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Abstract .
Creep formulations for concrete that are amenable to an efficient numerical
implementation are reviewed. Both short-term and long-term creep processes are
addressed. An elegant formulation is derived for the use of smeared-crack models in
finite element analyses of time-dependent (viscous) deformations and is shown to yield
realistic simulations of crack patterns. Possible consequences of the inclusion of rate-
effects on the well-posedness of rate boundary value problems that involve smeared
cracking and tension softening are discussed. Finally, an automatic scheme for selecting
the time step in numerical computations is presented.
Keywords: Creep, Visco-Elasticity, Fracture, Finite Element Analysis

U Introduction

Creep and cracking are among the most prominent non-linear phenomena that affect
serviceability of concrete structures, either plain, reinforced or prestressed. As a result
much attention has been devoted to developing accurate constitutive models for the
long-term behaviour of concrete (¢f. Bazant et al. 1988 for a review). Almost invariably,
these models find their point of departure in the linear theory of visco-elasticity. A basic
assumption is then that the superposition principle applies, that is, the effects of two
different stress increments on the time-dependent strain can be superposed. Under
service stress levels this is a reasonable assumption.

Visco-elasticity theory uses hereditary integrals, This has distinct advantages when
constructing analytical solutions, since then the Laplace transform technique can be used
to reduce the time-dependent problem to an ordinary linear-elastic problem, for which a
solution may exist. After the elastic solution has been found a backtransformation is
carried out to obtain the stress and strain evolution in the time-domain.

For numerical applications, hereditary integrals are not so easily handled. In a
straightforward implementation they require storage of the entire stress or strain history.
Since this must be done for each integration point, large-scale two and three-
dimensional applications are effectively excluded in this approach. For this reason the
kernel of the hereditary integral is normally expanded in a series, and only the first five
to seven terms are retained. In this strategy the stress or strain history is memorised via a
limited, constant number of internal variables (Zienkiewicz et al. 1968, Taylor et al.
1970, Bazant and Wu 1973, 1974).
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In this paper we shall review numerical approaches to visco-elasticity which set out
to describe concrete creep behaviour. Both ‘long-term’ creep behaviour and creep at
early ages are considered. Next, the visco-elastic creep models will be combined with
smeared-crack models. A numerical example that involves cracking in an axisymmetric
early-age concrete structure is presented to demonstrate the possibilities of such
approaches. The discussion is continued with an investigation into well-posedness of the
rate boundary value problem in the presence of cracking. It will be investigated to which
extent the stabilizing influence of viscosity, which has been proven for high loading
rates, also holds for slow processes, that is when inertia effects are absent. A final
important aspect when carrying out time-dependent calculations is the magnitude of the
time step. An automatic time stepping procedure will be derived which is inspired by the
well-known path-following solution procedures commonly adopted in static analyses.

2 Concrete creep and large-scale computations

As point of departure we shall utilise the creep formulation

e(t)=;£J(t,~c)C<'r(r)dr. N
In eq. (1), & is the stress rate tensor, J (¢, 7) is the creep function, and the components of
C are defined by

Ciju= '%'(1 + V[0 Byy + By B] - v 8By 2)

with v Poisson’s ratio, which is assumed to be independent of the time of load
application 1=t and §; ; the Kronecker delta. Following common practice (¢f. Bazant et
al. 1988) we now separate the creep function into an age-dependent Young’s modulus
E(t) which represents the instantaneous elastic stiffness, and a function J.(¢, T} which
purely reflects time-dependent effects:

J(t,t)=‘—E-%c—)— + I 3)

This identity is substituted into the creep formulation (1) to yield:

£(t) =£[E“1 (D+J(t, V] C () dr. 4
We now differentiate eq. (4) and use Leibniz’ rule to obtain

e =ECHD + ZJ'(: , D C6()dt. (5)

with J'(t , T) the first derivative of J. (or equivalently J) with respect to ¢,

The use of constitutive relations in displacement-method based finite elements is
greatly facilitated if the stress rate is explicitly written as a function of the strain rate and
the strain or stress history. For this reason (5) is rearranged as
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&(H=E® |Déw) - [1¢, v émdr|, ©6)
0

with D=C"!, Setting

At=t; 1t )]
Ac=06(t1)—0o0) ®
Ae=g(r;,1)-€(t) )

we can integrate eq. (6) to give

i L t

Ao= [ E@Dedi- [E@ | 1@, v é(ydedr (10)

t=t; =t 1=0

which can be approximated by the finite sum

-1
AG=E(")DAe~ T EE (", 1,) Ay Ar, . ()
q=0

with £;<t" €£;,1. According to (11) the stress increment is computed from the strain
increment Ag of the current time step and the stress increments Ao, of all previous time
steps. The product of an additional strain increment Ae and the actual Young’s modulus
E (1) increases the current stress, while the second term in eq. (11) describes the
relaxation process. The disadvantages of such an algorithm are the fact that the entire
load history of each material point needs to be stored and that the computational times
explode as the period increases which has to be analysed. Even for modern computer
equipment this is an impossible requirement for realistic (three-dimensional)
engineering structures.

To obviate the above disadvantage most finite element programs use an algorithm
that is based on an expansion of the kernel J (z, 1) of the hereditary integral. Commonly,
negative exponential powers (Dirichlet series) of polynomials (Taylor series) are used
for this purpose. The first approach is usually adopted for long-term creep simulations,
the period of consideration stretching over years to several decades. The other procedure
can be advantageously adopted for short-term creep processes, e.g., in early-age
concrete.

2.1 Long-term processes: Dirichlet series

An alternative approach to expanding the creep function J(¢, T) into a series of negative
exponential powers would be to express the stress ¢ directly as a functional of the strain
history:

1
o) =JR(,)Démdr, 12)
1]

and then to expand the relaxation function R in a series of negative exponential powers:

31



N
R, D=Eq0)+ ¥ Eq(t)expl-(—T)/Aq)) . (13)

=1
with Aq the relaxation times of the individual chain elements. Mechanically, the model
that results can be interpreted as a Maxwell chain model (Bazant and Wu 1974). The
resulting algorithm reads:

N Eqo(t")
Ao=E (t*)DAs + ¥ [1—exp(—At/Ag)] [ DAe—oa(n)} . (14
0 a}__% At/ kg

The merits and disadvantages of either starting from a creep function or from a
relaxation function have been discussed extensively in the literature (e.g., Bazant et al.
1988). They primarily become manifest in case of aging solids, so that the spring moduli
E are not constant in time. However, for the numerical implementation it does not
seem to matter which point of departure is chosen (Anderson et al. 1988).

The accuracy of the above integration scheme hinges on the assumption that &€ and
E o do not vary much during the time step. Indeed, eq. (14) is exact if € and E are
constant during the time step. For a non-aging solid the assumption that £, remains
constant during a time step is satisfied rigorously, but even for an aging solid £, usually
varies so slowly with time that it mostly entails no serious errors. In the absence of
cracks, the assumption that £ also remains constant, is usually reasonable. When we
have crack initiation or propagation, the assumption is more questionable. As we will
show hereafter, & must then be replaced by £°°, the part of the total strain rate that
applies to the concrete. Since £ can vary quite abruptly over a time step, € may also
show considerable changes. This implies that time steps must be chosen much smaller
when cracks are present than when they are absent.

2.2 Short-term processes: Taylor series

For creep in early-age concrete only relatively short time spans have to be analysed. On
the other hand, the stress fluctuations during this period may be more pronounced than
in ‘long-term’ processes. For this reason it may be advantageous to develop J(f, 1) in a
Taylor series instead of in a Dirichlet series. We consider the class of creep functions for
which

J,D=A1)yg(t-1), (15)

which is sufficiently broad to encompass most commonly used creep models., For
instance the power law

J(t,’t)=E—:-€)—(1+a'c‘d(t-‘c)”), (16)

with a , d and p material parameters, falls in this category. We now expand J'(, 1) in a
Taylor series around T=ty. This gives:
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N
J(t, =3 fOha(t—t)7", an

o=0

which is convergent for 0<r<2z;. Substitution in eq. (10) and separating the
integration domain into a part from t=0 to ¢; and a part from T=y; to ¢ yields

ba N tia &
Ao= [E@Ded-F | JE@) | fho(t-tn%6(x) dude
t=t; o=0| t= =0
by t
+ JEQ® [ fhgt -1 6@ dude | (18)

1=t =t

Separating the integrals of the first expression between brackets and exchanging the
order of integration in the second term leads to

tiv N | fiw 4
Ao= [EMD&d- 3 | J E@holt—tp)dt [ fr)a(ryde

t=t; o=0| t=t; 1=0

sy Lin

+ [ [ E@ha(t-ta) fryc*S(v) dede|. (19)

=T =g

The integration between ¢; and t;,1 is now carried out by a generalised mid-point rule, so
that the integrals are evaluated for r=:". In the example that is presented in the next
section " =(¢; +1;,1)/2 has been used. This numerical integration rule has also been
applied to the integration from ¢ =7 t0 #;,;. Assuming a constant stress rate during the
time step, 6= Ao/At, we obtain

N N
AG=E (t")[DAe-Ar Y Agho(t” —td)]——;—AtZ "Rt —tg)A0, (20)
o=0 o=0
with
Aa= TG00, @
j=1

The final expression for AG is now given by:

N
E@")[DAe- 3 Aghqlt® —14)A1]
Ag=——p =0 . (22}
L+ =AY (¢ ot ~ 1)
o=0
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Figure 1. Maxwell chain model coupled in series with a smeared-crack model.

3 Visco-elasticity and fracture models
3.1 Smeared crack modelling

The above derivations do not take into account the possibility of cracking, However,
such an extension can be incorporated straightforwardly if a smeared crack model is
used that assumes a decomposition of the strain tensor into a concrete strain £°° and a
crack strain €%, Then, the only modification that has to be made is the replacement of
the total strain increment Ae by the concrete strain increment A€® in the algorithmic
expressions that compute the stress increment Ao from the strain increment and the
stress or strain history. For instance, when a Maxwell chain model is used for the
concrete part {¢f. eq. (14)] the following incremental relation between stress increment
and concrete strain increment results:

N Eq "
AG=Eo(t*)DAE® + Z[l—exp(—At/?xu)][ y )DAe°°~0a(t,-)J, (23)
o] At/ Ay

see also the graphical representation in Figure 1. For future use it is convenient to
replace this identity by the expression

AG=D®Ae® 4G 24)
with
N E ("
DP=Eo(t")D + I [1-exp(~At/Ag)] o), (25)

=1 At/ Xy,
the instantaneous stiffness matrix of the concrete and

314



N
o=— Y [1—exp(—At/Ay)]oG (1) (26)

o=1

the relaxation term.

The additive decomposition of the total strain into a concrete part € and a cracking
part £ reads in an incremental form (de Borst and Nauta 1985, de Borst 1987, Rots
1988):

Ae = A€ + Ae™ . @n

As pointed out by de Borst and Nauta (1985) and de Borst (1987) the crack strain
increment Ae™ can again be composed of several contributions:

Ae = Ae§ +Ae§ +.......... (28)

where A€’ is the strain increment owing to a primary crack, Ag$' is the strain increment
owing to a secondary crack and so on. For simplicity sake this enhancement will not be
pursued here.

The relation between the crack strain increment of a particular crack (either primary
or secondary) and the stress increment is conveniently defined in the coordinate system
which is aligned with the crack. This necessitates a transformation between the crack
strain increment A€ of crack »n in the global x,y-coordinate system and a crack strain
increment Ae® which is expressed in local n,t-coordinates. Restricting the treatment to a
two-dimensional configuration (which is not essential), we observe that a crack only has
a normal strain increment Ae" (mode-I) and a shear strain increment AY”" (mode-1I), so
that

AeT =[Ae , Ay¥TIT . (29)
The relation between Ae® and Ae* reads
A" = NAe* | (30)
with
cos’®  —sinfcosd
N=| sin%0 sinBcosd |, (3Bh

2sinfcosd cos*H-sin’6

and O the inclination angle of the normal of the crack with the x-axis. In a similar way,
we can define a vector As

As=[As, AT, (32)

with As the normal and At the shear stress increment in the crack coordinate system. The
relation between the stress increment in the global coordinate system Ao and the stress
increment vector As reads
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As=NTAG. (33)

To complete the system of equations, we use the general form of the integrated
evolution equations for visco-elasticity (24) as constitutive relation for the concrete and
a stress-strain relation for the smeared cracks which we assume to have the following
format:

As=D"Ae” + A, (34)

with D a 22 matrix and A a vector that contains the viscous or rate effects in the
cracks. In dynamic fracture analyses of concrete inclusion of the latter term proved
necessary to testore well-posedness of the initial value problem (Sluys 1992). A
discussion for quasi-static loading conditions is given below.

Using egs. (24)-(34) we can develop the tangential stiffness relation for the cracked
concrete:

AC = [I_DC"N[D“ +NTDeoN] NT}(DC"AE +G) +DON[D +NTDNJTA . (35)

C D
r 40-ﬂ
I 20 -
L1
|
T T T
L1
|| B 50' thO 150
P time (h)
A /

Figure 2. Discretisation of one leg of tetrapod structure (left)
and evolution of Young’s modulus at point A (right).

3.2 A casestudy: cracking in early-age concrete

An example is now presented. It involves the calculation of the stresses during the
hardening process in early-age concrete. The structure that has been considered is a
tetrapod, which is used as a cover element for a breakwater. The full structure has four
axisymmetric legs. In the analyses described here only one leg has been modelled and it
has been assumed that full axisymmetry could be adopted, including the boundary AB.
This is a simplification, since the connection with the other legs of the tetrapod can
never be axisymmetric. The element mesh for the stress calculation of one leg is shown
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in Figure 2. In line with the assumption of full axisymmetry smooth boundary
conditions have been imposed along AB and AC.

The problem of stress evolution in early-age concrete is essentially a coupled
thermo-mechanical problem. However, the coupling is rather weak and the thermal and
stress analyses have been carried out separately, the result of the thermal finite element
analysis being the input for the stress analysis. Other input data for the stress analysis
that result from the thermal analysis are the degree of maturity as a function of time and
the evolution of Young’s modulus. The particular expressions that have been used in the
thermal analysis for the rate of heat production, the thermal conductivity and the heat
capacity can be found in Reinhardt ez al. (1982) and de Borst (1989). Van den Bogert er
al. (1987) and de Borst (1989) list the expressions that have been used for the evolution
of the degree of maturity and the Young’s modulus. As an example the growth of the
Young’s modulus in point A is given in the right part of Figure 2.

In the stress analysis the power law of eq. (16) has been employed with the
parameters a=4.518, 4=0.35, p=0.3 and a develogment time td=0.3024~106s. The
linear coefficient of thermal expansion was 0.011:10™ m/mK. Poisson’s ratio was taken
equal to 0.2. Shrinkage caused by drying of the hardening cement paste has not been
taken into account, neither were rate effects considered for the smeared-crack model
(A=0). Tension-softening was included in the smeared crack model with a tensile
strength f,=2MPa and a linear softening branch with an ultimate strain g, =0.033 at
which the tensile capacity is exhausted.

For the stress analysis eight-noded isoparametric elements were used with a 3x3
Gaussian integration. The finite element calculations were carried out in 31 time steps,
starting with increments of 1 h up to 10 h for the last ten steps. A Modified Newton-
Raphson procedure was used to achieve equilibrium within each time step. The
convergence criterion was based on the Euclidean norm of the incremental
displacements and was set equal to 1078, Normally, 8-12 iterations were needed to
comply with this requirement, although after extensive cracking the requirement could
not be satisfied within the allotted number of iterations (20).

The crack patterns that result from the finite element simulations are shown in
Figure 3 for t=50h and =70, and in Figure 4 for r=100h and ¢ =150 h. Note that the
little rectangles that appear in Figure 4 and r=150h represent cracking due to tensile
hoop stresses. The centre pictures always represent the standard case with a tensile
strength f, =2 MPa and a diameter of the leg of the tetrapod D =2 m. The right pictures
are for the same structural size, but for a lower tensile strength (f, = 1.5 MPa), while the
left pictures show the crack evolution for the same tensile strength, but for a smaller
diameter (D =1.5m). We clearly observe the faster spreading of the cracking for the
larger diameter and for the smaller tensile strength. Also the zones in which cracks
propagate are different as can be observed clearly at r=70h for the variation in tensile
strength. Of course, a more realistic analysis should include a tensile strength that is a
function of the time (Brameshuber and Hilsdorf 1989).
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Figure 3. Crack patterns for t=50h (top) and t=70h (bottom).
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Figure 4. Crack patterns for r=100h (top) and # =150 h (bottom).
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4 Well-posedness of the rate boundary value problem

The model embodied in eq. (35) contains viscous contributions to the concrete strain
A (eqs. (24)-(26)) and to the local crack strain Ae”™ (34). Especially the latter
contribution is important and has a stabilising influence on the creep-fracture process. In
a classical treatment of fracture the formation of cracks is a discontinuous process in
space and time. A local jump-wise solution for the strains develops instantaneously in
time. This problem is usually referred to as loss of ellipticity in quasi-static problems
and loss of hyperbolicity in dynamic problems (Hill 1962, Rice 1976). Computational
modelling of smeared crack constitutive relations which do not incorporate a
characteristic length or time scale then leads to mesh-dependent results.

The contribution of viscosity to the concrete strain has only a slight effect on the
fracture process and does not change the character of the equations, ie. it does not
prevent loss of ellipticity or hyperbolicity, respectively. On the other hand, the addition
of a viscous component to the crack stress affects the fracture process and prevents the
jnitial value problem from becoming elliptic (Sluys 1992). The regularising influence of
viscosity in the rate boundary value problem will be discussed here. Because the
viscosity contribution to the concrete plays a minor role its influence will not be
considered.

If we consider a direction normal to the crack plane and depart from eq. (34) we
have

cr
As=h e +m 2B (36)
ot

with A the mode-I component of D and m dAe“/dr the mode-1 component of A. The
parameter m represents the viscosity of the cracked material. Note that ¢ denotes time
and not a direction aligned with the crack. If we substitute Ae® =Ae ~Ae® and
Ae® = As/E into eq. (36) we obtain

(h+E)As+m§A—§—=hEAe +mE—a—l}£.

ot ot

Substitution of the kinematic equation Ae =dAu/on into eq. (37), with u the
displacement in the n-direction normal to the crack, and differentiation with respectto n
yields

_B___ ((h +E)As +m

37

5 +mE (38)

an an? onar

2 3
8As)=hEaAu 9’ Au
Assuming equilibrium over the time step, i.e. dAs/on =0, the left hand side of eq. (38)
becomes zero and the viscous fracture process is described by the right hand side of this
equation, To investigate solutions in the n- plane the characteristic determinant of the
following system is determined;
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2 ~h 2
0OmoO ar;at 28)1
drdn 0 || LA || g2y (39)
0 d d 2nor dnot
! 7 aSAu d( azAu)
L aan | | 82n

With the determinant equal to zero the characteristic directions dn/dr =0. This means
that the rate boundary value problem does not become hyperbolic but is of the parabolic
type. Consequently, the problem remains well-posed and no mathematical or numerical
problems are to be expected. A characteristic length and time scale are present in the
model, which prevent the occurrence of a jump-wise solution and remove the mesh-
dependence in the finite element analysis. However, it is noted that if the creep-fracture
process evolves to a steady state situation the third-order derivative term in eq. (38) no
longer dominates the second-order term (or the viscosity m should be taken artificially
high). The derivation of the characteristic directions no longer holds and ellipticity of
the rate boundary value problem is lost in the limit.

5 An automatic time-stepping procedure

In finite element analyses a time-marching procedure is normally employed to trace the
evolution of stresses and strains and to monitor crack propagation. Especially during
rapid crack extension a small time step is needed in order that a converged solution can
be obtained in the iterative equilibrium-finding procedure. In purely static analyses arc-
length, or path-following procedures, have gained much popularity to adapt the
magnitude of the load increment in an automatic fashion (Riks 1979, Ramm 1981,
Crisfield 1981). Below we shall demonstrate how this methodology can be extended to
quasi-static processes where the time plays a role, so that the time step is changed
automatically when the degree of non-linearity of the process varies.

When an arc-length method is applied in the time domain, the time increment Ar
does not remain constant from iteration i to iteration i + 1, but changes from At; to Az,
The iterative change is denoted by the 8-symbol

81‘,’+1 =At; 1 — Al (40
similar to the iterative change in the displacement vector:
8[1".,.1 :Au;+1 —Au; . (‘41)

When B is the matrix that connects the nodal displacements to the strains in the
integration points of the finite elements and if we assemble all external actions at time
t;+1 in a vector r;,q, then equilibrium of the discretised system reads:

[BT6;,1dV =1y . 42
%
Introduction of the normalised load vector r and the current load factor A; .y at iteration
i +1, such that r; | =X;,; r, permits rewriting of (42) as
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[BTG;1dV =21 (43)

1%
We now expand the stress and the load factor at the end of iteration i +1 in a truncated
Taylor series:

O;+1=0; +D;B3u;,yy +8;84 (44)
with D; the tangential stress-strain relation at the end of iteration i and

9\.”.1 =X\ + 7.»,'82?,4.] (45)

When, for instance a Maxwell chain is used, D; and &; are found by differentiating the
secant relation (14) with respect to the strain and the time, respectively, as follows

D;=Eq(t")D + )_1[1 exp(— At/ku)] Eq(t’)
o=1 7‘&

D. (46)

and

A Eo(t")
G;= Y —exp(—At/hy) DAe— Gy (t;)

o At/ hg
- g‘,[l—cxp(—At/?»a)] “( B DAE . 47
o 2
The next step is to substitute egs. (44) and (45) in eq. (43). The result is
K;3u; 4 =k;~r—i[BT G;dV + 8114 [Xir—‘J/BTc's,-dV] : 48)
with the tangent stiffness matrix conventionally defined as
K;=/BTD;BdV . (49)
v
Defining p; and q; as
pi=Air— ‘f/ BT ;dV +Af[Ar— £BT($,-dV] (50)
and
qs=iir—£BTdidv , (51)

respectively, we can rewrite eq. (48) as
Kidui 1 =p; +44419; - (52)

Furthermore, we define
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Figure 5. Simple truss model used for assessment of automatic time-stepping procedure.

Displacement
150

I
-0 500 1000 1500
Time

Figure 6. Time-displacement diagram for simple truss structure of Figure 5.

dul,; =K7'p; (53)
and
dull =K7' q; (54)

After computing ul,; and u?“ the variable time step Af;,, can be calculated from a
constraint condition that the incremental displacements remain constant over the time
measured in some norm. For instance, the Lo-norm in the n-dimensional displacement
space has gained much popularity (Crisfield 1981). In its linearised version it reads
(Ramm 1981):

AuiTBu}+1 =0. (55)
Substitution of (53) and (54) in (55) then yields
AuiT&lLI
s AuiTSUFH

The iterative correction to the displacement increment Su;,; can now be determined
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from {cf. egs. (52)-(54)]
Ou; 41 =8uE+1 + ALy 6“?-&1 . a7

The performance of the method is shown in Figures 5 and 6. In Figure 5 a simple
shallow truss structure is shown composed of a visco-elastic material. Figure 6 gives the
time-displacement diagram. We observe that when the structure stiffens, the time step is
made smaller while the displacement increments remain constant.
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