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R M. M.MATTHEL

Some examples of Mathematical Modelling
in Glass Industry

The evolution of viscous gobs is considered as they appear in glass morphology. It is shown how this can be modelled
by a Stokes equation. Two applications are considered in more details. One is the densification process through
sintering and the other the pressing of a glass in a mould.

1. Introduction

Glass is an interesting material. It is easy to make, as there is an abundance of raw material, like silicium
and soda; it is 100% recyclable, a strong advantage over competing materials; most of all it can be used in a large
variety of products, like a panes, jars or CRT’s. Traditionally, craftmenship and more experience have been the
main ingredients of expertise. But even for a seemingly low tech production process like bottle making, sharp com-
petition, enviromental requirements (since high temperatures are essential) and esthetics and strength requirements,
necessitate a better and more refined understanding of the process involved. To some extent this can be achieved by
carrying out experiments. However, mathematical modelling and simulation are proving their strength here. Once
a model has been developed, it may prove quite versatile and cheaper than trial and error methods. In this paper
we give two examples of such models. The first one deals with viscous sintering and the second one with pressing
glass in a mould.

2. Modelling the problem

In order to describe the morphology of glass we use the (standard) conservation laws of momentum, mass and
energy. As for the temperature, although it plays an essential role in the morphology, the process considered here
can be viewed isothermal and hence the energy equation can be left out. Given a sufficiently high temperature the
viscosity is low enough to model the glass as an incompressible Newtonian fluid. Denoting the time dependent glass
domain by Q: we have the following Navier-Stokes equations

p (%‘t,--l—v-Vv) —dive = pf, in Q,
(1)

divy = 0, in 4,

where p is the mass density and f are the volume forces. The stress tensor o is related to velocity gradient Vv,
pressure p and dynamic viscosity p as follows:

o =—pl+pu (Vv +(Vv)T) (2)

Substitution of (2) into (1) gives us the following equations

dv .
p(5t—+v-Vv) = pf+Vp-puViv i Q,,

@)
divv = 0, in 4.
These equations can be rewritten in dimensionless form. Using reference values indicated with a prime we find
1 UL
v=UV, p= ——pU?p, Re="2""
Re 7

, L,

x=Lx', t==t,
U

where Re is the Reynolds number and v/, p',x', ¢’ are dimensionless variables. Then the previous system of equations



(3) reads as follows:

Re%f +Vp —uViV  in Q, @

divy' = 0, in (.

ov' ' '
Re (‘a—tT + Vv VV)

For smaller domains the Reynolds number is typically quite small and the same holds for the volume forces. Hence
we effectively have a Stokes flow

puViv—-Vp = 0 in 0y,
(5)

divv = 0, in Q.

Since (5) is actually a stationary problem the evolution must come from kinematic boundary conditions. We have
to complete these equations therefore with boundary conditions for velocity and pressure.

Once we have the velocity field v we can find the domain from solving

— = v(x). (6)

3. Application: 1 Viscous sintering

If 0, is a viscous gob we have a free surface. The driving force is then the surface tension which is proportional
to the curvature, i.e.

TN = KN, &)

where T is the stress tensor with

ov; | Ov;
Tij = —Pbi; +(E + 6_5:%) ) (8)

n is the outward normal vector and & the curvature.

If we let two such gobs coalesce this ariving force will eventualy produce a circular cylinder of ball (in 2-D
and 3-D respectively). The coalescence itself is a delicate matter to deal with numerically: initially the curvature at
the touching point is infinity, but also further on at the so called neck (see fig. 1) we have large curvatures which
render numerical computations ineffective. An elegant way out of this is using a sophisticated conformal mapping
described by Hopper[3]. He gives a formula for the actual shape which can fruitfully be imployed to be combined
with numerical computations.

The nature of the problem, with the need to describe the evolution of the boundary makes it quite naturally
to solve the problem by a Boundary Element Method (BEM). Taking into account that we actually have a Neumann
problem we should make the solution unique by fixing the translation and rotation of the body. The results of a
simple coalescence are displayed in fig. 1.

We model this by considering a so called unit cell, being part of a periodic lattice. In such a unit cell one
may design a typical set of larger and smaller particles. In Fig. 2 we have displayed the shrinking of pores in such a
process. The actually used numerical method was based on boundary element and sophisticated time stepping [2]:
we first solve (5) for the given domain 2, and then find the new boundary at t + At by using a discretised form of

(6).

4. Application: 2 Forming of parison

The production of various glass products often contains of a phase where the material is pressed in mould. In
Fig 3 we have sketched such a process: a glass blob is falling down and then a stamp is moving up while the mould is
closed. Assuming the mould is axisymmetric we can reformulate the equation in cylindrical coordinates and obtain
a 2-D problem. Clearly we now have a partially free and a partially fixed boundary for the Stokes problem. The
latter poses an additional problem when solving (6). Indeed, small displacements, as e.g. found by an Euler forward
step may give points outside the physical domain. Therefore some " clipping” procedure is needed, see fig 4. This,
however. implies that material is removed, thus violating the mass conservation law divv = 0. There are various
ways to deal with the latter problem, which will be reported elsewhere. Clearly, if the time step is small enough this
problem can be eliminated virtually. In fig 5 we have displayed a numerical simulation using a FEM code to solve



Figure 1: Two cylinders with different diameters and their transformation in time.
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Figure 2: The shape deformation of the unit cell of a period lattice non-uniformly sized cylindrical pores at subsequent times
demonstrates that the pores vanish in order of size.

Figure 3: The pressing phase.
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Figure 5: Numerical simulations

the Stokes equations.

Acknowledgements

The: author appreciates cooperation with G.A.L. van de Vorst and K. Laevsky.

5. References

1 G.A.L. vaN DE VORST, R.M.M. MATTHELl: A BEM-BDF scheme for curvature driven moving Stokes flows, J comp. phys.
(1995) ....

2 G.A.L. VAN DE VORST: Integral formulation to simulate the viscous sintering of a two-dimensional lattice of periodic unit
cells, J. Eng. Math. 30 (1996), 97-118.

3 R.W. HoPPER: Plane Stokes driven by capillarity on a free surface, J. Fluid Mech. 213 (1990), 349-375.

4 K. LAEVSKY, R.M.M. MATTHEL): Development of a simulation model for glass flow in bottle and jar manufacturing
(coming soon).

Addresses: PROF. DR. ROBERT MATTHEL, Department of Mathematics and Computer Science,
Eindhoven University of Technology, PO Box 513, 500 MB The Netherlands



