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A Preconditioning Technique for Inde�nite Linear

Systems

W�H�A� Schilders

Abstract

In this report we present a preconditioning technique which can be

used when solving symmetric inde�nite linear systems� in augmented

form� The coe�cient matrices in the resulting preconditioned systems

have eigenvalues with positive real parts� and a number of them are equal

to unity� When a special ordering is used� all eigenvalues are real�

� Introduction

Consider linear systems of the form
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where A is a positive de�nite n � n matrix� and B is an n �m matrix of full
rank	 Often� m � n	 By writing�
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we immediately see that the coe
cient matrix in ��� has exactly n positive and
m negative eigenvalues	 Therefore� the system is inde�nite	 In ��� �theoretical�
lower and upper bounds on these eigenvalues are given in terms of the extremal
eigenvalues of A and the extremal singular values of B	

Systems of the form ��� occur in the numerical solution of a large variety of
problems	 In fact� it is often the basic system of equations� containing relations
between di�erent kinds of unknowns and some conservation law	 Hence� it is not
surprising that many researchers have focussed their attention to the solution
of such systems	 In Iain Du��s paper �� a review of methods for augmented
systems can be found	 Roughly speaking� these methods can be divided into
two categories�

� range�space methods

� null�space methods

The former of these methods is probably the most wellknown� and also the
most obvious	 Namely� the unknown vector x is eliminated from the �rst set of
equations� making use of the non singularity of the matrix A�

x � A�� �b�By� �

�



This expression is substituted in the second set of equations� and leads to�

BTA��By � BTA��b� c�

This is an m � m positive de�nite system	 Unfortunately� the coe
cient ma�
trix is usually not sparse� even if M is a sparse matrix	 If an iterative solution
method is used� this complication can be avoided� since only matrix vector
multiplications are needed	 Indeed� multiplying a vector y by the coe
cient
matrix BTA��B involves two matrix vector multiplications �by B and BT � re�
spectively�� and one solution of a linear system	 This means that the iterative
solution method must contain an inner loop which solves systems with a coe
�
cient matrix A	 Unfortunately� iterative solution methods often converge within
a reasonable number of iterations only if some kind of preconditioning is used	
Most preconditioning techniques require the coe
cient matrix in closed form�
so that the possible bene�t of iterative methods sketched in the foregoing is lost	

From the foregoing it is clear that range�space methods may not be ideal for
solving systems of the form ��� in an e
cient way	 Therefore� we now turn to
the second class of methods for solving augmented systems� the so�called null�
space methods	 These methods are based on the observation that� instead of
eliminating x from the system� one may also eliminate the unknown vector y	
This can be done in the following way	 First we observe that a special solution�
Bby� of the system

BTx � c�

can be found by solving the system

BTBby � c�

Here� the assumption that B has full column rank �rank�B� � m� is needed	
Using this special solution� we �nd that x must satisfy

BT �x �Bby� � ��

so that x � Bby must be in the null�space of BT 	 Suppose now that a basis
for the null�space is known� fc�� ���� cn�mg	 Then there exist coe
cients z��
			�zn�m such that

x�Bby �

n�mX
i��

zici� ���

Denoting the matrix with columns c��			�cn�m by C and the vector of unknown
coe
cients zi by z� ��� can be rewritten as�

x � Cz�Bby�
Substituting this in the �rst set of equations� we then �nd�

ACz �By � b�ABby�
If we now multiply this equation by CT � and make use of the fact that CTB � ��
we �nally obtain

CTACz � CT �b�ABby��
�



which is an �n�m�� �n�m� system of equations for the unknown vector z	 As
in the case of the range�space methods� the coe
cient matrix CTAC is positive
de�nite and symmetric	 If both C and A are sparse� the coe
cient matrix will
also be sparse	 Again� problems similar to those described for the range�space
methods occur� preconditioning of the system usually requires the coe
cient
matrix in closed form	 Fortunately� however� it is sometimes possible here to
directly assemble the matrix CTAC	 This is the case� for example� in electrical
circuit simulation	 The matrix BT then contains information about the topology
of the circuit� and its null space consists of so�called loop currents which can be
readily identi�ed	 This also holds in certain areas of electromagnetics ��	

From the foregoing it is clear that both range space methods and null space
methods su�er from the problem that the coe
cient matrix is not known ex�
plicitly� but only as a product of matrices	 This makes preconditioning rather
di
cult	 In some cases� successful approaches have been described	 For the
bi�harmonic equation� the product BTB is a matrix which closely resembles A�
so that BTA��B is a good approximation of the identity matrix	 In this case�
the range space method works reasonably well	 For most other cases� however�
we must resort to di�erent strategies for preconditioning	 In the next section�
we will describe a new preconditioning technique for augmented systems� and
prove a number of attractive properties of this method	

� A new preconditioning technique

The basic idea of the preconditioning method is to construct a preconditioning
matrix which has the same number of positive and negative eigenvalues as the
original matrix	 If this is the case� it may be expected that the coe
cient
matrix of the preconditioned system �which is the inverse of the preconditioning
matrix applied to the original matrix� only has positive eigenvalues� so that
conjugate gradient type methods can be applied	 The problem is whether the
aforementioned goal can be achieved	 Fortunately� it can be shown that this
is the case for the method developed	 In the following� the method will be
described� and a summary of theoretical results obtained will be given	

Consider the matrix

M �

�
A B

BT �

�
�

where A � Rn�n is symmetric and positive de�nite� and B � Rn�m such that

Bi�j � f��� �� �g ���i�n���j�m�

where m � n	 In addition� we assume that each row of B contains at most two
non�zero elements of opposite sign�
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Finally� we also assume that rank�B� � m	
Now let P � f�� ���� ng � f�� ���� ng be a permutation with the property that

BP �i��i �� �� i � m�

Then we de�ne the permutation matrix Q by

Q �
�
eP ���� en��� ���� eP �m�� en�m� eP �m���� ���� eP �n�

�
�

where ei � Rn�m is the i�th unit vector	
After permutation of rows and columns� we obtain the matrix

�M � QTMQ�

the �diagonal� of which being of the form

�diag�� �M��
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Systems of the form
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In order to �nd a suitable preconditioning technique for the inde�nite system
���� we �rst transform it into the form ��� and propose a generalised incomplete

�



Crout preconditioning for this system	 After having found this� the precondi�
tioning matrix is transformed back	

The preconditioning matrix for the system ��� is cast into the form

P � ��L� �D� �D����L� �D�T � ���

where

�L � �lower�� �M��

and
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Here� �lower� is to be understood in a sense which matches �diag�	 This means
that �L consists of blocks �Li�j which are in R	�	 if � � j � i � m� in R	�� if
m � � � i � n� � � j � m and in R��� if m � � � j � i � n	 In the �rst of
these cases� it is easy to check that

�Li�j �
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BT
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The matrices �D�� ���� �Dm and the scalars �dm��� ���� �dn are required to be such
that

�diag�
�
��L� �D� �D����L� �D�T

	
� �diag�� �M��

Lemma ��
There exist �d�� ���� �dm such that� for � � i � m�
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Proof�
The proof proceeds by induction	 It is easily veri�ed that
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so that �d� � AP ����P ���	 Now assume that �D�� ���� �Di�� are of the desired form

�where � � i � m�	 Then �Di is determined by the condition
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By the induction hypothesis and the fact that B	
P �j��j � � for all � � j � m� we

�nd that
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Hence�
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Now suppose that BP �i��jBP �j��jBP �j��i �� �	 Then BP �j��i �� � and BP �i��j ��
�	 By assumption on the permutation� we also have that BP �i��i �� � and
BP �j��j �� �	 Thus� BP �j��j and BP �j��i are the only non zero elements in the
row P �j�� whereas BP �i��j and BP �i��i are the only non zero elements in row
P �i�	 Hence� either subtracting or adding these rows leads to a row consisting
entirely of zeroes	 This contradicts the assumption that rank�B� � m	 Thus�
BP �i��jBP �j��jBP �j��i � �� and we conclude that
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with
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B	
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This completes the proof	

Remark ��
The above lemma demonstrates that it is possible to �nd the �rst n ��� blocks
in the preconditioning matrix	 The remaining part of the preconditioning may
be constructed in several ways� depending on properties of the original system	

Remark ��
The constraints on the matrix B can be somewhat relaxed� if� after permutation�
the top part �of dimension m �m� is a non�singular lower triangular matrix�
the lemma also holds	

Remark ��
If B has the properties listed in the above� it can be shown that a permutation
matrix Q exists which renders the top part of the matrix B lower triangular	

The linear system to be solved is now multiplied by the preconditioning ma�
trix as given in ���� so that a system with coe
cient matrix P��M has to be

�



solved	 Note that� due to the fact that this matrix will not be symmetric in
general� the �symmetric� conjugate gradient method cannot be used	 Hence�
CGS� biCGSTAB or related methods must be used	 Notwithstanding the fact
that these methods are designed to solve nonsymmetric systems of equations� a
desirable property is that the eigenvalues of the coe
cient matrix are all located
in one half plane through the origin	 Fortunately� it turns out that the matrix
P��M has this property	 In fact� a detailed analysis reveals the following facts�
which have been proven theoretically under the assumption �this is not a limita�
tion in view of Remark �� that the top part of the matrix B is lower triangular
�after permutation��

� the matrix P��M has at least �m eigenvalues � � �

� if the preconditioning of the remaining �n � m� � �n � m� part of the
matrix exists� all eigenvalues of P��M are real and positive

If the matrix B does not have the form indicated� the �rst of these facts remains	
However� pairs of complex conjugate eigenvalues may occur	 From experiments
it follows that the real parts of these eigenvalues are again positive� however�
this has not yet been veri�ed theoretically	 The proof of the above facts is rather
involved� and will be published in a forthcoming report	

� Conclusion

From the discussion above� it follows that the proposed preconditioning tech�
nique has desirable properties� and is very suitable for linear systems in which
the coe
cient matrix is inde�nite	 Because matrices arising in circuit problems
are of a similar structure� the preconditioning technique can easily be generalised
to this case	

The method can not only be used for preconditioning purposes� it can also
be used to avoid pivoting in direct solution methods� since the � � � diagonal
blocks are always non�singular and can serve as �� � pivots	 In this sense� the
method resembles that of Bunch�Kaufman�Parlett ��� but in this more general
method the number of ��� pivots is not known and must be determined during
the solution process	 The advantage of our method is that it is known a priori
how many �� � pivots are necessary	
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