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Abstract 
An overview of a number of approaches to the multiob- 
jective control problem is given. In practice, this problem 
usually boils down to a mixed-norm optimization, where 
traditionally the norms of interest are HI, 3fm and $1. To 
capture different, often conflicting, design specifications 
a single-norm form is usually not enough and therefore a 
mixed-norm formalism combining these norms would be 
of considerable interest. Although it would be nice to have 
all three norms present, most approaches focus on the 
two-norm problem. Frequently encountered is the 3 f z / 3 f w  
mixed-norm optimization problem, but combinations of $1 
and the other two norms are starting to get more attention. 
It will be seen that the solution to the mixed-norm opti- 
mization problem has not yet reached a final shape, since 
most methods still exhibit problems, like not being able to 
find a solution if performance specifications are tight, or 
generating high-order or too conservative controllers, etc. 
Keywords: H2/3f,,/$1, multiobjective control, robust 
control, LMI, linear systems. 

1. Introduction 
During the past decades, attention has been paid to many 
single objective control problems. Several important con- 
troller synthesis problems have been formulated as opti- 
mization problems. Notably, LQG or Hz,  3fw and con- 
trol theory have provided us with basic synthesis tools. 
The underlying premise behind these theories is that all 
the design objectives can be translated into minimizing a 
suitably weighted norm of a closed-loop transfer function 
matrix. 
The LQG approach proved particularly suited to meet per- 
formance specifications while guaranteeing closed-loop 
stability in the presence of disturbances. Despite of this, 
LQG control was shown to possess no guaranteed robust- 
ness margins if applied in conjunction with an observer 
or Kalman filter. This resulted in the development of 3fm 
control theory which could deal with the problem of robust 
stability: obtaining closed-loop stability in the presence of 
system uncertainty. For systems with structured uncer- 
tainty the Hm framework can be refined to psynthesis 
which has been successfully applied to a number of hard 
practical control problems (see, e.g., [Skogestad er al. 881). 
However, despite its significance, Hm control-being a fre- 
quency domain method-cannot directly address time do- 
main specifications. Recently, ll optimal control problems 
have been studied, where the signals involved are bounded 
in magnitude. This presents a method to accommodate the 
time domain specifications, although of course it cannot 
directly accommodate common classes of frequency do- 
main specifications (such as HZ or 3fm bounds). 
Obviously, different, often conflicting design specifications 
such as simultaneous rejection of disturbances having dif- 
ferent characteristics (white noise, bounded energy, per- 
sistent); good tracking of classes of inputs or satisfaction 
of bounds on the peak values of outputs, cannot always 

1. Corresponding author. h a i l :  A.G.de.Jager@wfw.wtb.tue.nl 
2. #I denotes the discrete-time case, whereas 11 is used for continuous- 
time. In the following, whenever #, is mentioned, the same can be as- 
sumed to be true for the continuous-time case, unless stated otherwise 
(where p can be 1, 2 or m). This means that whenever L p  is mentioned, 
only the continuous-the case is referred to. 
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be cast into a single norm form. It is therefore natural to 
expect a mixed-norm formalism to be of considerable in- 
terest. This paper aims at presenting an overview of the 
current state of affairs in this area. 
The paper is organized as follows: In Section 2 some no- 
tions to be used are introduced, whereas the possible prob- 
lem statements are given in Section 3 .  In Section 4 an 
overview of the many approaches to solve the problem is 
given. Finally, Section 5 concludes with some remarks. 
Throughout this paper, the time t, the shift-operator z ,  and 
the Laplace transform variable s will often be omitted for 
clarity. The notation used in this paper was chosen in such 
a way that a uniform description was possible. Some sym- 
bols used here will therefore inevitably differ from those 
used in the literature. However, it is fairly standard other- 
wise. MT denotes the transpose of M and M* the complex 
conjugate transpose. The trace of M is denoted by tr(M). 
I is a unit matrix of dimensions 42 x 42 and finally two 
a%%reviations, MI and ARE, mean Matrix Inequality and Al- 
gebraic Riccati Equation, respectively. Further notational 
issues are explained within the text. 

2. Preliminaries 
2.1. System norms 
Given a stable strictly proper (in order to keep the norms 
finite, see, e.g., [Doyle er al. 92, p. 161) transfer function 
matrix G(s) with state space realization (A, B ,  C, D),  the fol- 
lowing performance measures can be defined. 

The Hz-norm of a transfer function G(s) is defined as: 

for the continuous-time case and 

for the discrete-time case. 
The 2-norm can be computed with Lyapunov equations: 

( 3 )  II G 11; = tr[SCTCl = tr[PBBTl 
= ~ ~ [ c s c ~ ]  = ~ ~ [ B ~ P B ]  

where S is the controllability Gramian and P is the ob- 
servability Gramian solving 

A S + S A ~ + B B ~ = O  A ~ P + P A + C ~ C = O  (4) 

The Hm-norm of a transfer function G(s) is defined as, 
with T the maximum singular value: 

for the continuous-time case and 

for the discrete-time case. 
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The 81-norm of a transfer function matrix G(z) is not 
as easy to define as the other two. Recall the 1-norm of 
a sequence x(r) being I1 x I l l  = E;"=-, Ix(r)l. Then, given 
a matrix g with elements g; ., representing a linear op- 
erator defined by the usuaf discrete-time convolution 
y = g * U (and with a corresponding transfer function 
matrix G), its 1-norm is defined as: 

n 

for the discrete-time case. The definition for the 
continuous-time case requires more notation and can 
be found in, e.g., [Sznaier and Blanchini 941. Since the 
interpretation of the 1-norm (see Subsection 2.2) is of 
more use to us than the formal definition, this will not 
be repeated here. 

2.2. Norm interpretations 
The 312-norm: 
1. 
2. 

For SISO systems, the induced norm from 82 to 8,. 
The square root of the average power (is RMS- 
value or "power-norm") of the response to a white 
input signal of unit spectral density or the spec- 
trum/power gain. 
The square root of the energy contained in the im- 
pulse response. 

The induced norm from 82 to -!?2 . 
The power/power gain (RMS gain). 

An upper bound on the -!?,/power gain, assuming 
that the input is a persistent sinusoidal signal. 
The peak amplitude of the Bode singular value 
plot. 

The induced norm from 8, to 8,. 

3. 

The "-norm: 
1. 
2. 
3. The spectmm/spectrum gain. 
4. 

5. 

1. 
The tl-norm: 

3. Statement of the problem 
The general problem can be posed as follows. Suppose the 
plant is given by its transfer function matrix G(s)  with three 
sets of inputs and outputs: 

w1 z1 

K(s)  
with 

1 = Ax + Blwl + B 2 ~ 2  + B ~ u  
~1 = Clx + Dllwl + D12~2 + D 1 3 ~  
~2 = C ~ X  + Dz1w1 + D22~2 + D23u 
y = C3x + D31wi + D32w2 + D 3 3 ~  

(8 )  
(9) 

(10) 
(11) 

or equivalently, using packed notation 

Furthermore 

n = dim(x) q1 = dim(z1) dl = dim(w1) I = dim(y) 
m = dim(u) q2 = dim(z2) dz = dim(w2) 

In the system equations (8)-(11) U represent the control 
actions, w (= [wl, wzl) the exogenous disturbances, y the 
measurements and z (= [zl, zz]) the regulated outputs. The 

signal sets [wl, zl] are related to performance criteria (mea- 
sured by what we will call the p1 -norm), whereas [w2, z21 are 
related to p2-norm constraints. These norms will usually 
be either 342 and H,, I1 and H,, or H2 and 81 (seldom 
used). In control problems involving 3 C 2  minimization, Dll 
is always taken to be zero to prevent the Hz-norm from 
becoming infinite. 
For the system as defined above the mixed two-norm prob- 
lem, as encountered in the literature, can be written as 
(when T,,,. denotes the transfer function from Wi to z; 
(i = 1,2) and y E R is the positive p2-norm bound): 

Find an internally stabilizing controller K which mini- 
mizes II T,,,,, l l p l  while maintaining II T,,,,, IIp2 5 y ,  
where P I ( =  2 or 1) can denote either the 3€2 or Jl-norm 
and p2 (= 00 or 2) denotes the 31m or the Hz-norm. 
Another formulation, used by [Steinbuch and Bosgra 94, 
Stoorvogel 931, is the following: 
Minimize the pl-norm of the transfer function from 
w1 to z1 using the internally stabilizing controller K(s) ,  
while maximizing the pl-norm of that same transfer 
function over the allowable, pz-norm bounded, uncer- 
tainties: 

min SUP I1 T,, ( K ,  A) l l p l  
/I A IIQ S ~ / Y  ~ ( s )  

where, in case of the problem addressed by [Steinbuch 
and Bosgra 94,Stoorvogel931 p1 = 2 and p2 = 00. 

Finally, [Elia er al. 93,Dahleh and Diaz-Bobillo 95,Voul- 
garis 941 use the following formulation: 
Find an internally stabilizing controller K ( s )  which mini- 
mizes 11 T,,, I I p l  and satisfies a set of linear constraints 
given by A and b: 

inf , 11 TWdz / I p l  such that AT,,, s b 
K ( s )  stabilizing 

with A a linear operator from to 8;ixmb, and 
b E -!?;;xmb a fixed element (possibly containing the " y -  
bound"). In this formulation usually w1 = w2 =: w and 
z1 = z2 =: z, see Section 4.1. 

Of course, slight variations with respect to these problem 
statements occur, though never essentially influencing the 
rest of the approach. For instance, some approaches in- 
stead of using /I TwL-zz / I p 2  s y use the strict inequality. 
As mentioned before, most approaches focus on solving 
the mixed 3 f 2 / 3 f m  control problem, while the other two 
problems (4?l/3f, and H2/81) so far have received little at- 
tention. The H2/J1 problem actually is a special case of the 
approach followed by [Dahleh and Diaz-Bobillo 95, Voul- 
garis 94,Elia et al. 93,Elia and Dahleh 961 which provides 
a method (originating from C1 optimal control theory) 
that either minimizes or constrains the $1 -norm combined 
with 3 f z  and/or Hm-norm minimization or constraints. 
Apart from this, mainly Sznaier [Sznaier 94, Sznaier and 
Blanchini 94, Sznaier 93, Hrissagis et al. 96, Sznaier and 
Bu 961 addresses the mixed Jl/Hm problem, both for the 
discrete-time and the continuous-time case. The widest va- 
riety can be found in the approaches to the 3f2/Hm prob- 
lem, eventually to be divided into five categories. One other 
distinction can be made based on the number of sets of in- 
and outputs used in the statement of the problem. The 
distinction discrete-time versus continuous-time, however 
non-trivial it might be, will not be made explicitly since it 
doesn't essentially alter the approach used. 
Finally, as a counterpart of the Hw-norm constraint can be 
mentioned the Extended Strictly Positive Real (ESPR) stabil- 
ity criterion (see, e.g., [Shim 941). Positive realness is an old, 
but important concept in system and control theory and is 
used in various areas, like network analysis, adaptive con- 
trol, nonlinear control and robust control. It is well-known 
that positive realness is closely related to absolute stabil- 
ity. This criterion will however not be treated here. 
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Another, rather different, approach to the mixed-norm 
problem, is based on the so-called “behavioral setting.” 
This methodology can be characterized by the fact that 
all variables are considered a priori on an equal footing, 
without a distinction between inputs and outputs, and the 
behavior is defined as a subset of the possible time tra- 
jectories. Because of the fact that this setting, which is so 
unlike the others, was hardly ever encountered (but is be- 
coming popular), it will not be treated here, but can be 
found in, e.g., [Paganini et al. 941 and references therein. 

4. Overview of approaches 
We will now describe a number of approaches to the 
solution of the mixed-norm optimization problem. This 
overview can of course not be exhaustive, but an attempt 
was made to (briefly) describe the approaches most fre- 
quently encountered in the literature. 
The following classification was used 

I 4.1 I 

Subsections 4.1 and 4.5 will be treated in somewhat more 
detail. It must be stressed that this classification is arbi- 
trary and other classifications can be used as well. In fact, 
there are some approaches that don’t actually fit in any one 
of these classes, for instance [Sznaier er al. 951 addresses 
the mixed 312/L1 problem (where w1 = w2, z1 = z2) in a 
way not really fitting into Section 4.1. The same can be said 
for [Wu and Chu 961 which treats the 31~/81 problem using 
Youla-parameterizations. Finally, [Chen and Wen 961 con- 
siders the Ll/H, problem and uses LMI’s combined with 
the so called Laguerre polynomial augmentation method. 
Although similarities with the methods of Section 4.1 ex- 
ist, again this paper does not really fit into this section. 
However, for the approaches discussed below, this classi- 
fication suffices. 

4.1. 8 J d :  a linear programming approach 
This approach uses the problem statement (3) from Sec- 
tion 3, where most commonly w1 = WZ =: w and z1 = zz =: 
z, although different linear constraints can be defined for 
different closed-loop maps Tw,,z,, i-e., on the map between 
the jth input set and the i f h  output set. Using that formu- 
lation, either p1 or p2 is taken to be 1 and the remaining 
p=l,  2 or M. Most common is the 8, minimization com- 
bined with 3& and/or 3f, constraints [Dahleh and Diaz- 
Bobillo 95,Elia eral. 931. The H 2 / 4 ? 1  problem is not so often 
encountered [Voulgaris 941. All these approaches use the 
technique of Linear Frogramming (U) combined with du- 
ality theory. An LP problem is an optimization problem in 
R”, where the objective function is linear in the unknowns, 
and the unknowns have to satisfy a set of linear equality 
and/or inequality constraints. This can be stated in the fol- 
lowing standard form: 

mjn cTx (13) 

x, rO i = 1, ... ,n 

H 
C O  

subject to Ax = b 

where x, c E R“, b E Rm and A E UtmXn. 
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Realizing that a large class of specifications can be ex- 
pressed in terms of linear constraints leads to the follow- 
ing approach. The idea is to simply augment the constraint 
of the linear program, derived from the I1 optimal control, 
with the linear specifications constraints and solve the new 
linear program. These constraints can be Hm-constraints 
and/or time-domain (template) constraints and they will 
be combined with the feasibility- (or interpolation-) con- 
straints (see [Dahleh and Diaz-Bobillo 95, pp. 123-1261). 
This way, even the three-norm problem can be handled. 
The infinite-dimensional H, -constraint will have to be ap- 
proximated by a finite number of constraints. Unfortu- 
nately this may prevent finding a solution if the perfor- 
mance specifications are tight. 
Given the standard form minimization (13), which we 
will call the primal problem, it is always possible to de- 
fine an associated linear maximization problem, known as 
the dual problem. The corresponding primal-dual pair is 
given by 

(primal) mjncTx (dual) maxqTb 

subject to Ax = b subject to $A 5 cT 
rl 

xi 20 ,  i = 1, ... , n  

where 0 is the vector of dual variables E Im (i.e., in “dual 
space”). Duality theory is used for instance in the solution 
of the multiblock problem (i.e., a problem in which d > 1 
and/or q > m,  whereas for a one-block problem d = 1 and 
q = m).  This problem, which has infinitely many variables 
and constraints, can in fact be shown to be partly finite- 
dimensional, by taking a close look at the structure of the 
dual problem. The part which still is infinite-dimensional 
can be (attempted to be) approximated by an appropri- 
ate truncation of the original problem. There are basically 
three approximation methods: 
1. Finitely Many Variables (FMV): provides a suboptimal 

polynomial feasible solution by constraining the num- 
ber of (primal) variables to be finite. 

2. Finitely Many Equations (FME): provides a superopti- 
mal infeasible solution by including only a finite num- 
ber of (primal) equality constraints. It is to be com- 
bined with FMV to get an idea of the achieved accu- 
racy. The FME/FMV method does unfortunately result 
in controllers of high order, related to the order of the 
approximation. 

3. Delay Augmentation (DA): provides both a suboptimal 
and a superoptimal solution by embedding the problem 
into a one-block problem through augmenting the op- 
erators U and V with delays (where Tw,z = H - UQV 
is an equivalent form of the Youla-parameterization as 
used in [Dahleh and Diaz-Bobillo 951). This method is 
used more often since it doesn’t necessarily suffer from 
order-inflation when in- and outputs are (re)ordered 
properly (see [Dahleh and Diaz-Bobillo 95, p. 2831). 

For a more thorough treatment on these methods the 
reader is referred to [Dahleh and Diaz-Bobillo 95, Chap- 
ter 121. 
A recent paper in this area worth mentioning is [Elia and 
Dahleh 961, where it is shown that the approximation meth- 
ods mentioned above may fail to converge to the optimal 

4.2. 81/H,: using the Youla-parameterization 
This approach uses the more general description where 
w1 + w2 and z1 + z2 in both the discrete-time- and the 
continuous-time case (see [Sznaier 931 (SISO), [Sznaier 941 
(MIMO) for discrete-time and [Sznaier and Blanchini 941 
(MIMO) for continuous-time). The main result shows that 
a suboptimal solution to the 81/31, problem, with perfor- 
mance arbitrarily close to the optimum, can be obtained 
by solving a finite-dimensional convex optimization prob- 
lem and an unconstrained 3f, problem. One important 
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concept in this approach is “replacing” RH, by Rgw,a 
which is defined as follows: RH,J denotes the subspace 
of transfer matrices in RHm which are analytic outside the 
disc of radius 6, 0 < 6 < 1, equipped with the norm 

11 C(z) llm,6 := sup C (C(Sds)) 
o<esn 

The discrete-time 41/Hm problem (using the Youla-para- 
meterization with parameter Q), stated as: 

Find the optimal value of the performance mea- 
sure: 

Mixed t1/Hm control problem 
1. 

subject to 

2. Given E > 0, synthesize a controller such that 

can then be solved by considering a sequence of modi- 
fied problems, involving the (.., &norm, where 6i is taken 
to be an increasing sequence approaching one. Next, the 
continuous-time problem can be solved by solving a se- 
quence of discrete-time 81/31, problems. The most se- 
vere limitation of the proposed method is that it may re- 
sult in high order controllers, necessitating some type of 
model reduction. More recent work includes [Sznaier and 
Bu 96, Hrissagis er al. 961, the latter concentrating on ro- 
bust predictive control. 
4.3. Hz/Hw: convex optimization using matrix inequal- 
ities 
The approach described here has received a great deal of 
attention (see, e.g., [Boyd and Barratt 91, Boyd et al. 93, 
Geromel et al. 92, Khargonekar and Rotea 91, Halikias 94, 
Scherer 95, Kapila and Haddad 95, Fujisaki and Yoshida 96, 
Chilali er al. 96, D’Andrea 96, El Ghaoui and Folcher 96, 
Scherer et al. 971). However, although all these approaches 
use matrix inequalities to arrive at a convex optimization 
problem there still exists a wide variety among these ap- 
proaches. For instance, some, but not all approaches use 
the Youla-parameterization; some set w1 = wz where oth- 
ers take all four sets of inputs and outputs to be differ- 
ent; the MI’S involved can be Linear (most common) or 
Quadratic MI’S and some approaches use the performance 
measure of Bernstein and Haddad (see Subsection 4.5) 
where others don’t. 
The solution to many convex optimization problems can 
be computed in a time which is comparable to the time 
required to evaluate a “closed-form’’ solution for a similar 
problem. Nowadays, a control engineering problem that re- 
duces to solving two algebraic Riccati equations is gener- 
ally regarded as “solved.” When a control engineering prob- 
lem reduces to solving even a large number of convex alge- 
braic Riccati inequalities the growing belief is this should 
also be regarded as “solved,” even though there is no “an- 
alytic” solution (see [Boyd et al. 931). Hence a large number 
of approaches focuses on making the optimization a con- 
vex one, mostly by using some suitable parameterization. 

tion of these problems, that is, algorithms that compute 
the global optimum, with non-heuristic stopping criteria. 
A number of general algorithms exist, for example the 
ellipsoid algorithm (see, e.g., [Boyd and Barratt 91, Bland 
er al. 811) and the recently developed efficient interior 
point methods for solving LMI-based problems, based on 

There are effective and powerful algorithms for the solu- 

the work of Nesterov and Nemirovsky [Nesterov and Ne- 
mirovsky 931. 
For instance, [Khargonekar and Rotea 911 uses the perfor- 
mance measure of Bernstein and Haddad and more impor- 
tantly they use a change of variables K = WY-l (which 
essentially is an over-parameterization), where Y is the 
symmetric solution to the quadratic matrix inequality that 
characterizes the infinity norm constraint. Although this 
necessitates a search over (W,  Y) instead of K being the 
only decision variable, it converts the original problem 
(which is not necessarily convex) into a convex one. 
The concept of LMI-based convex optimization is treated 
extensively in control literature and it has great potential, 
since there exist effective and powerful algorithms for the 
solution of these problems, as described earlier. 
4.4. HZ/H,: optimizing an entropy cost functional 
This subsection refers to the work done mainly by Mustafa 
and Glover in [Mustafa 89, Glover and Mustafa 89, Mustafa 
and Glover 88, Mustafa etal. 911. They address the problem 
where w1 = w2 =: w and z1 = zz =: z. The entropy of Tw-,, 
where I/ Tw-, Ilm < y ,  is defined by 

where SO E 08’. 
The maximum entropy/3fm control problem [Glover and 
Mustafa 89,Mustafa and Glover 881 can then be stated as: 
Find, for the plant G ,  a feedback controller K such that: 
1. K stabilizes G 
2. The closed-loor, transfer function T,,, satisfies the 

H,-norm bound / I  TW-, I t m  < y ,  where f s  R is given 
3. The closed-loop entropy 2(Tw-,, y )  is maximized. 
The key result they establish states that minus the en- 
tropy equals the auxiliary cost (as will be defined in Sub- 
section 4.5). 
While the maximum value of the entropy can be expressed 
in terms of the solutions to two algebraic Riccati equations, 
the minimum auxiliary cost in addition to this requires the 
solution to a third algebraic Riccati equation coupled to 
the other two. Since the two optimal values were said to 
be equal, we will be able to discard of the minimum auxil- 
iary cost expression and the corresponding algebraic Ric- 
cati equation as redundant. 
4.5. H 2 / H w :  fixed-order cantroller design using the aux- 
iliary cost 
This class of approaches refers mainly to the work done by 
Bernstein and Haddad in [Bernstein and Haddad 89, Had- 
dad and Bernstein 90,Haddad er al. 911 and some meth- 
ods based on it [Ge er al. 941. They address the problem 
of synthesizing a reduced- (or fixed-) order controller. To 
describe this problem we have to consider ncth-order dy- 
namic compensators 

X c  = A,xc + BCy 
U = C c x c  + D r y  

Now the closed-loop (8)-(11)+(15)-(16) can be written as 

k = & + i +  (17) 
f = & + B +  (18) 

where 

In the papers mentioned above, w1 = w2 =: w which sim- 
plifies the problem significantly. However, in proemen 961, 

443 



the more general case of w1 # w2 is described, in order to 
allow for all existing approaches using the performance 
measure of Bernstein and Haddad to derive the appropri- 
ate expressions. The final results, which can then be found 
in [Haddad and Bernstein 90, Bernstein and Haddad 891, 
are valid for the simplified case only. 
The LQG controller synthesis problem with an Hm con- 
straint can now be stated as follows: 
Find an ncth order dynamic compensator described 
by (15)-(16) which satisfies the following criteria 
1. the close!-loop system (17)-(18) is asymptotically sta- 

ble, i.e., A is asymptotically stable; 
2. the closed-loop transfer function Tw2-z2 satisfies the 

constraint /I Twz+zz Ilm 5 y where y > 0 is a given con- 
stant; 

3. the performance functional (LQG cost) AA,, B,, C,, Dc)  
is minimized. 

Then, for a given compensator the performance is given by 

J(A,,B,, C,,D,) = tr[SR11 (19) 

where I?.1 = ?:El (c =: [ 21) and S satisfies the Lyapunov 
equation 

AS + S A T  + Q = 0 (20) 

with = BBT. Note that (19) and (20) are similar to (3) 
and (4). The auxiliary cost 3(A,, B,, C,, D,, S) is then defined 
as J(A,,B,, C, ,D, ,S)  := tr[SR1], with S E RAxA the positive- 
semidefinite (S > 0) solution to 

AS + SAT+ y-’(BDF2 + SF$)T)M;:(BD& + SF$)T+ v=O (21) 

where Mq2 := Iq2 - y-2D2zD12 is positive-definite. 
This leads to the auxiliary minimization problem: deter- 
mine (A,,B,, Cc,Dc,  S) which minimizes the aGliary cost 
J(A,,B,, Cc,Dc ,S )  subject to (21) with S 2 0 E Rflx”. 
The auxiliary minimization problem can be solved by us- 
ing Lagrange multipliers as was done in [Haddad and Bern- 
stein 90,Bernstein and Haddad 891. Like them, we will take 
D,  to be zero from now on. 
Then, to optimize J(A,,B,,C,,S) over some set X (reflect- 
ing technical assumptions) subject to the constraint that 
positive-definite S satisfies (21), the following Lagrangian 
is formed: 

(22) L(Ac,Bc,Cc,S,3M):= tr{SR, + [ & + S A T  
+y-2(BDT2 + SCT)M;:(BDT2 + Se:) + l%3l) 

T 

where 34 E RAxA is a Lagrange multiplier. 
After setting the partial derivatives g, E, 
to zero, the solution can be obtained either analytically or 
numerically. Bernstein and Haddad take the first approach 
and derive solutions to the problems of finding fixed- as 
well as full-order controllers for both the 3 f 2 / 3 f w  and the 
pure 3fm problem for the case where B1, Dzl, D31,012 and 
D, (and Dll) are taken to be zero. They find A,, B, and C, 
(and S) in terms of the solutions to four coupled ARE’S. 
Ge er al. choose the numerical approach and use homotopy 
techniques (see [Ge et al. 941 and references in [Bernstein 
and Haddad 89,Haddad and Bernstein 901). They basically 
take the LQG solution as a starting point and iterate “to- 
wards” the H2/3fw problem. 
4.6. H2/3fw: using a bounded power characterization 
In this subsection the “power-norm” and the “spectrum- 
norm” are used. These semi-norms are defined as the 
square root of the average power of a signal and the square 
root of the m-norm of the spectral density respectively. The 
corresponding signal spaces (containing all signals having 

and 

a finite power-/spectrum-norm) are denoted by P and S. 
The problem addressed [Doyle et al. 89,Zhou et al. 901 sets 
w1 # wz, z1 = z2 =: z where w1 is assumed to be fixed and 
white, and w2 is assumed to be bounded in power. The de- 
sign objective is to minimize the power of the output error 
signal z,  i.e., compute 

and minimize this. In their approach they use (cross-) spec- 
tral density relations to solve the following cases: 
1. The orthogonal case, i.e., the cross-spectral density 

2. The white and causal case, i.e., w1 is assumed to be 
white with S,,,, = I and SwzWl = S(s) with S(s) strictly 
causal (i.e., we assume that w2(r) can be generated from 
w1 through a strictly causal filter) 

3. The non-white and non-causal case 
4. The white and non-causal case: this problem appears to 

be equal to the 3rd problem, i.e., the worst-case signal 
w1 in the 3rd problem is shown to be white. 

Their approach mainly focuses on the Znd case. Eventually 
they obtain both necessary and sufficient conditions for 
the mixed 3 f z / 3 f w  optimal control problem. 
4.7. 3f2/3fw: minimizing the worst-case 3fZ-norm 
In this section the problem with four different sets of in- 
puts and outputs w1, w2, z1 and z2 is considered, where 
p1=2, pz=m. Based on problem statement (1) from Sec- 
tion 3, [Rotea and Khargonekar 911 give explicit formulae 
for a state-feedback controller. 
Finally, we detail methods from [Steinbuch and Bosgra 94, 
Stoorvogel 931, who use problem statement (2). This still 
allows for a considerable variety in the approach followed. 
In [Steinbuch and Bosgra 941 a “lossless bounded real (LBR) 
formulation” is used to parameterize the uncertainty A b ) ,  
thereby reducing the original constrained optimization to 
an unconstrained one. This results in a “Ak-K* ”-iteration, 
similar to the D-K-iteration known from p-synthesis: if Ak 
qualifies as a worst-case perturbation, for fixed Ak we can 
determine a K* solving 

Sw,w, = 0 

By computing an Hz-optimal K*(s) for each Ak(s), we iter- 
ate over until it satisfies the conditions for a worst- 
case disturbance. The LBR-parameterization, which char- 
acterizes all real rational causal stable transfer functions 
A(s) of order n A  having 11 A I l m  < 1, is then used to formu- 
late an unconstrained optimization problem. 
Stoorvogel [Stoorvogel93] uses a Lagrange multiplier p for 
the same purpose, resulting in a “p-K”-iteration. One dis- 
advantage of the approach followed by Stoorvogel is that 
it is conservative in the sense that the disturbance system 
is not assumed to be causal. Furthermore, the uncertainty 
is assumed to be unstructured. 

5. Conclusions 
We have presented a number of approaches to solve the 
mixed-norm optimization problem. It was seen that all but 
one focus on solving the two-norm problem, although this 
one approach (see Subsection 4.1), which considers a three- 
norm problem setting does not really exploit this possibil- 
ity and ends up giving no more than a description of what 
the methodology would look like. 
It was also seen that the Hz/Hm problem received the 
greatest deal of attention. This is due to the fact that the 
need for a mixed-norm formalism originates from the sep- 
arate 3 f z  and Hw control theories not being able to ac- 
commodate all practical design specifications. To accom- 
modate bounded-magnitude signals, the optimal con- 
trol theory was developed, but not until a few years ago, 
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which explains the relatively small number of approaches 
to  this problem. 
Most of the approaches tend to  have an ad hoc charac- 
ter, but the same is said for p-synthesis [Zhou et al. 901, 
which has been successfully applied in recent years. It is 
not clear which one of these approaches qualifies as most 
promising. The future will point out which methods are 
best suited for practical application, but all efforts will un- 
doubtedly contribute to what must become a clean closed- 
form solution to the mixed-norm optimization problem. 
It is recommended that a new overview of mixed-norm op- 
timization techniques is carried out in a few years, since 
the work in this area is growing and for some time to come 
not finished, and it is of interest for industrial applications, 
see, e.g., [De Jager 951. 
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