EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Stitching interferometry for accurate measurement of curved
surfaces

Citation for published version (APA):

Fan, Y. J. (1998). Stitching interferometry for accurate measurement of curved surfaces. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR512441

DOI:
10.6100/IR512441

Document status and date:
Published: 01/01/1998

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.6100/IR512441
https://doi.org/10.6100/IR512441
https://research.tue.nl/en/publications/e113ad41-5347-4ca6-9395-294b060e5c25




Stitching Interferometry for Accurate

Measurement of Curved Surfaces

Yu Jian Fan






Stitching Interferometry for Accurate

Measurement of Curved Surfaces

Proefschrift

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven,
op gezag van de Rector Magnificus, prof.dr. M. Rem
voor een commissie aangewezen door het
College voor Promoties in het openbaar te verdedigen op
dinsdag 9 juni 1998 om 16.00 uur

door
Yu Jian Fan

geboren te Shaanxi, China



Dit proefschrift is goedgekeurd door de promotoren:
prof.dr.ir. P.H.J. Schellekens
en

prof.dr.ir. H. F. van Beek

en de copromotor:
dr.ir. C.H.F. Velzel

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Fan, Yu Jian

Stitching interferometry for accurate measurement of curved surfaces /
by Yu Jian Fan. - Eindhoven : Technische Universiteit Eindhoven, 1998

Proefschrift. - ISBN 90-386-0660-5
NUGI 841

Trefw.: interferometrie, asferisch oppervlak, metrologie, koppeling oppervlakken
Subject headings: interferometry, aspheric surface, measurement, surface stitching

© 1998 by Y.J. Fan

Druk: Universiteitsdrukkerij Technische Universiteit Eindhoven



To my wife and parents

BRI MZET

1t He
—HIEMA F =






Summary

Commercial optical interferometers are often not suitable for measuring curved
aspheric surfaces because of the high fringe density and the aberrations due to the
surface asphericity. The aim of this research is to develop a measurement technique
suitable for the accurate measurement of aspheric surfaces which overcomes these
problems.

A novel method named stitching interferometry has been developed, that is capable of
measuring steep aspheric curved surfaces precisely. This thesis describes the
development of this innovative technique for the measurement of curved surfaces
having large aspheric departures.

The principle of stitching interferometry is as follows. A series of measurements of
overlapping surface segments is made which is subsequently stitched together to obtain
an entire surface profile. Using regions of overlap and knowing the transformations
between the measured profiles the surface topography can be obtained. This was
implemented by modifying a commercial phase shifting interferometer with a self-
designed precise mechanical manipulator for shifting and/or rotating the object under
test.

We describe the stitching procedure as follows. Firstly, two interferograms of the
object in two successive positions in space are recorded in such a way that the two
pictures have a surface region in common where the fringes are well resolved.
Between the two positions, the object under test is shifted along a common optical axis
of the interferometer and the aspheric test surface. Secondly, the surface profiles in the
two positions are obtained by analysing and calculating the two interferograms. Next,
the two surface profiles in the region of overlap are superposed by making use of the
transformations between these two positions. Applying this procedure recursively, a
completely surface profile can be acquired.



Stitching interferometry is different in procedure from other existing techniques. It
firstly interprets the interferograms into geometrical topographies and then stitches the
topographic profiles together so as to obtain the overall shape of a surface. This makes
it more universal to use. Whereas the majority of commercial interferometers employ
only one fixed reference wavefront, stitching interferometry employs a family of
reference wavefronts. This is realised by means of varying the relative position of the
tested surface with respect to the reference surface.

A five-axis precision manipulator is designed to realize three translations and two
rotations. The principal motion, translation along the vertical optical axis, is realised in
virtue of three symmetric elastic leaf springs. High accuracy is achieved at 0.1 um/mm
in straightness and 1”/mm in rotation deviation over the 2 mm central part of the
translation stroke. Two offset translations and two rotations are realised by means of
elastic pivots.

Experimental results have shown that stitching interferometry is capable of measuring
complicated surfaces having large aspheric departures precisely. As a result, it is
possible to extend the measuring range of aspheric departures from a few micrometres
up to several tens of micrometres.

The technique of stitching interferometry offers considerable potential for testing
curved surfaces having aspheric departures. Furthermore, the concept and method may
be used to upgrade commercial interferometers.
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1.

General Introduction

1.1 Manufacturing metrology and production

1.1.1 Manufacturing and quality

In today's increasingly competitive environment, the ability to control product quality
in the manufacturing process is crucial. Ensuring customer satisfaction through proper
manufacturing metrology and effective quality management is widely recognised to
be a key business strategy and fundamental to a successful manufacturing operation
[Tannock 1992].

In order to obtain enough information and to perform manufacturing metrology, we
make use of all our senses. However, we cannot rely only on our physical senses
because of their limitations and unavailability in certain cases. Therefore, we must
make use of a great variety of measuring machines and instruments. It has taken many
decades to provide manufacturers with the suitable measurement techniques needed to
create better products and the standards for reproducing quality in a consistent way.

In recent years, the vital importance of the manufacturing metrology and quality
function has been recognised widely. Greater scope has been achieved because
manufacturing metrology roles have been supplemented by a responsibility for
management leadership in quality improvement.

1.1.2 Manufacturing metrology

In the world of metrology, meaning the science of measurement, dimensional and
mechanical measurements are fundamental to manufacturing industry, trade, and the
many scientific and technical activities affecting modern life. Metrology for
engineering, ranging from the measurement of irregularly shaped small components to
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whole structures makes use of a number of different mechanical, electronic and optical
techniques.

Manufacturing metrology and quality control within manufacturing industry may be
exercised in such ways as laboratory testing, non-destructive inspection, in-process
monitoring, post-process measurement and product test. Metrology should be in phase
with manufacturing rhythm and the high accuracy tolerances of manufacturing
equipment. To develop metrology and to provide industry with suitable measurement
techniques and the instruments needed, a great deal of research and development has
been carried out continuously in many research institutes.

Engineers have been measuring and characterising the shape and microtopography of
surfaces for many years. Most of this work has been based on two-dimensional
profiles of surfaces obtained with the use of stylus instruments.

In the last two decades, both theoretical and experimental investigations have been
undertaken to determine the feasibility of using non-contact and field-sensing optical
means such as laser interferometry to measure precision shape and surface
microgeometry quantitatively [Brown 1993, Kunzmann 1993]. One of the motivations
for this new direction is the increasing effort to use non-contact and field-sensing
rather than the traditional contact and point-sensing stylus instruments for quality
control and inspection. Another motivation is due to the rapidly increasing demands
from modern flexible manufacturing patterns and precision engineering development
for better and more accurate measurement techniques over an area.

Precision engineering is the multidisciplinary science underlying the development and
realisation of high precision machines, instruments and communication devices. It is
firmly based on accurate measurement technology. In the last decade, we have
witnessed dramatic progress in precision engineering, especially the innovations of
new measurement techniques and measuring instruments.

It is an important trend to develop precision engineering in the interdisciplinary
integration of precision metrology, precision manufacturing, and design for precision,
instead of in each of those fields separately. Such integration and development of
precision engineering activities make it possible to manufacture complicated curved
surfaces and therefore result in higher requirements for new measurement techniques.
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1.2 Interferometry for curved surface measurements

1.2.1 Curved aspheric surfaces and their applications

Curved aspheric surfaces have been more and more used or suggested for application
in a variety of fields. One aspheric part can replace several spherical components in an
optical system to correct aberrations, and therefore the use of aspheric surfaces
allows drastic improvements of performance, space, weight, and cost [Schulz 1988].
The use of lenses, mirrors and precision products with aspheric surfaces, as well as
with other kinds of curved surfaces is increasing with required high precision. As
examples we mention contact lenses and moulds, optical aspheric elements in compact
disc (CD) players, magnetic storage devises, recorders and laser printers. We have also
witnessed an increasing application of curved surfaces in diverse precision machines
and astronomical equipment, such as precision air bearing elements, engine parts and
textured plastic surfaces. The innovative single point diamond turning method, using
advanced control of tools and workpiece position, makes it possible to manufacture
complex-shaped surfaces and therefore stimulates a wider use of curved surfaces
greatly.

Nevertheless, the use of curved surfaces is often limited by the difficulty of finding an
accurate and low-cost method to test them. The requirements in terms of performance
and reliability in numerous fields mean that a growing number of optical and
mechanical systems use components designed and manufactured with submicron
tolerances. As the design and manufacturing of precision objects with curved
surfaces, e.g., contact lenses, become more sophisticated it also becomes desirable to
have an accurate measure of the shape of the lens surfaces [Brown 1993,
Greivenkamp 1987]. A major need is to test aspheric surfaces that have large departures
from a best-fit reference sphere.

1.2.2 Interferometrical measurements

Surface characteristics, such as geometry, roughness and waviness, are important
parameters in the determination of the performance of an element. Despite of the wide
use of mechanical methods, optical methods are becoming interesting tools for high
accurate surface topography measurement. Micro- and macrostructure measurement
techniques were developed to measure the surface topography, resolutions of two
nanometres or better can be obtained.

Shape measurements of curved surfaces are essential for precision manufacturing of
spherical or aspherical workpieces. Conventional measurements are based on point
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sensing methods and possess some inherent drawbacks, which limit their application
in the measurement of curved surfaces. Interferometric methods seem to be suitable
for the measurement of precision curved surfaces because the whole shape of the
workpiece can be visualised with high resolution and without physical contact on the
tested surface.

Since its discovery, interferometry has grown into a powerful technique for the
characterisation and evaluation of optical surfaces. With the advent of laser, solid state
detector and phase measuring algorithms, it provides extremely helpful tools in
science and engineering for the accurate surface measurement, accuracies of tens of
nanometres or even better being achievable [Massie 1988, Schlewitt 1994].
Interferometry has played a major role in greatly improving the quality of opmcal and
other precision engineered components manufactured.

1.2.3 A dilemma between measurement range and accuracy

e general consideration

The accuracy of measurement techniques in dimensional measurement is limited by a
number of factors that must be considered in planning and performing measurements.
In general manufacturing circumstances, measurement accuracies in the order of a few
micrometres can be reached if all setup parameters are under control, while typically
an accuracy order of a few tens of micrometres can be expected in most applications.
In the worst situation, deviations as high as approximate 30 micrometres may be
experienced [Chiffre 1995].

Instruments differ widely in performance, in both vertical (i.e., normal to the surface)
range and resolution, and in the range of surface wavelengths. The performances of
instruments are limited mainly by the specifications of a number of critical
components. A range of parameters is needed to define the capabilities and limitations
of the instrument [Stedman 1987].

Interferometry is a technique offering rapid full field measurement. As for the
interferometric measurement, the specifications of critical components are as follows:
the quality of the cavity between the reference surface and a tested surface; the signal-
to-noise ratio (SNR) on the charge-coupled-detector (CCD) camera employed; and the
effects due to ambient errors.

The accuracy of a length interferometer for absolute measurement in air depends on
the accuracy of the refractometer used [Kunzmann 1993]. However, in the case of
most common applications, an optical reference surface is used that yields a virtual



Chapter 1: General Introduction 5

reference wavefront in the interferometric measurement. The measurement accuracy
for relative measurements then depends primarily on the quality of cavity between the
reference surface and a tested surface. Typically, it is of the order of tenths of
wavelength [Moller-Wedel 1994]. The resolution of an interferometer today is of the
order of nanometres, which is mainly subject to the signal-to-noise ratio (SNR) on a
CCD array employed.

A fundamental limitation of conventional interferometry is its inability to measure
surfaces with large aspheric departures from the reference wavefront. The asphericity
of the surface is evaluated by subtracting a fitting spherical surface from the measured
relief. The main problem to measure aspheric surfaces generally is that the fringe density
is too high to be detected when both high accuracy and large measuring range are
desired.

From a testing point of view, the prime characteristic of an aspheric surface is that it has
a large departure from a best fitting reference sphere, and an interferogram made without
some sort of aspheric null elements contains too many fringes. In other words, the fringe
frequency is over the Nyquist frequency [Greivenkamp 1987, Malacara 1993].

The Nyquist condition of having at least two pixels per fringe provides a limit to the
measurement range of asphericity with an interferometric system. Moreover, in order to
maintain a desirable accuracy, it is customary in practice to accept a folding frequency
twice as high as the Nyquist condition requires and to accept a sampling frequency twice
the folding frequency [Fan 1994-a]. In other words, a condition of preferably having
eight pixels per fringe should be kept, which limits the measurement range of aspheric
departures.

e measurement degree of freedom analysis

Now we are going to analyse the relationship between the capability of an interferometer
to perform a measurement of the curved surfaces and the requirement for an
interferometer to be used to fulfil the measurement. In the following, we shall use a
term, “measurement degree of freedom”, for the analysis. This term, however, has
nothing to do with the meaning of degree of freedom used in mechanical design and
kinematic analyses.

From the measurement viewpoint of degree of freedom, the capability of an
interferometer is restricted proportionally by the ratio of degrees of freedom available
with the instrument to the degrees of freedom needed to perform a measurement.
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Taking advantage of symmetry, we could analyse the problem in a line along an axis-
symmetrical section. The total degrees of freedom available with an instrument, DOF,, is
proportional to the number of detecting pixels (NP) and the SNR of the CCD, the latter
is defined as a ratio of the phase measurement range (2m) to the phase resolution A@ in
an interferometric measurement. Therefore, we have

DOF, = NP xSNR /k = NP x 2n/ kAo, (1-1)

where k represents the least number of pixels to detect each fringe unambiguously.
According to the foregoing discussion, as for the minimum requirement of the Nyquist
condition, k is 2, for a normal condition 4 and for a very precise measurement 8.

The total degrees of freedom needed, DOF, is related to the maximum asphericity d; may,
the number of fringes (NF) with a given wavelength of measuring light A, and therefore
to the Nyquist sampling condition above-mentioned.

DOF, =NF /0= 2td; . /AS, (1-2)

where t is an evenness factor (t >1) regarding fringe distribution over the line in
question, 0 is a utility factor of detecting pixels (8 < 1). Actually, 8 is proportional to
the 1/SNR, and is in practice about 1/100.

As a result, the measurement capability &, which is a function of measurement error or
uncertainty €, can be expressed as

E(e) o {k t AQ d; max / A S NP}, (1-3)

The larger the aspheric departures d, with a given dimension, the poorer the accuracy
achieved. Actually, even a "mild" aspheric surface with only a few micrometres
asphericity will violate the common Nyquist condition when the required measurement
accuracy is of the order of submicrometres with a commercial interferometer available
today.

As a result, there is a dilemma between measurement range and accuracy in
interferometric measurement of aspheric surfaces. How to make a satisfactory trade-
off requires particular thoughts and skills. If the trade-off dilemma could not be settled
internally in an ordinary method, some extra degrees of freedom must be introduced
externally into the interferometrically measuring system.
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1.2.4 Demands for new accurate measurement techniques

Aspheric surfaces are often manufactured by computer numerical control (CNC)
machines based on precision processes. Therefore, precision measurement of such
kind of curved shapes is a necessity to process control and product quality validation
in manufacturing processes such as diamond turning and ductile grinding. However,
there are limitations in using aspheric elements mainly because of the difficulty of
measuring these elements.

While much work has been done on the measurements of aspheric surfaces, no
outstanding technique has yet been developed [Brown 1993, Lowman 1996]. The
actual measurement techniques to inspect these product ranges are insufficient to
satisfy the increasing demands of industry, especially to the required measurement
range, accuracy and convenience. The use of stylus instruments may be undesirable
because of the possible risk of leaving permanent marks or damage to the surface and
the relatively slow speed of measurement. Also the dimensions and gradients of the
lenses are out of range for most commercially available optical based relief measuring
instruments.

Up to now, the most commonly used measurements present at least one of the
following drawbacks [Durand 1992]:

e pon-versatility (null test and holography)

¢ relatively high measurement uncertainty (coordinate measuring machines (CMMs))
o limited measurement ranges of sag and diameter (profilometers)

e time-consuming measurement (point-sensing methods)

o surface contact with the risk of deformation and damage (contact measurements)

Even for interferometry, while it is easy to test a flat or a sphere, it is not as simple to
test a curved aspheric surface. It requires innovative thought and effort to develop a
suitable and accurate technique for the measurement of curved surfaces.

1.3 Aim and outcomes of this research

The aim of this research is to develop a measurement technique suitable for the accurate
shape and surface measurement of curved aspheric surfaces with submicrometre
accuracy. This research results in the development of an innovative high precision
instrument using the principle referred to as “Stitching Interferometry” for the
measurement of curved surfaces having large aspheric departures [Fan 1996 & 1997].
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Stitching interferometry is a method to overcome the problem of limited measuring
range and aberrations due to asphericity in optical interferometric testing for curved
surfaces. A series of measurements of overlapping surface segments is made which is
subsequently stitched together to obtain an entire reconstructed profile. In order to
correct the misalignment and to rectify the data misregistration between two
successive submeasurements, stitching algorithms have been developed. An
instrument is built with which experiments have been conducted. The technique offers
numerous possible applications for testing deep wave fronts and surfaces.

The key points of this technique are the following. First of all, stitching interferometry
is different in the procedure from all other existing techniques. It firstly interprets the
sub-interferograms into geometrical topographies and then stitches the topographic
segments together so as to obtain the overall shape of a surface. This makes it more
universal to use. Secondly, whereas the majority of commercial interferometers employ
only one fixed reference wavefront, stitching interferometry employs a family of
reference wavefronts. This is realised by means of varying the relative position of the
tested surface with respect to the reference surface. Furthermore, another key point is the
design of a unique precision manipulator for shifting and/or rotating the workpiece
under test.

1.4 Outline of the thesis

A novel technique, named stitching interferometry, that is capable of measuring steep
aspheric surfaces precisely, is described in this thesis. The configuration of this thesis
is as follows.

In Chapter 2, following Chapter 1 regarding the background and general introduction
to this research, an overview on the relevant research and literature review is given.
The aspheric surfaces to be tested are described in geometric detail. The next content
concerns the principles of interferometry utilised in this research. Furthermore, the
problems and difficulties with the interferometrically accurate measurement of curved
aspheric surfaces are presented and discussed.

Chapter 3 provides firstly some necessary basics of interferometry with the emphasis
on the Fizeau interferometry, including Fizeau fringe patterns, phase shifting
interferometry and fringe interpretation. The second part of this chapter demonstrates
concisely the stitching strategy we proposed to solve the problems described in
Chapter 2.
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Chapter 4 is the theoretical core of this thesis. To fulfil the stitching interferometry for
the measurement of curved surfaces customarily, careful analyses must be executed on
the following items. The first one is to correct errors introduced by the misalignment of
the series of measurements. Another one is to rectify the misregistration errors of the
individual data sets introduced by surface asphericity and object shift due to optical path
variation. These will be explored in this chapter. Also, more considerations on the
overlap region in the stitching interferometry are discussed.

Chapter 5 illustrates the measuring scheme and experimental setup, including the
modification of the Mdoller-Wedel V100/P interferometer used and the self-designed
five-axis manipulator with which an object under test is shifted and/or rotated in the
stitching measuring procedure. Experimental results are demonstrated together with
further discussions.

A group of accuracy analyses is carried out in Chapter 6. Errors in stitching
interferometers for the accurate measurement of curved surfaces may result from
single measurement error sources and stitching processing error sources. The first
analysis is associated with the quality of optical cavity, data acquisition process and
the ambient effects. The second analysis is associated with the residual defocus errors,
positioning and misalignment errors, as well as temperature changes. Another
important part of Chapter 6 concerns the cross check and validation for the stitching
method.

Finally, Chapter 7 will complete this thesis with conclusions and recommendations.
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2.

Curved Surfaces and Their Measurement Problems

2.1 Literature review and survey

Measuring curved aspheric surfaces is one of the more challenging and interesting
testing applications. Many techniques exist for examining curved surfaces [Fan 1994-
b]. Each of these methods has its own merits and weaknesses. We shall briefly review
and discuss various possible methods for testing aspheric. Although surface
profilometry and geometric ray test are mentioned, the primary focus is interferometry.

2.1.1 Interferometric methods

Interferometers can measure the departure of a surface relative to some reference
surface. When testing flat surfaces, errors are measured relative to a plane surface.
When testing curved spherical or aspheric surfaces, the surface is tested relative to a
reference sphere (non-null test), or relative to the desired ideal aspheric shape (null
test) [Stahl 1990, Wyant 1987].

¢ interferometric null test

The principle behind interferometry null test is to compensate or correct wavefront shape
of aspheric aberration individually by means of either material null elements or
simulation.

The aberration compensation null test uses a null lens to introduce enough aberration
into the test beam such that eliminates the aberration produced by testing aspheric
surface at its center of curvature. Another method is the aberration matching null test
or holography. It utilises a hologram to produce a reference aspheric wavefront that is
then compared interferometrically with the wavefront from the object under test. In
case that a real master is not available for making, a synthetic computer-generated-
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hologram can be made. Positioning error, distortion in the hologram plotter and
costliness are its problems [Pfeiffer 1992].

Besides, a zone-plate can be used too. A zone-plate can be made as a photo plate with a
circle grating that has a pattern calculated to reproduce the shape of the designed
surface. Therefore a symmetrical spheric or aspheric shape can be measured [Nomura
1993].

The primary disadvantage of interferometric null test is that requires a precision
tailored null lens or a custom-designed hologram as well as careful adjustment and
precision alignment.

¢ shearing interferometry

Another approach is to use the shearing interferometry in which two shifted images of
the wavefront under test are superimposed to interfere with each other [Yatagai 1987].
The surface slope is measured with shearing interferometry, and the actual surface then
is reconstructed by integration. The attractive feature of using shearing interferometry
for aspheric surface testing is that the sensitivity of the test can be varied by changing the
shear distance.

The most important shearing interferometry is of lateral shearing one, although other
kinds of shearing interferometry such as radial, rotational and reversal shearing
interferometry are used at the same time. Basically, the method of lateral shearing
interferometry consists of displacing the defective wavefront laterally by a small amount
and obtaining the interference pattern between the original wavefront and the displaced
or shifted version of itself. It has been reported that aspheric surfaces can be measured
using lateral shearing interferometry to an accuracy of 1% to 0.1% of the asphericity
[Cho 1997, Hardy 1987].

The biggest problem with using lateral shearing interferometry for measuring aspheric
surface is that it reduces the number of fringes least where the density is highest,
working not so effectively as desired.

¢ sub-Nyquist interferometry

Sub-Nyquist interferometry (SNI) is a data collection and analysis method that is capable
of extending the measuring range of an interferometer through the use of a priori
information about the tested surface [Greivenkamp 1987]. It is based on the assumption
that the surface at any point is differentiable. This additional information allows the
analysis to interpret fringes that occur at frequencies well in excess of the Nyquist
frequency so as to under-sample the wavefront and still performs an adequate
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measurement. The fundamental limit to the measuring range of an SNI system is in the
ability of the sensor to respond to the high-frequency. To put this technique into practice
needs a kind of sensor with a small width-to-pitch ratio or even a point-typed detector.

¢ small- or sub-aperture interferometry

The basic idea behind this kind of testing of aspheric surfaces is to divide the wavefront
up into small sections; the wavefront departure in each subaperture is within the
measuring range of the instrumentation. The maximum fringe frequency is kept below
the Nyquist frequency of the sensor. The problem becomes then that to fit all of these
separate measurements, which can contain different amounts of tilt, piston, and
sometimes defocus, so as to obtain a complete map of the aspheric surface.

From the viewpoint of optical wavefront test, Zernike polynomial wavefront
representation is generally common way to treat the measurements of small- or sub-
aperture data [Evans 1995, Liu 1988, Melozzi 1993, Nergo 1984]. The overall surface is
represented by a polynomial expansion, and the subaperture data is analysed to
determine the expansion coefficients. The Zernike polynomials with a limited number of
terms are used.

The same principles can be used also in the measurement of a large plane surface, a ball
and photomasks in lithography [Otsubo 1994, Sullivan 1996, Sandstorm 1995].

The principal difficulties of the subaperture testing method are that the results of many
subaperture measurements must be combined to yield the full aperture aberrations
accurately, and that variable and imprecise amount of focus errors and other
misalignment errors must be removed from the data properly.

* two-wavelength or multiple-wavelength interferometry

The additional information that two-wavelength interferometry uses to extend the
interferometric measurement beyond the Nyquist frequency is a separate measurement at
different wavelength [Creath 1985, Ho 1992, Tiziani 1996]. Multiple-wavelength one is
based on the same principle. In this way, a tuneable resolution can be conducted in
respect to the fringe alias.

A practical problem with such kind of measurements is chromatic aberration in the
reference optics and the interferometer.

e grating interferometry
A grating interferometer can be used to test flat surfaces that are either too rough or
deformed for conventional visible-wavelength interferometer. It uses a diffractive
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optical assembly to illuminate the test piece at two incident angles. The reflected beams
recombine to generate an interference pattern with an equivalent wavelength [de Groot
1996]. In order to employ such kind of a method for testing curved surfaces, some
suitable curved diffractive optics must be developed.

2.1.2 Surface profilometry

Surface profilometry types can be split into contact and noncontact devices. A contact
profiler scans a probe across the surface and determines height by looking at the height
variations of the probe as it scanned. This implies a possible risk to leave scratch or
damage the tested surface. Noncontact devices measure surface height without coming
in contact with the surface. Most of them are optical microscopes, being used to
determine surface roughness or geometry of small features [Blakley 1994, Cochran
1988, Sasaki 1990, Yoshizumi 1987]. Although they are very sensitive and can measure
heights with a precision of submicrons, the fact that they hold much smaller field of
measurement than what we desire downgrades their position in our selection. Scanning
probe microscopes such as scanning tunnelling microscopes (STM) and atomic force
microscopes (AFM) have the same picture because of the limited measuring ranges of
sag and diameter [Vorburger 1997].

The primary disadvantage of this technique is that in order to produce a complete
picture of the surface many scans are required. Furthermore, its accuracy can be
effected by mechanical alignment errors between the probe and surface. There are also
problems with measuring steep surface slopes. Its field of view is limited to only a few
millimetres. Furthermore, high resolution asks for small stylus but due to Hertzian
contact limits a low measurement pressure is required. Therefore it results in also
dynamic problems.

One possibility to improve the limitation to the field of view of a microscope or an
optical profilometer is to make use of the small- or sub-aperture interferometry [Cochran
1988, Wyant 1997]. Other possible means might be a combination of a coordinate
measuring machine (CMM) with an optical probing detector.

2.1.3 Moiré topography and projection fringe methods

In addition to interferometric and profilometric tests, aspheric surfaces can be
contoured directly using techniques such as mechanical and optical probes. Among of
those, moiré techniques and projection fringe techniques are widely used.

Moiré technique and its derivatives, as a kind of field-sensing methods, have getting
many developments in recent years. Moiré topography can be used to determine the
shape of an object by interpreting the moiré fringe patterns that are the contour lines of
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surfaces in specific geometrical conditions [Kim 1992, Matsumoto 1995, Papp 1993,
Patorski 1993, Post 1991].

Moiré deflectometry and appropriate instruments have been used for the measurements
of such specular or optical surfaces as buttons of contact lenses [Glatt 1988, Kreske
1988]. The information provided by moiré deflectometry is a ray deflection map of a
light beam. The most important factors to determine the sensitivity or accuracy in moiré
technique are the grating pitch, quality of gratings, as well as the availability to divide
the fringe patterns as fine as possible. The accuracy with this method generally is within
the range of a few microns, for example 5 micron-accuracy of Rotlex OMS 101 system,
which would be insufficient for this application.

Projection fringe methods are becoming more and more popular in 3D shape
measurement [Betend-Bon 1992, Igarashi, 1992], with their virtues of simple in
construction and wider in dynamic range.

However, such projection fringe methods with either laser sources or white-light
sources may be an unsuitable choice when submicron accuracy is required in curved
surface measurement.

2.1.4 Geometric ray methods

Before the advent of interferometry, optical components were characterised using
geometric ray tests. Geometric ray test such as the Foucault and Ronchi tests can be
used to test aspheric surfaces, too. Geometric ray tests measure the slope or height of a
surface based upon how light rays travel after being reflected by the surface. This is
accomplished by placing a physical obscuration between the object under test and the
observer. Then by observing the patterns that are formed, it is possible to deduce
information about the surface’s ray aberrations.

In a Ronchi test, a binary grating with equal spacing of transparent and opaque strips,
called a Ronchi grating, is positioned near the focal plane. Through the grating the exit
pupil is observed so that a pattern corresponding to the aberration of the surface or
system under test is observed. The phase of the Ronchigram measures the first derivative
of the surface aberration. By numerical integration of the phase, the shape of the surface
can be reconstruct [Blakley 1994, Omura 1988].

A so-called phase detection deflectometry is an application of phase detection to the
Ronchi method. It is based on the measurement of the deflection of light rays, after
reflection on every point of the surface under test [Durand 1992, Lin 1991].
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Aspheric surfaces can also be measured by Schlieren methods [Gestel 1997, Malacara
1993, Prast 1987]. By mean of geometrical ray tracing analysis, surface geometry can be
defined by the retroreflection or deflection beam; slope of the surface can be found by
analysing components of the surface normal. As long as retroreflection or deflection
information on the direction of the surface normal at special points is acquired, the
profile shape can be determined mathematically.

The accuracy will be restricted mainly by the resolution of detecting system and
positioning accuracy.

2.1.5 Short summary

Aspheric surfaces of optical elements and other high-precision objects are generally
tested using profilometer or interferometer, although other kinds of measurements are
also being accepted simultaneously.

For such measurements in a large-sized surface area with an accuracy order of
submicrons, an interferometric measurement method is recommended and preferentially
accepted due to its noncontact nature, field-sensing virtue and higher accuracy possible
achieved.

However, the interferometric measurement of aspheric surfaces may be very hard to
perform with existing commercial interferometers if the aspheric departure from the best
fitting reference surface exceeds a few micrometres.

As for the light sources, we point out that besides the laser sources, the white-light
sources have been more and more employed in optical measuring arrangements. They
can be used, for example, to produce a separate fringe system for each wavelength,
and the resultant intensity at any point in the plane of observation is obtained by
summing these individual patterns [Hariharan 1992, Tolansky 1973].

2.2 The aspheric surfaces to be tested

2.2.1 Shaping and fabrication

Aspheric surfaces, or “aspherics”, are optical precision surfaces that are neither
spherical nor plane. Although they have been used or suggested for application in a
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variety of fields the fabrication of aspheric surfaces is much more complicated than
that of spherical surfaces. A spherical surface has the same curvature everywhere and
in all directions so that it can be worked everywhere in the same manner. A sphere has
only one shape parameter, the radius of curve. An aspheric surface, however, in
principle, may have an infinite number of, in practice several, shape parameters.

There are several kinds of shaping and fabrication methods, including moulding and
casting, as well as the utilization of elastic deformations. However, the innovation of
single point diamond turning methods has brought a revolution in the aspheric
fabrication. A high speed rotary spindle is incorporated with a precision linear slider
on that a diamond tool is mounted. A typical feed rate with such diamond turning
machines is approximately 50 micrometres per revolution, and the spindle rotation
accuracy is of the order of submicrons at 3000 rpm (revolution per minute).

2.2.2 Geometry and surface parameters

Regarding aspheric surfaces in this thesis, we refer to symmetric and aspheric precision
surfaces, especially to aspheric surfaces of contact lenses. Besides complete aspheric
contact lenses, a type of half-completed lenses with the most important interior surface
being ready shaped, so-called buttons, was tested most frequently.

The inner surface of such a lens or a button is machined with an ultra-precision
diamond turning machine, with a resulting shape accuracy of 50~100 nm and a surface
roughness R, of 15~40 nm. The aspheric departures in the normal direction range from
25 up to 150 micrometres, corresponding to approximate 80 to 500 fringes.

The geometry of the lens or button is composed of several different diametrical zones.
Each zone can then be specified as a surface of revolution that can be mathematically
described. The types of these surfaces may range from spheres to aspheres that can be
described by ellipses and polynomials.

The inner surface of the contact lens is composed of four portions from different kinds
of surfaces. Figure 2-1 shows the shape of its axial cross-section.

Please note that the segment B, the most important part, is not simply depicted by one
definite ellipse but by a family of varying ellipses, with variable parameters of
eccentricity.
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A B (CD

Figure 2-1 Axial cross-section of the inner surface of a contact lens

A: part of a circle; B: composition of varying ellipses;
C and D: parts of two different polynomials.

As an example, dimensions and shape types of the four different diametrical zones of
an F.Ellipse 0.4 aspheric contact lens is shown in Table 2-1. The most important area
of a contact lens is its optical zone, corresponding essentially to segments A and B, that
is the inner portion with a maximum diameter of approximate 8.5 mm.

Table 2-1  Geometric parameters of EF0.4 contact lens inner surface

A B C D
shape circle varying polynomial  polynomial
ellipses
maximum 3.871 8.234 8.794 9.802

diameter(mm)

The main factor that affects the quality of a lens is its aberration, namely variations in
power across the lens. These in turn are due to deviations from shape imperfection on
the lens surfaces. Current quality inspection is performed in such a way that only a small
part of the entire surface is checked with a microscope with a 1 mm field of view.

2.2.3 Composition of the aspheric contact lens surface

The aspheric surface of this kind of contactlens is composed of four different kinds of
surfaces. Since it has been formed by single-point diamond turning, it is of symmetric
surface. As a result, we examine here only half part of its curve shape of the axial
cross-section of the inner surface that consists of four different curves as well as a
few discontinuous points. Figure 2-2 shows the cross-section of the curved shape.
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Figure 2-2 A half of the axial cross-section curved shape of the contact lens

Now we shall take the F.Ellipse 0.4 contact lens as an example to describe the
composite curve shape of the surface. In terms of mathematics, the surface can be
expressed in the forms of the segment functions as defined by the manufacturer.

ro- (r° - X*)"2, 0<X < 1.9354:

{ro/ (1-e*)}-{1- [1-(1-€”) (X/r0)1"?},
1.9354 <X < 4.1173,
Z (X, e(X)) =
1.4214 - 0.8598X + 0.2269X> -0.008618X°,
4.1203 < X < 4.3970;

-4.0957 + 1.9532X - 0.1968X% + 0.0071X°,
4.4000 < X < 4.9012.

(2-1)

where 1y is base radius of the spherical surface, and e is eccentricity that varies as the
X-coordinate changes. In other words, e = 0.1831 X - 0.3544, 0 <e <0.4. And both X
and Z are one dimensional variables. The units of X and Z are all in millimetres.

Note there are two very small pieces of interim curves between point 2a (X = 4.1173)
and point 2 (X = 4.1203), and between point 3a (X = 4.3970) and point 3 (X = 4.4000).
This is owing to the requirement from the CNC diamond turning process designed by
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the manufacturer. For detailed description on the surface expression, please refer to
the Appendix A.

Segment A is a circle part of the base surface, beginning at point 0 and ending at point
1. Segment B is of the most important piece in the optical zone, which is constituted of
many different parts from a family of variable ellipses, starting from point 1 till point
2a. Segment C, from point 2 to point 3a, is a transitional piece of the surface while
segment D is designed to just fit the shape of human eyes. Both segments C and D are
quoted from some kinds of polynomial curves, but with opposite polarity of the
curvature. For more details and mathematical descriptions of these segments, please
see Appendix A of this thesis.

2.2.4 Aspheric departures of the contact lens surface

Figure 2-3 illuminates the geometric relationships between the aspheric surface of a
contactlens curve and the reference spheric surface in an 8 mm radius. Where d, and
d, stand for the aspheric departures in Z-direction and in the normal (spherically
radial) direction respectively. The latter is much more important than the former
because d, has much to do directly with the fringe density in the Fizeau interferometry
used.

Z
Iy
M/

N ds

Reference M X, 2)
spherical surface™ ]
T

Aspheric surface X

Figure 2-3 Geometric relationship between the aspheric surface and
the reference spherical surface

The aspheric departures at point M (X, Z) are calculated as follows, according to the
geometry shown in the figure, mathematical expression of Equation (2-1) as well as
the description in Appendix A. In normal direction

d={X*+(1-2}" -1, (2-2)
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and in Z-direction

d,=r-{r*-X*}"*-7. (2-3)

The maximum aspheric departures in segment B, with different eccentricities from 0.4
mm to 0.9 mm, span from 14.733 micrometres to 67.513 micrometres, exceeding far
from a few micrometres that existing commercial interferometers can handle with. For
details about the aspheric departures from the reference spheric surface of the contact
lens surfaces, please refer to the three tables in Appendix B.

2.3 Interferometry of the curved surfaces

Figure 2-4 shows schematically Fizeau interferometer arrangement for testing a
concave surface against a reference well-corrected focusing lens.

object under test

well-corrected focusing lens . )
spatial filer

beam splitter

yd
MNVAIY

\collimator

reference flat surface [ |CCD detector

Figure 2-4 Schematic of the Fizeau interferometry

A HeNe laser is used which emits on a red beam with A = 632.8 nm. After focusing
by a microscope objective the beam passes a beam splitter and a collimating objective
(collimator) which transforms the diverging light bundle again into an expanded
parallel beam. For the measurement of curved aspheric surfaces the collimated light
then passes a specially designed reference objective. The objective contains a
reference surface from which part of the light is reflected back to form the reference
wave. The transmitting light is focused again in order to create spherical wavefronts
that can be reflected back by the aspheric sample surface. They are then imaged on the
CCD array. The focal point of the collimator is located at the centre of curvature of the
well-corrected converging reference lens. The concave surface under test is adjusted
until its center of curvature almost coincides with the focal point of the collimator, too.
The interferogram created by the superimposing wavefronts from reference and
sample surface is detected by a CCD camera and displayed on a video monitor.
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Evaluation of the interferogram can be done manually by the operator or automatically
with a computer controlled evaluation system.

Our basic considerations are now as follows. Firstly we want to avoid the use of
compensation elements. Secondly we prefer to using the noncontact field-sensing
method. And finally we decided to accomplish this research by improving and
modifying a commercial phase shifting interferometer with the aid of a fine 5-axis
manipulator. This requires a smart measurement strategy and comprehensive algorithms
to calculate the real surface shape.

2.4 Problem description

Aspheric surface testing would be greatly expedited by eliminating the need for a null
condition. With modern commercial interferometers, high precision measurements can
be made of flats and spheres. However, for precision topography measurements on
aspheric surfaces, classic optical interferometers are often not suitable because of a too
high fringe density and aberrations due to the aspheric departures [Fan 1997, Evans
1993, Malacara 1993]. To test in a non-null  configuration, an interferometric
technique must be capable of both measuring steep wavefronts and rectifying image
deformation.

Figure 2-5 Simulated interferogram of an aspheric elliptical surface
tested at its vertex centre of curvature

The first problem is that the fringe density is too high to be detected and interpreted. If
an aspheric surface is tested at its center of curvature with a spheric reference, as
shown in Figure 2-4, a very complicated interferogram with lots of fringes, acquired
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without some sort of aspheric null elements, is produced. This is because the stigmatic
image points for an aspheric surface do not coincide. In other words, such an
interferogram is unresolvable. Additionally, aliasing effects were found with such kinds
of interferograms.

To manifest the situation, some simulation work with the measuring configuration
shown in Figure 2-4 is done. Figure 2-5 illustrates the simulated interferogram of an
elliptical surface, the same as segment B of the contact lens EF0.4 we tested, where
the sampling density of points was 40 X 40 over the picture. It can be seen readily that

frequencies above the Nyquist frequency of the CCD array are aliased in the outer
zone of the interferogram.

The second problem is the different ray trajectories of incoming and outgoing rays. It
can be seen from Figure 2-6 that in the case of an aspheric surface being measured in
the scheme of Figure 2-4, the returning beams from the aspheric surface no longer
follow the same path through the instrument’s optical system as in the case of a
spherical surface.

/—detcctor plane

o Aspheric surface N

Focal
fpoint

\—Well-correctcd

L | focusing lens

Reference surface

Figure 2-6 Different ray trajectories of incoming and outgoing rays

Therefore, the returning rays do not pass through the focal point of the well-corrected
converging lens. In other words, a test wavefront suffers from aberrations due to the
surface asphericity, that distort the interferogram [Fan 1997, Lowman 1996]. The fact
that incoming and outgoing rays go different optical path due to the surface
asphericity will result in data misregistration and interferogram deformation on the
detector plane.
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3.

Improvement of the Interferometry .

3.1 Optical interference and interferometry

3.1.1 Historical

The roots of interferometry go back to the earliest studies of interference in optics and
the interferometer by using conventional light sources. In 1678, Christiaan Huygens
presented his principle of wave propagation through subsidiary wavelets. Later on,
Isaac Newton had been conducting his researches in light, including the study on
refraction, spectrum and the interference phenomena of Newton’s rings. Thomas
Young, in 1802, realised the principle of coherence and the principle of superposition
and then provided the basis of interference. A most important step for the realisation
of interferometry was taken by Armand Fizeau in 1862. He used a collimated light and
studied the equal-thickness interfacing fringes. Albert Michelson was the first scientist
who described the interferometer scientifically in 1882. It is probably correct to say
that no single instrument has more profoundly affected modern interferometry than has
the Michelson interferometer [Fowles 1968, Tolansky 1973].

The development of interferometer was restricted since then by the factors such as the
limited coherence length of the light sources of that time, the very limited light
intensity, the lack of photodetectors and electronics of today.

Lasers have removed many of the limitations imposed by conventional sources and have
made possible many new interferometric techniques. Another development that has
revolutionised interferometry is the increasing use of photodetectors and digital
electronics for signal processing [Meyer-Arent 1984]. With the advent of phase
measuring algorithms and solid state detector, as well as powerful computers,
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interferometry has undergone a timely and profound transformation during the last
fifteen years. This change is driven both by technology and user requirements.

Perhaps the best known interferometric devices are the Michelson interferometer and
its modification, Twyman-Green interferometer. However, for the purpose of practical
use, most of the commercial interferometers are of Fizeau interferometers due to its
generally versatile and common-path arrangement to prevent the influence due to
ambient factors.

3.1.2 Interference and interferometry

One interesting fact about light is that it acts sometimes like a wave, other times more
like a stream of very fast particles or quanta called photons. This wave/particle duality
remains one of the mysteries of nature. Theoretically, at a point in empty space the
electromagnetic state is said to be specified by two vectors, the electric field E, and the
magnetic field H. However, in practice we emphasis and use whichever aspect makes
our treatment easier and leads to a satisfactory result. In this thesis, light is treated as a
kind of electromagnetic wave E, based on Maxwell’s theory, as interference exhibits
the wave character of light.

Interference arises from the superposition of two or more light waves satisfying certain
conditions. The resultant intensity at any point depends on whether they reinforce or
cancel each other.

¢ optical interference

The theory of optical interference is based essentially on the principle of linear
superposition of electromagnetic fields. The complex amplitude at any point in the
interference pattern is the sum of the complex amplitudes of the two waves, so that we
can write [Fowles 1968, Hariharan 1992

E=E +E,, (3-1)
where E; = E o exp(-i¢;) and E, = Ey exp(-i¢,) are the complex amplitudes of the two
waves. Suppose I; and I, be the intensities due to the two waves acting separately,
and @ (x, y) = k (¢; - ¢ ;) be the phase difference between them in the x-y plane where
the waves are investigated, the resultant intensity is, therefore,

I=C|E]*=C(E +E,)(E", +E)
=C(E [*+ [E >+ E B, + B E,)
=1, +L + 2(I, L)% cos @ (x, ), (3-2)
where E is the conjugate of E and C is a constant.
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The term 2(I; 1,)”* cos ¢ (x, y) is called the interference term. This term indicates that
the intensity, I, in the region of superposition varies from point to point between
maxima which exceed the sum of the intensity in the beams, and minima which may
be near to zero.

If the two waves are derived from a common source, so that they have the same phase
at the origin, the phase difference ¢ (x, y) corresponds to an optical path difference

Ap=A12T) X Q(x ). (3-3)

If ¢ (x, y), the phase difference between the beams, varies linearly across the field of
view, the intensity varies cosinusoidally, giving rise to alternating light and dark bands
or fringes.

With the aid of the interference pattern analyses, it is possible to achieve higher
accuracy even up to nanometre order. The wavelength of the laser light is the unit of
measurement (A=0.6328 um). The capability of showing fractions of a light
wavelength by interferometry technique makes it possible to achieve very high
measuring accuracy.

¢ interference conditions for good fringes
In general, when considering two-beam interference, five conditions must be met for
good contrast fringes in an interferometric measurement:

1. The two interfering beams must be at approximately the same frequency;

2. The phase differences between the interfering beams must be constant over
the measurement time;

3. The polarisation of the interfering beams must be equal;

. The intensity of the interfering beams should be nearly identical, and;

5. The interfering beams must overlap to meet each other.

o

Any reduction in the conditions will reduce the fringe contrast and therefore reduce
the sensitivity as well as the accuracy of the interferometry. Optics of the interference
units are designed for maximum possible contrast of the interferograms.

¢ Conceptual interferometry

When light waves which meet the above-mentioned interference conditions are
superposed, interference patterns can be observed in interferometers. Most
interferometers are based on the principle shown schematically in Figure 3-1.
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The light source can be either a laser or a monochromatic point source emits
coherence beams. The light beam from the light source is guided to a device with
which the beam is split into two. To make measurements using interference such an
optical arrangement is usually need in which the two split beams travelling along
separate paths are made to interfere. One of these is the reference path, while the other
is the test or measurement path with the introduction of phase difference. After being
guided to meet each other, the two beams interfere. The interference can be observed
directly or can be recorded as so-called “interferogram” by a kind of detector. CCD
array is of the most popular detector used in modern interferometers when visible
wavelengths are employed.

Two methods are commonly used to obtain the two split beams from a single source.
Wavefront division method uses apertures to isolate beam from separate portions of
the primary wavefront while amplitude division derives two beams from the same
portion of the original wavefront [Hariharan 1992].

reference Wave ,
Wave . . 03
B— splitting rJr . combination ——
Light source Intrg)duczjion of Observation of

phase difference interference

Figure 3-1 Conceptual schematics of interferometers

Naturally, to obtain a good interferogram, the forgoing-mentioned interference
conditions should be satisfied. In addition, for a stationary interference pattern to be
produced the phase difference between the two interfering waves should not change
with time. The two interfering beams must, therefore, have the same frequency.
Generally, this requirement can be met only if they are derived from the same source.

3.1.3 Phase shifting interferometry

¢ phase shifting technique

Phase measuring technique liberates people from arduous work with the interpretation
of interference fringes. In any modern interferometric test of an aspheric optical surface
some means is required to get the interferogram data into the computer for analysis.
Phase shifting interferometry (PSI) is the best. The relatively simple concept behind PSI
is that a time-varying phase shift is introduced between the reference wavefront and the
test or sample wavefront in the interferometer. A time-varying signal is then produced at
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each measurement point in the interferogram, and the relative phase between the two
wavefronts at that location is encoded in these signals.

In PSI, the phase different between the two interfering beams is made to vary in steps,
and as the phase difference is varied the resulting intensity distribution is detected and
fed into a computer. If three or more intensity measurements are made while the phase
difference is varied, the phase variation across the interference pattern can be calculated.
For more details on the phase shifting algorithm, please refer to Appendix C.

Virtues of phase measuring techniques include: interpretation of fringe patterns to
better than A/100, high speed measurement and automatic polarity determination,
good results even with low-contrast fringes, results that are independent of intensity
variations across the pupil and phase obtained at a fixed grid of data points [Creath
1988].

¢ phase unwrapping

There is one more operation that must be performed to the calculated phase ¢ (x, y)
before it is ready to be displayed and evaluated. Based on the four-step PSI algorithm
described in Appendix C, the measured phase can be obtained from the following
equation [Hariharan 1992, Malacara 1992]

@(x,y)=tan " [(L-14)/ (L, -15)]=sin" (I-14)/cos™ (I, -135‘ (3-4)

This simple equation is evaluated at each measurement point to obtain a map of the
measured wavefront. However, the arctangent is defined only over the limited range of
angles, -w /2 to m /2. Regardless of the actual value of the phase, only values of the
phase within this range result from Equation (3-4). This limitation would appear to
restrict us to measuring optical path differences to no more than half of a wavelength.
Fortunately, there is sufficient information in the calculation to remedy the situation and
to provide a usable measurement range. The facts that the wavefront or surface is
actually continuous and that it extends over a much large range benefit the phase
unwrapping work. .

The first correction is to extend the phase calculation range between 0 to 2x. This is
possible because the signs of the sine and cosine are known independently of the
tangent. Therefore, the maximum wavefront slope measurable is, in principle, limited to
7t per pixel. The second correction is to remove the 27 discontinuities that are present in
the raw phase data generated. It converts the modulo 2% phase data into a continuous
representation of the wavefront under test. Whenever one of the large discontinuities
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occurs in the reconstruction, 21 or multiples 27 are added to the adjoining data to
remove the discontinuity.

e requirements to specimens under test

The application range of phase shift interferometry is independent on the fabrication
brands. With a commercial interferometer, it can be measured of flat, spherical test
specimen with following surface specifications:

e polished surfaces of glass, ceramics, metal, plastics or other comparable materials;

e coated or uncoated surfaces;

e diamond turned surfaces;

o Surfaces with minimum 4% direct reflecting light;

o reflectivity between 1% and 100%;

e deviation of shape accuracy to the reference element between 0.01um to 3 pm.

3.2 Fizeau interferometry used

3.2.1 Principles and layout

An extremely useful and versatile interferometer is the Fizeau interferometer. The
Fizeau interferometer is commonly employed for topographic testing when a test
surface is compared with a reference one owing to its well-known characteristics:
high stability, robust design, good sensitivity, and relatively low cost. We shall now
describe a Fizeau interferometer used in this research for the measurement of curved
aspheric surfaces. A schematic diagram is shown in Figure 3-2.

A helium-neon gas laser of about 1 mw power laser at 0.6328 um in the single mode
is employed. A very well corrected objective (collimator) serves to collimate the light
from the pinhole, illuminated by a combination of the laser and a microscope
objective. Laser light with a beam diameter of 0.6 mm goes through such a telescope
system to be expanded by a factor of approximately 200. As a result a typical
measuring field of 100 mm diameter is obtained.

Between the collimating objective and the pinhole (spatial filter), a beam splitter (BS)
is placed so that the fringes can be observed from the side. The reference plane surface
is adjusted so that the reflected image of the pinhole is autocollimated. The surface
under test is adjusted until the image reflected from it also comes into coincidence
with the pinhole.
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Figure 3-2 Schematic set up of the Fizeau interferometry used

Just as collimated light is employed for testing optical flats on the Fizeau
interferometer, here an arrangement for testing a concave surface against a reference
convex surface is used for testing our contact lenses. The point source of light is
located at the centre of curvature of the convex reference surface. The concave surface
under test is adjusted until its center of curvature almost coincides with the point
source of light, too. We can also have an arrangement for testing convex surface
against a concave reference surface.

The same setup can be used very easily for checking the uniformity of thickness
(concentricity) of spherical shells. In this case the interfering beams are obtained from
the front and back of the two spherical concentric surfaces.

3.2.2 Measurement accuracy and fringe interpretation

The accuracy of interferometric measurement is primarily determined by the optical
cavity errors. The quality of all the optics of uncommon paths in the interferometer is
very important. Among of that, the quality of the reference element determines
essentially the accuracy of interferometric measurement. In the case of measuring a
curved surface, the described accuracy is around A/20 or 31 nanometres in peak-to-
valley (PV). It is possible, anyhow, to remove such kind of systematic error by error
separating techniques [Bendat 1986, Walker 1994]. The measurement accuracy
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depends on the system noise behaviour and includes errors caused by the internal
optical setup, and errors introduced by the electronic elements like CCD camera and
the influence of air turbulence and mechanical vibration.

The reproducibility of a phase shifting interferometer depends on the quality of the test
specimen and the measuring conditions. Typical value, according to our experimental
experience, under normal conditions is better than 30 nanometres. Under special
conditions (well-controlled mechanical vibration and air turbulence) a reproducibility
of 10 nanometres was achieved.

Apart from the above-mentioned all factors, the accuracy of fringe interpretation
should be also taken into account. The most important limitation is the sampling
interval. Referring to Appendix C, the optical phase between adjacent detector
elements must not change by more than 7 in order to reconstruct the wavefront. This is
because the phase measurements are modulo 21 owing to the arctangent calculation.
This means that minimum two detector elements, or better in eight detector elements
for one fringe (A/2) are necessary (see Chapter 1.2.3).

The software with the Moller-Wedel V100/P interferometer, Intomatik, is used to
control and calculate the phase measurement with respect to the reference wavefront
generated by a reference object. Data points that do not contrast sufficiently are not
accepted but indicated exclusively.

With the Fizeau phase shifting interferometer, the measured phase data are recorded
to a map data file. They are scaled by the grey course of 256 and stored in phase
integers. However, the measured data in such a map data file are encoded in a strange
and special way therefore are unreadable in a normal way. A converting program to
interpret the original data of phase integer into ordinary data referring to the height
information was written, the basic algorithm used is given hereafter.

In our case that interference takes place with the reflected beams from the reference
surface and the tested surface respectively, surface topographic height h can be
calculated according to Equation (3-3),

h=Q/4m) ¢ (x, y). (3-5)
The relationship between real phase data, i.e., phase_real or @ (x, y), and the stored

integer phase data, phase_integer, in a measured data file is
phase_integer = (phase float X 256) \oyndeq; phase_float = phase_real / 2m.  (3-6)
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Therefore, we have got

h = (phase_integer /256) X A/2 = 1.2359 X phase_integer. (3-7

3.3 The Stitching strategy

In order to solve the problems described in Chapter 2.4 with the accurate
measurement of curved aspheric surfaces, a suitable measurement technique to
overcome the fringe density and aberration difficulties must be developed. It has been
found that, by analysing the interferograms of aspheric surfaces carefully, even in the
case of too many fringes, such kinds of interferograms are still partially resolvable.
Where and whether the fringe density is resolvable depends principally on the shape of
the tested object, as well as the position of the object in the measuring frame in respect
to a certain CCD array.

A novel technique is proposed for the accurate measurement of curved aspheric
surfaces, named stitching interferometry. The essential considerations were to make
use of a modified phase shifting interferometer with a tailored manipulator, without
use of compensation elements. The method consists of varying the distance or position
of a curved surface from the focus of an interferometry reference sphere with a
precision manipulator.

///:\
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Figure 3-3 Comparing an aspheric surface(thick) with reference
wavefronts(thin) varying in radius

It can be seen from Figure 3-3 that as the asphere is moved, the radius of curvature of
the reference wavefront changes, matching different part of the aspheric surface on
rings of increasing or decreasing diameter.



32 Chapter 3: Improvement of the Interferometry

The basic idea behind the stitching interferometry is to divide the wavefront or the
measured surface up into several segments so that the fringe density over a sub-
interferogram from each sub-measurement remains resolvable. In other words, to shift
the object with respect to the varying reference wavefronts, such that the differences
between the reference wavefronts and the tested surface will be minimised. Figure 3-3
intuitively illustrates the concept of stitching interferometry. The inner portion of the
measured surface is compared in position A with a befitting reference wavefront,
while the outer portion is compared in position B with another wavefront. To accept
the strategy implies that instead of using only one reference wavefront with fixed
configuration parameters, a family of those, with variable configuration parameters
such as radii, positions and orientations, must be employed.

Figure 3-4 shows the corresponding resultant interferograms of simulation which
correspond to the position A and position B in Figure 3-3, respectively.

Figure 3-4  Simulated interferograms with object position shifting
from the vertex centre of curvature

The stitching strategy can be described as following. Firstly, two interferograms of the
object in two successive positions in space are recorded (Figure 3-5), in such a way that
the two pictures have a surface region in common where the fringes are well resolved.
Between the two positions, the object under test is shifted along a common optical axis
of the interferometer and the aspheric test surface. Secondly, the surface profiles in the
two positions are obtained by analysing and calculating the two interferograms. Next,
the two surface profiles in the region of overlap are superposed by making use of the
transformation between these two positions. Applying this procedure recursively, a
completely reconstructed surface can be acquired finally.
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The stitching interferometry is different in procedure from all other existing techniques.
It firstly interprets the sub-interferograms into geometrical topographies and then
stitches the topographic segments up together so as to obtain the overall shape of a
surface. This makes it more universal to use, especially for surfaces with steep
topographies. :

Figure 3-5 Stitching strategy

The individually measured profiles can not be stitched directly because of any possible
displacements and/or rotations of the surface during the procedure. To make the
things even worse, as the object is shifted during the stitching procedure, the optical
path of each point on the object surface changes, too. Chapter 4 will give the treating
finesses and solutions to the problems.
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4,

Stitching Interferometry

4.1 Stitching procedure

The basic concept of stitching interferometry is composed of three parts. The first one
is to split the measurement of an entire aspheric surface in certain different zones. The
second one is to obtain topographic pieces of the surface from the series of
measurements. And the last one is to stitch the sequence of the topographic profiles up
together to acquire the entire surface.

The concept is realised by varying the position or orientation of an aspheric surface
from the focus of an interferometric reference sphere. The focus is considered as a
source emitting a series of spherical wavefronts that are defined in this chapter as the
virtual spherical reference. As the aspheric surface is moved, the radii of the virtual
reference wavefronts change, and the matching area of the tested surface increases or
decreases in diameter consequently. In such a way, a different part of the tested
aspheric surface is matched or compared to the varying reference wavefronts
correspondingly. Accordingly, the interferograms obtained at different positions are
recorded to acquire profiles of the correspondent surface portions.

Figure 4-1 and Figure 4-2 show respectively the experimental interferograms of an
aspheric contact lens inner surface. The interferogram in Figure 4-1 was made to test
the central portion of the surface at its vertex centre of curvature in the arrangement
shown in Figure 3-2. The interferograms in Figure 4-2 were made to test the outer
portion of the surface in two measurements, with the object position shifts from the
vertex centre of curvature in respect to the well-corrected spherical reference.

Although only the aspheric surfaces were treated in this thesis, the principles of
stitching interferometry can be certainly extended to the measurements of more
general types of surfaces, for example the astigmatic and cylindrical surfaces.
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The stitching procedure can be described as follows. Firstly, two interferograms of the
object in two successive positions in space are recorded, in such a way that the two
pictures have a surface region in common where the fringes are well resolved.

Figure 4-1 Interferogram of a contact lens inner surface, measuring the central
portion at its vertex center of curvature

a) b)

Figure 4-2 Interferograms of the same aspheric surface as in Figure 4-1,
but measuring the outer portions with different position shifts
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Between the two positions, the object under test is shifted along a common optical axis
of the interferometer and the aspheric test surface. Secondly, the surface profiles in the
two positions are obtained by analysing and interpreting the two interferograms. Next,
the two surface profiles in the region of overlap are superposed by making use of the
transformation between these two positions. Applying this procedure recursively, a
completely reconstructed surface can be acquired finally.

The stitching interferometry is different in the procedure from other existing
techniques. Firstly, it interprets the sub-interferograms into geometrical topographies
and then stitches the topographic segments up together so as to obtain the overall
shape of a surface. This makes it more universal to use. Secondly, whereas the
majority of commercial interferometers employs only one fixed reference wavefront,
stitching interferometry employs a family of virtual reference wavefronts. This is
realised by means of varying the relative position of the tested surface with respect to
the reference surface.

An important issue in the stitching interferometry is to shift the aspheric object in
respect to the focus of a reference sphere, such that every portion of the measured
interferogram should be resolvable in turn. In this way, the entire surface is "swept"
with certain predetermined overlapping sectors, for example, outwardly. As a result, a
series of measurements of overlapping surface segments is made which is
subsequently stitched together to obtain an entire reconstructed surface. It has been
implemented by make use of the modification on a commercial Mdiler-Wedel V-100/P
phase shifting interferometer, and of a self-designed precise 5-axis manipulator for
shifting and/or rotating the object under test. Successively, interpreting the
interferograms of submeasurements, beforehand, to topographical profiles is a
necessity. The final task is to stitch the topographical segments together properly and
correctly.

4.2 Mathematical models and algorithms

4.2.1 Considerations regarding the stitching algorithms

In the stitching procedure, each pair of interferograms of the tested object in
successive positions in space is recorded with an overlap region. Between the
measurement positions, the object under test is shifted along a common optical axis of
the interferometer and the aspheric tested surface. Such a loop will be repeated until
the entire surface is measured and can be correctly reconstructed in terms of
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topography. It is essential to the stitching procedure that a fixed data area on the
aperture, that corresponds to a fixed data recording grid on the CCD, is used.

From the optical test viewpoint of degree of freedom (see Chapter 1.2.3), extra
degrees of freedom are introduced externally by means of shifting the object under test
and recording more interferograms. However, this causes, too, a kind of trade-off
matters. Shifting the object makes it possible to extend the measuring range of
aspheric departures from the spherical reference while remaining the desirable high
resolution of measurement. On the other hand, however, such an object shift
introduces certain supplementary problems or difficulties. It not only introduces a
misalignment problem but also worsens further the data misregistration, in addition to
the problem of different ray trajectories for incoming and outgoing rays, due to the
surface asphericity, mentioned previously in Chapter 2.4.

To realise stitching interferometry for the measurement of curved surfaces routinely,
careful analyses must be executed on the following items. One is to correct the errors
introduced by the misalignment of the series of measurements. It can be done by using
regions of overlap and knowing the transformation between successive measurements.
Another item is to rectify the misregistration of the individual data sets introduced by
the surface asphericity and by the object position shift that cause optical path
variations. This can be accomplished by careful optical analyses based on the theories
of geometrical optics, including image formation, optical aberrations and the
characteristic functions of Hamilton.

4.2.2 Data sets and measurement frames

The topographical relief of a measured surface is represented on a rectangular image
grid of points in the x-y plane. For each point on the surface, the z-coordinate, or the
height information, can be deduced from the measurement by means of phase
unwrapping, image interpreting and data converting software.

The system of coordinates is defined as the measurement coordinate frame with which
the measurement is made, where the z-axis coincides with the common optical axis of
the measuring system. In the same way, an object coordinate frame, that describes the
shape of the actual surface, is defined, which is independent from its position in the
measurement coordinate frame.

Suppose two successive measurements are made respectively of the two surface pieces P
and Q, as shown in Figure 4-3 a. Two data sets {P} and {Q} are therefore consequently
acquired from the measurements. There is an overlap region between the two surface
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pieces, corresponding to the acquired data set {V} of the overlap region, showing in
Figure 4-3 b. Each element of the data sets {P}, {Q} and {V} is referring to a
coordinate triple of numbers, (X, y, z), in the measurement frame.

Vv

a) the measured pieces of surface b) the corresponding data sets

Figure 4-3 The measurement pair and the corresponding data set pair

Because the measured data grid in the x-y plane is kept to be the same during the two
measurements being made in the stitching procedure, the x-y coordinates of each point
on the surface should be the same, if there would no data misregistration and
misalignment. The z-coordinates represent the surface topography.

Let P; and Q; denote the elements of the measured data sets of the first and the second
submeasurements, acquired respectively from the CCD image grid of the interferometer.
Note here 1, j € N =1, 2, ..., n], but normally i # j due to the above-mentioned data
misregistration. In other words, the indexes of {Qj} are slight different from those of
{P;}. After being corrected by misregistration rectification, P; and Qj are turned to Py’
and Q' correspondingly with the same data frame and the same order sequence.
Furthermore, the misalignment correction is made which results in the corrected data of
the new data sets P;"" and Q;"" correspondingly. It is supposed that there exists an index
set M, such thatif i€ M, then P;" and Q" € V. The corresponding data within an
overlap region is denoted as Vi, ie M =[1,2, ... m], m<n. The relationship among
the data sets is illustrated intuitively by the block diaphragm in Figure 4-4.

P; and Q; P;' and Q' P;" and Q;"
Measured data sets |- After data After data
from interferometer misregistration misalignment

CCD image grid rectification i correction

Figure 4-4  Data sets at different stages of treatment
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4.2.3 Mathematical formulation

Considering the practical situation of measurement, it is reasonable to make the
following assumptions. The first one is that there is no shift for the first submeasurement
itself. The second assumption is that the misalignment about the first submeasurement
itself is negligible. In other words, the object axis is aligned as precise as possible, such
that it is coincident with the optical axis of the interferometer. Therefore the common
optical axis of the interferometer and the aspheric tested surface is defined, along that
the object is shifted in the stitching procedure. A pair of measured data within the
overlap region, should represent the same topographic profile. This implies in terms of
mathematics that within the overlap region,

P"=P'=Q",ie M=[1,2, .., ml. (4-1)

Assuming that the data misregistration in the image formation has been rectified and
therefore the data Qj is converted into Qj'. This means that it is possible to find a kind
of transformations, E, between each pair of corresponding points regarding the same
physical point on the measured surface but from two successive measurements. As a
result, each element of the two data sets refers to the same corresponding point. It can
be expressed mathematically as

Q'=EQ;+¢ i, je N=[1,2,...,n], i#],
(4-2)

where €' is the vector of an error term. This equation can be re-written in matrix format

x! e en e x4 £y (4-3)
= + '
g e €exn €33 q £y
Vi Vi
, ez €3 €33 g,
7! q '
i Z]

In order to obtain the data set QQ;", a kind of transformation between the data set Q;' and
Q;" must be found to correct the misalignment errors. Such a kind of transformation is
referred as to a rotation transformation R and a translation one T. Mathematically it can

be described as

Q"=RQ/+T+seg, (4-4)
or,
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xi" Fir riz b3 xi Ly £, (4-5)
= + +
7 V21 Faz2 Fo23 q t, £,
Yi ! Vi ’ ’
an F31 ¥z F33 v t, E;
Zi Zi

where, again, € is a residual error term.

Finally, the mathematical formulation of the relationships between three date sets Q;, Q;'
and Q;" can be summarised as

Q"=R(EQ;)+T+¢", (4-6)

where £” = R €' + £, which is the resultant error term containing the error components of
all transformations.

Now, the major tasks to develop the stitching algorithms become in turn to find the
transformation E for rectifying the data misregistration, and the transformations R and
T for correcting the misalignment.

4.3 Correction of the misalignment

During two successive submeasurements, the position of the tested object changes.
Therefore, a kind of misalignment is introduced that spoils the correspondences of
orientations and positions in space between the measurements.

In other words, there exists a kind of transformation between the successive measured
data, with which the misalignment can be determined. As a result, two measured
profiles can not be simply stitched together. The correction of the misalignment must
be done beforehand by means of the misalignment transformations.

4.3.1 The principle to find the transformation

The basic criterion for adjusting the measured segments is that they match each other
as well as possible in the overlapping region. Therefore, the fundamental way to find
the misalignment transformation is to make use of the measured data of the overlap
region. Originally, the measured data acquired from any two successive
submeasurements should represent the same physical points or topographical profile of
the measured surface. As a result, there should exist a rototranslation such that the points
of the second surface segment are mapped on the first. In other words, the transformed
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points must satisfy the equation of a certain surface. The transformation is the unknown
we want to find out.

Figure 4-5 illustrates the concept behind the method to correct the misalignment, where
Vp and Vg, refer to the overlap region between the first and the second measurements P
and Q, Vp € P and Vg € Q respectively.
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Figure 4-5 Misalignment correction

We are now going to study the correspondences between the two submeasurements in
the overlap region.

Based on Equation (4-1) the condition, that the two measured surface segments acquired
from two successive submeasurements should represent the same geometry in the
overlap region, can be depicted as,

Q"=RQ/'+T+eg,ie M. 4-7)

In case of the data misregistration has been rectified, the transformations R and T can be
determined in virtue of some kinds of optimisation methods under the condition of

letting the error term € be as small as possible.
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4.3.2 The optimization models

As for the data sets Py' and Q;'"" within the overlap region, they should represent the
same part of the measured surface profile but they happen to be in a different position in
the measurement frame because of the misalignment. Due to the measurement
uncertainty referring to the error term, € in Equation (4-7), it is impossible to find a
transformation that satisfies the condition (4-1) for every point of Q;' forie M. We
have then to solve an optimization problem, i.e., to find the 'best' transformation or the
transformation that brings most points of Q;' as close as possible to the points of P;'.

An optimization model can be expressed generally [Fletcher, 1990]

minimise fX), X=(x1, X2, X3,..., Xp)
X

subjectto  g;(X)<0, i=1,2,....k, (4-8)

where f (X) is called the objective function and g; (X) are constrains. Both the objective
function and the constrains are functions of X, an independent variable vector or a
matrix.

In terms of the optimization model, the objective function in our case can be written as

FRD=2 e, iem (4-9)

Where |l - Il stands for a norm of a vector or a matrix, which is the criterion referring to
the converging accuracy or the iteration accuracy of an optimization procedure.

A few kinds of norms can be accepted as a criterion for the iteration quality according to
what kind of algorithms is being employed. Perhaps norm 1 and norm 2 are the most

widely used options in engineering calculations.

In terms of mathematics the objective function can be written as, when using norm 1,

ie., -1,
fR,T) =§M|z? —zi|, ieM (4-10)
While when using norm 2, i.e., Il - ll,, it can be written as
g \2
f(R,T):igl( zi— 7! ) ie M. (4-11)
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Either norm 1 or norm 2 can be employed in practice regarding accepted algorithms. The
former is in the approach sense to minimise the maximum deviation between two data
sets, for example in the Chebyshev approach algorithm. The latter is to minimise the
deviation of one data set with respect to the other as reference in the least squares sense.

According to the different way to describe the transformations R and T, there are two
kinds of mathematical models. We shall accept norm 2 as the iteration criterion to find
the transformation. This is because that the least squares algorithm is relatively easier to
be used in practice. In other words, we shall use Equation (4-11) as the object function
f(X) in the optimisation model (4-8).

¢ the general model
According to the general principle of transformation, the unknowns are the nine
elements of R and the three elements of T [Fraleigh 1987]. That means

Fi Fo T [
R= Fu Fan Fal and  T= t, | (4-12)
Vi Vs i t,

In order to acquire the transformations uniquely and correctly, there might be some
constraints subject to the objective function above-mentioned should be taken into
consideration. The constraints regarding the translation transformation T is

It 1<
lt,l<d
I't, I< ro. (4-13)

Here 6 stands for the interval of the CCD grid and r, for the nominal radius of the tested
curved surface. It is pointed out that in practical cases, ry/ t, = 10, or, t,< 0.1 ro.

The first constraint regarding the rotation transformation R is that the determinant of R
should be unitary. The second constrain is that the inverse of R, i.e., R, should be
equal to the transpose of R, i.e., R”. In terms of mathematics, it is read then as

R'=R" (4-14)

The above constrain asks the matrix to be of a rotation, explicitly [Fraleigh 1987]:
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V22¥33-123t3 Yprs-rizrs “Vi¥s+rirs
- . =ty T  =Try, - =713,
A A A
F21¥33-123F31 Yiirs3=rizrs Viira3-¥i3hog
- - = I, - = I, - = F3,
A A A
F21¥32-122F3; Yt -rpks Fiivro-rpryg
- . = rl3 T =TI, - . = I3,
A A A

(4-15)
where A is the determinant of R.

Such kind of a general model is rather difficult to be accepted in finding either a
numerical or an analytical solution of the problem. This is not only because the
objective function with Equation (4-12) is rather complicated, but also because the
intricate constrains, e.g., Equation (4-15), must be operated in the computation.
Although there is a commercial routine of software available, called E04UCF in the
NAG library, it takes much more time and possesses a high degree of complexity,
according to our practical experience.

e the differential model

In the circumstance of measuring an aspheric surface by the stitching interferometry,
most elements of the rotation and translation transformations, R and T, are infinitesimal
comparing with the size of the measured surface, except for the translation shift, t,, along
the z-axis. We call it the infinitesimal hypothesis. Keeping this hypothesis in mind, a
kind of differential model had been investigated preferably, in order to simplify the
mathematical treatment. Nevertheless, some mathematics for the general treatment
should be studied first.

The rotation and translation transformations can be expressed generally as follows [Paul
1982]:

1 0 0 ) cos@ 0O sinf
Rot (x,y)=| 0 cosy -siny | Rot(y,0)= 0 1 0
0 -sin W cosy -sin@ 0 cos@

(4-16)
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cosg -sing 0 | ty
Rot(z,¢)= sing cosgp 0 =1,
0 0 1 t,

(4-17)

Where Rot (x, W), Rot (y, 6) and Rot (z, ¢) are the rotation transformations about the x,
y, and z axis respectively.

The rotation transformation combination of roll, pitch and yaw, RPY (¢, 6, ), can be
written as

R =RPY (@, 9, y) =Rot (z, ¢) Rot (y, 9) Rot (x, y) =

cos@cosO cos@sinBsiny—sin@cosy cos@sin Bcos Y+sin @sin Y
sin@cos® sin@sinBsin Yy+cos@cosy sin@sin Bcos y—cos @sin Yy 418
L —sin® cos Osin cos Ocos J » @18

Similarly, the unknowns here are the nine elements of R and the three elements of T.
Now, we are going to investigate the differential transformations. Substitute cos®, sin®,

t, and t, with their first order approximations in Equation (4-18), we have then the
differential transformation

R4 =Rot (z, 3, ) Rot (y, §,) Rot (x, 3,), (4-19)

where Rot (z, 8, ), Rot (y, 8,) and Rot (x, dy) are the differential rotation translations
about z-, y- and x-axis with smaller differential rotation §,, 8, and d, respectively.

That means
1 -6, 0 106,71 o0 o 1 -6, 6,
R,= |0: 1 0 01 0|0 1 -6.\=1| 6, 1 -6, (4-20)
0 0 1||-6, 0 1|0 =6, 1 -0, O,

Conclusively, the differential transformations Ry and Ty can be written as
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1 -5 6, (dx)

Rg=| 6. 1 -8.|; and, T(,=Ld.v @-21)
5 6 1 2

o

It is very favourable that the number of the unknowns has been reduced down to six, the
three elements of R and the three elements of T. This will greatly improve the
computational efficiency and reduce the complexity of the problem.

Another advantage of the differential model is the fact that the sequence of each

transformation is not important, that affects nothing, although in the general model the
sequence of each transformation is important. In other words,

Rot (z, @) Rot (y, ) Rot (x, y) # Rot (x, ¥) Rot (y, 0) Rot (z, 9), (4-22)

Rot (z, 8, ) Rot (y, 8,) Rot (x, &) = Rot (x, 8, ) Rot (y, 8,) Rot (z, 8,). (4-23)

This characteristic allows to simplify the operation and calculation to a certain extent.

¢ a short summary

The criteria to stitch the two measured profiles together is to minimise the data
differences of the overlap region, based on the Equation (4-9) and appropriate
transformations.

As for the transformations E regarding the data misregistration rectification, there exists
the following relationship between the raw data {Q;} and the corrected data {Q;'}, i.e.,

Q'=EQ; +¢. (4-24)

In terms of matrix, it is

4

€11 e12  e13 (xw €y

x 4 )
Yi = €21 €22 €23 y‘j. €,

; Do, (4-25)
Z 2]

<
I

~D =

€31 €32 €33



Chapter 4: Stitching Interferometry 47

As for the transformations R and T regarding the misalignment correction, there exits
the following relationship between the data with misregistration rectification but
without misalignment correction {Q;'} and the completely corrected data {Q;"}. The
general model leads to

Q"=RQ/'+T+eg, (4-26)

or, with matrix expression,

+ | e,
e, | 4-27)
The differential model leads to

Q"=Rq Qi +Ta+&q, (4-28)

Y[ ) fe )
yi=| 8, 1 8, | Y [l d, ]| ey
323 1 IS e o v e

This is based on the infinitesimal hypothesis. A further analysis regarding its effects on
the accuracy will be done in the following chapters.

or

4.3.3 Solving the problems

In principle, the objective function f(R, T) can be exactly determined or computed by a
kind of constrained optimization method. However the complexity of f(R, T) can affect
the complexity of the solution. If the overlap region includes too many points and the
function f (R, T) is very complicated, this kind of method is expected to be very
time-consuming.

An easy form for f (R, T) can be obtained in the following approximate way. Let’s
suppose that the misalignment errors be small compared to the grid interval, after the
data misregistration rectification. It is then safe to assume that the points on the two
grids correspond to the same physical point on the measured surface. In other words, the
indexes of data sets {Q;”} and {Qy’} are the same. Therefore, only z-coordinates z,
Ziq' and z% ) should be taken into consideration. It is then allowed to use the so-called
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point to point fitting method in Equation (4-26) to express the Q;", whose z-coordinate is
q

Zi,

78 =xd it v+ 29 ra+ t,, 8, ie M=[1,2,...ml. (4-30)

The actual expression in terms of matrix should be read as

zf xf oyl oz 1 €21
z4 x4 v 7§ 1 r3i €:2
7y x yi z{ 1 r32 €3
= . +
. k!
2 I R A I B ey
24 xy oyl oozy 1 € im

Moreover, based on our infinitesimal hypothesis and its consequence referring to the
differential model of Equation (4-29), the above expression can be further simplified as

78 =-x3 8, +y38, +z  +t,, 85, ieM=[1,2, ... ml (4-32)

This is the result of substituting r3;, r3; and rs3 with -8,, & and 1 into the Equation
(4-30).

There exist a couple of algorithms which can be used to solve our problems [Fletcher
1990, Fraleigh 1987]. This is a kind of non-linear least squares problem because the
objective function f (X) is not linear. We have solved the problem by applying the
algorithm of the Levenberg-Marquardt method with a mixed quadratic and cubic line
search procedure. Naturally, the Gauss-Newton algorithm can be accepted alternatively
[Fletcher 1990].

As aresult, the transformations, R and T, can be determined by solving the optimization
problem of the least squares, based on Equation (4-11) and Equation (4-31) or (4-32).
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4.4 Rectification of data misregistration

4.4.1 Data misregistration

In the Fizeau interferometry arrangement shown in Figure 2-4, the focal point of a
well-corrected focusing lens is coincident with the center of curvature of the tested
curved surface. When the test object is a sphere, the interference pattern on the
detector consists of straight lines, of which the spatial frequency is proportional to the
tilt of the reference surface.

A spherical object under test sends the rays that emanate from the focus of the well-
corrected focusing lens back along the same path. At the same time, a data registration
is formed on the CCD grid. Any deviation in respect to this kind of data registration,
due to optical path variation, will be called data misregistration. In other words, the
data registration formed on the CCD grid under the circumstance of testing spherical
surface with ideal optics is set as a reference. Any position variation differing from the
reference pattern of data registration is defined as data misregistration.

In case of measuring a steep aspheric surface by stitching interferometry, however, the
picture is different from measuring a spherical surface. We have to deal with the
misregistration problem.

There are two major factors that can cause the data misregistration in the image
formation course. The first one is the surface asphericity that results in different ray
trajectories of the incoming and outgoing rays described in Chapter 2. The second
factor is the variation of the object position due to the shift in the stitching procedure,
which results in optical path changes as well. In either case, the optical aberration of the
well-corrected focusing lens may contribute to the data misregistration as well. It is the
principal aberration that has been taken into consideration because all other kinds of
optical aberrations with the commercial interferometer should be negligible.

Based on the treatment of image formation according to the Hamilton’s method of
characteristic function, the problem can be solved by means of the so-called eikonal
methods [Born & Wolf 1984, Velzel 1987]. These methods deal with the characteristic
functions of a surface and enable us to determine uniquely the corresponding image
position of a surface. In order to do so, some analysis tools regarding optical image
formation treatment are needed.
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4.4.2 Image formation and the eikonal method

An optical system is a set of arrangements of refractive, reflective and diffracting
surfaces. Geometrical optics is a science of image formation for an optical system. To
trace the optical path and locate the image position corresponding to the object point is a
must to optical design and optical analyses.

Under the right circumstances, it is possible to simplify the treatment with the concept
of light rays. Rather than thinking about waves propagating through space, we think
about lines that are normal to the waves, and we call these lines light rays or simply
rays. The behaviour of these rays can be modelled by some relatively simple
equations. This is called geometrical optics. However, we still keep track of quantum
and physical optics effects when needed to get the right answers.

Image formation of an optical system can be characterised by a set of functions of
coordinates in both the object and image spaces. Such functions uniquely determine a
ray of light travelling through the system. The functional value equals to the optical path
length measured along the ray between the two points, determined by the coordinates
[Born & Wolf 1984].

In recent years, some research has been done on the theory and methods of characteristic
functions of Hamilton, especially on the angle characteristic or angle eikonal as well as
its applications on aberration theory [Velzel 1987]. The method enables us to determine
uniquely the corresponding image positions of a reflective surface, once the desired
characteristic function is known, and vice versa.

The angle eikonal is a function of direction cosines. Let L, M, N be the direction
cosines of an incoming ray in object plane, see Figure 4-6, and L/, M’, N’ be those of
the outgoing ray in image plane respectively. The same Cartesian coordinate system is
used for both the object and image space. Here the incoming and outgoing rays is with
respect to S, an optical system or a surface.

The angle eikonal is defined as the optical path along the ray between the points A and
B that are the feet of perpendiculars from point O to the incoming and outgoing parts
of the ray. Consequently, the angle eikonal is given [Born & Wolf 1984]

B

E(L,M,N;L",M’,N') = JA n ds, (4-33)

where n is the refractive index.
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The relationship among the ray positions in the object and image spaces can be obtained
by differentiation of the angle eikonal. In this chapter the eikonal theory is applied in
two ways for the purpose of analysing a interferometer for aspheric testing, namely, 1)
to define a linear system and, 2) to treat small perturbations.

It is possible to obtain direction cosines of the incident rays, L, M, N, as well as focus
offsets, because the surface describing function is known.

Figure 4-6  Direction cosines in eikonal analysis

Afterwards, the paraxial equations are used with the aid of the eikonal method, to
calculate direction cosines of the imaging rays, L’, M’, N’, and then the misregistration
on the CCD image plane. As a result, we then finally know the compensation needed
for rectification of the misregistration.

Considering the fact that the measuring system of the tested aspheric surface and the
optics is of symmetrical arrangement, 2-dimensional analysis is sufficient. In other
words, the angle eikonal in our case is a function of two direction cosines L, M and L',
M.

4.4.3 Misregistration due to the surface asphericity

¢ Different ray trajectories

In the case of an aspheric surface being measured in the scheme of Figure 2-4, the
returning beams from the aspheric surface no longer follow the same path as in the
case of a sphere. Therefore, the returning rays do not pass through the focal point, but
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deviate over an angle Y, showing in Figure 4-7, that is given in terms of the
asphericity d, (see Chapter 2.2.4) by

Y=2(d)/ (rom), (434

where 1 is the angle that the incoming ray makes with the optical axis, and r is the
radius of tested surface.

The reflected ray will make an angle y” with the reflected ray from the reference.
(When the tilt is zero, a concentric circular interference pattern will result.) To the
first approximation, the angle is given by

Y =-yr/f, (4-35)

where r is the distance from the focal point F to the point P where the ray in question
hits the tested object (r = 1o + d,), while f is the focal distance of the focusing lens. In
our case, f / 1y = 80 mm /8 mm =10, and at average, 1/ry = 1.027 and 1 /d, is of the
order of 300, approximately.

/—detector plane _
%-—%Y-’— /

I . Aspheric surface oW

focal point
M
Optical / Y

P

axis
¥Well—corrected

| focusing lens

Reference surface
Figure 4-7 Different ray trajectories due to surface asphericity

The interference fringes on the detector have a period

p=A/Y" (4-36)

When this period is of the order of the pixel interval between the contents of two inter
pixels on the CCD array, moiré patterns are formed between the pixel grid and the
interferogram [Greivenkamp 1987]. We need at least four pixels to resolve one period
of the interferogram adequately, so that we have the condition
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Y <A/dp. (4-37)

We have a magnification factor M between the detector plane as shown in Figure 4-7
and the CCD, so that p = 10 M um. With p = 10 M um and A= 0.6328 um, Y” must be
smaller than 1.5M milliradians. With M being of the order of 5, r = 8 mm and f = 35
mm, we see that Yy’ must be smaller than about 6.7 milliradians.

When the aspheric surface is so steep that y exceeds this value, we can take recourse to
stitching interferometry. This means that we obtain the 3D profile of that zone of the
aspheric surface where the fringe density is sufficiently low, and then translate the
aspheric object to obtain the profile of another zone which has an overlap region with
the previous one. Fitting the profiles and continuing the procedure leads to a complete
3D profile of the tested object.

e Misregistration when using an ideal lens

The measurement of aspherics by Fizeau interferometer has a disadvantage that
becomes serious when the asphericity of the test object is considerable. We describe
this problem at the hand of Figure 4-8 . In this section, it is assumed that the beam
illuminating the object departs from a perfect focus, although in a later section
consideration will be given to the influence of aberrations as well.

When an incoming ray meets the aspheric surface at P, it is in general not reflected in
the same direction, as described above in Equation (4-34). This causes a
misregistration Ax, between this reflected ray and the corresponding reference ray on
the detector. The misregistration is zero when the detector is situated at the point P’
where P is imaged by the focusing lens. Because the image of the aspheric tested
object is in general not flat, it is not possible to make the misregistration zero for all
points on the aspheric surface. In the next section we analyse the misregistration for
the case of an ideal focusing lens.

An ideal lens is a lens without aberration. With an ideal focusing lens, in the sense of
eikonal theory [Velzel 1987], the ray transfer equations are given by

L=x"/f,
x=-L'f (4-38)
Where f is the focal distance, x and x” are coordinates in the front and back focal

plane, respectively; L and L’ are direction cosines in object space and image space
respectively.
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For a ray that leaves a point P of the aspheric surface to be measured, see Figure 4-8,
making an angle n+y with the optical axis, we have

L' =sin(m+Y)
X" =-rsiny/cos (n+7), (4-39)

from which L and x follow with Equation (4-38) respectively.

/—Detector plane
p’ /—Front focal plane

’

Ax AP /

- Aspheric surface “\
X Focal point \
\Y

v’ Z Y

F/
N
r
P
Well-corrected
converging lens — Rear focal plane—]
Zo | f f Io

Figure 4-8 Misregistration of the reflected ray in the detector plane

In a detector plane that is situated at a distance Z, from the front focal plane, the
position xp of the ray is given by

Xp= X+ZoL/N, (4-40)

where N = (1-L*". The misregistration Ax is given by

AX = Xp - Xg (4-41)

where X is the ray position of the reference ray, for which we have

Xo=-fsinm (4-42)

Using Equations (4-39) through (4-42), we can find an expression for Ax that is exact
as long as we have an ideal lens. For convenience we introduce the approximation N =
1 in Equation (4-40).
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This is allowed because L < 1.5 milliradians (That M = 5 results L < 1.5 milliradians).
With this approximation we find that

Ax=f(sinm-sin(M+7v))-Zg (r/f)(siny/cosM+7)). (4-43)

The corresponding error in the above equation is of the order of

fxsinyx(1-N)/cos (n+7)
= 80 x (2/Y3) X 0.03 X 0.5 X (0.0075)> mm, or

Ax<10*mm=0.1 pm. (4-44)

While considering the axial position of the detector in such a way that the vertex V
(Figure 4-8) of the aspheric surface is imaged in the detector plane, we have

Zo=-f119. (4-45)

According to Newton’s image equation, where ry is the radius of curvature at the
vertex. Now we find

Ax=f{sinm-sin(M+7)+(r/r)siny/cos(m+7vy}. (4-46)

This is the essential formula for calculating the misregistration. Note that r depends
on 1], with an aspheric surface. The calculation of r and 1 can be carried out based on
the relationship of Z = Z(x), contact lens surface expression, from Equation (2-1).

To show the order of magnitude of the misregistration, the approximations r = ry and
cos Y= 1 are employed, so that

Ax=fsiny(-cosm+(1/cosm)). (4-47)

With vy = 1.5m milliradians, and 1 = 30°, we find
Ax=fxmx4x107. (4-48)

With f = 80 mm, this corresponds to about 4 pixels (32 um) on the CCD.

e Misregistration when using a real lens

Now we study the case of the aberration with the well-corrected focusing lens used. In
this section, another result of the eikonal theory will be used [Born 1984]. It can be
expressed as follows:
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“The wavefront error caused by a small perturbation of an optical instrument is, to a
first approximation, equal to the optical path length of the perturbation along the
unperturbed rays.”

For the situation discussed in the previous section, we can add the wavefront error
and then calculate the misregistration due to the aberrations in addition to those caused
by the asphericity of the tested object. As for the aberration here, we refer mainly to
spherical aberration of the well-corrected focusing lens .

In case there are some spherical aberrations of the well-corrected focusing lens, we
can describe the spherical aberration of the wavefront in the focal plane
mathematically, based on the wavefront analysis theory and methods. Considering its
characteristics of symmetry, it can be expressed as

W = ax” + bx* + cx&, (4-49)

where a, b and c are constants.

In the following, it is assumed that a =0 and W = 0 at the edge of the pupil, x,, so
that bxr4 + cxr6 = 0. The maximum value of W is reached, according to differential
calculus, when

b+ 3cxr2 /2 =0 is satisfied, or in other words,

x> =-2b/3c. (4-50)

This is equal to

46>/ 9c? - 8b° /27¢* = 4b% /27c? = - 4bx,* /27 (4-51)

This is the maximum form error caused by spherical aberration described by Equation
(4-49).

For a diffraction limited objective, bx,' should remain within one wave length
[Malacara 1993]. The form error is a factor 4 /27 smaller. It can be removed from the

measurement data by calibration.

Generally speaking, the misregistration caused by this aberration is given by

A x = (OW/9x) Zy = (2ax + 4bx> + bex® ) Z,. (4-52)
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Witha=0andb=-c x,z, it can be written as

Ax=(4bx>- 6bx’ / x,>) Zo . (4-53)

The maximum value of misregistration A x is reached at x> = (2/5) x,°. The maximum
value is

AXpax = 0.85 b %,* Zo / %, (4-54)

With bx,* =\ =0.6328 um and (Zg/ x;) = 20, this is of the order of 10 um.

This is the result with one wavelength (A) aberration. However in the practical
situation, the actual aberration of the reference object is 20 times smaller, only A/20.
Considering another fact also that this is the maximum value of misregistration
introduced by optical aberration in the worst situation, such kind of misregistration
error is therefore negligible. Actually, the practical aberration with the lens we used is
less than A/20 (= 0.03 pum) that introduces a data misregistration in the order of only
several tenth of a micrometre.

4.4.4 Misregistration due to object shift

When the stitching interferometry for the accurate measurement of steep aspheric
surfaces is employed, as described in the Chapter 3, a test object is shifted along the
axial direction between two successive submeasurements. This shift AZ, from position
1 to position 2 in Figure 4-9 , causes a change in the optical path of the reflected rays
and therefore results in data misregistration on the CCD grid. Accordingly, it is
necessary to rescale the data {Q} acquired in a posterior measurement with respect to
those, {P}, acquired in a prior measurement. It is of course important to know the
object shift AZ precisely.

With the aid of Figure 4-9, the ratio of the first magnification M; to the second one
M, can be determined. As the object being shifted with a translation amount AZ, the
vertical dimension of the half measured area subtending at the same angle N changes
from h, to h,, while the image dimension on the CCD plane, h’, remains the same.
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Figure 4-9 Lateral magnification changes due to object shift

It can be seen from figure 5 that the x-coordinate (height) of the point Q is a factor
lager than the x-coordinate of the point P that is at the original position before shift but
in the same direction. To a first approximation, the factor is

w=hy/hy=14+AZ/Zy=1+AZ/r,. . (4-55)

By means of the above expression, data of the set {Q} acquired in a posterior
measurement can be rescaled conveniently, and then treated associatively with the data
of set {P} acquired in a prior measurement during the stitching procedure.

When y would approach to zero, i.e., to measure a “mild” aspheric surface, the above
equation would be sufficient for the correction of the measurement.

In case of a steep aspheric surface being tested, v+ 0, we should use Equation (4-46)
to calculate the misregistration for rectification. Nevertheless, we need in this case
some more precise deduction and calculation for the geometric parameters considering
the changes due to the object shift.

In addition to Equation (4-34) that can be used directly, we are going to manifest the
coordinates (r, 1) of the data set {Q} after a shift with the coordinates (r’, 1) of the
data set {P} before the shift. The latter can be obtained readily by treating the surface
expression mathematically.
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Figure 4-10 Optical path variation due to object shift

With the aid of triangle geometry of A FQG about the angle Z/FGQ in Figure 4-10,
we have

P =1%+21r AZ cos + AZ?, (4-56)

and

tanm =r"sinm’/ (' cos 1’ + AZ). (4-57)
Let Z'(X) be new z-coordinates of the aspheric surface, we can calculate r and n
directly by applying the relationship of Z'(X) = Z(x) + AZ to Equation (2-1).

As an example, we take the shifting of a sphere, so that 1’ = ry is a constant. From
Figure (4-10) we have directly by applying the cosine rule,

r2=r*-2rAZcosm + AZ’. (4-58)

Solving this equation about r, we have got

r = AZ cos M + (AZ? cos™ - AZ* + 1'% )*
= I’ + AZ cos M - AZ*sin™n / 2" + O(4), (4-59)

and

yY=2(-AZsinm/ 1’ - AZ* sinnycos n / 1" + O(3)). (4-60)
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This shows clearly that with a spherical surface, defocusing gives an extra term AZ cos
N in the form function (plus smaller terms). Because of y # O in case of a steep
aspheric surface being tested, one can not measure more aspheric departures from a
reference sphere limited by the following expression,

sinn < (r'/ AZ) X Ynax » (4-61)

where Y is given by Equations (4-35) and (4-37) and is equal to 0.0067 radian.

4.5 The overlap regions

Yet the primary issues in the algorithm development of the stitching interferometry are
dedicated to the correction of misalignment and rectification of the data
misregistration. Nevertheless, there still are a few other matters needing to be taken
into consideration, too. As the overlap region is so important as discussed in previous
sections, the influence of both the minimum size and the optimum size of the overlap
region, the latter referring to the number of measurements in a stitching process,
should be investigated.

4.5.1 Minimum width of the overlap region

Based on the analysis in Chapter 1.2.3, the least width of the overlap region between
two successive interferograms should be kept, theoretically, with respect to 4 pixels on
the CCD employed, while a suggested minimum width of the overlap region should go
with 8 pixels.

For the entire aperture with a 240 x 240 pixel CCD, more than 15 rings or 30 fringes
could, in principle, be recorded.

However, according to our experience, taking more than 6 rings or 12 fringes may
strongly affect measurement accuracy, while less than 4 rings is preferable.
Unevenness of the fringe density over the whole interferogram might be responsible
for that.

If the aspheric surface slope departure from the available reference should not meet
the above conditions, the stitching interferometry could still be useful because it might
reduce the optical complexity of the compensation lenses.
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4.5.2 The optimum size of an overlap region

The measured areas need to overlap in order to adjust the relative misalignment and
data misregistration of each measurement. However, here comes again a dilemma or a
trade-off problem between the measurement accuracy and efficiency in the stitching
interferometry. This mainly has much to do with the overlap region. The larger the
overlap region is, the higher the accuracy will be, while the more the number of
measurements should be made; vice versa, the smaller the overlap region is, the higher
the efficiency will be. As a result, it is needed to find an optimum size of an overlap
region for a pair of successive measurements.

The problem can be solved by means of either theoretical calculation or experimental
work. We discuss both approaches in the following.

e theoretical method

As for the theoretical means, the task to find an optimum shift, which is associated
with the optimum size of an overlap region directly, can be fulfilled by applying the
so-called “penalty function” algorithms of optimization [Fletcher 1990] to the
measuring processing.

Optics - .
X A Object position i

4P|
Object position i+1

Zi+1

—P

Figure 4-11 Shift between the i"™ and the (i+1)™ measurements

The basic concept behind the method is to maximise the shift AZ between the i"™ and
the (i+1)™ measurements under certain conditions regarding accuracy required. Let yA
and Z *! be the distances from the vertex centre of the surface curvature O to the
object position i and the position i+1, respectively, the objective function is then to
maximise (Z - Z" ). The constrains are associated with the allowed aspheric departure
in the normal direction and required accuracy.

The aspheric departure in normal direction, d, , given by Equations (2-2) and (2-1) in
Chapter 2.2.4, is referred to the surface geometry and mathematical expression of the
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tested object. Its allowance d; siowance can be determined according to the analysis in
the prior section.

In terms of optimisation, the mathematical model is written as

- minimise (Z'-Z)
subject to 1 d; | < d; aowance - €
ZM > 7>71. (4-62)

And then the penalty function PF is modelled as

PF=(Z'-Z)+ %o {min [(d; aowance - € - d ), O]
+ min [(d; iowance - € + d; ), 01* + min [(Z' - Z), 0]

+min[(Z-ZY), 0%}, (4-63)

where € is a predetermined allowance of accuracy, © is a parameter so-called penalty
factor. It is common to choose a value of ¢ for each iterative step from a series such as
{10, 100, 1000, ...} until a satisfactory result is reached [Fletcher, 1990].

With d; aiowance = 5 um that is equivalent to 8 rings or 16 fringes and € = 0.1 pm, we
have gotten a {Z'} series of {8.0000, 8.0669, 8.0901, 8.1129, 8.1532,... 8.3419
(mm)}. In fact, only three measurements are necessary to be made to test almost 90%
of the contact lens surface. One is made at the curvature centre and other two at the
positions with 0.0669 mm and 0.0232 mm relative shifts respectively. In case the
outermost part, segment D, being tested, more number of measurements up to 7 will be
needed. Fortunately, because such kind of outermost part referring to segment D has
nothing to do with optical function, it is therefore not required to be tested at all.

e experimental method

As for the experimental means, it can be done by comparing the results of different
percentage of overlap with that of a standard sample. Firstly, a measurement was made
of a spherical surface in terms of shape inaccuracy PV to set up a comparison
standard. Then three groups of measurements were made with different percentages of
overlap and varying numbers of measurements.

It has been seen from Table 4-1 that for each percentage of overlap regions, the
smallest error was achieved for a small number of measurements, and for the largest
overlap region the error was the smallest. Considering the fact that the accuracy in this
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research is to be required of the order of submicron, the 25% overlap region seems to
be a good compromise between accuracy and efficiency. As long as an optimum
percentage of overlap region is determined, an optimum size of overlap region can be
then readily determined, too.

Table 4-1  Influence of overlap size on the measurement

(comparison standard: 0.232 yum in PV)

number of 10% overlap 25% overlap 40% overlap
measurements
2 0.84 pm 0.24 pm 0.21 um
5 1.67 um 0.32 um 0.28 um
average 1.25 um 0.28 um 0.25 um

Greater overlap allows for more accurate fitting, whereas minimal overlap enables
fewer measurements to be made. In addition, as the number of measurements
increases, the accuracy drops down when the more measured pieces are stitched up
together.

Both theoretical and experimental means can be accepted to determine an optimum
size or percentage of the overlap region. Although the theoretical one may be more
precise, it is much more practical and easy to take advantages of the experimental
result.

Furthermore, we point out that for a stitching procedure which takes more than two
measurements, the overlap also depends on the number of stitched profiles. Each step
of stitching brings errors to the resultant measurement uncertainty.
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5.

Realisation and Experiments

5.1 Measuring scheme

Figure 5-1 demonstrates the schematical block diaphragm of the measuring scheme for
the accurate measurement of curved surfaces by stitching interferometry.

object undery | Fizeau 100/P | electronics & R
test interferometer video digitiser] | Software
i Intomatik]
- : computer;
five-axis reference ;
. < Phase shifter |¢— b
manipulator optics | : «— Stltchlng
al gorithms
reconstructed
surfice |
topography

Figure 5-1 The measuring scheme

An Fizeau phase shifting interferometer measures the surface under test according to
the stitching procedure described in Chapter 3.3. A series of submeasurements is
recorded as phase map information data. After being converted into topographical
data sets, the measured data are interpreted into a series of profile pieces. Finally, an
entire reconstructed surface is obtained by stitching the series of profile pieces up
together, by means of the stitching algorithms described in Chapter 4.
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5.2 The interferometer

The heart of the stitching interferometric system consists of a commercial Moller-
Wedel V100/P Fizeau phase shifting interferometer. Figure 5-2 shows the optical
arrangement of the system.

Figure 5-2 Optical schematics of the interferometer

1. Laser 2. Microscope object 3. Pinhole 4. Cubic beam splitter
5. Rotary beam splitter 6. Collimator 7. Mirror 8. Piezo-dived phase shifter
9. Combination of well-corrected focusing lens and plano reference object
10. Object under test 11. Five-axis manipulator 12. Diaphragm
13. Focusing lens 14. Rotating ground glass 18, 21. Beam splitter
15, 16, 17. Combination of zooming and imaging lenses 19. CCD
20. Monitor 22. Rectifying screen 23. Negative lens

A stabilised and unpolarised helium-neon laser (1) with about 1 mw in the single mode
power and 632.8 nm in wavelength output is employed. A very well corrected
collimating objective (6) serves to collimate the light from the pinhole (spatial filter)
(3) that is illuminated by a combination of the laser (1) and a microscope objective (2).
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In such a way, the emitting laser light with a beam diameter of 0.6 mm goes through a
telescope system and then is expanded by a factor of approximate 200. As a result a
typical measuring field of 100 mm through the reference combination (9) in the same
size of 100 mm clear aperture is obtained.

The plano reference surface built in the combination (9) is adjusted perpendicular to
the vertical optical axis so that the reflected image of the pinhole (3) is autocollimated.
Afterwards the surface under test (10) should be also adjusted until the image reflected
from it comes into coincidence with the pinhole as well. To facilitate preliminary
adjustment, a rectifying screen (21) is used to project the two pinhole images from the
two reflecting plane surfaces after the mirror (7). The pinhole image from the
reference surface in (9) is at the center of the screen, whereas the one from the surface
under test (10) is somewhere on the screen. The two pinhole images can be viewed in
the screen (22). To view the Fizeau fringes, the negative lens (21) should be put into
function. This is accomplished by virtue of the rotary beam splitter (5). These fringes
can be further adjusted in direction and number as required, by adjusting the object
under test (10) with the self-designed five-axis manipulator (11).

A part of the beam is diverted by using the cubic beam splitter (4) to a CCD camera
(19) for recording the measurement and to the monitor (20) for observing the fringe
pattern. This is performed by means of the focusing lens (13), the combination of
zooming and imaging lenses (15) and (16), as well as the beam splitter (18). The
interference fringes are detected with an area CCD detector of Philips CCD TV
camera containing 604 X 576 pixels. However, the effective number of detecting
elements is limited actually to 280 x 240 by the resolution of the electronic frame
board used.

In the same path, secondary interference and speckle effects occurring due to the
coherent nature of laser are diminished by a diaphragm (12) that is located in the focal
point of the collimator (6). After being filtered, the interference fringes are projected
through the focusing lens (13) onto a rotating ground glass (14) that is the intermediate
image plane. It is functional to utilise the rotating ground glass in improving the
quality of contrast and signal-to-noise ratio. By operating the focusing lens (13), a best
focus or a favourable fringe distribution could be achieved.

A well-corrected focusing lens built in the combination (9) is the one of the key
elements of the system in terms of accuracy. It converges the incoming rays to the
focus with a 80 mm focal length and 100 mm exit aperture. In terms of optics, the
focusing lens has a numerical aperture 0.625 or sin(38.682)°, which allows the
measurement of contact lens surfaces to be possible.
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5.3 The five-axis manipulator

In order to manipulate the object under test in the stitching procedure, an elaborate five-
axis precision manipulator is designed and built up. It is used to shift and/or rotate the
object under test during the procedure between successive measurements as well as to
adjust and align the object in respect to the vertical optical axis.

Figure 5-3  Five motions of the manipulator

Five motions are required, see Figure 5-3. Z-translation, T,, is the principal motion for
shifting the object under test between two successive measurements. Other two small
translations, Ty and Ty, as well as two rotations, R, and R,, are also functioned for
adjusting the object to align the Z-translation with the vertical optical axis.

5.3.1 Construction

The picture of Figure 5-4 exposes the mechanical construction of the manipulator. The
main motion T,, precise translation along the vertical axis, is realised by means of three
symmetrically structured leaf springs on the lower position. The input of a micrometer
screw drives the leaf springs through the horizontal beam contacted. The shift amount is
read out from the micrometer screw that was precisely calibrated previously.

On the top position, two offset translations, Ty and Ty, for aligning the manipulator with
optical axis are realise by virtue of elastic pivots. Furthermore, the two rotations are
accomplished also by means of elastic pivots that coincides with the curvature centre of
the tested surface. In this way, vertical translation is designed to be independent to
object adjustment and system alignment. For detailed description of the design, please
refer to the relevant reference [Crousen 1996].

The manipulator is built up from a few modular parts which are made of aluminium and
manufactured by precision wire cutting with an electrical discharge machine (EDM).
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Figure 5-4 Construction of the manipulator

5.3.2 Calibration of accuracy

The measurement accuracy depends on the accuracy and repeatability of positioning of
the translational manipulator. Therefore, the manipulator must be calibrated before
being put into use.

To calibrate the Z-translation accuracy of the manipulator, two HP (Hewlett-Packard)
5528 laser measurement systems were employed. The method to detect the deviations
in X- and Y-directions is based on the measurement principle of the HP laser
measurement system for distance measurements. The method to detect the rotational
deviations about X-axis and Y-axis is based on the measurement principle of the HP
laser angular measurement system. In addition, the amount of the Z-translation was
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measured by a Heidenhain digital displacement sensor with which the micrometer
screw was calibrated accurately.

Figure 5-5.a demonstrates the principle of the distance measurement. The f; and f,
beams that leaves the laser head are aimed at an interferometer which splits f; and f,
via a polarising beam splitter. Component f; becomes the fixed distance path, and f; is
sent to a target which reflects it back to the interferometer. Relative motion between
the interferometer, which is mounted on a granite plate table, and the remote
retroreflector, which is mounted onto the manipulator to be calibrated, causes a
Doppler shift in the returned frequency. Therefore, the measurement receiver
photodetector in the laser head sees a fringe difference. This f; - f, + A f; signal that
is returned from the external interferometer is compared in the measurement display
unit to the f; - f, reference signal. The difference, A £, is then related electronically to
velocity and then to distance. The information is finally processed to obtain the
deviations.

Reference
retroreflector N
f Measurement
: Laser head : retroreflector
. : fl f2 : J/ WF f2
.| Laser > — >
Photo- s <« —
' |detector |+ fi f,EAf f2Af, /
e : \—interferometer
a) distance measurement
Angular reflector —
Angular
interferometer —~ f,
Beam bender —j‘ fi£Af,
Laser head : f)

Laser fi f2 y 1 f; \
S renvmmnn >

: IPhoto- : -« «— «—
' |detector | :f2xAf,  fifAf f,+Af,

b) angular measurement
Figure 5-5 Measurement principles of the HP laser measurement system



70 Chapter 5: Realisation and Experiments

Figure 5-5.b illustrates the principle of the angular measurement. The angular optics
create two parallel beam paths between the angular interferometer and the angular
reflector; one path is frequency f;, the second path is frequency f,. The distance
between the two paths is precisely known, since the two retroreflectors are precisely
positioned within the angular reflector. Initially, the angle between the angular
interferometer, which is mounted on a granite plate table, and the angular reflector,
which is mounted onto the manipulator to be calibrated, is assumed to be zero, and the
two paths between them have some relative length. If either the angular interferometer
or the angular reflector is turned, the relative lengths of the two paths will change; this
change will cause a Doppler-shifted frequency change in the beam that is returned
from the angular interferometer to the laser head. The electronics hardware of the laser
measurement system will calculate and display the angular change, using the new
frequency count data and the spacing between the optical paths. In this way, the
rotational deviations about X-axis and Y-axis were measured.

Each pre-set motion was calibrated by making a group of eight measurements with a
resolution of 10 nm by the HP laser measurement systems. Temperature variation about
the manipulator was monitored to be less than 0.1 C° by six thermal sensors employed.
The refractive index variation was monitored, too.

As an example, Figure 5-6 gives a pair of measured deviation records from one of
eight calibrating measurements for the Z-translation.
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Figure 5-6 Deviations of Z-translation

Similarly, both X-pre-set and Y-pre-set motions were calibrated based on the
equivalent principle and with the corresponding equipment. However, in order to
detect the rotation deviations R, and Ry, an autocollimator was used additionally. For
more details on the measurement principles of the HP laser measurement systems,
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please refer to corresponding service manuals and relevant references [Hewlett-
Packard].

Table 5-1 shows the calibration results of the manipulator. It can be concluded that the
accuracy of Z-translation, the principal motion, is achieved at 0.1gm/mm in straightness
and 1”/mm in rotation deviation over the really used central part of the 2 mm translation
stroke, although 1.35um/mm and 2”/mm are those over the entire stroke of 4 mm stroke.
The other two translations of the offset and the two rotations are not being asked to be so
accurate. This is because all adjustment and alignment should be done only before
starting a stitching procedure. Those translations and rotations, therefore, have no
influence on the measurement accuracy.

Table 5-1  Calibration results of the manipulator
Deviation/ Z-direction X-direction Y-direction About About

/Motion X-axis Y-axis
Z-translation
(2 mm stroke) not applicable | 0.2240.07 um | 0.1740.07 um | 1.940.6” | 2.040.1”
(4 mm stroke) 0.52+0.18 um | 0.5610.26 um | 3.842.2” | 4.240.4”
X-pre-set
(0.5 mm stroke) | 0.1740.09 um | not applicable | 0.46£0.11 um | 0.9£0.3” | 3£0.1”
(2 mm stroke) 0.5610.18 um 12.5+0.31 pm | 8.1+0.2” | 13.240.2”
Y-pre-set
(0.5 mm stroke) | 0.1840.09 um | 0.60+0.02 um | not applicable | 0.7+0.5” | 0.8+0.5”
(2 mm stroke) 0.5240.26 pm | 0.8910.03 pm 3.5+1.3" | 4.0+1.0”

5.4 Experimental setup

A vertical layout setup as shown in Figure 5-7 is employed so that the measurement of
objects can be made without clamping deformation. This is especially important to
precision surfaces and thin objects.

Considering that mechanical vibration may be one of the most important factors
influencing the measurement, the stiffness and dynamic behaviour of the experimental
setup must be good enough to reduce the effects from mechanical vibration and ambient
noise. In order to improve dynamic behaviours and to prevent the setup from vibration
and other variations, each part of the setup is well connected with each other rigidly.
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Figure 5-7 The experimental setup

However, the C-shaped structure of the experimental setup may suffer from certain
problems with the dynamic behaviour of the setup. Measurements were made to
investigate the relative movement or the position variations between the object under
test and the phase shifter. An HP 5529 laser measurement system once more was used
in an arrangement as shown in Figure 5-8.

It is difficult to identify the frequency components from looking at the original signal
in the time domain. The discrete Fourier transform is often employed to convert the
signal to the frequency domain. It is common in engineering to choose the power
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spectral density, a measurement of the energy at various frequencies, as the opponent
against frequency to study the signal in frequency domain [Bendat 1986].

Adhered up to the bottom
of the phase shifter
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Corner Cube 1\
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of the manipulator

Figure 5-8 Measuring relative vibration

The relative movement between the top and the bottom parts of the opening in the
setup construction loop was measured, which is equivalent to the relative vibration
between an object under test and the interferometer. The air gap between the
polarisation prism and the corner cube 2 (a measuring retroreflector) was smaller than
1 millimetre so that the possible influences of refractive index and air turbulence could
be restricted minimally. The polarisation prism was firmly adhered up to the bottom of
phase shifter and the corner cube 2 was adhered down to the top of the manipulator
respectively.
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Figure 5-9 Dynamic behaviours of the setup
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Dynamic responses of the setup was tested by means of shock excitation methods.
This was done by using a hammer to exert impulses on the frame of the experimental
setup and on the floor respectively. Then the frequency responses were recorded. Two
groups of five measurements were made respectively at the same resolution of 10 nm.
The data were sampled at 200 Hz over 2.5 seconds period of time. Figure 5-9
demonstrates the impulse signal on the frame of the setup and the corresponding
frequency response. It can be seen that the main frequency response of the
experimental setup is around 34 Hz, much higher than the possible frequency being
transferred through the floor which is lower than 1 Hz. On the other hand, there is a
small peak at about 5.2 Hz on the graph of Figure 5-9.b, which might allow somehow
influence of the mechanical vibration on the measurement accuracy. Analysis on the
vibration effects will be carried out in Chapter 6 in details.

In order to investigate the characteristics of the relative movement, a group of six
measurements was made. For these measurements, data were sampled at 10 Hz. In
other words, the date were collected every 0.1 second during 300 seconds (5 minutes),
that corresponds to the maximum time need for a complete stitching measurement of a
contact lens button. One of the six measurement results is shown in Figure 5-10.

x1¢

time vs. displacement
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Figure 5-10 Measurement of relative movement

It can be seen from the measurement that the variation amplitude is approximately on
an average of 25 nm in terms of PV. The variation frequency is approximately at 0.02
Hz. This is likely owing to the refractive index variation due to the air turbulence.
Furthermore, a drift can been seen from Figure 5-10.a, that varies from 20 to 100 nm
over 300 seconds. This drift is caused by the ambient temperature fluctuation. This has
been proved by our second group of three measurements over a longer time period
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(80 minutes). The influences of the mechanical vibration and the temperature variation
on the measurement accuracy will go into detailed analyses in Chapter 6.

5.5 Experiments

5.5.1 Objects under test

The samples measured are mainly buttons of the F. Ellipse contact lenses. Here the term,
button, refers to half-completed lenses with the most important interior surface being
ready shaped. Their geometrical description have been given in Chapter 2.3 already.
Their other parameters are given out in Table 5-2.

Table 5-2  Sample parameters

0.120D base radius

refractive index 1435(ry) code ‘ 47

5.5.2 Measuring procedure

The measuring procedure is comprised of the following steps.

1.
2.

8.
9.

placing the object onto the holder of the manipulator;

adjusting the distance between the reference and the object so that the focus of the
reference focusing lens coincides with the curvature center of the central spherical
portion of the object surface;

. aligning the aspheric surface with the interferometer by examine interferograms at

both the highest and the lowest positions of the object;

. making the measurement of the central spherical portion;
. shifting the object by the micrometer screw so that overlap region size of the second

measured area is about 25% of the whole second measured area size;

. adjusting the micrometer screw finely so that a non-fringe condition is satisfied in

the measured annular; making the measurement and taking reading of the shift;

. repeating step 6 until the overlap region between two successive measurement is SO

small that is equivalent to the least width described in Chapter 4.5.
reconstructing the sequence of interferograms in topographical pieces of profiles;
correcting the misalignment and rectifying the data misregistration;

10.stitching the profile pieces up together to obtain an entire surface profile.
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5.5.3 Data acquisition and processing

The interferometric test data were processed by the Intomatik software which is based
on a phase shifting algorithm. This software has a “masking” feature that allows
designation of circular or other kinds of masks over the image of the whole aperture, and
choice of activation or inactivation of the pixels inside or outside of the masked area.
This function allows the area where fringes are not resolved on an interferogram of one
submeasurement to be ignored [Moller-Wedel 1995]. Zernike and Seidel coefficients
can be calculated by the software [Schlewitt 1994]. This enables to remove possible
errors from the measured data such as tilt, defocus, spherical, coma and astigmatism
aberrations.

The use of solid state detector CCD arrays ensures the geometric precision of the
sampling position. As a result, there are no mapping distortions of the measured
wavefront and the test surface. Because a uniform sampling of the wavefront is
imperative for the sequence of submeasurements, a data area is fixed for all
submeasurements in the stitching procedure. It is also important for averaging a group
of measurements to reduce the effects of air turbulence and vibration on the wavefront
to be measured.

Data collection in each submeasurement endures one second that includes five data
acquisition steps of the phase shift method. In this way, the data collection procedure is
designed to prevent from the mechanical vibration. An electronic interfacing unit takes
the analogue intensity signals and converts them to digital signals which are stored in the
memory of a frame grabber board. The four frames of signals are sent to the Intomatik
program which calculates the optical path different phase data over the active area
which can be stored in a particular format.

Our format converting program is then used to alter the format to be of readable format
for ordinary computer viewers. The stitching programs are thereafter run to regenerate
the series of topographical pieces of tested surface, correct misalignment and data
misregistration and so forth, and finally stitch the profiles up together to obtain a
complete reconstructed topography of the whole surface.

5.5.4 Experimental results

A group of experimental results of an aspheric surface by the stitching interferometry
is demonstrated in Figures 5-11, 5-12 and 5-13 respectively. The two interferograms in
Figure 5-11 were recorded for measuring the inner portion at its vertex centre of
curvature in a prior measurement and for measuring the outer portion with position
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shift in a posterior measurement respectively. Areas where the fringes are
unresolvable were masked so that the data in these areas are made inactivate.

a) measuring inner portion b) measuring outer portion

Figure 5-11 A pair of interferograms

These two measurements of the inner portion and the outer portion were made with a
common region of overlap indicated by the dark annular as shown in Figure 5-12 .

s

Figure 5-12 measuring two portions with an overlap region

The corresponding profiles of the inner portion and the outer portion of the measured
aspheric surface were obtained respectively, which are shown in Figure 5-13.
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e o

a) inner portion b) outer portion

(PV=176 nm, R,=34 nm) (PV=195 nm, R,;=38 nm)
Figure 5-13 A pair of reconstructed profiles
This pair of profiles cannot be stitched together simply, otherwise a disfigured and
unfitting topography is the consequence as shown in Figure 5-14.a. After performing
the misalignment correction and the data misregistration rectification, a correct
topography of the entire surface (Figure 5-14.b) is acquired by stitching then up
together properly.

a) without correction b) with correction
(PV=380 nm, R,=49 nm) (PV=232 nm, R,=39 nm)
Figure 5-14 The stitched profiles of the entire surface
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6.

Accuracy Analysis and Validation

6.1 Terminology about accuracy

In the practice of engineering, the term accuracy is widely used to indicate the quality
of a measuring machine or an instrument as well as a measurement. In the strict sense
of measurement science, however, there are different terms regarding the meaning of
accuracy in engineering, more precisely formulated [ISO 1993].

Knowing the distinction between terms such as precision, repeatability, accuracy and
uncertainty is necessary. A measuring system that possesses very small random errors
has high precision. Accuracy of a measuring instrument is its ability to give responses
close to a true value [ISO 1993]. In practice, a system with very small systematic
errors is said to have high accuracy because random errors can be reduced by
averaging multiple measurements. Repeatability of a measuring instrument is its
ability to provide closely similar indications for repeated applications of the same
measured under the same conditions of measurement. Therefore, a system that gives
almost the same result for consecutive measurements has high repeatability. High
repeatability, however, does not imply either high accuracy or high precision.

The particular term uncertainty is introduced with respect to a measurement result with
a measuring system. It is a parameter, associated with the result of a measurement, that
characterises the dispersion of the values that could reasonably be attributed to the
measurement. Uncertainty of measurement comprises, in general, many components.
Some of these components may be evaluated from the statistical distribution of the
results of series of measurement and can be characterised by experimental standard
deviations. The other components, which can also be characterised by standard
deviation, are evaluated from assumed probability distributions based on experience or
other information [ISO 1993]. A measurement made with small random errors and
possible small systematic etrors is considered with a smaller uncertainty.
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These terms are used when more exact meanings are required in describing the
measurement quality from particular points of view, although the word accuracy is
most widely used in a more broad sense in engineering .

Errors in stitching interferometry may result from two sorts of sources. One is
associated with single measurement error sources in the Fizeau interferometry, another
one is associated with the stitching processing error sources. We start the analysis for
a single measurement with the Fizeau interferometer and then discuss the stitching
processing errors.

6.2 Errors with a single measurement

Error sources of a single measurement with a Fizeau interferometer generally fall into
three categories. The first one has much to do with the quality of the optical cavity
between the reference surface and the surface to be tested, which is mainly associated
with defects of a few key elements. The second one is mainly with the data acquisition
process, which has much to do with the signal-to-noise ratio (SNR) on a CCD array
employed. The last one is associated with ambient effects including mechanical
vibration, air turbulence and temperature variation.

6.2.1 Optical cavity error

The quality of all the optics of uncommon paths in the interferometer is very
important. If the two paths, reflecting from the reference surface and from the tested
surface respectively, are not equal, then systematic errors will be introduced.
Therefore the measurement accuracy for relative measurements depends primarily on
the quality of the cavity between the reference surface and the tested surface. defects
of the reference surface and of any other surfaces which are present in the
interferometer cavity affect the measurement quality greatly. Typically, it is of the
order of tenths of a wavelength.

To minimise the possible effects of optical path differences in the uncommon path of
the cavity, the highest quality components should be used as the reference objects. For
measuring a plano surface, the possible maximum error introduced by the plano
reference object is smaller than A/50, or 0.012 pm. In the case of measuring a curved
surface the combination of the well-corrected condensing lens and the plano reference
object is employed which is calibrated by the manufacturer. This key optics of
reference may introduce a maximum error smaller than A/20, or 0.03 um, in terms of
PV value for measuring surface shape or wavefront [Moler-Wedel 1995].
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There are some other error sources with the interferometer, such as spurious reflection,
stability of the laser source, and so forth. Because the interferometer manufacturer
has restricted the total resultant error to be less than the specified accuracy of A/100, or
0.006 wm, such kinds of errors and possible imperfection of other optics in the
common path will hardly influence the measurement accuracy.

6.2.2 Data acquisition errors

¢ detector noise

The fundamental limitation to the resolution of the optical phase shifting measurement
arises from the signal-to-noise ratio of the measurement. The accuracy of the
interferometry depends directly on the CCD signal-to-noise ratio of the intensity
measurements for each measured data frame. The noise is comprised of photon noise,
detector generated noise and electronic noise.

Phase measuring interferometers reconstructed the wavefront by sampling a large
number of pixels across the pupil. This is done by using a CCD array. In addition to
the noise above-mentioned, the quality of a CCD array is limited by input noise,
amplifier noise, transfer inefficiency, trapping noise and detector uniformity.

The comprehensive detector noise will introduce about 0.5% error of the measured
wavefront, in the worst situation it could be 1% [Malacara 1993, Stahl 1990]. In other
words, the signal-to-noise ratio (SNR) is about 200 in an ordinary situation. According
to Equation (1-1) and Equation (3-3), we have

SNR =21 /A@ = (A/2)/ Ah, (6-1)

where A@ is the phase resolution and Ah is the corresponding height variation.

Therefore,

Ah = (M/2) / SNR. (6-2)

With SNR = 200, we have an error of the order of 0.0016 wum in the ordinary case,
while with SNR = 100 in the worst situation, we have the possibly maximum error of

the order of 0.003 wm.

Experiments and theory have shown that other errors in the phase measurement are
systematic errors and therefore can be corrected [Malacara 1993, Mboller-Wedel 1995,
Massie 1988, Stahl 1990]. This has already been done by the manufacturers of the
CCD and the interferometer.
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¢ phase shifting algorithm errors

A phase shifting interferometry suffers from two main sources of algorithm errors:
phase shifting miscalibration and computational errors. The limited precision of arc
tangent lookup tables can be reduced to the point where the phase measurement
accuracy is limited solely by the detector noise [Moller-Wedel 1995]. The nonlinearity
of phase shifting and computational errors are typically well within A/20, or 0.03 pum
[Schmit 1995].

Detailed calculation of this kind of errors is quite lengthy but has been carried out by
many researchers already [Cochran 1992, Creath 1988, Hariharan 1987, Selberg 1987],
which indicates that this kind of error will not exceed A/20 in a measurement.

e quantization errors

Another form of intensity error in phase measuring interferometry is quantization error
introduced by truncating intensity measurement to a nearest integer representation.
Considering the fact that in our case each fringe interval, that corresponds to A/2 of
optical path difference, is scaled by 8 bits electronically, hence the quantization error
is of the order of A/2°, or 0.001 um. It is naturally negligible.

Some more detailed analyses of this kind of errors have been investigated
carefully[Cochran 1992, Malacara 1993], indicating the quantization errors are
generally negligible.

6.2.3 Errors resulting from ambient effects:

¢ mechanical vibration

An important factor influencing the accuracy of any opto-mechanical system is the
environment to which the system is exposed. Because of the high sensitivity of the
interferometer, it can be easily effected by mechanical stability of the setup.
Mechanical stability is therefore paramount in an interferometry considering the
ambient effects. In some instances vibration can not be eliminated completely.

Mechanical vibration is in our case transmitted from the floor through the manipulator.
The setup is built up with such construction and stiffness, see Chapter 5, that the
natural frequencies of the setup are safely higher than those of the background
mechanical vibration.

However, we did suffer from the mechanical vibration problem, although the casting
iron base of the frame attenuates the transferred vibration from the floor efficiently.
The vibration amplitude was approximately on an average of 0.025 um in evenings or



Chapter 6: Accuracy Analysis and Validation 83

weekends, see Chapter 5.4, and 0.05 pm in working days. The mechanical vibration
may affect the measurement in two ways.

First, it can be considered as a relative position shift between the reference and the
tested surfaces, and therefore results a slight variation of optical magnification. With
the aid of Equation (4-55), the maximum error on data misregistration due to the
corresponding optical magnification changes is only 0.006 um. This is negligible,
when comparing it to our accuracy specification of the order of submicrometres.

However, such a mechanical vibration can damage the measurement seriously when it
is considered as the relative changes of the optical path difference between the
reference wavefront and the surface under test. Such an equivalent optical path
difference leads to some kinds of extra or artefact fringes in the phase measuring
process and consequently introduce measurement errors. Unfortunately, this seems to
be the case with our experiment. This is because the fact the machine frequency is
about 35 Hz (see Figure 5-9.b), while the sampling frequency in the phase measuring
procedure is 50 Hz (0.2 second per sampling). The situation could be improved if the
machine stiffness of the experimental setup would be enhanced so that the machine
frequency could be higher than 50 Hz, better to be 60 Hz.

During working days, the vibration amplitude was approximate 12% per fringe on an
interferogram, while during the evenings or weekends, the vibration is fortunately
reduced by a factor of two, i.e., 6% of a fringe width. As a result, the errors
introduced by the mechanical vibration are of the order of 0.016 um [5% X (A/2) =
0.016] in the weekends, and 0.032 um in working hours. Consequently, all precision
measurements we made and show in this thesis were performed during the evenings or
weekends.

e air turbulence

The error introduced by air turbulence is usually of a low frequency. To minimise
effects of air turbulence, data should be acquired as quickly as possible. This was done
at the rate of 20 milliseconds per intensity sampling and one second per single
measurement, in the phase shifting measuring procedure. The air path between the
reference and the tested object should be as short as possible, and the environment
should be as tranquil as possible.

All the measurements were made during weekends or evenings to prevent the
measurement from air turbulent effects. The influence of air turbulence should then
have been kept less than 0.025 pm which is the noise level of our measurements.
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e other ambient errors

It is possible that the refractive index of the optical cavity between the reference and
the tested objects varies as the temperature and air current change. From the basic
relationship between optical path difference (OPD) and the refractive index n, we have

A(OPD) = An x s, (6-3)

where s is the length of the beam path between the reference and tested objects, which
is about 2 X (80+8) = 176 mm.

The possible changes of the refractive index, An, is 107/ K°, or, of the order of 107 in
our case less than 0.1°C variation. Therefore, the height changes due to the
temperature variation will be of the order of maximum 0.018 wm. However, the
measuring time for a single measurement is only 1 second while the air fluctuation
time may be 50 seconds (0.02 Hz) for one period, see Figure 5-9, so that only
(0.018/50) um, or 0.0004 um variation may be detected during the sampling.

Other environmental factors for a single measurement, such as humidity, pressure and
possible contamination of the tested surface should also need to be kept under control
and not allowed to vary to extreme values of total 0.025 pum. The influence of
temperature variation on the manipulator length changes for a series of measurement
will be considered later in the next section of this chapter.

Averaging a number of measurements as well as minimising the environmental factors
will improve precision of the measurements. In fact, each important measurement was
made in a group of at least five measurements that were averaged to obtain a better
measurement result.

6.3 Stitching processing errors

Error sources of the stitching process in stitching interferometry may be categorised in
four groups. The first group is in regard to the residual defocus errors associated with
the non-zero fringe density condition. The second one is in relation to positioning
errors of the object shifting as well as residual misalignment errors. The third one is
related to the stitching algorithms. The last one has to do with temperature changes
during the whole stitching measuring procedure.

6.3.1 Residual defocus errors

One of the problems regarding measuring aspheric surface with stitching interferometry
is the defocus errors in the imaging system introduced by non-zero fringe density. Due
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to the surface asphericity, it is practically hard to obtain the zero fringe density condition
for the measurement of each portion of the aspheric surface.

The commercial software Intomatik used has a function to subtract such kind of
defocus or non-zero fringe density errors from the measurements, in terms of tilt and
defocus errors. Unfortunately, it can not remove these errors completely according to
our practical experience. As a result, there exists a problem with the residual defocus
errors.

In a commercial interferometer, the interference pattern is focused on a CCD detector
and data points are sampled at the corresponding locations {Sullivan 1995]. Also, a
zoom lens forms a part of the optical configuration to suitably magnify the test optics
to fill the detector. Thus, the spatial sampling conditions may be variable and
determined by the magnification of the optical system. Fortunately, focusing errors of
the imaging system of a commercial interferometer have already been best minimised.

In case of measuring a curved surface with an optical arrangement shown in Figure 5-
2, the nominal magnification of the optical system is fixed to a factor of 10, which is
the ratio of focal length (80 mm) of the spherical reference unit to the nominal radius
(8 mm) and the surface under test. In other words, the defocus errors introduced by the
zooming system could be negligible, provided that the data misregistration due to the
object position shift, analysed in Chapter 4.4.4, has been rectified in advance.

However, the residual defocus error still exists. Although it is possible to obtain a zero
fringe density in the central part of the measured area, it is almost impossible to obtain
the same condition in the outer parts of the measured area, too. The error introduced
by not having the image plane conjugate to the surface under test depends upon the
aspheric departures between the virtual reference wavefronts and the aspheric surface
geometry present.

As in all interferometers, if at all possible the surface being tested should be imaged
onto the image or detector plane. If this is not the case, the interferogram being
observed is not the interferogram created by interfering the reference wavefront with
the wavefront produced by the surface under test, but rather it is the interferogram
produced by interfering the reference wavefront with the Fresnel transform of the
wavefront coming from the surface under test. Such a fringe localisation problem is
actually a kind of small misregistration within certain limited amount.

In order to investigate the residual defocus errors after correction by the commercial
Intomatik software, a group of experiments was done. The test object was a plano
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glass with 0.1 pm PV as its shape inaccuracy over 100 mm surface in diameter. The
backside surface was oiled to prevent possible reflection effect.

The experimental procedure was as follows.

1. placing the test object into a self-centring holder, and adjusting the amount of tiit by
observing the number of fringes;

2. setting the instrument at minimum zoom, and using the best practice to focus the
interferometer so as to minimise focus error;

3. selecting operating conditions to obtain low noise measurements, including doing
the experiment in the weekend to minimise air turbulence, isolating the test table
from ground vibration by inflated tyres, and making the distance between the
transmission flat and the test flat as small as possible (50 mm);

4. Adjusting the interferometer as close to zero tilt as possible, and then recording a
series of 10 observations for noise assessment;

5. making each 10 observations at the tilt positions respectively that correspond to the
fringe number of 1, 2, 5, and 10 respectively; saving the measurement results;

6. recording the PV values for each measurement and the corresponding errors in
terms of tilt and defocus.

It can be concluded from the measurements that the noise level of the measurement
precision was of the order of 0.025 pm. Although the residual error in terms of tilt is
negligible comparing with the noise level and the mechanical vibration effects, the
residual error in terms of defocus is considerable, especially as the number of fringes
increases. Table 6-1 gives out the experimental results showing the relationship
between the residual errors and the number of fringes.

Table 6-1  Residual errors of PV measurement (A = 0.6328 um)

number of fringes 1 fringe 2 fringes 5 fringes 10 fringes
error type
tilt 0.01 A 0.01 A 0.03 A 0.08 A
defocus 0.01 A 0.02 A 0.08 A 02 A

It is interesting to notice that here comes a kind of coincidence, although not exactly
the same, of the results in Table 6-1 with our foregoing analysis on the minimum
width of the overlap region. We stated in Chapter 4.5.1 that according to our
experience, taking more than 12 fringes may strongly affect measurement accuracy
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and less than 8 fringes is preferable. Table 6-1 leads to almost the same advice that not
taking more than 5 fringes.

As a result, it is desirable to make a measurement when a zero fringe density in the
central area measured is obtained. If this would be too hard to realise, it is then
desirable to keep the maximum number of fringes over the measured area being less
than 5 lines, while keeping the lowest fringe density in the central portion of the
measured area. In this way, the defocus error introduced by non-zero fringe density .
condition can be controlled to be smaller than 0.05 pm.

6.3.2 Alignment and positioning errors

In the operation of making the measurement of an aspheric surface with stitching
interferometry, careful alignment for the vertical optical axis and the object Z-
translation axis should be done, and the object position before and after each shifting
should be also recorded. Any deviation from the perfect situation may result in some
kind of errors for the resultant measurement.

¢ residual misalignment

Although misalignment between the object translation direction and the optical axis or
the system recording system looks naturally important, it is actually not a serious
problem because of the misalignment correction function of the stitching algorithms.
Actually, if the misalignment error is kept less than the lateral resolution of the CCD,
it will be removed by the stitching algorithms described in Chapter 4.3, with the
residual errors determined by the precision of the algorithm correction.

The data grid frame on the CCD for the measured area normally contains 250x250
pixels, which is with respect to the clear aperture of the interferometer with 100 mm in
diameter. That means with the optical magnification factor 10, the lateral resolution of
the CCD is 0.25 mm/pixel. With the aid of observing the changes of the fringe pattern
and the symmetry of an interferogram while aligning the system, it is easy to have a

better than A/2 (0.3 pm) alignment precision.

e positioning errors of object shifting

The object is shifted by driving a micrometre screw onto the manipulator. Due to the
inherent backlash imperfection for a micrometre screw, there may be some positioning
errors of object shifting although the micrometre screw has been calibrated previously.

Positioning errors due to mechanical uncertainty of the micrometre screw are of the
order of £0.01 mm. It can be considered as a relative position change, AZ, between the
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reference and the tested surfaces. According to Equation (4-55), this may introduce a
data misregistration error on an average * 0.12% of the surface PV value. With PV=0.2
um, it is of the order of +0.0002 pm, which is negligible.

6.3.3 Stitching algorithm errors

The computational errors associated with stitching algorithms mainly depend on the
computational precision or the converging precision of the iteration algorithms.

In our stitching algorithms described in Chapter 4, both the termination tolerance for the
independent variable X and the termination tolerance for the objective function JX)
were set to 0.05 wm as the termination criteria on the converging precision of the
iteration process. This is to match the accuracy of the measurement and obtain a good
compromise between the required precision and the computational time.

The computational precision is, naturally, adjustable according to the required
accuracy of the practical measurement. However, if a computational precision smaller
than the error amount for a single measurement, i.e., 0.07 wm, would be set, it could
not improve the measurement accuracy but increase the computational time only.

6.3.4 Errors by temperature changes

The influence of temperature changes on a single measurement is negligible because the
sampling procedure for a single measurement completes within only one second.
However, the influence on the whole procedure of the stitching interferometry can not
be simply neglected because a stitching measuring procedure normally takes
approximately four minutes.

It has already been noticed previously from Figure 5-10.a that there is a drift of the
relative position between the reference and tested objects. It varies from 0.02 um to
0.1 um over 5 minutes. It could be negligible when considering its effects on the data
misregistration as a minor change of the optical magnification due to the relative
position shift.

However, it has been found out by our observations accordingly that this drift
corresponds a fringe density change by 2 lines during 5 minutes. According to Table 6-
1, this may introduce a maximum defocus error in the order of 0.02 A or 0.012 pm in the
worst situation. Actually, well focusing was carried out at each measuring step in the
stitching measuring procedure. As a result, the maximum error should be reduced by the
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number of submeasurements during a stitching measuring procedure. As for a 2-step
procedure, the error introduced by temperature variation can be reduced to 0.006 um.

6.4 Short summary

It has been revealed that the accuracy of interferometric measurement with a single
measurement is primarily determined by the optical cavity errors, which is of the order
of 0.03 um. Other factors such as detector noise, electronics resolution, phase shifting
algorithm error and so forth are secondary for most measurements. They can be kept
smaller than A/20 (0.032 um) in terms of PV as long as the measurement conditions
and ambient effects are under well control.

However, we must pay much attention to the mechanical vibration that could spoil the
measurement if it would not be well controlled. Under a good ambient situation in
weekends, the corresponding influence of all ambient factors together on the
measurement accuracy can be kept being of the order of 0.04 um in total. In other
words, mechanical vibration was responsible for about 40% of the error amount, i.e.,
0.016 pum, and all other factors were responsible for another 60%, i.e., 0.025 um,
which was the noise level of the measurement.

We have pointed out that the residual defocus errors are dependent on the surface
asphericity. The residual defocus errors could be serious to the stitching processing
when the aspheric departure in certain area goes too large and the slope of the
measured aspheric surface changes very sharply. It is desirable to refocus the
measured area after the object shift to minimise the fringe density. Under the condition
having always as less as possible fringes and keeping the maximum number of fringes
smaller than 5 lines, the error introduced by non-zero fringe density condition can be
kept of the order of 0.05 pm.

As a result, the measurement uncertainty for a single measurement is on the average of
0.05 wm. The maximum error amount might be of the order of 0.07 um. The least error
amount of 0.03 um can be achieved when the mechanical vibration is reduced and the -
optical cavity error is compensated efficiently.

The total error amount for the whole stitching interferometry under the current
circumstances is therefore of the order of 0.2 wm. In other words, our goal to achieve
a resultant measurement accuracy of the order of submicrometre for the aspheric
surface measurement has been realised.
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6.5 Validation

In precision engineering it is always advantageous to have multiple ways of making a
measurement as a cross check. The quantities measured are so small and the
measuring devices so sensitive to errors approaching the magnitude of the object
quantities being measured. Hence, it is difficult to know from a single, though
perhaps repeatable, measurement that what is being measured represents the “truth”.
The alternative method for the cross check or validation can be of the same generic
class, or can be the mathematical analyses or other compatible measuring methods. We
are going to demonstrate three methods and corresponding results as the cross check
and validation.

6.5.1 Validation by topographical analysis

A beautiful result was obtained and is shown in Figure 6-1 as an efficiency validation
of the misalignment and data misregistration correction of the stitching algorithms.

Two groups of raw measured data sets, {P} and {Q}, obtained from the first
submeasurement and the second submeasurement respectively, should represent, in
principle, the same topographical profile of the overlap region. The dark annular in
Figure 6-1 demonstrates the position of the overlap region between the inner portion
‘and the outer portion which correspond to the date sets {P} and {Q} respectively.

a) the inner and the outer portions b) dark annular indicates the overlap region

Figure 6-1 the overlap region between two measurements
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a) via the 1* measurement {P;} b) via the 2™ measurement {Q}
(PV =0.127 pum); without correction ( PV = 0.160 um);

¢) via the 1 measurement {P; } d) via the corrected 2" measurement {Q; }
PV =0.127 um); after correction( PV = 0.128 um);

Figure 6-2 Reconstructed topographical profiles of the overlap surface
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However, the topographical profile from the second raw data set (Figure 6-2.b) brings
us a much different shape from that from the first one (Figure 6-2.a), while the
corrected data set, {Qi”}, does bring us an almost the same profile (Figure 6-2.d).

6.5.2 Data correlation analysis

In order to employ another way to validate the misalignment and misregistration
correction by the stitching algorithms, some data correlation analyses were carried out.
The same two data sets as in the prior section, representing the same profile of the
overlap region but being obtained from two successive submeasurements respectively,
were analysed.

The cross-covariance is the cross-correlation function of two sequences with their means
removed, which reflects the relationship between the two sequences or the two data sets.
The correlation coefficient, r, indicates the degree of correlation between the two data

sets.

It is clear that the correlation coefficient between these two data sets, {P;} and {Q;} for
ie M=[1,2,...,7992] in the overlap region, should approach to one (100%) after the
correction treatment. In other words, their correlation graph should be symmetric
because the two date sets characterise the same geometry of the overlap region
topography. However, a non-symmetric graph, Figure 6-3.a, with a correlation
coefficient r=0.81 was got without the correction, whereas a symmetric one, Figure 6-
3.b, with a correlation coefficient up to 0.99 was achieved after our correction. The
algorithms perform correctly.

6
x 10° correlation function X107 correlation function
4L 4
2 2
0 0
) 2
0 5000 10000 15000 0 5000 10000 15000
total number of data P; and Q total number of data P, and Q;
a) before correction (r = 0.81) b) after correction (r = 0.99)

Figure 6-3  Algorithm validation by correlation analyses
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6.5.3 Validation by measurement comparison

In order to test the global validity of the stitching interferometry, two groups of
measurements were made and the results were compared, as shown in Figure 6-4.

a) profile of the central portion b) profile of the outer portion
(PV =0.117 pm); (PV =0.108 pm);

¢) whole profile by 2-step stitching method d) whole profile by one measurement
(PV =0.153£0. 1 um); (PV =0.176 £ 0.03 um);

Figure 6-4 Validation by measurement comparison
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The first group gives the measurement result in terms of surface topographical profile
by means of measuring the whole surface in one measurement, see Figure 6-4.d., as
the reference. The second group gives that by means of the 2-step stitching
interferometry. The object measured was an F.Ellipse 0.4 contact lens button.

Figures 6-4.a and 6-4.b show the profiles of the central portion and the outer portion
respectively, while Figure 6-4.c shows the stitched topographical profile of the whole
measured area of the surface.

It can be concluded from the comparison shown in Figure 6-4, that the stitching
method works properly at the sense of submicrometre measurement accuracy.

Conclusively, it has been verified by the three cross check methods that the stitching
interferometry works correctly for the 2-step measurement of the aspheric sample
objects under test.



Chapter 7: Conclusions and Recommendations 95

7.

Conclusions and Recommendations

7.1 Conclusions

A novel technique, stitching interferometry, has been developed which is capable of
the precision measurement of complicated surfaces having relatively large aspheric
departures. Stitching interferometry is a method which overcomes the problem of
limited measuring range and aberrations due to surface asphericity.

In order to correct the misalignment and to rectify the data misregistration between
two successive submeasurements, stitching algorithms have been developed. To
realise stitching interferometry, careful analyses must be executed on the following
items. One is to correct the errors introduced by the misalignment of the series of
measurements. This is achieved by using regions of overlap and knowing the
transformation between successive measurements. Another item is to rectify the
misregistration of the individual data sets introduced by the surface asphericity and by
the object position shift that causes optical path variations. This is accomplished by
careful optical analyses based on the theories of geometrical optics, including image
formation, optical aberration and the characteristic functions of Hamilton.

Stitching interferometry is different in procedure from other existing techniques. It
firstly interprets the interferograms into geometrical topographies and then stitches the
topographic segments up together so as to obtain the overall shape of a surface. This
makes it more universal in use.

A five-axis precision manipulator was designed and constructed to realize three
translations and two rotations. A precision translation along the vertical optical axis,
the principal motion, is realised by virtue of three symmetric and elastic leaf springs.
High accuracy is achieved of the order of 0.1 pm/mm in terms of straightness and
1”/mm in rotation deviation over the 2 mm central part of the translation stroke.
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A submicrometre order measurement accuracy or better has been obtained. The total
error for the whole stitching interferometry under the current circumstance is of the
order of 0.2 um. In other words, the measurement uncertainty in total is smaller than
half of a wavelength.

Experimental results have shown that the stitching interferometry is capable of
measuring curved surfaces having large aspheric departures. It has been verified that
stitching interferometry works correctly and efficiently by three cross check methods
of validation.

7.2 Recommendations

This technique of stitching interferometry offers considerable potential for testing
precision surfaces having large aspheric departures. The ability to stitch surfaces to
obtain high resolution over a large measurement region should further increase the
applications of commercial interferometers. The concept and method may be used to
upgrade commercial interferometers.

Similarly it is recommended to apply the principle of stitching interferometry to the
measurements of large size plano surfaces and conic surfaces, based on the use of
relevant references such as plano reference and conic surfaces and so forth.

It is suggested also to extend stitching interferometry to the asymmetric domain of
astigmatic surfaces. However, it is expected to encounter problems with angle
magnification changes and misalignment in a polar coordinate frame.

Considering the fact that mechanical vibration could be critical to the measurement
accuracy if not well controlled, it would be much better to mount the whole
experimental setup on a vibration-isolated platform, and to close the structure loop of
the setup by connecting the manipulator platform with the phase shifter.

Finally, it would simplify the control on residual defocusing errors if an automatic
focus control method and a corresponding device could be developed and employed in
this stitching interferometry technique.
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Appendix A

The aspheric surface of a contact lens

The mathematical description of the cross-section curved of an F.Ellipse 0.4 contact
lens inner surface can be depicted as follows (see Figure 2-2).

e segment A
segment A is a circle part of the base surface, beginning at point 0 (0, 0) and ending at
point 1 (1.93538, 0.23763), described by

Z=ro-(ry - X*)", 0<X < 1.93538. (A-1)
Where 1, is the radium of the base curve. For most commonly used contact lenses, R is

8 mm. In order to do further analyses more conveniently, we re-write it in a
normalized expression as

X2+ (Z-19) =10, 0<X< 193538, (A-2)
whose tangential line passing through an arbitrary point of tangency My (Xo, Zo) on the
segment curve can be written respectively as

(Z-Zo)(10-Zp) = Xo(X - Xo), (A-3)

and

Xo(Z - Zo) = (Zo - 1o Y(X - Xp). (A-4)

A normal line passing through an arbitrary contact point on segment A will reach z-
axis at point (0, rp).

e segment B

segment B is of the most important piece in the optical zone, which is constituted of
many different parts from a family of variable ellipses, starting from point 1 (1.93538,
0.23763) till point 2a (4.11731, 1.12613). It can be expressed mathematically as

Z(X, e(X)) = {ro/ (1-e)}{1- [1-(1-e*)(X/ro)’] ). (A-5)
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By our more complicatedly mathematical deduction, its normalized form can be drawn
out as, ’

X2 Mo [(1-63)"*Y + (Z - 10 1(1-¢D))2 [ {1y / (1-eD)}* = 1, ( A-6)
with0<e <04 and 1.93538<X < 4.11731.

Here, the eccentricity e, is not a constant but a function of the feed-displacement of the
linear carriage in X-direction. As for an F.Ellipse 0.4 contact lens, we have such a
function as

e=e(X)=kxX+ey=0.1831 X -0.3544, (A-7)

and k is a linear constant for a given surface.

The tangential line of this varying elliptical segment, passing through an arbitrary
point of tangency M, (Xo,Zo) on the segment curve, can then be written as,

(X - Xo) H{ 10 (162"} + {[Zg - 10 [(1-eD[Z - (rg / (1-e)]}/{ 10 /(1-eD)}2 = 1.

(A-8)

e segmentsC & D

Both segments C and D are quoted from some kinds of polynomial curves, but with
opposite polarity of the curvature. Segment C, from point 2 (4.12030, 1.12784)
though point 3a (4.39702, 1.29488), is a transitional piece of the surface and is
depicted as,

Z=As+B3X + CX* + DX, 4.12030 £ X £4.39702. (A-9)

Segment D has nothing to do with the optical function. It is designed to just fit the
shape of human eyes. It starts at point 3 (4.40000, 1.29677) and ends at point 4
(4.90122, 1.59077), with the expression of

Z=As+B,X +CX*+ DX, 44000 <X £4.90122. (A-10)

As for the F.Ellipse 0.4 contact lens, the polynomial coefficients in Equation (A-9) are
sequentially 1.421374, -0.859805, 0.226894, -0.008618 for segment C, and in
Equation (A-10) are sequentially -4.095693, 1.953164, -0.196777, 0.007139 for

segment D.



Appendixes

Appendix B

Aspheric departures of the contact lens

Tables B-1, B-2 and B-3 show the aspheric departures of the contact lens surfaces
from the reference spheric surface, where d, and d, stand for the departures in Z-

direction and in the spherical radial direction respectively.

Table B-1  Aspheric departures from the spheric surface (contactlens F.Ellipse 0.4)
POINT | NO. X(mm) Z (mm) Dz (um) D; (um)
4 191 4.90122 1.59077 86.411 68.469
middle D | 300 4.57602 1.40563 32.355 26.561
3 359 4.40000 1.29677 21.913 18.310
3a 370 4.39702 1.29488 21.841 18.255
middle C | 415 4.26313 1.21182 18.710 15.838
2 463 4.12030 1.12784 14.819 12.706
2a 493 4.11731 1.12613 14.733 12.636
middle B | 857 3.02634 0.59356 0.951 0.880
1 1221 1.93538 0.23763 0 0
0 1231 0 0 0 0
Table B-2  Aspheric departures from the spheric surface (contactlens F.Ellipse 0.6)
POINT NO. X(mm) Z{mm) Dz(um) D,(um)
4 191 4.90232 1.55365 124.384 98.652
middle D 300 4.57641 1.37612 62.137 51.044
3 359 4.40000 1.27138 47.303 39.547
3a 370 4.39702 1.26957 47.151 39.432
middle C 420 4.24825 1.18145 39.732 33.695
2 463 4.12030 1.11037 32.289 27.694
2a 493 4.11731 1.10876 32.103 27.542
middle B 850 3.04732 0.60085 2.269 2.098
1 1221 1.93538 0.23763 0 0
0 1231 0 0 0 0
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Table B-3  Aspheric departures from the spheric surface (contactlens F.Ellipse 0.9)
POINT NO. X(mm) Z(mm) Dz(um) D,(um)
4 191 4.90452 1.48077 198.970 158.105
middle D 300 4.57912 1.31871 121.438 99.875
3 359 4.40000 1.22076 97.923 81.961
3a 371 4.39702 1.21908 97.641 81.749
middle C 420 4.25123 1.13992 83.131 70.542
2 464 4.12030 1.07477 67.889 58.268
2a 494 4.11731 1.07335 67.513 57.960
middle B 850 3.05032 0.59924 5.116 4.730
1 1222 1.93538 0.23763 0 0
0 1231 0 0 0 0
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Appendix C

Phase shifting algorithm

Assume that the optical path difference between the two beams in an interferometer is
changed in steps of a quarter wavelength (equivalent to a phase step of 90", and the
corresponding values of the intensity at each data point in the interference pattern are
recorded in the measurement.

Let the complex amplitudes of the two interfering wavefronts at any point be,
respectively,

Ex = aexp(-i@ a), (C-1)

and Eg=bexp(-ipp). (C-2)

The resultant intensity is, therefore,

I =Ta+Ig+2Taelp)* cos(@a-qp), (C-3)

where I 5 and I g are the intensities due to the two waves acting separately.

The term intensity is widely used as a measure of the energy. However, by international
agreement, that term is being slowly replaced in optics by the word irradiance (w/m?)
[Hecht 1987]. The four values of intensity at this point are then '

L =1(0) =a’+b’+2abcos(@a-Qp)

L =1(90) =a’+b’+2absin(@a- @p),

I, =1(180) = a® + b*- 2ab cos (@ o - P p)s

L =1(270) = a® + b - 2ab sin (¢ a- @ p). (C-4)

The original phase difference between the waves at this point can then be calculated
from the relation
tan (Qa-@p)= (L-L)/ - Iy). (C-5)

For details about the phase shifting algorithms, please refer to the relevant research
{Creath, 1988].
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Samenvatting

Het bepalen van de vorm van asferische gekromde oppervlakken met behulp van
gangbare types interferometers is vaak niet mogelijk. Bij grote afwijkingen van de
bolvorm wordt de dichtheid van de interferentielijnen hoger dan het oplossend
vermogen van de detector; bovendien treden vervormingen van het interferogram op.
Het doel van het onderzoek dat in dit proefschrift wordt beschreven, is het
ontwikkelen van een meettechniek die aan deze bezwaren tegemoet komt.

We hebben een nieuwe methode ontwikkeld, “stitching interferometry” genoemd,
waarmee sterk asferische oppervlakken nauwkeurig gemeten kunnen worden. De
methode wordt in dit proefschrift beschreven.

Het principe van “stitching interferometry’ kan als volgt worden omschreven. We
maken een reeks metingen van overlappende delen van het oppervlak; deze metingen
worden vervolgens aan elkaar gepast om het profiel van het gehele te meten oppervlak
te verkrijgen. Dit principe is in de praktijk gebracht met behulp van een commercieel
verkrijgbare Fizeau interferometer waaraan een mechanische micromanipulator van
eigen ontwerp is toegevoegd, om het voorwerp tussen de deelmetingen te verplaatsen
en/of te kantelen.

De bij “stitching interferometry” gevolgde procedure bestaat vit de volgende stappen.
Eerst worden twee interferogrammen van delen van het voorwerp in twee
verschillende posities opgenomen, zodanig dat de twee interferentie patronen een deel
van het oppervlak gemeenschappelijk hebben. De posities worden zo gekozen dat de
dichtheid van de interferentielijnen in beide zones laag genoeg is om door de detector
te worden opgelost. Tussen de twee posities wordt het voorwerp verschoven; bij een
axiaal symmetrisch voorwerp geschiedt de verschuiving langs de gemeenschappelijke
symmetrie-as van interferometer en voorwerp. Dan worden de oppervlakteprofielen
van de twee overlappende zones berekend uit de interferogrammen. Vervolgens
worden deze profielen aan elkaar gepast met gebruik van de transformatie tussen de
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twee posities. Door deze procedure meerdere keren toe te passen kan een compleet
oppervlakteprofiel worden verkregen.

“Stitching interferometry” verschilt in methodiek van andere bestaande technieken. In
onze methode worden eerst de interferentie patronen omgezet in oppervlakteprofielen
en pas daarna worden de profielen aan elkaar gepast. De omgekeerde werkwijze zou
niet tot het beoogde doel leiden. De meerderheid van de commercieel verkrijgbare
interferometers gebruikt een vaste relatie tussen voorwerp en referentie; “stitching
interferometry” gebruikt een aantal verschillende voorwerpsposities, elk gerelateerd
aan het referentie-oppervlak.

We hebben een vijfassige micromanipulator ontworpen om drie translaties en twee
rotaties uit te voeren. De voornaamste beweging, translatie langs de verticale optische
as, wordt door drie symmetrische bladveren gegenereerd. Een precisie van 0.1 Hm/mm
in rechtheid en van 0.005 milliradiaal in karteling over de centrale 2 mm verplaatsing
werd gerealiseerd. Twee laterale translaties en twee rotaties worden door elastische
scharnieren gerealiseerd.

Proefondervindelijk is aangetoond dat met “stitching interferometry” sterk asferische
oppervlakken kunnen worden gemeten met een onzekerheid van 0.2 pm. De
asfericiteit kan daarbij variéren van enkele tot enige tientallen micrometres. We
hebben de geldigheid van deze methode experimenteel geverifieerd.

“Stitching interferometry” is bruikbaar voor het accuraat meten van sterk asferische
oppervlakken. De methode kan worden gebruikt om gangbare types interferometers te
verbeteren.
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Stellingen
behorende bij het proefschrift

Stitching Interferometry for Accurate
Measurement of Curved Surfaces

Yu Jian Fan

1. In order to obtain enough information and perform manufacturing metrology, we
make use of all our senses. However, we cannot rely only on our physical senses
because of their limitations and unavailability in certain cases.

this dissertation

2. People develop multiform instruments to improve our detecting abilities.
Unfortunately, most of such instruments work in only one sense. It would be very
attractive to develop kinds of creative instruments making use of visual, touching
and hearing senses comprehensively.

based on my research experience

3. Precision engineering is the multidisciplinary science underlying the development
and realisation of high precision machines, instruments and communication devices.
There is an important trend to develop precision engineering as the interdisciplinary
integration of precision metrology, precision manufacturing and design for
precision, instead of developing each of those fields separately.

this dissertation
4. The development of traceable nano-metrology is urgently needed. These needs are
supported strongly by the fast development of all kinds of nano-measuring
equipment such as STM, AFM and nano-displacement sensors.
based on my research experience
5. From the measurement viewpoint of degree of freedom, the capability of an
interferometer is restricted proportionally by the ratio of degrees of freedom available

with the instrument to the degrees of freedom needed to perform a measurement.

this dissertation



6. Engineers solve real-world problems using scientific principles from disciplines
that include mathematics, physics, computer science, chemistry, and biology. It is
this variety of subjects, and the challenge of real problems, that makes engineering
so interesting and so rewarding.

this dissertation
7.1t is interesting to recognise the differences between western and eastern
philosophies. Westerners emphasise individuality much more than the easterners
do. One proof is the fact that a westerner places his own given name in front of his
family name while his eastern counterpart puts the family name first.
based on my observation

8. RTHEMLGT? HZ, WAEEIRE T, R, W 5HIFHT.

AT, PEETREEXMEER

translation:

How difficult is it to do something in the world? If you try to do it, you may make a

difficult thing easier. On the other hand, if you never try to doit, you may make

an otherwise easy task more difficult.

XunZi, a Chinese philosopher (2000 years ago)

9. It is people who should try their best to take charge of whatever they want to do,

whereas it is not only people who can entirely determine whether a good wish can

come true or not.

based on my living belief

10.Everything in the world has two sides. Each side may turn to its opposite under
certain conditions.

a Chinese proverb
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