moving this specification to Design .spec.Format. Under these circum
stances the raw data situation after the timing driven matching run can be represented by 
a raw data set given by 

Raw = {Spec, Opt, Lib, Netr, Repr}, (4.5) 

where Spec and Opt the original input design (specification) and the optimised design 
obtained from this specification during the optimisation step, Lib the library file, and 
Netrand Repr the netlist and report file produced during the realistic timing constraints 
matching step. The other raw data produced during the timing driven matching process 
do not occur in this set, because they were overwritten by the current elements of Raw. 
The three control files and the template used to generate these, are also omitted from 
the raw data set. The reason for this is that these files contain information about how to 
fine-tune the operation of OMA, rather than data related to the design at hand. Although 
it is possible to use the DDMS to manage these files, we will assume that these files are 
managed by the design tool management system instead. 

4.1.2 Raw data identifiers 

The raw data set models the raw data currently stored by the DDS. The DDS will however 
also contain information about data previously stored by the DDS, which do not belong 
to the raw data set anymore. In order to be able to represent information about raw data 
independent from their preserree in the raw data set, we will assign a unique identifier to 
each piece of raw data managed by the DDMS. Information about a piece of raw data will 
be associated with this identifier rather than with the raw data itself. Because of this, 
raw data information can persist even if the corresponding raw data has been deleted. We 
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represent the raw data identifiers currently employed by a DDS by the introduetion of the 
raw data identifier set Rld. In the rest of this section we introduce two different raw data 
identifier creation schemes. Note however that these are just examples of possible methods 
to generate raw data identifiers and not the only ones which can be devised. 

Raw data are uniquely identified by their location in time and space. For example, if 
all the raw data managed by a DDMS are stored using a UNIX file system, then these 
raw data can be identified by specifying their path, filename and creation date, like 
"/user/rovers/micro.gds2" and "16:03-29/07/94". When these pieces of information are 
combined to form a raw data identifier, e.g. "/user/rovers/micro.gds2-16:03-29/07 /94", 
and the raw data are never overwritten in the same minute they were created, then this 
identifier will be unique. 

As an example of a raw data identifier set consider the following set, whose elements identify 
the raw data used and/or produced during the OMA timing driven matching process of a 
microprocessor design. 

Rld= 
{/userjrovers/lowpower.oma..lib-12:00-15/08/93, 

/user /rovers/ micro.pln-16:03-29 /07/94, 
/user /rovers/micro.oma..out-17:09-29/07 /94, 
/user/rovers/micro.oma..lis-17:09-29/07 /94, 
/user /rovers/micro.spec.pln-17: 10-29/07/94, 
/user/rovers/micro.pln-17:1 0-29/07/94, 
juser/ rovers/micro.oma_net-17:18-29 /07/94, 
/user/rovers/micro.oma..lis-17:18-29/07 /94, 
/user /rovers/micro.oma..net-17:27-29 /07/94, 
/user /rovers/micro.omaJis-17:27-29/07 /94} 

A low power library 
The original input design 
The optimised design 

(4.6) 

The report file of the Opt step 
The moved original input design 
The moved optimised design 
The result of the OTC step 
The report file of the OTC step 
The result of the RTC step 
The report file of the RTC step 

This example demonstrates a peculiarity of the employed identifier creation scheme, namely 
that a single piece of raw data can have a arbitrary number of raw data identifiers associated 
with it. For example the specification design is identified by both "/user/rovers/micro.pln-
16:03-29/07 /94" and "/user/rovers/micro.spec.pln-17:10-29/07 /94". The reason for this is 
that file moves result in a new raw data identifier but do not create a new piece of raw 
data. Design data management of multiple identified raw data does not have to pose 
any problems. lnformation associated with raw data can be retrieved using the raw data 
identifier used at the moment this association was created. 

Combination of path, file name and cr(>~tion time is not the only way to create unique data 
identifiers. For instance, we could use the value associated with a global counter, which 
is incremented every time a piece of raw data is created, to identify such a newly created 
piece of data. In contrast to the previous one, this identifier creation scheme wiJl associate 
exactly one identifier with each piece of raw data managed by the DDMS. 

It does not matter which identifier creation methad is employed, as long as it creates at 
least one unique identifier for each piece of raw data managed by the DDMS. In the rest 
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of this chapter we will use the following more succinct identifiers for the raw data involved 
in the OMA timing driven matching process 

Rld = {lib, spec, opt, rep, neto, repo, netr, repr}, (4.7) 

which identify the library employed by OMA, the original input design, the optimised 
design, the report file of the Opt step, the netlistand report file produced during the OTC 
step and the netlist and report file of the RTC step, respectively. 

4.1.3 Attributes 

Attributes are meta data used to represent properties of either raw data or of the design 
data store's organisation. In this section we wil! give some typical examples of properties 
which can be represented using attributes. 

As we have seen, raw data are uniquely identified by their location in spare and time. 
This location can be characterised by attributes representing the values associated with 
the following properties: 

• Medium - the medium the data are stored on, 

• Position - the position of the raw data on this medium, and 

• Time - the time the data was created. 

IC design data are usually manipulated in computer memory, stored on a hard disk and 
archived on tape. The position on these media is determined by the address, track and 
block ranges these data occupy. 

Although a piece of data is uniquely determined by the val u es of the "Medium", "Position" 
and ''Time'' properties, these are hardly of any use to a designer who wants to retrieve 
a specific piece of raw data. A possible way to remedy this problem is to additionally 
characterise a piece of raw data by making statements about the values associated with a 
number of more abstract properties such as 

• Design- identifies the object (circuit, library, ... ), during whose design process this 
piece of design data was created, 

• Workspace - denotes the workspace in which this piece of data resides, 

• Variant identifies the design variant, 

• Type - denotes the type of the design data, 

• Version specifies the design data's version, 

• Creator- the process/person who created this piece of data, and 
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• Owner - the processfperson who owns this piece of data. 

For example, a GDS2 layout representation of a microprocessor 11P to be used in a laptop, 
can be characterised by stating that the values associated with these properties are given 
by "11P", "privatel", "portable", "GDS2-Layout", 1, "rovers", "rovers", respectively. Most 
operating systems enable their users to refer to the stored raw data using a label (e.g. path 
and filename) rather than the actual physicallocation. This label will in general be based 
on the values associated with properties like the ones presented above. 

The organisation of the DDS is among others characterised by the workspaces employed, 
the relations which exist between these and their properties. Workspaces are characterised 
by attributes representing the values associated with properties such as 

• WorkspaceName- the workspace identifier, 

• WorkspaceType the workspace type, which determines whether it is a project, 
group, private or archive workspace, and 

• WorkspaceOwner - the owner of the workspace. 

We model the attributes associated with a design data store by introduetion of the set 
Attr, which contains all these data. In contrast to raw data, attributes are distinguished 
based on their contents rather than their physical storage location. So if a person's name 
is used in two different places, e.g. to identify both the owner of a piece of raw data and 
the owner of a workspace, this will give rise to only one Attr set element. 

4.1.4 Relations 

Data storage is useless if these data can not be retrieved afterwards. The data to be re
trieved are located using a characterisation of these data in terms of the relations which 
exist between these and the other meta/raw data. Besides their usage for data charac
terisation, relations can also be used to represent how the design data store organises its 
data. This section will demonstrate how relations can be represented, typed and declared. 
In addition it will show how relations can be used for both data characterisation and 
representation of the DDS's organisation. 

4.1.4.1 Relation representation 

How are the relations which exist between meta and raw data represented? Relations 
group related elements, thereby distinguishing them from the unrelated elements. There 
are two ways to do this: Unordered or ordered. In the first case the related elements are 
combined by putting them in a unordered collection, e.g. a set. We will refer to this type 
of relation as a grouping relation. In the latter case, the elements to be related are ordered 
by grouping them using a sequence. A relation represented by a sequence wil! be referred 
to as a sequencing relation. 
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As an example of a relation represented by a set, consider the relation redCardSymbols 
represented by the set {hart, diamond}, which distinguishes the two symbols used on red 
coloured cards from the other two black coloured card symbols "club" and "spade". 

The relation bin6, represented by the sequence < 1, 1, 0 >, which sequences the bits of the 
binary representation of the number 6, is a good example of a sequencing relation. For a 
sequence T, T; can he used to refer to the i-th element of this sequence. For example the 
third element of the bin6 sequence (0), is referred to as bin6 3 . In the remainder of this 
chapter, we will use the term n-sequence when referring toa sequence of length n. So the 
sequence of the bin6 relation is a 3-sequence. 

For both grouping and sequencing relations we have a degenerated case, namely the rela
tions represented by the empty set 0 and the empty sequence f', respectively. These special 
relations group zero elements. 

4.1.4.2 Relation types 

Relations are declared by stating to which relation type they belong. Like raw data types, 
relation types are represented by a set grouping a number of related relations. The red
CardSymbols relation represented by the set {hart, diamond} groups the symbols "hart" 
and "diamond", thereby distinguishing these from the other symbols of the card symbol 
set {hart, diamond, club, spade}. So redCardSymbols defines a subset of the card symbol 
set. To reflect this, consider the following type for the redCardSymbols relation 

{0, {hart}, {diamond}, {club}, {spade}, 
{hart, diamond}, {hart, club}, {hart, spade}, 
{ diamond, club}, { diamond, spade}, {club, spade}, 
{hart, diamond, club}, {hart, diamond, spade}, 
{hart, club, spade}, {diamond, club, spade}, 
{hart, diamond, club, spade}}. 

(4.8) 

This set contains all possible subsets that can he obtained from the card symbol set {hart, 
diarnond, club, spade}. The type described above is a typîcal exarnple of a kind of grouping 
relation type we will frequently employ, narnely a set that is defined to he the power set of 
another set. The power set of a set A, denoted by P(A), is the set of all possible subsets 
of A (including the empty set and A itself). The type set of redCardSymbols can now he 
represented by 

P({hart, diamond, club, spade}). (4.9) 

The redCardSymbols relation is declared by stating that 

redCardSymbols EP( {hart, diarnond, club, spade}). ( 4.10) 

As an example of a sequencing relation type consider the following possible type set for 
the bin6 relation, given by 
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{ < o, 0, 0 >, < 0, 0, 1 >, < 0, 1, 0 >, < 0, 1,1 >, 
< 1, 0, 0 >, < 1, 0, 1 >, < I, 1, 0 >, < 1, I, 1 > }. 

This set contains 3-sequences representing all possible 3-bit binary numbers. 

(4.11) 

Sequencing relation types can not be expressed as a power set of another set, because the 
elements of the type set are sequences rather than sets. There is however, a very similar 
concept for sequencing relation types. To illustrate this again consider the type set of the 
bin6 relation. This set is equal to the following Cartesian product 

{0, I} x {0, I} x {0, I}. ( 4.12) 

We wil! frequently encounter sequencing relation types which are defined by the Cartesian 
product of a number of other sets A1 , A2 , ••• , A,., denoted by A1 x Az ... A,., and repre
senting thesetof all possible sequences < a1, a2 , ••• , a,.>, such that a 1 E A1, a2 E A2 , ••• , 

a,. E An. 

We have demonstrated how we can succinctly represent the set of all 3 bit binary numbers. 
But what about thesetof all binary numbers of arbitrary length? The corresponding type 
set is given by 

{0, I} U ({0, 1} x {0, I}) U ({0, 1} x {0, 1} x {0, 1}) U .... (4.I3) 

An alternative and fini te notation for this set is { 0,1} +. In genera!, we will u se A+ to refer 
to thesetAU (A x A) u (A x A x A) u .... 

Since a type is represented by a set grouping the elements belonging to this type, thereby 
distinguishing them from elements not belonging to this type, a type can be considered as 
being a relation. A relation type is in fact a relation relating other relations. Therefore, 
we will also refer to a relation type as a meta relation. 

4.1.4.3 Relation definitions 

Until now we have encountered relation representations and relation types. A relation 
definition associates a relation representation with its type and with an identifier which 
can be used to refer to it. 

Definition 4.1.1 Relation definition 

A relation definition is a 3-sequence 

<Relld, RelTypeDe/, RelRepr>, 

where 

• Relld the relation identifier, 

• RelTypeDel- the relation type definition, and 

• RelRepr the relation representation. 
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As an example consider the following definition of the redGardSymbols relation. 

<redCardSymbols,P({hart, diamond, club, spade}), {hart, diamond}>. 
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(4.14) 

The relation type definition allows us to define a dynamic type, i.e., a type of which the 
set defining it changes over time. The reason why we need dynamic types is that we will 
frequently use relations of which the type is defined in terms of other sets. For example, we 
will often use relation types constructed from the Raw, Rid and Attr sets, which represent 
the raw data, raw data identifiers and attributes currently managed by the design data 
store, respectively. Sirree the contents of these sets change over time, types referring to 
these will to. To reileet this dependency, a relation type is dynamically defined by the 
result of the evaluation of the corresponding relation type definition at the moment it is 
needed. 

4.1.4.4 Relations and data characterisation 

In this section we present examples of how relations can be used for data characterisation. 
Note however that the characterisation method presented here is not part of our design 
data store model and that it is only used to illustrate how relations can be used for this 
purpose. In addition, we do not claim to present a method to be preferred over those 
presented in [KBC+87] [vWSBD90] [vW93] (vW94]. 

Data are characterised by the way they are related to other metafraw data. In order to 
be able to represent relations involving raw data independent from the preserree of these 
data in the raw data set, we will use the corresponding identifier in these relations rather 
than the raw data itself. A necessary exception to this rule is the raw data identification 
relation "RidRawMap", which we introduce to map raw data identifiers to the corre.'lpond
ing raw data. As an example consider the raw data identification relation representing the 
situation after the OMA timing driven matching process. It relates the elements of the 
raw data set represented by Equation 4.5 to the corresponding element of the identifier set 
of Equation 4.7 and is given by 

<RidRawMap, P(Rld x Raw ), 
{ <spec, Spec>, <opt, Opt>, <lib, Lib>, <netr, Netr>, <repr, Repr> }>. ( 4.15) 

There are two ways to obtain the raw data corresponding to a raw data identifier. Firstly, 
if this piece of raw data is an element of the raw data set, then it can retrieved using the 
raw data identification relation. Secondly, if the raw datum is not available anymore, but 
the data it was derived from are still stored in the DDS and the information about how 
this derivation was done is still known by the design methodology management system, 
then the raw data can be re-computed in close co-operation with the design tooi and the 
design methodology management systems. 

lf the employed raw data identifiers are meaningful, raw data location can be based on this 
information. However, raw data identifiers are devised to be unique rather than meaningful. 
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Therefore, they wil! aften be meaningless, e.g. the integers used in the global counter 
method, orbasedon low level information, e.g. when the medium, position on this medium 
and the creation time are combined to create a unique identifier. We do not want raw data 
identifier selection to be based on this implicitly represented low level information. We 
wil! remedy this problem by assuming the raw data identifiers to be meaningless and that 
selection is based on higher level meta data explicitly associated with these identifiers by 
means of relations. Meaningful identifiers are modelled by creating a meaningless identifier 
and by relating this identifier to metadata representing the identifier's original meaning. 

One way to characterise raw data identifiers is by associating these with some higher 
level meta data, e.g. the corresponding design, workspace, variant, type, version, creator 
or owner. Such a characterisation can be used to locate raw data identifiers, but also to 
obtain the corresponding metadata once the identifier has been located. We model the link 
between raw data identifiers and attributes characterising these by the introduetion of the 
raw data identifier characterisation relation "AttrRidMap". This relation is represented 
by a set of pairs (2-sequences) <key, rld>, where rld a raw data identifier and key the 
attribute key characterising it. 

As an example consider a simple raw data identifier characterisation relation corre
sponding to the situation occurring just after the optimisation step of the OMA 
timing driven matching process. The optimisation was performed by a designer 
"des1" in his own private workspace named "des1 WS", using the "ALU" repre
sentation "spec" as the design input, resulting in an optimised version "opt" of 
this "ALU". As the key for this "AttrRidMap" relation we have used 7-sequences 
<design, workspace, variant, type, version, creator, owner>. The corresponding relation 
is defined by 

<AttrRidMap, 
P((Design x Workspace x Variant x Type x IN x Person x Person) x Rld), 
{ <<ALU, des1WS, portable, OmaDes, 1, des1, des1>, spec>, 

<<library, libraryWS, low power, OmaLib, 3, libMan, libMan>, lib>, (4.16) 
<<ALU, des1WS, portable, OmaDes, 2, des1, des1>, opt>, 
<<ALU, des1WS, portable, OmaLis, 1, des1, des1>, rep>}>. 

In the type definition of this relation we have assumed the existence of the sets Design, 
Workspace, Variant, Type and Person, which list the narnes of the design components, 
workspaces, variants, raw data types and persons currently involved in the design process, 
respectively. 

The key of the gate library "lib" is very different from the rest, due to the fact that this 
piece of raw data is not specific for the design at hand. It denotes that for this OMA 
timing driven matching process, the "low power" variant of the OMA library is employed, 
which is available in the archive workspace "library" owned and created by library manager 
"libMan". 

Raw data (identifiers) are not only located based on their attributes, but also using a 
variety of relations associating these toother raw data (identifiers). Typical examples are 
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the "Version-of" and "Implements" relations. The "Version-of" relation represents that 
a piece of raw data is a modificationfoptimisationfversion-of another piece of raw data. 
Both pieces of raw data wil! in general bedescribed in the same language or format. The 
"Implements" relation combines a design at a certain level of abstraction to its specification 
at a higher level of abstraction. Both the "Version-of" and the "Implements" relation can 
be represented by a set of pairs. These pairs combine the identifiers of the two pieces of 
raw data involved, representing that the raw data identified by the first element of the 
pair is a ''version of' and an "implementation of" the raw data associated with the second 
element, respectively. As an example consider the "Version-of' and "Implements" relations 
re presenting the situation after the 0 MA timing driven matching process, which are given 
by 

<Version-of, P(Rld x Rld), { <opt, spec> }>, and 
<lmplements, P(Rld x Rld),{ <neto, opt>, <netr, opt> }>. 

(4.17) 
(4.18) 

The "Version-of' relation relates the result of the OMA optimisation step, identified by 
opt, to the specification, identified by spec, it was derived from. The "lmplements" relation 
combines the gate level result of the overspecified and realistic timing constraints match
ing steps, which are identified by "neto" and "netr", respectively, with their logica! level 
specification identified by opt. 

Besides their usage for data location, relations are also used to represent how the individu
ally designed and/or managed componentsof a hierarchical design are combined to obtain 
a complete design. Although the different components of a hierarchical design can partly 
be designed and analysed separately, sametimes the complete design is required. This de
sign can be obtained by combining the raw data of its components into a single piece of 
raw data. If a complete design is used as a single unit during the design process, then this 
will result in information being related to this complete design rather than to its individual 
components. This means that the complete design beoomes one of the pieces of raw data 
managed by the system. The simplest way to do this is to store the complete design. This 
wiJl however result in unnecessary data duplication, because the descriptions of its compo
nents are also stored by the system. An alternative approach is to store a representation 
of how the different components were combined to obtain the complete design, rather than 
the raw data itself. Such a representation, often referred as a configuration, contains the 
information necessary for the reconstruction of the complete design from its components. 
The configurations currently managed by a DDS are represented by the configuration iden
tification relation "RidConfigMap", which relates the descriptions of these configurations 
to the corresponding identifier. As an example consider the following relation descrihing 
two configurations "j.tP8" and "J.tP16", representing two microprocessor designs featuring 
an 8 bit and a 16 bit ALU, respectively. 
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<RidContigMap, P(Rld x P(Rld x P(Rld))), 
{<J.LP8, 

{<micro, { dp8, con trol}>, 
<dp8, {ALU8, mem, muit}>}>, 

<J.LP16, 
{<micro, { dp 16, control} >, 

<dp16, {ALU16, mem, muit}>}>}>. 

(4.19) 

Both microprocessors are divided in components according to the design hierarchy depicted 
in Figure 1.3. A contiguration is represented by a set of pairs, each associating a design 
component with the subdesigns it uses in this contiguration. For instance, in case of 
contiguration "J.LP8", the pair <micro, { dp8, control} > relates the top level microprocessor 
design "micro" to the datapath and controller subsystem designs denoted by "dp8" and 
"control". 

Like raw data, information associated with a contiguration will be related to the oorre
sponding raw data identitier, rather than to the contiguration description itself. The only 
relations which can be used to determine if a raw data identitier refers to a piece of raw data 
or to a contiguration are "RidRawMap" and "RidContigMap". In all the other relations 
no distinction is made between normal raw data identitiers and contiguration identitiers. 
As an example consider the situation in which the design corresponding to contiguration 
"J.LP16" was obtained by optimisation of the design represented by contiguration "J.LP8". 
In this case, "J.LPl6" represents an optimised version of "J.LP8", which is re:llected by the 
following "Version-of" relation 

<Version-of, P(Rld x Rld), { <opt, spec>, <J.LP16, J.LP8> }>. (4.20) 

Note that this relation makes no distinction between the contiguration identitiers "J.LP8" 
and "J.LP16" and the normal raw data identitiers "spec" and "opt" used in our previous 
examples. 

4.1.4.5 Relations and the DDS organisation 

In the remaining part of this section we wiJl demonstrate how relations can be used to 
represent the DDS's organisation. Again note that the examples presented here are not 
part of our design data store modeland that these are only used to illustrate how relations 
can be used for this purpose. lt is the task of the design data management system developer 
to create a useful DDS design data organisation. He wil! group data based on the design 
object, workspace, variant andfor type they belong to, and/or combine these based on 
their owner or creator. 

The tirst thing about the DDS's organisation which will be represented is what the em
ployed design objects, workspaces, variants and types are and which persons are involved. 
This information can be represented by relation detinitions such as 
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<Design, P(Attr}, {microprocessor, datapath, controller, 
ALU, memory, multiplier, library}>, 

<Workspace, P(Attr }, {J..tPProjectWS, datapathWS, micconWS, 
des1WS, des2WS, des3WS, des4WS, libraryWS}>, 

<Variant, P(Attr), {desktop, laptop}>, 
<Type, P(Attr), {OmaDes, OmaLib, OmaNet, OmaRep}>, and 
<Person, P(Attr), {des1, des2, des3, des4, libMan}>. 
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(4.21) 

All these relations group a number of related attributes by defining a subset of the attributes 
set Attr. The relation identifier denotes what these attributes represent. The "Design" 
relation lists all the design object identifiers. In our example it contains the six individually 
designed componentsof the microprocessor hierarchy depicted in Figure 1.3 and the library 
used by OMA. The "Workspace" relation represents that the DDS data are organised 
using the eight workspaces represented in Figure 2.4. The "Variant" relation denotes 
that the design data store distinguishes two variants of the microprocessor design, namely 
a "desktop" and a "portable" low power variant. The "Type" relation describes which 
types of raw data the DDS is currently handling. "OmaDes", "OmaLib", "OmaN et" and 
"OmaRep", which are design, library, netlist and report data, respectively, are the types 
of the data used and/or produced by OMA. Note that these relations have been used 
previously in the description of the type of the "AttrRidMap" relation of Definition 4.16. 
From now on we assume that for each set referred to in a relation definition other then 
Raw, Rld and Attr, there exist arelation definition defining it. 

The attribute subset definitions presented above give us information about what the basic 
units are of the DDS's organisation. These relations however provide no information about 
how these units are related. Design objects, workspaces, variants and types are usually 
organised in a hierarchy. Hierarcbies can be represented by a relation, which relates the 
nodes of such a hierarchy to a set containing all the corresponding sub-nodes. As an 
example consider the following hierarchies: 

<DesignHier, P(Design x P(Design )), 
{<microprocessor, { datapath, controller}>, 

<datapath, {ALU, memory, multiplier}>}>, 

<WorkspaceHier, P( Workspace x P( Workspace )), 
{ < J..tPProjectWS, {datapathWS, micconWS}>, 

<datapathWS, {des1WS, des2WS}>, 
<micconWS, {des3WS, des4WS}>, 
<library, {des1WS, des2WS}>}>, and 

<VariantHier, P( Variant x P( Variant)), 
{<desktop, {}>, 

<laptop, {} >} >. 

( 4.22) 
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The hierarchy relations "DesignHier'' and "WorkspaceHier" represent the design and 
workspace hierarcbies depicted in Figure 1.3 and Figure 2.4, respectively. The available 
variants "desktop" and "portable" are unrelated, which is represented by making these 
variants the top-node of their own empty hierarchy. 

The relation definitions presented above represent what the basic units of the DDS's or
ganisation are and how these are related. These definitions however present no information 
about how the design data are actually grouped using these units. To represent (part of) 
this information, we will introduce the "Designs", "Variants", "Types" and "Workspaces" 
relations, which represent how the design data are grouped according to the design object, 
variant, data type and workspace they belong to, respectively. 

The "Designs" relation groups raw data according to the design object, during whose design 
process they were created. To illustrate this consider the following "Designs" relation, 
which organises the identifiers of the raw data produced during the OMA timing driven 
matching process of an AL U and the microprocessor parts used in the configurations of 
Equation 4.19 based on the corresponding design object 

<Designs, P(Design x P(Rld)), 
{<microprocessor, {micro}>, 

<controller, { control}>, 
<datapath, { dp8, dp16}>, 
<ALU, {ALU8, ALU16, spec, opt, rep, neto, repo, netr, repr}>, 
<memory, {mem}>, 
<multiplier, {muit}>, 
<library, {lih}> }>. 

(4.23) 

If the microprocessor parts used in the configurations example were produced during the 
design of the "desktop" variant of a microprocessor while the timing driven matching 
process of the ALU was performed during the design process of the "laptop" variant of 
this microprocessor, then this can he represented by the following "Variants" relation 

<Variants, P(Variant x P(Rld)), 
{<desktop, {micro, control, dp8, dp16, ALU8, ALU16, mem, muit}>, 

<laptop, {lib, spec, opt, rep, neto, repo, netr, repr}> }>. 
(4.24) 

The data produced during the OMA timing driven matching process can additionally he 
grouped according to their type, which is represented by the introduetion of the "Types" 
relations, given by 

<Types, P(Type x P(Rld)), 
{ <ÜmaDes, { spec, opt} >, 

<ÜmaLib, {lib}>, 
<ÜmaNet, {neto, netr}>, 
<ÜmaRep, {rep, repo, repr} >} >. 

(4.25) 
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The "Design", "Variants" and "Types" relations presented above only group raw data 
identifiers but not the associated attributes. As an example of how both raw data identi
fiers and attributes can be grouped based on the workspace these belong to, consider the 
"Workspaces" relation, which is given by 

<Workspaces, P(Workspace x WorkspaceType x Person x P(Rld x WSStatus )), 
{ <tLPProjectWS, ProjectWS, des4, 

{<dp8, Ac>, <ALU8, Ac>, <mem, Ac>, <muit, Ac>}>, 
<datapathWS, GroupWs, des2, 

{<dp16, Ca>, <ALU16, Ca>}>, 
<miccon WS, Group W s, des4, {<micro, Ac>}>, ( 4.26) 
<deslWS, PrivateWS, desl, 

{ <dp8, Ap>, <ALU8, Ap>, <mem, Ap>, <muit, Ap> }>, 
<des2WS, PrivateWS, des2, { <dp16, Pro>, <ALU16, Pro>}>, 
<des3WS, PrivateWS, des3, { <control, New> }>, 
<des4WS, PrivateWS, des4, {<micro, Ap>}>}>. 

This relation not only represents to which workspace(s) a piece of raw data belongs, but 
also associates each workspace with its type and owner. The possible workspace types are 
represented by the following relation 

<WorkspaceType, P(Attr ), {ProjectWS, GroupWs, PrivateWS, ArchiveWS}> . (4.27) 

Additionally, it associates each piece of raw data with its status in the workspace it occurs. 
We have used the workspace status values introduced in [RRvHK93], which are given by 

<WSStatus, P(Attr), {IPg, New, Pro, Ac, AcP, Ap, Ca, Iv, Old}>, (4.28) 

representing the following facts about the corresponding raw data: "construction In Pm
gress", "New", "Promoted", "Accepted for children", "Accepted and Promoted", "Ac
cepted by parent", "Candidate", "Invalid", and "Old", respectively. For more details we 
refer to [RRvHK93]. 

A possible interpretation of the "Workspaces" relation presented above is as follows. It 
represents a situation in which a microprocessor is designed by four designers whose work is 
co-ordinated using seven workspaces. In his private workspace "deslWS" designer "desl'' 
has created an 8-bit datapath design "dp8" and the design components "ALU8", "mem" 
and "muit" used in this design. After completion these designs were promoted to and 
subsequently accepted by the parent workspace "datapath WS", which is indicated using 
workspace status "Accepted by parent" ("Ap"). The decision to accept these data was 
made by the owner "des2" of "datapath WS. "des2" in turn promoted these designs to the 
project workspace "tLPProjectWS". After their acceptance by the project workspace owner 
"des4" (status "Ac" in this workspace), these designs were removed from "datapathWS". 
Designer "des2" has finished a faster 16-bit version of the datapath and the corresponding 
ALU ("dp16" and "ALU16") and promoted (status "Pro") these data to "datapathWS". 
These promoted data are candidates (status "Ca") for being accepted by "datapathWS". 
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In bis private workspace designer "des3" bas created tbe controller design "control", but 
has not yet promoted tbis design to the parent workspace "mie con WS" (status "N ew"). 
Designer "des4" bas created a version of tbe top level microprocessor description, which 
has been promoted to and accepted by "miccon WS". 

4.1.5 The design data store state 

The design data store state (see Figure 4.3) describes which raw and metadata are currently 
stored by the DDS. The DDS state can be represented by a sequence combining all these 
data. We will represent the design data store state using the 4-sequence <Raw, Rld, Attr, 
Rel>. lts first three elements consist of the raw data, raw data identifier and attributes 
sets we have already encountered. The last element is the relation set Rel wbich groups 
the definitions of the relations currently managed by the DDS. 

Design data storage is only useful if the stored data can be retrieved at the moment tbey 
are required. In order to guarantee proper data retrieval, the design data store state should 
satisfy the following requirements. 

1. Every piece of raw data managed by a DDS needs to have a unique characterisation: 
Raw data are characterised by the way they are related to other raw and meta data. 
The DDS uses these relations to retrieve these raw data and related information. If 
the characterisation of a piece of raw data is not unique, then it is not possible to 
distinguish it from the other data sharing this characterisation. 

2. Raw data have to be characterised correctly: Although this requirement seems trivia!, 
it is very important. Incomplete or incorrect characterisations can result in data not 
being found or even worse, wrong data being retrieved. 

3. Required data should be available: If all raw data produced during the design process 
would be stored, then we would very soon run out of available disk space. Tberefore, 
the design data management system wiJl not keep all these data in its store, which 
is modelled by tbe absence of these data in Raw. This process however should only 
result in the elimination of obsolete data and/ or data which can be re-created from 
other, still available, raw data. 

Raw data are said to be managed by a DDS if and only if the corresponding raw data 
identifier belongs to Rld. A DDS locates raw data and the associated information by 
employing its relations to obtain the corresponding raw data identifier. Once this identifier 
is known, it can be used to retrieve these data. Raw data identifiers are characterised by 
the way they are related to other data. If the raw data identifier characterisation is not 
unique, then it will be impossible to distinguish it from the other identifiers sharing this 
characterisation. So the first requirement can be rephrased as "Every raw data identifier 
needs to have a unique characterisation". 

The first requirement is not satisfied by all DDS states. For example, consider a state 
featuring the following DDS relation 
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Rel= 
{<AttrRidMap, P((Design x Type) x Rld), 

{ <<ALU, OmaDes>, spec>, <<ALU, OmaDes>, opt>, 
<<library, OmaLib>, lib>, <<ALU, OmaRep>, rep>}>, 

<RidRawMap, P(Rld x Raw ), 
{ <spec, Spec>, <opt, Opt>, <lib, Lib>, <rep, Rep>}>}. 
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(4.29) 

This relation only consists of a raw data identifier characterisation relation and a raw 
data identification relation which represent the situation after the optimisation step of 
the 0 MA timing driven matching process. The keys of the characterisation rel at ion are 
pairs <design, type> rather than the 7-sequences we introduced before. This represents a 
situation where the design object name and the type are the only attributes maintained 
during the design process. 

For such a DDS state it is not possible to distinguish between the input design identifier 
"spec" and the optimised design identifier "opt". The reason for this is that both identifiers 
are characterised by the same key, namely <ALU, OmaDes>. Furthermore, the raw data 
identification relation only states that both "spec" and "opt" identify a piece of raw data 
currently stored by the system. This relation gives no further information which could be 
used to distinguish between these identifiers, because the related raw data Spec and Opt 
can not be distinguished themselves. Raw data are treated by the DDS as black boxes and 
can therefore only be distinguished basedon their relation toother data. However, the raw 
data identification relation is the only relation in which Spec and Opt occur. As a result, 
the distinguishability of Spec and Opt will depend on the distinguishability of "spec" and 
"opt". Therefore, we conclude that "spec" and "opt" (and therefore also Spec and Opt) 
are indistinguishable. 

The fact that a design data store state violates the first requirement can be corrected 
by providing some additional characterisation information. For instance, the DDS state 
of our example can be made to satisfy the first requirement by additionally monitoring 
the "Version-of' relation. Addition of this relation to the DDS relation will change its 
definition to 

Rel 
{ <AttrRidMap, P((Design x Type) x Rld), 

{ <<ALU, OmaDes>, spec>, <<ALU, OmaDes>, opt>, 
<<library, OmaLib>, lib>, <<ALU, OmaRep>, rep>}>, 

<Version-of, 1'( OmaDes x OmaDes ), { <opt, spec> }>, 
<RldRawMap, P(Rld x Raw), 

{ <spec, Spec>, <opt, Opt>, <lib, Lib>, <rep, Rep>}>}. 

(4.30} 

Addition of the "Version-of' relation enables us to distinguish between "spec" and "opt", 
because it represents that "opt" was derived from "spec". 

For checking raw data distinguishability we introduce the predicate Distinguish
able. When applied to two raw data identifiers r 1 and r2 and a DDS state State, 
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Distinguishable(r11r2,State) will determine if these two raw data identifiers can be distin
guished in the context of this state. The formal definition of this predicate and a demon
stration, of how this definition can be used to prove that ·Distinguishable(spec,opt,State) 
and Distinguishable(spec,opt,State) hold for the states associated with the DDS relations 
of Equation 4.29 and Equation 4.30, respectively, is given in Appendix A. 

Using the Distinguishable predicate, raw data identifier characterisation uniqueness can 
now be defined as 

Definition 4.1.2 Unique characterisation 

A raw data identifier r 1 E Rld is said to be uniquely characterised by design data store state 
State if and only if for all other raw data identifiers r2 E Rld Distinguishable (r1, r 2 , State) 
holds. 

U nlike determining raw data characterisation uniqueness, it very difficult to see if the 
DDS state satisfies the second requirement "Raw data have to be characterised correctly." 
Incomplete or incorrect characterisations can to some extent be avoided by using relation 
types to ensure that the relations are consistent with their type. However, typing can not 
be used to avoid raw data being associated with the wrong data if these data are of the 
correct type. 

When checking the third requirement "Required data should be available", the following 
two problems are encountered. Firstly, "Which raw data are required now or in the fut ure?" 
A possible solution for this problem is to consider all the raw data managed by the system 
(read corresponding identifier belongs to Rld) as required data. This makes the third 
requirement too severe, because some of the raw data managed by the system will never 
have to be retrieved, but it at least ensures that retrieval is possible. The second problem 
encountered is "How to check if data can he re-created from other raw data?". Raw data 
originally created from other raw data by a number of tooi invocations (e.g. of synthesis 
tools or editors), can he re-created from these data, if all the information regarding how this 
was done is still available. This is typically information about which tools were invoked, the 
order in which these invocations occurred and which input data were supplied during these 
invocations. Th is type of information is managed by the design rnethodology management 
system. Therefore, the third requirement can only be checked by looking at both the design 
data store state and the design methodology management system. 

4.1.6 Commands 

Like a digital system data store, a design data store will feature commands to read and 
to change the contents of its state. For data retrieval we introduce the "Read" command, 
which results in the data selected by the corresponding "address" to he retrieved. Execu
tion of this command will not change the DDS state and will present the results to the 
environment via the "design data output". For changing the contents of the DDS state 
we introduce the "Add", "Delete" and "Replace" commands. The "Add" and "Delete" 
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commands result in data being added to and deleted from the DDS state, respectively. 
The "Replace" command wil! result in data stored by the DDS being replaced by new 
data. The location at which the design data store state is changed is determined by the 
corresponding address. The data to be added to the store by either the "Add' or "Replace" 
commands are received via the "design data input". 

4.1. 7 Addresses 

Addresses are used to (al)locate the data manipulated by the DDS commands. Addresses 
do this by selecting an element of the DDS state. How are these addresses defined? Since 
the DDS state is a relation, this question can be rephrased to: How can we address (read 
"select") arelation element? As we have seen, relations are either represented by asetor 
a sequence, relating their elements in an unordered or ordered way, respectively. For the 
DDS state relation these elements are either raw data, raw data identifiers, attributes or 
other relations, which again are represented by a set or sequence. Relation elements can 
be addressed using a statement about the properties the selected elements are required to 
have. Sequence elements can additionally be addressed by makinga statement about their 
location in this sequence. We formalise this as follows 

Definition 4.1.3 Set address 

For a set S a set address is a predicate A, which addresses those elements el E S for which 
A( el) holds. 

Definition 4.1.4 Sequence address 

For a sequence T a sequence address is a predicate A, which addresses those elements 
el = Tp08, for which A( el, pos) holds. 

To illustrate this, consider the set representing the raw data identifier characterisation 
relation "AttrRidMap" used in Equation 4.30, which is given by 

{ <<ALU, OmaDes>, spec>, <<ALU, OmaDes>, opt>, 
<<library, OmaLib>, lib>, <<ALU, OmaRep>, rep>}. (4.31) 

If we want to select the set element containing the key and raw data identifier of the 0 MA 
report data, then this can be done using the following set address 

ARep(el) = (el 1 =< ALU,OmaRep >). (4.32) 

Using this address, the sequence <<ALU, OmaRep>, rep> can be selected, because it is 
the only relationelement with key <ALU, OmaRep>. If we wanttoselect the raw data 
identifier "rep" of this sequence, then this can be done by employing the following sequence 
address 

Arudvai(el,pos) =(pos= 2). (4.33) 
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which selects the raw data identifier of a raw data identifier characterisation relation ele
ment. Note that the selection of this identifier is based purely on its position. This is very 
often the case for sequence addresses. 

Some addresses result in the selection of more than one element. To illustrate this consider 
the following address 

Ane8(el) = (el 1 =< ALU,OmaDes >}. (4.34) 

When applied to the raw data identifier characterisation relation of Equation 4.31, this 
address will result in the selection in two elements, namely <<ALU, OmaDes>, spec> 
and <<ALU, OmaDes>, opt>. 

We will group the relation elements selected by a set or sequence address using a set referred 
to as a selection set, which is defined as follows. 

Definition 4.1.5 Selection set 

Fora relation Rand an address A the selection set R(A) contains those relation elements 
for which A holds. For a relation represented by a set and addressed by a set address this 
set is defined by 

R(A) = {ellel E R!\A(el)}. 

Similarly, the selection set of a sequence addressed by a sequence address is given by 

R(A) = { ell3pos : el = Rpos A A( el, pos)}. 

The selection set representing the results of using address Anes of Equation 4.34 to select 
elements of relation 4.31 is given by 

{<<ALU, OmaDes>, spec>, <<ALU, OmaDes>, opt>}. (4.35) 

Using set and sequence addresses, only the top level elements of a nested relation can 
be selected. If we want to address lower level elements of such a relation, the situation 
becomes a little bit more complicated. To illustrate this consider the following DDS state 
relation, containing the DDS relation of Equation 4.30, which is defined by 

State= <Raw, Rld, Attr, Rel>, 

where Rel is given by 

Rel 
{ <AttrRidMap, P((Design x Type) x Rld), 

{<<ALU, OmaDes>, spec>, <<ALU, OmaDes>, opt>, 
<<Iibrary, OmaLib>, lib>, <<ALU, OmaRep>, rep>}>, 

<Version-of, P( OmaDes x OmaDes ), { <opt, spec> }>, 
<RldRawMap, P(Rld x Raw), 

{ <spec, Spec>, <opt, Opt>, <lib, Lib>, <rep, Rep>}>}. 

(4.36) 
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If we want to address "rep" in State, than this can no Jonger be dorre using a single 
sequence address. The reason for this is that "rep" is not an element of the DDS state 
sequence. Relation elements like "rep" can be addressed using a sequence of set or sequence 
addresses. The first step involved in addressing "rep" in this DDS state, is the selection 
of the relation set Rel from the state sequence. This can be achieved using the following 
sequence address 

ARe!(el,pos) =(pos= 4). (4.37) 

After Rel has been selected, the raw data identifier characterisation relation it contains can 
be addressed using the following predicate 

A AttrRidMap (el) = ( el1 = Attr RldMap). (4.38) 

The corresponding representation set AttrR/dMap can be selected from the resulting rela
tion definition sequence <AttrRidMap, (Design x Type) x Rld, AttrR/dMap> using 

ARe!Repr(el,pos) =(pos= 3). (4.39) 

From this set "rep" can be selected using set address ARep of (see Equation 4.32) foliowed 
by sequence address ARidVal (see Equation 4.33). 

So if we want to address "rep" in the state of Equation 4.36, than this can be dorre by a 
sequence of set and sequence addresses given by 

< ARel> AAttrRidMap> ARe!Repn ARep> ArudVal >. ( 4.40) 

Relation addresses, so addresses which select an arbitrary relation element, can now be 
defined as follows 

Definition 4.1.6 Relation address 

A relation address is a sequence < Al> A2 , ..• , An > of set or sequence addresses. 

Which relation elements are selected by a relation address? A relation address represented 
by the sequence < Al> A2 , ••• , An > wil! select all elements of the corresponding selection 
set R(< A1,A2, ... ,An >). 

Definition 4.1. 7 Relation address selection set 

Fora relation R and· arelation address < A1 , A2 , ... , An >, the corresponding selection 
set R( < A1 , A2 , ... , An >) is defined by 

R(< A1,A2, ... ,An >) = U R'(< A2, ... ,An >), and 
R'ER(A1) 

R(E) = {R}. 
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This recursive definition states that the selection set of a relation address is obtained by 
the unification of a number of other selection sets, which are obtained by application of the 
reduced sequence < A2 , ... , An > to the elements selected from R by A1 • The recursion 
stops when the address sequence is reduced to the empty sequence f. When f is used to 
address a relation (element) R, then this wil! result in the selection of R itself. 
As an example consider the selection set 

State (<ARel> AAttrRidMap> ARe!Repn Aoes> ARidVal > ), (4.41) 

which contains all "ALU" representations of type "OmaDes" stored in the state State of 
Equation 4.36. It is obtained as follows 

State ( < ARel> AAttrRidMap> ARe!Repn Aoes> ARidVal >) 

= Rel ( < AAttrRidMap> ARe!Repn Aoes> ArudVal >) 

= < AttrRidMap, P((Design x Type )xRid), AttrR/dMap > 

( < ARelRepn Aoes, ArudVal >) 

= AttrR/dMap ( < Aoes, ArudVal >) 

= << ALU,OmaDes >,spec > (< ARidVal >) 

U<< ALU,OmaDes >,opt > (< ArudVal >) 

= spec(~:) U opt(~:) 

= {spec} U {opt} 

= {spec,opt}. 

( 4.42) 

Set and sequence addresses can only be used to select elements of grouping and sequenc
ing relations, respectively. When addressing relation elements using a sequence of such 
addresses, an error wil! occur if one of these addresses is applied to a relation of the wrong 
type. This can be formalised as follows 

Definition 4.1.8 Valid relation address 

A relation address < A1 , A2 , ... , An > is said to be valid with respect to a relation R if 
and only if for every address prefix < A1, A2 , ... , A;-1 > (1 ::; i ::; n) the following holds 

VR' ER(< A1,A2, ... ,A;-1 >): 
R' is a grouping relation if and only if A; is a set address A 

R' is a sequencing relation if and only if A; is a sequence address. 

We conclude this section by introducing some (shortcuts for) frequently employed ad
dresses. An example of a class of such addresses are the relation representation selection 
addresses. Fora relation identified by Relld, the address ARelldRepr can be used toselect 
the corresponding representation. This address is defined by 
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ARelldRepr = < AaehARelfd,ARe!Repr >, 
where 

ARelld( el) ( el1 = Relld). 
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( 4.43) 

(4.44) 

An example of such an address is AAttrRidMapRepn which addresses the representation of 
the raw data identifier characterisation relation. 

The type of arelation Relld can he selected using the address ARelidType· This address is 
defined by 

ARelidType < AaeJ,ARelfd,ARetType >, 
where 

AaelType( el, pos) = (pos = 2.) 

(4.45) 

( 4.46) 

Another frequently used class of addresses are the raw data identifier selection addresses. 
For an attribute key key, the address Ald(key) will select the raw data identifier charac
terised by this key and is defined by 

Ald(key) = < Aaeh AAttrRidMap• AaelRepr• Akey• AaldVal >, 
where 

Akey( el) ( el1 key ). 

(4.47) 

( 4.48) 

As an example consider Ald(<ALU,OmaDes>)• which when applied to the DDS state of 
Equation 4.36, results in the selection set { spec,opt }. 

Sametimes addressing should result in all the relation elements being selected. For a 
relation represented by a set S this can be clone using the address ATrue which, when 
applied to S, results in the following selection set 

S(ATrue) = S. (4.49) 

The address sequences presented above often form the bases for the creation of new address 
sequences. New sequences can be formed by combination of a number of existing addresses 
and/or address sequences. For n address sequences AS1 , AS2, ... , ASn the sequence 

< AS1, AS2, ... , ASn > (4.50) 

is used to represent the new address sequence 

< AS1 1 , AS1,, ... , AS1IAS
1
i' AS21 , AS22 , ••• , AS2IAS

2
1' ... , ASn11 ASn,_ ... , ASn:ASni > (4.51) 

In this definition addresses are considered as address sequences with length 1. 

As an example consider the following alternative definition of Ald(key) (see Equation 4.47), 
which defines this address reusing the address sequence AAttrRidMapRepr defined by Equa
tion 4.43 and which is given by 

Ald{key) = < AAttrRidMapRepr• Akey• ArudVal >. ( 4.52) 



76 The design data management system 

4.1.8 Status information 

During the operation of the design data store, the following things can go wrong: 

• The command issued is neither "Read", "Add", "Delete" nor "Replace", 

• the data to be stored is not of the correct type, or 

• the address is not valid with respect to the design data store state. 

This can be signaBed to the environment ofthe design data store by producing status infor
mation like "Invalid command", "Data type mismatch" and "Invalid address", respectively. 
Correct operation can signalied by generating a message like "Ok''. 

4.1.9 The behaviour of the design data store 

As shown in Figure 4.3, the behaviour of the design data store is determined by its output 
function OF and its next state function NSF, which are used to read and change the state 
of the DDS, respectively. Both functions take two arguments, namely the input and the 
current state of the design data store. The store input consistsof three components, namely 
the command to be performed, the conesponding address and the data to be stored. It can 
be represented by a triple < Gommand, Address, Dataln >. The store output consists of 
two components, namely the data which was retrieved and the status information produced. 
It will be represented by a pair< DataOut, Status >. Fora current state State the output 
function can now be defined as follows. 

OF(<Gommand,Address,Dataln >,State)= ( 4.53) 

< State (Address ), "Ok" > 

<_!_, "Invalid command" > 
<_L, "Data type mismatch" > 
<_L, "Invalid address" > 
<_L, "Ok"> 

if Gommand = "Read" 
and ValidAddr(Address, State) 
if--, ValidGom ( Gommand) 
if--, ValidData ( Gommand, Dataln, Address, State) 
if --, ValidAddr (Address, State) 
otherwise 

So when issued the "Read" command and supplied with a valid address, the output function 
will return the data selected from the DDS state by Address. When an error occurs or 
when data are being stored rather than retrieved, the DataOut component of the output 
function result will be "undefined", which is indicated using the _L symbol. In these cases, 
the Status output component wiJl indicate the reason for this absence of data. 

In the definition of OF a number of predicates have been introduced, namely ValidGom, 
ValidData and ValidAddr, which detect if an error bas occurred. These predicates are 
defined as follows. The predicate ValidGom determines if its argument Gommand is a 
valid command and is defined by 
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ValidGom ( Gommand) ( Gommand E {Read, Add, Delete, Repla.ce} ). (4.54) 

The predicate ValidData checks if the datum Dataln to be stored is of the correct type. If 
the address Address selects an element of the representation of a relation Relld, denoted 
by the fact that ARe!IdRepr is a prefix of Address, then after storage of Dataln Relld 
should still be of the correct type. Therefore ValidData is defined as follows 

ValidData ( Gommand ,Dataln, Address, State) = 

State'(AReUdRepr) E State(ARelldType), 

where State' the new state áfter storage of Data, which is given by 

State 1 = NSF ( < Gommand, Address, Dataln >, State). 

( 4.55) 

(4.56) 

The function ValidAddr determines if Address is a valid address in the context of a DDS 
state State. 

The execution by a design data store of the commands "Add", "Delete" and "Rep! ace" 
wil! change its state. Since this state is represented by a relation, changes to this state 
can be modelled by a relation transformation. We will introduce three relation operators 
for representing the state changes effectuated by these commands. For the addition to, 
deletion of and repla.cement of relation elements wedefine the addition operator.[.+.], the 
deletion operator .[f.l and the reptacement operator.[./.], respectively. When applied to a 
relation R, a relation element E and an address A, the addition operator will result in a 
new relation, denoted by R[E +A], which is obtained from R by the addition of E at the 
location specified by A. The deletion operator will remove the relation elements selected 
by an address A from arelation R. The resulting relation is denoted by R[/A]. When 
applied to a relation R, a relation element E and a relation address A, the replacement 
operator will produce a new relation R[E/A], which is obtained from R by replacing the 
data stored at the locations which A specifies by E. In Appendix B the addition, deletion 
and reptacement operators are formally defined. In this chapter we will introduce these 
operators by giving some examples of how these are typically employed. 

As an example of how the addition operator is used, consider how the decision to addi
tionally monitor the "Version-of" relation affects a DDS state State, which features the 
DDS relation of Equation 4.29. Firstly, the "Version-of" definition sequence is added to 
the DDS relation Rel transforming State to the new state State' defined by 

State'= State[< Version-of, P( OmaDes x OmaDes ), {} > +A Reil· (4.57) 

After this, every derivation of a new design description from an existing one wil! result in 
the corresponding pair being added to the representation of the "Version-of' relation. For 
example, addition of the pair < opt, spec > will transform State' to the state presented in 
Equation 4.36 using the following transformation 

State'[< opt,spec > +Aversion-ofRepr]· (4.58) 

As an example of how the deletion operator is used consider the transformation 
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State[/< ARel,AVersion-of>], (4.59) 

which shows how the "Version-of" relation can be removed from the state State of Equa
tion 4.36, if monitoring of this relation is no langer required. 

As an example of how the reptacement operator is typically employed, consider a situation 
where the raw data identifier "opt" is replaced by a new identifier "optn". Every occurrence 
of "opt" in the "Version-of" relation of a DDS state State can be changed to "optn" using 
the following state transformation 

State [optn/ Aversion-<JfOpts], ( 4.60) 

where the address Aversion-ofOpts> which selects all the occurrences of "opt" as either the 
first or second element of the "Version-of" relation pairs, is given by 

Aversion-ofOpts = < Aversion-ofRepn ATrue> ASeleetOpt >, 

where 

ASelectOpt( el, pos) = (el opt). 

( 4.61) 

(4.62) 

Using the addition, deletion and reptacement operators, the next state function of the 
design data store can now be defined as follows. 

NSF ( < Gommand ,Address, Dataln, >,State) 

{ 

State 
State [Dataln + Address] 
State [/ Address] 
State [Dataln / Address J 

if Gommand = Read 
if Gommand = Add 
if Gommand = Delete 
if Gommand = Reptace 

(4.63) 

Using the output and next state functions, we can now define the behaviour of the design 
data store itself. The operation of a design data store, whose current state is given by ss 1 , 

can be modelled by a function dds, defined by 

(4.64) 

which maps an arbitrary sequence of design data store inputs < si1, si 2 , ••• , sin > to the 
resulting design data store output sequence < so1, so 2, ••• , son >. The relation between 
the elements of the input and the corresponding output sequence is given by 

so; OF (si i> ss;) for 1 :5 i :5 n , (4.65) 

where 

ss;= NSF(si;-I>ss;_1) for 2:5 i :5 n. (4.66) 
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4.1.10 Concurrency control 

Design data management systems are typically multi-user systems, i.e., they are able to 
service multiple users simultaneously. As a consequence, the corresponding design data 
store should also be a multi-user system. In this case, the DDS model presented above, 
in which a design data store is only able to process one command at a time, is no Jonger 
suflicient. In this thesis we are not going to present an explicit model of the much more 
complex multi-user design data store. The reason is that even for a multi-user store the 
behaviour with respect to each individual command can still be described in terms of the 
output function presented in Equation 4.53 and the next state function of Equation 4.63. 
What is different is the DDS state to which these functions are applied. A DDS processes 
its inputs by first using the address to select some of its state elements, foliowed by the ap
plication of the corresponding command to the results. Both steps take time, during which 
the state can be changed due to the concurrent processing of other DDS inputs. Therefore, 
the DDS state encountered during the execution of a DDS input will in general not be 
equal to the state at the moment at which its execution commenced. Moreover, this state 
is strongly affected by the concurrency control mechanism [BK91] [Bre95] [vHtBvLvW94] 
which the design data store employs. 

A major advantage of our decision to split our DDMS model into a control interpreter 
which handles complex designer interactions and a design data store which features a 
much simpler interface is that it greatly facilitates discussions about concurrency control 
mechanisms. To be more specific, instead of having to consider complex control inputs, we 
only have to consider the effect of four much simpler commands, namely "Read", "Add", 
"Delete" and "Replace" , which operate on a DDS state represented by a single relation. 

\Vhen concurrent access to a design data store is allowed, this gives rise to a number of 
problems. For example, the following situations are considered to be problematic: 

• A state element is in the process of being changed at the moment another command 
tries to access it, or 

• a state element is still being accessed at the moment it is deleted or replaced. 

In both situations the results produced by the commands accessing the state element will 
be undefined. 

A possible solution for the problems described above is to construct a DDS which behaves 
according to the "first come, first served" principle. In the case of a DDS "first come" has 
to be interpreted as "first accessed". State elements are accessed during the evaluation of 
address sequences. Suppose we are eva! uating an address sequence < A 1, A 2 , ••• , An > for 
a DDS state State. In the first step the State itself wil! be accessed. In the second step all 
the state elements selected by A1 are accessed, so all elements of State ( < A1 > ). In the 
next steps all the elements selected by State ( < AI, A2 > ), State ( < Al> A2 , As > ), ... and 
State ( < AI, A2 , ••• , An >) are accessed. So during the evaluation of an address sequence 
all the elements of the following set will be accessed 
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State(€) U State(< A1 >)u State(< A1, A2 >)u ... u State(< A1, A2 , ••• , An > ). (4.67) 

The "first come, first served" principle boils down to a concurrency control mechanism 
which blocks access to certain state elements until other evaluations which previously 
accessed these elements have been finished. In case a grouping or sequencing relation bas 
been addressed with the purpose to add, delete or replace a relation element, all access to 
this relation will be blocked. This prevents the first access problem describe above from 
occurring. Ad dition of relation elements can always be performed, even if the other relation 
elements are operated upon concurrently. In case of deletion or reptacement of a relation 
element, the second access problem can occur. The "first come, first served" principle 
prevents this by stalling the deletion or replacement of relation elements until all the DDS 
input evaluations which previously accessed these elements have been completed. 

Another problem which occurs when concurrent access to the DDS is allowed is that the 
relation between DDS inputs and the resulting DDS outputs is lost. This problem can be 
solved by associating a unique identifier with each DDS input. This identifier can then be 
used to identify the resulting DDS output. 

The DDS state is not only changed by the design data store itself. If a state element, e.g. 
a piece of raw data, is read from the store it can be changed outside the store, thereby 
indirectly changing the DDS state. This is not a desirabie situation, because in this case 
the DDS bas no means to control concurrent access to these state elements. A simple 
solution for this problem is to return a copy of the selected relation element rather than 
the element itself. Because this copy is not a part of the DDS state, changes to it will not 
affect the DDS state, while on the other hand changes to the original state element will not 
affect this copy. The drawback of this approach is that it results in a lot of data copying. 
If this is a problem, other, more complicated, solutions can be employed. For example, if 
only read access is required, copying can be avoided by making the data read-only as long 
as it is used outside the store. Another possibility is to block access to the data from inside 
the store as long as it is manipulated externally. 

4.2 The control interpreter 

The design data store discussed in the previous section provides a very simple interface 
to its environment. In contrast to this, design data management systems will in general 
feature a more complex and higher level interface. We model this by the introduetion of a 
control interpreter. The control interpreter (see figures 4.3 and 4.4) interprets the DDMS 
input and translates it into a sequence of simpler design data store inputs. The value of 
a store input occurring in this sequence is determined by both the DDMS input and the 
results produced by the design data store in response to the store inputs preceding it. The 
control interpreter will use the resulting design data store output sequence to form the 
DDMS output. 

To illustrate how the control interpreter operates consider a situation in which we want 
to add a new workspace toa workspace hierarchy. A DDMS can be instructed to do this 
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by giving it a command like "addWorkspace( name, pa rent, owner, type)", which instructs 
it to create a new workspace name of type type which is owned by owner and which is a 
child of the workspace parent. In response to this the DDMS wil! change its organisation 
to reflect the resulting new workspace hierarchy. We model this by a control interpreter 
receiving a control input representing the "addWorkspace" command. In response to this 
the control interpreter will generate a sequence of DDS inputs, which change the DDS 
state in such a way that the "Workspace" relation of Equation 4.21, the "WorkspaceHier" 
relation of Equation 4.22, and the "Workspaces" relation of Equation 4.26 represent the 
new workspace hierarchy. 

4.2.1 Control inputs 

The operation of the control interpreter is guided by its control input. We introduce control 
inputs using a subclass of control inputs referred as data queries. Data queries specify a 
scheme to retrieve information from the design data store. The bases of a data query is 
formed by a number of addresses. Additionally, a data query features a retrieval function 
which, when applied to the selection sets specified by these addresses, will return the data 
to be retrieved. 

The simplest form of data query is given by a single address combined with a retrieval 
function equal to the identity function. The result of this data query is the selection set 
of this address. Such a data query can be represented by a pair <I, A>, where I and A 
are the identity function and the address, respectively. For a design data store state State 
this query will return 

I(State(A)) State(A). (4.68) 

As an example consider the query < I, Ald(<ALU,OmaDes>) >, which when applied to the 
DDS state of Equation 4.36, returns the identifiers of all ALU representations of type 
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"OmaDes" from the raw data identifier characterisation relation. The result of this query 
is given by the selection set 

State(Aid(<ALU,Des>)) = {opt,spec}. (4.69) 

Ifwe want to knowhow many "ALU" representations of type "OmaDes" are being managed 
by the DDMS, rather than what the actual identifiers are, then this number can be acquired 
using the data query < Size, Ald(<ALU,Des>) >. The unary fimction Size used in this query 
returns the number of elements in its argument set. The result is obtained as follows 

Size(State(Aid(<ALU,Des>))) Size({opt,spec}) 2. (4.70) 

Queries can be based on more than one address. Suppose we want to retrieve the identifiers 
characterised by attribute key <AL U, OmaDes>, of which the corresponding raw data were 
used as a specification to generate an optimised version of this representation, but which 
were themselves not created by optimisation of another design (i.e. were synthesised from 
a higher level design or directly created using an editor). The identifiers of the "ALU" 
representations of type "OmaDes" can be selected using address Ald(<ALU,Des>)· The fact 
that a piece of raw data identified by "opt" is an optimisation of another piece of raw 
data identified by "spec", is represented in the DDS state by the occurrence of the pair 
< opt, spec > as one of the elements of the "Version-of" relation. Therefore, the set of 
all specification and optimisation identifiers can be selected by the Aspec and the Aopt 
address, respectively, which are defined by 

Aspec = < Aversion-offiepn ATrue' AisSpec >, and 

Aopt < Aversion-offiepn Arrue' AisOpt >, 

where 

AisSpec (el, pos) = (pos 

AisOpt (el, pos) = (pos 

2), and 

1). 

(4.71) 

( 4. 72) 

(4.73) 

(4.74) 

When applied to the DDS state ofEquation 4.36, these addresses will result in the selection 
sets { spec} and { opt}, respectively. 

The desired identifiers can now be retrieved using the following query 

< IntSub, Ald(<ALU,Des>)> Aspec• Aopt >. (4.75) 

The function IntSub used in this query, calculates the intersection of the selection sets 
corresponding to the first two addresses, and subsequently subtracts the elements of the 
third address' selection set from the resulting set. It is defined by 

IntSub (Sb Sz, Sa) (S1 n Sz) \Sa. (4.76) 

The result of the query is obtained as follows 

(State(A!d(<ALU,Des>)) n State(Aspec)) \ State(Aopt) = 

( { opt, spec} n { spec}) \ { opt} 

{spec}. 

(4.77} 
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In genera!, a data query is defined as follows. 

Definition 4.2.1 Data query 

A data query is a n-tuple < RetrFunc, A1 , A2 , ... , An-I >, where RetrFunc the retrieval 
function and A1 , A2 , ... , An-I the query addresses. RetrFunc is a function with n- 1 
arguments. For a DDS state State, the query returns the result of the application of 
RetrFunc to the selection sets State (A1), State (A2 ), ... , State (An-I) corresponding to the 
query addresses. 

Suppose we want to retrieve all raw data of type "OmaDes" representing an "ALU". The 
conesponding identifiers can be obtained using the query < I, Ald( <ALU ,Des>) >. The 
desired raw data can now be retrieved by selection of the raw data associated with these 
identifiers by the raw data identification relation "RidRawMap". A natura! way to specify 
this is to use a nested query. A nested query is a query which is defined in terms of 
the results of other queries. For our example, the address which selects the raw data from 
"RidRawMap" is defined in termsof the identifier query. The nested query which retrieves 
all raw data of type "OmaDes" representing an "ALU" is given by 

<I, ARawALUDes >, 
where 

ARawALUDes = < ArudRawMapRepn AALUDes' ARawVal >, 
AALUDes(el) =(eh E< I,Ald(<ALU,Des>) >), and 

ARawVal(el,pos) =(pos= 2). 

( 4.78) 

( 4. 79) 

( 4.80) 

( 4.81) 

The control interpreter executes data queries in a number of steps. First it produces a 
sequence of design data store inputs, one for each query address, which results in the 
corresponding selection sets being returned by the design data store. Secondly, the control 
interpreter will produce the query result by combining these selection sets using the retrieval 
function. Finally, it will presents this result to the DDMS environment via the DDMS 
output. 

As stated before, the control interpreter translates the DDMS input into a sequence of 
simpler design data store inputs and subsequently combines the resulting design data store 
outputs to form the DDMS output. This process is controlled by the DDMS control input. 
By programming the control interpreter the DMS developers determine which control in
puts it will accept and how these are to be translated into a sequence of design data store 
inputs. No matter which language is used to described control inputs, their semantics is 
given by 

Definition 4.2.2 Control input 

A control input is a pair< IGF, OGF >, where IGF the DDS Input Generation Function 
and OGF the DDMS Output Generation Function. 
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Figure 4.5 shows the data produced and/or used by the control interpreter and the design 
data store during the control input interpretation process. The DDS input generation 
function IGF of a control input defines which DDS input sequence DDSIS the control 
interpreter will generate in response to this input. The input sequence produced depends 
on the value of the DDMS data input Dataln and the DDS output sequence DDSOS 
produced in response to DDSIS, so 

IGF(Dataln, DDSOS) = DDSIS. (4.82) 
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Figure 4.5: The control input interpretation process. 

The value of a store input occurring in DDSIS will notdepend on the complete DDS output 
sequence, but rather on that part of this sequence produced by the design data store in 
response to the store inputs preceding it. This is reflected by the following statement 

IGF(Dataln, DDSOS)i = IGFC(Dataln, DDSOS[1, i- 1]), (4.83) 

indicating that IGF can be defined in termsof a function IGFC (C stands for causality), 
which produces the i - th DDS input ba.sed on the value of Dataln and the first i 1 
elements of the DDS output sequence. 

The DDMS output generation function OGF of a control input defines the DDMS output 
generated by the control interpreter as a result of its interpretation. The DDMS output 
produced depends on the value of the DDMS data input Dataln and the DDS output 
sequence DDSOS. The DDMS output can be represented by a pair< DataOut, Status >, 
defined by 

OGF(Dataln,DDSOS) < DataOut,Status >. (4.84) 

Since data queries are control inputs, it is possible to represent a query Q, given by 
< RetrFunc, A1, A 2 , ••• , An-l >, by a control input pair < IGFQ, OGFQ > . The DDS 
input generation function IGFQ is defined by 
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IGFQ(Dataln, DDSOS) = 
<< Read, A1, l_>, < Read, A2, l_>, ... , < Read, An-I, l_>>. (4.85) 

Notice that the DDS input sequence generated by this function is independent from the 
DDS output sequence DDSOS. Fora design data store, which is in state ss 1, the DDS 
output sequence produced in response to this input sequence is given by 

DDSOS 
= dds ( < Read, A1, l_>, < Read, A2, l_>, ... , < Read, An_1, l_>) (4.86) 
= << ss1(A1), Status1 >, < ss 1(A2), Status2 >, ... , < ss 1(An-I), Statusn-I >>. 

The output generation function OGFQ describes how the DDS output is used to produce 
the query result. It is given by 

OGFQ(Dataln, (4.87) 
<<ss1 (A1), Status1 >, < ss 1 (A2), Status2 >, ... , < ss 1 (An-I), Statusn-I >>) = 

{ 

< RetrFunc(ss1(AI),ss1(A2), ... ,ss 1(An-I)), "Ok"> 
if V i : 1 ::; i < n : Status; = "Ok" 

<l_, < Status1, Status2, ... , Statusn-I >> otherwise 

Th is function represents that if the DDS data selected by the query addresses are success
fully read, indicated by a corresponding status equal to "Ok", the query result is obtained 
by applying RetrFunc to these data. If on the other hand one or more errors occur during 
this DDS data retrieval, then the query result wil! be undefined and the reason for this 
failure will be indicated using the DDS status sequence. 

Nested queries can not be represented using the control input pair < IGFQ, OGFQ >. 
Some of the addresses used in such a query depend on the results of other queries and 
therefore on the contents ofthe design data store. Since the DDS input sequence produced 
by IGFQ does not depend on the corresponding DDS output sequence, IGFQ is not able 
to produce the input sequence required for nested queries. For representing nested queries 
an input generation function is required which depends on the value of DDSOS. As an 
example consider the nested query < I, ARawALUDes > presented by Equation 4.78. The 
control input pair equivalent < IGFRAD, OGFRAD > is defined by 

IGFRAn(Dataln, DDSOS) = 
<< Read, Aid(<ALU,Des>)' l_>, < Read, RawAddrGen (DDSOS1), l_>>, (4.88) 

where the raw address generation function RawAddrGen is defined by 

RawAddrGen ( < DataOut, Status >) = 

< ArudRawMapRepn AALUDes, ARawVal > ( 4.89) 

and the address AALUDes is given by 

AALUDes(el) = eh E DataOut. ( 4.90) 
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4.2.2 The behaviour of the control interpreter 

The behaviour of the control interpreter can be modelled by a function ei, which when 
applied to its three arguments, consisting of the control input pair, the DDMS data input 
and the DDS output sequence, produces the DDS input sequence and the value associated 
with the DDMS output. This function is defined by 

ei(< IGF, OGF >, Dataln, DDSOS) < DDSIS, < DataOut, Status>>, (4.91) 

where the output pair is given by 

< DDSIS, < DataOut,Status >> = 
< IGF(Dataln, DDSOS), OGF(Dataln, DDSOS) >. (4.92) 

4.2.3 Concurrency control 

Like the design data store, the control interpreter will in general allow concurrent access. 
This means that different control inputs are processed simultaneously. The resulting design 
data store input sequence will be a mixture of the DDS inputs generated by the control 
inputs currently being processed. Since the DDS concurrently evaluates the available 
inputs, the reauiting DDS outputs will additionally be mixed. 

The first problem encountered is that the relation between the control inputs and the 
corresponding design data store inputs and outputs is lost. A possible solution is to have 
the control interpreter associate each of the DDS inputs with an unique identifier consisting 
of the control input producing it and its position in the corresponding DDS input sequence. 
Since the design data store wil! associate this identifier with the resulting output, the DDS 
output sequence of a control input can now be reconstructed from the total DDS output 
sequence. 

Another problem is that the concurrent evaluation of the different DDS inputscan lead to 
incorrect results. This even occurs when only one control input is handled at a time. Since 
the corresponding DDS inputs are processed concurrently, there is no guarantee that, at the 
moment the DDS store starts the evaluation of an input, the processing of the preceding 
inputs has finished. If the proper processing of a DDS input depends on the completion of 
some of the inputs preceding it, then this can lead to incorrect results. This can however 
easily be avoided. A possible way to this is to use a DDS input generation function, which 
makes the generation of such an input dependent on the presence of the DDS outputs 
resulting from the evaluation of these preceding inputs. This can even be used if these 
results do not actually determine the input's value. 

The situation becomes a lot more complicated when the control interpreter is processing 
different control inputs simultaneously. Jn this casethereis no way to predict beforehand 
which DDS inputs will be processed concurrently. This leads to probierus if the proper 
processing of a control input requires the part of the DDS state it operates on to be 
unchanged by other control inputs during the time of its evaluation. A possible remedy is 
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to read the complete DDS state part involved and perfarm the operations on the resulting 
private copy rather than on the actual DDS state. If required, the DDS state can be 
updated later on by replacing the original design part with its modified copy. 

4.3 The behaviour of the DDMS 

The behaviour of a design data management system is a result of the interaction of its two 
components: The design data store and the control interpreter. Therefore, if we want to 
describe its behaviour in terms of a function ddms, then it should be possible to define 
this function in terms of the functions dds of Equation 4.64 and ei of Equation 4.91, which 
represent the behaviour of the corresponding design data store and control interpreter, 
respectively. The design data management system function ddms determines what, for a 
given control input pair and DDMS input value, the corresponding DDMS output value 
will be. It is defined by 

ddms ( < IGF, OGF >, Dataln) < DataOut, Status >. (4.93) 

The DDMS output pair < DataOut, Status > is given by the second component of the 
pair generated by the control interpreter function ei, so 

< DataOut, Status > ei(< IGF, OGF >, Dataln, DDSOS)2. (4.94) 

The DDS output sequence DDSOS used by the control interpreter for the generation of 
the DDMS output is produced by the design data store, which is represented by 

DDSOS = dds(DDSIS), (4.95) 

where the DDS input sequence DDSIS is given by the first component ofthe pair produced 
by ei, so 

DDSIS =ei(< IGF, OGF >,Dataln, DDSOS)I. (4.96) 

4.4 Summary 

In this chapter a detailed design data management system model was presented, which 
describes the system in terms of two interacting components: A design data store and 
a control interpreter. The design data store contains the raw data produced during the 
design process, the associated meta data and will be used to keep track of the relations 
existing between these data. In this chapter a detailed description was given of how the 
design data store organises its data, how these data can be stored and how these data 
can retrieved afterwards. In addition, some restrictions were presented, which a design 
data store should satisfy in order to guaranty that it will operate properly. The control 
interpreter interprets the abstract control signals it receives from the DDMS's environment 
by translating these into a sequence of simpler design data store operations. In this chapter 
it was demonstrated how these control signals can be represented and how the control 
interpreter perfarms the translation of these signals into a sequence of design data store 
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inputs. Finally, a description was given of how the interaction of the design data store 
and the control interpreter results in the behaviour of the total design data management 
system. 
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The design tooi management system 
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Figure 5.1: Environment of the design tooi management system. 

Tools are software programs assisting designers in performing their design task. A Design 
Tooi Management System (DTMS) helps the designers making proper use of these tools. lt 
should enable its users to refer to these tools logically rather than physically. This means 
that the system should abstract from toot invocation related information. On the other 
hand the system should supply the users with information about what the abilities of a 
certain tooi are, about the types of its in- and outputs and how to fine-tune a tooi for a 
specific application. In this chapter we will present a model of a design tooi management 
system satisfying these requirements. Figure 5.1 showshow the DTMS is positioned within 
the design management system. 

89 
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The way the design tooi management system handles its tools strongly resembles the way 
raw data are treated by the design data management system. Both raw data and tools are 
large pieces of data of which the actual contents are of no interest for design management 
purposes. Both raw data and tools are stored by the corresponding management system 
and can be retrieved by the users of these systems. Both the design data and design 
tooi management systems contain additional information which is used to characterise 
the raw data and tools they manage. The basic difference between the DDMS and the 
DTMS is that the design tooi management system has to execute the tools it stores. So 
in addition to the information used for tooi selection, it should also contain information 
about tooi invocation and feature a component enabling it to execute tools. Based on the 
considerations presented above we arrive at the DTMS structure depicted in Figure 5.2. 
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Figure 5.2: The design tooi management system model. 

Design 
Data 

Status 

DTMS 
Output 

In this tigure the DTMS is modelled as consisting ofthree interacting components: a design 
tooi store (DTS), a control interpreter (Cl) and a tooi execution engine (TEE). The design 
tool store only differs from the design data store by what is being stored rather than how 
this is done. The tool execution engine produces new design data by invocation of the tools 
retrieved from the design tooi store on design data obtained from the design management 
store. Like the DDMS, the design tooi management system features a control interpreter. 
This control interpreter not only supervises the interactions with the design tooi store and 
the generation of the DTMS output, but also provides the tooi execution engine with the 
tooi and design data it operates upon and processes the resulting tooi outputs. 

Tools are created by tooi developers. From the viewpoint of tooi developers the tooi 
descriptions they create are raw data to be managed by the design data management 
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system. lt is the task of the tooi integrators to retrieve these tooi descriptions from the 
DDMS and to store these at the appropriate address in the design tooi store. Tools 
descriptions arrive at the DTMS via the design data input and are subsequently presented 
to the design tooi store via the "Tooi Data" bus. In Figure 5.2 this bus is represented by a 
dashed arrow, which indicates that it is only to be used by the design management system 
developers and not by the designers. 

In Section 5.1 the design tooi store is presented. Since it only differs from the design data 
store with respect to what is being stored, this treatment can be limited to a description 
of what the design tooi store typically contains. The tooi execution engine is discussed in 
Section 5.2. Finally, inSection 5.3 the control interpreter is introduced. 

5.1 The design tooi store 

In analogy to the design data store, the following architecture for the design tooi store is 
proposed (see Figure 5.3). Except for the state, the DTS is identical to the DDS. The 
design tool store state is determined by the tools and meta data currently stared by the 
DTS. In addition tothetooi descriptions created by the tooi developers, the store will also 
contain tooi abstractions. Tooi abstractions are created by tooi integrators and can be 
used by designers to execute a tooi without having to know the tooi invocation details. In 
addition, tooidevelopers will add metadata to the store characterising the stared tools and 
tooi abstractions. These characterisation can be used by designers to select the appropriate 
tooi. In the rest of this section we will discuss tooi abstractions, tooi characterisation and 
tooi selection, respectively. 
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Figure 5.3: General structure of the design tooi store. 
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5.1.1 Tooi abstractions 

As stated before, a desigp tooi man&gement system should enable its users to refer to 
its tools logically rather than physically. Therefore, from the qser viewpoint, the tools 
managed by such a system should be logical tools rather than phy.<Jictkl toals. A physical 
tooi can be turned into a logica! toot by creating a tool abstraction. Tooi abstractions 
abstract from tooi invocation information, enabling designers to execute a physical tooi 
without the need to know the details of how this is done. 

In our discussion a bout tooi abstractions, we qse the tools employed during the OMA timing 
driven matching process as an example. In fact, only one physical tooi is used, namely OMA, 

but it is used to perform two completely different tasks, i.e., optimisation and matching. 
In analogy to the design flow management system of Nelsis [BtBvW92], which splits a tooi 
into a set of activities representing the different design functions of this tooi, we introduce 
the optimisation tooi Optimise and the matching tooi Match as the logica! tools managed 
by the design tooi management system rather than OMA itself. 

The behaviour of the logica! tooi Optimise can be represented by a function, which when 
applied to a specification design spec, returns an optimised version opt of this design. This 
function is implemented by creating a tooi abstraction which defines Optimise in terms of 
the corresponding physical tooi OMA [Rov94]. Tooi abstractions are often defined using a 
shell script. As an example consider the following UNIX C-shell script, which implements 
the behaviour of Optimise by running OMA in optimisation mode. 

set type= 'OmalnType spec' 
cp spec spec.$type 
Contro!Mod -mode opt -type $type omaCtrTmpl > spec.oma..ctr 
oma spec.oma_ctr 
mv spec.oma...out opt 

(5.1) 

This shell script does not define the Optimise function using mathematics, but in terms 
of a sequence of UNIX shell commands. The script assumes that there exists a file named 
"spec" containing the specification to be optimised. As a result of its execution, it will 
produce a file named "opt" containing the optimised design. The shell commands produce 
this optimised design in the following way. When OMA is to be applied to a design named 
Design expressed in the input format Format, it assumes its design and control inputs to 
be stored in files named Design.Format and Design.oma...ctr, respective)y. The Optimise 
tooi on the other hand only features one input design expressed in one of the input formats 
accepted by OMA. So before OMA can be invoked, we first have to determine what the type 
of the input file is, copy the input file to a file with the proper type extension and genera te 
the required control file. The input file type is determined by the program "OmalnType" 
used in the first UNIX command. The result returned by this program is made available 
to the other commands by assigning it to the shell variabie "type". The second command 
uses this variabie to create the design input file required by OMA. The control file is 
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generated from the template control file "omaCtrTmpl" using the control file modifier 
program "ControlMod". This program is invoked by the third UNIX command, which 
modifles "omaCtrTmpl" by setting the mode to "opt" and the input file type to "type". 
Because of the name conventions for its input files, OMA requires only one argument, i.e., 
its control file. OMA is executed by the fourth UNIX command. When invoked on a design 
named Design, OMA will store the optimised design in a file named Design.oma_out. Since 
we want this design to be stored in the file opt, the last cammand will move the optimised 
design to this file. 

Tooi inputs and outputs which are pieces of raw data, like spec and opt from the Optimise 
tooi, can be accessed by the UNIX commands using a file with the same name. But what 
about other types of in- or outputs? As an example consider the Match tooi. lts behaviour 
can be represented by a function, which when applied to a triple <spec, lib, delaySpec>, 
produces the pair <net, delayRes>. It maps the logic expressions of a logic level design 
speconto a gate level netlist net using the gates specified in the library lib. This process can 
be fine-tuned by specifying the maximum delay delaySpec the resulting gate level netlist 
is required to have. Besides the netlist, it will also return the resulting maximum delay 
delayRes. We enable the UNIX commands used in the corresponding tooi abstraction to 
access tooi in and outputs like delaySpec and delayRes, which are natura! numbers rather 
than raw data, by introducing a shell variabie for each of these. As an example consider 
the following C-shell script which can he used to imptement the Match tooi. 

set type 'OmalnType spec' 
cp spec spec.$type 
Contro!Mod -mode match -constr $delaySpec -type $type omaCtrTmpl > spec.oma_ctr 
oma spec.oma_ctr (5.2) 
mv spec.oma..net net 
set delayRes = 'MaxDelay spec.oma.Jis' 

This script only differs from the one used for Optimise by the control file which is employed 
and in terms of the results produced. The control modifier "Contro!Mod" creates a control 
file which puts OMA in "match" mode with a timing constraint equal to the value of 
the "delaySpec" variable. When used to match a design named Design, OMA wil! store 
the resulting netlist in a file named Design.oma..net and information about the matching 
process, e.g., the obtained maximum delay, in the corresponding report file Design.oma..Jis. 
To obtain the outputs of Match the file "spec.oma_net" is moved to the file "net" and 
the maximum delay is extracted from the report file using the "MaxDelay" program, after 
which it is bound to the shell variabie "delayRes". 

5.1.2 Tooi characterisation 

A tooi is characterised by information about what its abilities are, the types of its in- and 
outputs and how to fine-tune it for a specific application. This information is added to 
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the design tooi store by the tooi integrators in the form of meta data. In this section we 
show mcamples of how tools can be characterised. To keep our discussion independent from 
the way characterisation information is represented in the design tooi store, we will use 
rnathematics rather than meta data to represent this information. 

One way to characterise a tooi is to represent it in termsof a relation, which describes how 
the tooi inputs are mapped onto the corresponding outputs. As an example consider the 
relation representing the operation of the Optimise tooi, which when invoked on a design 
produces an optimised version of this design. This relation is declared by 

Optimise C { < spec, opt > ispec E OmaDes 1\ opt E OmaDes} . (5.3) 

It is defined by a set of pairs < spec, opt >, representing all possible inputfoutput combi
nations for the optimisation tool. 

Unlike Optimise, many tools will feature more than one input or output. These tools are 
modelled by arelation which maps the elementsof the set of all possible input combinations 
to the corresponding elements of the set of all output combinations. As an example consider 
the Match tooi. The relation representing this tooi is declared by 

Match C { < < spec, lib, delaySpec >, < net, delayRes > > I 
< spec, lib, delaySpec > E OmaDes x OmaLib x INA 
< net, delayRes > E OmaNet x IN} . 

(5.4) 

The optimised design opt produced by the optimisation tooi Optimise is uniquely deter
mined by the specification spec. Therefore, the corresponding re lation wiJl contain only 
one pair in which spec occurs as the first element and the corresponding optimised design 
opt can be obtained by taking the second element of this pair. This is not true for all 
tools. To illustrate this consider an editor. Given the original design and the user input, 
the resulting edited design is completely determined. However, modelling the complex user 
interactions of such an editor using a single relation is a very difficult task. Fortunately, 
for most design management purposes it is not necessary to explicitly model these interac
tions. It often suffices to represent the editor's operation in term of a relation which maps 
the original design onto all the designs which can be derived from it using the editor. As 
a result the original design wiJl occur as the first element in a number of relation pairs, 
namely one for each possible edited design. Given such a relation and the original design, 
it is not possible to determine what the result of the editing operation will be, because this 
is determined by external influences which are not modelled by the relation. 

For most design management purposes, it is not necessary to create a detailed model of 
a tooi 's operation; it often suffices to define the relation type rather than the re lation 
itself. For tooi selection however, some information is required about how a tooi relates 
its inputs to its outputs. As an example consider the following characterisations of the 
Optimise and Match tools. Suppose there exist two functions Func and ExprSize. When 
applied to a design the function Func will return a canonical representation of its func
tionality, i.e., two designs des 1 and des 2 will be functionally equivalent if and only if 
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Func (des 1) = Func (des 2) hol ds. For logic level designs the function ExprSize will return 
a number giving an indication about the number and complexity of the logic expressions 
used in such a design. U sing these functions the optimisation tooi Optimise can be char
acterised by stating that 

Optimise C { <spec, opt > I 
ExprSize( opt) < 0.6 * ExprSize (spec )A 
Func ( opt ) Func ( spec)} , 

(5.5) 

representing that the optimisations performed by Optimise will typically result in a 40% 
reduction of the logic expression size and that it does this without changing the correspond
ing functionality. The Match tooi will also not change the functionality of a design and 
will try to obtain a maximum delay smaller than the specified delay. This is represented 
by stating that 

Match C { < < spec, lib, delaySpec >, < net, delayRes > > I 
Func (net ) = Func ( spec) A 
delayRes :5 delaySpec} . 

(5.6) 

The results of a tooi invocation wil! be stored by the design data management system. 
However, data storage is only useful if these data can be retrieved afterwards. To enable 
data retrieval, data have to characterised. A tooi invocation will relate the tool's outputs 
to the corresponding inputs. For example, the application of Optimise to its spec input 
will result in an optimised version of this design, which is given by the output opt. This 
should be reflected in the design data management system by the addition of these designs 
to the "Version-of" relation. We represent this fact by stating that < opt, spec > E 
Version-of. Likewise, the fact that the netlist net produced by the Match tooi implements 
the logicallevel design specification spec can be represented by stating that < net, spec > 
E /mplements. 

5.1.3 Tooi selection 

Tooi selection is largely determined by the tooi abilities. The abilities of a tooi can be 
specified by making a statement about the properties of the outputs produced by the tooi. 
These properties are often expressed in terms of the properties of the corresponding inputs. 
As an example consider the ability specification of the Optimise tooi, which is obtained by 
combination of the statements of Equation 5.3 and Equation 5.5, and is given by 

Optimise C { <spec, opt > I 
spec E OmaDes A opt E OmaDes A 
ExprSize ( opt) < 0.6 * ExprSize (spec )A 
Func ( opt) Func ( spec)} . 

(5.7) 
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Tooi selection based on tooi abilities is guided by a statement about the properties the tooi 
is required to have. Like tools, tooi requirements can be represented by a relation. For 
example, the requirement Req can be represented by the relation 

Req = {<spec, opt >I 
spec E OmaDes A opt E OmaDes A 

ExprSize ( opt) < 0. 7 * ExprSize ( spec)} , 
(5.8) 

which specifies that a tooi has to be selected able to optimise an input design of type 
"OmaDes" such that the resulting output, which has to be of the same type, exhibits a 
logic expression size which is at least 30% smaller than that of the original design. 

A tooi will satisfy a requirement if and only if its relation is a subset of the requirement 
relation. For instance, the Optimise tooi satisfies requirement Req, because the following 
statement holds 

Optimise C Req , (5.9) 

which can be proven using the tooi characterisation of Optimise presented in Equation 5. 7. 

Tooi selection based on abilities will often produce more than one tooi satisfying the re
quirement. A possible way to select between these alternatives is by consiclering the costs 
of the tooi invocation. Tooi costs can be expressed in a number of ways. Po ss i bie indicators 
are the computing time required for running the program, the amount of memory needed 
and the amount of money which has to be paid for each tooi invocation. It is impossible 
to give an exact specification of the run time and memory requirements of a tooi. The 
values of these properties wil\ depend on some measure of the size of the tooi inputs. For 
most tools this relation is not known. However, sometimes, the order of this dependency 
is known. For instance, by specifying that the memory requirements are of the order 

O(ExprSize ( spec)) , 

we represent that there is a linear dependency between the expression size of the design 
input spec and memory needed for running Optimise. 

5.2 The tooi execution engine 

Although design tooi management systems have a number of provisions to assist designers 
during tooi selection and to hide tooi invocation related information, all this will be useless 
if it will not result in the execution of tools. The tools managed by a DTMS are invoked 
by the tool execution engine. As an example consider the invocation of the Match tooi 
used during the overspecified timing constraints step of the OMA timing driven matching 
process. Wh en supplied via the design data input with a triple < Opt, Lib, 0 > (where 
Opt the result of the optimisation step, Lib a gate library, and "0" a timing constraint 
equal to zero nanoseconds), and the Match tooi abstraction via the tooi data input, the 
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tooi execution engine wiJl produce the corresponding output, e.g., a pair < Net, 199 >, 
where Net a gate netlist and "199" the conesponding maximum delay. 

5.3 The control interpreter 

Like the control interpreter of the design data management system, the DTMS control 
interpreter (Cl) translates the DTMS input into a sequence of simpler design tooi store 
inputs and will generate the DTMS output. However, unlike the DDMS, the generated 
DTMS output is not obtained by combining the resulting store outputs. Instead the 
construction of this output is based on the design data produced by the tooi execution 
engine. The tooi execution engine generates these data by invoking the tooi descriptions 
retrieved from the design tooi store. This process is controlled by the DTMS control 
input. A design tooi management system wiJl feature a language to describe these control 
inputs. Control inputs describe one of the possible interaction patterns of the three DTMS 
components by specifying the valnes of the er outputs in terms of the data received via 
the Cl inputs. Although the control interpreter outputs in principle depend on all the Cl 
inputs, in practice this wil! not be the case. This is reflected by the following definition. 

Definition 5.3.1 DTMS control input 

A DTMS control input is a triple < IGF, TIGF, OGF >, where TGF the DTB Input 
Generation Function, TIGF the TEE Input Generation Function, and OGF the DTMS 
Output Generation Function. 

Figure 5.4 shows the data produced and/or used by the control interpreter, the design 
tooi store, and the tooi execution engine during the DTMS control input interpretation 
process. The DTS input generation function will produce a DTS input sequence DTSTS. 
The valnes of the elements of this input sequence, not only depend on the DTS output 
sequence DTSOS produced in response to the previous elements, but aiso on the tooi 
execution engine output TEEO. This is represented by stating that 

IGF(DTSOS, TEEO) DTSIS. (5.10) 

The reason why we make the design tooi store input sequence dependent on the results 
of the tooi execution engine, is that sametimes invocation of a tooi wil! not produce the 
desired results. For instance, if the mateher Match bas been selected to match a design 
with a maximum delay equal to 100ns and the resulting netlist bas a delay of 119ns, then 
it should be possible to select another tooi to do the job. By making IGF dependent of 
TEEO, it becomes possibie to query the DTS for another tooi if the previously selected 
tooi fails. 

The TEE input generation function wil! provide the tooi execution engine with its input 
TEEl. The tooi execution engine input is represented by a pair <Tooi, Toollnput>, e.g., 
the pair< Match,< Opt, Lib, 0 > > used during the OTC matching step of the OMA timing 
driven matching process. The TEE input generation function takes the tooi description 



98 The design tool management system 

Tooi 
DTMS 

~ Execution 
Engine 

TEEl 
TEEO! I DTMSO 

< IGF, TIGF, OGF> .... Control .. Design 

Interpreter Tooi 
"'"" DTSIS Store 

Dataln t 
DTSOS 

Figure 5.4: The DTMS control input interpretation process. 

from the DTS output DTSO and generates the corresponding tooi input using the data 
received via the DTMS design data input Dataln or the data TEEO produced by the TEE 
during the previous tooi invocation. This is represented by 

TIGF(Dataln, TEEO,DTSO) =TEE/. (5.11) 

By making TIGF dependent on the design data produced during the previous tooi invo
cation, it becomes possible to generate the required design data using a sequence of tooi 
invocations rather than a single one, each using the results of the previous run as their 
input. 

The DTMS output generation function OGF uses the design data produced by the tooi 
execution engine to generate the DTMS output DTMSO, so 

OGF(TEEO) = DTMSO . (5.12) 

5.4 Summary 

In this chapter a detailed design tooi management system model was presented. The 
DTMS was modelled as consisting of three interacting components: a design tooi store, 
a tooi execution engine and a control interpreter. The design tooi store of the DTMS 
only differs from the design data store of the design data management system with respect 
to what is being stored, i.e., tools rather than raw data. Therefore our treatment about 
the design tooi store was limited to a description of what the design tooi store typically 
contains. In this context we have discussed tooi abstractions, tooi characterisation and 
tooi selection. Tooi abstractions turn physical tools into logica! tools, enabling designers 
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to execute a tools without having to know about tooi invocation details. The behaviour of 
a tooi can be characterised by making statements about what the abilities of the tooi are, 
a bout the types of its in- and outputs and how to fine-tunethetooi fora specific application. 
Tools are selected from the design tool store based on their characterisation. The selected 
tools wiJl be invoked on the conesponding design data by the tooi execution engine. The 
operation of the design tooi store and the tooi execution engine is controlled by the control 
interpreter by interpretation of the DTMS's control input. We have demonstrated how 
these control inputs can be modelled. 
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Chapter 6 

The design flow management system 

When the designer's data and tools are managed by the design data and design tooi 
management system, then the only task remaining for the designer is to decide how the 
required design can be obtained using these tools and data. This involves selection of the 
tools to invoke, determination of the order of these invocations and selection of the data 
to which these tools are to be applied. The Design Flow Management System (DFMS) 
assists the designers in making these dedsions. It does this by executing design flow 
representations. These representations describe when which commands to issue to the 
design data and the design tooi management system to obtain the required design. As 
shown in Figure 6.1 the design flow management system controls the DDMS and DFMS 
by issuing commands via the "Control" bus. The DDMS and DTMS report their progress 
to the DFMS by sending information via the "Status" bus. 

In this chapter a detailed design flow management system model wil! be presented. The 
general structure of a DFMS can be represented as depicted in Figure 6.2. Like the design 
tooi management system, the design flow management system is modelled as consisting 
of three interading components: a design flow store (DFS), a control interpreter (Cl), 
and a flow execution engine (FEE). The design flow store contains representations of the 
flows managed by the DFMS and flow related information. The flow representations are 
expressed in the flow description language supported by the flow execution engine. Flow 
descriptions can be retrieved from the DFS by sending flow queries to the control inter
preter. The selected flows are send to the flow execution engine, where they are executed 
concurrently. We will refer to the flows currently executed by the FEE as active flows. 
The active flows control the operation of the rest of the design management system. For 
example, active flows enforce decisions regarding which tools are to be invoked on what 
data by sending the appropriate control inputs to the design data and design tooi manage
ment systems via the control bus. They monitor the opera ti on of these systems using the 
resulting status information they receive via the status bus. Furthermore, the active flows 
also take care of the interaction with the design management system's environment using 
the external control and status busses. They even control the activation of other flows, by 
issuing flow queries to the design flow store. 
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Figure 6.1: Environment of the design flow management system. 

In Section 6.1 of this chapter design flows are introduced. The flow execution engine is 
discussed in Section 6.2. The control interpreter and design flow store of the DFMS are 
very similar to the interpreters and stores encountered in the previous two chapters, and 
wiJl therefore not be treated here. 

6.1 Design flows 

Like the control unit of a digital system, the operation of the design flow management 
system can be modelled by a state machine. The input of this machine not only consists 
of the status signals produced by the design data and design tooi management systems, 
but also of the external control signals its receives. The output it produces are either 
control inputs for the design data and the design tooi management systems or external 
status signals. The behaviour of the design flow management system is determined by 
the design flow descriptions it executes concurrently, i.e., the active design flows. The 
operation of a flow execution engine executing a flow description can again be represented 
by a state machine. Unlike the total DFMS state machine, these state machines will not 
only interact with the DFMS environment, but also with the design flow store and with 
each other. Based on this state machine model, we now define an active design flow as 
follows. 
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Figure 6.2: The design flow management system model. 

Definition 6.1.1 Active design flow 

An active design flow can be represented by a triple <Fld, CS, FlowDef>, where 

• Fld- the flow identifier, 

• CS- the current state of the flow, and 

• FlowDel- the design flow definition. 

An active flow is uniquely identified by its flow identifier Fld. The current state CS is 
the dynamic part of an active flow. It changes in response to the flow input and therefore 
enables flows to make their actions dependent on events which occurred in the past. The 
operation of an active flow is defined by the corresponding design flow definition. A design 
flow definition FlowDe/is represented by a 7-tuple < S, S0 , F, E, BD, >., 6 > where 

• S - the state set, 

• So E S the start state, 

• F C S - the final state set, 

• E C S the error state set, 
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• BD the bus definition set, 

• ..\ - the output function, and 

• 6 the next state function. 

Figure 6.3: The OMA timing driven matching flow. 

We will illustrate the different components of a design flow definition using the OMA Timing 
Driven Matching (OTDM) flow presented in Figure 6.3. The state set S defines the state 
space of a flow, i.e., all the potential current states. At first glance the OTDM flow depicted 
in Figure 6.3 appears to feature four states: The optimisation state "Opt", the overspecified 
timing constraints state "OTC", the realistic timing constraints state "RTC", and the exit 
state "Exit". In contrast to the other nodes, however, the node labelled "RTC" represents 
a set of states rather than a single state. The reason is that it features a parameter delay, 
which will contain the value of the maximum delay obtained during the overspecified 
constraints matching step. So during the realistic timing constraints matching step, the 
flow will be in a state represented by a pair< RTC, delay > (delay E IN). As a result, the 
state set S of the OTDM flow is given by 

{Opt, OTC, Exit} U { < RTC, delay > idelay E IN} . (6.1) 

The moment a flow is activated, its current state will be equal to the start state S0 • The 
OMA timing driven matching flow starts in the optimisation state "Opt". 

Flow execution ends when it reaches one of the final or one of the error states. Wh en a final 
state is entered, e.g., "Exit" in case ofthe OTDM flow, this indicates that the flow execution 
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has been successful. However, when an error state is reached, then this represents that 
a failure occurred. The information about whether a flow has been executed successfully 
or unsuccessfully is passed back to the flow who originally activated it, e.g., by sendingit 
status information like "Ok" and "Error", respectively. 

Unlike a digital system, for which the connections between its components are fixed, the 
busses used in our design management system model are created dynamically whenever 
they are required. Activation of a flow wil! result in the creation of the busses described 
in the bus definition set BD. For the OTDM flow this set contains the following elements: 
two busses which are used by the OTDM flow to control and monitor the design tooi 
management system, which are given by 

< dtms.ctr, {dfms.control}, {dtms.control}, OPB > , (6.2) 

< dtms.stat, { dtms.stat }, {dfms.stat}, OPB > , (6.3) 

a bus via which the flow controls the design data management system, defined by 

< ddms.ctr, {dfms.control}, {ddms.control}, OPB >, (6.4) 

and the following three busses 

<des, { ext.data.in, dtms.data.out}, { dtms.data.in}, OPB > , 

< lib, {ddms.data.out}, {dtms.data.in}, OPB > , and 

<net, {dtms.data.out }, {ext.data.out}, OPB >, 

(6.5) 

(6.6) 

(6.7) 

of which bus "des" is used to get the original input design from the DMS's environment 
and to temporarily store the conesponding optimised design. Bus "lib" transports the cell 
library from the DDMS to the DTMS, and the bus "net" is used to present the resulting 
gate network to the environment. Note that the type of these busses is given by OPB, 
which denotes that these are all One Place Buffers (see Section 3.3.3). 

After the busses of a flow have been created, execution of the flow will change their contents. 
The current state of the busses can be represented by a set 

{ < cont, bd > lbd E BD 1\ cont E bdcontType} , (6.8) 

which contains a bus for each bus definition in BD and where the bus contents cont are 
of the type bdcontType specified by bd. Intherest of this chapter we will use dtms.ctr, 
dtms.stat, ddms.ctr, des, lib, and netto refer to the elements of this set identified by 
"dtms.ctr", "dtms.stat", "ddms.ctr", "des", "lib", and "net", respectively. In addition, we 
will use B to refer to the set of all possible current bus state sets. 

Given the flow's current state and the currently available status and external control infor
mation, the output function À determines which commands the flow wil! issue. The current 
contents of the flow's busses determine which status and control information is available. 
Moreover, a flow issuesits commands by sending messages to its busses, thereby changing 
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the state of these busses. So the output function can be defined in terms of how it, given 
the current flow state and the current state of the busses, generates a new state for the 
busses. This is represented by stating that 

ÀESxB-tB. 

As an example, consider the output function of the OTDM flow, whicb is given by 

>.(state,0) 

{ 

{dtms.ctr!runOpt} 
{ ddms.ctr!getLib, dtms.ctr!runOTCMatch} 
{ dtms.ctr!runRTCMatch} 

if state Opt 
if state OTC 
if state =< RTC, delay > 

(6.9) 

. (6.10) 

Note that we have only listed those elements of the current bus state set and the new bus 
state set, which are either read and/or changed by the output function. The fact that the 
OTDM output function does notdepend on the current state of the busses, is represented 
by a current bus state set argument which equals the empty set. The fact that the new 
bus state sets returned by the OTDM output function only contain modified verslons of 
the dtms. ctr and ddms. ctr busses, indicates that all other busses are left unchanged. 

The output function of Equation 6.10 represents that the OTDM flow controls the DDMS 
and DTMS using the getLib, runOpt, runOTCMatch, and runRTCMatch control inputs. 
The control inputs described in Chapter 4 and Chapter 5 instruct the DDMS and DTMS 
how to generate the value for the design data and status outputs given the design data 
input value. However, since each of these in- and outputs may be connected to a number of 
busses, the control input model presented in these chapters no Jonger suffices. The control 
input concept should be extended with a mechanism for specifying the busses to be used. 
We solve this problem by consiclering control inputs as instructions of how to generate a 
new bus state set given the current bus state set. In practice this means that all references 
to the design data input are replaced by references to one or more of the busses connected 
to this input. In addition the result produced by the output generation function will no 
Jonger be a < design data, .~tatus > pair, but the new bus state set. 

As an example consider the runOpt control input used in the output function of Equa
tion 6.10. When the OTDM flow reaches the optimisation state "Opt", it wiJl send this 
control input to the design tooi management system. It will instruct the DTMS to invoke 
the logica! tooi Optimise on the original input design, which is received via the "ext.data.in" 
input and transported to the DTMS using the "des" bus. The resulting optimised design 
will be again be written to the "des" bus. The runOpt control input can be looked upon 
as a bus state set transformer, operating on the bus state subset {des, dtms.stat}, and is 
defined by 

runOpt IGF(DTSOS, TEEO) =<< Read, ATool(optimise) >> , 
runOptTiaF({des}, TEEO,DTSO) =< DTS01,des? >, and 

(6.11) 

(6.12) 
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runOpt OGF( TEEO) = {des! TEEO, dtms.stat l "ok"} . (6.13) 

The design tooi store input generated by the function runOpt IGF selects the Optimise 
tooi from the design tooi store using the address ATooJ(optimise)· In genera!, ATool(tld) can 
be used to select the tooi description identified by tooi identifier tld. The tooi execution 
engine input generation function runOpt TIGF produces the TEE input by combining the 
description of the Optimise tooi with the design representation read from the des bus. The 
output generation function runOpt OGF generates the new bus state set, which is obtained 
from the original set by writing the optimised design to the des bus and the status "ok" 
to the status bus dtms.stat. 

When the OTDM flow reaches the overspecified timing constraints state "OTC", it will 
send the control input getLib to the design data management system. This control input 
instructs the DDMS to write the celllibrary addressed by ALib to the lib bus and is given 
by 

getLib IGF(0, DDSOS) =<< Read, ALib' l_>>, and 

getLib OGF(0, DDSOS) {lib!(DDSOS 1h} . 

(6.14) 

(6.15) 

In addition the OTDM flow will send the runOTCMatch control input to the design tooi 
management system, which will instruct the DTMS to invoke the logica] tooi Match on 
the design read from des using the library read from lib and a timing constraint equal to 
zero. The resulting maximum delay is send back to the flow using the dtms.stat bus. The 
runOTCMatch control input is defined by 

runOTCMatchwp(DTSOS, TEEO) =<< Read,ATool(matchJ >>, 

runOTCMatch OGF( TEEO) = { dtms.stat! TEE0 2 }, and 

runOTCMatch TIGF({des, lib }, TEEO, DTSO) =< DTSOI> <des?, lib?,O >>, 

where TEEO 2 the maximum deiay achieved during the OTC step. 

(6.16) 

Wh en the OTD M flow arrives at the realistic timing constraint state "RTC", it will issue the 
control input runRTCMatch to the DTMS, which instructs it to run the Match tooi using 
the value of the delay parameter as the timing constraint. The resulting gate network is 
presented to the DMS's' environment using the net bus. The runRTCMatch control input 
is given by 

runRTCMatchwF(DTSOS, TEEO) =<< Read,ATool(match) >>, 

runRTCMatch OGF( TEEO) = {net! TEEO 1}, and (6.17) 

runRTCMatch TIGF( {des, lib }, TEEO, DTSO) =< DTS0 1 , < des?, lib?, delay >> . 

Proper execution of the runOTCMatch control input requires the celllibrary to be present 
at the lib bus. This library is retrieved from the design data store using the control input 
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getLib. How do we guarantee that the DDMS has finished processing getLib befare the 
DTMS starts execution of runOTCMatch?. A possible way to achieve this is to introduce 
an extra state "LIB". lf we move the generation of the getLib control input to this new 
state and if we make the transition to the "OTC" state dependent on the completion of 
getLib, then the Jibrary will always be available the moment the "OTC" state is reached. 
A disadvantage of this approach is that we have to introduce extra states, whose only 
purpose it is to synchronise the operation of the DDMS and the DTMS. 

An alternative way to achieve our goal is to make the execution of the control inputs 
data driven, i.e., the DDMS and DTMS only start the evaluation of a control input at 
the moment the busses contain the data it requires. For instance, runOTCMatch will 
be activated the moment both the optimised design and the cell Iibrary become available 
at the des and lib bus, respectively. When the OTDM flow reaches the "OTC" state the 
optimised design is already present at des. The celllibrary becomes available at the lib bus 
the moment getLib is completed. This event will trigger the execution of runOTCMatch. 

The next state function {j determines what, given the current flow state and the state of 
the busses, the next state of the flow will be. Although execution of the next state function 
wiJl not result in data being written to the busses, it can result in data being consumed, 
i.e., read and subsequently deleted from a bus. So besides the next state, the next state 
function will also produce a new bus state. This is represented by stating that 

óESxB-+SxB. 

As an example consider the next state function of the OTDM flow, which is given by 

ó( state, { dtms.stat}) 

{ 

< OTC, { dtms.stat-} > 
<< RTC, delay >, { dtms.stat-} > 
< Exit, { dtms.stat-} > 

if state = Opt and dtms.stat? = "ok" 
if state OTC and dtms.stat? = delay 
if state =< RTC, delay > 
and dtms.stat? "ok" 

(6.18) 

This function represents that, after the OTDM flow bassend a control input to the design 
tooi management system, it will stay in the same state until the DTMS bas finished 
processing it. The OTDM flow monitors the operation of the DTMS using the dtms.stat 
bus, via which it either receives the message "ok" or the value for the delay parameter, 
each of which indicates successful termination of the DTMS. After such a DTMS status 
signa! has been read, it will be removed from the bus. We do this to avoid problems, like 
ruistaking the value "ok" produced by the previous tooi run as the value to be assigned 
to the delay parameter. Deletion of the status values after these are read, is indicated by 
the second result produced by the next state function, which is the new bus state subset 
{ dtms.stat-}. 

In contrast to the control inputs, whose execution is data driven, we will assume the 
invocation of the output and next state functions of the flow to be event driven, i.e., they 
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are executed if one of their arguments changes value. Sirree the OTDM output function 
only depends on the state of the flow, it will be executed once aftereach state transition. 
The OTDM next state function is evaluated aftereach change of either the state state or 
the bus dtms.stat. 

6.2 The design flow execution engine 

The active flows executed concurrently by the flow execution engine not only control the 
operation of the DDMS and DTMS; they also supervise the activation of other flows. In 
the first step of flow activation, one of the active flows will send a flow query to the control 
interpreter of the design flow store. If the query is successful, the control interpreter will 
send the resulting design flow description to the design flow input of the FEE. In response 
to this, the flow execution engine will determine a suitable flow identifier, and will use it 
in combination with the design flow description to activate the flow. 

If active flows can only be created by other flows, then how was the first flow activated? 
The answer is that we introduce a special flow, referred to as the start-up flow, which 
is automatically activated every time the design management system is started up. An 
example of a useful start-up flow is a login flow. This flow will query the DMS users for 
their login name and their password. It will manage information about the rights of the 
DMS users and wil! use this to restriet their access to data, tools and flows. 

Flows are not only useful for automating parts of the design process, they can also be 
used to enforce design policies. For example, by allowing a designer to select the OTDM 
flow but not the individual tools optimise and match, we enforce the OMA timing driven 
matching policy. 

When a flow is activated, the flow execution engine wil! create the busses described by the 
corresponding design flow definition. However, if a design flow definition is executed for 
the second time and the first one is still active, then all these busses will already exist. 
A possible way to handle such a situation is to have flows share these multiple defined 
busses. Sometimes bus sharing is useful, because it provides an easy means for inter 
flow communication. However, if bus sharing is not required, it will only cause problems, 
because it mixes up data belonging to different flows. An alternative solution is to associate 
a new property with each of the busses of a design flow definition, of which the value is 
either "private" or "public". A public bus wil! not be created if it already exists at the 
moment of flow activation. For a private bus with identifier busld, flow activation will 
always result in the creation of a new bus named flowld.busld, where flowld the identifier 
of the resulting active flow. 
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6.3 Summary 

In this chapter a design flow management system model was presented. The DFMS was 
modelled as consisting of three interacting components: a design flow store, a control 
interpreter and a flow execution engine. Since the design flow store and the corresponding 
control interpreter only differ from those presented in the two previous chapters by what 
they manage, i.e., flows instead of data or tools, these components were not discussed in 
this chapter. The flow execution engine executes flow representations retrieved from the 
design flow store. These flow representations are expressed in the flow description language 
supported by the flow execution engine. We have introduced the term active flows to refer 
to the flow descriptions currently executed by the FEE. These active flows control the 
operation of both the design data and the design tooi management systems. Furthermore, 
the active flows also take care of the interaction with the design management system's 
environment. They even control the activation of other flows, by issuing flow queries to 
the design flow store. The operation of a FEE running a flow description was modelled by a 
state machine. This state machine was defined in terms of how it controls its environment 
by sending control messages via its busses. Which control messages are issued by the state 
machine is determined by bath its state and the status messages available at its busses. We 
have illustrated the FEE model by descrihing a state machine modeHing a FEE running a 
flow automating the OMA timing driven matching process. 
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A design management system 
description language 

The development time of a CAD framework is mainly used up by the creation of its design 
management system component. The design management systems of most of the existing 
CAD frameworks were programmed using a general purpose language. The development 
time of such a system can be greatly reduced if it is implemented using a dedicated design 
management system description language. \lVhen such a language is employed, a design 
management system can be described at a higher level of abstraction. As a result, it not 
only becomes easier to create design management system descriptions but also to maintain 
and extend these. 

As far as we know, there are currently no suitable design management system descrip
tion languages available. Therefore, in this chapter we show how such a DMS description 
language can be constructed. Using the design management system model presented in 
the previous four chapters as a guideline, we formulate the requirements this language has 
to satisfy in Section 7.1. The definition of a DMS description language is not a trivial 
task. Luckily there exists a class of languages based on hierarchical coloured Petri nets 
[Jen92] [vH94], which already have most of the required characteristics. Design manage
ment systems feature extensive interaction with their users and with the operating system. 
Hierarchical coloured Petri nets lack support for descrihing these interactions. Therefore, 
we have extended the Petri net concept with special interaction constructs, resulting in 
interactive hierarchical coloured Petri nets. These interactive Petri nets satisfy all our 
formulated requirements and are introduced in Section 7.2. InSection 7.3 the feasibility of 
our approach is demonstrated by showing how interactive Petri nets can be used to create 
executable design management system representations. 

111 
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7.1 Language requirements 

Since it is our intention to use the DMS description language to implement design manage
ment systems, the first requirement we formulate is: The DMS description language should 
enable us to create executable representations. In this case, the DMS representations can 
not only be used to document but also to automate the described design management 
activities. 

Design management systems are typically multi-user systems and will often have to serve a 
number of users simultaneously. Therefore, the second requirement is: The language should 
feature a farm of concurrency suitable for the representation of multi-user systems. 

A design management system features extensive interaction with its users and with the 
operating system. Therefore, the third requirement is: The language should have constructs 
for representing user and operating system interactions. 

Our fourth requirement is: The DMS description language should provide support for de
composition. Why do we require support for decomposition? Although design management 
systems can on an abstract level be described in terms of three distin ct interacting compo
nents, i.e., the DDMS, the DTMS and the DFMS, in practice they are never implemented 
this way. Instead, just like digital system designers, DMS developers will implement the 
DMS by decomposing it into a hierarchy of smaller systems, each of which are described in 
terms of a simpler DDMS, DTMS and DFMS. The reason for this is twofold. Firstly, for 
real life design management systems the three DMS components will become too complex 
to be handled as a single unit by the DMS developers. Secondly, most DMS developers 
will have a distributed view of a DMS, i.e., they usually consider it as collection of much 
smaller systems, which group related DMS elements. As an example, consider the im
plementation of the workspace concept. Although it is possible to do this using a single 
design data management system, this will in general be a complicated task. It is easier to 
use an alternative approach, in which the workspaces are viewed as communicating DMS 
subsystems. As an example consider the DMS of Figure 7.1, which is decomposed in such 
a way that it reflects the workspace hierarchy of Figure 2.4. For each of the workspaces 
it features a DMS subsystem, which groups all the data managed by the corresponding 
workspace. lts busses allow these systems to communicate in the way dictated by the 
workspace hierarchy. 

There exists a class of languages, referred to as hierarchical languages, which provide ex
tensive support for decomposition by featuring special constructs which allow designers 
to describe hierarchical designs. Hierarchical languages usually feature a module instan
tiation mechanism to introduce hierarchy. Modules are design parts with a well-defined 
interface. Modules are either primitive or composite. Primitive modules, e.g., the "Pro
jectWS", "GroupWS" and "PrivateWS" modules of Figure 7.1, form the leaves of the 
design hierarchy and are complete descriptions of a certain part of the design. Oom
posite modules, on the other hand, are defined using instantiations of other modules as 
building blocks. As an example consider the "DMS" module of Figure 7.1. It consists 



7.1 Language requirements 113 

DMS ProjectWS 

!!PProjectWS : 
ProjectWS 

deslWS: des2WS: des3WS: des4WS: 
PrivateWS PrivateWS PrivateWS PrivateWS 

Figure 7.1: A decomposed design management system. 

of seven communicating workspace subsystems: a project workspace "JLPProjectWS", two 
group workspaces "datapath WS" and "miccon WS" and four private workspaces "desl WS", 
"des2WS", "des3WS" and "des4WS". The "DMS" module does not contain the actual de
scriptions of these workspaces. Instead it defines these by referring to the module of which 
these are an instantiation. For example, "datapath WS" and "miecon WS" are defined by 
stating that these are instantiations of the "GroupWS" module, which is a description 
of a group workspace. Hierarchical languages usually have a substitution semantics, i.e., 
each hierarchical design can be converted into an equivalent non-hierarchical design just 
by replacing the instantiations with copies of the corresponding module. This process of 
hierarchy elimination is usually referred as fiattening. 

In addition to their support for decomposition, hierarchical languages have a number of 
other advantages. Among others, hierarchicallanguages greatly promote design reusability. 
If a designer creates a useful module, then it can be reused in a number of ether designs 
just by instantiatingit. For example, it is very easy to construct a DMS for an arbitrary 
workspace hierarchy using the "ProjectWS", "GroupWS" and "PrivateWS" modules of 
Figure 7.1. To reuse a module, a designer does not need to have detailed knowledge about 
how the module is implemented. lt suffices to know how to interact with the module 
interface in order to obtain the required functionality. So the module interface can be 
used to abstract from information about the internal structure of the module. In addition 
to abstraction, the module interface will also encapsulate the module contents, i.e., the 
module can only be connected with the rest of the design via the interface. This prevents 
illegal new connections from being made. 
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Our last requirement is: The langttage should enable us to create design management sys
tem representations according to the DMS model presented in the previous chapters. This 
is a rather complex requirement. However, if the design management system is structured 
as depicted in Figure 3.4, then this requirement can be replaced by a much simpler one. 
In Figure 3.4 the DMS is described in termsof a design management strategy independent 
core. This core is programmed by the DMS developers to perform its design management 
system services by downtoading DMS representations. If the DMS is structured like this, 
then a DMS description language wiU satisfy the last requirement if these DMS represen
tations can be expressed in it. In this case the DMS core can be implemented using a 
Petri net simulator executing these representations. So if the DMS is structured as shown 
in Figure 3.4, then the last requirement is reduced to: The language should enable us to 
express the design management system representations used to program the DMS care. 

In the next section, which introduces interactive hierarchical coloured Petri nets, we demon
strate that languages based on this type of Petri net satisfy the first four requirements. 
In the last section of this chapter, we demonstrate that interactive hierarchical coloured 
Petri net based languages also satisfy our last requirement. We achieve this by showing 
how such a language can be used for design management system representation. 

7.2 Interactive hierarchical coloured Petri nets 

In this section we give a stepwise introduetion into hierarchical coloured Petrinets [Jen92]. 
We first describe the simplest form of Petri net referred to as a place/transition net. 
Subsequently we show how the expressiveness of place/transition netscan be increased by 
the introduetion of Petri net inscriptions. We follow this by a demonstration of how the 
abstraction level of Petri nets can be raised by the introduetion of colours. Finally we show 
how the Petri net size can be reduced by the introduetion of hierarchy. 

Hierarchical coloured Petri nets lack support for descrihing user and operating system 
interactions and do therefore not satisfy the third requirement. This problem is solved by 
the introduetion of interactive Petri nets, which feature special constructs to describe these 
interactions. In the last part of this section we will define this extension of the hierarchical 
coloured Petri net concept. 

7.2.1 Place/transition nets 

Petri nets have a graphical representation and have, in contrast to many other graphical 
description languages, a well-defined operational semantica. As aresult of their operational 
semantics all Petri nets are executable, so Petri net based languages automatically satisfy 
our first requirement. 

The simplest type of Petri net is a Place/Transition Net (PTN). Like its name suggests, 
the main components of such a net are places and transitions. These components are 
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connected using arcs. As an example consider the Petri net depicted in Figure 7.2, which 
can he used to determine the minimum "c" of two numbers "a" and "b". 

b b 

a) Initial marking b) Second marking c) Final marking 

Figure 7.2: A Petri net which determines the minimum of two numbers. 

Places are stores which contain the data being processed by the Petri net. Places, Iike "a", 
"b" and "c" in Figure 7.2, are usually depicted using a circle. Transitions determine what, 
given the current state of the places, the next state will be. Transitions, e.g., "Min" of 
Figure 7.2, are usually depicted using a rectangle. Transitions and places are connected 
by arcs. A transition will only influence the contents of those places it is connected to by 
arcs. If an are points from a place to a transition, then the place is said to be an input of 
the transition. So "a" and "b" are the input places of transition "Min". Likewise, an are 
pointing from a transition to a place, indicates that the place is an output of the transition. 
As an example consider the output place "c" of transition "Min". 

The data being processed by a Petri net are organised in the form of tokens. The presence 
of a token in a place is indicated by putting a black dot in the corresponding circle. For 
placeftransition nets data are represented by the number of tokens in a place. For example, 
the presence of two and three tokens in the places "a" and "b" of Figure 7.2.a, rf'-Spectively, 
represents that 2 and 3 are the numbers of which the minimum is to be determined. An 
arbitrary distribution of tokens on the places is called a marking. 

The marking of a Petri net is changed by the execution of transitions. Transitions can only 
occur when they are enabled. A transition is said to be enabled when every of its input 
places contains at least one token. Execution of a transition will consume one token from 
each of its input places and will add one token to each of its output places. 

As an example of how a Petri net executes again consider the minimum calculator depicted 
in Figure 7.2. Figure 7.2.a shows the initia! distribution of tokens on the places. This is 
called the initial marking. This initia! marking represents that we want to determine the 
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minimum of 2 and 3. Sinee both its input places "a" and "b" eontain at least one token, 
the transition "Min" is enabled. Execution of "Min" willlead to the new marking depicted 
in Figure 7.2.b. For this new marking, "Min" is still enabled. A seeond exeeution of 
"Min" wil! lead to the final marking, in which no transitions are enabled anymore. In the 
final marking the place "c" contains two tokens, whieh represents that the result of the 
minimum caleulation is 2. 

During the execution of a Petri net it will often occur that a number of transitions are 
enabled simultaneously. From these enabled transitions an arbitrary number are seleeted 
and are then exeeuted eoneurrently. The faet whether this form of concurrency is suitable 
for the representation of multi-user systems, so whether it satisfies the second requirement, 
strongly depends on how user interaction is added to the Petri net concept. Therefore, it 
will not be discussed here but in the section about interactive Petri nets. 

7.2.2 Net inscriptions 

Although it is possible to implement a wide variety of functions using the place/transition 
Petri nets described above, the representations of these functions wil! in general be very 
large and difficult to construct. For example, it is easy to implement a simple function like 
a minimum calculator, but what about the much more complex multiplication? However, 
PTNs can be made more expressive by the introduetion of net inseriptions. We wil! now 
describe four types of net inscriptions: are expressions, transition guards, place initialisers 
and transition expressions. 

One of the reasons for Jack of expressiveness of PTNs is that transitions are only able to 
performa very simple transformation, i.e., remove one token from each of its input places 
and add one token to each of the output places. A possible remedy is to label the ares of 
a Petri net with are expressions. For an input are, i.e., an are eonneeting an input place 
to a transition, the corresponding are expression will evaluate to the number of tokens the 
transition will eonsume from the input place when it is exeeuted. Likewise, output are 
expressions, i.e., expresslons labelling an are eonneeting a transition to one of its output 
plaees, evaluate to the number of tokens to be added to the corresponding output plaee 
if the transition oeeurs. Additional fiexibility is added by allowing are expresslons whieh 
depend on the number of tokens in the input places. A transition with labelled ares is 
enabled if its input plaees eaeh eontain at least the number of tokens specified by the 
eorresponding are expression. As an example eonsider the Petri net depicted in Figure 7.3, 
whieh implements a natura) number multiplier. It operates by "b" times adding "a" to 
"e". Each execution of the addition transition ''Plus" will remove one token from input 
plaee "b" and no tokens from input plaee "a". Therefore, this transition will be enabled as 
long as "b" eontains tokens. The output are expression "a" represents that eaeh execution 
of "Plus" will add a number of tokens to "c" equal to the number of tokens currently in 
"a". To illustrate how the multiplier Petri operates eonsider the three markings depieted 
in Figure 7.3 corresponding to the multiplication of the naturals 3 and 2. 
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b b 

a>O a>O 

a) Initial marking b) Second marking c) Final marking 

Figure 7.3: A multiplication Petri net. 

Although are expressions enable us to vary the number of tokens consumedfproduced by 
a transition, the transition enabling rule has not changed; a transition is enabled when the 
required number of tokens are available at its input places. Sometimes this simple rule 
is inconvenient. For example, consider a multiplication using the Petri net of Figure 7.3, 
where "a'' and "b" contain 0 and 1000 tokens, respectively. Since "Plus" is enabled as long 
as "b" contains tokens, "Plus" will transition a 1000 times only to find out that the result 
is still zero. This in contrast to the situation in which "b" is 0. A possible way to solve this 
is to extend the network in such a way that "b" will always contain the minimum of the 
numbers to be multiplied. This new network, however, will he much more complex than 
the original one. Another possibility is to extend the enabling rule by the introduetion of 
Boolean functions referred to as transition guards. When a transition is labelled with such 
a guard, then this transition will be disabled as long as this guard evaluates to "false". 
When the guard evaluates to "true", then the old enabling rule will hold. As an example 
again consider Figure 7.3, where the transition "Plus" has been labelled with the guard 
"a > 0". This guard will disable this transition when "a" equals 0, thereby creating the 
desired effect. 

As stated before, the execution of a Petri net starts from an initia! marking. But how is this 
marking specified? One way to do this is by labelling the places of a Petri net with a place 
initializer. A place initializer is an expression which evaluates to the number of tokens 
the place will contain in the initia) marking. As an example again consider Figure 7.3. 
The places "a", "b" and "c" have been labelled with the expressions "3", "2" and "0", 
respectively, which equal the number of tokens present in the initia! marking depicted in 
Figure 7.3.a. Note that place initialisers are distinguished from the other place attributes 
by the fact that they are underlined. 

As illustrated by the output are expression "a" and the guard "a> 0" ofthe multiplication 
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Petri net of Figure 7.3, are expressions and guards can be defined in terms of the contents 
of the input places. In addition to this, these net inscriptions may depend on the contents 
of the output places. They refer to the number of tokens currently stored in an input 
or output place using its name. In addition to this, we will allow the results produced 
by an are expression to be referred to in the guard and the other are expressions of the 
corresponding transition. We enable guards and are expressions to access the results of 
these expressions by the introduetion of a variabie "I(p)" for each input are and a variabie 
"O(p)" for each output are. The variabie "l(p)" can be used to refer to the result of the 
expression labelling the are connected to input place p. Likewise, "O(p)" can be used to 
access the result of the expression associated with the are connected to output place p. 

As an example of how are expression variables are used consider the Petri net shown in 
Figure 7.4, which represents an order processing system used by a car manufacturer. The 
tokens stored in the "orders" input place model the number of currently available car 
orders. In a negotiation process of which the details are not modelled by our Petri net, the 
car manufacturer obtains a certain portion of these orders. This is represented by the are 
expression "RS(orders)", where the "RS" command is used to Randomly Select a number 
between zero and "orders". The result of the evaluation of this expression can be referred 
in other expressions using "!(orders)". As an example consider the expression associated 
with the are connected to the "capacity" input place. The "capacity" place models the 
available resources of the car manufacturer. If the capacity of the car manufacturer exceeds 
the number of orders obtained, so if "capacity;:::: I(orders)", then all orders will be processed 
and the available capacity will decreased with "I( orders)". In case the available resources 
are not sufficient, the complete capacity is used to process as much orders as possible. 
The result of the evaluation of the capacity are expression, referred to using "I(capacity)", 
represents the number of accepted orders, i.e., those obtained orders for which suflident 
capacity was available. In case the number of obtained orders exceeds the capacity, the 
remaining orders wil! be cancelled. This is represented by the output are labelled with 
"I( orders)- I(capacity)", via which the cancelled orders are returned to the "orders" place. 
The car manufacturer producesits cars using two factories "facl" and "fac2". Via a process 
of which the details are not modelled by our Petri, it is decided how many of accepted 
orders will be produced by factory "facl". This is modelled by an output are expression 
given by "RS(I(capacity))" for output place "facl". The remaining accepted orders, of 
which the number is given by "I( capacity) - O(facl )", are send to factory "fac2". 

The use of a separate expression for each are is inconvenient in situations where the are 
expressions have much in common. To illustrate this consider the "difference" transition 
depicted in Figure 7.5. This transition determines the difference between the number of 
tokens currently stored in its input places "inl" and "in2" by subtracting the number of 
tokens in "in2" from the number oftokens stared in "inl" and by subsequently taking the 
absolute value. If the result of this operation is smaller than 8, then it is presented to 
the.environment in binary form. This binary representation is stored in the output places 
"o2", "ol" and "oO", where "o2" contains the most significant and "oO" the least significant 
bit. The output are expressions of the "difference" transition are almast identical. They 
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I( orders)· 
I(capacity) 

facl 

capacity 

I(orders) ifcapacity;::: I( orders) 
capacity otherwise 

fac2 

Figure 7.4: The car order processing system Petri net. 
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all contain the difference calculation and the conversion of the resulting difference from 
decimal to binary format as performed by the "dec2bin" function. They only differ in 
which bit they select from the resulting binary number. Since are expressions are not able 
to share common subexpressions like "dec2bin(j inl in2 I)", these subexpresslons wil! 
have to be duplicated. As a consequence the are expressions can be much larger than 
necessary, resulting in transition descriptions which are more difficult to understand and 
time consuming to execute. We tackle this problem by the introduetion of a limited form 
of code sharing for are expressions based on transition expressions. 

inl 

inl 

difference 

in2 

in2 

I I(inl) l(in2) I< 8 

dec2bin(l l(inl) - l(in2) 1)0 

oO 

Figure 7.5: The "difference" transition. 

A transition expression is an expression representing those aspects of a transition which 
are not specific to a certain in- or output. The fact that a transition with guard g has a 
transition expression TE is indicated by labelling it with g : TE. In addition to transition 
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expressions, we also introduce a variabie "TE", which can be used in are expresslons to 
refer to the result of the transition expression. As an example of how the introduetion of 
transition expressions can result in a rednetion of the are expression size, we refer to the 
much simpler description of the "difference" transition shown in Figure 7.6. 

inl in2 

inl in2 

I I(inl)- l(in2) I< 8 : dec2bin(l I(inl)- l(in2) I) 

oO 

Figure 7.6: The simplified "difference" transition. 

7.2.3 Coloured Petri nets 

Although the introduetion of net inscriptions greatly reduces the size of a Petri net, they do 
notchange the fact that these Petrinets are descriptions at a very low level of abstraction. 
The abstraction level is camparabie to that of a bit level digital system description. The 
only difference is that these Petri nets use the token number rather than a bit vector to 
represent data. The representation of a natura! number multiplier is easily clone at this 
abstraction level, but what about a much more complex operation like the multiplication 
of two real numbers. Although it is possible to represent such complex operations using 
the Petri nets introduced before, designing it will be a complex task and will result in a 
large net. 

The abstraction level of Petri nets can be raised by the introduetion of colours, resulting 
in a new type of net referred to as a Coloured Petri Net (CPN). Colonred Petri nets equip 
each token with a data value, called the token colour. The data value may be of arbitrary 
type, e.g. a real, a string or a record. Colonred Petri nets feature typed places; each place 
has a net inscription associated with it referred to as its colour set, which represents a data 
type. A token can only be added to a place if its token colour belongs to the corresponding 
colour set. The fact that a place p has type T is indicated by labelling this place with 
p : T. So if the colour set of a place "a" is equal to the set of reals 1R, then this place will 
be labelled with "a:1R" . 
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One of the consequences of the introduetion of token colours is that the contents of a place 
can he described no longer by only giving the number of tokens it contains. Instead, we 
have to specify which colours occur and the number of tokens for each of these colours. As 
an example consider a place with a colour set equal to the set of characters Char. If the 
place contains six tokens with the colours "x"', "x", "y", "y", "y" and "z", respectively, 
then the contents of this place can be characterised by stating that it contains 2 tokens with 
colour "x", 3 tokens with colour "y" and 1 token with colour "z". [Jen92] introduces multi
sets to represent this kind of information. In contrast to sets, multi-sets are allowed to 
contain multiple occurrences of an element. Multi-sets can be represented by a set of pairs 
associating each of its elements with an occurrence count. The multi-set "ms" representing 
the contents of the place of our example is given by { < 2, x >, < 3, y >, < 1, z > }. In 
the rest of this chapter we will use the more succinct formal sum notation to represent 
multi-sets. This notation combines the multi-set pairs using the + symbol and omits the 
symbols combining the elements of a pair. Using this nota ti on the multi-set of our example 
is given by 2'x + 3'y + 1 'z. For reasoning a bout multi-sets it is often more convenient 
to represent a multi-set by a function which maps each of the multi-set elements to its 
number of occurrences. The multi-set of our example can be represented by a function 
ms : Char -+ 1N defined by 

{ 

2 if s =x 
3 if s y 

ms(s) = 1 'f 
I S Z 

0 otherwise 

In [Jen92] the following forma! multi-set definition is found. 

Definition 7.2.1 Multi-set 

A multi-set m, over a non-empty setS, is a function m: S-+ 1N. 
The non-negative integer m(s) E 1N is the number of appearances of the elementsin the 
multi-set m. For a multi-set function m the conesponding forma! sum is given by 

î:m(s)'s. 
sES 

Fora set S the set of all multi-sets overS is denoted by SMs· 

The empty multi-set t/J is a multi-set containing no elements. When defined over a set S, 
it is defined by 4>( s) 0 for all s E S. 

In [Jen92] a number of operations on multi-sets are defined. In this thesis we make use of 
the addition operator +, the subtraction operator- and the smaller than or equal relational 
operator The results of the application of these operators to two multi-sets m1 and m2 

are given by 

m1 + m2 Ï:(ml(s) + m2(s))'s, 
sES 

(7.1) 
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mz- m1 = L;(mz(s) m1(s))'s, and (7.2) 
sES 

(7.3) 

Note that the subtraction operation can only be performed when m1 ~ m2 . If m1 ~ m2 

holds, we say that m1 is a subset of m2 . In addition to the operators defined above we 
also introduce the element-of operator E. For a multi-set m over a set S, we define this 
operator as follows 

sE m =sE S 1\ m(s) > 0. (7.4) 

Just as fora PTN, the places of a CPN are initialised using a place initializer. However, 
for a CPN this function will not produce a number but a multi-set to represent the initial 
contents of the corresponding place. To illustrate this consider the real number multiplier 
of Figure 7.7. Evaluation of the initializer of plaee "a" will result in the multi-set 1'2 + 
1 '5, which denotes that after initialisation place "a" will contain two tokens with colour 2 
and 5, respectively. 

As we have seen before, a transition operates by removing tokens from its input plaees and 
adding tokens to its output places. For eoloured Petri nets it no longer suffices to spedfy 
the number of tokens involved. Instead, a multi-set is required to indicate which tokens 
are to be removed from or to be added to a place. Therefore, the are expresslons of a 
CPN will generate a multi-set rather than a natura! number. As an example consider the 
real number multiplier CPN of Figure 7. 7. The transition "Muit" takes an arbitrary token 
from eaeh of its input plaees "a" and "b", multiplies the corresponding token colours and 
when the result is smaller than 16, it subsequently adds a token labelled with this value to 
its output plaee "e". The input are expresslons select the values to be multiplied from the 
corresponding input place multi-set using the "RC" eommand. When applied to a multi
set, "RC" wiJl Randomly select one of the Colours oeeurring in this set. The result of the 
evaluation of the input are expresslons is a multi-set eontaining only one element, namely 
the seleeted value. The guard and the output are expression use the "RC" command to 
select the values to be multiplied from these sets. When applied to a multi-set consisting 
of a single element, "RC" will return the element involved. The result of the evaluation of 
the output are expression is a multi-set eontaining the result of the multiplication as its 
only element. 

For the examples presented in the rest of this chapter, most are expresslons wil! generate 
a multi-set containing exactly one token. To simplify our notation we wil! replace sueh an 
expression by a simpler are expression, whieh generates the token value rather than the 
multi-set eontaining it. As an example eonsider the input are expressions of the "Muit" 
transition ofFigure 7.7, whieh ean now be redueed to "RC(a)" and "RC(b)". An additional 
advantage is that other are expresslons referring to the result of sueh an expression ean 
also be redueed, because they do not have to select the token anymore. As a result 
of these simplifications the output are expression of the "Muit" transition is redueed to 
"I(a)*I(b)", resulting in the mueh better readable CPN description of the real number 
multiplier depieted in Figure 7.8. 
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1'2+ 1'5 b:1R 

RC(I(a))*RC(I(b)) < 16 

Figure 7.7: A real number multiplier CPN. 

1'2+1'5 b:1R 

I(a)*I(b) < 16 

Figure 7.8: A simplified real number multiplier CPN. 

7.2.3.1 Execution of coloured Petri nets 

All the types of Petri nets we have introduced are executable, so languages based on these 
Petri nets automatically satisfy our first requirement. Descriptions created using such a 
language are execuh)d using a Petri net simulator. The Petri net semantics leaves us a 
lot of freedom in choosing the execution method to be used by the simulator: A variety 
of methods can be devised differing in how efficiently they execute the Petri net. In this 
section we will describe an execution method developed for reasons of clarity rather than 
efficiency. In the rest of this chapter we will refer to this method as the simple execution 
method. 

In the first phase of the execution process, coloured Petri net simulators determine the 
initial marking. To obtain this marking the simple execution method perfarms the following 
steps: 
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1. Evaluate the place initialisers. 

2. Add the tokens specified by the resulting multi-sets to the corresponding places. 

Starting from a given marking, the simple method determines the next marking as follows: 

1. Randomly select the transitions to be evaluated. 

2. Evaluate the selected transitions. 

3. Make a random selection from the set of evaluated transitions, such that the selected 
transitions are concurrently enabled. 

4. Execute the transitions selected in the previous step concurrently. 

To illustrate the simplePetri net execution method, we again use the real number multiplier 
CPN of Figure 7.7. Evaluation of its place initialisers results in the multi-sets 1'2 + 1'5 
and 1 '3 + 1 '4 for the places "a" and "b", respectively. As a result of this "a" is initialised 
by the addition of two tokens coloured 2 and 5. Likewise, two tokens with values equal to 
3 and 4 are added to "b". 

From a given marking, the next markingis obtained by performing the four steps described 
above. In the first step the transitions to be evaluated are randomly selected. Since "Muit" 
is the only transition of our Petri net, it is the only candidate for being evaluated and 
subsequently executed. Therefore, the choice seemsnot to be difficult. However, Petri net 
transitions can be executed concurrently with themselves. For example, starting from the 
initia! marking described above, the next marking can be obtained by executing "Muit" two 
times, once for "I(a)" and "I(b)" equal to 1'2 and 1'4 and once for the combination 1'5 and 
1 '3. As a result of this concurrent execution of "Muit" with itself a new markingis obtained 
featuring empty "a" and "b" input places and a "c" output place containing the resulting 
values 8 and 15. Concurrent execution of a transition with itself using different input 
are expression values is only possible if the transition has been evaluated multiple times. 
For our example, this means that "Muit" its are expressions and guard must have been 
evaluated at least two times. So when selecting the Petri net transitions to be evaluated, 
we not only have to specify which transitions are involved but also how many times their 
evaluation has to be done. This information can be represented by a multi-set over the set 
of transitions. So if "Muit" is selected to be evaluated four times, then the result of step 
1 will be given by the multi-set 4'Mult. 

During the evaluation of a transition the values associated with its are expressions, its 
guard and transition expression are determined. In case of the simple execution method, 
net inscriptions are evaluated sequentially. We will represent the result of a transition 
evaluation in the form of a transition binding. A binding binds net inscriptions to the 
result of their evaluation. Bindings can represented by a set of < variable, value > pairs, 
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where variabie the variabie used to refer toa net inscription and value the associated result 
of its evaluation. As an example consider the following binding of the "Muit" transition. 

{ <l(a),1'2>,<1(b),1'3>,<G,true>,<Ü(c),l '6> }. (7.5) 

Besides the input are expression variables "I( a)" and "I(b)", which are bound to the 1 '2 
and 1'3 multi-sets and the output are expression variabie "O(c)" which is bound to 1'6, 
this binding also associates the value "true" with variabie "G", which is used to refer to 
the value of the guard. 

During the transition evaluation step all the selected transitions are evaluated as specified 
by the multi-set produced by step 1. The result of the evaluation step can be represented 
by a multi-set, referred to as the evaluation multi-set, which contains all the evaluations 
performed. We represent an evaluation by a pair< trans, bind >, where trans a transition 
and bind its binding. To illustrate this again consider the multiplier of Figure 7.7. Since 
the result of step 1 was given by the multi-set 4'Mult, "Muit" wil! have to be evaluated four 
times during the evaluation step. The result of these four evaluations can be represented 
by an evaluation set like 

1' < Mult,B1 > +1' < Mult,B2 > +1' < Mult,B3 > +1' < Mult,B4 >, 

where the bindings B1, B 2 , B 3 and B4 are given by 

B1 = { <l(a),1'2>,<1(b),1'3>,<G,true>,<Ü(c),l'6> }, 
B 2 = { <l(a),1'2>,<1(b),1'4>,<G,true>,<Ü(c),l'8> }, 
B 3 = { <l(a),1'5>,<1(b),1'3>,<G,true>,<Ü(c),l'l5> }, and 
B 4 = { <l(a),1'5>,<1(b),1'4>,<G,false>,<Ü(c),l'20> }. 

(7.6) 

During the third step a selection is made from the evaluation set, such that the selected 
transitions are concurrently enabled with respect to the associated bindings. The result 
of this step can be represented by a subset of the evaluation set. We wil! refer to this set 
as the step set, because it describes the step taken by the simulator to obtain the next 
marking from the given marking. 

In order for a transition to be concurrently enabled with other transitions it first has to 
be enabled itself. A transition is said to be enabled with respect to a binding if and only 
if the guard specified by this binding equals "true" and the input places of the transition 
contain the tokens specified by the input are expression variables. So the transition "Muit" 
of our example is not enabled with respect to the binding B 4 , because the guard variabie 
G equals "false". The guards associated with the other bindings B1, B 2 and B 3 are "true". 
Moreover, for the initia! marking of our multiplier Petri net the input places of "Muit" 
contain the tokens specified by these bindings. For example, binding BI specifies that 
input place "a" has to contain a token with colour 2 and that place "b" has to contain 
a token with value 3, which happen to be available at these places. Therefore, "Muit" is 
enabled with respect to the bindings Bil B 2 and B 3 • A transition which is enabled for 
a certain binding can be executed, thereby consuming and producing tokens according to 
the are expression values specified by the binding. 
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The transitions associated with the step set have to be concurrently enabled, i.e., their 
input places have to contain suflicient tokens to concurrently execute these transitions for 
each of the corresponding bindings. To illustrate this consider the step set given by 

{ < Mult, B2 >, < Mult, B3 > }, (7.7) 

where B2 and B3 are the bindings as defined by Equation 7.6. In our initial marking "Mult" 
is enabled for both binding B2 and binding B3 • Transition "Mult" is also concurrently 
enabled with respect tothese bindings, because the input tokens required for the concurrent 
execution of "Mult" for each of these, i.e., 2 and 5 from "a" and 3 and 4 from "b", are 
available at these input places. As an example of a subset of the evaluation set which is 
not a valid step consider the set 

{ < Mult, B1 >, < Mult, B2 > }, (7.8) 

where the bindings B 1 and B 2 again as specified by Equation 7.6. Although the "Mult" 
transition is enabled with respect to both B1 and B2 individually, it is not concurrently 
enabled with respect to these bindings, because input place "a" does not contain the 
required two tokens with value 2. 

During the execution step the next marking is obtained by concurrent execution of the 
transitions specified by the step set produced during step 3. In case of our example, 
concurrent execution of the "Mult" transition for the bindings specified by the step set of 
Equation 7. 7 will result in the remaval of all the tokens from the input places "a" and "b" 
and the addition of two tokens with values 8 and 15 to output place "c". 

7.2.3.2 Colonred Petri net behaviour 

Coloured Petri nets behave in a non-deterministic way, i.e., starting from a given marking 
a number of next markings are possible. To illustrate this again consider our multiplier 
Petri net. In the previous section we have shown that the next marking can be obtained by 
executing the "Mult" transition twice, namely once for binding B2 and once for binding B3 • 

However, in addition to this, there are three alternative next markings, which are the result 
of a single execution of the "Mult" transition using a binding given by either B1 , B2 or B3 • 

For coloured Petri nets there is nothing specified about which of these markings should be 
chosen. The actual choice is determined by the details of the execution method used by 
the simulator. As aresult of this, there is wide range of possible execution methods, which 
differ in the choices they make in the case of non-determinism. 

As we wiJl demonstrate later on in this chapter, the Petri net execution method described 
in the previous section is not very suitable for the simulation of interactive Petri nets. We 
are going to solve this problem by defining a new execution method. For defining such a 
new method it is essential to have a good understanding of the Petri net semantics. In 
the rest of this section we give a formal definition of coloured Petri net behaviour. This 
treatment was inspired by the formalisation found in [Jen92]. 

Before we can start our discussion about coloured Petri net behaviour, we first have to 
know what a coloured Petri net is. We define coloured Petri nets as follows. 
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Definition 7.2.2 Coioured Petri net 

A coioured Petri net is a 7 -tuple < L:;, P, T, A, Coiour, Init, TNI > 

where 

• L: a finite set of non-empty types, called coiour sets, 

• P a finite set of places, 

• T a finite set of transitions, 

• A a finite set of arcs, 

• Coiour the colour function, 

• Init the initialisation function, and 

• TNI the transition net inscription function. 
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Arcs conneet places and transitions. An input are, i.e., an are leading from an input place 
p to a transition t, can be represented by a pair < p, t >. Likewise, an output are can be 
represented by a pair< t,p >, denoting that it connects a transition t to an output place 
p. As a result of this the following will hold for the are set A. 

Ac P x TuT x P. (7.9) 

The coiour lunetion Coiour is a function defined from P into L:;. It maps each place p onto 
a colour set Coiour(p). Each token stored in place p will have a token colour belonging to 
type Coiour(p). 

The initiaiisation lunetion Init maps each place p onto a multi-set over Coiour(p). This 
multi-set describes which tokens will be added to p during the initialisation step. 

The transition net inscription lunetion TNI is a function which, when applied to a tran
sition t and a transition variabie v, returns a net inscription lunetion ni. A transition 
variabie is a variabie used to refer to one of the net inscriptions of a transition. A tran
sition variabie v of a transition t is a memher of the transition variabie set Var(t), which 
contains all the variables introduced to refer to the results produced by the input and out
put are expressions, the transition expression and the guard. Therefore, this set is defined 
by 

Var(t) = {I(p)l < p, t > E A} U {O(p)l < t,p > E A} U {TE, G}. (7.10) 

A net inscription function ni is a function which, based on the cunent contents of the 
input and output places of the conesponding transition and the results associated with 
some of the net inscriptions, produces a value descrihing the results of the evaluation of 
the net inscription it represents. The variables on whose value the result produced by a 
net inscription function ni of a transition t depends are listed in the conesponding net 
inscription variabie set Var(ni, t). For this set the following holds 
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Var(ni, t) c Var(t) U {PI< p, t > E A V< t,p > E A}. (7.11) 

Having defined what a colonred Petri net is, we can now start onr forrnalisation of colonred 
Petri net behavionr. Petri nets behave by adding and rernoving tokens to and frorn their 
places, i.e., by changing their rnarking. Colonred Petri net rnarkings are defined as follows. 

Definition 7.2.3 Marking 

A rnarking is a fnnction M defined on the set of places P such that 

'lp EP: M(p) E Colour(p)MS· 

Fora place p M(p) returns a multi-set on Colour(p) representing the current contents of 
this place. 

The initial marking M0 is the rnarking which is obtained by evalnating the initialisation 
expressions. Therefore, it is defined by 

'lp EP: Mo(P) = lnit (p) . (7.12) 

Frorn a given rnarking the next marking is obtained by execution of a nurnber of transi
tions. Which transitions can be executed and how this affects the corresponding places 
is deterrnined by the associated net inscriptions. The valnes associated with these net 
inscriptions can be calculated by application of the corresponding net inscription fnnction 
nsing the valnes currently associated with the corresponding net inscription variables. We 
represent the information abont the valnes associated with these variables in the forrn of 
a net inscription binding. After evalnation of the net inscriptions of a transition, all the 
corresponding transition variables will be bonnd to the resulting values. We represent this 
information in the form of a tmnsition binding. These two types of bindings are formalised 
as follows. 

Definition 7.2.4 Bindings 

A tmnsition binding of a transition t is a function bon Var(t) such that b(v) returns the 
value associated with transition variabie v. This value is given by 

b(v) = TNI(t, v)(nib ), 

where nib the net inscription binding associated with net inscription function TNI(t, v). 

A net inscription binding nib of a net inscription ni of a transition t is a function on 
Var(ni, t) snch that nib ( v) returns the value associated with net inscription variabie v. In 
case of a current marking M and a binding b for transition t this value is given by 

{ 
M(v) if v EP 

nib ( v) b( v) otherwise · 

We will re present bindings by a set of < variable, value > pairs. As an exarnple consider 
the transition binding of the "Muit" transition described by Equation 7.5. From now on 
we will use B to refer to the set of all possible transition bindings. 
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The current marking of a coloured Petri net is transformed into the next marking by 
the execution of what we refer to as a step. A step describes how this transformation is 
accomplished by stating which transitions have to be executed and for which bindings this 
has to be done. A step can be defined as follo>vs. 

Definition 7.2.5 Step 

A step Y is a non-empty multi-set over T x B. The fact that 

Y(< t,b >) n 

denotes that transition t has to executed n times using binding b. 

Not all steps can be executed. For some steps this is caused by the fact that the places 
do not contain enough tokens to concurrently execute the specified transitions for the 
associated bindings. A step can also not be executed if one of its bindings has a guard 
equal to false, which means that the corresponding transition can not be executed for this 
binding. A step which can be executed is referred to as an enabled step. We now formalise 
this using the following definition. 

Definition 7.2.6 Enabled step 

A step Y is enabled in a marking M if and only if the following property is satisfied. 

V< t,b > E Y: b(G) =truc /1. Vp EP: L b(I(p)) ~ M(p) . 
<t,b>EY 

As an example of an enabled step consider the step set of Equation 7.7. 

When a step is enabled it can occur. For a given marking there can be number of enabled 
steps, each of which produces another next marking. For a Petri net there is nothing 
specified about which of these steps will occur, i.e., the behaviour of a Petri net is non
deterministic. Which of the enabled steps is actually selected to be executed is determined 
by the details of the execution metbod used by the Petri net simulator. When a step occurs 
it will change the current marking as follows. 

Definition 7 .2. 7 Occurring step 

Wh en a step Y is enabled in a marking MI, it may occur changing the marking MI to 
another marking M2 , defined by 

Vp E P: M2(p) (M1 (p)- L b(l(p))) + L b(O(p)). 
<t,b>EY <t,b>EY 

As an example of how the occurrence of a step changes the current marking again consider 
the step specified by the step set of Equation 7. 7. Execution of this step for the initia! 
marking of the multiplier Petri net depicted in Figure 7. 7 will result in the removal of all 
the tokens from the input places "a" and "b" and the addition of two tokens with values 
8 and 15 to output place "c". 
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7 .2.4 Hierarchical Petri nets 

Hierarchical languages provide extensive support for decomposition and therefore satisfy 
our fourth requirement. There are a number of ways in which hierarchy can be introduced 
for coloured Petri nets [Jen92]. For now we restriet ourselves to the form of hierarchy 
obtained by the introduetion of composite transitions. Unlike normal transitions, the be
haviour of composite transitionsis not described by are expressions, but by a CPN network. 
As an example, consider the hierarchical CPN depicted in Figure 7.9 representing a 2-bit 
adder. This CPN consists of two modules; the full adder module "FullAdd" and the 2-bit 
adder module "Adder2". The module "Adder2" forms the top of the hierarchy. It contains 
two composite transitions: ''fa...l" and "fa...2". Note that these composite transitions are 
indicated using a rectangle with a fat borderline. The transitions "fa...l" and "fa...2" are 
instantiations of the full adder module. Th is information is added to the coloured Petri net 
by typing the composite transition, i.e., the fact that a composite transition ht is an instan
tiation of module Mis indicated by labelling it with ht : M. In our example this results 
in "fa_l" and "fa_2" being labelled with "fa...l:FullAdd" and "fa...2:FullAdd", respectively. 

aO:Bit bO:Bit ci:Bit 

sO:Bit sl:Bit 

Adder2 FullAdd 

co:Bit 

a:Bit b:Bit ci:Bit 

• 

I(a)e 
I(b)e 
I( ei) 

s:Bit 

• 

l(a)l(b) + 
l(a)I(ci) + 
I(b)I(ci) 

co:Bit 

Figure 7.9: The "Adder2" hierarchical CPN. 

What is the relation between the operation of a composite transition and the CPN of the 
conesponding module? The answer is that the behaviour of a CPN containing a certain 
composite transition is identical to that of a larger CPN, which is obtained by substitution 
of the composite transition and its arcs by a copy of the network of the corresponding 
module. The are labels of a composite transition indicate how this substitution has to 



7.2 Interactive hierarchical colonred Petrinets 131 

be done. If an are is connected to a place P and labelled with :MP, then this informs 
us that place P has to be merged with place MP of the corresponding module. We will 
name the resulting place P. As an example consider the composite place ''fa._l". The 
are labels inform us that the places "aO", "bO", "ei", "sO" and "cl" have to be merged 
with the pi aces "a", "b", "ei", "s" and "co" of module "FullAdd", respectively. Places are 
merged by replacing these by a new place which is connected to all the arcs of the original 
ones. As an example, consider the flattened CPN of Figure 7.10, which exhibits the same 
behaviour as the hierarchical CPN shown in Figure 7.9. Note that we have maintained 
transition name uniqueness by prefixing the name of the "add" transition with the name 
of the corresponding composite transition. 

Adder2 

aO:Bit bO:Bit ci:Bit 

I(aO)e I(al)e I(al)I(b 1 )+ 
I(bO)e 

I(aO)I(bO)+ 
I(bl)e I(al)I(cl)+ 

I( ei) 
I( aO)I( ei)+ 

I( cl) I(bl)I(cl) 

• I(bO)I(ci) • • 
sO:Bit sl:Bit co:Bît 

Figure 7.10: The "Adder2" flattened CPN. 

The input and output places of a composite transition can only be merged with certain 
places of the corresponding module. An input place can only be combined with one of the 
module's input places, which are marked with a cross. Likewise, an output place can only 
be connected to an output place of the module. Module output places are distinguished 
from the other places by a black box marking their centre. As an example again consider 
the composite transition ''fa._l". lts input places "aO", "bO" and "ei" can only be merged 
with the input places "a'', "b" and "ei" of module "FuiiAdd". Likewise, the output places 
"sO" and "cl" can only be combined witheither "s" or "co". 
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7 .2.5 lnteractive Petri nets 

The Petri nets encountered until now lacked any form of user or operating system inter
action. Therefore they do certainly not satisfy the third requirement. Petri nets can be 
made interactive by the introduetion of interaction constructs which are to be used in the 
net inscription definitions. As an example consider the interactive multiplication Petri net 
shown in Figure 7.11. In contrast to the multiplier of Figure 7.8, the values to be multi
plied are not randomly selected, but chosen from a menu. These choices are made by a 
user whose name is randomly selected from the contents of the "user" input place. The 
multiplication Petri net is made interactive using the interaction construct "menu( User, 
Set)", whose evaluation will pop-up a menu enabling user User to select an element of the 
multi-set Set. Evaluation of this construct will return the value selected by the user. The 
"menu" cammand is just an arbitrary example of a user interaction construct which can 
be added to the net inscription language of a Petri net. A real interactive Petri net based 
language will feature a collection of such interaction constructs, which either are used to 
implement user or operating system interaction. 

c:R 

Figure 7.11: An interactive multiplication Petri net. 

The addition of user interaction constructs to the Petri net net inscription language is a 
very simple extension, which in principle does not have to affect the way the Petri net 
is executed. In practice however, a number of serious probierus are encountered when 
we attempt to use methods devised for normal coloured Petri nets for the execution of 
interactive Petri nets. To illustrate this we now use the interactive multiplication Petri net 
shown in Figure 7.11 to introduce one of these problems. Consider a situation where the 
"menu(I(user),a)" construct is evaluated fora certain user and the user involved happens 
to be off for a cup of coffee. In case the simple Petri net execution method described in 
Section 7.2.3.1 is used this will cause probierus when the multiplication Petri net is part 
of a bigger Petri net servicing multiple users. The reason is that this method specifies 
that net inscriptions are evaluated sequentially. As a consequence, the evaluation of the 
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interaction construct "menu(I(user),a)" will block the progress of the complete Petri net 
until the user involved has finished his cup of coffee. So although the introduetion of 
interaction constrocts results in a language satisfying our third requirement, it can also 
seriously reduce the amount of concurrency, resulting in a language which does not satisfy 
our second requirement. 

In the next section Section 7.2.5.1 we will describe the problems encountered when the 
simple mechanism is used for the execution of interactive coloured Petri nets. This is 
foliowed by Section 7.2.5.2 in which a new Petri net execution metbod is introduced solving 
these problems. 

7.2.5.1 Interactive CPNs and the simple execution mechanism 

To illustrate the problems encountered when using the simple metbod for the execution of 
interactive coloured Petri nets, consider the interactive Petri net depicted in Figure 7.12. 
Execution of this Petri net will result in the invocation of the OMA tooi. 

des:OmaDes ctr:OmaCtr lib:OmaLib 

true: invoke("oma 'I(ctr)'") 

design. oma_ out 
if TE = 0 and optOn 

design.oma_net 
design.oma_lis if TE = 0 and matchOn 

design 

op tOn 

match On 

.-

.-

.-

• • • 

opt:OmaDes rep:OmaLis 

stripExt(l(ctr)) 

system("optStatus 'I(ctr)'") on 

system("matchStatus 'I(ctr)'") on 

net: OmaNet 

Figure 7.12: Interactive CPN representation of OMA. 

OMA invocations are controlled by a control file. The narnes of the currently available 
control files are stored in the "ctr" input place. From this place the name of the control file 
to be used is randomly selected. Besides the control file, OMA has two additional inputs: 
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a design file and a library. The fa.ct that a design file is available is represented by the 
presence of the corresponding name in the "des" input place. Likewise, the narnes of the 
available libraries are listed in the "lib" input pla.ce. 

Which design file and library are used during an OMA run is uniquely determined by 
the control file. The name of the design file can be constructed by first stripping the 
"oma_ctr" extension from the control file name using the "stripExt" command, foliowed 
by an append of the design file type. The information about the design file type is stored 
in the control file. We now assume that there exists a small program "designExt", which 
when invoked on a control file extracts the design file type. If this program prints the 
result to standard output, then the design file type can be obtained using the interaction 
construct "system("designExt 'I(ctr)'")". Evaluation of the "system" command willorder 
the operating system to execute the string specified by its argument and will return the 
output send to standard out as its result. In the rest of this chapter we will frequently 
encounter strings like "designExt 'I(ctr)"', i.e., strings of which certain parts have been 
surrounded by quotes. The quoted parts of such a string must not be taken literally, but 
as a reference to the result of their evaluation by the Petri net simulator. For example, if 
the selected control file name equals "controlFile.ctr", then the evaluation of the quoted 
expression "I(ctr)" will return "controiFile.ctr". As aresult of this "designExt 'I(ctr)"' will 
refer to the string "designExt controlFile.ctr". In addition to "designExt", we assume that 
there exists a program called "library", which extracts the library name from the control 
file. If this program prints its result to standard output, then also the library name can be 
obtained using the "system" command. 

Besides a guard which always evaluates to true, the "OMA" transition also features a 
transition expression given by "invoke("oma 'I(ctr)"')". Just like "system", the "invoke" 
command will order the operating system to execute the string specified by its argument. 
The result returned by this command however, is the resulting exit code rather than the 
information sent to standard out. Failure of an OMA run is indicated by an exit code 
unequal to zero. In this case it is not guaranteed that valid OMA design and netlist output 
files exist. For our "OMA" transition this is represented by output are expressions which 
only produce the corresponding file name if the run was successful, which is indicated by 
a transition expression variabie "TE" equal to zero. The Iisting file is always produced, 
because in case of run errors it wil! contain information about what went wrong. 

Even in case of a successful OMA run the design and netlist files wiJl not always be produced. 
When OMA is operated in the optimisation mode, it wiJl not match the design and wil! 
therefore not produce the netlist output. Likewise, when run in the matching mode, OMA 

wil! perform no optimisations and will consequently not generate the optimised design out
put. The information about the execution mode of OMA is stored in the control input file. 
By default OMA will perform both optimisation and matching. Optimisation is switched 
off by adding the statement "optimising = off" to the control file. Likewise, matching is 
disabled using the control file statement "matching = off". So the content of the OMA con
trol file determines whether or not execution of the "OMA" transition should add tokens 
to its "opt" and "net" output pla.ces. To obtain this information from the control file we 
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introduce the programs "optStatus" and "matchStatus". When applied to a control file, 
"optStatus" and "matchStatus" produce either "on" or "off" indicating whether optimisa
tion and matching will be enabled or disabled, respectively. The output are expressions of 
the arcs connected to the "opt" and "net" places use the "system" cammand to run these 
commands. They use the result to determine whether or not a token has to be produced. 
Note that we have simplified the notation of these output are expressions by omitting the 
"otherwise" case of the "if' statement. From now on we adopt the convention that, if the 
"otherwise" case is not explicitly specified in an conditional expression, it will default to 
the empty multi-set. For our output are expressions this implies that in the otherwise case 
no tokens are to be produced fortheir output places during "OMA" its execution. 

We have already discussed the first problem encountered when using the simple execution 
metbod for interactive Petri nets, namely that the evaluation of an interaction construct 
can block the progress of the complete Petri net. We wiJl refer to this problem as the 
blocking problem. Like the interactive multiplication Petri net of Figure 7.11, evaluation of 
the "OMA" transition can result in a blocking problem. The reason is that the evaluation 
of its transition expression will result in the invocation of the OMA tooi. As a result of this 
the evaluation of this expression will take as long as the time required for the OMA run, 
thereby blocking Petri net progress for a considerable amount of time. 

At first glance, the blocking problem described above can be solved by switching from 
sequentia! to concurrent net inscription evaluation. This is however not sufficient. The 
reason is that the simple execution method prescribes that all the net inscriptions have 
to he evaluated befare transitions can he executed. So despite the fact that concurrent 
evaluation enables us to evaluate the net inscriptions of the other transitions during the 
OMA run resulting from "OMA" its transition expression, none of these transitions can 
he executed until after this run has finished. A possible salution to this problem is to 
introduce a more ftexible mechanism, in which a transition can be executed the moment it 
becomes enabled, independent from the status of the evaluation of other transitions. 

The second problem encountered when applying the simple execution metbod to interactive 
coloured Petri nets is the one we refer to as the unwanted evaluation problem. Since the 
evaluation of interaction constructs can have side-effects and aften uses a lot of resources, 
their evaluation should only he done if it is absolutely necessary. The simple execution 
metbod however, provides no support for cantrolling whether and when the evaluation 
of these constructs is done and will therefore often result in unwanted evaluations. To 
illustrate this, we are now going to describe the problems encountered when the simple 
metbod is used for the execution of the OMA interactive Petri net of Figure 7.12. 

During the first step of the simple execution method it is determined which transitions 
are to he evaluated and how many times this has to be done. Suppose now that we have 
a current marking in which the "ctr" place contains a single token and that the "des" 
and "lib" places contain the tokens representing the corresponding design file and library, 
respectively. In this case the tokens stored in the input places only suffice to execute 
the "OMA" transition once. Therefore it is also not necessary to evaluate the "OMA" 
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transition more than once. Despite this however, the outcome of step 1 can be that the 
"OMA" transition has to be evaluated four times. Since "ctr" contains only one element, 
the random selection process wil! always return the same control file. As a result of this, 
each of the four evaluations of the transition expression wil! invoke OMA using exactly the 
same input files. Since OMA runs can take a considerable of time, running OMA four times 
is a complete waste of computing effort. To solve this problem it is necessary to ensure that 
"OMA" its transition expression is only evaluated if and only if this transition is actually 
executed for the resulting binding. However, the information about which transitions wil! 
be executed for which bindings becomes only available after performing step 3 and can 
therefore never be used to control the selection process performed in step 1. So the simple 
execution method provides no means to avoid the unwanted evaluations introduced as a 
result of its first step. 

During the second step of the simple execution method the transitions selected by step 1 
are evaluated. During these evaluations all the selected transition's net inscriptions are 
evaluated. For interactive Petri nets this is an highly undesirable situation. As an example 
again consider the "OMA" transition of Figure 7.12. Now assume that in the current 
marking the "ctr" place contains a valid control file name, but that the corresponding 
design file and library name tokens are not available at the "des" and "lib" places. If 
the Petri net execution method employed specifies that all the net inscription have to be 
evaluated, then even in this situation the transition expression wil! be evaluated. As aresult 
of this OMA wil! be executed even though the required input files are not available. This 
despite the fact that we already know that the transition can never be executed because 
the "des" and "lib" places do not contain the tokens specified by "I( des)" and "I(lib )", 
respectively. This problem can be solved by the introduetion of a new transition evaluation 
method which stops the evaluation the moment it becomes known that the transition can 
never be executed. This new method should also enable us to control the order in which 
the net inscriptions are evaluated. Suppose the evaluation of the are expression of the 
"ctr" input are is immediately foliowed by the evaluation of the transition expression. In 
this case, the fact that the "des" and "lib" places do not contain the tokens required for 
the execution of the transition becomes known after the damage has been clone. So the 
new transition evaluation method should enable us to enforce that "OMA" its input are 
expressions are evaluated before the transition expression. 

During the third step of the simple Petri net execution method, it is determined which of 
the evaluated transitions wil! actually be executed. So when this method is used there is 
no guarantee that an evaluated transition is executed even when the required input tokens 
are available. In case of the "OMA" transition this means that it is possible that the 
results of a successful OMA run wil! be wasted. To avoid problems like this, the execution 
method used for interactive Petri nets should guarantee that transitions which have been 
successfully evaluated are always executed. 
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7.2.5.2 The interactive Petri net execution metbod 

As we have demonstrated in the previous section, the simple colonred Petri net execution 
method is not suited for the execution of interactive Petri nets. Luckily, the simple ex
ecution method is not the only method which can be used for the execution of coloured 
Petri nets. It is allowed to use an arbitrary other method as long as it leads to Petri net 
behaviour as specified inSection 7.2.3.2. In this section we are going to define a new Petri 
net execution method which is customised for the execution of interactive Petri nets. 

To solve the blocking problem the new execution method should at least feature concurrent 
rather than sequentia! net inscription evaluation. The problem is that real concurrent 
evaluation is difficult to implement. A much simpler salution is to use a modified form 
of sequentia! evaluation, in which the evaluation of a net inscription is suspended the 
moment it can not proceed due to the evaluation of an interaction construct. In case of 
a user interaction construct this occurs at the moment it starts waiting for user input. 
The evaluation of an operating system interaction construct is suspended at the moment 
it has issued an operating system command. The Petri net execution engine can then 
(re)start another evaluation. The suspended evaluation can be resumed when either the 
user has supplied the required input or when the issued operating system command has 
been completed. 

As we have seen in Section 7.2.5.1, one of the causes of the unwanted evaluation problem 
is that the simple execution metbod specifies that during the evaluation of a transition all 
its net inscriptions have to be evaluated. This despite the fact that in many cases it is 
already known after evaluation of some of the net inscriptions that the transition can never 
be executed. If this is the case, evaluation of the rest of the net inscriptions will he useless. 
We make use of this fact by adopting a new transition evaluation method referred to as 
the lazy evaluation method. The lazy evaluation method guarantees that net inscriptions 
are not evaluated when it is known that this is unnecessary. How does the lazy evaluation 
metbod determine whether the evaluation of a net inscription is necessary or not? When 
after the evaluation of an input are expression the tokens specified by the result are not 
available at the conesponding input place, then the transition can not be executed for this 
binding. In this case, evaluation of the remaining net inscriptions becomes unnecessary. A 
transition can also not executed if its guard evaluates to false. So once it becomes known 
that the guard is bound to false, the current evaluation of the transition can be stopped. 

Even when a net inscription is evaluated, it is not always necessary to do this completely. 
To illustrate this, consider the expression of the are connected to the output place "net" 
shown in Figure 7.12. This expression consists of two parts: the condition "TE = 0 and 
system ( "matchStatus 'I( ctr )'") = on'' and the expression "stripExt(I( ctr) ).oma-net". If 
the OMA run is unsuccessful or if the control file turns matching off, the condition will fail 
and there will be noneed to evaluate "stripExt(I( ctr) ).oma..net". Wh en the lazy execution 
metbod is used, then it is guaranteed that such conditional expressions are never evaluated 
if the conesponding condition fails. 
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As we have illustrated in Section 7.2.5.1, lazy evaluation is only useful when we are able 
to control the order in which the net inscriptions are evaluated. A very simple method 
to control the net inscription evaluation order is by making use of net inscriptions which 
depend on the results produced by other net inscriptions. Such net inscriptions can only 
be evaluated after the inscriptions they refer to. As an example again consider the "OMA" 
transition shown in Figure 7.12. The transition expression of this transition depends on 
the "I( ctr )" variable, thereby ensuring that it is never evaluated if there is no valid control 
file name available at the "ctr" input place. 

The use of net inscription dependencies can not be used to prevent "OMA" its transition 
expression from being evaluated before it is known if the required design and library files 
are available. The reason is that this transition expression does not depend on either 
"I( des)" or "I(lib)". To solve problems like this we are going to introduce the following 
default evaluation order. Unless specified otherwise by dependencies, we first evaluate 
the input are expressions, foliowed by the guard, the transition expression and finally the 
output are expressions. Using this evaluation order, "OMA" its transition expression wiJl 
only be evaluated when all the required input file narnes are available at the input places. 

Although the use of lazy evaluation combined with evaluation ordering reduces the amount 
of unwanted evaluations, it does not completely prevent these evaluations from occurring. 
To illustrate this again consider the OMA Petri net of Figure 7.12. Suppose now that we 
have a current markingin which "OMA" its input places contain the tokens required for 
a single execution of this transition. If in addition the "OMA" transition is selected to be 
evaluated multiple times before it is actually executed, then each of these evaluations will 
encounter the required tokens at the input places. This despite the fact that the available 
tokens only allow us to execute "OMA" once. So except for one, all these evaluations are 
unwanted. 

Even if the "OMA" transition is evaluated only once for the marking described above, 
there is no guarantee that the transition can actually be executed. The reason is that, in 
order to solve the blocking problem, we have introduced a more flexible execution method, 
which allows a transition to be executed the moment it becomes enabled, independent 
from the status of the evaluation of other transitions. As a result of this, the execution 
of other transitions can change the contents of the input places of a transition which is 
being evaluated. So even if the corresponding tokens are available the moment the input 
are expressions of the "OMA" transition are evaluated, these can be removed from the 
input places during the evaluation of the remaining net inscriptions, thereby disabling the 
execution of this transition. The "OMA" transition is especially susceptible to this, since 
the evaluation of its transition expression can take a long time. 

The two problems described above can be solved by the introduetion of what we will call 
a reservation mechanism. Using this mechanism the evaluation of a transition goes as 
follows. When an input are expression is evaluated and the tokens specified by the result 
are available at the corresponding input place, then these tokens wiJl be reserved. In order 
for a token to be available, it not only has to belong to the contents of the input place, but 
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in addition it may not have been reserved during another transition evaluation. Reserved 
tokens are either consumed by the execution of the transition reserving them or freed again 
when the evaluation of the corresponding transition is stopped prematurely. Now again 
consider the situation featuring a current marking in which "OMA" its input places con
tain the tokens required for a single execution and where this transition is selected to be 
evaluated multiple times. During the first evaluation of the "OMA" transition the input 
tokens required for its execution are reserved. These tokens are not available anymore 
during the remairring evaluations and these will therefore be stopped before their transi
tion expressions are evaluated. Reservation also ensures that the tokens required for the 
execution of the "OMA" transition are not removed from its input places by the execution 
of other transitions during the often long time required for the evaluation of its transition 
expression. The reason is that in order for a transition to consume a token, it must have 
reserved it first. Tokens however, can only be reserved if these have not been reserved by 
another evaluation. Therefore, if the "OMA" transition succeeds in reserving the required 
input tokens, then these tokens can not be consumed anymore by other transitions. 

Based on the solutions to the blocking and unwanted evaluation problem described above, 
we now define the following interactive coloured Petri net execution method. 

1. Select the transition evaluation to be done. 

2. Start or continue the selected transition evaluation. 

(a) Select the net inscription evaluation to be done. 

(b) Start or continue the selected net inscription evaluation. 

i. If the evaluation can not proceed due to the execution of an interaction 
construct, then suspend the current transition evaluation and go to 1. 

ii. If an conditionat expression is encountered, then do not evaluate the ex
pression if the condition fails. 

(c) Check whether, given the result of the net inscription evaluation, the transition 
can still be executed. If not, stop current transition evaluation, release the 
tokens reserved by this transition evaluation and go to 1. 

(d) Tf the evaluated net inscription was an input are expression, then reserve the 
tokens specified by the evaluation result. 

( e) If all net inscriptions have been evaluated go to 3 else go to 2a. 

3. Execute the transition for the binding created by the current evaluation. 

Execution of an interaction construct wiJl suspend the current transition evaluation. If this 
evaluation is selected again later on, then it can either continue by starting the evaluation 
of a new net inscription or by continuing the suspended net inscription. The latter can 
only be clone if the reason for the suspension no Jonger exists. 
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When selecting the next net inscription to be evaluated, the following restrictions have to 
be considered. When evaluating a transition t, the net inscription n; has to be evaluated 
before every other net inscription ni for which 

Vn, E Var(nj,t) (7.13) 

holds, where Vn, the variabie used to refer to result of the evaluation of n;. When no such 
dependency exists between two net inscriptions, then these have to be evaluated according 
to the principle input are expresslons first, then the guard, transition expression and finally 
the output are expressions. 

A transition evaluation is stopped when either the tokens specified by an input are ex
pression are not available at the corresponding input place or the guard evaluates to false. 
Tokens are said to be available if they belong to the contents of the place and they have 
not been reserved by other transition evaluations. 

The use of the execution metbod for interactive coloured Petri nets described above elim
inates the blocking problem. This execution metbod achieves this by switching toa new 
transition evaluation the moment it can not proceed due to the execution of an interaction 
construct and by allowing transitions to be executed the moment these become enabled. 

Our interactive coloured Petri net execution method does not guarantee that unwanted 
evaluations will not occur. Instead, it provides us with the means to control whether 
an interaction construct is evaluated or not. Our metbod guarantees that conditional 
expresslons are not evaluated if the condition fails. In addition, a net inscription is not 
evaluated if this evaluation is preceded by that of an input are expression of which the 
specified tokens are not available or by that of a guard which evaluates to false. Our method 
guarante~.s this by stopping the current transition evaluation if sueh a situation oceurs. 
Finally, the evaluation of interaction construets in the transition expression and output 
are expresslons of a transition will never be unwanted if their evaluation is preeeded by the 
evaluation of the corresponding input are expresslons and guard. Our execution metbod 
guarantees this because it will always execute a transition if the evaluations of the input 
are expresslons and the guard were successful. This can be illustrated as follows. After 
successful evaluation of the input are expresslons we know that the required input tokens 
were available at the moment these were evaluated. Due to the reservation mechanism, it 
is guaranteed that this will also be the case at the moment the evaluation of the transition 
itself is completed. In addition to this, our execution metbod guarantees that transition 
evaluations which have been successfully evaluated will always be executed for the resulting 
binding. 

7.3 Design management system representation 

In this section we show that a language based on interactive hierarchical coloured Petri 
nets satisfies our last requirement, i.e., that such a language enables us to create design 



7.3 Design management system representation 141 

management system representations according to the DMS model presented in the previ
ous chapters. We do this under the assumption that the DMS is structured as depicted in 
Figure 3.4. In this case we only have to show that the language satisfies the reduced re
quirement, i.e., that it enables us to express the design management system representations 
used to program the DMS core. 

The DMS developers program the core by storing the tool, flow and control input descrip
tions they have created in the design tooi store, the design flow store, and the control 
interpreter, respectively. In the following sections we will show how these tool, flow, and 
control input descriptions can be expressed in our interactive Petri net based language. 
Since tools and flows manipulate raw data and communicate using busses, we also demon
strate how raw data and busses can be represented. When a tool or flow description is 
selected, it is sent to the corresponding execution engine to be executed. Likewise, when a 
control interpreter receives a control input it will execute the corresponding control input 
description. Since all these descriptions are expressed using our interactive Petri net based 
language, the execution engines and the control interpreters can be implemented using the 
corresponding interactive Petri net simulator. 

For design management purposes it is not necessary to create a detailed representation of 
raw data and tools; usually a much simpler and more abstract description will suffice. We 
will demonstrata how our interactive Petri net based DMS description language enables 
us to create these abstract descriptions and to link these to the corresponding raw data or 
tools. Although raw data and tools do not have to be represented explicitly, the language 
should enable us to describe how these are controlled by the design management system. 
For raw data this entails descrihing how these data are stored and retrieved. For tools this 
boils down to representing how to execute the tooi properly. In contrast to raw data and 
tools, it should be possible to use the DMS description language to explicitly represent all 
the details of flows. 

The approach we are going to u se for the representation of raw data, tools and flows is based 
on the following considerations. During the design process, raw data are created, modified 
and deleted using tools. The design flow controts this process. There is a strong analogy 
between the design process and the way tokens are manipulated by a Petri net. Just like 
tools transfarm raw data, Petri net transitions create, modify and delete tokens. Based on 
this analogy, we propose to represent raw data by tokens and tools by transitions. Just 
like a flow determines when which tools are applied to what data, a Petri net determines 
when which transitions are applied to what tokens. Therefore, it is possible to represent 
flow information in terms of a Petri net. 

7.3.1 Raw data representation 

If a piece of raw data is represented by a token, referred to as a raw data token, then what 
should the associated value be? In the representation of the OMA tooi of Figure 7.12 we 
represented a piece of raw data by a token with a value equal to the name of the file storing 
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these data. A major disadvantage of this approach is that the design management system 
will not be able to control access to the corresponding raw data contents. For example, 
if the contents are stored on a file system, then these data can be modified or deleted 
by everybody who bas the rights to do this. So in this case there is no link between the 
presence of a raw data token at one of the input places of a transition and the ability of 
this transition to access the corresponding raw data contents. This can lead to counter 
intuitive situations. For example, it can occur that a piece of raw data is modified or even 
deleted while the corresponding token is not processed by a transition at all. 

A possible solution for the problem described above is to create a closer link between a raw 
data token and the corresponding contents, namely by making the value of the token equal 
to the piece of raw data itself. For this purpose we introduce a new datatype RawData. 
Valnes of this type, referred to as raw data values, store information about both the raw 
data contents and its properties like its owner, creation time and size. 

To access the information stored by a raw data value, we add the following commands 
to the net inscription language. Information about the properties of a piece of raw data 
can be retrieved using functions like "name", "owner", "creationTime" and "size", which, 
when applied toa raw data value, return the name used to identify it, its owner, the time 
of its creation and its size, respectively. Although it is possible to introduce a function 
"contents" to return the raw data contents associated with a raw data value, we take an 
alternative approach. The reason is that the tools operating upon the raw data contents 
usually access these by reading a file rather than retrieving the contents of a raw data 
value. To create a link between raw data tokens and the files operated upon by the tools, 
we introduce the "makeFile(token)" operating system interaction construct. Evaluation 
of the "makeFile(token)" construct will use the raw data token token to construct a file 
with the same contents and properties. In addition to reading their input from files, tools 
usually write their results to output files. To enable our interactive Petri nets to manage 
these results, we introduce the interaction construct "makeToken(fileName)", which when 
evaluated returns a token with the same contents and properties as the file identified by 
fileName. 

Although a raw data token stores the contents of the piece of raw data it represents, it 
abstracts from information about how it does this. This poses no problems, because these 
contents are never accessed directly, but by interaction constructs like "makeFile(token)'' 
and "makeToken(fileName)". If the storage metbod is changed then only the implemen
tation of these constructs will have to be updated. The only restrietion we impose on the 
contents storage metbod used for raw data tokens is that it should guarantee that the raw 
data contents can only be accessed via the corresponding raw data token. For example, if 
the raw data contents are stored by the creation of a file for each of the raw data tokens, 
then the access rights of these should be such that these files can only be read, modified 
and deleted by the Petri simulator creating these. 
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7 .3.2 Tooi representation 

When raw data are represented by raw data tokens, then a tooi can be modelled by 
a transition manipulating these. Such a transition will consume the raw data tokens 
representing the tool's input data from its input places. In addition it will add the raw 
data tokens representing the results produced by the tooi to its output places. As an 
example, consider the interactive CPN transition modelling the operation of the OMA tooi 
shown in Figure 7.13. 

des:OmaDes ctr:OmaCtr lib:OmaUb 

makeFile( desToleen) 

OMA true: invoke("oma 'name(l(ctr))"') 

makeToken( design.oma_out) 
if TE= 0 and op tOn 

makeToken(design.oma_net) 
if TE = 0 and match On 

opt:OmaDes rep:OmaLis net: OmaNet 

design .-
desName .-
desToleen := 

libName .-
libToken .-
lisName .-
op tOn .-
match On .-

stripExt(name(I(ctr))) 

design .system("designExt 'name(l(ctr))"') 

CC( des, name(I(des)) = desName) 

system("library 'name(I( ctr)) '") 

CC(lib, name(I(lib)) =libName) 

design .oma_lis 

system("optStatus 'name(I(ctr))'") =on 

system("matchStatus 'name(I(ctr))"') on 

Figure 7.13: Interactive CPN transition representatîon of OMA. 

The "OMA" transition randomly selects a raw data token from the "ctr" input place, 
which contains raw data tokens representing OMA control files. The file corresponding 
to the selected token is generated using the "makeFile" command. We now assume that 
evaluation of the "makeFile" command returns the token it was applied to. As a result 
of this "makeFile(RC(ctr))" will return the selected control file token. The tokens to be 
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consumed from the "des" and "lib" input places are selected using the Conditional Colour 
command "CC". When applied toa place pand a condition C, CC(p,C) will return a token 
randomly selected from p such that l(p) satisfies condition C. In Figure 7.13 this command 
is used to select a design and a Iibrary raw data token from the "des" and "lib" input places, 
respectively, such that the narnes of these tokens are as specified by the control file. Like 
for the control file token, the files represented by the selected design and library raw data 
tokens are created using the "makeFile" command. Just like the Petri net of Figure 7.12, 
evaluation of "OMA" its guard will result the invocation of OMA. During the evaluation of 
the output are expresslons the resulting output files are converted into the conesponding 
raw data tokens using the "makeToken" command. To keep the representation of the OMA 

tooi simple, we have not modelled the deletion of the files generated during the evaluation 
of "OMA". 

The "OMA" transition ofFigure 7.13 will only execute correctly ifthe input data are ofthe 
correct type. For example, if the raw data token selected from the "ctr" input place does 
not correspond to a valid control file, then application of the "designExt" and "library" 
programs will produce undefined results. In case of the "OMA" transition this problem is 
avoided by typing the input data. This is clone by labelling the places of this transition with 
the colour sets "OmaDes", "OmaCtr", "OmaLib", "OmaLis" and "OmaN et". Each time 
a raw data token is added to a place, the simulator will check whether the conesponding 
value belongs to the place's colour set. If this is not the case, the simulator will detect an 
error and will start an error handler to deal with it. Now suppose this handler produces an 
error message and subsequently stops the simulation. In this case addition of a raw data 
token to the "ctr" place, which does not correspond to a valid control file, will never result 
in incorrect execution of "OMA", because simulation will be stopped before this token can 
even be selected. 

The colour sets used to type the places of the "OMA" transition can not be defined by 
enumeration, because these sets contain an infinite number of elements. For example, the 
"OmaN et" colour set contains all possible NDL netlists. Therefore, we will not define these 
sets using enumeration but in terms of a predicate, which determines whether an element 
belongs to such a colour set or not. l\S an example again consider the "OmaNet" colour 
set which is defined as follows 

OmaNet { netlist E RawDala I omaNetP ( netlist)} , (7.14) 

where the predicate omaNelP is defined by 

omaNelP makeFile( netlist); system ("file Type 'name( netlisl)"') NDL . 

When invoked with a filename like "name( netlisl)" as its argument, the program "fileType" 
will scan the corresponding file todetermine the type. The omaNetP predicate is described 
in terms of a compound expression, i.e., an expression consisting of a sequence of smaller 
subexpresslons which are concatenated using the ";" symbol. The value returned by a 
compound expression is the result of the evaluation of the last subexpression. 

The "OMA" transition only controls the execution of a single tooi. However, transitionscan 
also be used to model more general tooi execution engines like the one shown in Figure 5.2. 
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For such a transition the tooi name is not fixed but received via one of its input places. 
This name is then used to construct the operating system command used to invoke the 
tooi. This enables us to create DMS descriptions where tools are not explicitly represented 
by a transition but implicitly by tooi information stored in the design tooi store. 

7 .3.3 Representation of busses 

Busses are closely related to places. In fact, the operation of a place is equivalent to that of 
a bus storing an arbitrary number of elements without ordering these. The place's colour 
set performs a role very similar to that of the bus' contents type. The output and input 
arcs connected to the place conespond to the sourees and drains of the bus, respectively. 
However, since a place is a special type of bus, it can not be used to represent busses in 
genera!. To model busses a concept is required which is more expressive than and at the 
same time very similar to that of a place. A very proruising candidate is the composite 
place concept. 

Just like a composite transition, a composite place is described in terms of a Petri net. It 
is distinguished from a normal place by the fact that it has a fat border. The type of a 
composite place is given by the name of the conesponding CPN module rather than by 
a coloor set. As an exarnple consider the composite places "opt" and "lib" used in the 
"OTDM" module depicted in Figure 7.14. The "OTDM" module describes a data driven 
implementation of the OMA timing driven matching process. It features three compos
ite transitions "optim", "oMatch" and "rMatch", which perform the optimisation, over
specified and realistic timing constraint matching steps, respectively. The conesponding 
modules "Optimise" and "Match" are implementations of the tooi abstractions declared 
by Equation 5.3 and Equation 5.4, respectively. For simplicity we have not included the 
descriptions of these modules here, but it is fairly simple to construct these based on the 
"OMA" transition of Figure 7.13. Furthermore, we assume that "Match" will use a default 
value of zero when, like in the case of the "oMatch" instantiation, it receives no timing 
constraint via its "delaySpec" input place. 

The specification design and library used during the execution of the "rMatch" transition 
should be equal to those used by the "oMatch" run preceding it. This can be guaranteed 
by using a Copying Bus totransport these. The module "CB" of Figure 7.14 implements 
such a bus. If the output place "out" of a copying bus is empty, then it will randomly 
select one of the tokens present at its input place "in" and will add two copies of this token 
to "out". 

In this chapter we will restriet ourselves to a simple type of composite place, of which the 
conesponding module has exactly one input and output place. The semantics of a CPN 
containing such a composite place is identical to that of a larger CPN, which is obtained by 
substitution of this place by a copy of the conesponding CPN module. The incoming arcs 
of the composite place are reattached to the copy of the module's input place. Likewise, 
the arcs orîginally originating from the composite place are reconnected to the copy of the 
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OMATDM 
des:OmaDes 

CB 

ifout = <1> 

out 

net: OmaNet 

Figure 7.14: The OMA timing driven matching CPN. 
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des:OmaDes 

RC(lib.in) 
if lib.out =<I> 

OMATDM 

lib.in 

Figure 7.15: The OMATDM module after flattening of "opt" and "lib". 
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output place. If a composite place is marked as an input or output place, like the input 
"lib" in Figure 7.14, then the input or output place of the corresponding CPN will also 
be marked as such after expansion, respectively. When applied to the hierarchical CPN 
of Figure 7.14, this substitution process wiJl result in the equivalent flattened CPN shown 
in Figure 7.15. Note that we have maintained place and transition name uniqueness by 
prefixing the narnes of the expanded CPN elements with the name of the corresponding 
composite place. 

7.3.4 Representation of flows 

Although the operation of a flow can be always be represented by a state machine, there 
are a number of ways in this machine can be implemented. For example, the flow can 
be described by a single state machine or by a number of concurrently operating state 
machines. Likewise, the state machine can be explicitly represented or, like in the case 
of a data driven flow, very implicitly. A flow representation language should allow flow 
developers to use each of these different implementation styles. Due to their inherent con
currency, Petri net based language are suitable to represent flows implemented by multiple 
state machines. As an example of how an implicit flow can be represented by a hierarcbi
cal CPN again consider the datadrivenOMA timing driven matching flow of Figure 7.14. 
Hierarchical coloured Petri nets can also be used to create explicit flow descriptions. As 
an example consider the CPN of Figure 7.16, which implements the OMA timing driven 
matching flow depicted in Figure 6.3. It consists of a place "es" which contains the cur
rent state of the flow, two transitions "nsf' and "of" which represent the next state and 
the output function, respectively, and three composite places "dtms.stat", "ddms.ctr" and 
"dtms.ctr" representing the three one place buffers used to monitor and control the DDMS 
and DTMS. The colour set of the "es" place "8" is given by Equation 6.1. The "es" place 
is initialised with "Opt" which represents that the OMA timing driven matching flow starts 
in this state. 

7.3.5 Representation of control inputs 

By programming the control interpreter the DMS developers determine which control in
puts it will accept and how these are to be translated into a sequence of design data store 
inputs. The control input representations they download describe how the control inter
preter interprets the abstract control signals it receives from the DDMS's environment by 
translating these into a sequence of simpler design data store inputs. In addition these 
representations describe how the control interpreter subsequently uses the resulting design 
data store outputto generate the DDMS output. 

As an example of how a control input representation can be expressed using our interactive 
Petri net based language, consider the CPN of Figure 7.17, which describes how the control 
interpreter will interpret the "getRootDesign" query. The control interpreter can be in
structed to perform this query by sendingit the control input pair <getRootDesign, key>. 
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dtms.stat:OPB 

OTC if I(cs)=Opt and I(dtms.stat)=ok 
<RTC, I(dtms.stat)> ifl(cs)=OTC 
Exit ifl(cs)1 = RTC and I(dtms.stat)=ok 

getLib runOpt if cs=Opt 
if cs=OTC runOTCMatch if cs=OTC 

runRTCMatch if cs1 =RTC 

• • 
ddms.ctr:OPB dtms.ctr:OPB 

Figure 7.16: Explicit control flow. 
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In response to this the control interpreter will execute the query described by Equation 4.75, 
which retrieves all root designs identified by the attribute key key. A root design is a design 
which has been used as a specification to generate an optimised version of it, but which is 
itself was not created by optimisation of another design. 

The CPN of Figure 7.17 features two input places named "Control" and "ddso", which 
represent the DDMS control input and the design data store output, respectively. In 
addition it contains the output places "Dataûut" and "ddsi", which represent the DDMS 
data output and the design data store input, respectively. 

The CPN of Figure 7.17 features four transitions. The "getKey" transition checks whether 
the token it has randomly selected from the "Control" input place represents a "getRoot
Design" query. If this is the case, it wil! consume the token and it will send a "Read" 
command to the design data store instructing it to retrieve all designs characterised by the 
corresponding attribute key key. The "getDesigns" transitions checks whether the status 
of the resulting design data store output equals "Ok". If this is the case, it will store the 
retrieved designs in its output place "des". In addition it will instruct the design data 
store to retrieve all specification designs. The "selectSpecs" transition determines which 
elements of the design set "I (des)" are specifications by taking the interseet ion of this set 
with the specification design set it has received from the design data store. In addition it 
will issue a "Read" command to the design data store commanding it to retrieve all designs 
which are obtained by optimisation of another design. The "selectRoots" transition uses 
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ddso 

A design management system description language 

I(Control)
1 

= getRootDesigns 
1----,..--...--J 

l(ddso) ="Ok" 
2 

<Read, Aspec , .1 > 

selectSJlecs I l(ddso) ="Ok" 
2 

<Read, Aopt, .1> 

I(ddso) = "Ok" 
2 

• ddsi 

Figure 7.17: CPN representation of the getRootDesign query. 
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the DDS's response to remove all these designs from the "I(specs)" set and it will send the 
resulting set of design roots its "Dataûut" output place. 

7.4 Summary 

In this chapter we have demonstrated how to construct a DMS description language, en
abling us to create design management system representations according to the DMS model 
presented in the previous chapters. First we have formulated the requirements this lan
guage bas to satisfy. Secondly, we have introduced a hierarchical coloured Petri net based 
language and we have shown that this language already has most of the required charac
teristics. This language however, Jacks support for descrihing the extensive interaction of 
a DMS with its users and with the operating system. Therefore, we have extended it with 
special interaction constructs, resulting in what we refer to as an interactive Petri net based 
language. When descriptions in this language are executed using the methods normally 
used by Petri net simulators, then this will result in blocking and unwanted evaluation 
problems. We have solved this problem by the definition of a new Petri execution method 
fine-tuned for the execution of interactive Petri nets. A simulator using this metbod to 
execute interactive Petri nets will not be bothered by blocking or unwanted evaluation 
problems. In the last part of this chapter we have demonstrated how our interactive hi
erarchical coloured Petri net based language can be used to create our executable design 
management system representations. 
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Chapter 8 

Conclusions and future research 

In this thesis we have introduced a metbod enabling us to efficiently develop complete 
CAD frameworks. A complete CAD framework should provide support and a uniform 
interface to all participants. In this thesis we have shown how this aspect of framework 
completeness can be implemented. Our approach was ba.sed on an analogy between IC 
designers and design management system developers, which stresses that all these people 
are designers requiring the same type of support. Ba.sed on this analogy we have proposed 
a new CAD framework structure in which the design management system is the central 
component, which is used to manage the data, tools, and flows of both the IC designers 
and the DMS developers. In addition we have introduced a design management system 
which assists the DMS developers during its own programming process. It achieves this by 
allowing the DMS developers to program it by downloading DMS representations, rather 
than by modification of its souree code. 

The design management system of a complete CAD framework should provide support for 
all three design management activities. In literature there is little consensus about how 
such a DMS should be structured. As a result of this most design management system 
were constructed based on an informal description of (a part of) this system. This is the 
main reason for the incompleteness and lack of uniformity of these systems. We have 
avoided these problems by creating a mathematical description of the design management 
system. This abstract DMS model not only describes the behaviour of the system's three 
main components, i.e., the design data, the design tooi and the design flow management 
systems, but also shows how these components interact. Using this model as a guideline a 
complete design management system can be constructed featuring a seamless integration 
of design data, design tooi and design flow management. The fea.sibility of our model was 
demonstrated by using it to represent partsof a DMS for the logic synthesis system LOCAM 

from Philips. 

The efficiency of CAD framework development is greatly increased if the conesponding 
design management system is implemented using a dedicated DMS description language. 
Since there were no suitable design management system description languages available, we 
have demonstrated in this thesis how such a language can be defined. Using our DMS model 
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as a guideline, we have first formulated the requirements for such a language. Subsequently 
we have introduced an extension of the hierarchical coloured Petri net concept referred to 
as interactive hierarchical coloured Petri nets, and have shown how languages based on 
these interactive Petri nets satisfy our requirements. The suitability of such a language 
was demonstrated by using it to describe the DMS representations used to program the 
design management system. 

In this thesis we have described the design management system in terms of a design man
agement strategy independent core. This DMS core can be programmed by the design 
management system developers using a DMS description language such as the interactive 
hierarchical coloured Petri net based language introduced in this thesis. However, we have 
not created an implementation of the DMS core, since the required resources exceed those 
of a one-mans project. Therefore, a topic which can addressed by future research is the 
implementation of the design management system core. 

Although this thesis does not address DMS core implementation, it gives us guidelines 
about how to do this. In our thesis the DMS core was described in terms of a number of 
interacting components, namely three stores, three control interpreters, a tooi execution 
engine and a flow execution engine. We have already looked at the hierarchical coloured 
Petri net design and simulation environment EXPECT [vH94] to see if it can be used as a 
basis for imptementing these components. 

The control interpreters and the execution engines perfarm their job by executing the 
DMS descriptions provided by the DMS developers. In case the core is programmed using 
our interactive Petri net based language, these components will behave like a Petri net 
simulator. So it should be possible to implement these components using such a simulator 
as a basis. To make EXPECT suitable for our goal, its net inscription language will have 
to be extended with interaction constructs. In addition EXPECT's execution metbod 
will have to be replaced by the interactive Petri net execution metbod described in this 
thesis. 

The core's three stores use relations to characterise and organise the data they store. For 
implementing the core's stores EXPECT is again a proruising candidate. EXPECT's net 
inscription language not only features the set and sequence data type required for the 
construction of relations but also functions to access these. In addition it sirnplifies the 
definition of complex relations by allowing its users to define these using diagrarns sirnilar 
to the OTO-D data schernas introduced in Chapter 2. :çote however that these features 
of EXPECT are part of its net inscription language and that it rernains to be seen if these 
can be converted into building blocks for irnplementing the core's stores. 



Appendix A 

Raw data distinguishability 

We formalise the concept of distinguishability by introduetion of a predicate 
Distinguishable (rl> r2 , C). The r 1 and r 2 argumentsof this predicate are either two pieces 
of raw data or two raw data identifiers. The predicate determines whether r1 and r2 can 
be distinguished in a context C. A context is either a relation or relation element, so either 
a piece of raw data, an attribute, a raw data identifier, a sequence or a set. Fora design 
data store state State Distinguishable (r1 , r 2 , State) determines whether the store is able to 
distingtiish between r1 and r 2 • 

Pieces of raw data and raw data identifiers can never be distinguished from themselves, so 
if r 1 = r 2 = r the following statement holds independent of the context 

-.Distinguishable (r, r, C) . (A. I) 

In the remaining part of the definition of Distinguishable, we will consider the cases for 
which r 1 =F r2 holds. 

Pieces of raw data and raw data identifiers are characterised by the way they are related 
to other data. Without the information about their relation to r 1 and r 2 , data on their 
own are no context which could be used to distinguish between r 1 and r 2 • An exception to 
this rule occurs when r 1 and r 2 are placed in the context of a piece of raw data (raw data 
identifier) equal to either r 1 or r 2 • Due to the impHeit relation which exists between such 
a context and the data to be distinguished, namely that the context is "equal" to one of 
raw data (identifiers) and "different" from the other, r 1 and r2 can be distinguished. So 
if the context C is given by a piece of data d, then the Distinguishable function is defined 
by 

Distinguishable(r1, r 2,d) (d = ri) V (d = r 2) • (A.2) 

Using this definition we can make the following statements about the distinguishability 
of the raw data identifier "spec" and "opt" (see DDS relation 4.30) in context of the raw 
data identifiers "spec", "opt" and "rep", the attribute "ALU" and the raw data "Opf', 
respectively. 

Distinguishable( spec,opt,spec) . (A.3) 
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Distinguishable(spec,opt,opt) . 

..., Distinguishable( spec,opt,rep} . 

..., Distinguishable(spec,opt,ALU) . 

..., Distinguishable(spec,opt,Opt) . 

(AA) 

(A.5) 

(A.6) 

(A.7) 

A relation or relation element represented by a sequence T distinguishes r1 and r 2 if and 
only if at least one of its elements is able to distinguish between these, so 

Distinguishable(r1,r2,T) 3i: 1:::; i:::; ITI: Distinguishable(rt,r2,Ti). (A.8) 

As an example consider the pair <opt,spec> contained in the set repreaenting the 
"Version-of" relation of DDS relation 4.30. This pair distinguishes between "spec" and 
"opt", so 

Distinguishable(spec,opt,<opt,spec>) , (A.9) 

because bothits elements do (see Equations AA and A.3}. 

Two pieces of raw data (raw data identifiers) can be distinguished in the context of 
a relation (element} if these data play a different role in this context. For example 
<<ALU,OmaDes>,spec> distinguishes "spec" and "opt", because "spec" plays the part 
of the raw data identifier characterised by key <ALU,OmaDes>, while "opt" does not 
even occur in this context. Such arelation (element) loses its discriminative power, if it 
is combinedon a basis of equality with another relation (element), which is its equivalent 
except for an interchange of the roles the raw data (identifiers) play. For example a set with 
<<ALU,OmaDes>,spec> and <<ALU,OmaDes>,opt> as its elements will not be able to 
discriminate between "spec" and "opt", this in spite of the fact that both its elements do 
individually. So the following statement should hold 

-,flistinguishable(spec,opt,{ < <ALU,OmaDes> ,spec>, < <ALU,OmaDes>,opt>}) (A.lO) 

For relations represented by a set S the Distinguishable function is now defined by 

Distinguishable (rt, r2, S) = 3e1 E S : Distinguishable (rl, r2, e1)1\ 
...,3e2 E S : e1 :f:. e2 1\ RoleSwapEq(rt, r2, e1, e2) . (A.ll) 

The function application RoleSwapEq(r11 r 2, re1, re2 ) determines whether the roles played 
by r 1 with respect to the relation elements re1 and re2 are equal to the roles r 2 plays in 
the relation elements re2 and re1, or stated otherwise, if the roles played by the raw data 
(identifiers) r 1 and r2 in re1 have been swapped in re2. In practice role swap equality 
requires re1 and re2 to be equal except for the occurrences of the raw data (identifiers) 
in these relation elements. Additionally, it requires that every occurrence of r 1 (r2 ) in re1 

is accompanied by an occurrence of r2 (r1} at the corresponding location of re2 . Every 
other piece of raw data (raw data identifier} occurring in re1 should be matebed by a piece 
of raw data (raw data identifier) at the corresponding position in re2 , which can not be 
distinguished from it within the context of the DDS state. 
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Role swap equality is only possible if the corresponding relation elements re1 and re2 are 
of the sametype (RoleSwapEq returns false otherwise). Therefore we will distinguish four 
cases, corresponding to whether re1 and re2 are attributes, raw data (identifiers), sequences 
or sets, respectively. 

In the first case the relation elements re1 and re2 are given by the attributes a1 and a2, 
respectively. Since no raw data (identifiers) occur in these attributes, role swap equality 
requires a1 and a2 to be equal. Therefore, in this case role swap equality is defined by 

(A.l2) 

In the second case re1 and re2 are equal to the raw data (identifiers) r 3 and r4, respectively. 
Role swap equality implies that if ra (r4) is equal to either r1 or r2, then r4 (ra) should 
refer to the remaining piece of data. If ra and r4 are different from r1 and r2, role swap 
equality requires ra and r4 to be equal or indistinguishable within the context of the DDS 
state State. This all is represented by the following definition 

RoleSwapEq (rb r2, ra, r4) = 

{ 
(ra = r1 1\ r4 = r2) V (ra = r2 1\ r4 = r1) 
ra = r4 V -.Distinguishable (ra, r 4, State) 

if ra E {rb r2} V r4 E {rb r2} 
otherwise. 

(A.l3) 

In case the relation elements are sequences T1 and T2, role swap equality is only achieved 
if all the corresponding sequence elements are again role swap equal. This results in the 
following definition 

RoleSwapEq(rbr2,T1,T2) = IT1I = IT2IA 
\:/i: 1 ~i~ IT11: RoleSwapEq(rbr2,T1.,T2;). (A.l4) 

Role swap equality of two sets S1 and S2 requires every set element to have a corresponding 
role swap equal element in the other set. This is represented by the following definition 

RoleSwapEq(ri, r2, SI, S2) = (Vel E sl : 3e2 E s2: RoleSwapEq(rl, r2, el, e2))A 
(Ve2 E S2: 3e1 E S1 : RoleSwapEq(r1,r2,e1,e2)). (A.l5) 

In Chapter 4 we have informally established the (in)distinguishability of the raw data 
identifiers "spec" and "opt" using the DDS relation rather than the DDS state itself. 
We will now show why this is allowed. Using the definition of State and Equation A.8, 
Distinguishable (r1 , r2 , State) can be rewritten as follows 

Dist inguishable (r1 , r2 , State) 
= Distinguishable (r1 , r2 , < Raw, Rld, Attr, Rel >) 
= Distinguishable(r1,r2,Raw) V Distinguishable(r1,r2,Rld)v 

Distinguishable (r1, r2, Attr) V Distinguishable (rb r2, Rel) . 

(A.l6) 
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Using Equation A.2 and Equation A.ll it can easily be shown that 
Distinguishable ( rt, r2 , Attr) wil! never hold, because none of the elements of the attribute 
set Attr are able to distinguish between r 1 and r 2 . In case r 1 and r 2 are both raw data iden
tifiers, the same wil! hold for Distinguishable (r11 r2 , Raw ). For Distinguishable (r1. r2 , Rld) 
there are three possibilities: neither r 1 nor r 2 belong to Rld, only one of r 1 and r 2 is an el
ement of Rld and both r 1 and r 2 are contained in Rld. In the first case neither Rld nor Rel 
will distinguish between r 1 and r 2 , because these raw data identifiers do not occur in these 
relations. In the second case Rld will distinguish the raw data identifier occurring in it 
from the other identifier not betonging to this set. Therefore, Distinguishable (r 11 r 2 , State) 
wil! hold independent from Rel. In the last case, in which both identifiers belong to Rld, 
Rld does not distinguish between r 1 and r 2 , so Distinguishable(r1 , r 2 , State) is equal to 
Distinguishable ( r 1 , r2 , Rel). A similar reasoning holds with respect to the raw data set 
Raw if both n and r 2 are raw data. 

In our examples, "spec" and "opt" both occur in the DDS relation, which is only allowed 
if they also occur in Rld. So for these examples it makes no difference if we establish the 
distinguishability of "spec" and "opt" with respect to the DDS relation or the DDS state 
itself. 

In Chapter 4 we have informally argued that "spec" and "opt" can be distinguished within 
the context of DDS relation 4.30. We will now formally proof that 

Distinguishable(spec,opt,Re0 

holds for this DDS relation, which is given by 

Rel= 
{ <AttrRJdMap, P((Design x Type) x Rld), 

{ <<ALU,OmaDes>,spec>, <<ALU,OmaDes>,opt>, 
<<library,OmaLib>,lib>, <<ALU,OmaRep>,rep> }>, 

<Version-of, P( OmaDes x OmaDes), { <opt, spec>} >, 
<RidRawMap, P(Rld x Raw ), 

{ <spec,Spec>, <opt,Opt>, <lib,Lib>, <rep,Rep> }>} . 

(A.l7) 

The proof that this DDS relation distinguishes between "spec" and "opt" is given by 

(1) Distinguishable(spec,opt,opt) 
(2) Distinguishable(spec,opt,<opt, spec>) 
(3) Distinguishable(spec,opt,{ <opt, spec> }) 
( 4) Distinguishable( spec,opt, 

<Version-of, P(OmaDes x OmaDes), Version-of>) 
(5) -. RoleSwapEq(spec,opt, 

<Version-of, P(OmaDes x OmaDes), Version-of>, 
<AttrRidMap, P((Design x Type) x Rid), AttrRldMap>) 

(6) -. RoleSwapEq(spec,opt, 

A.2 
1, A.8 

2, A.ll 

3, A.8 

A.12, A.l4 
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<Version-of, P(OmaDes x OmaDes), Version-of>, 
<RidRawMap, P(Rid x Raw), RldRawMap>) 

(7) Distinguishable( spec,opt,ReQ 
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A.12, A.l4 
4, 5, 6, A.ll 

Note that we have introduced the shortcuts Version-o/, AttrR/dMap, and R/dRawMap 
for the representations of the "Version-of', "AttrRidMap", and "RidRawMap" relations, 
respectively. 

As we have informally demonstrated, the design data store will not be able to distinguish 
between the input design "spec" and the optimised design "opt" in case ofthe DDS relation 
4.29, which is given by 

Rel= 
{ <AttrRidMap, P((Design x Type) x Rld), 

{ < <ALU,OmaDes>,spec>, < <ALU,OmaDes>,opt>, 
<<library,OmaLib>,lib>, <<ALU,OmaRep>,rep> }> 

<RldRawMap, P(R/d x Raw), 
{ <spec,Spec>, <opt,Opt>, <lib,Lib>, <rep,Rep> }>} . 

The proof is as follows 

(1) Distinguishable(spec,opt,<<ALU,OmaDes>,spec>) A.2, A.S 
(2) Distinguishable(spec,opt,<<ALU,OmaDes>,opt>) A.2, A.S 
(3) ..., Distinguishable(spec,opt,<<library,OmaLib>,lib>) A.2, A.S 
(4) ..., Distinguishable(spec,opt,<<ALU,OmaRep>,rep>) A.2, A.S 
(5) RoleSwapEq(spec,opt,<<ALU,OmaDes>,spec>,<<ALU,OmaDes>,opt>) 

A.12, A.13, A.14 
(6) ..., Distinguishable(spec,opt,AttrRidMap) A.2 
(7) ..., Distinguishable(spec,opt,P((Design x Type) x Rid)) Proven later 
(8) ..., Distinguishable(spec,opt,AttrR/dMap) 1, 2, 31 41 5, A.ll 
(9) ..., Distinguishable(spec,opt, 

<AttrRidMap, P((Design x Type) x Rid), AttrRidMap>) 6, 7, 8, A.8 

To complete this proof we still have to verify that statement (7) holds. Because the proof 
is long but straightforward, we will only present an outline of it bere. The type of rela
tion "AttrRidMap" is the power set of the set (Design x Type) x Rld, meaning that it is 
represented by a set containing all possible subsets of this set. These subsets each group a 
number of sequences < < design, type >, rld >. lf one of the subsets contains a sequence 
< < design, type > 1 spec > and not < < design 1 type > 1 opt >, then it will distinguish be
t ween "spec" and "opt". However, because the type set contains all possible subsets, it will 
also contain an other subset, which equal to the one presented above, except for the occur
rence of < < design , type >, spec >, which bas been replace by < < design, type >, opt >. 
So for every subset distinguishing between "spec" and "opt" 1 there exists another role swap 



160 Raw data distinguishability 

equal subset. The result of this is that the type of relation "AttrRidMap" is not able to 
distinguish between "spec" and "opt". 

We have now proven that "spec" and "opt" can not be distinguished within the context of 
the "AttrRidMap" relation. We continue by showing that this also holds in the context of 
the "RldRawMap" relation. 

(10) Distinguishable(spec,opt,<spec,Spec>) A.2, A.8 
(11) Distinguishable(spec,opt,<opt,Opt>) A.2, A.8 
(12) --, Distinguishable(spec,opt,<lib,Lib>) A.2, A.8 
(13) --, Distinguishable(spec,opt, <rep,Rep>) A.2, A.8 
(14) RoleSwapEq(spec,opt,<spec,Spec>,<opt,Opt>) 

# • Distinguishable(Spec,Opt,State) A.13, A.14 
(15) • Distinguishable(spec,opt, RldRawMap) 

# --, Distinguishable(Spec,Opt,State) 10, 11, 12, 13, 14, A.ll 
(16) --, Distinguishable(spec,opt,<RldRawMap, P(Rid x Raw), RldRawMap>) 

# --, Distinguishable(Spec,Opt,Rel) A.2, see proof of 7, 16, A.8 
(17) --, Distinguishable(spec,opt,Rel) 

# --, Distinguishable(Spec,Opt,State) 9, 16, A.ll 
(18) • Distinguishable(spec,opt,Rel) 

# • Distinguishable(Spec,Opt,Rel) Both Spec and Opt belong to Raw 

So the raw data identifiers "spec" and "opt" are not distinguishable if and only if the 
corresponding raw data Spec and Opt are not distinguishable. The proof of the latter is 
given by 

(19) --, Distinguishable(Spec,Opt,<AttrRidMap,P((Design x Type) x Rid),AttrRidMap>) 
Spec and Opt do not occur in AttrRidMap 

(20) Distinguishable(Spec,Opt,<spec,Spec>) A.2, A.8 
(21) Distinguishable(Spec,Opt,<opt,Opt>) A.2, A.8 
(22) Distinguishable(Spec, Opt,<lib,Lib>) A.2, A.8 
(23) --, Distinguishable(Spec,Opt,<rep,Rep>) A.2, A.8 
( 24) RoleSwapEq( Spec, Opt, <spec,Spec>, <opt, Opt>) 

# --, Distinguishable(spec,opt,State) A.13, A.l4 
(25) --, Distinguishable(Spec,Opt, RldRawMap) 

# • Distinguishable(spec,opt,State) 20, 21, 22, 23, 24, A.ll 
(26) --, Distinguishable(Spec,Opt,<RidRawMap, P(Rid x Raw), RldRawMap>) 

# --, Distinguishable(spec,opt,State) A.2, see proof 7, 25, A.8 
(27) -, Distinguishable(Spec,Opt,Rel) 

# • Distinguishable(spec,opt,State) 19, 26, A.ll 
(28) • Distinguishable(Spec,Opt,Rel) 

# • Distinguishable(spec,opt,Rel) Both "spec" and "opt" belong to Rld 
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Equations (18} and (28) allow for two possible solutions: either "spec" can be distinguished 
from "opt" and Spec from Opt or "spec" is indistinguishable from "opt" just as Spec from 
Opt. So we are not able to prove or falsify -,flistinguishable(spec,opt,Rel). In cases like 
this, we will adapt the philosophy that data are indistinguishable until proven otherwise. 
Therefore we wil! conclude that for DDS relation 4.29 the following statements hold 

-,Distinguishable(spec,opt,Rel) . 

-,flistinguishable(Spec, Opt,Rel) . 
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Appendix B 

The relation operators 

In this Appendix the relation operators introduced in Chapter 4.2 wiJl be formally defined. 
For the addition to, deletion of and replacement of relation elements we define the addition 
operator.[.+.], the deletion operator.[!.] and the reptacement operator.[./.], respectively. 
When applied to a relation R, a relation element E and an address A, the addition operator 
wiJl result in a new relation, denoted by R[E +A], which is obtained from R by the 
addition of E at the location specified by A. The deletion operator will remove the relation 
elements selected by an address A from a relation R. The resulting relation is denoted by 
R[/A]. When applied toa relation R, arelation element E and arelation address A, the 
replacement operator will produce a new relation R[E /A], which is obtained from R by 
replacing the data stored at the locations specified by A by E. 

All these operators only change those elements of a nested relation selected by the cor
responding address. All the other elements will not be affected. The element selection 
procedure is the same for all operators. Fora relation R, an element/operator combina
tion EO which equals either E+, / or E/ and an address given by a sequence of n set 
or sequence addresses < Ab A2, ... , An >, the relation transformation performed by the 
operator is represented by the following recursive definition. If the relation is represented 
by a set S, then 

S[EO < A1, A2, ... , An >] 

{ eljel E SA •A1 (el)} U {el[ EO < A2 , ••• , An >]Jel ES A A1 (el)} . (B.l) 

Likewise, for a relation represented by a sequence T the relation transformation is repre
sented by 

{ 
Ti[EO < A2, ... ,An >] if A1(7i,i) 
Ti otherwise 

(B.2) 

for sequence index i (1 ::S i ::S JTI). So the operators will only affect those relation elements 
selected by set or sequence address A1• Furthermore, from these elements only those parts 
selected by the rest of the address < A2 , ••• , An > are changed. The recursion stops when 

163 



164 

the elements to be changed are selected. For the addition operator the complete address is 
used to select the set or sequence to which the element is to be added. For the deletion and 
the replacement operator on the other hand, the address will not select the set or sequence 
to be changed, but the set or sequence elements to be removed and replaced, respectively. 

When the selected element is a set S, then this set is changed as follows. In case of the 
addition operator, the complete address is used toselect S. So the recursion stops when the 
address sequence is reduced to the empty sequence ~:. The addition operator will change 
the selected set by adding E to it. This all is represented by 

S[E+~:] Su{E}. (B.3) 

In case of the deletion and the replacement operator, the set to be changed is selected by 
the first part < A1 , A2, ••• , An-l > of the address, after which the elements to be deleted 
or replaced, are selected using the last address An of the address sequence. This is reflected 
by the following definitions 

S[!An] = S \ S(An), and 

S[E/An] = S[/An][E + ~:] . 
(BA) 

(B.5) 

The last definition represents that, in case it is used to change the contents of a set, the 
replacement operation can be described in terms of the deletion and addition operator. 

When the selected relation is represented by a sequence T, the operator definitions become 
a little bit more complicated. The reason is that sequences not only group their elements, 
but order them as wel!. So addition of a sequence element wil! not only require the element 
to be added, but also the position at which this new element is to be inserted. Therefore, 
the element to be added E wiJl be a pair < pos, E' >, where pos (1 S pos S I Tl + 1) 
indicates the position at which element E' is to be inserted. Insertion of a sequence 
element at a certain position will result in an increase by one of both the sequence length 
and the index of the elements following the newly inserted element. The resulting sequence 
T[ < pos, E' > +~:] is defined as by 

{ 

T. if i< pos 
T[<pos,E'>+~:];= È' ifi=pos 

Ti-1 if i > pos 
(B.6) 

for all sequence indices i satisfying 1 S i S ITI + L 

Del et ion of the elements selected from a sequence T by the sequence address An will result 
in the sequence T[/ An] defined by 

T[/An]i Tj where •An('Ij,j) and j =i+ I{T~.:I1 S k <jA An(T",, k)}l, (B.7) 

representing that the index i (1 :<:::i S ITI-I{Tkll S k :<::: ITI AAn(Tk, k)}l) of the remaining 
elements is obtained from the original index j by decreasing it by the number of deleted 
elements (read satisfying predicate An) originally preceding it. 
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Reptacement by relation element E of the elements selected by the sequence address An 
will result in the sequence T[E/An] defined by 

T[E/A ]· = { E if An(~, i) (B.S) 
n • T;, otherwtse 

for 1 :Si :S ITI, representing that the new sequence was obtained from T by replacing the 
sequence elements addressed by An by the new value E. 
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