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2) Remark 3 is unnecessary because the stability criterion in 
this case will have a range of frequency between 0 and 2-rr. 

VII Concluding Remarks 

A numerical approach to model-matching controller syn­
thesis has been introduced. The method is applicable when 
the system is open-loop stable and redundantly actuated. 
The major merits of the method are as follows. 

1) The closed-loop system equation may be arbitrarily 
assigned. 

2) Explicit knowledge of an open-loop model is not 
needed for the controller synthesis. 

3) The workability of the designed controller may be 
verified during the synthesis process, even in the ab­
sence of an open-loop system model. 

Admittedly, the need for two input channels is certainly 
a disadvantage for the method. However, this disadvantage 
is balanced to some extent by the fact that the minimum 
phase requirement in the open-loop system is lifted in cases 
where redundant inputs are available. 
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A P P E N D I X 

The Existence of Rt(s) and R2(s) 
Because G(s) = g(i)8(*), (4) implies that 

B^R^s) + B2{s)R2(s) = A(s)@(k). (A.l) 

To show that the pair R{(s) and R2(s) always exists for any 
arbitrary §(s), express Bx(s) and B2(s) in the following form 

* i ( ' ) = i > u * " " ' ' and B2(j) = X V " 
1=0 ;=o 

and form the (m + n + 1) x 2(m + 1) matrix 

SB„ 

K 0 

Kn 

'2,0 

* 1 . 0 b2,n 

K* 

'2,0 

K-n 

If %m is column singular, then it is always possible to satisfy 
Bx(s)Rx(s) + B2(s)R2{s) = 0 with some nonzero R£s). How-

B2(s) 
- Given a coprime B,(s) pair, this is possible only if 
m >n. 

Since ffim is square when m = n - 1, a full rank (Rj;_l is 
guaranteed. And for any m>n - 1, an additional 2(m - n 
+ 1) columns will be added on to SBm. At the same time, m 
- n + 1 linearly independent rows will also be introduced 
into the matrix. Thus, the full rank of S8m will be maintained 
for all m > n - 1 and the arbitrary placement of B^R^s) 
+ B^R^s) is ensured. 

Two final comments should be made. First, if desired @(s) 
happens to be inside the column space of SBm> (A.l) can also 
be satisfied for m < n - 1. In general, then, m > n - 1 is a 
sufficient but not a necessary conditions for (A.l) to be 
satisfied. Second, the lowest possible value of m in (A.l) 
will occur when Q(s) = 1 and thus when m = n - n. In 
general, then, it is necessary that m > max(n -n, n - 1). 

An Optimal Estimation Method for 
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Systems 
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This paper presents an optimal estimation method for nonlin­
ear mechanical systems. The a priori knowledge of the sys­
tem in the form of a nonlinear model structure is taken as 
a starting point. The method determines estimates of the 
parameters and estimates of the positions, velocities, accel­
erations, and inputs of the system. The optimal estimation 
method is applied to an experimental mechanical system. 
The unknown parameters in this system relate to inertia, 
friction and elastic deformation. It is shown that the optimal 
estimation method on the basis of a relatively simple model 
structure can lead to a useful description of the system. 

1 Introduction 

The subject of this paper is the development of an estima­
tion method for non-linear mechanical systems. Attention 
will be focused on mechanical systems that have to be con­
trolled to obtain the system behavior desired, such as manip­
ulators. Control design requires a mathematical model of 
the system to take into account the system dynamics. 

For mechanical systems an adequate model structure can 
usually be derived by theoretical modeling: simplifying as­
sumptions are made and physical laws are applied. A model 

ever, for this equation to hold true requires that 
R2{s) 
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structure thus obtained contains a number of variables and 
parameters. Variables are positions, velocities, accelerations 
and control inputs acting on the system, such as forces and 
torques. Parameters are physical constants such as mass, 
stiffness etc. The variables and parameters have to be deter­
mined by estimation, i.e., the confrontation between mea­
surements on the system and the theoretical model. Measure­
ments can be any combination of measured variables and/ 
or measured parameters. Because of the physical relevance 
of the model structure, the estimated model may be expected 
to be more or less generally valid, i.e., to provide an adequate 
description of the system behavior for different input signals. 
For this reason, this model structure will be taken as a 
starting point for further considerations. 

The theory presented in this paper shows a number of 
differences with most methods in literature. 

In literature the difference between model and system is 
often considered as a stochastic model uncertainty (e.g., 
Eykhoff [1]). However, for mechanical systems the assump­
tion of stochastic model uncertainty is mostly not founded. 
During the modeling stage simplifications are made which 
usually lead to a mainly deterministic difference between 
system and model. The quality of the estimated model can 
be judged by making a residual analysis and finally by 
looking at the obtained control result. 

Two approaches for nonlinear models are often found in 
literature: linearization and transformation of the nonlinear 
model into a linear one. The idea is that, once the problem 
has been translated into a linear one, all available estimation 
methods for linear models can be used. Linearizing the 
model, however, always implies neglecting higher-order 
terms and may fail when strong non-linearities are involved. 
Transformation has been successfully applied in control 
practice (Isidori [2]), but has turned out to be a complicated 
matter in estimation because of the strong restrictions im­
posed on the model in question (e.g., Misawa and Hedrick 
[3]). For this reason, this paper aims at solving the estimation 
problem using the non-linear model itself. 

Estimation of variables and estimation of parameters are 
usually treated as separate problems. In general, however, 
model variables as well as model parameters will be un­
known. The estimation method discussed in this paper, there­
fore, provides estimates for all model quantities. 

A specific feature of the theory in this paper is the combi­
nation of the above aspects within one theoretical 
framework. 

In Section 2 of this paper a general model structure for 
mechanical systems will be discussed. In Section 3 the esti­
mation problem will be further elaborated. A numerical solu­
tion will be given. In Section 4 the theory will be applied 
to a non-linear mechanical system. Section 5 will show the 
conclusions. 

2 The Estimation Model 

2.1 The Dynamic Model. Generally the mechanical 
systems in question can be descibed by using a mathematical 
model of the following form (Heeren [4], Paul [5]): 

s = v ; v = a ; 6 = 0 (1) 

M(s, e, t)a + h(s, v, G, 0 + H(s, v, 0, t)u = 0 (2) 

y = b(s, v, 0, u, a, t) (3) 

Here, s is the n column with degrees of freedom (positions), 
v is the n column with the first time derivative of s (veloci­
ties), a is the n column with the first time derivative of v 
(accelerations) and G is the/? column with unknown, constant 
parameters. At the modeling stage, the model parameters 
6 represent physical system properties, such as mass and 
stiffness. Column u is the m column with adjustable system 
inputs to control the system. As inputs, quantities will be 
chosen that can directly be associated with degrees of free­
dom, such as actuator forces. Because of this, the equation 
of motion (2) can be assumed to be linear in u. In Eq. (2), 
M is the n x n mass matrix, h is the n column containing 
nonlinear terms, such as Coriolis and centrifugal forces, the 
effect of gravity and damping, and H is the n x m distribution 
matrix. In Eq. (3), y is the q column with controlled outputs 
defined by q column b with nonlinear functions of the model 
variables and the independent time variable tit e [t0, te]. 
Appropriate initial conditions for Eq. (1) are assumed. Eq. 
(2) is, in general, strongly nonlinear in the model variables 
and often linear in the parameters. However, from the estima­
tion point of view the degree of nonlinearity of Eq. (2) is 
increased by the presence of combined terms of variables 
and parameters. 

2.2 The Measurement Model. The model should ac­
curately predict the outputs y resulting from the inputs u. 
In most cases, column y should track a desired trajectory in 
space (control objective). It seems obvious, therefore, that 
the inputs and outputs of the system should be measured 
for the purpose of the estimation. The inputs can usually be 
measured without difficulty, but measuring the controlled 
outputs is not always feasible. For instance, problems may 
arise when the end-effector position of a manipulator is 
measured. In addition, the a priori knowledge in the form 
of Eqs. (1) and (2) should be used. In general, a unique 
estimation of the model quantities will require other mea­
surements besides those of the inputs and outputs. This 
comes under the observability problem, a mathematical treat­
ment of which can be found, for instance, in Walter [6] and 
Tunati and Tarn [7]. The quantities playing a role in the 
model, including the inputs and outputs of the system, 
should, as far as possible, be measured. A model that fits 
the measurements well is expected to describe the input-
output relation accurately, if the measurrements are taken 
under circumstances similar to the final control situation. 

In general, knowledge of the measured quantities will 
result in a model of the following form: 

z = g(s, v, G, t) + G(s, v, G, t)a + R(s, v, 0, t)u (4) 

where z is the / column with model measurements, g is an 
/ column, G is an / x n matrix and R is an / x m matrix. 
The controlled outputs y are not necessarily part of the model 
measurements z. Equation (4) does not correspond to the 
standard form in literature, due to the presence of accelera­
tions a. They could be eliminated by using the equation of 
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motion (2). However, in this paper accelerations are being 
handled directly, just like the other variables. 

The combination of Eqs. (1) and (2) and Eq. (4) is called 
the system model. The system model is assumed to be linear 
in u. This assumption, which, in general, does not play a 
restrictive role for the systems in question, substantially 
simplifies the mathematical elaboration. 

2.3 Estimation. The objective is to find values of 6 
for which the system model best describes the measurement 
data. From Eqs. (1), (2) and (4) it is evident that the choice 
of 0 cannot be seen separate from the choice of s(t0), v(t0) 
and u. These quantities have to be estimated, too. In general, 
it is impossible to choose quantities G s(f0), v(f0) and u that 
result in perfect match between the model quantity z and 
the measurements zm. The model and the measurement data, 
therefore, will be made to coincide as far as possible. For 
that purpose the estimation model is introduced: 

s =v + £,; v =a + £2; G = £3 (5) 

M(s, G, t)k + h(s, v, G, t) + H(s, v, 6, t)u = £, (6) 

z = g (s , v , 6 , t) + G(s, v , G , O a 

+ R(s,v,Q,t)u;zm = i + t,2 (7) 

where s, v, 6, u and a are estimators of s, v, 6, u and a, 
z is an estimator of the measured quantities z and £1( i;2, ij3, 
£j and £2 are residuals. Estimates s, v, G, u and a should 
be such that the smallest possible residuals are obtained to 
ensure that the measurements are optimally explained by 
the model. 

The estimation model can be formulated more compactly. 
For this purpose, the augmented state estimator x and the 
augmented input estimator p are defined as xT = [s v G] and 
pT = [u a]. Now, it is clear that Eq. (5) is equivalent to: 

x = Ax + Bp + £; A •• 
0 1 0 
0 0 0 
0 0 0 

0 
0 
0 

0' 
I 

0 
; « = 

riii 
€2 
€3 

B = 

Furthermore, Eqs. (6) and (7) can be formulated as: 

Ezm = f(x,t) + F(x,t)p+^, 

[h(x,t)l 

(8) 

E = 

F(x,t) = 

1 = 

f (x ,0 = g (x ,0 
H(x,t) M(x,t)' 
R(x,t) G(x,t)_ 

£1 
C2 

(9) 

The problem now is to determine quantities x and p that 
minimize i; and £. 

3 Solution to the Estimation Problem 

3.1 Optimal Estimation. The estimation model (8), 
(9) is taken as a starting point. The aim is to find estimates 
x and p for which the residuals are as small as possible. 

This can be mathematically formulated as follows: find X(T) 
and P(T) IT e [f0, f] for which cost functional 

/ [x , P ]=0 gT(T)W(T)i(T) + j£7(T)V(T)£(T)} dl + 

+ 2[*('o)-qo]rflo[x('o)-qo] (io) 

is minimized under the constraint Eqs. (8) and (9). Here, 
W(T) is a positive definite weighting matrix expressing confi­
dence in Eq. (8), V(T) is a semi-positive definite weighting 
matrix expressing confidence in Eq. (9), q0 is a column 
representing initial knowledge about x (t0) and RQ is a positive 
definite weighting matrix expressing confidence in q0. The 
weighting matrices have to be non-negative definite to guar­
antee the existence of a minimum. Matrix Wmust be positive 
definite, otherwise the physical coupling of the state esti­
mates according to Eq. (1) would be lost and a unique 
solution would no longer be guaranteed. Matrix V may be 
semi-positive definite as long as matrix FTVF is regular. 
The weighting matrices can be chosen symmetric without 
loss of generality. In most cases they will be chosen diagonal. 

A necessary, but not sufficient condition for J to be mini­
mal is 8/ = 0 V ox, 8p. Assuming that the function f and 
F are differentiable at least once, the following results are 
obtained: 

x =Ax +Bp + W^k (11) 

\ =-ATk - CTV[Ez - f - Fp]; C = Z-T + ̂ r p (12) 
ox ox 

p = (FTVFyl[BTk + FTV(Ez - f)] (13) 

with boundary conditions k(t0) = R0[x.(t0) - q0] and k(t) = 
0. Column k contains the so-called Lagrange multipliers or 
co-states. For simple notation, the function arguments have 
been omitted. Equations (11) to (13) hold for all TIT e [t0, 
t\. The relation between £ and A. is shown by comparing 
Eq. (8)andEq. (11). 

Solving this Two-Point Boundary Value Problem 
(TPBVP) yields smoothed estimates X(T) and p(-r). The 
Jacobian of the differential Eqs. (11) and (12) is a Hamilton 
matrix. Consequently, numerical integration of Eqs. (11) 
and (12) in the same direction is unstable and standard 
shooting methods cannot be used (Jacobson and Mayne [8]). 
Various numerical methods have been proposed for nonlin­
ear TPBVP's, such as difference methods, multiple shooting 
methods and forward-backward shooting methods. In this 
paper the first-order approximation as proposed in [9] is 
used. 

4 An Example 

4.1 The xy-Table. The system considered in this sec­
tion is a so-called xy-table. A detailed description can be 
found in Heeren [4]. A schematic representation is given in 
Fig. 1. Two parallel slideways each support a slide. They 
are connected via belts to a torsion-flexible spindle, which 
is driven by motor 1. A third slideway rests on the slides and 
supports the end-effector, which is belt-driven by motor 2. 

The aim is to find a model of the xy-table for control 
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Fig. 1 The xy-tab\e: model, measurements and desired path 

<P, angular position of motor /, 
( = 1 , 2 

<P3 angular position of spindle 
end 

/, current of motor / 
J, rotation inertia of motor / 
m, mass of slide 
m, mass of transverse slideway 
m. mass of end-effector 

k stiffnessofspindle 
iv, friction torque of motor / 
g, motor constant of motor / 
d distance between parallel 

slideways 
/ length of transverse 

slideway 
r radius of belt wheels 

design. The position of the end-effector is defined as the 
controlled output and the motor currents as the control inputs. 
The motor currents should be such that the end-effector 
follows the path shown in Fig. 1. 

4.2 The Model. The belts are assumed to be rigid. 
Furthermore, it is assumed that there is no play between the 
construction parts. The rotation inertia of the belt wheels is 
neglected. Friction in the system is assumed to occur mainly 
in the motors and to a lesser extent in the contact areas 
between belt and belt wheel and in the sliding contact areas. 
Only dry friction is modeled. It is assumed that there is a 
linear, static relation between the motor current and the 
generated torque. 

The equation of motion for the above model is given by 
Eq. (2) where sT = [cpt cp2 <p3] and uT = [ix i2]. The formula 
manipulation software package MAPLE (MAPLE Reference 
Manual [10]) is used to derive the equation of motion using 
the Lagrange equation. Terms in h are due to friction and 
to the deformation of the spindle. More details about M, h 
and H are given in [9]. Parameters / , and J2 are considered 
to be unknown, because they should also allow for all inertia 
in the vicinity of the motors (encoders, transmissions etc.). 
Friction forces w{ and w2 are difficult to measure locally 
and are unknown. Stiffness k of the spindle is also regarded 
as an unknown parameter. So, the unknown parameters read 
0 r = [/j J2 W; vv2 k\. Column 6 will be determined by means 
of optimal estimation. 

The desired path is approximately realized by using a 
simple PD feedback of the position and velocity errors of 
the motors. An experiment is performed in which the end-
effector travels along the desired path six times forward 
and backward. The following quantities are measured as a 
function of time (see Fig. 1): 

1. the position of the end-effector: zx = xe and z2 = ye, 

2. the acceleration of the end-effector: z3 = at and z4 = ah 

3. the angular position of the motors: z5 = cpj and z6 = 
<p2

 a n d 
4. the motor currents: z7 = it and z8 = iv 

The position of the end-effector is measured by an optical 
system (Heeren ([4]). The measurements can be written in 
the form of Eq. (4). More details about g, G, and R are 
given in [9]. 

The experiment has been repeated several times. The dif­
ferences between the realizations are very small, which em­
phasizes the deterministic nature of the system. The measur­
ing equipment is accurate enough to be assumed ideal 
(Vincent [11]). 

Yet, values must be chosen for column q0 and weighting 
matrices W, V, and R0. The elements of q0 relating to posi­
tions and velocities are chosen equal to the desired values 
at T = tQ. The elements relating to inertia are taken from the 
motor specifications and the elements relating to friction in 
the system by means of simple experiments. An initial value 
for the unknown stiffness is calculated by using a standard 
formula for a steel torsion strip (linear material behavior). 
This results in: q j = 

60 60 0 0 1.280-10-3 0.60010"4 0.370 0.080 0.460 
rad rad rad/s rad/s kgm2 kgm2 Nm Nm Nm/rad 

As can be seen in q0, the model quantities strongly differ 
in magnitude. This complicates the choice of the weighting 
matrices. An attempt is made to choose the matrices in a 
more or less systematic way. First, the order of magnitude 
of the separate terms in the equations weighted is determined 
by looking at the measurement data and the initial parameter 
estimates. Next, the reciprocal value of the square of the 
order of magnitude is taken as a basic value for the corre­
sponding weighting factor. Now, all terms in the functional 
are of the same order. Next, if necessary, relative differences 
between the weighting factors can be introduced. This strat­
egy leads to the matrices given in [9]. Relatively heavy 
weight is attached to the measurements, because they repre­
sent the inputs and outputs of the system. Matrix RQ is chosen 
small, especially with respect to the parameter estimates. 
So, the optimal smoother is free to choose its own initial 
estimates. 

4.3 Results. Consider the time interval T e [t0, te] 
where t0 = 3.33 s and te = 4.99 s. This interval corresponds 
to one upward and one downward part of the trajectory. 
This—fairly arbitrary—choice is made to reduce the compu­
tational effort required for estimation, while it is expected 
that physically relevant parameter estimates obtained on this 
part of the trajectory will be suitable for the other parts, too. 

The following parameter set is obtained: 

e' 
2.09910-

. kgm2 
1.437-10-4 0.468 

kgm2 Nm 
0.151 
Nm 

0.245 
Nm/rad 

Position estimates cp,, cp2, and cp3 are shown in Fig. 2. The 
difference between cp, and cp3 represents the elastic deforma­
tion of the spindle. The residuals on the end-effector position 
measurements are shown in Fig. 3. They are the same order 
of magnitude as the elastic deformation. The same applies to 
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the motor position measurements. However, the deformation 
itself has been qualitatively well observed, as illustrated by 
Fig. 4, which shows the differencexe -<$xr, estimated as well 
as measured. The stiffness estimate, therefore, is expected to 
be physically relevant. Figure 4 also shows that the model 

lacks damping of the spindle vibration. Velocity estimates 
«!, a)2, and w3 and the corresponding elements of 4 are 
shown in Fig. 5 and acceleration ijjj, ty2, and ^3 and the 
corresponding elements of £ are shown in Fig. 6. The input 
estimates almost coincide with the measurements, and the 
residuals on the equations of motion are small. The residuals 
on the position measurements indicate that there must be 
some non-modeled dynamics in the system with a significant 
effect on the end-effector position. It is not difficult to find 
these in the system: the belt ends are joined together in a 
pre-stress unit between springs under each slide (Heeren 
[4]). The slides can easily be displaced over 5 mm by hand, 
while the belts are kept in place. This may explain the lower 
stiffness estimate, because this estimate may represent a 
global stiffness for serial springs. 

• From the above results it can be concluded that the rela­
tively simple model structure chosen is capable of describing 
the measurement data to a considerable extent, using the 
above parameter values. The model can be improved by 
adding degrees of freedom for the non-modeled deforma­
tions in the system. This will not be done here, because the 
estimation would be substantially complicated. Moreover, 
the damping of the flexible spindle could be modeled. How­
ever, the estimated model is useful for controller design, 
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because a great part of the input required for tracking the 
desired path can simply be calculated from the model, reduc­
ing the feedback effort of the controller. 

5 Conclusions 

An estimation method for nonlinear mechanical systems 
has been developed that takes into account the a priori knowl­
edge of the system in the form of the equations of motion 
and the measurement equations. The method determines 
estimates of the unknown model parametes and of the model 
variables, i.e., positions, velocities, accelerations and inputs, 
such as forces and currents. The estimates are optimal, i.e., 
they minimize the model residuals, given the measure­
ment data. 

The optimal estimation method is capable of detecting 
model errors, because different weights can be applied to 
the model equations. After the model error has been detected, 
the corresponding equations can be corrected or ignored, 
provided that observability is preserved. 

It is possible that different choices for q0 result in different 
local minima of J. Thus, the choice of q0 may be crucial, 
depending on the robustness of the optimal estimation con­
cept, which cannot yet be assessed. The cases studied did 
not show convergence problems, however, convergence is 
expected to be a potential problem in some cases. If so, other 
numerical methods for solving TPBVP's may be suitable for 
the problem at hand. 

In order to verify the practical use of the optimal estima­
tion method an existing mechanical system, i.e. an xy-table, 
has been looked at. The relation between motor currents and 
end-effector position obtained by the optimal estimation 
method shows residuals of less than three percent. The elastic 
deformation of the spindle has been qualitatively well ob­
served. On the basis of the residuals it is expected that a 
controller based on the estimated model can take into account 
the inertia, friction and deformation in the system. A residual 
analysis revealed some non-modeled dynamics in the sys­
tem. If necessary, the model structure can be improved. 

To conclude, it should be noted that the optimal estimation 
concept described in this paper can probably be applied to 
a much wider range of systems, for instance, in the field of 
process control and estimation of material models. 
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Sufficient Conditions for Monotonic 
Discrete Time Step Responses1 

Bernardo Leon de la Barra2 

Simple sufficient conditions for monotonic discrete time step 
responses are obtained and expressed in terms of the relative 
locations of discrete time zeros and poles. Frequency domain 
arguments are also introduced to complement these condi­
tions. Simple examples are used to illustrate the main issues. 

1 Introduction 

Some very recent theoretical contributions have been 
made on the design of nonovershooting, or overshoot 
bounded, discrete time control systems. For example, 
Deodhare and Vidyasagar (1990,1992) have applied infinite 
linear programming techniques to the design of nonover­
shooting discrete time control systems when the reference 
signal is a step. Dahleh and Pearson (1988) studied the more 
general problem of minimizing the amplitude of a regulated 
output, due to a specific bounded input, also in a SISO 
discrete time setting. Moreover, Moore and Bhattacharyya 
(1990), and Hill and Halpern (1993), considered discrete 
time controller design for minimal overshoot by making 
use of additional linear programming techniques. However 
valuable, these contributions do not offer a clear picture of 
how and to what extent variations in the relative locations 
of zeros and poles of plant and compensator may influence 
the performance index. 

An important related problem is the characterization of 
the discrete time systems which display no relative extrema 
in the time domain step response. Note that this feature will 
usually be highly desirable in industrial applications which 
involve shape or machine tool axis control, where even small 
deviations from a "monotonic path" can reduce the quality 
of the final product. 

In this paper we provide a simple sufficiency test for 
monotonic discrete time step responses. This test makes 
explicit use of the relative locations of zeros and poles of 
the transfer function under consideration, can be easily car­
ried out by inspection, and includes a reasonably large class 
of discrete time transfer functions. A novel feature of this 
work is the use of simple frequency domain arguments which 
provide additional insight into the nature of the conditions 
ensuring monotonicity. 

2 Preliminaries 

In this paper we consider an asymptotically stable, proper, 
discrete time transfer function G(z) having nonzero d.c. gain. 
We also introduce the following definitions. 

1 Leon de la Barra (1992b) constitutes an earlier version of this work. 
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