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On the Performance of too Short Adaptive FIR

Filters
Dani�el W�E� Schobben and Piet C�W� Sommen

Abstract�Performance analyses of adaptive algo�
rithms such as LMS and RLS often rely on the as�
sumption that the input signal is stationary� Also�
it often is assumed� that the adaptive �nite im�
pulse response �FIR� �lter is long enough to make
a good approximation of the unknown system� In
many practical situations these assumptions do not
hold and the instantaneous misadjustment of the
adaptive �lter can grow large �	
� In this paper
this e�ect is investigated and two methods are pre�
sented to improve the performance of the adaptive
�lter�

Keywords�Short Adaptive Filter� Performance�

I� Introduction

An adaptive �lter convergences to the Wiener solu�
tion if it�s input signal is stationary� For an adaptive
FIR �lter which length is shorter than the impulse re�
sponse of the unknown system� the Wiener solution
relies on the statistics of the input signal to achieve
optimal performance� If the statistics of the input sig�
nal change� the performance of the adaptive �lter de�
teriorates� The goal of the paper is to investigate how
large this deterioration is and what can be done about
it� Therefore� a performance analysis is presented for
a too short adaptive FIR �lter with a non�stationary
input signal� Simulations are included which show
that this performance can degrade signi�cantly as a
result of the non�stationary input signal� In addition
it is shown that this problem can alleviated in two
di�erent ways�

A character which denotes a vector will be under�
lined� Superscripts denote vector or matrix dimen�
sions� a matrix with one superscript is square� Com�
plex conjugate transpose is denoted as �H and the ex�
pectation operator is denoted by Ef�g� The N � N

matrix identity and the K � L zero matrix will be
denoted by IN and �K�L respectively�

Consider the length N adaptive �lter wN 	k
 �Fig�
ure � which is trying to minimize the residual sig�
nal r	k
 � �e	k
 � �wN 	k
HxN 	k
� with xN 	k
 �
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Assuming that s and x are independent of each other�
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If �i �� � for �M � i � �� the N optimal adaptive
weights are obtained from the �rst N weights of the
unknown system plus a convolution of �i and hj� with
�M � � � i � � and N � j � M � The latter con�
tribution depends on the statistics of x� As a result�
the misadjustment of the adaptive �lter deteriorates
momentarily when the statistics of the input signal
change�

II� Final misadjustment

In the following analyses� it is assumed that there is
no double talk� i�e� s	k
 � �� The �nal misadjustment
Jmin � Efjr	k
j�g is de�ned as

Jmin � Ef�hM � �wM 	k
HxM 	k
�g �

� �hM � �wM 	k
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However� if the �lter has converged to the Wiener so�
lution and Rx changes� the misadjustment changes
from �� to

J � �hM�N
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The �RN�M�N are based on the old statistics� If the
adaptive �lter would not converge to the Wiener so�
lution� but would make an unbiased estimate of the
�rst N coe�cients of the unknown system instead� the
�nal misadjustment would be

Jmin��hM�N

 HRM�N

x hM�N

 � ���

The �lter would no longer have to re�converge in the
case that Rx changes to Rnew and the misadjustment
would immediately equal the new �nal misadjustment
�hM�N


 HRM�N
new hM�N


 � However� this would be at the
expense of a higher misadjustment�

III� Dynamic Behavior

In this section� the dynamic behavior of the adap�
tive �lter is considered� The LMS algorithm can be
written as
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with the di�erence weight vector de�ned as dM 	k
 �
hM � �wM 	k
� The entries of the di�erence vector that
change in time dN 	k
 � hN
��w

N 	k
 are obtained from
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By assuming that the input signal is almost stationary
for a certain time interval� i�e� dN 	k
 changes fast
compared to the possible changes in the input signals
statistics� Also it is assumed that the adaptation step
size � is small� so that the input signal vector and the
di�erence vector dN 	k
 may be separated under the
expectation operator� The expectation of the weight
di�erence vector becomes
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Consider the case that the adaptive �lter has con�
verged and the input signal�s statistics changes at time
k � �� then the di�erence vector becomes

EfdN 	k
g�
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new
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At k � �� this vector is
�
�RN�M�N
new � �RN�M�N

�
hM�N



away from it�s new �nal solution� This contribu�

tion vanishes with
�
IN���RN

new

�k
� In the end� the

di�erence vector reaches its new �nal solution� i�e�
EfdN 	�
g � � �RN�M�N

new hM�N

 �



IV� Experiments

The acoustical impulse response used in the simula�
tions is a measured room impulse response sampled at
��kHz and is plotted is Figure �� The �rst ��� sam�
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Fig� �� Acoustical impulse response

ples approximately equal zero� so that the direct path
is ��� ms� It is assumed that the impulse response
equals zero after ��� samples� An adaptive �lter is
used to estimate the �rst ��� coe�cients of the room
impulse response� This is a reasonable choice since the
delay in the direct path and the reverberation time are
not known in advance� It is assumed that there is no
double talk ���s � � in the simulations�

First an AR�� input signal is considered� so that
x	k
 � i	k
�ax	k��
 with i	k
 a white noise sequence
with Ef�i	k
�g � � and Efi	k
g � �� The previous
and the new parameter of the AR�� process are �a�
anew shown in the �rst and in the second column of
Table I� Column � to � show the �nal misadjudgment
given by �� �old Wiener solution� �� �old Wiener so�
lution� new statistics RM

x � RM
new� �� �new Wiener

solution� ��� �old unbiased solution� ��� �new un�
biased solution� These �nal misadjudgements are all
normalized by the reference signal power Ef��e	k
�g �
�hM TRMhM � with RM � RM

x or RM � RM
new� It

follows from this table that J �OldWiener can become
larger than JNewNobais� This means that the term
�RN�M�NhM�N in �� can decrease the adaptive �lter
performance when the statistics of the input signal
change� It can easily be shown that the Wiener term
only a�ects one adaptive weight �wN � when the in�
put signal is an AR�� process� This can also be seen
from Figure � where a part of the Wiener solution
corresponding to the is plotted which corresponds to
the �rst entry of Table I �a � ���� anew � ����

Next� simulations are presented for a more complex

ARMA process� The previous and the new param�
eters of the ARMA process are shown in the �rst
and in the second column of Table II� For example�
the input signal for the �rst simulation was generated
from x	k
 � ���x	k � �
 � x	k � �
 � ���x	k � �
 �
i	k
 � ���i	k � �
� with i	k
 a white noise sequence�
The Wiener solution corresponding to this �rst sim�
ulation is plotted in Figure �� The �gure shows that
the Wiener solution again equals the impulse response
except for the last few coe�cients� From Table II it
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Fig� �� Wiener solution for an AR��� process
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Fig� 	� Wiener solution for an ARMA process

follows that for the ARMA signals considered� the de�
terioration for changing statistics is not too large� for
the impulse response considered�

V� Improving the performance of the too

short adaptive filter

A solution to the problem of increased errors due to
a non�stationary input signal can be to increase the



adaptation step�size for the last few weights� Large er�
rors can still occur for a short time� but the adaptive
�lter re�converges faster when a non�stationarity is
encountered� The optimal distribution of these adap�
tation step�sizes are dependent of the input signal and
the impulse response� Thus� the step�sizes can be op�
timized for a particular application�
When non�stationarities occur very often� it can be

desirable to estimate the �rst N coe�cients of the un�
known system� instead of using the Wiener solution�
This can be achieved in the following way� The adap�
tive �lter size is increased to N � P weights� so that
the �rst N weights of the adaptive �lter resemble the
corresponding weights of the unknown system� The
adaptive �lter can now generate two signals� The
�rst being obtained from the �rst N tabs� and the
second being obtained from all N � P tabs� The sec�
ond signal is now used to calculate the residual signal
which controls the adaptive weights� The �rst signal
is used to generate the residual signal which is sent to
the far end� This signal is no longer a�ected by non�
stationarities in the input signal� A small overhead is
required however for the P additional weights�

TABLE I

Simulation results for an AR��� process

a anew JOldWiener J �OldWiener JNewWiener JOldNobais JNewNobais

��� ��� ������ ������ ������ ������ ������
��� ���� ������ ������ ������ ������ ������
���� ����� ������ ������ ������ ������ ������

TABLE II

Simulation results for an ARMA process

old new JOldWiener J
�

OldWiener JNewWiener JOldNobais JNewNobais

	� ���� � ���
�	� ���
 	� ���� � ��
�	� ��
 ������ ������ ������ ������ ������
rand�N�����	� ���
 rand�N�����	� ��
 ������ ������ ������ ������ ������
rand�N�����	� ���
 	� ���
�	�
 ������ ������ ������ ������ ������

VI� Conclusion

An analysis of a too short adaptive �lter is pre�
sented in this paper� It is shown that the Wiener
solution which performs well for a stationary input
signal� is momentary impaired when the input signal

is non�stationary� Simulations where done which con�
�rm this and show that the problem emerges from
only a few adaptive weights� A solution to the prob�
lem is to increase the adaptation stepsize parameters
associated with these weights� In this way the misad�
justment error can still grow large at the moment that
the input signal�s statistics change� but the adaptive
�lter reconvergences much faster� An other solution
is to omit the few adaptive weights that cause the
problem in the adaptive �lter� The adaptive �lter no
longer has to reconverge when a non�stationarity oc�
curs�
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