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STATIC AND DYNAMIC ANALYSIS OF SPACE FRAMES 
USING SIMPLE TIMOSHENKO TYPE ELEMENTS 
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Eindhoven University of Technology, Faculty of Mechanical Engineering, P.O. Box 513, NL-5600 M B  Eindhoven, 
The Netherlands 

MARKKU TUOMALA 

Tampere University of Technology, Department of Civil Engineering, Laboratory of Structural Mechanics, P.O. Box 600, 
SF-33101 Tampere, Finland 

SUMMARY 
In this paper a finite element method for geometrically and materially non-linear analyses of space frames is 
described. Beams with both solid and thin-walled open cross-sections are considered. The equations of 
equilibrium are formulated using an updated incremental Lagrangian description. The elements developed 
can undergo large displacements and rotations, but the incremental rotations are assumed to be small. The 
material behaviour is described by elastoplastic, temperature-dependent elastoplastic and viscoplastic 
models with special reference to metals. Computationally, more economical formulations based on the 
relationship between stress resultants and generalized strain quantities are also presented. In the case of 
thin-walled beams the torsional behaviour is modelled using a two-parameter warping model, where the 
angle of twist and the axial variation of warping have independent approximations. This approach yields 
average warping shear strains directly from the displacement assumptions and no discrepancy between 
stress and strain fields exists. 

1. INTRODUCTION 

Frames are common load-carrying systems in engineering constructions. Effective use of high- 
strength materials and the tendency towards optimized constructions result in thin-walled and 
slender structures. Due to the increased imperfection sensitivity of the weight-optimized struc- 
tures, stability problems become more significant. The character of the load deformation path in 
the post-buckling range is important in assessing the safety of structures. Coupled geometrical 
and material non-linearities complicate the structural analysis, and only numerical solutions are 
feasible in practical cases. 

The earliest numerical procedures for analysing the non-linear response of space frames were 
mainly based on the beam-column theory, where the effect of axial forces on the behaviour of 
the frame is taken into account, e.g. References 66, 21, 20, 57 and 83. In these approaches the 
tangent stiffness matrix is formulated using the exact solution of the differential equation for 
a beam-column. It gives good accuracy in cases where the moments of inertia in the principal 
directions of the cross-section are of the same magnitude. In cases where the axial forces are small 
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or the cross-section moments of inertia differ greatly, i.e. in lateral buckling problems, the 
analyses of space structures with the beamcolumn elements do not give satisfactory results. 

The non-commutative nature of finite rotations in three-dimensional space complicates the 
formulation of incremental equilibrium equations capable of handling large rotation increments. 
Several studies for handling the large-rotation effects can be found in e.g. References 1, 3, 73, 14, 
23,27 and 28. Argyris et al.l have introduced the semitangential rotation concept. In contrast to 
rotations about fixed axes, these semitangential rotations which correspond to the semitangential 
torque of Ziegler" possess an important property of being commutative. Simo and V U - Q U O C ~ ~  
have developed a configuration update procedure which is an algorithmic counterpart of an 
exponential map and the computational implementation relies on a formula for the exponential 
of a skew-symmetric matrix. Cardona and GeradinI4 have used the rotational vector to para- 
metrize rotations. They have treated Eulerian, total and updated Lagrangian formulations. 
Large-deflection finite element formulations have been presented by e.g. Belytschko et al.,' ' 
Bathe and Bolourchi7 and R e m ~ e t h . ~ ~  In these studies the non-linear equations of motion have 
been formulated by the total Lagrangian or by the updated Lagrangian approach. In large- 
deflection problems of beams the updated formulation has been found to be more economical and 
convenient than the total Lagrangian f~rmulation.~ A total Lagrangian formulation does not 
allow an easy manipulation of rotations exceeding the value of n.I4 Recently, Sandhu et ~ 1 . ~ ~  and 
Crisfield" have used a co-rotational formulation in deriving the equations of equilibrium for 
a curved and twisted beam element. In the co-rotational formulation the rigid body motion is 
eliminated from the total displacements. A remarkable contribution to the handling of large- 
rotation problems is given by Rankin and N ~ u r - O m i d . ~ ~ ,  56 They have developed an element- 
independent co-rotational algorithm, where the invariance to rigid body motions are satisfied. In 
their formulation the consistent tangent stiffness is unsymmetric and the anti-symmetric part 
depends on the out-of-balance force vector. However, they proved that using the symmetric part 
of the tangent matrix the quadratic rate of convergence in the Newton iteration is retained. 

In all of the above-mentioned studies the warping torsion has not been taken into account. The 
stiffness matrix of a thin-walled beam seems to have been first presented by K r a h ~ l a . ~ ~  The effects 
of initial bending moments and axial forces have been considered by Krajcin~vic:~ Barsoum and 
Gallagher,6 Friberg26 and many others. M ~ t t e r s h e a d ~ ~ ,  54 has extended the semiloof beam 
element to include warping torsion of beams with thin-walled open cross-section. All the 
above-mentioned studies have considered linear stability problems. The effects of pre-buckling 
deflections to the critical loads have been studied, e.g. by Attard.' Computational tools for 
non-linear post-buckling analyses have been presented by Rajasekaran and Murray,62 
Besseling,12 Hasegawa et uZ.30,31 Baiant and El Nimeiri" have formulated the finite element 
equilibrium equations of a thin-walled beam element for large-deflection analysis, taking into 
account also initial bimoments. The study of Rajasekaran and Murray6' includes also elastoplas- 
tic material properties. The above-mentioned studies for thin-walled beams have utilized the 
Vlasov theory of torsion and the Euler-Bernoulli theory for bending of thin beams. Seculovik7' 
has proposed an alternative formulation which takes into account the shear deformation in the 
middle line of the cross-section. In this formulation the warping of the cross-section is described 
by a set of axial displacement parameters, the number of which depends on the shape of the 
cross-section. It is applicable for both closed and open cross-sections. Epstein and Murray24 and 
Chen and Blandford" have suggested a formulation which takes into account the average shear 
strains due to warping torsion. Chen and Blandford presented a C o  beam element for linear 
analysis, while Epstein and Murray formulated an element capable for non-linear problems. In 
a recent paper by Simo and Vu-Quoc7" a geometrically non-linear formulation capable of 
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analysing the behaviour of thin-walled structures is presented. However, no examples of practical 
importance are given in that paper. 

Wunderlich et a1.8s have used an incremental updated Lagrangian description in the derivation 
of the basic beam equations from a generalized variational principle. They have explored the 
influence of loading configuration, material parameters, geometric non-linearities and warping 
constraints on the load-carrying behaviour and on the bifurcation and ultimate loads of 
thin-walled beam structures. The influence of material parameters have been investigated with 
both J,-flow and deformation theories of plasticity. In their study, the tangential stiffness 
matrices are obtained by direct numerical integration of the governing incremental differential 
equations and no a priori assumptions on the distribution of the field quantities have been made 
as in conventional finite element analyses. 

A non-linear theory of elastic beams with thin-walled open cross-sections has been derived by 
Msllmann.s2 Tn this theory the beam is regarded as a thin shell, and the appropriate geometrical 
constraints are introduced which constitute a generalization of those employed in Vlasov's linear 
theory. The rotations of the beam are described by means of a finite rotation vector. Computa- 
tional results based on this theory have been presented by Pedersen". 59 in which Koiter's 
general theory of elastic stability is used to carry out a perturbation analysis of the buckling and 
post-buckling behaviour. 

2. EQUATIONS OF EQUILIBRIUM 

The linearized incremental form of the non-linear virtual work expression in Lagrangian formal- 
ism can be written in the form 

CAY: d('8) + ( A S .  '9) : 6 S ]  dY 
J V  =Is 2TN-6udS + [ v p o ( ' f -  x).dudV- 'Y:G('b)dV I (1) 

where A Y  is the 2nd Piola-Kirchhoff stress increment, d the Green-Lagrange strain tensor, A X  
the increment of the displacement gradient, TN, f the traction and body force vectors, u, x the 
displacement and material point vectors and p the material density. The left superscript refers to 
the last known equilibrium configuration 1, or to the next configuration which is looked for 2, for 
a detailed description of the formulations, see Reference 8, 

Two commonly used alternatives for the reference configuration are the undeformed state Co 
or the last known equilibrium configuration C1. These incremental strategies are known as total 
and updated Lagrangian formulations, respectively. In this study only the updated Lagrangian 
formulation is considered. 

In the finite element method the displacement field u is approximated using shape functions 
N and nodal point displacement variables q, resulting in a discretized equations of motion 

in which K 1  is the material stiffness matrix, KG the geometric stiffness (or initial stress) matrix and 

is the load stiffness matrix (Q is the external nodal point load vector and R the internal force 
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vector). In non-conservative loading cases the load stiffness matrix is unsymmetric. For further 
details on displacement-dependent loadings, see References 32, 4 and 70. 

3. BEAMS WITH SOLID CROSS-SECTION 

3.1. Kinematics of a beam 

The deformation of an initially straight beam with undeformable cross-section is studied. Let 
C be the centroidal axis of the cross-section and (c1, G2,  S3) a unit orthonormal vector system in 
the reference configuration, with GI along the beam axis (x-axis), and G 2 ,  G3 in the directions of the 
principal axes of the cross-section ( y -  and z-axes). A deformed configuration of the beam is then 
defined by the vector r(x), which characterizes the position of the beam axis, and an orthogonal 
matrix Z(x) defining the rigid rotation of the cross-section at x. 

Let xo = ro + yo denote the position vector of a material point in the reference configuration 
and the corresponding vector in the deformed state x = r + y (vectors y and yo lie on the 
cross-section plane). They are related by the equation 

x = xo + u = r + Ey, 

u = x - xo = u, + (S - I)y, 

(4) 

( 5 )  

where the displacement vector u is 

and u, = r - ro is the translational displacement vector of the centroid. 

a skew-symmetric m a t r i ~ , ~  
The rotation matrix can be expressed in a concise and elegant form as an exponential of 

0 - 0  

(6) 

Cartesian components 4, $, B define a so-called rotational pseudovector* 

cp = c9 * elT, cp = Ilcpll = &2 + 9 2  + o2 (7) 
Keeping in mind, that the kinematical relations for an updated incremental finite element 

analysis are sought and assuming small rotation increments, the truncated form of the rotation 
matrix 

E = exp(fi) w I + fi ++a2 (8) 
can be used. Rotations 4, 9, 6 can then be interpreted as component rotations about Cartesian 
axes x, y ,  z. 

The position vector yo and the displacement vectors u apd u, are 

*It should be noted that the components #, 9 and B are not component rotations about fixed orthogonal axes. 
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where u,, v, and w,  denote the displacements of the centroid in the x, y and z (h,  h2,  &) 
directions. Then equation ( 5 )  becomes 

u = u, - (e - ++$)y + ($ + ++e)z 

u = U, - f (4 ’  + 0 2 ) y  - (4 - +ll /6)~ 
w = wc + (4 + S W y  - f ( $ 2  + 3 2 ) z  

(10) 

Equations (10) are obtained by assuming, that the cross-section remains planar during the 
deformation. However, warping displacements take place when the beam is twisted. The warping 
displacement is assumed to depend on the derivative of the angle of t ~ i s t , ~ ’  according to the 
equation 

u, = - O(Y, z M , x  (1 1) 

where o is the warping function, which depends on the cross-sectional shape. A good approxima- 
tion to the warping function of a general rectangular cross-section is9 

O ( Y ,  2) = YZL-W, + Q ( Z 2  - Y 2 ) 1  (12) 

In the finite element analysis the torque is usually constant within an element. Therefore, 
expression (12) contains two additional parameters for each element to be solved. These para- 
meters o1 and o2 can be eliminated by static condensation prior to the assemblage of the element 
matrices into the global structural matrix. 

3.2. Beam elements 

The only non-vanishing components of the Green-Lagrange strain tensor are 

E x  = u , ~  + $ ( t i , ,  + v: + w , ’ ~ )  2 

E x ,  = +(u,y + u,x + u,xu,y + v , x v , y  + w,xw,, )  

E x Z = ~ ( U , z + W , x + ~ , x ~ , z + V , x V , Z + W , x W , 2 )  

(13) 

In the finite element method the displacements u,, v,, w,and the rotations 4, ll/, I3 are iterpolated 
by the formulas 

4 = N u q u ,  4 = N,q, 

u c  = N,q,, $ = N,q, (14) 

w, = N,q,, 4 = M e  

where the row matrices Nu, etc., contain the shape functions and the column vectors qu, etc., the 
nodal point displacement parameters. By using the kinematical assumptions (10) and (1 1 )  the 
expressions for the strain components 

E ,  = EAU,,  o,, w,, 4, +, e) 
Y x y  = 2 E x y ( u c ,  v c r  wc, 4, *, 4 
Y x z  = 2Exz(u,, U,? Wcr A* ,Q 

( 1  5 )  

can be derived. The linear strain-displacement matrix B is obtained from the relationship 

8~ = B8q (1 6 )  
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between the virtual nodal point displacements and the virtual strains 8~ = [E,  yxy y x z ] .  The 
strain-displacement matrix is shown in the appendix. 

Using the strain-displacement matrix B and the constitutive matrix C, the matrix K1 in 
equation (2) can be written in the form 

K1 = BTCBdV (17) 

and the internal force vector is correspondingly 

'R = lv BT(lS)dV (18) 

where 'S is the vector of 2nd Piola-Kirchhoff stresses 'S = [ 'S ,  ISxy 'SxZIT. 
The integrations along the beam axis have to be done by the one-point Gaussian quadrature 

when linear shape functions for each displacement quantity are used. The one-point rule 
integrates exactly the bending stiffness part and makes the shear stiffness matrix singular. Thus, 
the element does not lock when the beam becomes slender. It might be worth mentioning, that the 
one-point integration of the linear stiffness yields the same matrix as is obtained by using an 
additional hierarchical parabolic mode for deflection and condensing the corresponding degree of 
freedom out. Using the approach by MacNea14' a two-noded Timoshenko beam element which 
has the convergence properties of the cubic Euler-Bernoulli element can be obtained by using the 
one-point quadrature and altering the elastic coefficients for transverse shear to include a term 
called the residual bending flexibility. Also, shear-constraints can be used in order to improve the 
performance of the element, see References 17 and 18. 

Table I. Accuracy of the numerically evaluated torsional rigidity for a rectangular 
cross-section when approximate warping function (12) is used 

Quadrature hlb I,/hb3 I Y ' / h b 3  Error (%) 

Gauss 

Simps o n 

Gauss 

Simpson 

Gauss 

Simpson 

Gauss 

Simpson 

2 x 2  1 
3 x 3  
4 x 4  
5 x 5  
7 x 7  
2 x 2  4 
3 x 3  
4 x 4  
5 x 5  
7 x 7  
2 x 2  10 
3 x 3  
5 x 5  
7 x 7  
2 x 2  100 
3-x 2 
3 x 3  
5 x 3  

0.091 449 
0.139012 
0.1 4074 1 
0.147200 
0.142078 
0.248022 
0.275483 
0.288537 
0.306217 
0.292496 
0.313838 
0.3 17249 
0.330447 
0.324860 
0-333122 
0.333145 
0.333481 
0.333314 

0.140577 34.95 
1.11 
0.12* 
4.7 1 
1.07 

0.2808 13 11.68 
1.90* 
2.75 
9.05 
4-16 

1.58 
5.80 
4.0 1 

0.58 
0.68 
0.63 

0.312325 0.48* 

0.331233 0-57* 

*Smallest error 
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Also, higher-order interpolation can be used yielding a subparametric element. However, in 
geometrically and materially non-linear analysis a computationally effective but simple beam 
element can be obtained by using a linear interpolation for ge~metry.~’ 

Over the cross-sectional area either Gauss or Simpson integration rules can be used. In the 
elastic case and when the cross-section is narrow (h/b 3 10) the 2 x 2  Gaussian or the 3 x 3  
Simpson rule is sufficient, although these rules underintegrate the torsional constant term 

4 = lA “Y - %)’ + (2  + @ , Y ) ’ l  d’4 (19) 

when the approximate warping function (12) is used. However, the underintegrated torsional 
constant is closer to the exact value than the one obtained by using the 4 x 4 Gaussian rule, which 
integrates expression (19) exactly. When the cross-section is a square the 4 x 4 Gaussian rule gives 
the best accuracy, see Table I. 

The virtual work expression for the internal forces can be formed by using the stress resultants 
and the corresponding generalized strain quantities 

+ ’ M , ~ ( ’ K ~ )  + ’MY6(%,) + 2 M , S ( z ~ , ) ]  dx 
where the stress resultants N ,  Q y ,  Q,, M,, M y  and M ,  are defined by equations 

N = [A  &dA, Mx = lA ( L Y  - Sxyz)dA 

Q, = S,dA, M y  = 
l A  

The generalized strain measures, the elongation E, at the centroid of the cross-section, the shear 
strains y x y ,  y,,, the twist per unit length K ,  and the bending curvatures xy and K ,  are defined by the 
equations42* 

Ec = %,x + m , x  + w:,x + UP/44?J 
Y x y  = %,X - 8 + wc, ,4  + a+* 
Y x z  = we,, + * - % x 4  + 390 
K x  = 4 , x  + W , x e  - W , x )  

KY = $,x - % x 4 , x  + +(4& + 4 , A  
Kz = - 0.1 + WCJ4,X + % W , x  + 4 , A )  

In this case the term ufx has been neglected in the expression of axial strain. 

*In Reference 42 there is a misprint and the term 1/2 is missing in front of the. non-linear terms of the twist curvature K ~ .  
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The vectors of stress resultants and generalized strains denoted by Z and e, respectively, are 

= CN Q, Q, M x  M y  M,IT 

e = C E C  Y x y  Yxz  xx K ,  K,IT (23) 

The constitutive law in the elastic case can be written in an incremental form 

AX = CAe (24) 

where 
C = diag[EA GAS, G A ,  GI ,  EI, E I , ]  

in which EA is the axial rigidity, GAS,  and GAS, are the shear stiffnesses in the y- and z-directions, 
respectively, GI,  is the torsional rigidity and EI,, EI ,  are the bending stiffnesses about the y- and 
z-axes, respectively. 

The internal force vector is calculated using the formula 

'R = f: (BT)('Z)dx 

The geometric stiffness matrix has a little simpler form than in the fully numerically integrated 
element, for details see Reference 42. The internal force vector, the geometric stiffness and the 
linear stiffness matrix 

K, = {: BTCBdx 

can now be integrated with respect to the axial co-ordinate only. This approach results in a simple 
way to formulate the finite element equations for a three-dimensional (3-D) beam. It is computa- 
tionally much more economical than the corresponding fully numerically integrated element. 
However, non-linear material behaviour cannot be modelled as accurately as in the layered 
model. For example, in the elastoplastic case the yield surface formulated using the stress 
resultants is quite complicated for general cross-sectional shapes. Therefore, simple approximate 
yield surfaces, expressed in terms of stress resultants, have usually been adopted in the analyses. 
However, the results of this kind of computation have to be interpreted with great care; see, for 
instance, the examples in Reference 40. 

4. THIN-WALLED BEAMS 

4.1. Kinematical relations of the warping displacement 

The geometrically linear kinematical behaviour of a beam with a thin-walled open cross- 
section can be described based on the assumption that the projection of the cross-section on 
a plane normal to the centroidal axis does not distort during deformation, i.e. the cross-section is 
rigid in its projection plane. According to this assumption, the in-plane displacements of an 
arbitrary point of the cross-section undergoing a small twisting rotation can be expressed by three 
parameters: the two displacement components v,  w and the angle of twist C$ about the longitudinal 
beam axis, i.e. 

u = v, - zr#J 

w = wc + yC$ (28) 
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Because of material non-linearity, the shear centre location is not known in advance. Therefore, 
the displacement quantities are referred to an arbitrary point of the cross-section. 

The axial displacement can be expressed in the form3', 40 

u = u , - y y e + z J / - u s 9 - u r + , ,  (29) 
where u, is an arbitrary function depending only on the x-co-ordinate, w, is the warping function 
at the middle line of the cross-section of the beam and u, is the warping function due to the 
slab action 

u,(s) = h,ds, o,(s, r) = hr(s)r (30) l: 
where 

- h, = R - i  = zcosa - ysina 

h, = R - 3  = zsina + ycosa (31) 
The unit normal vectors k, i and the radius vector R are (see Figure 1) 

3 = 6,cosa + 6,sina 

i = - Cysina + &,cosa (32) 
R = $,, + 26, 

where &y and GZ are the unit vectors in the directions of y- and z-axes. 

M m  
The total torque is a combination of the pure St. Venant torque M d  and of the warping torque 

M x  = Mxf + M ,  

where the shear constant Is and the warping constant I, are defined by the expressions 

X 

line 

Figure 1. Cross-section of a thin-walled beam 

Y 

(34) 
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The bimoment B is defined by the formula 

B = - EI,$, ,  (35) 

4.2. Thin-walled beam element 

For a straight beam element with a thin-walled open cross-section, the displacement expres- 
sions are almost identical to those used for a beam with a solid cross-section. The only difference 
is that the warping displacement is divided into two parts: 

u = u, - (6 - 449)Y + (9  + b # a z  - w 4 , x  - WS9, (36) 

The axial variation of warping is independently interpolated within an element by the shape 
functions 

9 = Nsq, (37) 

A thin-walled beam element can also be formulated using the stress resultants and the 
corresponding generalized strain quantities. The internal virtual work expression for a thin- 
walled beam is 

r f L  

f 2 M , 6 ( 2 ~ , )  + 2 M , 6 ( 2 ~ , )  + 'BS('K,) + 2M,6(2y , ) ]  dx (38) 

The generalized strain measures ec ,  y x y ,  yxz,  K,, K ,  and K ,  are defined in equations (22) and by the 
additional relations 

Denoting the vector of stress resultants by E and the vector of generalized strains by e, 

the elastic constitutive matrix can be written in the form of equation (24); see also Reference 76. 
An element based on Vlasov's classical theory of torsion concerning thin-walled  member^,'^ 

can be simply constructed from the presented elements by using a penalty method. In an element, 
formulated by using the stress resultants and generalized strain quantities, the Vlasov constraint 

can be taken into account by using a term aGI, instead of GI, in the constitutive matrix C, where 
a is a suitably chosen penalty parameter (u $. 1). In the other elements, the constraint (41) can be 
included by adding a term 

to the variational equations. 

5. TRANSFORMATION BETWEEN LOCAL AND GLOBAL CO-ORDINATE SYSTEMS 

The orientation of a beam in the global X, Y, 2 space is completely defined if the beam axis and 
two directions of the cross-section perpendicular to the beam axis are known. The orthonormal 
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base vectors of the global co-ordinate system in the X ,  Y and 2 directions are denoted by el, c2, c, and the orthonormal base vectors of the initial local co-ordinate system x, y, z by 
g1, t2, t 3 .  

The initial orientation matrix of a beam can now be defined by 

Qi = roci (43) 

YOij = COS(&, G j )  (44) 

where the elements of the matrix To are the direction cosines 

At some equilibrium configuration C1, reached after n + 1 steps, the rotation matrix Y,+ can 
be obtained from the rotation matrix at the previous equilibrium configuration C1 (at step n)  by 
the formula 

Y,+, = AYY, (45) 

where the incremental rotation matrix AY is calculated from the incremental displacements 
between C1 and Cz. 

The element stiffness matrix and the internal force vector, evaluated in the local co-ordinate 
system, are transformed to the global co-ordinate system in a well-known manner, see References 
7 and 10. 

Connections of the thin-walled beam elements in a general 3-D assemblage present difficulties. 
At the present stage, in the computer code developed, free or full warping restraint can be 
modelled. In practice, therc are many different ways to connect thin-walled members, and the 
accurate modelling of connections in each case needs further study. A universal solution for 
completely general cross-section shapes may not be possible, as pointed out in References 45 
and 46. 

6. CONSTITUTIVE MODELS 

6. I. Layered approach 

Incremental constitutive equations suitable for computational purposes can be based on 
a rate-type plasticity theory by Hill.33 The strain rate 9 is decomposed into elastic, plastic and 
thermal parts 

9 = g e  + 9 p  + @ (46) 

9 0  = @&% (47) 

The J2-flow theory is used to evaluate the plastic strain rate and the thermal strain rate is 

where E is the coefficient of thermal expansion which is assumed to be constant and 9 is the unit 
tensor. 

The elastic part 23e is related to the co-rotational Zaremba-Jaumann rate of Cauchy stress 
tensor F by a linear law 

(48) 
* 
y = Ve :9 "  = Ve:(9 - P), 

in which V" is the elastic constitutive tensor. In the J2-flow theory, the yield function is 

f =  J 3 ~ 2  - o,(k, 0) (49) 
where the yield stress oy depends on a hardening parameter k and temperature 8 and J 2  is the 
second invariant of the deviatoric Cauchy stress tensor. The plastic part of the strain rate is 
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obtained from a plastic potential by using a normality law and a consistency condition of plastic 

For rate-dependent material behaviour the strain rate is decomposed into elastic and viscop- 
flow.33.34 

lastic parts. Perzyna6' has given the following expression for the viscoplastic part 

where f =  &, y is the viscosity coefficient, oy the static yield limit and p is a material 
parameter. The notation ( x }  has the meaning 

0 i fx ,<O 
x i f x > O  (x> = 

6.2. Yield surfaces expressed in terms of stress resultants 

Denoting the vector of stress resultants by E, the yield function can be expressed in the form 

f (El = 0 (52) 
For a 3-D beam with an arbitrary cross-sectional shape the function f would be very complex. 
Yang et ~ 1 . ~ ~  have discussed the form of the yield surface for a doubly symmetric I-section under 
five active forces N, M,, M y ,  M, and B. However, in analysing the response under strong 
transient loadings, the effect of shear forces becomes important and cannot be neglected in the 
yield function expression. Simo et ~ 1 . ~ ~  have proposed a stress resultant yield function for a plane 
Timoshenko beam containing the shear force. In this study two simple approximate yield 
functions have been used. The first, a hypersphere, has the form (z),' = i 

i =  1 

where n, is the number of stress resultants. The second one, a hypercube yield surface, is 

(53) 

In equations (53) and (54), Zpi is the fully plastic value of the corresponding stress resultant. 

7. NUMERICAL EXAMPLES 

The discretized equilibrium equations are solved by using a variant of the arc-length continuation 
procedure6', 16, 63, 29 which is described in more detail in References 40 and 39. Integration of the 
equations of motion has been done by using the central difference method or by the midpoint 
version of the trapezoidal 51 

7.1. Large-defection analysis of a circular bend 

The response of a cantilever 45" bend subjected to a concentrated end load is calculated. The 
bend is modelled with eight straight linear elements and the total force, 7-2EI/R2, is divided into 
5, 10, 20 or 60 equal load increments. In the case of five equal load increments, 3, 5, 6, 5 and 
4 corrector iterations are needed in order to get a converged solution within relative tolerance 
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of 
linearization is studied. The results of computations when the approximation 

with respect to the weighted displacement  riter ria.^' Also the effect of using inconsistent 

E Z I + G ?  

is used for the rotation matrix (8) are shown in Table 11. In this particular example the errors due 
to the inconsistency are not so striking than in the examples presented in Reference 42. The 

Table 11. Comparison of tip deflections of a circular bend 

NEL* Shape function NINC’ - u / R  - u / R  w/R 

E % I + Q  8 Linear 10 0-135 0-231 0.533 
E % I + S l  8 Linear 20 0.137 0.230 0.533 
E % : r + Q  8 Linear 60 0137 0229 0.532 
B % I + Q +in’ 8 Linear 5 0136 0238 0537 
I % I + n + i n 2  8 Linear 10 0.136 0.238 0.535 
S % : r + Q +  in’ 8 Linear 20 0.136 0.237 0,535 
B % I + n + in’ 8 Linear 60 0.136 0.237 0.535 
Bathe and Bolourchi’ 8 Cubic 60 0.134 0.235 0.534 
Simo and VU-QUOC’~ 8 Linear 3 0-135 0-235 0.534 
Cardona and GeradinL4 8 Linear 6 0.138 0.237 0535 
Dvorkin et ~ 1 . ’ ~  5 Parabolic 10 0.136 0.235 0.533 
Surana and S ~ r e r n ’ ~  8 Parabolic 7 0.133 0.230 0.530 
Crisfield” 8 Cubic 3 0.137 0.239 0.537 
Sandhu et ~ 1 . ~ ’  8 Linear 3 0.134 0.234 0.533 

* Number of elements 
Number of load steps 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 
non-dimensional tip deflection 

Figure 2. Large-deflection analysis of a 45“ circular bend 
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pure-load-controlled Newton method is used to solve the non-linear equations of equilibrium. 
The load-tip-deflection curves are shown in Figure 2, when 20 equal load increments are used. In 
the same figure also the results from a calculation with eight beam-column elements by Virtanen 
and M i k k ~ l a , ~ ~  are presented. They agree well with the present results. The calculated tip 
deflections are compared with those reported by Bathe and Bol~urchi ,~  Simo and VU-QUOC,’~ 
Dvorkin et u Z . , ’ ~  Surana and S ~ r e m , ~ ’  Crisfield” and Sandhu et in Table 11. The differences 
between various algorithms are small and it may be concluded that this particular example is not 
a serious test case for procedures handling large rotation effects. 

7.2. Instability analysis of a framed dome 

The static response of a framed dome shown in Figure 3 is analysed. Two different loading 
conditions are considered. The first loading system consists of concentrated vertical loads of 
equal magnitude placed at the crown and at the end points of the horizontal members, while the 
second loading case consists of a single concentrated load at the crown point. This dome has been 
analysed also by Chu and Rampetsreiter,’* R e m ~ e t h ~ ~  and Shi and A t l ~ r i . ~ ~  The dome is 
modelled using 90 linear Timoshenko beam elements, i.e. five elements for each member. No 
symmetry conditions are used. 

In the first loading case bifurcation occurs at the load level of 18-2 MN, which is quite close to 
the value (18-0 MN) given by Chu and Rampersreiter. The buckling mode is a rotational mode 
about the z-axis, see Figure 4. Shi and Atluri have possibly used some symmetry conditions or 
their finite element mesh is too crude to describe the lowest buckling mode. In their calculations 
only one element per member has been used, and so the vertical displacement of the crown point 
starts to increase rapidly after reaching the load value of 55 MN.* The resulting load-displace- 
ment curve from the present calculation is shown in Figure 4. 

In the second loading case a branching point with the rotational buckling mode is noticed at 
the load value of 78.6 MN. Remseth has also studied this loading case, but his results differ 
significantly from the present ones. The results of the present calculations are quite similar to the 

Crass section 

Figure 3. Framed dome 

*In non-linear cases, especially where stability problems are apparent, discretization of the framed structures by using 
only one element per each member can lead to completely erroneous results. Thus, this kind of demonstration of the 
‘goodness’ of the element in question should not be used. If the element in question performs well in a particular 
‘one-clement test’, it only indicates that the element is specially designed to that particular problem.” 
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Figure 4. Framed dome, vertical displacement of the apex vs. load and the rotational buckling mode 
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Figure 5. Load-displacement curve of a framed dome when a concentrated load alone acts at the crown point 

results obtained by Shi and Atluri. However, they have not noticed the bifurcation point. The 
load-deflection curve from the unstable symmetric deformation mode is drawn with dashed line 
in Figure 5. The results from the computation of the symmetric deformation mode are in good 
agreement with the results by Shi and Atluri. 

7.3. Elastoplastic lateral buckling analysis of simply supported I-beams 

Kitipornchai and Trahair36 have made an experimental investigation of the inelastic 
flexural-torsional buckling of rolled steel I-beams. Their tests were carried out on full-scale 
simply supported 261 x 151 UB 43 beams with central concentrated loads applied with a gravity 
load simulator. The 261 x 151 UB 43 section has a low width to thickness ratio of the flanges and 
so the beam behaviour inhibits local buckling and allows lateral buckling to predominate. The 
end cross-sections of each beam were free to rotate about the major and minor axes and to warp. 
They tested six beams, four as-rolled and two annealed beams. The effect of residual stresses was 
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not found to be significant which was also confirmed by the theoretical predictions made by 
Kitipornchai and Trahair3' and by the numerical computations in the present study. The reason 
is in high tensile residual stresses which inhibit the spread of plasticity in the compression flange; 
see Figure 8. The geometrical imperfections were found to be significant in decreasing the 
load-carrying capacity. 

The numerically analysed test beams are chosen to be those which buckled in the inelastic 
range, i.e. beams S2-10, S3-12 and S4-8 (S = simply supported). The imperfections are included in 
the loading conditions by placing the point load at a small distance away from the middle plane of 
the beam. The cross-section of the beam 261 x 151 UB 43, the finite element discretizations used 
and the residual stress patterns are shown in Figure 6. Calculated loaddeflection curves are 
shown in Figure 7. 

Figure 6. Finite element meshes used and the cross-section 261 x 151 UB 43 data: h = 248.7 mm, b = 151.5 mm, 
tw = 7.67 mm, tc = 12.3 mm and d = 219 mm. Residual stress distributions (quartic polynomials), are the same as by 
Kitipornchai and Trahair3s (Figure 7, pp. 1340). E = 203 GPa, Et = E/35 (except for a computation of 54-8 beam with 

Et = 0), oY = 320 MPa, v = 0.3 

0 
I D -  N 

0 
0 -  N 

0 

5 s  
L O  - 

- 

\ -  

sz 

0 
-6 0 6 10 16 20 26 

w / m m  

Figure 7. Lateral buckling analysis of simply supported beams. Dashed lines indicate calculations without residual 
stresses and the dotted line (beam 54-8) is the case with no strain hardening (E, = 0, in all other calculations E,  = E/35) 
Calculations with residual stresses are drawn with solid lines. Black markers which are not connected correspond to the 

experimental measurements. Imperfections in the FE calculations are: S4-8, e = 4 mm, S2-10 and S3-12, e = 2 mm 
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7.4. Elastoplastic lateral buckling analysis of continuous beams 

Poowannachaikul and Trahair6' have made an experimental investigation of the elastic and 
inelastic lateral buckling on unbraced two-span steel I-beams with concentrated loads at mid- 
spans. In this study four of the eight beam tests are simulated, i.e. the beams C2-8-12, C3-8-12A, 
C4-8-12A and C4-8-12B. These beams have the same geometry of the cross-section, material 
characteristics and residual stress distribution as the beams analysed in the previous section. 

Theoretical buckling predictions for this case have been presented by Yoshida et aL8' and 
Trahair.81 The experimentally observed buckling loads are much lower, for some beams over 
20% lower, than the theoretical buckling predictions. As mentioned by Trahair*' no satisfactory 
explanation has been found for those discrepancies. 

In the present study a large-deflection elastoplastic finite element analysis of these two-span 
continuous beams has been made. The finite element mesh consists of 24 elements including two 

without residual stresses with residual stresses 

compression flange 

tension flange 

Figure 8. Plastic area of the cross-section at the integration point nearest the symmetry plane, beam S4-8 (e = 4 mm) at 
load level 240 kN 

Table 111. Simply supported I-beam: comparison of limit loads 

S3-12 S3-12-R S2-10 S2-10-R S4-8 

Experimental 145.1 1402 185.1 194.0 235.0 

FEM e = 0.25 mm 147.9 281.3 
FEM e = 0.5 mm 144.4 277.8 
FEM e = 1 mm 139.6 271.4 
FEM e = 2mm 134.1 134.9 184.5 185.4 260.4 
FEM e = 4mm 126.1 244.1 
FEM e = 8 mm 114.7 222.3 

FEMe=4mm,E,=O 241-8 

Notes: e means the eccentricity of the load position. All the tabulated values are in 
kN. R in the beam identification indicates the annealed beams, i.e. there were no 
residual stresses in the computations 
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I I 
Figure 9. Continuous beam, geometry and loading 

Table 1V. Continuous beam: summary of loadings 

C2-8-12 C3-8-12 C4-8-12A C4-8-12B 

p ,  P 0 P P 
p2 0 P P 215 P 

Table V. Continuous beam: comparison of limit loads 

Present FEM analysis 

Beam Experimental 0: = 0.1" a = 0.5" a = 1" z = 2" LY = 4" 

c2-8-12 259.9 323.2 304.2 278.5 238.1 
C3-8-12 173.6 179-9 166.4 153.0 
C4-8-12A 197.6 204.6 182.7 168.8 153.6 
C4- 8- 12B 293.3 336.7 312.2 278.2 

Notes: CL means the imperfection in the load direction. All the tabulated values are in kN 

Table VI. Continuous beam: computed elastic 
bifurcation loads 

C2-8-12 C3-8-12 C4-8-12A C4-8-12B 

542.2 221.1 217.9 455.4 

Note: All the tabulated values are in kN 

short elements (length zz 100 mm) around points, A, B and at the midsupport. Computations 
have been performed with different imperfections in the loading conditions shown in Figure 9 and 
the calculated maximum loads are tabulated in Table 111. In Figure 10 the lateral deflections of 
the midspans vs. load are shown. It can be seen from the imperfection sensitivity  diagram^,^' that 
for beams 54-8 and C2-8-12 the bifurcation load (zero imperfection) is much higher than the 
maximum load obtained in the experiments, for imperfection sensitivity and interaction diagrams 
see Reference 40. 
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Figure 10. Lateral deflections at the midpoints of the spans. Circular shaded markers connected with dotted line are the 
experimental results. Solid curves indicate the calculated results with different values of imperfection. Blanked circles show 
the load level at which yield is noticed first. Imperfections in the FE computations are: C2-8-12 (P1 = P, P2 = 0) a = 1,2, 
4'; C3-8-12A ( P ,  = 0, P z  = P) and C4-8-12B (P1 = P, P2 = 2/5P) a = 0.5,1,2", C4-8-12A ( P ,  = P, = P )  E = 0.1,0.5, 1". 

Deflections at point A are positive and at B negative; see Figure 9 

7.5. Thermo-elustc~plplastic anulysis .f steel beams 

Applications of thermally loaded steel frames are chosen mainly to permit comparisons with 
experimental results. Due to the lack of test results for 3-D cases, only plane frames are analysed. 
Two different models for the temperature dependence of material parameters are considered. The 
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first model is based on the European recommendations for the fire safety of steel  structure^.^' For 
this model the temperature dependence of Young’s modulus E and the yield stress oy are shown in 
Figure 12. Poisson’s ratio v and the tangent modulus E,  are assumed to be independent of 
temperature. In the second model, a trilinear stress-strain curve, similar to the material model 
adopted by Rubert and Schaumann,68 is assumed. For that model the variation of Young’s 
modulus, the lower yield stress op and the upper yield stress oy are also shown in Figure 12. The 
uniaxial stress-strain relationships of both models are shown in Figure 1 1 .  

In the calculations of the present study a value of 12 x 10-60C-’ for the coefficient of thermal 
expansion a is used. Calculations with a more accurate description of the thermal expansion 
coefficient show a negligible effect in comparison with the results obtained by using a constant 
value for CI. The coefficient a varies from the value of 1 . 2 ~  to 1 . 7 ~  10-50C-1 within the 
temperature of 20-600°C according to Reference 25. 

The temperature increment for the next step is adjusted by requiring the estimated norm of the 
displacement increment to be constant. Defining 

U 

E 

u 

f I - 0 y  I I 

EfTi I ; 1% 

E 

Figure 11. Uniaxial stress-strain relationship which is used in accordance with (a) ECCS model (model 1) and (b) the 
model developed by Rubert and Schaumann (model 2) 

0 so0 1000 0 so0 1000 
T In *C T In *C 

Figure 12. Modulus of elasticity and yield stress as a function of temperature 
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where A# is the temperature increment, the requirement for the next step is 

un+l = v , A B , + ~  + ia,(Ae,+1)2 = u, 

which yields 

If a, = 0, then the equality A&+ = A#, holds. However, in numerical computations the temper- 
ature increment for the next step is determined from the approximate expression 

Rubert and Schaumann have made experimental and computational analyses of simply 
supported IPE-80 beams with a concentrated load at the midspan. Four different load mag- 
nitudes are used, P = 24, 23, 16 and 6 kN for beams WK1-4. The corresponding utilization 
factors are P/P, = 0.85, 0.70, 0.50, 0.20, respectively. The present results of quasi-static calcu- 
lations are compared with the experimental results, where the lowest value of the heating rate 
6 = 2.67 K/min is used. According to the experimental results the effect of heating rate, which 
varied in the range 2-67-32 K/min in the experiments, is not significant to the behaviour of the 
beams WK1 and WK2. For the beam WK4, which has the lowest load, the effect of heating rate 
results in 10 per cent difference in the critical temperature. One-half of the beam is modelled with 
five linear elements using two short elements near the symmetry line. The initial temperature 
increment used is 20°C and it was automatically reduced during the heating process according to 
equation (55). 

The results of the computations where the material parameters of the second model are used 
agree very well with the experimental results in this particular example. Especially, the influence 
of the slow decrease interval of the lower yield stress between 300 and 500°C is clearly seen in the 
deflection-temperature curves for beams WK1 and WK2, see Figure 13. This slow increase 
interval of the displacement has also been noticed in the calculations made by Rubert and 
Schaumann but it is not visible in the results obtained by Bock and Werner~son '~ in their 
calculations using the ADINA program. More examples are presented in References 37 and 40. 

7.6. Dynamic plastic bifurcation of a pin-ended beam 

The behaviour of a pin-ended beam subjected to a uniform transverse loading applied as 
a short pulse is studied. The deflection history depends, in an extremely sensitive manner, on the 
interplay between momentum transfer, geometry changes and energy dissipation in plastic flow as 
pointed out by Symonds et d . * O  Symonds and Yu79 give results of computations using ten 
different FE codes. An agreement in the prediction of the first peak deflection by all the different 
codes is obtained but the permanent displacements differ significantly. The unexpected result of 
those computations was the negative permanent displacement, implying that the final rest 
displacement is in the opposite direction to that of the load. 

In the present analysis one-half of the beam is modelled by ten linear Timoshenko beam 
elements. The central difference scheme with a diagonal mass matrix and the time step of 1.5 ps 
gives a permanent deflection in the direction of the load. Also the midpoint rule with the time step 
of 25 ,us and a consistent mass matrix yields qualitatively the same result, but the time vs. 
midpoint deflection curve starts to differ significantly after 1 ms. When the midpoint rule with 
a diagonal mass matrix and the time steps of 25 and 35 p s  are used, negative permanent 
deflections occur. These four completely different deflection histories are shown in Figure 14. 
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Figure 13. Deflections of the midspan as a function of temperature for a simply supported beam 
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Figure 14. Response history of a pin-ended beam to pulse loading. Solid curve: the central difference method (CD), 
At = 1.5 p;  dashed line: the midpoint rule (MPR), At = 25 p; dotted line: MPR, At = 35 p s  and all these three 
computations with a diagonal mass matrix. The dash-dotted line indicates computation with the trapezoidal rule using 

a consistent mass matrix and the time step of 25 ps  

The determinant of the effective stiffness matrix is plotted in Figure 15. At the time of about 
0.5 ms, the determinant is zero, indicating a non-uniqueness in the solution of the incremental 
equations of motion. That time period corresponds to the phase of plastic extension of the beam. 
Therefore, small deviations in the elongation of the beam axis can cause significantly different 
compressive stresses in the elastic recovery phase, which can in certain circumstances lead to 
a snap-through instability. 

7.7. Dynamic elastoplastic hehauiour of a portal frame 

A portal frame, clamped at its supports, with a mass fixed in the midspan of the horizontal 
beam, is subjected to an impact load perpendicular to the plane of the frame. Experimental results 
have been reported by Me~smer:~ and Messmer and Sayir.” The loading time was varied in the 
range of 40-60 ps,  and the measured shape of the load pulse is almost a triangle (Figure 4 in 
Reference 50). However, the shape and the loading time variations (40-60 ,us) have a little 
influence on the respose of the frame. In the present calculations a rectangular pulse, shown in 
Figure 16 (load duration of 60 p s  and impulse magnitude of 0.72 Ns), is used. One-half of the 
frame is modelled by using 20 equal elements. In Figure 16 the lateral displacements of the 
impacted point are shown when the linear Timoshenko beam element is used in the computation. 
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layered model computations with the 7 x 7 Gaussian quadrature. Dashed and dotted lines indicate computations where 
the spherical or the cubic yield surface is used. The permanent experimental deflection was 20.7 mm. Notations; E P  

elastoplastic, V P  viscoplastic model (57), VYS: viscoplastic model (56) 
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Both elastoplastic and viscoplastic material models are used in the analyses. When the layered 
models are used a 7 x 7 Gaussian quadrature is adopted. Two versions of a viscoplastic material 
model by Perzyna are used. In the first one the viscoplastic part of the strain rate has the form 

and in the second model 

where the parameters used are y = 40s-1 and p = 5. In equations (56) and (57) the notations 
f =  ae = & are used. Perzyna has determined the material constants B, from the experiments 
made by Clark and Duwez.60 They are given in Table VII. 

It can be concluded that in this particular model the stress resultant representation of the yield 
surface gives results which are in good agreement with the computations by layered models. The 

Table VII Portal frame: material parameters B,  in equation (56) 

c1 1 2 3 4 5 

B, (I/s) 337.53 - 1470’56 3271.71 - 3339.98 128006 

0 60 100 160 200 260 300 360 
Time / ps 

Figure 17. Bending moments in the horizontal beam: (a) 2 5  mm (b) 60 mm from the midspan. The meanings of the 
different line types are the same as in Figure 16 



1214 

2 

0 

-2 

-4 

-6 

-8 

R. KOUHIA AND M. TUOMALA 

I 

0 60 100 160 200 260 300 360 
Time / ps 

Figure 18. Twisting moment in the vertical beam at the point placed 20 mm from the clampings. The meanings of the 
different line types are the same as in Figure 16 

permanent deflections of the mass point fit quite well to the experimental  measurement^,^^ for the 
elastoplastic material models. The viscoplastic model (57) gives considerably too small deflec- 
tions, but the amplitude of the elastic vibration phase is in a satisfactory agreement with the 
experimental result (about 21 mm), while in the case of elastoplastic models the amplitudes are 
too small (about 12 mm). 

In the computation with the yield surface (54) the first plastic hinge appears at the impacted 
point after 29 p s  and it disappears at t = 120 p s  for a while. The bending moment reaches the fully 
plastic moment again at t = 160 p s  for a duration time of 60 ps .  There are also plastic defor- 
mations in the horizontal beam between the struck and corner points in the distance of 50-80 mm 
from the struck point, see Figure 17. This is also confirmed in the experiments by M e ~ s m e r . ~ ~  At 
t = 420 ,us the plastic hinges in bending appear at the clamped ends for a time period of 90 p s  and 
reappear again at t = 840 ps. The frame swings out elastically after 3.59 ms when the plastic 
hinges disappear at the clampings. There are also small periods of plastic deformation at 
t = 5.6 ms and within the period from 6-4 to 6-8 ms. The computed bending moment histories and 
the twisting moment history, shown in Figures 17 and 18 agree with Messmer’s theoretical 
calculations. 

8. DISCUSSION AND CONCLUSIONS 

Numerical methods for analysing the non-linear behaviour of space frames with either solid or 
thin-walled open non-deformable cross-sections have been developed. An updated Lagrangian 
approach is used in formulating the non-linear equilibrium equations. An elastoplastic, a visco- 
plastic and a temperature-dependent elastoplastic material model is considered. The stiffness 
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matrices and internal force vectors are derived for elements based on the Timoshenko beam 
theory. Particularly, in the plastic range a linear Timoshenko beam element has proved to be 
efficient and reliable. In the case of beams with thin-walled open cross-section a theory which 
takes into account the average warping shear stresses has been developed. The conventional 
theory of torsion by Vlasov can be obtained from the presented theory by using a simple 
constraint. The penalty finite element method is used in the constrained version of the element. 

Special attention is paid to the determination of singular points and branching onto the 
secondary equilibrium path. Reliability is the primary concern in developing solution procedures 
for non-linear equilibrium equations. An orthogonal trajectory method, proposed by Fried, has 
been used in this study. It has proved to be a robust continuation algorithm. 

Further developments should be focused on the modelling of the behaviour of joints, especially 
when a thin-walled beam element with the warping degree of freedom is used. Also a curved 
isoparametric formulation is a natural extension to the present method. However, the linear 
isoparametric element of the present study could, in practice, be accurate enough, especially in 
elastoplastic cases if an adaptive mesh refinement strategy is used.82 The accuracy of the 
presented theory, which takes the average shear strains due to torsion into account, should be 
investigated in more detail, particularly in the plastic range. 

The description of plastic material behaviour by means of yield functions expressed in terms of 
stress resultants is fascinating due to it’s simplicity and computational economy. However, the 
use of the yield functions described in this study can result in considerably erroneous solutions, 
especially in the case of stability problems. One possible remedy could be the adoption of 
a Ramberg and Osgood type relationship between the generalized strains and the stress result- 
ants. Also, the use of multisurface plasticity models5 5* 7 5  should be investigated. 

APPENDIX I: BEAM WITH SOLID CROSS-SECTION 

B-matrix for a fully numerically integrated element 

where the abbreviations a i ,  bi and ci are 
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Initial stress matrix 

in which 
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The underlined terms correspond to the second-order terms in the rotation matrix (8). For 
a discussion of the significance of these terms, see Reference 42 and the numerical examples 
therein. 

B-matrix for a stress-resultant-based element 

where 

1 
a5 = f*,,, a6 = 24 
a7 = t d , x ,  as = $0 

a9 = $* 
The initial stress matrix is presented in Reference 42. 

APPENDIX 11: THIN-WALLED BEAM 

B-matrix for a fully numerically integrated element 

1 1 u,x . . . a4N+ + . . . aloN8,, 
I%= blN,,, . - . b4N, + b5N,. . . . btON$,x r N  C I N ~ , ~  . . . c,N+ + C~N,,, . . . C ~ O N ~ , ~  

where the coefficients are presented in equation (58) except 
al = 1 + uc, - ye, + z$, - w, 8, x, a7 = zal 

a9 = -ya1, a10 = osa1 

b5 = - z - o, ,~.  

c5 = Y - a r , z  c10 = - %,z 

bl0 = - ws,y 

Compared to equation (59) the additional terms in the geometric stiffness matrix are 

KGLM = lSxwfNi.xN$,xdV I 
6’ 

I V  

KG198 = SxYoX, xN8, d V 

KG+8= - lSxzosN~,,Ng,xdV 

K G u 8 =  - ISXw,N~,.NS,.dV 
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The element stiffness matrix and the internal force vector are integrated using the one-point 
Gaussian quadrature in the x-axis direction when linear shape functions are used. Each part of 
a cross-section has to be integrated at least by the 2 x 2 Gaussian rule. For inelastic analysis 
higher-order rules have to be used. Through the thickness the use of two integration points is 
usually sufficient. 

APPENDIX 111: MASS MATRICES 

The consistent mass matrix is 

M = diagCMm M,, M,, Me, Me, MBB M d ,  
in which the submatrices Mii are 

M..  = pNFNjdV, j = u,u,w 

M4+ = 1 p ( y 2  + z2)N:N4dV 

& = Ivpz2N:N,dV 

” b 

1: 

Y 

Moo = py2N:NodV 

MSS = Iy pwfNrNSdV 

For a linear two-noded element the diagonal mass matrix can be written in the form 

where 

Md = - diag[l 1 1 I,/A I, /A + L2/12 [,/A + L2/12 I , /A] ,  (3 
in which I, = I, + I ,  (I, = J z2 dA, I, = J y 2  dA), I, = 0: dA, L is the length and m = pAL is the 
mass of an element. 
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