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Abstract 

Simwation is used intensively to validate the functional behaviour of elec
tronic systems. It may be used to make estimations on timing, performance 
and power issues. Simwation is also of great value during the prototyping and 
debugging of system descriptions in the specification phase. Both the increas
ing size and complexity of systems to be designed, the migration ofthe initia} 
specification to higher abstraction levels as wellas a reduction ofthe time to 
market put new demands on simwation tools. 

Simwation performance and the ability to simulate different types ofmodels 
are important parameters in developing a simulator that satisfies current 
and future needs. The key issue is to provide the flexibility to simulate a large 
variety of models without sacrificing simwation performance. Besides raw 
simwation performance, the design time itself should bereducedas much as 
possible. 

This thesis describes the concepts and techniques that can be used to develop 
an event driven simulator that 

• reduces the design cycle time to facilitate the prototyping and debugging 
of systems, and that allows to explore the design space; 

• allows to simulate multiple types of models homogeneously. 

All these concepts and techniques have been implemented in a tool called ES

CAPE. 

A reduction ofthe design cycle time has been achieved by embedding a grapb
ics editor and discrete event simulator into a single tool. This allows a tight 
integration ofthe various phases ofthe design cycle, which reduces the over
all design time significantly. The time consuming net list compilation phase 
is avoided by incrementally updating the simwation model with each modifi
cation of the underlying descriptions it is composed of. As opposed to other 
simwation tools, in which the compilation or elaboration of the simwation 
model consumes a large part ofthe designer's time, the simwation model can 
be re-simulated without perceivable delay to the designer. It is even possible 
to modify parts ofthe model during simulation, for instanee to investigate the 
influence of errors on various aspects of the model. 

vii 
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The simulator also features various facilities to support the designer in ana
lysing simulation results: the behaviour of the system may he animated or 
visualized during simulation. Furthermore, erroneous behaviour may he de
tected at a higher level of abstraction. This is achieved by hierarchically de fin
ing monitors that process sequences of events and replacing such sequences 
by events at a higher level of abstraction. These events do not influence the 
progress ofthe simulator itself. 

This thesis also describes the problems and that are associated with multi
model simulations as wellas some solutions. Since it is very hard to antici
pate which modelsneed to he supported in nearfuture, the simulation kemel 
should he flexible enough 

• to deal with multiple types of models at the same time; 

• to he able to support relatively easy a new type of simulation model. 

Performance and flexibility have been the dominating issues in the research 
of integration techniques that allow homogeneaus simulation of multiple 
types of models. 

The basic approach that has been takenhereis that different types ofsimula
tion algorithms and different types of simulators are mapped onto theevent 
driven paradigm: one event driven simulation kemel can handle different 
timing representations and different delay models. This kemel also orches
trates the execution of all modelsin a unified and proper way. Different types 
ofevents are used to accomplish this. To facilitate the integration ofextemal 
simulators, both a simulation interface and a model encapsulation technique 
have been developed that deal with event conversion, value conversion and 
synchronization between the various models. 

Finally, this thesis describes which techniques have been used to he able to 
customize the design and simulation tooi and how it may he interfaced with 
other design tools. As a result, it can easily he incorporated into an existing 
design flow. When used in master mode, the tooi may he used as a generic 
frontend, or as a simulation and visualization tooi of other design tools, when 
used in slave mode. A very successful example is the integration with an ar
chitectural synthesis system. 

The solutions presented in this thesis are substantiated by practical imple
mentations and validated by a large variety of examples. They may he a pplied 
to various application areas, even in other disciplines. 



Samenvatting 

Simulatie is een intensief gebruikt middel om het funktionele gedrag van 
elektronische systemen te controleren. Het wordt gebruikt om schattingen te 
maken op het gebied van tijdsgedrag, prestatie en vermogensgebruik Simu
latie is eveneens een waardevol hulpmiddel bij het ontwikkelen van prototy
pes en het elimineren van fouten in systeembeschrijvingen tijdens de specifi
katie van het gewenste gedrag. Omdat de grootte en de complexiteit van 
systemen toeneemt, systemen op een steeds hoger abstractieniveau beschre
ven worden en omdat tegelijkertijd systemen steeds sneller op de markt moe
ten komen, worden steeds hogere en nieuwe eisen aan simulatieprogramma
tuur gesteld. 

De snelheid waarmee gesimuleerd kan worden en de mogelijkheid om ver
schillende types van modellen te kunnen simuleren zijn belangrijke eisen die 
gesteld worden bij de ontwikkeling van een simulator die zowel aan de huidi
ge als aan toekomstige behoeftes moet voldoen. Het is erg belangrijk om een 
groot scala van modellen te kunnen simuleren zonder de snelheid van de si
mulatie daaraan op te offeren. Behalve de invloed van de snelheid van de si
mulatie zelf moet ook de ontwerptijd zoveel mogelijk bekort worden. 

In dit proefschrift worden een aantal concepten en technieken beschreven 
voor een event gestuurde simulator zodanig dat 

• de iteraties tijdens het ontwerpen zo kort mogelijk worden en ook het aan
tal iteraties zo klein mogelijk is; dit bevordert de ontwikkeling van prototy
pes en maakt het gemakkelijker om fouten in beschrijvingen op te sporen 
en te verwijderen. Verder is het mogelijk om verschillende alternatieven af 
te wegen; 

• verschillende soorten modellen tegelijkertijd op een homogene wijze gesi
muleerd kunnen worden. 

Al deze concepten en technieken zijn geïmplementeerd in een programma ES

CAPE geheten. 

De vermindering van de tijd om een ontwerpcyclus te doorlopen is mogelijk 
gemaakt door een grafische editor en een diskrete event simulator in één pro
gramma onder te brengen. Dit maakt het mogelijk om de verschillende fases 
van de ontwerpcyclus te integreren, waardoor de ontwerptijd aanzienlijk ge
reduceerd kan worden. De veel tijd kostende netlijst compilatie wordt verme-
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den door het simulatiemodel incrementeel aan te passen, als één van de be
schrijvingen waaruit het model is opgebouwd veranderd wordt. In 
tegenstelling tot andere simulatoren, waar het compileren of het uitwerken 
van het simulatiemodel een groot gedeelte van de tijd van de ontwerper kost, 
kan het simulatiemodel zonder enige merkbare vertraging opnieuw gesimu
leerd worden. Het is zelfs mogelijk om tijdens de simulatie delen van het mo
del te veranderen, bijvoorbeeld om de invloed van fouten op verschillende as
pecten van het model te onderzoeken. 

De simulator bevat eveneens een aantal eigenschappen die de ontwerper hel
pen bij de analyse van de simulatieresultaten. Het gedrag van het systeem 
kan nl. grafisch weergegeven worden tijdens de simulatie. Eveneens kan fou
tief gedrag ontdekt worden op een hoger abstractieniveau. Dit wordt bereikt 
door monitoren hierarchisch te definiëren die sequenties van events kunnen 
verwerken en deze vervangen door eventsopeen hoger abstractieniveau. De
ze events beïnvloeden het gedrag van het te simuleren systeem verder niet. 

Daarnaast beschrijft dit proefschrift de problemen met betrekking tot, en een 
aantal oplossingen voor simulaties van een aantal verschillende soorten mo
dellen. Omdat het erg lastig is om rekening te houden met de modellen die 
gebruikt gaan worden in de nabije toekomst, moet de kern van de simulator 
flexibel genoeg zijn om 

• tegelijkertijd verschillende types simulatiemodellen aan te kunnen; 

• relatief gemakkelijk een nieuw type simulatiemodel te kunnen toevoegen. 

De efficiëntie en de flexibiliteit zijn de belangrijkste aspecten geweest bij het 
onderzoek naar integratietechnieken voor het op uniforme wijze simuleren 
van verschillende types modellen. 

De basistechniek is dat verschillende algoritmes en simuiatoren op hetzelfde 
event gestuurde model zijn afgebeeld: de kern van het simulatieprogramma 
kan omgaan met verschillende representaties van de tijd, verschillende ver
tragingsmodellen en controleert de uitvoering van alle modellen op een uni
forme en correcte wijze. Dit is gerealiseerd door het gebruik van verschillende 
soorten events. Om de integratie van andere simuiatoren te ondersteunen 
zijn een simulatie-interface en een encapsulatietechniek ontwikkeld. Deze 
zorgen voor de conversie van de events, de conversie van de signaalwaardes 
en de synchronizatie tussen de verschillende modellen en simulatoren. 

Tenslotte beschrijft dit proefschrift een aantal technieken zodat het program
ma gemakkelijk aan de wisselende eisen van gebruikers kan worden aange
past en zodat dit programma kan samenwerken met andere ontwerptools. 
Deze technieken maken het mogelijk om het programma te gebruiken in een 
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bestaand ontwerptraject. Het programma kan met name gebruikt worden 
om andere programma's aan te sturen of voor het simuleren en het grafisch 
weergeven van gegevens van andere ontwerptools. Een goed voorbeeld is de 
succesvolle integratie met een architectuursynthesesysteem. 

De oplossingen die aangedragen zijn in dit proefschrift zijn geïmplementeerd 
en gecontroleerd met een grote verscheidenheid aan voorbeelden. Ze kunnen 
gebruikt worden voor een groot aantal toepassingsgebieden, zelfs in andere 
vakgebieden. 



Preface 

This thesis is based on the research that has been performed in the Design 
Automation Section of the Department of Electrical Engineering of Eindho
ven University ofTechnology in the Netherlands. In this period, an interac
tive flexible design and simwation tooi called ESCAPE has been developed, in 
which a discrete event simulator and a grapbics editor have tightly been inte
grated. The concepts and techniques that have been applied in this tooi are 
described in this thesis. 
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Chapter 

1 Introduetion 

1.1 Background 

Today's market, in which electronic products have a short life time, requires 
that new products are put on the market as soon as possible, while the produc
tion costs are minimized. The total costs ofmanufacturing electronic products 
are greatly reduced, if the number of components of these products are de
creased. This can be achieved by integrating more components on a single 
chip. Although the progressin technology makes it possible to integrate more 
and more components on a single chip every year, the design process itselfis 
becoming more and more a limiting factor for manufacturing ICs with com
plex designs. 

To design an IC, which performs exactly as specified, is an extremely difficult 
task. Therefore, this taskis usually divided into a number ofimplementation 
steps. A sequence ofimplementation steps transforms an initial specification 
of a system into a mask description ofthe layout ofthe chip, which can be pro
cessed in a foundry. Every implementation step has to be validated intensive
ly. Ifthe result ofthis validation does not sabsfy, the implementation step has 
to be repeated. If the validabon phase does not detect erroneous behaviour, 
the resulting design can serve as the specification ofthe next implementation 
step. In this thesis, an iteration ofimplementation and validabon activities 
between two levels is referred to as the design cycle (see tigure 1.1). To facili
tate the design task, design automation tools have been developed inthelast 
decades for implementing and validating designs. 

The implementabon steps have been automated toa large extent by develop
ing synthesis tools for different abstraction levels. As a result, the level ofini
tial specification is moved from the layout level to the system level. Currently, 
most research in this area is focussed on architectural synthesis, hardware 
software co-design, and system level synthesis tasks like specification, parti
tioning and interface synthesis. This thesis deals with the other phase of de
sign acbvity: the validabon part ofthe design cycle. The thesis especially fo
cusses on validation at the highest levels of abstraction. Design validation is 
extremely important, because undetected errors may result in expensive re
designs and long delays before the resulting product can be put on the market. 

1 
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Besides forvalidation purposes, simulation mayalso be used to make estima
tions on timing, performance and power issues. 

to system level 
I ' 
\ I 

~ 
I \ 

implementation ( 0 \ validation 
\ I 
\ I 

I 

to layout level 

Figure 1.1. A step in the design trajectory 

Simulation has been and currently is tlie most important technique to vali
date the functional behaviour of a system. Implementation steps are vali
dated by comparing the simulation results at two different abstraction levels. 
Synthesis tools should make the validation process easier: in principle, they 
should produce results that are correct by construction. However, in practice 
the results of each synthesis tooi have to he validated as intensively as the 
results of other approaches, because of bugs and deficiencies in those tools. 
Therefore, validation remains an important (and the most time consuming) 
design activity. 

Sim ulation can not guarantee the correctnessof a design in all circumstances, 
because the number of cycles required to get full coverage of errors is too large 
to perform this taskin reasonable time. Despite this fact, simulation is fully 
accepted in the design community. Forma! verification techniques are a 
promising alternative to simulation as a validation technique and their ap
plication often guarantees full coverage of errors [McM94]. Although much 
progress has been made in this area, these tools often fail to handle real-life 
designs and definitely can not handle full system specifications. Therefore, 
both simulation and verification tools should supplement each other to per
form system validation. A simulator may alsoassist verification tools in lo
cating and correcting design errors, e.g. by feeding the simulatorwithoutput 
traces ofverification tools that lead to erroneous behaviour. But the most im
portant application area of simulation will he its use during the prototyping, 
validation and debugging phases of an initia! specification of a system. 
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A number of problems are associated with the simulation oflarge systems. 
The increasing complex:ity of systems makes simwation a difficult and time
consuming task. Even worse, the computational time increases exponentially 
with a decreasing level of abstraction, which is often required to accurately 
simulate a system. For instance, simulating a complete system at the circuit 
level is nowadays (almost) infeasible, because it may require several days or 
even weeks. A n urnher of sol u ti ons exist for this problem: mixed-level sim ula
tors handle the problem by simulating various parts ofthe model at different 
levels of abstraction. This solution reduces the computational costs ofthe sim
wation task significantly. Other techniques like parallelor distributed simu
lation, or improvements on the simwation algorithm itself, only give minor 
(i.e. linear) performance improvements. 

Not only much computational time is required to validatea system descrip
tion, but the time spent by the designer to iterate through the design cycle is 
increasing rapidly as well. This is caused by both the complexity ofinterpret
ing simwation results, and the separatipn of synthesis and validation tools. 
The latter problem often causes expensive re-simulations for small design 
changes. Simwation time is also reduced by incremental simwation tools 
[Cho88], which restriet re-simulation to those regions ofthe system, that are 
affected by design modifications. This approach takes a large amount of 
memory to store simwation histories and is only useful in the debugging 
phase, when only small modifications are made to the design. Mostworkin 
this area still focusses on the lower levels ofthe design trajectory, in particu
lar logic and switch-level simulation. 

Validation at the system level introduces another problem: systems often con
tain subsystems of different nature and the design of each subsystem may in
volve a different design trajectory. Often, each subsystem is best modelled us
ing the most natural and appropriate description language or, from 
simwation point of view, the most appropriate model of computation. The 
choice of an appropriate description language mayalso depend on the back
end design tools for that particwar subsystem. Different descriptive means 
can also he used to model different properties or aspects of a system. For 
instance, a Petri net could model the communication behaviour between dif
ferentcomponentsof a system: the operational semantics of a Petri net de ter
mine when a component needs to he evaluated. The (functional) behaviour of 
each component could he described using a hardware description language. 
In this case, the Petri net might he verified for properties like liveness and 
deadlock by dedicated analysis tools, while a simulator might he used to vali
date the overall system behaviour. 

Validation of such heterogeneous systems can only he performed efficiently 
and accurately, ifmultiple modelsof computation are supported by the sim u-
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lation tool. Since it is very hard to anticipate on the roodels of computation 
that are going to he used to descri he systems, it has to he relatively straight
forward to include support for new roodels of computation in the simwation 
tool. 

In the next section, an overview is given of a design tool called ESCAPE, which 
tries to cope with the problems related to the validation of complex heteroge
neaus systems. 

1.2 Design and simulation in ESCAPE 

ESCAPE is a highly interactive and flexible design environment. It can he used 
to capture complex heterogeneaus system descriptions and verify these de
scriptions through simulation. lts open architecture makes possible easy 
adaptation to different application areas and simwation needs. The environ
ment provides an incremental design and validation strategy and animation 
techniques to visualize the activity and other properties ofthe system under 
design. This allows fast exploration ofthe designspace and easy debugging 
of a system description. 

ESCAPE has evolved from a simple schematics entry program called ESCHER 
[Lod86] that has been extended with a discrete event simulator [Jan89] to
wards a sophisticated design environment, which combines textual and 
graphical design en try and the validation of systems composed of these de
scriptions. The role of schematics entry in the CAD community has partly 
been replaced by popular hardware description languages (HDLs) like VHDL 
[IEE88] and Verilog [Tho91]. HDLs are used to describe both structure and 
functional behaviour of systems, but can be combined with graphics en try as 
well. Often, a graphical representation of a system gives a better perception 
of the system's overall structure. Especially, if these graphical representa
tions are used for visualization purposes by other tools, they are preferred 
over textual descriptions. Graphicallanguages and graphical design capture 
have gained in popularity lately, because of standardization of graphics li
braries and fast graphics workstations. Graphicallanguages or descriptions 
are used for various purposes: 

• structural decomposition of a description, which is analogous to the use 
hierarchy in schematics capture programs; 

• functional decomposition of either hardware or software descriptions; 

• design methodologies which rely on a graphics formalism. 

In ESCAPE, a combination of graphical and textual formatscan be used to de
scribe a system. Systems are described hierarchically and consist of compos-
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ite and primitive modules. A composite module is described using another 
graphical description, that again consists of other composite or primitive 
modules. Primitive modules require a textual description to document their 
behaviour. Such a description is not necessarily a pure behavioural one: it 
might contain structural data as well, if that is supported by the hardware 
description language. In this thesis, a primitive module is related toa textual 
description, mostly descrihing its behaviour, whereas a composite module is 
related toa graphical description, mostly descrihing structure. 

The internal organization of ESCAPE is depicted in figure 1.2. ESCAPE is com
posed of several functional components, which are controlled through the 
user interface and which access the same data structures through the ap
plication procedural interface (API). The organization of ESCAPE will he dis
cussed in more detailstarting with the internal data structures. This will also 
give more detailed information on the ca pa hilities of this interactive design 
and simulation environment. 
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Figure 1.2. Schematic overview of ESCAPE. 

The internal data structures store all data that is manipulated in a single ses
sion. In ESCAPE, a basic entity is called a design. Each design is a collection of 
different views, which represent various aspects and alternative imple
mentations of a design. The following view types are defined: 
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• The symbol view which is used to de fine both the representation of a design 
and its interface. 

• The network view which is used to capture structural descriptions of a de
sign. Another design is instantiated in this view using its symbol view. 

• The graph view which is used to capture graph models. Graph models are 
often used as an intennediate fonnat in synthesis and verification tools. 
Many fonnalisms and representations in CAD applications arebasedon 
graphs. Examples are finite state machines, data flow graphs, Petri nets. 
A special definition language is developed to describe different classes of 
graphs: it allows to customize this view to he able to capture different types 
ofgraphs. 

• The text view which is primarily used to capture behavioural descriptions 
of a design. 

• The link view which is used to define a set of relations between different 
objectsin views of one or more designs. In this thesis, such rel a ti ons are re
ferred to as explicit relations, i.e. explicitly defined by a user. 

Besides explicit relations, some relations are directly modelled (hardcoded) 
in the Wlderlying data structures: these relations are required by the built-in 
tools to correctly access and modifY design data. They are referred to as im
plicit relations. This is opposed to the explicit relations which can be used 
without any restrietion to model additional relations between various views. 
Multiple sets of explicit relations are used to capture different infonnation. 
Each set is considered as a separate link view. 

An example of an implicit relation is the link between a module in the network 
view and the symbol view ofthe design, ofwhich this module is an instantia
tion. This relation is mandatory and roodels hierarchy. Explicit relations are 
for instanee used to relatenodes in the three graph representations ofthe ar
chitectural synthesis system NEAT [Hei94]: ESCAPE is able to capture and 
visualize the design data used by this synthesis system by storing the rela
tions between the various representations of synthesis data. 

Each view consists of two data structures: the graphical data structure and 
the network data structure. Data in bothof these data structures is strongly 
related. Data ofparticular objects (e.g. a module, a wire or some textual in
formation) are represented in either data structure or both. The graphical 
data structure stores all data of an object related to its position, size and ap
pearance on the screen. The graphical data structure is used to build and 
modifY the network data structure in an incremental way. The network data 
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structure always represents an up-to-date net list of the system that is di
rectly accessable by other tools, like the built-in event-driven simulator. 

All functionality to ere a te, modify, dele te and access the objectsin the intern al 
data structures is accessable through an application procedural interface. 
Tools or new functions can he built which are compiled and linkedintoa single 
program (executable). In ESCAPE, a grapbics editor and a discrete event simu
lator have been integrated tightly in a single program. This reduces the over
head of transferring simulation data using files or other mechanisms pro
vided by the operating system toa minimum. U sing the sa me concepts, more 
tools could he integrated in the sam~ tooi as well: this would further reduce 
the overhead between two or more design steps, and allow incremental up
dates and validation of multiple implementation or synthesis steps. 

One ofthe componentsof ESCAPE is theevent driven simulator, which is fully 
embedded within the tooi or environment: it executes in the same address 
space as the editor. The performance of this simulator is not affected by the 
integration itself: the network data structures are optimized for access by the 
embedded simulator. The close interaction between simulator and editor re
duces the design time: for instance, excessive net list compilation times for 
large net lists are avoided, because each modification immediately updates 
all data structures. In ESCAPE, it is even allowed to modify a designduringa 
simwation experiment, which gives the opportunity to explore the design 
space and to simulate exceptions without any overhead. 

With ESCAPE, the operation of a system can he animated. The simulator pro
vides the functionality to highlight objects on specific conditions and to anno
tate simwation data on the screen. Although animation reduces the perfor
mance of the simulator, it greatly improves the understanding of the 
operation of the system. It also improves the debugging capabilities of the 
tooi, since the location of errorscan he isolated easily. Furthermore, the con
cept of discrete euent monitors is provided tobetter support the validation of 
complex systems: a discrete event monitor analysestheevent trace of a simu
lation run and can abstract from unnecessary low level details. 

EscAPE deals with the specific demands for system level modeHing and simu
lation: models of different domains can he combined in a single simwation 
modeland the result is simulated in a homogeneous way. To accomplish this, 
various techniques are used: 

• the use of differentevent types that manipulate the behaviour ofthe simu
lator; 
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• the generation of code to embed models automatically into discrete event 
compatible models. The resulting model can contain a complete scheduler, 
which handles the event interface to the outside world; 

• programmabie simwation interfaces, through which an extern al simulator 
can be connected to the event driven simulator. 

The same techniques are used to sirnul a te partial implementations of a sys
tem: this may be required for analog subsystems and other critica} parts of 
an electronic system. In principle, these techniques can be used for hardware 
software co-design as well (see section 1.4). 

Currently, the behaviour ofprimitive modulescan bedescribed by 

• a hardware description language basedon the LISP [Ste84] language. Be
sides the statements found in other LISP languages, this language pro
vides statements to define the animation of the system's components. 

• programming languages like C and FORTRAN. A foreign language inter-
face allows interactive and efficient simwation of compiled code models. 

• a behavioural subset ofVHDL as described in [Hou93]. 

• token flow models, in particwar the ASCIS data flow graph. 

• roodels simulated by an external simulator. An external simulator inter
face provides the necessary means to u se ESCAPE as a simulation backplane. 
Differentmodelscan possibly he executed on different machines in the net
work, but this only improves performance, ifthe overhead of communiea
tion costs is small with respect to the computational costs of executing the 
mode Is. 

The tool interface gives access to the API from the extern al environment. This 
interface can be used in both master and slave mode. In slave mode, ESCAPE 

is invoked by another tooi, which sends a series of commands to ESCAPE to 
visualize output or to perform other tasks. In master mode, external pro
grams or tasks are starled through the user interface and the results are re ad 
back by ESCAPE. These results can again be visualized in one ofits view win
dows. In master mode, different tasks can be scheduled simultaneously, ei
ther on the same workstation or on different workstations in the network. 
This interface can he used for various purposes and provides users with all 
the flexibility and customizability they need to integrate various tools with 
ESCAPE and to use the functionality of ESCAPE without additional program
ming effort. 
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1.3 Examples 

In this section, two small examples are presented that give an impression of 
the ca pa hilities of ESCAPE: 

• a delay insensitive two-place one-bit ripple buffer; 

• a 5 x 5 Conway's Game of Life board showing a glider pattern. 

A delay insensitive circuit called RIPP2 [Ber92] is a two-place one-bit "rip
ple" buffer, w hich is composed of a number ofbasic components. The set ofba
sic components has been defined in [Ber88] and can he used to compile any 
program written in Tangram into a delay-insensitive circuit. Tangram is a 
HDL basedon Communicating Sequentia} Processes (CSP) [Hoa78]. 

All basic components have been defined in ESCAPE as primitive modules. De
fining a primitive module comprises of drawinga symbolic representation in 
the symbol view and editinga textual description representing the behaviour 
ofthe component. Some components have a more detailed implementation as 
well. For this example, the built-in LISP-like HDL has been used, which is 
described in more detail in appendix A. The basic component uariable is de
picted in tigure 1.3 as an example. 

ack_out 

dataü_in 

datal_in 

Figure 1.3. Symbol view of variable. 

The corresponding behaviour is: 

(behaviour var 
(term dataO_in) 
(term data1_in) 
(term dataü_out) 
(term data1_out) 
(term req_in) 
(term ack_out) 
(state value) 

req_in 

dataü_out 

datal_out 
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;; start simulation with random contents : 
(if (= (simtime) 0) (setq value (random 2))) 

(color (or req_in dataO_in data1_in)) 

(if (or dataO_in data1_in) 
(progn 

(setq value data1_in) 
(delay 1 ack_out 1)) 

;else both low 
(delay 1 ack_out 0)) 

(delay 1 dataO_out (and req_in (not value))) 
(delay 1 data1_out (and req_in value)) 
(write value) 

In this description, the statements, which are used to visualize the activity 
ofthe module during simulation, can easily be identified. The color statement 
will highlight the module, if one or more of the module's inputs are high. 
Otherwise, the module will have its default colour. The write statementdraws 
the current value ofthe state variabie value in the module. 

The implementation of this component can be modelled in the network view 
as well (see figure 1.4): the designer may choose to expand an instanee of de
sign variabie and simulate its implementation instead ofits behavioural de
scription. For debugging purposes, a lower level implementation can he 
shown in a separate view window. 

dataO_in 

dataO_out 

ack_out req_in 

datal_out 

datal_in 

Figure 1.4. lmplementation of basic component variable. 

The next example is a network representing a world consisting of 25 cells of 
Conway's Game ofLife [Gar70, Gar71]. This game is considered to be a cellu
lar automaton: each cell ofthe autornaton exchanges information withits 8 
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neighbours. Each cell has a state variabie that indicates ifthis cellis alive 
or dead. The following rules are applied to each cell of the automaton: 

• a cell will he alive in the next generation, if exactly three of its neighbours 
are alive in the current generation; 

• a cell will stay alive in the next generation, iftwo or three ofits neighbours 
are alive in the current generation; 

• ifnone ofthe rules above applies toa cell, it will starve in the next genera
tion. 

De pending on the starting pattem of alive cells on the board, new generations 
will he generated from it. Some pattems are known to move itself along the 
board forever (e.g. gliders and fishes), other pattems oscillate with a specific 
period of generations before the orignal pattem is generated again. Large 
pattems have been developed for this type of cellular automaton. Examples 
are blockpushers and large ships having satellites. These pattems consist of 
numerous smaller patterns. 

The behaviour of each life cell is described as follows: 

(behaviour life_cell 
"Conway's game of life. description of 1 cell." 
(term nw_in) (term nw_out) 
(term no_in) (term no_out) 
(term ne_in) (term ne_out) 
(term ea_in) (term ea_out) 
(term se_in) (term se_out) 
(term so_in) (term so_out) 
(term sw_in) (term sw_out) 
(term we_in) (term we_out) 
(term init) ; used to set initia! state 
(term elk} ; global control 
(state alive) ; holds state of cell : alive or death 
(local count) ; counts number of living neighbours 

(if (= (simtirrie) 0} ; initialize state 
(setq alive init)) 

(color alive) ; color cell according state 
(if elk 

(progn ; determine new state of cell 
(setq count (+ nw_in no_in ne_in ea_in se_in so_in sw_in we_in)} 
(setq alive (or (= count 3} (and alive (= count 2}}})) 

;; else 
;; inform neighbours of this cell's current state: 
;; refrain events: clock triggers evaluation 
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(delay 0 nw_out alive 1) 
(delay 0 no_out alive 1) 
(delay 0 ne_out alive 1) 
(delay 0 ea_out alive 1) 
(delay 0 se_out alive 1) 
(delay 0 so_out alive 1) 
(delay 0 sw_out alive 1) 
(delay 0 we_out alive 1) 

In the declaration section, the ports for communicating the state, the clock 
that controls the execution ofthe celland the port that sets the initial state 
of the cell, are easily identified, as well as the state variable, that indicates 
its lifeness, and a local variabie for counting the neighbours alive. The algo
rithm itselfis straightforward: ifthe value ofthe clock rises to high, the rules 
ofthe game are applied to the cell using the values on its input ports. The re
sult is commnnicated to the other cells using refrain events: these events do 
not cause the cell to be evaluated. lnstead, ifthe value ofthe clock falls to low, 
the evaluation of alllife cells is triggered. 

Using a small world consisting of 5 x 5 cells, a glider patternis initialized in 
the first generation. During simulation, the state of each cellis animated on 
the screen: the glider pattern starts to move from cell to cell, while it is rotat
ing aronnd. Some snapshots of this animation are presented in figure 1.5. 

Larger worlds ha ving more life cells have been developed as well. The under
lying structural models forthese examples have been generated using a spe
cial purpose program for placement and a routing program for schematics. 
Examples are: 

• a 18 by 11 world starting with a oscillator as initial generation. This oscilla
tor has a cycle of 16 generations; 

• a 80 by 30 world starting with multiple glider patterns as initia! generation. 

The simwation speedforthese examples is dependent on the number of cells, 
and it is notdependent on the total numberofcells alive because in each cycle 
all cells are evaluated. The evaluation of a cellis triggered by the clock signal, 
which is an input of every cell. The behaviour of a model ofwhich the speed 
mostly depends on the number of cells alive would be more complicated. 

1.4 Related work 

The fnnctionality offered byESCAPE has overlap with various kinds of systems. 
The most important one is Ptolemy. Simwation backplanes and mixed-level 
simulators are other types of simulators, which have some overlap. Another 
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Figure 1.5. Animated simulation of Conway's Game of Life. 

category of systems are development systems for DSP applications, which are 
readily available on the market. These and some other types oftools are ex
plained in more detail in this section. 

Ptolemy [Buc94] is a framework to capture and validate heterogeneous sys
tems. It is focussed towards designing signal processing and telecommunica
tion systems, but is used in other application areas as well. Ptolemy is based 
on an object-oriented programming paradigm. It consistsof akernel on top 
of which different models of computation (called domains) can be used. 
Among others, the following domains can be used : synchronous data flow, dy
namic data flow and discrete event. Ptolemy has also been used for hardware 
software co-design: a dedicated simulatorfora DSP microprocessor has been 
coupled to the system [Kal92] . If such a simulator would be available in pub
he, such a simulator could easily be coupled to ESCAPE as well. 

In Ptolemy, there isonetop-level view of a simwation model. It is called the 
Universe and has a domain associated with it. The Universe contains a num
ber of computational blocks, which opera te in the same domain. These blocks 
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are called Stars. Stars are interconnected, which allows the transfer of data 
between them. In addition, the Universe contains a scheduler, which controls 
the execution order of these blocks. Modelsof other domains can be included 
in the Universe using aso called Wormhole, which behaves like a regular star. 
A Wormhole interfaces the foreign domain with the domain ofthe Universe 
using an interface called the EventHorizon. Each domain provides an inter
face to this EventHorizon. 

In Ptolemy, different domains are hierarchically nested. Each foreign domain 
has its own scheduler, which controls the execution of the stars in this do
main. During simulation, the current simulation time is known to all schedul
ers. Combined with a conservative scheduling approach, no deadlock can oc
cur in the coordination ofthe various schedulers. However, this approach may 
restriet the feedback of inner domain particles to the outer domains or have 
a significant performance penalty. 

The Simulator Coupling System (SiCS) [Nie92, Ocz91], is a simulation back
plane, which can be used to simulate systems composed of different models 
of computation. Si CS consists of a coupling kernel and a user interface. Un
like ESCAPE, Si CS itselfprovides no support for simulating modelsof computa
tion. Si CS contains a procedural interface for the interfacing between a simu
lator and the simulation kernel. This interface contains various functions for 
signa} administration, signa} manipulation and simulation control and en
ables the coupling of external simulators to the backplane. In [CFI94], a draft 
proposal for a standard on simulation backplane programminginterfaces is 
described. In this document, much attention has been paid to the data types 
and the representation ofvalues, the synchronization ofthe simulators, the 
user interface, and the resolution and conversion functions. 

As opposed toa simulation backplane, other examples ofmulti-domain simu
lators are various mixed-mode simulators, which have been developed in the 
last decade. An overview ofmany mixed-mode simulators is given in [Sal90]. 
A mixed-mode simulator is oriented towards simulation at various well-de
fined levels of abstraction in order to reduce the computational complexity of 
simulating large systems. The main difference between these simulators and 
a simulation environment like ESCAPE, is that they do not provide the func
tionality to integrate new domains or levels of abstraction within the system, 
especially ifthe simulation paradigm is not event-based. This aften implies 
that the integration of a new model of computation results in the development 
of a (partly) new simulator. An example ofthis are the various derivations of 
the ELDO simulator [Hen85], of which VHDL-ELDO is the latest one 
[Tah93]. 
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STATEMATErM [Har90] is a design framework, which can be used to specify 
and validate reactive systems. The design methodology is based on three 
graphics formalisms: module charts, activity charts and statecharts. Module 
charts represent the structural view of the system; this is analogous with 
structural descriptions in other tools, like the network view in ESCAPE. Beha
viour is described using both activity charts and statecharts. Activity charts 
are used to specify the functional behaviour of components used in the module 
charts. The interaction between these components or, in other words, the 
specification of the control activities is described by statecharts [Har87]. 

Statecharts are a graphics formalism that offersome extensions to the FSM 
formalism to facilitate the description of complicated control activities. To re
duce the complexity ofthis task, hierarchy is allowed by repeated decomposi
tion of states into substates. Another difference is that the thread of control 
of a stateehart is not necessarily sequentia!. Furthermore, statecharts allow 
broadcasting of messages to apply actions to multiple states, e.g. a reset. 

STATEMATE is a good example ofthe fact, that visual formalisros are getting 
more important and that they gain in popularity. This effect is reinforeed by 
the development ofworkstations with powerlul graphics capabilities and the 
standardisation of graphics libraries. Like with ESCAPE, it is possible to ani
mate the operation of the system in STATEMATE. The specification of the 
system can be analysed interactively or in batch mode. Various debugging 
commands are provided to control the execution of the model. 

Related to the work described above is the SpeeCharts language [Vah91]. 
used for specific system level synthesis tasks like partitioning and interface 
synthesis. The language is based on hierarchical and concurrent state dia
grams (comparable to statecharts) and is extended with VHDL based 
constructs. 

In [Hoe92], a design system for the specification and implementation of digi
tal signal processor arrays is described. In this system, different applications 
like a network editor and a simulator are sharing a common data structure. 
A communication mechanism is used to notify other (passive) applications of 
modifications in the sta te of the system (ca used by the execution of an a pplica
tion). 

Visual hardware description languages are another example of design cap
ture systems, which rely heavily on graphics. In [Gol93], a visuallanguage 
for VHDL is described consisting of a graphics editor and a compiler that 
translates the graphical descriptions into a textual VHDL description for 
analysis and simulation purposes. Visual HDLs are also available commer
cially and often consist of graphical design capture, simwation and code gen-
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eration tools. The grapbics formalisros are often derivatives of FSM, flow
chart and block diagram approaches. The output of such systems is a 
description in a standard HDL like VHDLor Verilog, which serves as input 
for other simulation and synthesis tools. The HDL code generation offered by 
these tools is tailored for commercially available synthesis tools. In genera!, 
these systems lack the extendibility of a system like ESCAPE. A designer is re
stricted to use the graphicallanguages provided by the system and can't in
clude other models of computation. 

1.5 Outline of this thesis 

In chapter 2, the capabilities ofthe discrete event simulator are discussed in 
detail. It is also explained how the design cycle (edit- elaborate- simulate 
-analyse) time is reduced by applying incremental techniques and run-time 
analysis techniques. In chapter 3, various approaches are discussed that al
low simulation of multiple models of computation and models at various ab
straction levels by the discrete event simulator. 

Throughout chapters 2 and 3 examples and experimental results are used to 
illustrate the various concepts and approaches applied in the prototype ES

CAPE. In chapter 4, some additional examples are given that illustrate the 
flexibility, modelling capabilities and performance ofthe simulation environ
ment. 

In chapter 5, some additional features of ESCAPE are described. It showshow 
it is customized and integrated withother tools in the design flow. Finally, 
some concluding remarks are made on this research project and some sugges
tions are proposed to extend the prototype tool and to apply the techniques 
and concepts described in this thesis to other simulators. 



Chapter 

2 Event driven simulation 

2.1 Introduetion 

Simulation is widely being used to validate the functionality and the perfor
mance of a description of a system under design at various levels of abstrac
tion. At each level, a simulator meets different requirements with respect to 
model size, level of detail ofthe models and computational costs. The follow
ing levels are distinguished: 

• System level. At this level, a system is described as a number of interacting 
components, which are described by a model of computation or a behavioral 
description. Subsystems may be of different nature: digital hardware, ana
log hardware, firmware or software components. 

• Architectural or functionallevel. The function of a (sub)system is described 
as an algorithm, which receives data from its environment and issues data 
to its environment after calculation. Descriptions at this abstraction level 
often serve astheinput specifications for architectural synthesis tools. 

• Register Transfer Level (RTL). The system is modelled as a datapathand 
a controller. The datapath consists of computational blocks, multiplexers 
and registers. Data is read from the registers and fed to the computational 
blocks. After calculating the resulting output values, these values are 
transferred back to the registers. The multiplexers are used to direct the 
flow of data through the system. The controller is a finite state machine 
(FSM), that specifies how the data is transferred in each state. 

• LogicaZievel (gate level). The following classification is used for models at 
this level: combinationallogic, sequentiallogic and asynchronous logic. Se
quentiallogic can be handled in a similar way as combinationallogic by cut
ting the nets at the flip-flops creating new inputs and outputs. Much re
search has been conducted at this abstraction level to increase the 
performance oflogic simulation: optimization ofthe simwation algorithm 
for specific delay models, parallellogic simulators [Mat92] and hardware 
accelerators [Sas83, Bla84]. Note that raw simwation speed is not always 
the most important aspect of a simulator. A software implementation may 
be indispensable for debugging the model and may complement the use of 
a hardware accelerator [Bee90]. Many of the simwation techniques that 
have been developed for this abstraction level are being applied to higher 
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levels of abstraction as well, for instanee hardware acceleration at the RTL 
[Tak90] and distributed simwation at the behaviourallevel [Gho95]. 

• Switch level. This level is used to model digital circuits as a network of 
nodes and transistors. Each transistor represents both a switch and a at
tenuator. At this abstraction level, many aspectsMOS circuitscan he mod
elled quite accurately. However, the computational costs are small 
compared to simwation at the circuit level. Examples of switch level simu
lators are MOSSIM 11 [Bry84] and COSMOS [Bry87]. In [Gen86], the model 
is refined using a networkof switches, capacitors and resistors. In this mod
el, analog values insteadof a set of discrete values are used to model the 
strengtbs of the components. This enables to simulate a model fairly de
tailed with respect to timing aspects. 

• Circuit level ( electricallevel). The model of a system is a set of ditTeren ti al 
equations, which are composed from the model equations of each compo
nent and from Kirchhotrs voltage and current laws. To simula te this model, 
the DC solution and the transient solutions have to he calculated from 
these equations. Simwation at this level produces the most detailed re
sults. However, it is also most expensive with respect to computational 
costs. Spice [Nag75] and its numerous derivatives symbolize simwation at 
this abstraction level. 

At various levels of abstraction, VHDL and Verilog are used as the standard 
hardware description languages. Forthese languages, many simulators are 
commercially available from various CAD tooi vendors. Models written in 
these languages can he simulated together as well: this is referred to as co
simulation. There arealso hardware accelerators available for VHDL simula
tion as well as techniques for parallel simwation [Vel92]. 

Simwation models at all abstraction levelscan he divided in two classes: time 
discrete and time continuous models. The definitions are given below: 

DEFINITION 2.1: A time discrete (simulation) model is a model ofwhich the 
(simulation) state can only change at a countable number 
of time points. 

DEFINITION 2.2: A time continuous (simulation) model is a model ofwhich 
the (simulation) state changes continuously with respect 
to the simwation time. 

Discrete and continuous models ditTer in the following ways: 

The simwation time in a discrete simwation model is in general represented 
by an integer number, whereas the simwation time in a continuous simula
tion model is represented by a floating point number. In a continuous simula
tor, the simulation model is often described using differential equations; in 
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a discrete simulator, the model is composed of executable components, that 
are invoked by a scheduler. Events are used to model activity in such models. 
In this thesis, the term discrete event simulation refers to models, that are 
simulated by an event drivenor a similar simulation algorithm, (e:g. a com
piled simulator, see section 2.3.1). 

This thesis primarily focuses on simulation ofmodels at the register transfer 
level and higher levels of abstraction. These models are mostly modelled us
inga time discrete model. Models without an explicit notion of time and mod
els ofpartial implementations at lower level of abstractionscan be combined 
with time discretemodelsas well. Therefore, we restriet ourselves to discrete 
event simulation. 

2.2 Simulation models 

Systems are composed of computational blocks. These blocks are connected 
with each other by nets. Nets are used to communicate values from one com
putational block to others. A system Sis described with the 7 -tuple: 

(2.1) 

where 

- J1'b is the set of modules or components. 

- Jf is the set of nets or signals. 

- '1' is the set ofports. This set contains both primary input and output ports 
of the system, and the input and output ports of the modules. 

- ~ is the set of behavioural descriptions. 

- P .Jtb : '1' - J1'b U { 0 } is a function that maps each port to a module. In 
case p E '1' is a primary port, P .Ab(p) will return empty. 

- Px : '1' - Jf is a function that maps each port to a net. 

- Mcy, : J1'b - ~ is a function that assigns a behavioural description toeach 
module. 

The system model of Sin (2.1) describes a structure. To complete this model, 
each module requires a behavioural description. The term computational 
block is used for a module, which has a behavioural description associated 
with it. A behaviour B E ~ is described with the 5- tuple 
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B = ( /, 0 , Q, init, exec ) (2.2) 

where 

- I is the set of input ports. 

- 0 is the set of output ports. 

- Q is the set of state variables (memory elements). 

- init is a function that calculates the initial values of all state varia bles, 

- exec is a function that calculates the values of the output ports for a time 
point greater or equal than the current time point from the values of the 
input ports and the values ofthe state varia bles. The new values ofthe state 
variables are calculated from the values ofthe input ports and the current 
values ofthe state variables as well. Timemayalso be used in the function 
to account for time-dependent behaviour. 

The exec function calculates the new values ofthe output ports at future time 
points. Note that more than one value may result from this calculation. How
ever, the number ofvalues produced should be finite. Otherwise, the function 
exec will not terminate after activation ofthe behavioural model. This leads 
to an erroneous condition during simulation, ifmore componentsneed to be 
activitated, which is usually the case. 

The behaviour of each module of(2.1) is described using (2.2). The inputs and 
outputs ofbehaviour B correspond with the ports ofthe module it is assigned 
to. An input gets its val ue from the net, that is connected to the corresponding 
port ofthe module. An output drives the net, that is connected to the corre
sponding port ofthe module. In figure 2.1, it is depicted how a module inter
acts with its environment. The behaviour of a module is executed or simu
lated, if activity occurs at one or more of the module's inputs. 

Q 

Figure 2.1. The execution of a model in its environment 

system 
outputs 
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A behaviour described using (2.2) closely resembles the description of a fini te 
state machine. However, there are some differences: 

• The data types associated with /, 0 and Q are not necessarily finite. The 
type of an element of these sets may for instanee he a boolean, a natural 
number, a floating point number or some abstract data type. 

• The model may have internal non-determinism. Even if a model bas inter
na! non-determinism, still its overall behaviour may he deterministic: the 
relation between the values at the input and output ports may still he deter
ministic. 

• The behaviour may he dependent on time. Although it is not explicitly rep
resented in (2.2), the exec function takes time as an argument. 

Finally it should he noted that notation (2.1) doesnotaccount for hierarchical 
descriptions. This is not necessary, since its purpose is to represent a valid 
simulation model.lt does not describe how the model is composed from a hier
archy of structural and behavioural descriptions! This is part ofthe internal 
representation ofthe tools used. The model that is actually simulated is rep
resented by this notation. Insection 2.9, it is explained in detail, how hierar
chy can he dealt with. 

2.3 Discrete event simulation 

Discrete event simulatorscan he classified with respecttotheir overall simu
lation approach and their time advance mechanism. Depending on the type 
ofmodels to he simulated, they determine its accuracy and performance. 

2.3.1 Simulation approaches 

Various approaches can he used to simulate a discrete model: 

• Euent driuen simulation. A component ofthe system is evaluated depend
ing on the activity in the system. Activity is expressed by events, which de
note value changes in the simulation model. 

• De mand driuen simulation. An alternative approachtoevent driven simu
lation is demand driven simulation [Smi87]. This approach may reduce the 
number of component evaluations compared to event driven simulation, 
because demand driven simulation propagates requests for simulation val
ues backwards through the circuit and through time. Event driven simula
tion propagates simulation values forward through the circuit in response 
to input port events. 

• Obliuious simulation. All components ofthe system are evaluated at every 
time point. The execution order ofthe componentsis determined statically 
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and can he used to compile the simulation model. Therefore, oblivious simu
lation is often referred to as compiled simulation. 

• Process (interaction) oriented simulation. All components ofthe system are 
executed independently and communicate with each other using events. 
Events, which arelocalto a component, are isolated from events occurring 
in other components and can be executed in arbitrary order. Communiea
tion between components leads to synchronization. 

• Cycle-based simulation. In a cycle-based simulator, all components are 
evaluated at clock boundaries and there is no notion of time. Cycle-based 
simulators are used because oftheir high simwation performance forfunc
tional validation of synchronous designs. Traditionally, they can not sup
port all features as provided by a popular popular hardware description 
language like VHDL. Often, they are used in conjunction with an event 
driven simulator to he able to support all design methodologies and styles, 
for instanee asynchronous designs. 

Euent driuen simulation versus obliuious simulation 

The advantage of using event driven simwation instead of oblivious simula
tion is its flexibility: 

- an event driven simulator handles both synchronous and asynchronous cir
cuits or systems. In [Wan90], a technique is described that is able to compile 
asynchronous circuits by identifying strongly connected componentsin the 
circuit description; 

- an event driven simulator handles multi-delay models, whereas most 
oblivious simulatorscan only simulate zero or unit delay models [Mau92]; 

- an event driven simulator handles different delay models. More specific, 
the possibility to cancel events scheduled for future time points, allows the 
simulation of more complex delay models; 

- an event driven simulator reduces the number of component evaluations, 
which is dependent on the activity in the system under simulation. 

Although an event driven simulator avoids unnecessary component evalua
tions, the overhead ofmanaging and processing events reduces its efficiency. 
In general, compiled simulation is getting more efficient compared to event 
driven simulation with an increasing level of activity in a system. For logic 
simulation, activity levels of about 1% have been reported [Bar87]. In this 
case, the complexity ofthe behavioural descriptions ofthe componentsis very 
low and therefore the overhead of scheduling and processing events is rela
tively high. At higher levels of abstract ion, event driven simulation is pre-
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ferred because ofits flexibility. The overhead of event scheduling and proces
sing is reduced because ofthe complexity ofthe behavioural descriptions. 

Computer hardware plays also a dominant role in the trade-off between 
event driven versus oblivious simulation. The performance of microproces
sors is getting higherand higher every year. A compiled simulator can better 
exploit a cache in a computer architecture than an event driven simulator. 
Therefore, the use of a compiled simulator is getting more attractive with the 
progress in processor technology. 

Process oriented simulation and process rnadeling 

Process oriented simulation provides a higher conceptual view on the system 
and reduces the complexity of developing simulation roodels for large sys
tems: each component in the model is considered as a separate process, which 
interacts with its environment. In figure 2.2, a process oriented simulation 
model is depicted with two processes, that are communicating with each oth
er. Process A and B run independently. Each process executes its task: such 
a taskis a repetition of a number of subtasks. 

Figure 2.2. Process oriented simulation model 

The behaviour ofthe processes is synchronized, if communication takes place 
between A and B. If process A is executing fa ster than process B, at some time 
point message #l will he senttoB andAcontinues withits task. Aftera while, 
process A has to he suspended, because it requires a message from B. At some 
point in time, B requires a message from A, and detects its reception. B can 
immediately continue processing. Aftersome time message #2 will he sent to 
A. After reception of this messa ge, A can resume processing its own task. 

Process oriented simulation can he emulated using an event driven simulator 
basedon a scheduling technique. It is also possible to model various process 
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networks and communication channels, that can he simulated with an event 
driven model. An example of a process network with communication channels 
modelled in VHDLis described in [Sri92]. In [Rou89], VHDLis viewed as a 
process oriented simwation language. In general, a process oriented simula
tion model can he mapped onto an event driven simwation model, if each pro
cess cycle has at least one synchronization point, where it is suspended: this 
is the point, at which the process synchronizes with its outside environment. 
Otherwise, the process will not terminate after activation. This is not a re
quirement in a process oriented simulator: the simulator itselfsuspends and 
activates the processes of the model. 

2.3.2 Time advance mechanisms 

Another important aspect of a discrete event simulator is the time advance 
strategy: two strategiescan he used to advance the simwation time: fixed-in
crement time advance or next-event time advance. Using a flxed-increment 
time advance strategy, events are processed at equidistant points in time. 
Each event is scheduled at a time point, that is an integer multiple of some 
time constant ó. The length of the interval between two time points in
fluences the accuracy and the performance of the simulator. With a next
event time advance, events can he scheduled and processed at arbitrary 
points in time. Especially for detailed models, this approach has to he used 
to guarantee accurate simwation results. 

Note that a fixed-increment time advance strategy is a special case of the 
next-event time advance. If events are scheduled with delays, which are an 
integer multiple of some time interval, the performance of the simulator is 
increased using a flxed-increment time advance strategy: it reduces the time 
to insert a newly scheduled eventin the event queue. 

A flxed-increment time advance does not impose any restrietion on the time 
interval that is associated with ó: this is an issue during the development of 
the simwation model. A proper choice of ó can increase the performance of 
the simulator. This will he explained later in this chapter. 
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2.4 Event driven simulation 

An event driven simulation algorithm provides the flexibility required to con
trol various types of computional models. Events also provide with an easy 
means for interaction between the simulator and its environment. In this the
sis, the following definition is used: 

DEFINITION 2.3: An event models a future change of a simulation variable. 

An event Eis described with the 6-tuple: 

E = ( time, insert, type, object, value, data ) (2.3) 

where 

- time : the time point an event is scheduled for. 

- insert: the insertion time ofthe event. It is used to order allevents that are 
scheduled for the same time point. The implementation normally ensures 
a proper order of events scheduled for the same time point: this attribute 
is only used to describe this order. In this thesis, it is assumed that all 
events schedwed for the same time point are ordered using this attribute. 

- type : the type of the event, which determines, how the event will he pro
cessed. 

- object: the object in the model of(2.1) theevent is scheduled for. This object 
is either a net, a module or a port. 

- ualue : the value the object will be set to, when the event is processed. 

- data : an additional data field needed for particwar types of events. 

2.4.1 The simulation state of the system 

Let Om be the set of state variables, that are associated with the behaviour 
of a module min (2.1). Let N be the set of variables associated with the nets 
of(2.1).Then Vrepresents the set of all state variables in the model: 

V= Nu ( U Om) (2.4) 
mEJit:, 

Note that the subsets, that compose Vare disjoint. Let Lv be a mapping from 
the state variables to a value domain 0: 

Lv: V-+ D (2.5) 
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In case of all simulation variables are of type integer, the range of L v would 
be N. Because the simulation variables may be of different types, the range 
of L vis not defined explicitly. 

Let E 0 be thesetof all events, that are defined using tuple (2.3). The powerset 
of E 0 is defined as 

P(E0 ) = { x I x Ç E0 } (2.6) 

Let Eq be a set of events 

(2.7) 

Eq represents the set of events that are scheduled at a particular simulation 
time point tk" Thus Ve E Eq: time(e) ~ tk. The time and insert attributes of 
theevents in this set induce the ordering ofthe elementsof Eq-

The simulation state of the system is then the tuple: 

(2.8) 

At the start of a simulation run, the state is initialized by executing the init 
functions of all behaviours and by setting the val u es of all nets. N ote tha t this 
function merely sets the values of all state varia bles. Then, the exec functions 
of all modules is called: this schedules the events, which will be processed in 
the first simulation cycle. 

lnitialization results in the initia! simulation state ( L0 , E0 ). 

After initialization, the simulation state is updated each simulation cycle. 
Let (Lk, Ek) be the simulation state after k simulation cycles. First, the 
events are selected from Ek, that must be processed in the current cycle. This 
is a partitioning of Ek into two disjoint sets Esel and Enext 

Esel = { e E Ek I V e' E Ek: ( time(e) ::::; time(e')) } (2.9) 

and 

(2.10) 

Then theevents of Esel are processed in order- the insert attribute is used 
to determine this order. This results in the generation of new events and a 
modification of a subset of V. The new simulation state is then (Lk+ 1 , Ek+ 1 ). 

Ek+ 1 contains the union of Enext and the newly created events. 

Note that the simulation time is not explicitly specified in this equation as 
time is changing implicitly as events are processed by the simulator. To ac-
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count for the fa ct, that the value ofthe simwation doek is essential for correct 
processing of events 1, the simwation time is explicitly represented in the sim
wation state: 

(2.11) 

where it is assumed that the simwation time is represented by a non-nega
tive integer. 

It is also possible to describe the overall system state using the system states 
of each submodeL This is interesting to describe parallel discrete event simu
lators or mixed-level simulators. 

The simwation state of a submodel i is 

( Tsim• Lv, Eq ); = ( Tsimi• Lv;• Eq,i) 

The overall simulation state is then ( Tsim• Lvr Eq ) with 

• Tsim = m!n Tsim,i 
I 

• Lv = l} Lv,; 
I 

• Eq =U E . i q,l 

2.4.2 Event types 

Event types are used to model different delays in the simulator and to orches
trate other activities during simulation. The following event types are avail
able: 

Nomina[ delay events 

Nominal delay events are used to model a simplepure transport delay in the 
simulator. The following subtypescan be distinguished: 

• Anormalevent will cause the net's fanout list to be processed, if and only 
ifthe new net value (as specified in the event) differs from the current net 
value. 

• A refrain event will never cause the net's fanout list to be processed. 

• A trigger event will always cause the net's fanout list to be processed. 

The nomina} delay model is associated with these event types, i.e. if an event 
is scheduled at time point t with a nomina} delay of i time units, the effect of 
1. In a distributed simulation environment for instance, it is essen ti al that allevents are 

processed in a non-decreasing order. 
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this event will always occur after i time units. In figure 2.3, a model of the 
nominal delay model is depicted. 

The se mantics of the various types of nomina} delay events differ in the way 
the modules of the net's fanout list are processed. The use of nomina! delay 
events will never result in the invalidabon of other events already scheduled 
fora particular net. As a result, ifthe ports driving the net are using nomina! 
delay models, it is not necessary to maintain an ordered list of events sched
uled for this net. This is explained in more detail in section 2.5. 

f 

Figure 2.3. Model of a tunetion f with a nominal delay of !1. 

Note that in literature on logic simulation, e.g. [Bre76], the nomina} delay 
model is often referred to as a transportor pure delay model, w hich differs se
mantically from the transport delay model as used in VHDL. The nomina! 
delay model is too simp Ie to be used for modeHing non-fixed delay character
istics of hardware components, but it is very efficient to be used for compo
nents with fixed delay characteristics. 

The nomina! delay event type can also be applied for modelling networks, in 
which data is transportedat different speeds. For example, in a computer net
work packets may travel along different routes from the souree host to the 
destination host and they may arrive in a different order. This is modelled by 
using a continuously changing delay for all nodes in the network: this may 
reverse the order in which packets are sent from one node to another node. 

The transport and inertial euent types 

The nomimal event type is less suited for modeHing the delay charaderistics 
of hardware components and transmission line delays. Therefore, both the 
transport and the inertial delay models as defined in VHDL are supported 
within the simulator. In [Gho89], the limitations ofthe transport delaymodel 
are described and a preemptive scheduling mechanism is described to model 
inertial delays accurately. Note that the use ofthe word transport has a differ
ent meaning here as compared to the pure delay model. For this work, the 
transportand the inertial event type are defined to support the transportand 
inertial delay models respectively. 
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The semantics of these event types are described by operations on a set of 
events. Let Es be a set containing all events scheduled for a net s E Jf at a 
particwar simwation time point tk 

(2.12) 

If n = 0, Es is the empty set and thus no events are schedwed for this net. 
New events are added and deleted from this set during simwation. Ifthe cur
rent simwation time equals tk, the following property holds for all events in 
Es: 

'r/e E Es : time(e) 2: tk (2.13) 

Note that theevents ofthis set can be sorted using their time and insert at
tributes. Let enew be a new event schedwed for this net. 

After schedwing either a transportor inertial event, this set is updated using 

Es,new = (Es I Eo,type) U { enew} (2.14) 

with type E { transport, inf]rtia/} and Eo,ryp9 thesetof events that is removed. 
Schedwing a transport delay results in 

ED.transport = { e E Es I time(e) 2: time(enew) } (2.15) 

Thus, scheduling a new transportevent type for a net results in the removal 
of all events that are already scheduled for that net at time points equal to 
or greater than the time point the new event is scheduled for. 

Scheduling an inertial delay results in 

E D,inertial = E D,prev U E D,transport (2.16) 

with Eo,prev = { e E E5 I time(e) < time(enew) A value(e) ;;é value(enew) } 

Thus, scheduling a new inertial event for a net results in the removal of all 
events that are already scheduled for that net except if 

• the event is scheduled at a time point that is smaller than the time point 
the new event is scheduled for and, 

• the value ofthe event is equal to the value ofthe newly scheduled event. 

This implies that an event is only processed, iffno other event with a different 
value is scheduled for the same net in the meantime. With an inertial delay 
model, puls es are not propagated, if the width of a pul se is shorter than the 
delay specified. Note that the actual delay value may vary for different condi
tions. 
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In [Ram92], a modelling technique for timing effects is presented as well as 
more complex delay functions like the edge triggered inertial delay function 
and the smoothing transport delay function. For many applications, these 
very detailed timing models are not required . 

The cancelled event 

An eventof type cancelled is used to indicate that an event does not require 
further processing in subsequent phases of the simulation algorithm. Differ
ent phases in the simwation algorithm can convert an event of most other 
types into the type cancelled. N ormally, this event type is only used internally 
by the simulator. Currently, cancellation is used in the preprocessing phase 
ofthe simwation algorithm for the nomina! delay event types to prevent fur
ther processing. 

The simulation control and synchronization event types 

Several event types are defined to control and to synchronize the simulator: 

• An interrupt event suspends the simwation run unconditionally. Simula
tion can he resumed afterwards without any restriction. Interrupt events 
are scheduled out-of-band, i.e. they are added in a special queue, which is 
processed before all other events are processed. 

• An event of type synchronize is used to synchronize the internal time 
doek with external processes. This is for instanee used if an external simu
lator is connected to theevent handler using inter-process communication. 
Events ofthis type are processed in a different way than other events. More 
information on this can he found in chapter 3. 

• A timeout event is used to notify that some condition has not occurred in 
time. Normally, the occurrence ofthis condition cancels the timeout event. 

The action event 

This type of event allows to extend the functionality of the simwation algo
rithm.lt can he used to execute specific tasks, which are related to the simu
lation experiment, and, to extend the simulator with new domains or abstrac
tion levels. The following data can he specified for this event type: the function 
that has to he called during processing, the time after which theevent has to 
he called and an additional data field (which is often called a elient data field). 

In principle, all simwation tasks could he executed using the action event. 
However, this would reduce the performance of the simulator significantly, 
since the processing of each event would require an additional function call. 
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2.4.3 Examples using various delay models 

Different delay models are associated with the various event types described 
in the previous section. The nomina} delay model is the most simple one and 
is less expensive with respect to computational costs than the transportand 
inertial delay models. 

Two very simple examples clearly illustrate the ditierences between nomina!, 
transport and inertial delay. In the first example, a simple inverter is used 
ha ving a constant delay of 8 ns. In figure 2.4, the output signals of inverters 
using different delay models are depicted for an arbitrary input signal. For 
a constant delay, the nomina! and transport delay model exhibit identical be
haviour. The inertial delay model has a different behaviour: it consumes all 
pulses having a length shorter than the inertial delay specified. 

input 

nomina! ·n_n· 
!---:-----;,-, I I I 1--:-0 ----! 

transport ----.-----. ............. __ · --JITlJl~' __ _J 

inertial 

' 
0 

' ' 
8 

10 

I I I I I I ' 
16 20 24 28 38 

18 26 30 

Figure 2.4. Example with nomina!, transportand inertial delay 

The second example better illustrates the differences between nomina!, 
transport and inertial delay model. In this case, a sim ple in verter is used with 
the following characteristics: 

• ifthe input raises to 1, the output will fall to 0 after 8 ns; 

• ifthe input falls to 0, the output will raise to 1 after 12 ns; 

In figure 2.5, the input signa} and the output signals for the various delay 
models are depicted. The simple nomina} delay model differs considerably 
from the transportand inertial delay models and is not really suited for mod
elling different delay conditions (e.g. a difference in rise and fall delay). For 
this particwar example, the difference in rise and fall delay causes the output 
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to stay high, although the input stays high after t = 20. This is clearly the 
wrong behaviour, since this example roodels an inverter. The problem is 
caused by the reversed order in which theevents ofthe pulse between t = 18 
and t = 20 are processed. This annihilates the effect ofthe last input change. 

input 

nomina! 
I 

' !U ' 

' ' ' ' ' n transport--.,---., 

I 
' 

' ' ' ' ' 
' 

inertial 

' ' ' ' ' ' . 
8 16 20 24 30 

10 18 22 

Figure 2.5. Example with nominal, transportand inertial delay 

2.4.4 Delta delay events 

During simulation, events are normally generated and scheduled with a 
delay value t11 > 0. It is also possible to schedule events with a delay value 
of 0. Such a delay is called a delta delay. A delta delay is an infinitesemal 
delay, that does notforward the simwation time. The number of delta delay 
steps that may lie between two simwation time points is not determined. A 
complete simulation run could end at simwation time 0 after iterating 
through many delta time delay steps. In literature, the time points ofthe sim
wation doek and the delta time points in between are sometimes referred to 
as macro time and micro time [Bel93]. 

The delta delay is used in a simulator to be able to handle concurrency using 
a sequentia! algorithm: events that are scheduled for the sametime point are 
handled sequentially in an event driven simulator. The processing order may 
not influence the assignment ofvalues to variables in the model: therefore the 
assignment itself is delayed for an infinitesimal delay allowing that the cur
rent values of all variables will be used before any assignment is being done. 
Once, all assignments are scheduled using the proper values ofthe variables, 
the new values are assigned to the variables. This technique allows to swap 
the values oftwo variables without a temporary variable. 
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2.5 Event processing and management 

During the simulation of a model, events are generated as various compo
nents of the model are executed. These events need to he stored in a data 
structure and are retrieved by the simulator at the proper time point. These 
data structures need to he optimized with respecttoevent insertion, deletion 
and traversal. Which data structure is more suitable, depends on the simula
tion algorithm used, the time advance strategy and the delay models of the 
components. 

Various data structures can he used to implement an event queue. The most 
simple implementation is a linked list. The time complexity ofinserting and 
deleting events is 0 ( N). Other implementations of an event queue are binary 
search trees, heaps and Fibonacci heaps with better time complexity for the 
various operations. 

There are also more specialized data structures, that are often used to impie
ment event queues. The time of each event is used to store the event at the 
proper place in the event queue. An example of this is a linear indexed list 
[Kle84]: this list contains a number ofheaders that pointtoa list containing 
events fora particular time point or time interval. Depending on the orga
nization and the resolution of the time, the time complexity of inserting an 
even t is linear in the number of time point headers. This approach can he used 
for both time advance strategies. 

Iftime can he represented by a natural number, w hich is the case if a fixed-in
crement time advance is used, then the use of a timewheel is an efficient way 
to store and retrieve events [Ulr69]. Each slot in this timewheel is called an 
event list header (ELH), which gives access to allevents scheduled fora par
ticular time point. Each ELH points to the first and lastevent scheduled for 
this time point using a startand end pointer (see figure 2.6). Besides regular 
events, the ELH may also point to other event lists, like the list storing out 
ofband events. 

Out of bandevents are used to control the simulation algorithm and to per
form dedicated tasks. They could he coded in the simulation algorithm as 
well, but this would result in checking their occurrence with each pass ofthe 
simulation loop. As an example, the interrupt event is always scheduled out 
of band. Scheduling the interrupteventas a regular event, would require an 
additional preprocessing step to detect its occurrence. Alternatively, restor
ing theevent queue after the detection of an interrupt requires to store their 
original and new types. 

Insertion of an eventin the timewheel is accessing the end pointer ofthe ap
propriate event list. This operation takes 0(1) (constant) time. Deleting spe-
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Figure 2~6. Data structure to store events 

cific events from the timewheel is a time-consuming operation: deleting all 
events scheduled for a particular net implies that the whole data structure 
has to be searched. Therefore, all events scheduled fora particular net may 
be linked into a doubly linked list. Each net driver, as the he ad of this list is 
called, gives easy access to an ordered list of events (with respect to time) 
scheduled for that net. Only specific nets require this additional data struc
ture for easy removal of events: this strongly depends on the delay roodels 
used for the ports, that drive the net. 

Events, which are scheduled with a delay greater than the size of the time
wheel, require an additional data structure for storage. These events are put 
on an overflow list, which is a doubly linked list for easy insertion and deletion 
of eve'nts. Insertion ordeletion of events in the overflow list, is more expensive 
than inserting it in the time-wheel itself. Therefore, theevents stored in the 
overflow list are nottransferred to the time-wheel each time alleventsfora 
particular time point are processed, but periodically after processing all en
tries once (a complete turn ofthe wheel). 

Algorithm 2.1 shows a simpleversion of a simulation algorithm using a fixed
time increment strategy. After (re-)initialization ofthe internal simulation 
modeland the simulator, a loop is repeatedly executed processing events gen
erated for a particular time point. Another loop is embedded into this loop to 
be able to process delta delay events. 
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Algorithm 2.1: Event driven simwation algorithm 

1. init_update_simulation_state (); /* initialisation of simulator •; 
2. do { /* handle all events tor current time point •; 
3. transfer_overflow_list_events () ; 
4. do { /*handle all events tor current delta *I 
5. process_oob_events () ;/* out-of-band events */ 
6. if (continue_processing) { 
7. unlink_event_list (); 
8. select_active_modules (); 
9. process_active_modules (); 
10. 
11. handle_system_interface (); 
12. } while ('delta events scheduled'); 
13. tsim : = tsim + 1; / * fixed-increment of one time unit *I · 
14. } while ('events scheduled' or 'stop condition' = true); 
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In algorithm 2.2, the event processing routines for the nominal delay types 
are shown in more detail. In algorithm 2.1, the preprocessing is handled in 
line 8, and the processing in line 9. 

Algorithm 2.2: Event processing for nominal delay types 

1. const wheelsize = 1 024; /* size is arbitrary here *I 
2. TimeWheel wheel (wheelsize]; 
3. Queue evlist; 
4. Event event; 
5. 
6. evlist = wheel ltsim mod wheelsize]; 
7. wheel [tsimmod wheelsize] = 0; 
8. 
9. /* preprocessing phase •; 
10. foreach (event E evlist) 
11 . switch type ( event) { 
12. normal: 
13. if ( value(event) == value(net) ) 
14. then { 
15. type(event) = cancelled; 
16. break; 
17. 
18. /* fall through */ 
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19. 
20. 
21. 
22. 
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refrain, trigger: 
value(net) = value(event); 

default: /* error: unknown type of event */ 

23. /*processing phase */ 
24. foreach (event E evlist) 
25. switch type (event) { 
26. normal, trigger: 
27. process_fanout_list (net(event)); 
28. break; 
29. default: /* error: unknown type of event *I 
30. 
31 .... 

This section described the kernel ofthe event driven simulator. The next sec
tion will descri he how this simulator is embedded into ESCAPE and tightly inte
grated with the other parts ofthe simwation environment. 

2.6 Interaction between simulator and editor 

System validation not only requires much computational time, but also much 
time spent by the designer to iterate through the design cycle. Developments 
for simulators have mostly been focussed on the first aspect: building more 
powerlul simulators for various abstraction levels. The second aspect, the re
ducti9n ofthe overall design time, is also very important for fast simulation. 
Examples of situations, where it helpstoreduce design time, are: 

• The prototyping of an initia} specification of a system. Such a prototype is 
executable in the sense that it can he simulated. It serves as a master refer
ence throughout the rest of the design process. 

• Debugging and re-simulating a system description. Each iteration in
volves editing the description, compiling the underlying net list, simulating 
the system and analysing the results. 

In [Hey88], the architecture of a highly integrated simwation system is de
scribed. The often used text-based interfaces between CAD tools are replaced 
by a persistent programming technique, that handles communication of data 
between tools. The tools have access toa common database. Files in the data
base are viewed as an extension ofthe memory, that is dynamically allocated 
by a tool. This mechanism is known as a persistent heap. The implementation 
ofthis heap uses the file system to realize the communication between vari-
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ous CAD tools. The efficiency and performance ofthis technique is quite low, 
iffast interaction between two or more CAD tools is required. 

In ESCAPE, the integration between the various tools, the graphics editor and 
the simulator to be more specific, is achieved by integrating them into a single 
tooi: theeditorand simulator run in the same address space and share all 
data kept in memory. Ho wever, the requirements of data structures to manip
ulate graphics data efficiently are completely different from the require
ments of data structures to simulate a networkof components with an event 
driven simwation algorithm. Therefore, both a graphics and a network data 
structure are used, in which design objects may be stored as two different 
data objects. 

In tigure 2. 7, the relations between the dataobjectsin the network data stroc
ture and the graphics data structure are depicted. In the graphics data struc
ture, some objects are stored hierarchically in order to reduce the number of 
objects that have to be queried during a search: symbols and ports of an 
instanee arestoredas data of an instance. 

network 
data structure 

grapbics 
data structure 

* : hierarchical relation 

Figure 2.7. Relations between objectsin network view 

The graphics data structure stores all data related to the positions, sizes and 
relations ofthe graphical objects. The following operations are the most im
portant ones: 

• an insert of an object, 
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• a deletion of an object, 

• a point query, 

• a region query. 

Performance and memory requirements are the most important aspects of a 
data structure storing geometrical data. In literature, various data struc
tures have been described [Ros85]. In ESCAPE, three different data structures 
have been implemented and can be selected by the designer: 

• a linked list; 

• a multiple storage radix hash tree [Fon87]; 

• a storage minimizing automatic level sifting database for two-dimensional 
object location [She90]. 

The use ofthe region query data structures is often more useful in batch tools 
than in interactive editors. This is in particular true for schematics because 
the density of the objects is less than the density of objects in a layout. The 
performance of the linked list is suilleient for most applications. The opera
tions applied to very large schematics (more than 500000 objects) can be 
executed without observable delay to the designer. The memory require
ments of a linked list are also much lower than of the other two data struc
tures. Therefore, for most examples the linked list has been used as the 
grapbics data structure. 

Algorithm 2.3 shows a simple example of an incremental update ofthe data 
structures afteradding a new wire to the network view. First, a grapbics ob
ject of typewireis created. This object is stored in the grapbics data structure. 
In line 3, the grapbics data structure is searched for objects that touch or over
lap the bounding box ofthis wire. The objects, that are found with tbis query, 
are stored in a buffer. 

The objectsin the buffer are examined one by one. The relative position with 
respect to the wire and the type ofthe object determine how the network data 
structure is affected. This may lead to one or more ofthe following actions in 
the network data structure: 

• the creation of a new net; 

• the joining of two or more nets; 

• the addition of an input or output terminal of a module to a net; 

• the addition of a primary input or output to a net. 

Combinations of the actions above may occur as well. 
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Each cammand supported by the editor updates both graphics and network 
data structures in a similar way. Although the overall structure of algorithm 
2.3 seems simple, it is a quite complicated task to keep the data structures 
up-to-date and consistent for various editing commands or combinations of 
those commands. Despite this complexity, even complex operations, that ma
nipulate hundreds of objects with a single command, allow incremental up
dates of all data structures without observable delays. 

Algorithm 2.3: Example of updating data structures incrementally 

1 . /* add wire */ 
2. wire = CreateWire ( ..... ); 
3. AddToGraphicsDb (db, wire ); 
4. ;w use graphics data structure to update network data structure */ 
5. RegionSearchGraphicsDb (db, resbuf, wire->bounding_box ); 
6. while ( ! objbuf_empty ( resbuf) ) { 
7. object= get_from_objbuf ( resbuf ); 
8. switch ( object->type ) { 
9. case wire: 
10. 
11 . case instance: 
12. 
13. case primary_port: 
14. 
15. 
16.} 

The incremental updates on the data structures required by the simulator al
low fast interaction between the editors and the simulator integrated in the 
system. The following interaction models are implemented: 

• Tool context switching. Using this interaction model, the simulator has to 
he halted before any modification ofthe design is made. After editing and 
debugging the design, the simulator can restart immediately without re
compilation of the underlying net list. This interaction model closely re
sem bles the traditional way of editing and simulating a design. However, 
the tight integration of editor and simulator in a single tooi strongly re
duces the overall design time. 

• Run-time updating. Using this interaction model, the design data, that is 
accessed by the simulator, can he modified while the simulator is running. 
Such modifications are a pplied to the designdata after the processing ofthe 
events scheduled for a particwar time point or, to he more specific, a delta 
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time point. In algorithm 2.1, this interaction is handled in line 11. After up
dating the design data, the simulator continues at its current state. Note 
that this state can be changed as a side effect: as an example consider the 
deletion of a net, which causes allevents scheduled for that netto be deleted 
as well. 

Run-time updating is a more interactive approach than tool context switch
ing. It may be very useful, if a designer wants to change the behaviour of a 
module to explore the design space. For instance, a designer could change ei
ther the delay model or the delay val u es of a specific model. It is also possible 
to induce a fault in the modeland to investigate its influence on the behaviour 
ofthe model. Run-time updating is a technique that adds some overhead dur
ing the editing and simwation of a system, since more consistency checks 
have to be performed and more data needs to be updated. Usually, run-time 
updating is allowed for modifying the behaviour of a primitive module, where
as tool context switching is used for modifying the structure of a composite 
module. 

Using tool context switching, the design cycle time may be reduced even fur
ther by applying an incremental simwation algorithm [Cho89]. An incremen
tal simwation algorithm only simulates those partsof a design that have been 
modified since a previous simwation run. This means that the simwation re
sults of a previous simwation run are incrementally updated for those parts 
of the design that have been modified: the computational costs are propor
tional to the size ofthe modifications and not to the overall size ofthe system. 
This is possible by storing simulation state data from the previous simwation 
run as well as modifications during an edit session. 

Various implementations are possible of an incremental simwation algo
rithm: 

• an incremental-in-space algorithm is described in [Hwa87]. Components 
that are modified are marked by sending modification tokens to the simula
tor [Hwa88]. These components may affect other componentsintheir fan
out trees as well: these nodes are modified by a traversal algorithm prior 
to simulation. After marking all possibly affected components, the simula
tor only simulates the marked components using theevent histories ofthe 
components at the boundary ofthe affected area as input values. 

• An incremental-in-time algorithm is described in [Cho88] . This algorithm 
only simulates those components ofthe system, whoseinput values or in
ternal states are different from the values ofthe previous simwation run. 
Components, whoseinput values or internal states differ from the previous 
run, are called active and the other components are called inactive. Simula-
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tion starts by scheduling all active components. Active components will re
peatedly be scheduled until they become inactive. 

In [Cho88], it is stated that the incremental-in-space algorithm is more effi
cient, if the components of the system have many internal state variables. 
The incremental-in-time algorithm is preferred for systems with feedback 
loops and busses and without components with many internal state vari
ables. In [Jon92], a different incremental simwation technique is used in an 
zero/integer delay switch-level simulator. Like ESCAPE, the simulator is inte
grated with a schematic capture in a single tooi. 

At higher levels of abstraction, the application of an incremental simwation 
algorithm is less useful, since both time-shifts and the use of more abstract 
data types require massive re-simulation. The influence oftime shifts on re
simulation is depicted in figure 2.8: it shows two signals, ofwhich sigrial Bis 
delayed in time with respect to signa! A. It is important to note that signa! A 
is the result ofthe first simwation runfora particwar net and signa! Bis the 
result of the second simwation run for the same net. For instance, the delay 
ofthe component driving the net has been increased by L1 T. In an incremental 
simulator, this time-shift would have resulted in many events, that mark 
time points for re-simulation. 

signa! A 

I I I I 

events I I I I I I I 

Figure 2.8. Events due to time shift between signals A and 8 

It is a topic for future research to investigate, in which cases it is more useful 
to re-simulate the system completely using a conventional simwation algo
rithm and in which cases an incremental simwation algorithm is best applied 
to re-simulate the system. It might even be possible to use a combination of 
both strategies for different parts ofthe system. A disadvantage ofusing an 
incremental simwation algorithm is the storage of a huge amount of simula-
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tion data from the previous simwation run. This may limit the use ofsuch a 
technique because of memory requirements. 

2. 7 Animation 

Most simulators store their results in large files, which can be viewed as large 
listings or as signal diagramsusinga signal viewer. Alternatively, design sys
tems often provide back annotation onto the schematic as an additional 
means to examine simwation results. The increasing size and complexity of 
systems makes the analysis of simwation results a large and complicated 
task. Often, system designers create a high level specificabon of the system. 
This specificabon serves as a basis for other designers to further implement 
the system into silicon. A clear understanding of the system's functionality 
and of the interaction between the various subsystems reduces misunder
standings about the implementation. 

In genera!, run-time animation is a very useful feature in a simwation envi
ronment, since 

• it helps other designers to understand complex system behaviour more eas
ily and more intuitively; 

• errors are detected and corrected more easily; therefore, it facilitates de
bugging; 

• communication between the increasingly large number of independent 
modules becomes more important. Visualization techniques help under
stand this communication behaviour. 

In ESCAPE, animated simwation is supported in the LISP-like HDL. Special 
statements allow highlighting of nets and modules on specific conditions. 
This is used to show how the system operates. Additional modulescan easily 
be added to the simwation model: such modules are used to model the envi
ronment ofthe system. An example is the railroad example presented in chap
ter 4. 

Although animation greatly helps to understand the operation ofthe system, 
it has a disadvantage: it greatly reduces the performance of the simulation. 
Especially, in a tightly integrated system like ESCAPE, each animation request 
decreases simwation performance. Therefore, animation should only be used 
for high-level models, where performance is not a dominating issue. A de
signer can control the animation interactively during simwation and thus 
make a trade-off between performance and the level of animation. 

Simwation results can also be presentedinspecial purpose view windows. An 
example of such a window is a frequency analyzer display, which shows the 
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spectrum of a specific signal. Such a window is coupledtoa signal by connect
ing the appropriate module to that signal. Such functionality is found insome 
commercially available DSP application development environments. Howev
er, most of these display windows are provided by the vendor and are only cus
tomizable through some parameters. In ESCAPE, new displaywindowsare eas
ily added to the system using the foreign language interface (see section 
3.2.1). 

2.8 Discrete event monitors 

The validation of a design is an important activity in the design process, be
cause undetected errors may cause expensive redesigns and delay the design 
project. Because ofthe increasing level of complexity, it is becoming more and 
more time-consuming fora designer to obtain an acceptable level of conti
denee in the correctness of the design. This problem can he alleviated by a 
tighter integration of evalaation and analysis methods into the design envi
ronment [Bus89, Aug90]. 

A complex and time-consuming part ofthe validation processis the analysis 
ofthe simwation results and the detection of erroneous behaviour. Therefore 
the ability to check ifthe simulated behaviour is consistent with a given set of 
requirements, would improve the efficiency of the validation process, espe
cially ifthis is done duringa simwation run. This involves the two subprob
lems of specifying how the design is supposed to behave, and comparing the 
simulated behaviour with the specified requirements. In this section the lat
ter pro blem is discussed in the context of event driven simulation. This covers 
many simulators used today at various abstractions levels, including simula
tors for popular hardware description languages like VHDLand Verilog. 

Most hardware description languages are primarily aimed at specifying a de
sign by descrihing a model that implements the desired behaviour at some 
level of abstraction. Only limited support is provided to express the properties 
the model should comply with. For example, VHDL provides the assert 
construct to check constraints on the state of a model at specific points in time. 
More complex conditions involving time can he included by extending the de
scription ofthe system with additional modules. It may even he necessary to 
extend the interface of existing modules in the design to make parts ofthe in
ternal state observable from the outside. These modifications usually lead to 
less comprehensible models and may even introduce new errors in the design. 

In [Aug90], the VAL language is proposed as an annotation language for 
VHDL. It extends the language with a small set ofnew constrocts for abstract 
specification. For example, it is possible to express complex timing 
constraints on signals. A preprocessor is used to translate an annotated de-
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scription to a regular VHDL description which automatically checks if the 
simulated behaviour complies with the abstract specifications. In [Gen92), 
the language is extended withso-called event pattern mappings to reduce the 
complexity of the simulation results. It is based on recursively recognizing 
and naming patterns of events. This enables the designer to view the simula
tion results on a higher level of abstraction, and therefore effectively reduces 
the amount of information that has to he inspected. The presented imple
mentation analyses the event traces of the simwation in a post-processing 
step. 

There exist numerous methods to specify requirements imposed on a design. 
For example, timing diagrams are frequently used to specify both qualitative 
and quantitative timing constraints. In [Bor92), a formal version of these dia
grams is proposed, which also covers more complex aspects such as timing 
constraints on conditional and iterative event sequences. It would he very 
useful if such constraints could he combined with a design specification, inde
pendent ofthe languages used to describe this specification. 

In a discrete event simulator, the behaviour ofthe simwation model is charac
terized by theevent trace that is generated duringa simwation run. To ana
lyse this trace, a general mechanism is required to inspeet the events sched
uled for specific state variables and nets in the model. The main requirements 
for such a mechanism are that it does not influence the simwation results and 
that it has an acceptable effect on the performance ofthe simulator. Further
more, it must he applicable to different simwation algorithms, modelsof com
putation and abstraction levels. Therefore, the concept of a discrete event 
monitor is introduced. 

DEFINITION 2.4: A discrete event monitor (DEM) is an object which observes 
theevents generated and processed for specific elementsin 
the simulation model. · 

Although DEMs can he used as a post-processing step of a simwation run, 
they are intended to he embedded in the discrete event simulator itself. In an 
incremental simwation environment [Cho88, Jon92), this concept especially 
contributes to efficient validation of system behaviour, as it can he used to ob
serve theevents that model the differences with respect to the previous simu
lation run. 

ADEM specification consists ofthree parts: an interface part, a declaration 
partand the part that defines the functions supported by the DEM (see tigure 
2.9). 
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dem (net ... , net ... , dem ... ) /*interface */ 
{ 

/* declarations *I 
state ... ; 

I* internal functions */ 
init { ... } 
exec { ... } 
exit { ... } 
report { ... } 

Figure 2.9. Global structure of a DEM specification. 
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In the interface part, the variables which relate to the simulation modeland 
other DEMs are specified. During instantiation ofthe DEM, each variabie in 
the interface part is attached to an object in the simulation modelor another 
instantiation of aDEM. This mapping is described separately to make the 
specificabons reusable. Currently, the following types of variables are al
lowed in the interface part: 

• A net variabie is used to access the events which are scheduled for the net 
to which this variabie is attached. 

• A module variabie is used to access the intern al variables (forinstance state 
variables) ofthe module it is attached to. 

• ADEM variabie is the port, on which higher level events can he scheduled 
by a DEM. Such an event will immediately activate the monitors that are 
attached to this variable. Note that aDEM can only schedule events that 
activa te other DEMs, but it is notallowed to schedule events that influence 
the simulation model itself. 

In figure 2.10, the relationship between the objectsin the simulation model 
and the DEMs are depicted. 

In the declaration part, state variables may he declared: they are used to store 
the state ofthe monitor and may have different (abstract) types. Each instan
tiation of a monitor allocates its own state variables, which can he accessed by 
the DEM's internal functions. Currently, the following definitions ofinternal 
functions can he specified: 

• The init function, which is called before the first event is processed. This 
function can he used to initialize internal DEM variables and to allocate 
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Figure 2.10. Relations between the simuiatien model and discrete 
event monitors 

additional resources required by the monitor. Note that state variables are 
allocated by the create function during instantiation ofthe DEM. 

• The exec function, which is called if an input variabie of the monitor re
ceives an event. In this function, new events can be scheduled, which acti
vate other monitors at higher levels. In addition, specialevent typescan be 
scheduled, which are handled by the simulator to detect time outs and oth
er exceptions. Note that this does not influence the simulation model itself, 
but that this events are used to present this information to the designer. 

• The exit function, which is called after the simulation run has finished. It 
is used to evaluate the final state ofthe monitor and to clean up resources. 

• The report function of a monitor is used to evaluate the current state of a 
monitor and to collect statistica} information of a simulation run. It may be 
called any time by the user but could also be embedded into the simulation 
algorithm. 

DEMs can be specified using a conventional programming language. The 
DEM specification has its own syntax that is translated in C language 
constructs by a preprocessor. After processing, it can be compiled and linked 
with the simulator. In case of ESCAPE, this preprocessing is handled internally 
and the result may he loaded dynamically after compilation. 

In algorithm 2.4, the operation ofDEMs within a discrete event algorithm is 
shown. The algorithm presented here is a slightly modified version of algo
rithm 2.1. First, the model is initialized by initializing all nets and modules 
(steps 1 and 2). The behavioural descriptions of all modules are executed to 
activate the modules. This results in the generation of events, which will be 
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processed by the simulation loop. The last step of the initialization phase is 
the activation of all DEMs,just before the processing of events starts (step 3). 

Algorithm 2.4: Simulation algorithm with DEM interface 

1. foreach ( n E N) init_net ( n ); 
2. foreach ( m E M) init_module ( m ); 
3. foreach ( d E DEM ) init_dem ( d ); 
4. repeat { 
5. foreach ( event E queue ( ~)) preprocess_event ( event ); 
6. foreach ( event E queue ( ~)) { 
7. execute_dems ( event ); 
8. foreach ( m E fanout (net ( event ))) execute_module ( m ); 

9. ~ = .1 + 1; 
} until event queue empty; 

10. foreach ( d E DEM ) exit_dem ( d ); 

A DEM can pass information to another DEM by scheduling higher level 
events for that DEM. This raises the level of abstraction and therefore re
duces the number of events that has to be examined by the designer. If an er
ror is detected at the highest abstraction level, it can be traeed back to its 
souree in the simulation model (see figure 2.11). This is achieved by repeated
ly annotating the souree ofthe eventinto theevent itself. lnteracting DEMs 
can herepresentedas a directed acyclic graph. Usually, this graph is a tree. If 
a DEM schedules an event foranother monitor, this monitor is immediately 
activitated. No additional delay model is associated with these events, since 
this could he the souree of more misunderstandings about the interpretation 
of the simulation results. 

2.8.1 Discrete event automata 

DEMs are specified using a convential programming language. Although this 
does not impose any restrietion on descrihing the DEM, the user needs to 
know some implementation details. Therefore, a specification language for 
DEMs has been developed. This language also serves as an intermedia te lan
guage to facilitate the integration of other specification methods like timing 
diagrams. 

The underlying model ofthis specification language is a deterministic autom
aton in which transitions are labelled with conditions and actions. The condi-
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Figure 2.11. Event propagation and trace back to simuiatien model 

tions define theevents inducing a transition. The conditions can include the 
values of state variables and the attributes of an event. The actions descri he 
the effects of a transition, which may include the generation ofnew events for 
other discrete event monitors. This model is expressive enough for descrihing 
a large class of constraints, and can be executed efficiently duringa simula
tion run. A description in this specification language is called a discrete euent 
autornaton (DEA). 

In tigure 2.13, an example is given of a DEA which validates the correctness 
of a dual rail encoded interface. The states ofthis autornaton are depicted in 
tigure 2.12. This example is used to illustrate the main aspects of the lan
guage. The header specifies the name ofthe DEA and declares its parameters. 
In this particwar case, the parameters are the three nets on which the com
munication takes place. The body ofthe description consists oftwo sections, 
which respectively deelare the state variables and specify the behaviour of 
the automaton. Optionally, a third section can he added to customize the way 
the information about the state is reported to the user. 
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Figure 2.12. Discrete event autornaton of dual rail encoded interface 

monitor dual_rail_decoder (net d1, net dO, net ack) 
/* This monitor checks the correctness of a dual rail 

encoded interface and translates the data transfers 
to higher level events. *I 

variables { 
int data; 

process { 
while (true) { 

select { / * valid data */ 
d1.up : data = true; 
dO.up : data = false; 

} ; 
event (data) ; /* create high- level event *I 
select {ack.up}; /* acknowledge */ 
if (data== true) /* invalidation of data */ 

select {d1.down}; 
el se 

select {dO.down}; 
select {ack.down}; /* invalidation of acknowledge *I 

Figure 2.13. An example of a discrete event automaton. 
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The select statement is the main construct to define the behaviour of a DEA. 
This statement specifies a single state ofthe autornaton and the transitions 
leaving that state. Each transition is defined by a set of event labels and the 
corresponding actions. An event label specifies the object for which theevent 
must he scheduled, the value ofthe eventand optionally the type ofthe event. 
By default, a transition sets the autornaton to the next sequentia} state. Con
trol structures are provided to support the description of conditional and re
peating patterns of behaviour. As a result, many requirements can he de
scribed very concisely by a DEA. Every state can he given a name, although 
this is not shown in the example. 

The event statement can he used to generate events for other DEA.s. In the 
example, every successful data transfer results in the generation of a new 
event, that can he processed by aDEM at a higher level, ifno explicit destina
tion is given. This is normally the parent in the hierarchy ofDEMs (as in this 
example). It also shows how DEAs can he used to implement event pattem 
mappings [Gen92]. These mappings are very useful for comparing a detailed 
simwation model with a specification at a higher level of abstraction. 

2.8.2 Examples and results 

DEMs have been used to validate event traces ofvarious examples. The prim
itive componentsof all examples are modelled using the LISP-like hardware 
description language supported by ESCAPE. The following examples are pres
ented in table 2.1: 

• An implementation of the asynchronous two place ripple buffer presented 
insection 1.3. For this example, the absence ofunexpected request and ac
knowledgement events has been validated. 

• An abstract model of a railroad. The model is composed oftwo abstraction 
layers: one layer models the environment, in particwar the transportation 
of the trains, and the other one models the control a spects of the system. 
The handshake protocol used to move the trains has been validated. This 
example is presented in chapter 4. 

• An architectural model fora Kulisch inner product chip . The timing ofthe 
adder stations in the model has been validated. This example is also pres
ented in chapter 4. 

These examples differ considerably in size and complexity, both in the struc
tural and the behavioural respect. The complexity ofthe DEMs is comparable 
to that ofthe DEA shown in tigure 2.13. 
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Table 2.1. Effect of DEMs on simulation performance 

Model 
#DEMs %DEM 

name #mods #nets time 

ripple buffer 14 38 4 5.4 

8 5.5 
16 6.3 

railroad 483 1480 4 4.9 

8 5.5 
16 6.2 

Kulisch 679 754 2 2.3 
inner product 4 2.6 

chip 8 3.0 

The results show that little overhead is introduced by extending the simula
tion algorithm to support DEMs. Of course this also depends on the cornplex
ity and internal structure ofthe simulation modeland the connected DEMs. 
Forthese particular examples, the total decreasein performance is less than 
7%. Comparable results have been found for other simulation models. This 
demonstrates the efficiency of the proposed methods and the applied imple
mentation techniques. 

2.9 Hierarchy 

In the previous sections, a system is described using a two-level representa
tion: the system is composed of a number of subsystems or modules, which are 
interconnected by nets: one top level description of a composite module con
sisting of a number ofprimitive modules. Each primitive module has a beha
vioural description. However, most systems use structural hierarchy to man
age the complexity of descrihing a large system and to reduce the total 
amount of design data. Hierarchy can also he used for behavioural decomposi
tion of complex system at high abstraction levels. 

In ESCAPE, the management ofhierarchy presents some additional problems. 
In section 2.6, the interaction models between the editor and the simulator 
have been described: a modification incrementally updates all data struc
tures. Using hierarchy, the composite module, in which the modification is 
made, may he used multiple times or even in a hierarchy of a nother top level 
description. The basic problem is how to propagate these modifications 
through the hierarchy and which instantiations of the modified module 
should he replaced or modified as well. 
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With a hierarchical approach, a system is represented as a collection aftwo
level hierarchical designs in an editor. In the ESCAPE terminology, a network 
view of a design contains instantiations of syrnbol views of other designs. If 
one selects one design as the top level ofthe description, it is possible to com
pose a hierarchical treefromthese parent/child relationships. Figure 2.14 de
picts a very simple representation of such a hierarchy showing the relations 
between various modules. In this figure, Ristheroot design, 3 and 5 are com
posite modules, and the other modules are primitive. 

Figure 2.14. Two-level (hierarchical) representation 

Simulation or verification tools usually require that such a description is flat
tened (for instance, VHDL simulators may compile the hierarchy into a 
nested function call hierarchy). Flattening means that the hierarchy is ex
panded into a singletwo-level description (see figure 2.15). This expansion 
recursively replaces each composite module by its network view description, 
which consistsof a number of modules connected by nets, while connections 
are properly updated. After flattening, the resulting system description only 
contains primitive modules with a proper model of computation. 

Figure 2.15. Simulation representation of designRafter expansion. 

Flatteningis often embedded into a net list compiler, which compiles a hierar
ebical description into a format or data structure, that can be accessed by a 
simulator. In a traditional environment, netlist compilation is performed by 
a separate tooi or by the simulator prior to a simwation run. Small modifica
tions in a description often result in long compilation times ofthe underlying 
net list, because the hierarchy has to be expanded and flattened again. This 
problem is prevented by keeping the resulting hierarchy up-to-date and by 
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propagating all modifications in a description through the whole hierarchy. 
This results in an incremental approach for the complete hierarchy. 

2.9.1 Related work 

Last years, some attention has been paid to incremental net listing to reduce 
excessive re-compilation times. In [Jon89a], a technique is described that al
lows incremental net list compilation. The technique is fast enough to update 
designs, that are being modified in the testing phase, without observable de
lays. The underlying data structure for this compilation technique is a design 
DAG, which is a more compact representation of a hierarchical tree. This rep
resentation is described in more detail in [Jon89] together with online/offiine 
netlist compilation techniques. 

In [Cae93], a process-Ievel debugger for the GRAPE environment is de
scribed. This debugger animates program behaviour of complex parallel pro
grams using a hierarchical graphical representation. During debugging, a 
top-down approach is used: the level of detail of erroneous processes can he 
expanded. A record-replay mechanism guarantees reproducible program be
haviour. Although the designer can select the level of detail in the graphical 
representation (by expanding the hierarchy), the underlying model is always 
completely executed. This zoomingapproach is not possible, ifthe underlying 
model is modified as well, for instanee replacing a model with its more de
tailed implementation. The record-replay mechanism can only reproduce the 
original behaviour, ifno state variables are presentor ifthe execution ofthe 
model is fully repeated. 

2.9.2 Managing hierarchy 

In section 2.6, the interaction strategies between editor and simulator have 
been explained for a flat model. In this section, it is explained how hierarchy 
is represented that allows easy interaction between editor and simulator. It 
is basedon the idea to keep both the (partial) flattened net listand the hierar
ebical data, from which this net list is derived, up-to-date. 

Some additional advantages of these methods are 

• it allows easy switching between different simulation configurations: a 
structural and hierarchical description of part ofthe system is replaced by 
a behavioural one or vice versa. 

• it allows interactive expansion or reduction of (parts of) the hierarchy. 

In tigure 2.16, the relations between various objectsof a composite module 
and its implementation are depicted using dashed arrows . These are required 
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to keep the hierarchy up-to-date. Note that the composite module is normal
ly embedden into another composite module and that its ports are connected 
tonets in that module. These relations may he used to build two alternative 
representations of a hierarchical design. 

/1 i ~\ / jl \ 
/ / . \ 

• - - -/- - - - - - - - - -,f - - - - J- - - - - - - - - _\. - - - - - - - -· 
' / \ 
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Figure 2.16. Relations used to maintain hierarchical information 

In the first alternative, hierarchical trees are built for the modules and nets, 
and additional data is stored in the portsofthese objects to he able to traverse 
the hierarchy. Note that ports are stored at the modules and that nets refer 
to these ports fortheir fanin and fanout lists. During expansion, a composite 
module is replaced by a copy ofthe objects described in its network view (cir
cuit). The newly created objects are merged with the existing data structure 
using parenUchild relationships. This procedure is repeated for all modules 
and stops if a primitive module is selected. 

After full expansion, a hierarchical tree is built for the modules and one hier
arebical tree per net. This method expands the hierarchy downwards: the 
primitive modules are pushed downwards and constitute the leafcells ofthe 
module tree. 

All modules, nets and portscan he accessed traversing the various trees and 
usingthe relations between the various objects. lt is difficult to present all the 
relations offigure 2.16 in a single figure for the hierarchy offigure 2.14. To 
give an impression, figure 2.17 depiets the child relations between the various 
modules afterexpansion. Note that to access all modules connected toa single 
net, the top parent ofthe net has to he found and then all subnetscan he tra
versed using the parenUchild relations ofthe subnets it is composed of. It is 
also clear, that sometimes one has to deseend in the hierarchy to access a 
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primitive module. In the flattened net list offigure 2.15 each module is im
mediately accessible at the top level. 

Figure 2.17. Expanding the hierarchical tree downwards 

This representation of a hierarchy requires the simulation algorithm to be 
changed to be able to simulate a hierarchical description. Modules at any lev
el in the hierarchy are generally connected to modules at various other levels 
in the hierarchy. Therefore, the event scheduling and processing routines 
have to be changed. If an event is scheduled fora net that spans more levels 
in the hierarchy, it will be scheduled for its top parent net, which can be found 
by traversing parentJchild relations. At the time the event is processed, the 
modules on this net's fanout list can easily be accessed by traversing the sub
nets in a recursive way (see algorithm 2.5). 

Algorithm 2.5: Processing a hierarchical fanout list 

process_fanout_list (Net net) 
{ 

Port p; 
foreach (p E net->fanouts) 
{ 

if (p->child) 
process _fanout_list (p->child->net) ; 

el se 
process_event (net, p); 

Clearly, this approach decreases the perfonnance of the simulator, if deep 
hierarcbies are used to model the system. In that case, many child relations 
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have to he traversed to access all modules connected to the net. A solution for 
this problem is the introduetion of skip pointers. Intermedia te norles in the 
hierarchy, which are fully expanded, are skipped. As a result, the leafnodes 
of the net tree representation will directly point to the top node of the net. 
During simulation, at most one additional pointer has to he traversed to ac
cess each module connected to a particular net. 

Therefore, an alternative representation ofboth net listand hierarchical in
formation may he used. To the simulator, the net list is sirnilar to a normally 
flattened net list (figure 2.15). Ho wever, it is still possible to traverse the hier
arebical data the net list is built from. 

In this representation, the composite modules are pushed downwards. To 
represent the net listand original hierarchy, the same relations are used be
tween modules, nets and ports (see figure 2.16). The original hierarchical 
relations are accessible using the parent/child relationships ofthe modules, 
nets and ports respectively. In figure 2.18, the resulting tree after expansion 
is depicted. Againjust one ofthe relationships is shown in this figure and only 
for the modules: it allows access to all modules in the expanded list and the 
composite modules they are expanded from. 

Figure 2.18. Expanding the hierarchical tree upwards 

The second expansion method does not require any modifications in the simu
lator, but it is much more complicated to keep the resulting data structure 
consistent, if modifications are made to the circuit after expansion. Many 
commands provided by the API, mostly editing commands, have to perform 
complicated actions to keep the resulting data structure up-to-date. The hi-
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erarchical infonnation, which can be accessed using the various parentlchild 
relations ofthe objects, has to be traversed frequently. 

An additional improvement is the replacement of a hierarchical tree by a di
rected acyclic graph (DAG), in which a subgraph may represent multiple co
pies ofisomorphic circuitry. However, each copy has to storesome unique data 
(e.g. the value that a particular signal carries), that has to be represented ex
plicitly in the data structure of a node. A DAG representation would facilitate 
incremental updating of the hierarchy after modifying a subdesign. 

2.9.3 Design management 

In the previous section, the management ofhierarchy using an incremental 
approach has been described. In addition to rnanaging hierarchy, each compo
nent of a system can have different implementations, simulation models and 
status during design. A component may even have multiple descriptions that 
need to be simulated using different algorithms or another simulator (see 
chapter 3). Before each simulation run starts, it has to be determined, how 
the overall simulation model is built using the hierarchy, versions and simu
lation views ofvarious components. But there are more problems associated 
with editing and simulating designs. A few examples are: 

• A child design is used as an instanee oftwo other parent designs. After sirn
ulating one of these designs, the child design has to be modified. Have these 
changes to be effectuated for the other parent design as well? 

• A specific component has multiple models of computation or behavioural 
descriptions. The system needs to track, which description is used for each 
instantiation of the design. How can this be done in a consistent way? 

• The time representation of a component may be different for various types 
ofmodels or in different simulation runs. This is especially true, if different 
types ofmodels are simulated in a single run (see chapter 3). How can the 
system maintain time parameters of a model in a consistent way? 

In genera}, the problems related to design data management are handled by 
a CAD framework [Wol93]. Such a framework manages different relations 
and aspects of design data. 

As an example, the relation between hierarchy and versioning is presented 
in figure 2.19. Consider, the hierarchical description of a nand gate, which is 
composed of an and gate and an inverter (not). If a new version is created of 
the inverter, there are two approaches to update the versions ofits ancestors. 
These approaches are referred to as dynamic and static binding ofhierarchy. 
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dynamic binding 

f----+-- version 
~-~.-'--- design 

static binding 

Figure 2.19. Dynamic and static binding of hierarchy 

The problem is that on the one hand the management of these problems 
should he an integral part ofthe simulator, but on the other hand part of these 
problems are solved by a CAD framework. Most frameworks are able to man
age at least hierarchy and versionsin a consistent way. In [Bin94], the func
tionality of a CAD framework is used to build system simwation environ
ments. 

Although a CAD framework may facilitate the use of tools and the manage
ment of simwation data, it does not solve the problem ofbuilding a simulation 
model that is composed of a number of submodels, in particwar if these sub
roodels are of a different type. Therefore, the management of data related to 
the design and the underlying simwation model is an important parameter 
in the development of a simwation tool or environment itself. 



Chapter 

3 Multi-model simulation 

3.1 Introduetion 

In the previous chapter, the discrete event simulator and its embedding into 
ESCAPE have been discussed in detail. In this chapter, it is explained how the 
discrete event simulator of ESCAPE is extended to support simwation of differ
ent models of computation. This support is required 

• to be able to simulate differentmodelsof computation (atthe highest levels 
of abstraction, in particwar the system level); 

• to be able to simulate partial implementations at lower levels of abstrac
tion. 

The motivation for the ability to simulate differentmodelsof computation is 
thatin nearfuture complete systems like telecommunication and multimedia 
systems are going to he integrated into a single IC. These systems consist of 
digital components such as DSP cores, general purpose processor cores and 
standard logic cells, analog components and embedded memories, and, the 
software that is mapped into these memories. There is also a tendency that 
processor cores are bought from other parties together with simwation and 
verification models. These models have to he integrated with modelsof other 
parts ofthe system to create an overall model that is executable or simulat
able. 

The motivation for the ability to simulate partial implementations is that it 
is impossible to simulate a complete system at a low abstraction level, each 
time a part ofthat system has been implemented or refined. Ifthis partial im
plementation can he simulated together with the rest ofthe system modelled 
at a higher abstraction level, the operation of that implementation is more 
easily validated: the system itself provides test veetors during simulation. 

Furthermore, design flows are often adapted to particwar needs for different 
projects. Different tools are used to accomplish a specific design task. Each 
tooi may use its own descriptive means to model behaviour and other proper
ties of a design. A simulator has to he flexible enough to deal with a rapidly 
changing design flow and the descriptions used by the tools in this flow. 

59 
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Therefore a simulator must provide facilities for fast integration or coupling 
ofnew types ofsimulation models. Furthermore, the simulator must simu
late these types ofmodels together in a homogeneous way. Simulation ofvari
ous types of simulation roodels is often referred to as co-simulation. Exam
ples of types of simulation roodels that should he handled by the simulator 
are: 

• roodels documented in HDLs, that are not supported by ESCAPE; 

• roodels based on other computational paradigms; 

• analog models; 

• digital roodels with a different accuracy; 

• optimized versus non-optimized digital models; 

• software roodels (hardware/software co-design). 

The basic idea to combine these roodels into a single overall simulation model 
is to use events as the unifying mechanism. Theevent handler ofthe built-in 
event driven simulator fuiflis a central role: it controls the execution of all 
types of simwation models. The following aspects have to he dealt with: 

• different granularity of time and the representation oftime in the simula
tor. A token flow graph may even have no notion of time at all, but this re
stricts its embedding in an overall (timed) simwation model; 

• synchronization ofthe local simulation time in various components; 

• different data types and representations for the values of nets in different 
simulators. 

The following techniques are used to handle various types ofmodels in a ho
mogeneous way: 

• by using different types of events; 

• by embedding roodels with local control; 

• by using an external simulator interface. 

The terminology used in this chapter is explained by tigure 3.1. A simwation 
model of a system is composed of a hierarchical description of components. 
This hierarchy is depicted as a tree in the picture to the left. Allleafnodes in 
this tree are primitive components, whereas all other nodes are composite 
components. Each primitive component has a description ofits internal beha
viour. This may he a description in a language supported by ESCAPE or in an 
input language of an external simulator integrated with ESCAPE's simulator. 
The latter description could even contain hierarchy, ifthat is supported by the 
external simulator. This hierarchy is hidden from escape. Note that the beha-
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viour of a composite node in ESCAPE is implicitly described by its structure and 
the components in that structure. 

A primitive component together withits behaviour description is often called 
a model. The cl a ss ofbehaviour descriptions that are executed using an exter
nal simulator or a dedicated simulation algorithm is often called the model 
ofcomputation orthe type of model. The picture to the right showshow a vari
ety of built-in roodels and external simulators simulating roodels is sirou
lated together using the event handler of the built-in simulator in a central 
role. 

extemal simulators 

Figure 3.1. Simulating models both internally and externally. 

In the remainder ofthis chapter, it is first explained how a foreign language 
interface can be used in a flexible and interactive simulation environment. 
Next, a genericinterface to external simulators is described. Then the simula
tion of data flow roodels and the co-simulation of discrete event roodels and 
data flow roodels is explained in more detail. Finally, it is described how a sim
ulator is contigured at run-time to improve the overall simulation perfor
mance. 

3.2 Foreign language models 

The incorporation of foreign language roodels is an important feature for a 
simulator. It allows to write roodels in a regular programming language like 
C. This is important because 

• prototype programs are often written in a programming language; 

• it provides access to the operating system and to other programs. 
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Nowadays, most commercial simulators provide an application program
mabie interface to include models written in a programming language. Most 
ofthe time this interface is basedon the language C [Ker88]. In this section, 
a technique is descri bed, which may he used to specify an interface of a simu
lation model written in a foreign language, that is independent ofthe simula
tor the model will he simulated with. This feature is used in ESCAPE to he able 
to detect the necessity of re-compilation, if the compiled model gets out of 
date. It also allows to re-use the model with multiple simulators that are able 
to process the syntax of the language. 

A foreign language interface of a simulator may he used for various purpos es: 

• To specifY the behavioural description of a module in a programming lan
guage like C, Pascal or Fortran. Models may he used for both simulation 
and execution as part of a regular program written in software. 

• To conneet an external simulatortoa module. The module is executed like 
any other module by theevent handler ofthe internal simulator. It behaves 
like an internal simulation model. 

• To import other discrete models. A separate compiler translates a descrip
tion into C files and an interface file. For instance, a (symbolic) description 
of a fini te state machine is translated into regular C code and an interface. 
After loading, the resulting compiled model is executed very efficiently dur
ing simulation. 

3.2.1 The foreign language interface 

Many foreign language interfaces are provided as a C library, which allows 
open access to the simulator and its internal data structures. Such a C library 
is very tedious to use and highly dependent on the simulator. Instead a lan
guage has been developed, that allows to specify the interface between a for
eign language model and a simulator. This language relieves the designer 
from the task to write an interface using the functions provided by a C library 
and the rnacros defined in include files . A preprocessor builtinto the simula
tor translates the language into the appropriate interface functions. This 
hides many implementa ti on details from the designer. The language in which 
a foreign language interface is specified, is called ESCAPE-C . 

Another reason to develop a language is the highly interactive nature of ES

CAPE. As described insection 2.6, there are two interaction strategies between 
the editor and the simulator: objects in the model may he modified anytime, 
even during simulation. With both strategies, it is very important that refer
ences in the loaded object are consistent with the interface of the design. 
Otherwise, severe run-time errors may a hort the program. The preprocessor 
easily detects modifications with respect to the last time it processed the in
terface file. Ifnecessary, the model is compiled and loaded again. An example 



Multi-model simulation 63 

may illustrate the importance ofusing up-to-date models: if a port of a design 
is deleted, it still may he referenced in the object that is currently loaded for 
simulation. Trying to access the port will result in a fatal run-time error. 

The steps that have to he taken to load a foreign language model dynamically 
into the address space of ESCAPE are depicted in figure 3.2. First, the interface 
file is processed by the simulator, in our case ESCAPE, that willload the result
ing object code after compiling and linking the C files ofthe model. In ESCAPE, 
the steps are invoked through the user interface or automaticallyin the ini
tialization phase of a simwation run. Second, all C files are compiled and 
linked with those options enabled, that allow dynamic loading of the object 
code2. Finally, the resulting object is loaded run-time by the program and the 
modelloaded may he called during simwation as part of a larger simwation 
model. 

I 
These processes 1 

are normally 
identical. \ 

I 
I 

\ 

I.--____,...______, 

\ 
\ 

Phase 1: parsing the 
interface 

Phase 2: compiling and 
linking of all files 

Phase 3: load and 
execute 

Figure 3.2. Flow to dynamically load a foreign language model. 

In figure 3.3, a very simple example of a module's interface written in theES
CAPE-C format is shown. The section between the %% delimiters is processed 

2. Dynamic or run-time loading is a technique that allows to add new functionality to an 
executing program. It requires compilation and linkage using special options. Mter 
linking, functions and variables in the object code can be accessed like any other 
function in the program without any overhead. 
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byESCAPE and converted into the C language, that can be compiled by an ANSI 
C compiler. The other sections ofthe file and all other files are plain C and are 
not processed. Therefore, C programs modelling behaviour are easily inter
faeed with the discrete event simulator. Similar parsers could be developed 
to be able to incorporate the model into another program or to execute it as 
a stand-alone executable. Such a parser has to be written only once, whereas 
normally each model has to be adapted toa particular foreign language inter
face. 

r regular C */ 
0/o0/o 
nand2 ( input in1, 

input in2, 
output out) 

delay (out, 1, !(in1 && in2). NORMAL); 

0/o0/o 
/* reg u lar C *I 

Figure 3.3. Example of an ESCAPE-C file 

During pre-processing, the terminals found in the interface are searched for 
in the port lists ofthe appropriate design. Ifthe corresponding port has been 
found, it is replaced by a C variable, which references the data structure of 
the corresponding port stored with the instance. After compilation, the port 
can immediately be accessed during the execution of the instance's simula
tion model. Ifthe portisnot found, a warrling is issued and the corresponding 
port is considered to be dangling. Note that these steps have to be performed 
only once for each design, not for each instanee of that design. 

The format may be used to define state variables as well. No te that static vari
ables as defined in ANSI C would be shared by multiple calls for different 
instances. However, all state variables of a model have to be stored uniquely 
with each instanee using that model. Therefore, state variables of a model 
have to be declared explicitly in the interface. During preprocessing, a data 
structure containing all state variables is defined tagether with a create func
tion that is called during initialization ofthe simwation model. Calling the 
function creates a data structure that allows private access to state variables 
for each instantiation of the model. 

To be able to load a compiled model dynamically, it has to be compiled and 
linked to create either a special object file or a shared library. This is highly 
dependent on the operating system. After compilation, the object can be 
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loaded by the program. AB a result, the function in the object code is callable 
using a special function provided by the operating system. If the function is 
loaded properly, the simulator may call it without any overhead during simu
lation. Dynamic loading of object code is a technique that improves both flexi
bility and performance. 

3.2.2 Compiled simulation 

The foreign language interface may he used to integrate other simwation 
models with the simulator, e.g. optimized logic models used at the gate level. 
A frontend has been built to allow compiled simulation oflogic modelsas sub
madeis of a larger system. The interface ofthe models will he generated in the 
ESCAPE-C format. A logic model is a number of input variables, output vari
ables and expressions that describe relations between logic variables (input, 
output and intermedia te varia bles). It is the representation of a model using 
boolean expressions during logic synthesis. 

In a compiled logic simulator, the input description is analyzed before simula
tion todetermine the execution order of each expression. A gra ph is built from 
the logic expressions constituting the model. Each expression describes a 
relation between an output variabie and a number of input varia bles. Each 
variabie is represented in the graph as a node. In the graph, there is an edge 
from the node re presenting an input variabie of an expression tothenode rep
resenting the output variabie ofthat expression. AB a result, a directed acyclic 
graph (DAG) is built from the expressions ofthe logic model. 

Let G = ( V, E) he the DAG representing a logic model. The model may also 
he at a higher level of abstraction, but the restrietion is that it is not asynchro
nous. The input variables are represerited in this graph as nocles which have 
outgoing edges only. The output variables are represented as nocles which 
have incoming edges only. 

The set of predecessor nocles of a node is defined as: 

pred( v) = { w I ( w, v) E E} (3.1) 

The set of successar nocles of a node is defined as: 

succ( v) = { w I ( v, w) E E} (3.2) 

The function level assigns to each node of V a number 

level : V--+ N (3.3) 

in such a way, that the levels assigned to all predecessors of a node are smaller 
than the level assigned to the node itself. This process is often called rank or-
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dering or levelizing in simulation literature. In genera}, this algorithm is 
called a topological sort. The function level is defined as follows: 

{ 

0, if pred(v) = 0 
level(v) = max (level( w) + 1 ), if pred(v) ;:é 0 

wEpred(v) 
(3.4) 

The code generator generates C statements from the logical description in the 
order determined hy the rank ordering. The rank ordering ensures that the 
expressionscan he calculated with the proper values for all variahles. An ex
ample of a small part of generated C code is depicted in figure 3.4. 

void sim_logic (int lv[]) 
{ 

lv[514) = ! ( (lv[126) )&&(lv[7] )&&(lv[9])) i 

lv[575] = ! ( (lv[126] )&&(lv[7])) i 

lv[647) = ! ( (lv[7]) 11 (lv [ 8 ])) i 

lv[8 5 7] = !((lv [7])11(lv [ ll]))i 
lv[864] = !(((lv[129))11(lv[l28)))&& 

((lv[7]) 11 (lv[8])))i 

lv[884] = ! ( (lv[7)) 11 (lv [ 8])) i 

lv[894) = ! ( (lv[128)) I I (lv [7]) I I (lv[ 9] ) ) i 

Figure 3.4. Part of generated C code trom logic expressions. 

The code generator can generate statements using either logica} or hitwise 
operators. The advantage ofusing logica} operators is that the evaluation of 
the resultingoperands ofan expression is ahorted, ifthe evaluation ofthe pre
vious operand results in a fixed value, for instanee if one ofthe operandsin 
a logica} and evaluates to 0. 

The advantage of using hitwise operators is that it allows the parallel sim ula
tion of multiple testvectors. This implies that if there are multiple modules 
with the same logica} description as hehaviour, the calculation oftheir output 
values can he performed in parallel with no performance penalty. Using a 
computer with 32-hit arithmetic, it is possihle to execute 32 instantiations of 
the sametype in parallel. Of course, it is also possihle to calculate 32 testvee
tors in parallel for specific simulation experiments. 
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3.2.3 Experimental results 

The compiled logic simulator has been evaluated using a few benchmark cir
cuits. These benchmark circuits consist of 

• the two largest examples ofthe ISCAS '85 benchmark circuits [Brg85]. 

• the primes examples. The circuit primes n calculates, ifthe number at its 
n inputs is prime or not. Ifthe number is prime, it will set the first output 
bit to a logicall. Otherwise, it will set its first output bit to a logica} 0 and 
set the remaining output bits re presenting the smallest divisor ofthe num
ber at the input bits. These primes circuits have been used as logic synthe
sis benchmarks in [Ber92]. 

In table 3.1, the system resources used by the compiled models are listed. The 
size ofthe shared library depends on the number of expressions and the com
plexity ofthese expressions. This is illustrated best by the primes examples: 
the number in the name of the example is related to the number of expres
sions (it equals the number of input bits ofthe circuit). Before logic synthesis, 
the number of expressions equals 2n, where nis the number in the name of 
the example. Also, the complexity ofthe expressions depends on the number 
of input varia bles, which is equal to n. This is still roughly true after logic syn
thesis. The primes circuits used in these benchmarks are the expressions af
ter logic synthesis. 

The compile times of these circuits are also listed. In [Bry87], the overhead 
of compiling into C code is estimated at least 70 percent. It can be reduced by 
generating executable target machine code. This is often referred to as native 
compiled code generation. 

Table 3.1. U sage of system resources 

name si ze of library compile time 
[kbytes] [sec] 

c6228 120 10 
c7552 160 11 

primes9 30 8 

primes12 320 38 

primes14 1500 165 

primes16 5900 641 

In table 3.2, some characteristics ofthe benchmarks are listed as wellas the 
number of simwation veetors that can be executed per second. The bench
marks have been run on a HP 90001755. The variation in benchmarks clearly 
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illustrates the difference in time it requires to perform exhaustive simwation 
fora model giving a 100% error coverage. For instance, the c7552 benchmark 
circuithas 207 inputs: exhaustive simulation of all possible input patterns re
quires 2207 input patterns. Given a simwation speed ofroughly 1400 veetors 
per second, it will take a bout 1050 years to simwate it completely, even if 32 
veetors are simwated in parallel. However, the largest circuit (primes 16) ha v
ing 16 inputs requires only 65536 input patterns and can he simwated com
pletely within 3 minutes (simwating 32 veetors in parallel). 

Table 3.2. Simwation reswts of compiled logic simwation models 

name inputs outputs express10ns veetors I sec 

c6228 32 32 2416 1607 

c7552 207 107 3513 1397 

primes9 9 5 464 7764 

primes12 12 7 2960 402 

primes14 14 8 17133 46 

primes16 16 9 60080 13 

In table 3.3, the simwation performance of the LISP-like HDL descriptions 
and compiled Ccodeis compared. Note that it only compares raw simwation 
speed: the time to build the internal data structures for the LISP-like HDL de
scription and the time to compile the Ccodeis not included here3. 

Table 3.3. Comparison of interpreted and compiled models 

Number of evaluations per time unit 
speed up name 

lisp compiled 

primes9 1102 2568 2.33 

primes12 400 2396 5.99 

primes14 84 1228 14.62 

primes16 - 227 -

3.3 External simulator interface 

Although the built-in simwation models and the foreign language interface 
allow many models to he simwated, it is very important to he able to simwate 
more different typesmodelsin the overall simwation model together. This in
cludes some types ofmodels which are incompatible with the discrete event 
3. The simulation of the LISP-like HDL description of the primes16 example bas been 

aborted after three hours, because it would conswne too much memory resources: the 
intemal data structures required for this example could not be built at the time ofthe 
benchmarking. 
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paradigm, and other types ofmodels may only differ in subtie details like time 
representation and time advance mechanism or the representation of signal 
values. Often, dedicated simulators are required to he able to simulate a mod
el accurately (e.g. a simulator for switched capacitor circuits [Fan83]) or to get 
a reasonable performance during simwation (e.g. co-simulating software on 
a microprocessor model [Row94]). It is often not possible to translate or com
pile such a model into a model that is compatible with built-in types ofmodels 
that arebasedon the discrete event paradigm. 

A simulator should he flexible enough to incorporate new types ofmodels into 
the system or to integrate external simulators in order to he able to simulate 
complex heterogeneous systems. It is essential that all types ofmodels used 
to describe a system are simulated in a single simwation run. This implies 
that a simwation environment should provide the flexibility to include new 
simwation algorithms or integrate external simulators in a simple and 
straightforward way. Even then, this is often a quite complicated and time 
consuming task. In this section, a technique is described that facilitates the 
integration of new types of simwation models and allows the simwation of 
thesemodelsin a homogeneous way. Seen from the simulator, all models be
have like regular discrete event models. 

The following terminology is often used for simulators that are able to simu
late multiple types ofmodels: 

DEFINITION 3.1: A mixed mode simulator is a simulator that is able to 
simulate both digital and analog models. 

DEFINITION 3.2: A mixed level simulator is a simulator that is able to 
sirnul a te roodels at various levels of abstraction. 

DEFINITION 3.3: Co-simulation is the ability to simulate different types of 
roodels together in one simwation environment. 

The terms mixed mode simulator and mixed level simulator are often inter
changedor appear as synonyms, because the simulator processes the analog 
partsof a system at the circuit level and the digital parts at a higher level of 
abstraction. Co-simulation is often referred to in the context of simulating 
processor roodels running software or in the context of simulating roodels 
written in the popular HDLs like Verilog and VHDL in one environment. 

In the past, mixed mode and mixed level simulators have been introduced to 
he able to simulate a system composed ofboth analog and digital components 
at various levels of abstraction. They have primarily been introduced to re
duce the simwation time. Simwation at multiple levels of abstraction greatly 
reduces the computational costs, because large parts ofthe system are simu
lated at a high level of abstraction. Only those parts of the system are sim u-
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latedat a low level ofabstraction, that really need to he simulated at that level 
in order to simulate it accurately. For instance, the analog components of a 
system are simulated at the circuit level, whereas the digital components are 
simulated at the register transfer level. 

In [All90], three basic types of mixed mode simulators are identified4 : 

• The use of an analog simulator to perform both analog and digital simula
tion. One method is to model digital components using the sa me techniques 
as analog components (e.g. differential equations in a circuit simulator). 
This results in high computational costs for the overall model. Another 
method is to provide an interface to include discrete event modelsin partie
war análog model representation. 

• The use of a digital simulator to perform both analog and digital simula
tion. Time continuous analog models are transformed into time discrete 
models. It allows fast and efficient simulation of analog components, but it 
often proves to he inaccurate. 

• The use of both analog and digital simulators that are coupled together. 
This type allows to combine both performance for the digital components 
and accuracy for the analog components. 

The last type of mixed mode simulation ensures the best accuracy and effi
ciency, but it strongly depends on the approach that is used to couple the sim
ulators. In [Sal90], three approaches are distinguished for coupling simula
tors: 

• The manual approach. This approach is very tedious to use and very inac
curate as well. The designer has to iterate a number of simwation runs with 
different simulators to simulate the model. The results produced by one 
simulator have to he used by the other simulator in the next run. However, 
effects occurring at the interface between two or more models, that are sim
ulated by two different simulators, can hardly he simulated and the final 
results will he veryinaccurate aftersome iterations. The manual approach 
is a very time consuming activity for the designer and it is mainly listed in 
this overview to show the necessity of a re al coupling between two or more 
simulators. 

• The glued approach. Two or more simulators are coupled using either an 
inter process communication mechanism or a procedural interface. The lat
ter may he combined with a run-time loading technique. With this ap
proach, each simulator has its own user interface and uses its own input 
languages. One ofthe simulators may serve as a master, that controls the 

4. The problem of mixed level simwation is closely related to the problem of mixed mode 
simwation and therefore it is assumed here that mixed level simwation is part of 
mixed mode simulation. 
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execution ofthe other simulators (the slaves). Ifa simulator is coupled with 
other simulators, the mapping between signals and the conversion ofsignal 
values has to he handled, as wellas the time advancement mechanism and 
the synchronization of all simulators. 

• The fully integrated approach. Different models are simulated using differ
ent algorithms, that use the same time representation, time advancement 
mechanism (see section 2.3.2), data representation ofsignal values and the 
underlying net list. The algorithms used to handle different types of roodels 
are especially designed to operate in the mixed mode simulator. In most 
mixed mode simulators of this type, the resulting simwation engine uses 
an event driven paradigm. 

The main difference between the glued approach and the fully integrated ap
proach is that with the glued approach integration is handled at the simulator 
level whereas with the fully integrated approach integration is handled at the 
algorithmic level. Consequently, ifa new type ofsimulation model is to he add
ed using a glued approach, the corresponding simulator needs to he coupled 
with the other simulators. With a fully integrated approach a dedicated algo
rithm has to he written that allows simwation ofthis type of model. The latter 
is often too expensive if the simulator has already been developed. 

Simwation backplanes use a glued approach to conneet simulators with each 
other. The simwation backplane provides all functionality that is required to 
conneet a simulator properly to another one. It provides functions that allow 
synchronization ofthe simwation time between various simulators and func
tions to convert data values to standardized formats that are used to transfer 
data from one simulator to another one. Because all functionality for interfac
ing a simulator is provided by the backplane, the effort to couple a simulator 
to it is greatly reduced and it is restricted to modifying the simulator itself. 

In ESCAPE, a different approach is being used. Unlike with a simwation back
plane, the built-in discrete event simulator is used as a platform, with which 
external simulators can he coupled. Events are used as the unifying mecha
nism to integrate different types ofmodels homogeneously. As a result, mod
elscan he simulated by the internal simulator or by external simulators. One 
ofthe key differences withother approaches is the role ofthe built-in simula
tor. It serves both as a simwation engine for internal models and as a back
plane to extern al models. This improves the efficiency ofthe simulator consid
erably. 

Simwation algorithms or simulators may he integrated with the built-in dis
crete event simulator either loosely coupled (glued) or tightly integrated to 
simulate a new type of model. This depends on the effort put into modifying 
or implementing the simwation algorithm to he included. The open architec-
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ture ofthe built-in simulator allows integration at various levels ofinterac
tion. Depending on the time and effort, one can make a trade-offbetween im
plementation time and accuracy desired to integrate a new type of simulation 
model. 

In figure 3.5, the ditTerenee between internaland external simwation models 
is depicted. An internal model is directly executable by the internal discrete 
event simulator. An external simulation model consistsof an external sirnul a
tor and an interface to the internal simulator. This interface consists oftwo 
abstraction layers: the physical interface and the external simulator inter
face. The interface makes an external simulation model behave like an inter
na! simulation model: the simwation engine activates components, forwhich 
events are scheduled. Some ofthe components are handled internally but oth
ers are simulated externally. 

physical interface 

Figure 3.5. lnternal and external simulation models 

The following definitions are important in the remainder of this section: 

DEFINITION 3.4: An instantiation of an external simulator is a functionally 
equivalent copy of a simulator. Multiple instantiations of 
the same simulator do not share resources and may 
execute different parts of the simulation model 
independently. 

DEFINITION 3.5: A global net (signa!), in the context of multi-model 
simulation, is a net (signal) that connects at least one 
internal simulation model with at least one external 
simulation model or two or more external simwation 
models. 

DEFINITION 3.6: A local net (signa!), in the context of multi-model 
simulation, is a net (signa!) that connects either one or 
more internal simulation models or local subroodels of a 
single external simulation model. 

The external simulator interface consists oftwo abstraction layers. The lower 
layer represents the physical interface between ESCAPE and the external sim-
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ulator. The implementation of this layer is partly operating system depen
dent. Different approaches have been incorporated in ESCAPE. They can he di
vided in two categories: 

1. The external simulator is dynamically loaded into the address space of Es
CAPE. After loading, the functions that control the execution of the 
external simulator are accessible by the event handler of the built-in 
simulator. Run-time loading techniques are highly dependent on the 
operating system that is being used. In genera}, special attention needs 
to he paid to an implementation of a simulator to he able to instantiate it 
multiple times in the same address space. Note that this may require 
some major modifications in the souree code ofthe external simulator. 

2. The external simulator is connected to the centralevent handler using an 
inter process communication (IPC) mechanism provided by the UNIX 
operating system. IPC decreases the performance of simulating the 
complete simwation model, because it introduces communication 
overhead. The amount of overhead depends on the IPC mechanism. 
However, the ability to simulate the complete system often outweighs this 
disadvantage. Because the external simulator runs independently as 
another process, synchronisation between the processes is required to 
orchestrate the proper execution of modelsin multiple processes. IPC 
techniques can also he applied to distribute the simwation of different 
models across various machines in the network. Multiple instantiations 
of the same type of simulator may he used without any restriction. 

The upper layer controls the operation ofthe external simulator and manages 
theevent flows between the external simulator and the centralevent handler. 
This layer is completely embedded in the discrete event simulator. In this the
sis, the upper layer is referred to as the external simulator interface. 

In figure 3.6, an abstract model ofESCAPE's external simulator interface is de
picted [Fle93b]. This model tries to visualize the flow of events between the 
central event handler of ESCAPE and an external simulator, and, the opera
tions that can he perfonned onto these events. In practice, all componentsof 
the external simwation model, like the eventand value conversion modules, 
are tightly integrated with the internal data structures and the simwation 
algorithm ofthe internal simulator. Each component is customized depend
ing on the external simulator to he connected and the model to he simulated 
by this simulator: this data is stored with the simwation model itself and is 
loaded during the initialization phase of a simwation run. 

At the moment the external simulator is instantiated (coupled), the conver
sion routines of the interfaces are installed and stored in the proper objects 
of the internal network data structures. The synchronization component is 
global to all external simulator interfaces. It detennines from the flow of 
events between an external simulator and the internalevent driven simula-
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Figure 3.6. Model of the external simulator interface 

tor when the simwation doek ofthe internal simulator can he updated. The 
synchronization strategy used is important for the overall performance and 
accuracy ofthe simulation run. Especially, if an external simulator is coupled 
through IPC, synchronization strongly influences the overall performance: 
since it may run completely independent from the internal simulator, it has 
to he controlled and synchronized by the internal simulator using the ap
propriate messages or events. 

The event conversion blocks convert internal events in messages or events 
that pass signal values of global nets from the internalevent handler to an 
external simulator, and vice versa. These blocks also control and abserve the 
activation and suspension ofthe execution of an external simulator. This in
formation is used by the synchronization block to update the simwation time 
of the internal simulator. Event conversion routines are invoked in the first 
phase of the simwation algorithm, when the contents of each event is eva
luated to determine which components need to he simulated in the second 
phase. Multiple event conversion routines may he defined fora single net. The 
souree of an event (which is actually the port ofthe model that propagated the 
event) determines which routines are invoked. 

The value conversion routines are installed at the ports ofthe component that 
is simulated by an external simulator. If such a component is activated, the 
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signal values at the input ports are converted and propagated to the external 
simulator. Then the external simulator continues the execution ofthe model. 
After suspension ofthe execution ofthe model, the signal values at the output 
ports are converted and propagated to the internal simulator. It is important 
to note that a proper choice for the value conversion routines reduces the 
number of events that are communicated across the interface; such a reduc
tion increases the performance of the simulator significantly. 

An external simulator interface has to he defined only once for a particular 
simulator. Such an interface can he instantiated multiple times within a 
single session or in another session. The only restrietion is imposed by the 
way the external simulator is connected to the central event handler: in case 
the external simulator is run-time loaded into the same address space, it is 
only possible to load a single instantiation ofsuch a simulator, unless the sim
ulator has been implemented in such a way that the problem of global and 
static variables is solved: they will he shared between the various instantia
tions of a particular simulator. With IPC, there is virtually no limit to the 
number ofinstantiations of an external simulator running either on the sa me 
machine or another machine in the network. 

The effort to integrate an extern al simulator consists of two tasks: 

• Adapting and compiling the souree code of the simulator to he integrated. 
The availability of souree code is a prerequisite to he able to ere a te an effi
cient interface between this simulator and the centralevent handler ofthe 
internal simulator. The main body ofthe simulator has to he split in differ
ent functions. The minimal set offunctions to he able to invoke an external 
simulator is: an initialization function, a basic simulation step function and 
some functions to propagate and to receive signa! values. lf the external 
simulator is event driven, the souree code to write these functions is often 
easily identified and isolated. 

• Defining the simulation interface in ESCAPE. Currently, this is done by cod
ing a special data structure, which adapts the centralevent handler to han
dle synchronization and event conversion. The value conversion routines 
are stored with the global nets and can he overloaded any time. This allows 
the simulation ofvarious models using the same external simulation inter
face. lt is also used to adjust the accuracy of the value conversion itself, 
which strongly influences the overall performance of the simulator. 

Although it has been stressed in this section that the availability of souree 
code is a prerequisite, the foreign language interface of an existing simulator 
may he used to integrate a simulator with ESCAPE as well. The problem that 
bas to he solved is that both simulators are scheduling and processing events 
continuously and they are both trying to control the simulation. However, the 
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simulation algorithm of ESCAPE also handles inter process communication. 
The inter tooi protocol (see section ) could be used to control the activation of 
different components by the simulators and to synchronize the simulation 
time. 

3.3.1 Synchronization of simulation time 

An external simulator keeps track ofits own simulation time. A correct and 
accurate simulation ofthe overall model requires careful synchronization of 
the simulation time ofthe external simulator(s) and the internal event driven 
simulator. This is especially true, if an external simulator runs in its own ad
dress space communicating with the central event handler through IPC. 

Using a single simulator, the paradigm associated with performing a simula
tion is selecting theevent with the smallest time stamp from theevent queue 
and executing the simulation code that is associated with that particular 
event. The problem using multiple simulators is that in any simulator all 
events need to be processed in a non-decreasing order with respect to their 
time stamps. The same problem is solved for parallel discrete event simula
tors (PDES). Much research has been conducted in this area. In VLSI design, 
the focus of attention has been the parallel simulation oflogic. The results ob
tained may be applied as well to higher levels of abstraction. 

The problem is closely related with maintaining the simulation state as de
fined in equation (2.11): ( Tsim• Lv, Eq). In a PDES, the global simulation state 
is distributed across multiple logica! processes (LPs) [Fuj90]. A logica} pro
cess i maintains the simulation state ( Tsim• L v• Eq) i• while interaction be
tween these processes is performed by communicating events. If each LP pro
cesses events in a non- decreasing order, it is ensured that no causality errors 
occur. This is referred to as satisfying the local causality constraint. 

Most ofthe time PDES algorithms are classified into two categories: conser
vative and optimistic. The definitions of these are: 

DEFINITION 3.7: A conservative approach always processes events in a 
strictly non-decreasing order by advancing the local 
simulation time to the smallest time stamp of an event 
received from any neighbouring LP. It preserves causality 
constraints at all times. This implies that an LP has to be 
halted regulary to wait until other LPs have completed 
their tasks. 

DEFINITION 3.8: An optimistic approach processes each event at the time 
stamp it is received and the local simwation time is 
advanced to the time stamp of that event. If an event is 
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received with a time stamp smaller than the local 
simwation time, the LP has to perform a rol/back 
operation to a state with a local simwation time that is 
smaller than the time stamp of the newly received event. 

One of the problems using a conservative approach is the prevention of a 
deadlock situation. To prey~nt deadlock, null messages are sent that carry 
a time stamp only but that do not contain data. The Chandy-Misra [Cha81] 
algorithm is an alternative approach that avoids the use ofnull messages. Af
ter detecting a deadlock situation, it breaks the deadlock using a special algo
rithm. One ofthe probieros using an optimistic approach is that each LP has 
tosave its state on a regular basis, which may be a time consuming operation. 
Furthermore, a rollback also requires anti-events to be sent to cancel events 
that have been sent out in the meantime. The first optimistic approach has 
been called the Time Warp mechanism [Jef85]. Many alternatives have been 
presented later for both approaches. 

In [Rey88], a more detailed classification is described for PDES algorithms. 
It is interesting to note that one can also distinguish between asynchronous 
and synchronous approaches. In an asynchronou~ approach, each LP rnain
tains its own simwation time, whereas in a synchronous only one global simu
lation time is maintained. More recently, a state ofthe art overview of parallel 
logic simwation techniques has been publisbed in [Bai94]. These approaches 
may also be applied for multi-model or heterogeneaus simulation, either in 
ESCAPE or another mixed-level simulator. 

In a fully integrated approach, only one event queue and only one simwation 
time is maintained: in that case, no synchronizing mechanism is required to 
orchestrate the multiple simwation processes, but still care has tobetaken 
to integrate the algorithms in such a way that accurate simulation is ensured. 
Often, one can not afford to use the integrated approach and one has to use 
a glued approach. In that case, careful synchronization of the simwation 
times in the simulators is a must. One ofthe main differences between syn
chronization ofthe simwation times in a glued mixed-level simulator and the 
synchronization of different LPs at the sa me abstraction level is that one has 
to deal with different time scales as well. The most important conservative 
approaches that are applied in mixed-levelimixed-mode simulators are 
[Sal94]: 

• The loek-step method. The analog simulator determines the step size, be
cause it uses the smallest time scale. It controls the digital simulator, which 
has to use the time points determined by the analog simulator. 

• The digital controlled method. The digital simulator controls the analog 
simulator. After applying a time step in the digital simulator, the analog 
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simulator is forced to simulate up to that time point. In this period, no 
events from the analog simulator are being processed. 

Many variants on these two a pproaehes are developed de pending on the orga
nization of the event queues implemented in the simulators used in the 
mixed-level simulator. 

In [Ben91] a variant is described, which the authors refer to as a variant of 
the loek-step method. This variant is used to couple the Mozart and ELDO 
simulators. The fixed-increment time advance mechanism of Mozart con
trols the next-event time advance mechanism ofELDO. IfELDO generates 
an event for Mozart before its stop time, it is scheduled for the next fixed time 
point in Mozart and control is returned to Mozart. Delta delay events ofELDO 
are scheduled at the next fixed time point ofMozart to prevent a roUback to 
a previous time point. Depending on the time scale used in Mozart, this seems 
to be a decision that may campromise the accuracy. 

In ESCAPE, the strategy depends on the external simulator that will be con
nected. An alternative approach may be used, if all simulators use a fixed
time increment strategy. In that case, the time step of ESCAPE is set the least 
common multiple ofthe time steps of all simulators. Note that this requires 
the delay values ofthe internal HDL models to be adjusted to exhibit the cor
rect timing behaviour. This is solved internallyin the simulator by updating 
the simwation model. 

If a next-event time advance is used by an extern al simulator, it is controlled 
by the internal event driven simulator. A similar control strategy is used as 
in [Ben91]. Delta delay events, which are considered an artifact ofthe simula
tor, are notallowed to be scheduled by an external simulator onto a global net. 
Simulators at a low level of abstraction hardly use delta delay events, where
as in higher level models the use of a delta delay may help to implement the 
correct behaviour. 

Another problem is the scheduling of delta delay events for global nets by the 
internal simulator: normally, this should result in another invocation ofthe 
external simulator at this time point or ifthe event is discarded, the external 
simulator is using the previous incorrect value as an input. Therefore it can 
be specified, if all delta delay events on a global net should be handled first 
before the external simulator is called. This has a penalty with respect to sim
wation performance. The scheduling of delta delay events for global nets may 
also be prohibited. 
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3.3.2 Exarnple: The PLATO piecewjse linear simulator 

PLATO is a mixed-level simulator, basedon a continuous dynamic piecewise 
linear (PL) modeling technique. Using this technique, both analog and digital 
components can he modeled at severallevels of accuracy. The homogeneous 
modeling makes no difference between analog and digital components 
[Buu93]. The PLATO PL simulator has several advantages compared to the 
well-known SPICE simulator [Nag75]. lts main advantage is its global con
vergence property while solving the PL equations. This property is based on 
the global convergence of the algorithm devised by Van de Panne [Pan7 4], 
which is the core ofthis PL simulator. This algorithm can handle discontinui
ties without any problems. 

To solve the dynamic PL equations during transient analysis, the Van de Pan
ne algorithm is combined with an integration method. The metbod applied is 
an impheit multirate method, which implies that the differential equations 
are solved by assigning different timesteps to subsets of equations (subcir
cuits) [Eij90]. The circuit is split dynamically into these subcircuits. AB a re
sult, most computational effortis put in solving the active parts ofthe circuit. 
An event driven technique is used and at each event either the PL equations 
are solved or a new integration step is determined. In figure 3.7, an example 
of a few signals and the barcode representing the events, is depicted. 

11 ' I~-~~~~ --------,~111 ~ I , 1111 

Figure 3.7. Example showing output values and event densities of 
PLATO signals. 

Although PLATO is an event driven simulator, thesemantics ofthe events in 
PLATO are different from the semantics in ESCAPE, and both simulators use 
a different timing control mechanism: PLATO is a multirate event-driven 
simulator, in which events can he scheduled at non-equidist ant time points, 
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whereas ESCAPE uses a fixed increment time advance strategy by default. Typ
ically many PLATO events are generated and processed between two time 
points in ESCAPE. This depends on the activity ofthe various subcircuits. The 
events scheduled for local signals are always handled internally by PLATO. 
Events scheduled for global signals are forwarded to ESCAPE, if the corre
sponding value conversion routine detects a possible modification ofthe sig
nal value. 

PLATO has been coupled to ESCAPE using both an IPC technique as well as a 
run-time loading technique [Fle93a]. The souree code ofthis simulator has 
been modified in order to provide the following functions: 

• the initialization routine 

• the simwation step routine 

• the global signal mapping routine (to pass the value ofthe signal). 

In algorithm 3.1, the simulation step routine is shown. AE many events may 
be generated between the start time and the stop time, this routine contains 
an event loop to processlocal events (lines 5 - 17). Note that in a more inte
grated approach these events could have been handled by theevent handler 
of ESCAPE. Before entering the simwation loop, the values ofthe global input 
signals are stored in the internal data structures ofPLATO. 

Algorithm 3.1: The simwation step routine 

1. procedure execute_plato (stop-time) 
2. { 
3. update_global_signals () ; 
4. /* simulation loop*/ 
5. while (time< stop-time) { 
6. event = next_event ( ) ; 
7. 
8. time = time ( event ) ; 
9. update_cluster (cluster ( event ), time) ; 
10. if ( type ( event ) = pwl) 
11. van_de_panne (cluster ( event)) 
12. else 
13. foreach ( leafcell E cluster ( event) ) 

new_time_step ( leafcell ) ; 
14. 
15. foreach ( leafcell E cluster ( event ) ) 

new_event ( leafcell) ; 
16. 
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17. 
18. propagate_global_signals () ; 
19. send_synchronization_event () ; 
20. } 

81 

After leaving the simwation loop, the values of all global output signals are 
propagated, while the appropriate value conversion routines convert the val
ue of each global signal and determine if the resulting value results in the 
generation of an event scheduled for the internalevent handler. Control is re
turned to the internal event handler by sending a synchronization event. 

In figure 3.8, the events scheduled for a specific signal are depicted as 
(time, va/ue) pairs. Let's assume that the value represents a voltage. Note 
that the figure doesnotpresent information on the time points that theevents 
have been generated. The first time axis represents the real time used by 
PLATO. The second time axis resembles the discrete time points used by the 
internal simulation algorithm of ESCAPE. The relation between the discrete 
time point kand thefloatingpoint timeofthe external simulator is t = L1 x k. 
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Figure 3.8. lnterpolation of signal values at fixed time points. 

The signal's value plays an important role to synchronize the time clocks of 
the simulators, since it is one of the preconditions that determines the dis
crete time points at which control is returned to the central event handlerand 
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the time points at which execution of the model is continued. Another pre
condition is of course the activity at the input ports of the model. 

Normally, the time starups of these events do notmatch with the time starups 
ofthe internal simulator. However, it is essential that the value ofthe signal 
is calculated as accurate as possible at these fixed time points. In the PLATO 
simulator, the signa} values used by the integration method are used to cal cu
late the values of the signa} at these fixed time points. 

3.3.3 Simulation examples and results 

Two examples, which are explained in more detail in [Buu93], are presented: 

• a switch capacitor filter; 

• an analog to digital converter. 

A switch capacitor filter is modelled using the piecewise linear modeHing 
technique and is simulated by PLATO. As an input ofthe filter, a discrete sine 
generator is used, which is modelled using the LISP HDL. The output of the 
filter is fed to a 256-point fast Fourier transform (FFT), modelled using the 
FORTRAN language and called through the programming language inter
face. For demonstration purposes, the output ofthe FFT is visualized using 
a special-purpose view window representing a frequency analyzer. The 
switch capacitor filter itself contains a number of switches, capacitors and op
erational amplifiers (see figure 3.9). 

Figure 3.9. Switch capacitor filter 

The analog to digital converter circuit consists ofthe analog-digital converter 
itself, two analog multiplexers, an analog subtraeter and a number of digital 
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components to control the other components ofthe circuit. The digital compo
nents have been simulated byESCAPE and the other partsin PLATO. 

The simwation times of these examples are presented in table 3.4. A dynamic 
loading technique has been used to conneet PLATO and ESCAPE. The results 
have been obtained using animated simulation: only the activity on the nets 
has been visualized. 

Table 3.4. Run times of mixed level benchmarks 

benchmark run time [sec] 

ND converter 4.4 

switch capacitor filter and FIT 30.0 

The complete ND converter benchmark has been simulated with the piece
wise linear simulator PLATO as well. Both the run times and the simwation 
results have been compared with the mixed level experiment: 

• The simwation results ofthe mixed level simulator are as accurate as the 
results obtained for the complete benchmark with PLATO. 

• The run times ofthe mixed level simulator are much better than the run 
times ofPLATO: 4.4 versus 18.9 seconds. Note that for this particwar ex
ample only a few digital components have been simulated in ESCAPE giving 
already a performance increase by a factor 4. 

PLATO has also been connected to ESCAPE using an IPC technique based 
on sockets. Running PLATO on a different workstation in another network 
bridged to the workstation ESCAPE was running on, the run times ofthis ex
periment are about 17 seconds. Although much communication overhead re
duces the sünulation performance, it is important to be able to conneet to dif
ferent workstations, for instanee to distribute the simwation task. 

3.4 Token flow models 

In this section, the simwation of token flow models is discussed. Token flow 
models are often used to model (specific aspects oD systems during the syn
thesis and verification of protocols and hardware. 

The following definitions are very important to describe (and execute) the 
behaviour of a token flow model: 

DEFINITION 3.9: A taken is an abstract representation of a data item, a 
condition or an event. A token is non coloured if no data 
associated it. Otherwise, a token is coloured. 
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DEFINITION 3.10: A firing rule defined for a component defines which 
conditions have to he satisfied before a component may he 
executed. 

Token flow models are represented as directed graphs. Two types ofrepresen
tation are being used in literature. The first representation is a directed 
graph G = (V, E), where 

• v E V represents an actor. An actor may fire, if the token distri bution at 
the input edges satisfies the actor's firing rule. 

• e E E represents a queue that holds zero or more tokens. 

The second representation of a token flow model is a bipartite directed graph 
G = (P, T, E), where 

• p E Pis a place that holds zero or more tokens, 

• t E T is an actor or transition, 

• e E E, E Ç ( P x T) U ( T x P) is an edge connecting a place and a transi
tion or vice versa. 

There are many application areas, where token flow simwation may help to 
prototype and validate system behaviour: 

• Simwation of complex concurrent system behaviour. At the system level, 
a process network may he used to define a number of concurrent processes 
and its communication behaviour. Each process may he modelled using dif
ferent descriptive means, for instanee a hardware description language or 
a programming language. 

• Concurrent simwation of a Petri net and a system model may he used to 
validate the communication behaviour ofthe system model at a higher ab
straction level. 

• Simwation of the behaviour of synchronous data flows for DSP applica
tions. 

• Simwation of the behaviour of data flow graphs during the architectural 
synthesis of digital systems. 

First, some types oftoken flow models will he discussed. Then the simwation 
of these models is discussed. This is illustrated using the ASCIS data flow 
graph and a Petri net as examples. Furthermore, it is described how token 
flow models are simwated in a discrete event simulator and how token flow 
models are integrated with discrete event models in a homogeneous way. 
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3.4.1 Petrinets 

Petrinets [Pet81] are used to model a great variety ofreal-life systems, in 
particwar concurrent systems. Examples are computer networks, communi
cating processes, asynchronous logic. They may be used to model and verify 
the communication behaviour of complex concurrent processes. 

A Petri net is defined as a graph 

PN = (P, T, F) (3.5) 

with 

• P { p1, p2 , ... , Pn}, n 2: 0, the set ofplaces. 

• T { t1, t2 , ... , tm}, m 2: 0, the set oftransitions. 

• V= PuT, the set ofnodes with Pn T = 0. 

• F Ç ( P x T) U ( T x P), the set of edges. This relation is sometimes re
ferred to as the flow relation. 

Some types ofPetri nets allow multiple edges between a place and a transi
tion. This is accounted for by using a weight function defined on the set of 
edges, that replaces an equivalent number of edges between a transition and 
a node: 

W : (P x T) U ( T x P) -+ N (3.6) 

This function returns 0, ifno edge is present between a transition and a place: 
V f f/. F : W(t) = 0. 

The set ofinput places of a transition is 

/( t) = { p E p I (p, t) E F} (3.7) 

The set of output places of a transition is 

O(t) = { p E PI (t, p) E F} (3.8) 

Note that in general the sets /(t) and O(t) are not disjoint. The input and out
put transitions of a place may be defined in a similar way. 

A marking 11 of a Petri Net PN is a function 

(3.9) 

This function returns for each place the number oftokens in that place. The 
marking 11 can be defined as a vector as well: ïi = ( 11 1, 11 2• . .. , 11 n ) with 11 i 
the number oftokens in place Pt 
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A marked Petri net is a Petri net PN with a marking f1. and is denoted as 
M = ( PN, f1.) or M = ( P, T, F, f1. ). An example is depicted in figure 3.10. 

Figure 3.10. Example of a marked Petri Net. 

A transition tj E Tin a marked Petri net M = ( PN, f1.) is enabled if for all 
P; E /{tj) : 

(3.10) 

A transition tj E Tin a marked Petri net M = (PN, f1.) may fire, whenever 
it is enabled: a transition fires by removing tokens from its input places and 
generating new tokens which are added to its output places. Firing a transi
tion tj E T, results in a new marking f.J.' : 

V p; E ( l(t) U O{tj) ) : 

f.J.' (P;) = fl.(P;) - W((P;· t)) + W((tj' P;)) (3.11) 

The equations (3 .10) and (3.11) describe the operational semantics of a 
marked Petri net. Equation (3.10) is referred to as the firing rule of a marked 
Petri net. 

In the Petri net offigure 3.10, transition t1 is enabled. Mter firing this transi
tion, the resulting markingis depicted in figure 3.11. Now, transition t2 is en
abled for firing. Note that t1 can fire again before t2, if a new token arrives in 
p 1 (for instanee ifthis net is part of a larger net). 

The next state function ó returns the new marking for a marking and a tran
sition that is being fired: 

{

f.J.', if Vp E /(t) :fl.(P) ~ W((p, t)) 
Ó'" t) = 

VA- • 0, Otherwise (3.12) 
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Figure 3.11. The marking of the Petri Net of tigure 3.10 after ti ring 
transition t1. 

87 

Using equation (3.12), the set oftransitions that is enabled in a marking J.1. 
IS: 

enabled(jl) = { tE T I ó(jl, t) ;é 0 } (3.13) 

Let J.l.o be the initial marking of a marked Petri net M. Firing an enabled tran
sition, t;

0 
E enabled(J.I.o), results in a new marking J.1. 1: J.1. 1 = Ó(J.I.o• t;). In the 

marking f.1. 1, an enabled transition, t;, E enabled(J.1. 1), can be fired resulting 
in marking f.1. 2: f.1. 2 = Ó(J.1. 1, t; ). , 

The execution of a Petri net can be described by a sequence of markings: 

(3.14) 

An alternative notation to describe the execution of a Petri net is a sequence 
oftransitions, that have been fired: 

(3.15) 

The sequences Hf-i and Ht are related by f.1. k+ 1 = ó (f.l. k• t;), k ~ 0. The execu
tion order given by Hf-i or Ht normally represents only one of the possible 
executions ofthe marked Petri net: one ofthe enabled transitionsis selected 
for firing in eachmarking f.1. k This choice determines the resulting new mark
ing: existing enabled transitions may become disabled and new transitions 
may become enabled. 

Let R be a function, which returns the set ofmarkings that are immediately 
reachable from a marking fJ.: 

R( M) = { f./. 1 I 3 t E T: f.l. I = ó (f.l., t) } (3.16) 

The reachable set of a marked petri net Mis defined as the reflexive transitive 
ciosure of (3.16): 
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R*(M) = U Rn(M) 
n~O 

(3.17) 

with 

Ro(M) = f-l 
Rk+1(M) = { J-l 1 I 3f-l E Rk(M): (3t E T: J-l 1 = O(J-l, t))} 

The following properties are defined for a marked Petri net 
M = ( P, T, F, f-lo ) with reaebabie set R*(M) : 

• M is k-bounded, iff V f-l E R*(M) : ( V p E P: J-l(P) ~ k ), i.e. the num
ber of tokens in any place may never exceed k. If k = 1, then Mis called 
safe. Note that the property ofboundedness can be defined fora single place 
or a subset of the places of the net. Boundedness is a useful property to 
verify the number of resources that are required to execute the net. 

• Mis strictly conservative, iff 

n n 
I J-l(Pi) = I f-lo(Pi) (3.18) 

i= 1 i= 1 

The reachability set of a marked Petri net can be very large. The state space 
associated with a marked Petri net consisting of n places, is kn, ifthe net is 
k-bounded. Therefore the codomain ofthe reachability set is P(k~. The reach
ability set is often presented as a tree called the reachability tree. The root 
node of this tree is the initial marking of the marked Petri net. 

In [Sub86], an interactive tooi for modeling and analyzing Petri nets is de
scribed. With this tooi, a Petri net is executed graphically and the tooicantest 
for properties like safeness, boundedness, conservation, reversability, and 
deadlock. Many other analysis and verification tools are developed for vari
ous types ofPetri nets [Fel92]. They often include a net editor and an interac
tive simulator. The execution or simwation of a Petri net is not only to show 
one of the possible behaviours of the net, but also to execute a path in the 
reachability graph that leads to a specific condition in the net. In the latter 
case, simwation may help to locate and correct the errors found with an anal
ysis tooi. 

A simple algorithm to execute a Petri net is depicted in algorithm 3.2. The 
function get_enabled_transition selects one out of more enabled transitions 
and therefore determines the path in the reachibility graph. The function 
fire_transition removes the appropriate number tokens from its input places 
and produces tokens that are put into its output places. This is foliowed by 
adding and deleting transitions from the set of enabled transactions. These 
actions are equivalent to an update ofthe marking shown in equation (3.11). 
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Algorithm 3.2: Executing a Petri net 

1. initialize_tokens () ; 
2. update_enabled_transitions () ; 
3. /* markingis valid */ 
4. while ( t = get_enabled_transition () ) { 
5. fire_transition ( t) ; /*updates token distribution */ 
6. update_enabled_transitions () ; 
7. /* markingis valid */ 
8. 

In (2.11), the simwation state of a model is defined as the 3-tuple 
( Tsim' Lv, Eq). Fora Petri net: 

• Tsim = 0. No delays are normally associated with the firing of a transition 
unless a timed Petri net is simulated. 

• Lv = f.l· The marking ofthe Petri net is the state ofthe simwation model. 

• Eq are the transitions which are enabled. 

Similar to the simwation of a discrete event model, the simwation of a Petri 
net proceeds until Eq = 0. Note that an arbitrary element from Eqmay he se
lected as the transition to he Eq fired. The firing of a transition may remove 
or add new elements to Eq-

If a Petri net is used as a submodel of a larger simwation model, it is executed 
at the current simwation time using delta delays. lts simwation state con
tributes to the global simwation state as described insection 2.4.1. During 
simwation, the simwation time ofthe Petri net always equals the global sim
wation time. In section 3.4.3, it is discussed how a token flow model is simu
lated by a discrete event simwator. 

3.4.2 Data flow graphs 

Data flow graphs are often used as an representation ofbehaviour in various 
synthesis problems. The synchronous data flow graph is used to represent the 
behaviour of a DSP algorithm. In architectural synthesis, various types of 
data flow graphs are used as an intermedia te representation of behaviour 
[Gaj92]. 

A data flow graph (DFG) is defined as a directed graph: 

G = (V, E) (3.19) 
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with 

• V = { v1, v2 
eration. 

, ... , Vn } , n ~ 0, the set ofnodes. A node represents an op-

• E = { e 1, e2 , ... , em } , E Ç V x V, m ~ 0, the set of directed edges. 
Each edge, ek = ( V;, vj ) represents a FIFO (First In First Out) queue. In 
general, the firing ofthe node V; puts a new token in the queue of ek and 
the firing of node vj removes a token from the queue of ek 

A theory of data flow graphs is described in [Jon93]. A more detailed defini
tion is used in that thesis. It also adds ports to the definitions ofthe nodesin 
a data flow graph. Although the ports of a node are required to describe the 
firing rul es of specific nodes, the definition described in (3.19) is sufficient. In 
the implementation, the ports are important to he able to execute the beha
viour of a node properly. 

The set of input edges of a node V; E V is 

/( v;) = { ( vj, v;) E E } (3.20) 

The set of output edges of a node V; E V is 

(3.21) 

The firing rules ofthe nodesin a data flow graph depend on the type of node. 
In [Kav86], the firing rules of various nodes are divided into 5 different 
classes: conjunctive, disjunctive, collective, selective and distributive. In 
[Lee95], each node may have a set offiring rules. A node may fire if and only 
if one of its firing rul es is satisfied. 

By analogy with Petri nets, the marking f.1- of a data flow graph Gis a function 

f.1-: E- 0* (3.22) 

where 0 is a value domain and 0* is the domain of sequences with elements 
from 0. With an edge e;, an ordered stream of n data values or tokens is 
associated: 

(3.23) 

As an example, the firing rule of an operator node is descri bed. An opera ti on 
V; may fire if 

(3.24) 

Firing the operator node results in a new token distribution: 
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Vek = ( vj, v;) :ft ( ek) = < dk
2

, dk
3

, ... , dkn > (3.25) 

Vek = (vi, vj) : Jt(ek) = < dk,• dk2' ... , dkn' d0 > (3.26) 

where d0 is the result of applying the operator to the data values ofthe to
kens on the input edges. 

A delay is associated with each node in the data flow graph. The actual delay 
of a node is dependent on the module type that actually implements the beha
viour ofthat node. The function o is defined with the following domain and 
co-domain: 

o: V-+ N (3.27) 

In analogy with a Petri net, the simwation state of a data flow graph is repre
sented by ( Tsim• LV' Eq) with 

• Tsim the current simwation time. This may remain 0 during simulation, if 
only the preeedenee relations are used to simulate the flow graph. 

• Lv = #· The marking ofthe data flow graph as defined in (3.22). 

• Eqare the nodes that may be fired at this time point. 

In this section, the ASCIS data flow graph [Eij9l] is used as an example. This 
DFG serves as an intermediate representation used in the architectural syn
thesis tooibox NEAT. Various (subsets of) hardware description languages, 
like VHDLand Hardware C [Ku88], and other languages can be translated 
into a DFG. 

In figure 3.12, the ASCIS data flow graph ofthe calculation ofthe faculty of 
a number is depicted. This representation is compiled from the following de
scription in Hardware C: 

process fac (input, output) 
in input; 
out output; 

output= 1; 
while ( input > 0 ) { 

output = output * input ; 
input = input- 1 ; 

In the figure, the entry and exit nodes are easily identified. These nodes are 
used to build a loop construct. The output ofthe operation node >is connected 
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to the control input of all en try and exit nodes. During initialization, all en try 
nodes require a token at their control input, which allows external data to he 
passed from outside to inside the loop construct. Mter termination ofthe it
eration in the loop construct, a token is left at the control inputs of each en try 
node. The corresponding tokens have been removed from the exit nodes to he 
able to pass data from inside to outside the loop construct. 
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Figure 3.12. A DFG example of the calculation of the faculty of a 
number. 

3.4.3 Simulation of data flow graphs 

In section 3.4.1, the simwation of a Petri net has briefly been discussed. In 
this section, the simwation oftoken flowmodelsis discussed in more detail. 
Throughout this section, the ASCIS data flowgraphand the Petri net used 
as exam ples of a token flow model. The sa me concepts may he a pplied toother 
variantsof a token flow model, for instanee a coloured Petri net [Jen92] or a 
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synchronous data flow graph as used in descrihing signal processing applica
tions [Lee87]. 

The simwation of data flow graphs may he handled in many different ways. 
Examples are 

• a purely functional simwation satisfying all preeedenee constraints but 
without taking timing information into account; 

• a simwation taking timing information into account (delay values of 
nodes); 

• a simwation in which the firing of nodes is controlled by a previously 
derived schedule; 

• a simwation in which a control flow graph controls the execution of a data 
flow graph. 

In [Geu93], the development of an interactive simulator for data flow graphs 
is described: in particular, the ASCIS data flow graph is simulated numerical
ly, symbolically (with some restrictions) or a combination of these two. This 
simulator operates independently ofthe event driven simulator and it is em
bedded into ESCAPE in a similar way as the event driven simulator (see also 
figure 1.2): it directly accesses the internal representation (network data 
structure) ofthe graph, which are kept up-to-date incrementally during an 
edit session. 

This simulator does nottake timing information into account. It basically 
uses a delta delay to simulate the data flow graph. Two event lists are used 
to orchestrate a proper execution of the graph. 

The problem of simulating a data flow graph taking timing information into 
account is directly related to the problem of scheduling a data flow graph in 
architectural synthesis. A schedule of a data flow graph specifies at which 
time point a node should he executed or fired relative to the time point it 
started execution. A data flow graph G = ( V, E ) represents a partial order 
-< on its nodes v E V [Sto92]. 

Scheduling assigns toeach node in the data flow graph a start time such that 
all preeedenee constraints are preserved and the execution of the complete 
graph is terminated before a pre-defined time T max: 

T :V~ N sched (3.28) 

such that 

(3.29) 
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The as soon as possible (ASAP) sehed ule of a D FG exeeutes the DFG in a mini
mum time preserving all preeedenee eonstraints. The ASAP sehedule of a 
data flow graph G = ( V, E) is a function that returns the start time for 
each node v. It is defined as 

{

0, 
ASAP(v) = max (ASAP(w) + o( w)), 

wEpred(v) 

if pred( v) = 0 
if pred( v) ~ 0 (3 .30) 

For each node v, ASAP( v) returnsits start time. lts execution terminates at 
ASAP( v) + o ( v). This is called the finish time of a node. An ASAP schedule 
represents the fastest possible execution time of a data flow graph, that pre
serves all preeedenee constraints. 

It is easy to verify, that if a tok en is put on each input node of a data flow graph, 
each node will be fired at the time point determined by this ASAP schedule 
after starting its execution. 

Another schedule that preserves all preeedenee constraints, while minini
mizing the execution time of a data flow graph is the as late as possible sched
ule. It requires a maximal time T max. in which the data flow graph should be 
executed. Of course, T max should be equal to or larger than the largest finish 
time of any node in the data flow graph: 

'r/v E V: ASAP(v) + o(v) ~ Tmax (3.31) 

The ALAP schedule of a data flow graph is a function that returns the finish 
time for each node v. It is defined as 

{

Tmax 
ALAP(v) = min (ALAP(w)- o( w)), 

wEsucc(v) 

if succ( v) = 0 
if succ( v) ~ 0 (3.32) 

If a token flow graph is executed by a discrete event simulator, the following 
tasks need to be handled in the simulator: 

• firing the nodes that satisfy the preeedenee constraints, 

• rnanaging the enabling and disabling ofnodes, 

• mapping the schedule using events such that each node is executed at the 
proper time point. Ifno timing information is taken into account, this condi
tion is irrelevant. If no schedule information is used, the data flow graph 
will execute an ASAP schedule. 

Disabling of previously enabled nodes should be possible during token flow 
simulation. This is illustrated using the Petri net depicted in figure 3.13. It 
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shows a conflict: the enabled transition t2 will be disabled beca use ofthe firing 
of transition t1• 

Figure 3.13. A conflict because the firing of transition t1 disables 
the firing of transition t2 . 

Simulating a token flow graph, an event is defined as: 

DEFINITION 3.11: An event indicates a future firing of a token flow node. 

This means that the enabling and disabling of nodes should be handled by 
scheduling events and cancelling events in the discrete event simulator. 

In tigure 3.14, an embedding technique is applied to use a data flow graph as 
a discrete event model. The execution ofthe data flow graph is initialized by 
changing the value on port Pc in· The termination ofthe execution ofthe data 
flow graph is passed to the sy~tem by scheduling an eventon port Pc out· Nor
mally, some protocol is involved in the communication with the contr~ller. For 
instance, one could also use 4 control ports using a four phase handshake pro
tocol. 

The input ports of the data flow graph itself are insensitive to events. An 
eventon a net connected with such an input port never triggers the execution 
ofthe DFG. Only an eventon the input ofthe controller may trigger the execu
tion ofthe DFG. Once, the execution ofthe DFG has finished, the output val ue 
is scheduled as an eventon port p d,out' but as a refrain event: it does not trig
ger the execution of other modules connected to this net. The termination of 
the execution ofthe DFG is passed to the environment by scheduling an event 
on the output port of the controller. 
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Figure 3.14. A DFG instantiated as a discrete event model 

3.5 Run-time configuration of the simulator 

In this chapter, it has been described how differentmodelsof computation can 
he included into an event driven driven simulation algorithm. In the previous 
chapter, various techniques have been described that allow easy prototyping 
and debugging of simulation models. Summarizing, the following aspects 
have to he dealt with: 

• different event types; 

• different timing models; 

• different data types and conversion between these types; 

• synchronization between slave simulators running independently; 

• discrete event automata; 

• complex nets and busses; 

• animated simulation. 

Many ofthe techniques are dealt with in the simulation algorithm, in particu
lar the event handler. This unnecessarily decreases simulation performance 
in those runs, in which a particular feature is not used. Therefore, the possi
bility to adapt or modify the simulation algorithm is very useful. 

In figure 3.15, it is depicted how the simulator can he adapted to particular 
simulation needs. The simulation kemel is generated from a set of options, 
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that resembie the requirements to simulate a particular model, and the tem
plate files. The template files contain constrocts that allow to generate code 
fora particular simulation feature or algorithm. The code is generated either 
to create a stand-alone batch simulator or to create a module, that can be 
loaded run- time in the current application. In the latter case, the existing 
simulation kernel is replaced by a fine-tuned new one. 

contiguration 
phase 

si mulation 
phase 

Figure 3.15. Flow to contigure a simulator. 

batch/runtime 

This approach is not only useful to adapt the event-driven simulator to specif
ic designer's needs. This may increase overall simulation performance. The 
simulation algorithm (and thus theevent handler) itself can he adapted as 
well for specific design flows and design implementations. This is illustrated 
best by the following examples: 

• If a detailed timing simulation is performed using floating point values as 
delays, the next-event approach is better suitedas overall timing advance 
approach. Themainloop ofthe event driven simulator is replaced to accom
plish this. 
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• Ifthe execution order ofthe modules in the toplevel description ofthe sys
tem can be determined, this order can be compiled to improve simwation 
performance. In this case, theevent driven simulator is replaced by a com
piled routine of the execution order of all modules. 

Dedicated simwation algorithms may be stored with particwar examples for 
fast and efficient simulation. Such an algorithm is run-time loaded on the de
mand together with the simwation modelsof all components. Various options 
may be chosen to make a trade-off between accuracy and performance. As a 
result, the simwation environment offers flexibility and customization at 
various levels of detail: 

• the main algorithm of the discrete event simulator can be chosen, for 
instanee oblivious simwation or cycle-based simulation; 

• the addition of a new type of simwation models (models of computation), 
or, the integration of a specific simwation algorithm or simulator, for 
instanee switch level simulation; 

• the addition of a new model (of a specific type), for instanee a 2-input nand 
gate at the switch level. 

The flexibility and opennessof a simulator is a very important aspect during 
the implementation ofthe simulator. It is very hard to adapt an existing simu
lator in order to get a more open architect ure. Especially, commercial simula
tors lack the mechanism to be able to use them with another simulator. They 
merely provide a foreign language interface to allow the simwation ofmodels 
written in C. More attention should be paid to provide that functionality in 
a simulator, that allows easy integration with other simulators. That would 
give other companies the opportunity to integrate those simulators together 
that suits their needs fora specific design flow. 



Chapter 

4 Simulation examples 

4.1 Introduetion 

In the previous chapters, some results have been presented that illustrate the 
performance and the costs of specifïc features of ESCAPE. In this chapter, some 
examples are presented to illustrate the flexibility and simwation capabili
ties of ESCAPE. The examples presented in sections 4.4 and 4.5 clearly illus
trate the advantages ofusing animation to present simwation results. Both 
examples rely on a handshake protocol, that is used to move the objects along 
the road or railroad respectively. The railroad example is based on the traffic 
example. 

4.2 The inner product calculation chip 

The inner product z = x.y oftwo n-tuple vectors, x= ( x1' X2, ... , Xn) and 
Y = ( Y1, Y2• ... , Yn ), is defined as 

n 

z =I x;* Y; 
i= 1 

(4.1) 

The computation of the inner product requires n multiplications and n - 1 
additions. During this computation 2n - 1 rounding errors may occur, which 
can have a great influence on the final result. This problem can be solved by 
storing each intermediateresult using a long accumulator. A long accumula
tor is a shift register with a full adder connected to it. The length ofthe shift 
register is determined by the length of the mantissa, the range of the expo
nents and an additional number to account for overflows. Note that the addi
tion of a multiplication results can he done serially, which may be too slow, 
or in parallel, which requires a huge full adder. Therefore, other architectures 
have been investigated. 

In figure 4.1, one architecture is depicted (see also [Fle91] and [Tan92] for 
more details) consisting oftwo circular shift registers (rings). Both rings store 
the intermediate results (summands) of the inner product calculation: one 
ring stores all positive results and the other ring all negative results. The I/0 
module calculates the final result from the results stored in both rings. 
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negative ring 

1 : dispatcher 
2: adder station 

Figure 4.1. Architecture of the inner product calculation chip. 

In the rings, data is shiftedeach clock cycle: in the next clock cycle, the value 
ofthe bit shifted in a specific flip flop is doubled (see figure 4.2). The following 
equation describes the value ofthe flip flop at position i at clock cycle k: 

V;(k) = b;(k)2(i+k+m)modN (4.2) 

with m E N an arbitrary constant, that determines the LSB/MSB boundary 
at t = 0 and b; the state of the flip flop i in the ring. Note that 
b(i + 1) mod N( k + 1) = b; mod N ( k}. At each time point, a specific exponent is 
assoc1ated with each bit in the ring. 

The Sign Mantissa Exponent (SME) module takes the jfh element from each 
input vector and calculates the sign, mantissa and exponent ofthe multiplica
tion ofboth elements. A number of adder stations are attached to both rings 
at equidistant places. The mantissa of a new multiplication result is inserted 
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t = k m-2 m-1 m m+l 

t = k + 1 m-1 m m+l rh+2 

Figure 4.2. Shifting bits with different weight in a ring 

by a particular station ifthe exponent ofthe result is equal to the exponent 
of the data at the insertion point in the rings. Depending on the sign of the 
result, the mantissa is added to either ring. The time between the acceptance 
of the mantissa and the insertion into the ring is called the hold time. 

To he able to add numbers in parallel to a ring, each adder station has alocal 
carry. This also explains why two rings are being used: if a two's complement 
representation of a number in a single ring is used, all the leading bits of a 
number have to he toggled ifthe sign of an intermediateresult changes due 
to an addition. In that case the carry has the ripple through all bits up to the 
MSB to change the sign ofthe number blocking the insertion of a number at 
any station. A sign-magnitude representation can not he used in combination 
with multiple adder stations, because at all times the sign must he known to 
each station to decide if a number should he added or subtracted. 

The dispatcher is used todetermine which station is most appropriate. It cal
culates the hold times of all stations and selects the station with the minimal 
hold time, which is not busy yet. To calculate these times, it uses the exponent 
of a multiplication result and the current position ofthe LSB in the ring. Th is 
position is kept in the ring counter. Once an adder station has been selected, 
both the hold time and the mantissa are sent to the selected station. 

The optimal number of adder stations depends on the desired throughput of 
data from multiplier to the adder stations and the ring length. The optimal 
number has been calculated using a C program. The result ofthis calculation 
was eight. However, different simulations in ESCAPE showed that this archi
tecture is extremely sensitive to congestion, if an adder station is selected 
thatis already busy. In that case, the next adderstation will he selected which 
increases the hold time. This leads to a decrease in performance. The results 
ofthe HDL simulations in ESCAPE and some additional performance analysis 
have resulted in a new and better architecture for this chip: this architecture 
guarantees a constant throughput independent ofthe data. 
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In table 4.1, some statistics of the models of the various architectures are 
listed. Kulisch 1 is the original architecture and Kulisch 2 is the improved ar
chitecture. 

Table 4.1. Statistics on the size of the Kulisch examples. 

name instances nets grapbics obj. size [MB] 

Kulisch 1 679 843 3512 5 
Kulisch 2 706 910 3952 5 

In table 4.2, the simulation statistics of these examples are listed. The results 
have been obtained by executing about 100 runs of500 simulation cycles. The 
table contains both the simulation runswithand without animation. This is 
indicated by the + and- symbols following the name ofthe benchmark. The 
following sequences are used: 

• +I+ : all objects are updated during simulation; 

• -1+: only instances and wires are updated during simulation; 

• -1- : no objects are updated during simulation. 

Table 4.2. Simulation statistics and performance of the Kulisch examples. 

name av. # events av. # av. #draw av. elapsed 
evaluations requests cpu time 

[* 1000] [* 1000] [* 1000] [sec] 

Kulisch1 +I+ 68.7 39.1 293.0 9.4 

Kulisch 1 -1 + 68.9 39.1 156.2 8.3 

Kulisch1-l- 68.3 39.0 0.0 5.0 

Kulisch2 +I+ 131.6 64.1 712.9 14.3 

Kulisch2 -1+ 131.6 64.1 476.4 10.8 

Kulisch2 -1- 131.6 64.1 0.0 6.3 

These examples genera te an extremely high number of draw requests during 
simulation, which strongly influences the simulation performance. 

4.3 The bit blitter 

A bit blitter (block image transferrer) is a grapbics processor that is designed 
to handle blocks ofbitplane data . It improves on the performance of a general 
purpose processor in manipulating blocks ofbitplane data. A simulation mod
el ofthis processor has been developed using the LISP HDL described in ap
pendix A, this as a part of the test case described in [Phi88]. 

Some ofthe features ofthe blitter are: 
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• it can use a bi-directional addressing scheme, 

• it can perform a logic operation on data before transferring of that data, 

• it can copy data, 

• it can shift two ofits data sources, 

• it can perform an area fill. 

In tigure 4.3, the simwation model ofthe bit blitter is depicted. It consistsof 
two parts: the blitter itselfincluding some additional models for simwation 
control and a model of part of a display. 

Figure 4.3. Simulation model of the blitter 

In appendix B, some snapshots of a simwation ofthe bit blitter are depicted. 
Some ofthe features ofthe blitter are visualized in these snapshots. 

4.4 Simulation of traffic on a road 

In this example, the road is composed of different modules with 4 ports, that 
are used to communicate data, which controls the behaviour ofthe cars. Each 
module represents a road segment, which has a notion ofthe presence of a car. 
Each car has a random speed, which is modeled using a random delay for 
propagation to the next road segment (module). They rnaintaio a minimum 
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distance of one road segment, even ifcars have to stop for a red traffic light. 
The behaviour of a road segment is: 

(behaviour road_segO 
(term in) 
(term out) 
(term ack_in) 
(term aék_out) 
(state car 0) 
(state sched 1) 
;; car drives into this segment 
(if (and in (not car) 

(progn 
(setq car 1 ))) 

;; request to move forward 
(if car 

(progn 
(color 1) 
(delay 0 ack_out 1 ))) 

; schedule car to move 
(if (and sched car (not ack_in)) 

(progn 
(delay (+ 1 (random 5)) out 1) 
(setq sched 0))) 

; carmoves to next segment 
(if ack_in 

(progn 
(color 0) 
(delay 0 out 0) 
(delay 0 ack_out 0) 
(setq sched 1) 
(setq car 0))) 

A simwation snapshot ofthis model is presented in figure 4.4. It clearly shows 
the cars that are moving in one lane and the single car that is moving in the 
other lane. The cars in the first lane pass a point in the road, which will pos
sibie genera te a new car after each pass of another car after a random delay. 
The actual generation only occurs, ifthe associated road segment does not al
ready contain another car. This results in an increasing number of cars in this 
lane to the point in time, where no new car can be generated anymore. Once 
the lane contains many cars, the random speed of the cars clearly shows the 
conditions and overall behaviour that occurs in a trafiic jam. 
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Figure 4.4. Snapshot of the simulation of road traffic 
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The simwation performance is directly related to the number of events that 
need to he processed every clock cycle. This number is dependent on the num
ber of cars that are moving. Because new cars are generated during simwa
tion, the number of events and computational time is increasing as simwa
tion time passes. To give an impression, a number ofbenchmarks have been 
performed with a constant number of cars. This is shown in table 4.3. 

Table 4.3. Traflic benchmarks with animation 

# cars Av. # events Av. #draw calls Av. cpu time 

2 2900 20100 0.81 
4 4800 38100 1.31 

6 6800 56200 1.55 
8 8600 73400 2.11 

10 10600 91800 2.78 

In table 4.4, some simwation data is listed without using animation during 
simwation. Instead ofthe numberof draw calls, the average number of evalu
ations is listed. 
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Table 4.5. Traffic benchmarks without animation 

# cars Av. # events Av. # evals Av. cpu time 

2 2900 1900 0.51 

4 4800 3100 0.67 

6 6700 4300 0.73 
8 8600 5500 0.82 

10 10500 6700 1.00 

4.5 Model of a railroad and block control system 

This example shows the advantage of animated simulation: the correct beha
viour ofthe overall simwation model is shown by highlighting the modules, 
if the internal state indicates the presence of a train. 

The building blocks of this example are described in more detail in [Nie91] 
and are composed of a number of primitive modules. This example contains 
models on two levels: the track level and the controlleveL The track level is 
used to simulate trains. which move along the tracks. The controllevel han
dles the signals that guard each block and the switches that determine the 
route of the tra ins. 

In figure 4.5, three componentsof a track are depicted. Each component ofthe 
track has a state variable, which indicates the presence of a train. The ports 
orthese components are connected using abutment. Each component has four 
ports, that are used by the handshake protocol that moves the t rains along 
the track. The lengthof a train is initialized during the initialization ofthe 
model: a module will execute the handshake protocol to move the train num
ber oftrain's length times. The number of trains and the lengthof each train 
in the model therefore determine the simwation performance. Two ports for 
communicating the presence of a train to the controllevel (i.e. in_L_occ and 
out_R_occ). 

The largest example, which has been composed, is an abstract map ofthe Lon
don Underground consisting of more than half a million graphics objects (see 
figure 4.6). In this example, hierarchy is used to enable crossings of different 
Underground lines; the objects rnadelling these parts ofthe railroad lines can 
easily be identified: the parallelograms and rectangles. The network view of 
these modules models the railroad, which are simulated at a lower level in the 
hierarchy. The trains moving on these parts of the tracks can be visualized 
in a separate window. The visualization oflower levels in the hierarchy may 
be selected during the simulation. This example clearly shows that very large 
examples can be captured and simulated by ESCAPE. 
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Figure 4.5. Modelling of tracks and trains moving along it. 

Figure 4.6. · Map of London Underground 

In tigure 4.7, a snapshot is depicted that has been taken during the simula
tion ofthis example. One can easily identify five trains, tha t are moving along 
the tracks and the signals that show the presence of a train in a particular 
track. All signals are set correctly depending on the speed and direction ofthe 
trains. As a result, a train will wait for free tracks to prevent collisions. The 
speed of a train and the direction, if more than one choice is possible, are cho
sen randomly during simulation. Despite this, the controllevel manages to 
control the trains without deadlock and collisions. 
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Figure 4.7. Simulation snapshot of railraad example. 

The simwation performance ofthe model is related to the number of events 
per time step. This depends on: 

• the number of control blocks; 

• the number of trains; 

• the length of the tra ins; 

• the average length of the blocks used in the example; 

• the average speed of the trains. 

The speed of the trains is modeled using different delay times. These times 
are chosen randomly, but depend on the signals along the track. The speed 
averages a constant value for the different benchmarks. 

In tigure 4.9, the average number of events as a function of the number of 
trains is depicted for three different number of blocks. 
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Figure 4.9. Average number of events for various number of 
blocks and number of trains. 
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In figure 4.10, the average number of events as a function ofthe length ofthe 
train is depicted: the linear increase is expected, because an active track mod
ule is performing the handshake protocollength of train times. 

In figure 4.11, the average number of events is shown fora constant track 
length composed ofblocks with different size. It clearly shows that it is more 
efficient to build tracks using large blocks. 

The simwation performance of each railraad example is determined by the 
size ofthe modeland the number oftrains. Various examples that vary con
siderably in size and complexity, have been edited and simulated using ES-
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Figure 4.10. Average number of events for various lengths of the 
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Figure 4.11. Average number of events for various block lengths 

CAPE. Table 4.6lists some statistics ofvarious examples. Note tbat tbe num
ber of instances, nets and grapbics objects are tbe totals for tbe model itself 
and tbey do not include tbe designs tbe model is composed of. Tbe size oftbe 
model includes all models tbat are required to build tbe simwation modeland 
also includes tbe event listand tbe maximum number of events used during 
simulation. 

Table 4.6. Statistics on tbe size of some railroad examples. 

name instances nets grapbics obj. size [MB] 

small 483 1546 5164 7 
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small2 848 2657 8954 8 

large 8114 22879 80253 31 

London1 23719 70951 245586 87 

London2 24894 71400 247071 86 

London3 54170 154201 536222 229 

In table 4.7, some statistics ofthe simwation runs and the run times ofthe 
various railroad examples are listed. As some parameters of these examples 
are modified randomly during simwation, these numbers have been for a 
number of consecutive runs of intervals of5000 doek cycles (the largest delay 
value used in the model is 100). The number of runs, which have been used 
to average the overall reswts, have been at least 100. 

Table 4.7. Simwation statistics and performance ofthe railroad examples. 

name av. # events av. # av. #draw av. elapsed 
evaluations requests cpu time 

[* 1000] [* 1000] [* 1000] [sec] 

small 14.3 2.4 14.3 1.5 

small2 24.8 3.9 25.0 2.0 

large 16.0 2.9 9.0 3.7 
London1 62.2 14.0 23.7 8.5 
London2 195.6 41.8 85.8 18.2 

London3 50.5 9.9 19.0 7.5 



Chapter 

5 Design process integration 

5.1 Introduetion 

In the previous chapters, different aspects ofthe simwation ofheterogeneous 
systems have been described. However, the simwation (validation) of sys
tems is only one ofthe activities in the design flow. To he ofreal use, a toollike 
ESCAPE needs to he tightly integrated withother tools in the design flow. To 
achleve this, ESCAPE is extended with some functionality for easy customiza
tion and tool integration in different application areas. Some other advan
tages of an open architecture are: 

• the user interface is configurable to different needs; 

• the built-in functionality is easy accessible by other tools; 

• the internal data is accessible by other tools; 

• the process ofintegrating a simulator or a nother design tool may he simpli
fied. 

Related work in this area are the extension and customization languages, 
that are provided with some commercial CAD systems. An example of such 
a language is SKILL [Bar90], that is provided with Cadence Design Frame
work II. SKILL is a fully featured programming language basedon the LISP 
language [Ste84]. Besides many ofthe function found in LISP, SKILL also in
cludes functions to access the underlying CAD framework and tools, and func
tions to build user interface components. It has proven to he a very usefullan
guage; although it was originally intended for customization purposes and 
small additions of functionality only, it has been used to develop large pro
grams as well. 

In this chapter a numberoffeatures are described, which allow customization 
and extension of ESCAPE itself as wellas integration with other applications 
or tools. For instance, ESCAPE has been used in combination with the following 
tools: 

• a term rewrite program to simplify the expressions generated during the 
symbolic simwation of data flow graphs; 
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• some formal verification tools to visualize output results by annotation 
onto a schematic (network view); 

• the tools for place and route oflayout data; 

• the architectural synthesis tools ofthe NEAT system (see section 5.6). 

5.2 A programmabie graph view 

Graphs are used to capture differentaspectsof a design at all abstraction lev
els (from the layout to the system level) in the design trajectory. At the higher 
abstraction levels, they are used to capture system structure and behaviour. 
Examples are data flow graphs, control flow graphs, Petri nets, finite state 
machines and state charts. Each graph formalism differs with respect to its 
structural representation and its graphical representation. This is referred 
to as the type (definition) ofagraph. Therefore, the graph view, unlike the oth
er views in ESCAPE, is customizable and even programmable. As a result, ES

CAPE may he used as a graph editor that serves as a user interface to many 
other application areas as well. 

The graph definition language is a language using the syntax ofthe LISP lan
guage. It is used to specify the structural and graphical attributes of a specific 
type of graph, its nodes and its edges. This information is used to build the 
graphics and the network data structure of a graph ofthis type. 

As an example, a simple graph definition of a Petri net is as follows: 

(graph-definition "petri" 
(scale 1 000) 
(directed) 

;; nodes 
(node "transition" 

(fill-color "black") 
(bounding-object (poly (-10 -1) (-10 1) (10 1) (10 -1) (-10 -1))) 

) 
(node "place'' 

(fill-color "black") 
(bounding-object (circle 0 0 8)) 

;; edges are not explicitly specified 
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In this graph definition file, two node types have been defined: a transition 
and a place. In particular, the graphical representations ofthe nodes are spe
cified. It is also specified that a Petri net is a directed graph. 

Another definition of a node is the branch in the data flow graph definition 
file (see tigure 5.1). 

control 

n 

Figure 5.1. Branch node of a data flow graph 

(node "branch" 

(ports 

) 

(input "control") 
(input "in") 
(output "selected" (props {prop ("variable")))) 

(function "dfgsim_branch") 

In the data flow graph definition file, the portsof each nodeneed to he speci
fied as well. The branch node may have a variabie number of output ports. 
This depends on the number of branches that may he selected using the con
trol input port. In addition, a function is specified for each node type: this is 
the function that is called during simwation of a data flow graph. 

The flow for visualizing and manipulating different types of graphs is de
picted in tigure 5.2. The graph definition files are read by ESCAPE to he able 
to visualize all nodes and edges (graphics data) and to pass properties for the 
internal data structures. Even specific functions may be passed through a 
definition file. The structure of a graph is read by a graph placement tool and 
the data resulting from this placement is sent to ESCAPE using the inter tooi 
protocol (see section 5.3). The information stored in the graph definition file 
could he used by the placement algorithm to find a better placement. There
fore, some placement programs will read this data as well. 
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Figure 5.2. Customizing the graph view 

Different placement algorithms could he used depending on the structure of 
the graph. Therefore, it is anticipated that many placement programs will 
he provided. This is one ofthe reasons to implement these placement tools as 
stand-alone tools. In principle, the designer can select one of the available 
graph placement tools for the placement of a specific graph. Many algorithms 
have been developed for the placement of different types of grap hs. An over
view is given in [Ead89]. Two algorithms have been implemented for the 
placement ofthe ASCIS data flow graph: 

• a dedicated placement algorithm that exploits specific properties of the 
structure of a data flow graph; 

• an algorithm basedon an algorithm published in [Sug81], which minimizes 
the number of edge-crossings in the graph. 
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After placement, the coordinates of all nodes are sent to ESCAPE, which is then 
able to draw the graph using both the information from the placement as well 
as the graphical representations ofthe nodes and edges as specified in the 
graph definition file. Of course, the resulting layout but also its structure 
(connectivity) may he manipulated afterwards; a graph mayalso he captured 
interactively using the graphics editor. 

Related workin this area is the interface description language described in 
[New88], which is developed for an extendible directed graph editor called 
EDGE. 

5.3 Inter process communication and the inter tooi protocol 

An inter process communication (IPC) module is build into ESCAPE to he able 
to embed it in an existing CAD environment (e.g. a framework) or to conneet 
external tools with it. This IPC module allows the communication between 
ESCAPE and other applications running on the same machine and other ma
chines in the network as well as the communication between various ESCAPE 

programs running on possibly different machines. The processing of incom
ing communication messages is tightly integrated with the processing of 
graphical events. This even allows the processing of communication mes
sages duringa simulation run. 

In figure 5.3, the interaction between ESCAPE and other tools on various hosts 
is depicted. ESCAPE is able to set up communication with other tools on the 
same machine directly or on any other machine running the daemon pro
gram. Note that the daemon is only involved in setting up the communication 
between an external tool and escape. lfthis succeeds, the tool communicates 
directly with ESCAPE. 

HOSTl HOST2 

Figure 5.3. Inter process communication with ESCAPE. 
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ESCAPE can he used in two major modes in combination withother applica
tions: 

• Slave mode: another application invokes ESCAPE and controlsits execution. 
In this mode, ESCAPE serves as a graphical backend for other applications. 

• Master mode: the execution of one or more applications is controlled byES
CAPE. Both batch and interactive tools are controllable from ESCAPE using 
either a synchronous or an asynchronous communication strategy. 

An ASCII protocol called the inter tooi protocol (ITP) provides access to the 
application procedural interface (API) ofESCAPE: it provides access to internal 
functions and varia bles. A textual description has been chosen toserve as an 
interface to the API, beca use it is less sensitive to errors. If a procedural inter
face is used, an error may result in program termination. The line oriented 
ITP allows easy recovery from errors in syntax and arguments. Another ad
vantage of an ASCII protocol is that an existing tool is easily adapted for read
ing and writing messages to ESCAPE. 

A summary ofthe ITP is given in appendix C. The ITP includes different kinds 
of commands, for instance: 

• user interface and control commands built in ESCAPE, 

• commands to set up and to control the simulator, 

• commands to manipulate views and objects in these views 

• commands to visualize data associated with objects or the objects them
selves, 

• commands to provide user interaction (e.g. selection lists, messages) 

• and even run-time specification of graph definition files. 

The concept of a context is introduced that determine if a command may he 
executed and which data it should affect. Each time a new context is opened 
it is pushed on a stack. Only commands that may he executed within that con
text are executed and all other commands are discarded. Ifthe current con
text is closed, it is popped from the stack and the previous context is restored. 
This concept makes it also possible to re-use commands for different pur
poses. For instance, the color command may he used in different context to 
set the current colour for drawing purposes. 

The following text shows an excerpt from the ITP communication between an 
external tool andESCAPE tosend graph definition data and the graph itself: 

graph sample dynamic 
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#node definition 
node-definitien mynode 

beunding-object box 0 0 8 4 
add--box 0 0 8 4 
add-text 1 1 

text name = <name> 
align center 

end-add-text 
color fill green 
property myvar 

end-node-definitien 

#node data 
add-node 1 1 n1 mynode 
add-node 3 3 n2 mynode 
add-node 8 1 n3 mynode 

add-hyper-edge someedgenet 
nodes name n1 n2 n3 
add-line 1 1 3 3 
add-line 1 1 8 1 

end-add-hyper-edge 

end-iJraph 
set-graph <none> dynamic 

view-link myset 
link graph sample type dynamic node n1 
link graph sample type dynamic edge someedge 

end-view-link 
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In tigure 5.4, the organization ofthe inter tooi communication is depicted. An 
external tooi writes messages to the IPC channel, which are read by the ITP 
parser built in ESCAPE. Once a complete command is parsed, the appropriate 
function in the API is called. This function may access the internal data struc
tures. To communicate with an external tooi, ESCAPE formats a specific mes
sages and sends it via the appropriate IPC channel. 

5.4 Configuration of the user interface 

The open architecture of ESCAPE can only be exploited, ifthe user interface is 
customizable as well. A customization language has been developed, that 
may be used to adapt and to extend the user interface to specific needs. The 
language also serves as a tool encapsulation language. Using this language, 
ESCAPE is easily interfaced with other CAD tools or environments. 
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Figure 5.4. Inter tooi communication with ESCAPE 

The language to customize the user interface provides the following features: 

• variables and some programming constructs, 

• interactive editing of commands and queries, 

• access to internal functions, 

• invocation of external programs using various communication schemes, 

• synchronization mechanisms. 

In tigure 5.5, an excerpt from a definition ofthe menu to interface with the 
NEAT system is shown. The set command is used to set the value of a vari
able. A few variables are already defined in ESCAPE. The value of a variabie 
can also be set interactively. This is shown in the actionspart ofthe definition 
of a push button. 
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In the strings specifying commands, variables are specified between < and >. 
The parser replaces the variabie during the execution ofthe command by its 
actual value. 

;; variabie declarations 
(set interactiva false) 
(set neatbin "./neat/bin") 
(set designpath ".") 

;; the pulldown menu 
(pulldown "neat) 

(resources 
(label-string "Neat'') 
(mnemonic "N") 

;; a push button 
(push "hc2dfg" 

(actions 
(set prompt (variable interactive)) 
(extern "<neatbin>/hc2asd -i <designpath>l<basename>.hc" 

"-o <designpath>l<basename>.asd" 
) 
(set prompt false) 
(extern "<dfgread> -v -d -g <graphdefs> " 

"<designpath>/<basename.asd" 
(io-mode read) 

(resources 
(label-string "he -> dfg") 
(mnemonic "h") 

Figure 5.5. Part of a menu definition 

5.5 The interactive data access language 

An interactive data languages has been developed that provides program
ming ca pa hilities and read access to the internal data structures of ESCAPE 

[Luk92]. This interactive data access language may be used for the following 
purposes: 
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• to add new functionality to a program in an interactive and easy way; 

• to safely prototype new algorithms that use the existing data structure of 
ESCAPE; 

• to inspeet data stored in the internal data structures of ESCAPE; 

• togenera te complex structural descriptions; in that case, a combination of 
both procedural and graphical constructs (the graphics editor) can he used 
to describe structure. An example ofsuch a system is described in [Ebe89]. 

Although the LISP interpreter has been developed to he used with ESCAPE, it 
may he used with any other C program as well. The interpreter provides a 
general interface to access to the data structures of a C program. To enable 
this, the interpreter needs to he linked with the C program. The following 
steps have to he performed to use the interpreter and to access the data struc
tures and variables ofthe C program: 

• The C program explicitly publishes the types, functions and variables that 
the user wants to access using the interpreter. In the LISP interpreter, 
these C objects have a special type and are treated differently from other 
types. 

• The interpreter is initialized. 

• The LISP objects that embed the C objects are created and bound to user
defined names. All functions, that have been published, are added to the 
interpreter as well and may he used as any regular LISP function. 

Once this process is completed, the user may use the interpreter to develop 
programs in the LISP language or to load and execute functions that have 
been developed previously. Within the interpreter, full re ad accessis provided 
to the data structures and variables of the C program that have been pub
lished. 

5.6 An example: the integration of NEAT and ESCAPE 

NEAT (New Eindhoven Architectural synthesis Tooi-box) is an open inter
face for architectural synthesis [Hei94]. NEAT uses three graph representa
tions to capture all data during the various synthesis steps: 

• The ASCIS data flow graph is used to describe the behaviour of a design. 
Usually, a data flow graph is the intermediate representation ofthe beha
viour of a design generated from a hardware description language like Si
lage, VHDL or Hardware C. 

• The control (flow) graph is a representation of a fini te state machine. Each 
node represents a state, whereas the edges specify the threads of control 
(state transitions). 
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• The network graph is used to describe the structure of a design: it is a repre
sentation ofthe design at the register transfer level. 

Furthermore, inter- and intra-relations are used to represent the relation
ships between different objects in the various graphs. These relations are 
generated by the various synthesis tools. 

The following actions have been performed to enable the interaction between 
NEAT and ESCAPE: 

• The definition ofthe three graph representations used in the NEAT envi
ronment: the data flow graph, the control graph and the network graph. 

• The development of a dedicated placement tooi for data flow graphs, which 
places control flow graphs and network graphs as well. This tooi reads the 
ASCII data format used in the NEAT system and generates ITP messages 
that are read by ESCAPE. 

This allows to store the graphs in ESCAPE and to present them graphically. N ot 
only the graphs are stored but also the inter- and intra-domain relations be
tween these graphs and their objects. 

ESCAPE has been used both in master as in slave mode to interact with the 
tools ofthe NEAT system. In master mode, tools in the NEAT system are in
voked from the user interface of ESCAPE. The user interface to control NEAT 
has been defined using the UI contiguration language. Once, the tooi has ter
minated successfully, the results are read by the graph placement program, 
which sends the graphs and their relations to ESCAPE. Then the designer can 
inspeet the results on the screen. 

In slave mode, ESCAPE is invoked from another tooi and its standard input/out
put streams may he used to send a series ofiTP commands to ESCAPE, which 
transfers all design data from the synthesis tooi to ESCAPE. 

The experiments to integrate NEAT andESCAPE have shown that is very use
ful to have a grapbics backend for synthesis tools. The backend is able to visu
alize all synthesis data. A designer can inspeet all data and interactively vali
date that the results are correct. Besides tooi control and visualization, such 
a backend mayalso he used to animate the behaviour of a tooi onto the data 
during synthesis. For instance, the progress ofthe scheduler may he visual
ized. It is even possible to adapt the scheduler program to allow user control 
during scheduling. 
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6 Concluding remarks 

In this thesis, some concepts and techniques applied toa discrete event simu
lation tool are described that 

• reduce the design cycle time to facilitate prototyping, debugging and de
sign space exploration, 

• allow to compose a homogeneous discrete event simwation model from dif
ferent types of simwation models. 

A prototype of a flexible and interactive simwation environment, called ES

CAPE, has been developed, in which these concepts and techniques have been 
incorporated. Many experiments have shown its usefulness for modeHing and 
simulating a great variety of examples. I t cao easily be adapted to fulfil differ
ent simwation needs oot only for CAD applications but for other real world 
applications as well. The prototype is oot only used as a modeHing and simu
lation tool but as a generic frontend toother CAD tools as well, because ofits 
flexibility and openness. 

The reduction ofsimulation time and overall design time has been tackled by 
tightly integrating the various phases of design and simulation. To be more 
specific, the following features have been provided: 

• Incremental updating of and direct access to internal data structures. 

• Support ofhigly interactive interaction models between the simulator and 
the editor. 

• Animation/visualization of system behaviour during simulation. 

• Support of discrete event monitors to detect erroneous behaviour at higher 
levels of abstraction. 

The integration ofvarious types ofmodels such that is possible to simulate 
heterogeneous systems, is basedon the idea to map different simwation algo
rithms onto the event driven simwation paradigm. Different types of events 
are used to model different delay models and interconneet behaviour, to con
trol and to synchronize multiple simulators, and to execute user-defined 
functions at specific time points. Besides events, an external simulator inter-
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face and a model encapsulation technique are used to simulate different types 
of models homogeneously. 

The open architecture ofthe simulator allows for extension at three different 
levels of detail: 

• new models of a specific type, 

• new types of models, 

• the simwation algorithm itself. 

No te that most simulators claim to he flexible ifthey just support the addition 
of new modelsof a specific type (as opposed to using only predefined compo
nents from a number oflibraries). 

Besides its use as a modeHing and simulation tooi, ESCAPE may be used as a 
generic user frontend for other CAD tools. The flexibility ofthe user interface 
and its graphics capabilities are used to control CAD tools and to visualize 
output results of these tools. Especially, its use in combination with the archi
tectural synthesis tooibox NEAT has proven to be very successful. 

Suggestions for future work 

Many suggestions can be made to enhance the prototype. In the remainder 
of this section, a few important ideas are proposed that need to be investi
gated to he able to decide on the usefulness ofsuch a tool as a product for real 
life design projects. Using such a project as an example may help to identify 
potential deficits. It may also be worthwhile to apply the concepts described 
in this thesis to a commercially available simulator. The prerequisites for 
such an approach are described here as well. 

First, a few inadequacies of the current prototype are described that need 
some additional research. 

In ESCAPE, events are used for many purposes and the efficient management 
of these events is important to limit the decreasein performance. Flexibility 
and opennessin generalleads to a performance penalty in simulation speed. 
Events are managedindifferent data structures to fulfil different tasks dur
ing simulation, for instance: 

• the master event queue to process events in a non-decreasing order, 

• the storage of events and state variables to perform incremental simula
tion, 

• the storage of events and state variables to he able to restore a previous 
simwation state. 
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It is very important to reduce the number of data that has to he managed dur
ing simulation, as it has costs in both performance and memory usage. This 
is a topic that may he investigated more thorough in the near future. 

EscAPE lacks support to manage design data. This manifests itselfin setting 
up simwation experiments invalving hierarchy, alternatives and multiple 
types of simwation models. A real topic for future research is how the man
agement of designs may he combined with an incremental update approach 
ofthe simwation model as currently used in ESCAPE. This support is required 
to he able to use such a tool in reallife design practices. This problem has not 
been addressed yet, because it should he dealt by CAD frameworks. 

As stated before, many ofthe concepts and techniques described in this thesis 
may he applied to an existing commercial (event driven) simulator as well. A 
commercial simulator may serve as a basis on top ofwhich software modules 
are developed that allow the simwation of different models of computation 
that interface with the underlying simwation paradigm. Most simulators 
today include a foreign language interface, but the openness and flexibility 
of such an interface are very limited. It basically allows to include C models 
in a very primitive manner. It could however he investigated, ifthis is sufti
eient to integrate more complex models or even other simulators. 

Of course, it would even he betterif commercial vendors would put simulators 
on the market that have an open architecture instead of a foreign language 
interface. Such an architecture should allow to include models simulated on 
tha t simulator as a submodel of another simulator. Al though s u eh simulators 
are not on the market today, it is possible to integrate a commercial simulator 
with ESCAPE using its foreign language interface. However, this approach 
seems to he restricted to a single simulator to avoid deadlock and synchro
nization problems. It may he interesting to investigate this problem in more 
detail, since re-use of existing simulators to build a heterogeneaus simula
tors is very cost effective. 

The last suggestion concerns the u se of ESCAPE as a generic user frontend. In 
the prototype, many of the features to customize ESCAPE are developed in 
isolation. A good alternative would he to provide a programming language 
that offers all these features including full access to the data structures and 
functionality of the tool. 
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Appendix 

A The LISP-like HDL 

A.I. Introduetion 

In this appendix, an overview is given ofthe LISP-like HDL. This language 
can be used to describe the behaviour ofprimitive componentsin ESCAPE. The 
language contains primitive functions to interface with theevent driven sim
ulator and to visualize simwation results. 

A.2. The language 

The HDL supports different types of varia bles. The following types can be 
used in the declaration part: 

- Ports, which are used to communicate values between a module and its en
vironment. Ports have also to be defined in the symbol view of the corre
sponding design. 

- State variables, which are used to model memoryelementsin a behavioural 
description. A state variabie holds a value between consecutive evaluations 
of a description and it is initialized before the beginning of a simwation ex
periment. 

- Local variables, which are used to simplify expressions. Alocal variabie is 
initialized before each evaluation of a behavioural description. 

In addition,parameters can be used in the body of a behavioural description. 
The value of a parameter can be modified using the user interface at any time 
in a simwation experiment. After modification, its new value will be used im
mediately. Parameters are objects stored in the network view, whereas the 
other types are embedded in the behavioural description language. Note that 
a parameter is bound to an instanee of a design not to a design itself. 

A.3. Summary of functions 

A summary ofthe most important functions ofthe LISP-like HDL is given 
below. In this HDL, the number 0 is equivalent with the logica] value false. 
Any number not equal to 0 is equivalent with the logica] value true. 
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(+ { <number> }*) 
Returns sum ofthe <number>'s. When no arguments are supplied, it returns 
the integer 0. 

(- <number-1> { <number> }*) 
With one argument negates <number-1>. Otherwise, successively subtracts 
the <number>'s from <number-1>. 

(* { <number> }* ) 

Returns product ofthe <number>'s. When no arguments are supplied, it re
turns the integer 1. 

(! <number-1> <number-2> { <number> }*) 
Returns <number-1> divided by product of <number-2> andrestof <num
ber>'s. Uses integer division. The result when attempting to divide-by-zero 
is undefined. 

(mod <number> <divisor>) 
Returns remainder of <number> divided by <divisor> (also a number).Uses 
C-language % operator. 

( < <number> { <number> }* ) 

Returns true if <number>'s are monotonically increasing. 

( <= <number> { <number> }* ) 

Returns true if <number>'s are monotonically non-decreasing. 

(= <number> { <number> }* ) 
Returns true if all <number>'s are equal. 

(>= <number> { <number> }* ) 

Returns true if <number>'s are monotonically non-increasing. 

(> <number> { <number> }*) 
Returns true if <number>'s are monotonically decreasing. 

(random [ <range> [ <init-seed-p> ]] ) 
Returns a pseudo-random integer. Ifthe first argument is supplied then an 
integer in the range [O .. <range>-1] is returned. If <init-seed-p> is true the 
random number seed is setbasedon the current time and pid prior to calling 
the generator. 

(min <number> { <number> }* ) 

Returns smallest of all the <number>'s. 
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(max <number> { <number> }* ) 

Returns largest of all the <number>'s. 

(and { <form> }*) 
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Evaluates the <form>'s in order from left to right until one of them yields 
false, then false is returned. Any remaining <form>'s are not evaluated at all. 
In case ofno argument returns true; ifall arguments evaluate to true, the val
ue of the last <form> is return ed. 

(or { <form> }* ) 

Eval uates the <form>'s in order from left to right until one ofthem yields true, 
then this value is returned. Any remaining <form>'s are not evaluated at all. 
In case of no argument or all arguments evaluate to false, false is returned. 

(eqv <arg> { <arg> }* ) 

Returns true if all its arguments are logically equivalent, i.e. either all true 
or all false. 

(not <arg>) 
Returns the complement ofthe truth value ofthe argument. 

(setq <Var> <form> ) 
Sets (assigns) to <var> the value of <form>. The <var> argument (symbols) 
is not evaluated, the <form> argument is. Returns the value assigned. 

(delay <time> {<net> I (<bus-net> <offset>)} <value> [ <event-type>]) 
Causes an eventof type <event-type> to he schedwed for the <net> (or the 
wire of a bus specified by <bus-net> and <offset>) to occur at a time <time> 
afterthe current simwation clock value. At that time in the future the net will 
change to the value <value>. 
Allowed event-type values are: 
0 normal, conditional evaluation ofmodwes in net's fanout list 
1 refrain, no evaluation ofmodwes 
2 trigger, forced evaluation ofmodwes 
3 cancelled, no effect 
4 interrupt, interrupts simwation 
Returns <value>. 

(if <test> <then-form> [ <else-form> ] ) 
If <test> yields true evaluates <then-form>, else <else-form>. Returns the 
value ofthe last form evaluated. If <test> evaluates to false and there is no 
<else-form> present, false is returned. 

(case <keyform> {({ ({ <key> }*) I <key> }* { <form> }*)}*) 
Evaluates <keyform>, which must reswt in an integer value. Then treats 
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clause by clause in order until one is found where <keyform> matches the 
<key>. Ifso, evaluates the <form>'s in the clause as an implicit progn and re
turns result oflast. If no key matches, it returns 0. 

(while <test> { <form> }*) 
While <test> yields true execute the <form>'s. Always returns false. 

(for (<init> <test> <step>) { <form> }*) 
C-like for statement. This statement is equivalent with: 

(progn 
<init> 
(while <test> 

{ <form> }* 

<step> 

(progn { <form> }*) 
Evaluates the body <form>'s inorderfrom left to right, and returns the result 
of evaluating the last one. When it is said that a function evaluates its forms 
or body as an implicit progn it is understood that the evaluation takes place 
as if (progn ... ) was actually typed around those forms. 

(write <value>) 
Writes integer <value> in bounding box of instance, returns this value. 

(write <control-string> [ <argl> [ <arg2> [ <arg3> ]]] ) 
Formats a string out of a <con trol-string> and <arg>s. <arg> may he string 
or integer value. Formatting and substituting the arguments into the con
trol-string is done similar to the C language (s)printf routine. The result is 
a string which is written in the bounding box ofinstance. The control-string 
may contain %s, %d, or %c to substitute successive following arguments. To 
include% itselfyou must write it twice: %%.Returns 0. 

(simtime) 
Returns simwation time value. 

(color <value>) 
Colors instanee box when <value> is true. 

(fillcolor <r> <g> <h> [ <index> ] ) 
Sets color used by function "color" using the arguments that specify the val
ues ofthe red green and blue components, which must he in the range [0 .. 100]. 
<index> specifies the color index in the table reserved for animation. If <in
dex> is omitted, the color index 0 is assumed. 
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(make-bitvector <length>) 
Dynamically allocates bit vector of that length, i.e. number of bits. Returns 
the vector initialised to all bits zero. Since there is as yet no automatic gar
bage collection of used space, use this function with care. Best is to call only 
once, for instanee at start of simulation. 

(bit <vector> <index> ) 
Returns value of bit vector element at index. Indices count from zero. Value 
returned is in fact integer, either 0 for false, 1 for true. 

(setbit <vector> <index> <Value>) 
Sets bit in bit vector at index to value. Value is integer, 0 for false, any other 
value for true. Returns value. 

( << <vector> <shifts> [ <fiJI-in> ] ) 
Shifts bits in bit vector left over number of shifts places. Left means towards 
higher indices (corresponds to usual model of bitvector to represent binary 
numbers). Bits shifted out are lost. Bits with value fill-in are shifted in at the 
right, by default fill-in bits are false. Returns modified bit vector. 

(>> <vector> <shifts> [ <fill-in> ] ) 
Shifts bits in bit vector right over number of shifts places. Right means to
wards lower indices (corresponds to usual model of bitvector to represent 
binary numbers). Bits shifted out ar-e lost. Bits with value fill-in are shifted 
in at the left, by default fill-in bits are false. Returns modified bit vector. 

(interrupt <time> ) 
Schedules an interrupt type of event. Equivalent to (delay <time> 0 0 4). Re
turns 0. 
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B Simulating the bit blitter 

In this appendix, some snapshots ofthe animated simulation ofthe bit blitter 
are depicted. The first snapshot (see figure B.l) shows the bit blitter after ini
tialization of an image in the left half of the display. The figures B.2 and B.3 
show the execution ofthe first operation: the image in the left halfofthe dis
play is copied toa specific position in the right half ofthe display. At t = 105, 
this operation is completed. 
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Figure 8.1. Simulation snapshot at t = 0. 

In figure B.4, the first picture shows the bit blitter after completion of a move 
of the image in the right half of the display. The second picture is taken after 
completion of a fill operation ofthe image in the right half ofthe display. The 
next figure shows the bit blitter after completion of an invert operation of pix
els in a specific area ofthe right half ofthe display. The last picture shows the 
display after translating the whole contents ofthe display. 
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Figure 8.2. Simulation snapshots at t = 21 and t = 37. 

Figure 8.3. Si mulation snapshots at t = 65 and t = 105. 
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Figure 8.4. Simulation snapshots at t = 305 and t = 525. 
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Figure 8.5. Si mulation snapshots at t = 725 and t = 1059. 



Appendix 

c The inter tooi protocol 

Tahle C.l gives a swnmary ofthe inter tool protocol (ITP). The following sym
hols are used in this tahle: 

• 0 : Opens the context associated with the en try in the table. The previous 
context is saved hy pushing it on a context stack (First In Last Out mecha
nism). 

• • : Closes the current context and the previous context is restored by pop
pingit from the context stack, ifthe stack is not empty. 

• • : Command may he applied in this context. 

• 0 : Command may be applied in this context, but it is not recommended. 

An example is the add-edge command. This command is processed in the 
none, design andgraph contexts. Otherwise, it is ignored. The add-edge com
mandopens the add-edge context, which is closed by the end-add-edge com
mand. Note that commands listed in the none context column may he applied 
at any time in a inter tool session. 

Table C.l. Summary ofthe inter tooi protocol. 

~ 
I~ Dl Dl 

Dl ~ 0. 0. Dl en co < :J 0. î Dl î Dl ~ 0. ~ 't 0. 0. itï :J CD 
(Q CD 0. 0. 0. 0. CD ~ 

't 0. ~ 0 en iil ~ 3 J, :J I en CD J.. i. u ~. :J tëi" "0 cr !:!?. :J '< ê. 
_L 

CD 0 0. :J 0 3 CD b -· 
:J ::r 

~ 0 Dl ~ CD (Q 0. ~ iD :J d 
CD :J cr :J !:!?. :E ;>\ 

(") CD 0 
CD Dl 

add-arc • • • • • 0 

add-arrow • • • • • • 0 

add-box • • • • • 0 

add-circle • • • • • 0 

ad d-ei rele-are • • • • • 0 

add--edge • • • n 
add-i nstanee • • • 0 

add-line • • • • • • 0 

add-net • • • n 
add-node • • • [] 
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~ 
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add-oval • • • • • D 

add-terminal • • • • D 

add-text • • • • • D 

add-wire • • • D 

base-length • 
clear-textview • 
close-view-window • 
delete-all-view-links • 
delete-graph • 
design • D 

dest-port • 
end-add-edge • 
end-add-instance • 
end-add-net • 
end-add-node • 
end-add-symbol • 
end-add-terminal • 
end-add-text • 
end-add-wire • 
end-design • 
end-graph • 
end-network • 
end-select-list • 
end-symbol • 
end-text-view • 
end-view-link • 
error • • • • • • • • 
graph • • 
item • 
link • 
laad-design • 
message • • • • • • • • 
network • [Ï 

open-view-window • 
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lll Ul Cii < :::J Q_ Q_ lll Q_ Q_ Q_ lll !!?.. 

:::J 
Q_ (Q ga_ ~ ?- l. Q_ ?- J, .l.. Q_ Q_ x Ciï 
<D Dl Q_ Q_ <D I. i 0 !!1. ~ 3 :::J ?- <D .l.. I r :::J "0 0" <D Ul :::J '< 3 ~-<D (Q :::r Q_ ii) :::J 0 3 <D -· 
:::J ~ Q_ (Q ga_ Q_ ~ ëO -· <D :::J d 

<D :::J <D 0" :::J !a. :E "' () 0 ~ <D 

orig-port • 
prompt-dialog • 
property • 
quit • 0 0 0 0 0 0 0 0 0 

reset-sim • 
select-list • 0 

set-design • 
set-editor-mode • 
set-graph • 
set-view-window • 
show-text-view • 
show-world • 0 0 0 0 0 0 0 0 0 

start-sim • 
stop-sim • 
symbol • 0 

text • • 
text-view • 0 

view-link • c 
warning • • • • • • • • • • 
zoom-in • 0 0 0 0 0 0 0 0 0 

zoom-out • 0 0 0 0 0 0 0 0 0 



aEA 

AU8 

An8 

A\8 

AÇ8 

P(A) 

Ax8 

f:A-+8 

Nota ti on 

a is an element of A. 

The uni on of the sets A and 8. 

The intersection of the sets A and 8. 

The difference of the sets A and 8. 

The set A is a subset of the set 8. 

The powerset of set A. 

The Cartesian product of the sets A and 8. 

The class offunctions defined on A x 8 with domain A and 
codomain 8. 

The function f defined on A x 8 with domain A and codo
main 8. Note that f ç;; A x 8. 

155 



Biography 

Hans Fleurkens was born on February 17th, 1965 in Venray, the Nether
lands. He studied Electrical Engineering at Eindhoven U niversity ofTechnol
ogy, the N etherlands, where he graduated from in August 1988. After receiv
ing his degree, he has worked for half a year on artificial intelligence 
techniques in control engineering at Delft University of Technology, the 
Netherlands. 

From April1989, he has been working towards a Ph.D. degree in the Design 
Automation Section ofthe Department ofElectrical Engineering at Eindho
ven University ofTechnology. He expects to receive this degree basedon the 
work described in this thesis on March 26, 1996. 

Hans Fleurkens has worked in the Mathematica! Sciences Department of 
IBM Thomas J. Watson Research Center, Yorktown Heights, New York from 
October 1990 till May 1991. 

From November 1994, he is workingat Philips Research in Eindhoven, the 
Netherlands. 

157 



Stellingen 

behorende bij het proefschrift 
lnteractive ModelZing and Simulation of Heterogeneous Systems 

van Hans Fleurhens 

1. Er zijn een aantal factoren die invloed hebben op de snelheid waannee 
een schakeling gesimuleerd kan worden. De gedragsbeschrijving van 
het systeem zelf is een factor waarvan de invloed vaak onderschat wordt. 

[Dit proefschrift] 

2. De standaardisatie van de interface van commercieel verkrijgbare simu
latoren is zinvoller dan de standaardisatie van de interface voor een 
zogenaamd simulation backplane. 

[Dit proefschrift] 

3. Het gebruiken van een interactief ontwerp- en/of simulatiesysteem 
hoeft niet ten koste te gaan van de prestatie van de simulator zelf. 

[Dit proefschrift] 

4. De enige manier om de snelheid van simuleren orde groottes te 
verbeteren is het verhogen van het abstractieniveau van de 
systeembeschrijving. Andere technieken die eigenschappen van een 
systeembeschrijving gebruiken om efficiënter te kunnen simuleren 
hebben veel kleinere snelheidsverbeteringen tot gevolg. 

[SALEH, RA and AR. NEWTON, "Mixed-Mode Simulation," Kluwer Aca
demie Publishers, Dordrecht, 1990] 

5. Het opbouwen van een complexe datastructuur door middel van het 
toevoegen van nieuwe elementen leidt in het algemeen tot minder fouten 
dan het afbreken van die datastructuur door het verwijderen van 
elementen. 

6. Hardware software co-design zou voor vele ontwerpers de alternatieve 
betekenis kunnen hebben van het omzeilen van de fouten in de software 
van de programmatuur, waannee de hardware ontworpen wordt. 

7. De keuze van een passende ontwerptooi of -omgeving voor een bepaald 
ontwerpprobleem is net zo moeilijk als het kiezen van een passende wijn 
bij een bepaald gerecht. 

8. In een onderlinge vergelijking van de kwaliteiten van verschillende 
faculteiten zou de toegankelijkheid van de gebouwen voor studenten en 
medewerkers eveneens een belangrijk aspect moeten zijn. 



9. Het heffen van belasting op de feitelijke commerciële waarde van gratis 
verkrijgbare software in bepaalde Amerikaanse staten is een maatregel 
die aangeeft dat overheden erg vindingrijk zijn in het bedenken van 
onzinnige oplossingen voor hun begrotingstekort. 

10. De bedragen die geboden worden voor het uitzenden van betaald voetbal 
zijn een maat voor de hoeveelheid geld die beleidsmakers van diverse 
zendgemachtigden voor hun eigen bestaansrecht en een plaats op alle 
kabelnetwerken over hebben. 

11. Een van de gevolgen van privatisering zou een afgeslankte minder geld 
kostende overheid moeten zijn. 

12. De snelle groei van het gebruik van het Internet na de introduktie van 
het World Wide Web en de bijbehorende eenvoudig te gebruiken 
interactieve toegangsprogrammatuur toont aan dat het ontwerp van 
een goede user interface zichzelf terugverdient. 

13. Met gratis software kan door derden veel geld verdiend worden. 




