

Interactive modelling and simulation of heterogeneous
systems
Citation for published version (APA):
Fleurkens, J. W. G. (1996). Interactive modelling and simulation of heterogeneous systems. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR456563

DOI:
10.6100/IR456563

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR456563
https://doi.org/10.6100/IR456563
https://research.tue.nl/en/publications/cdf10b51-c010-40d2-9677-34f43b675864

Interactive ModeHing and Simulation
of

Heterogeneous Systems

Hans Fleurkens

Interactive ModeHing and Simulation

of

Heterogeneous Systems

lnteractive Modelling and Simulation
of

Heterogeneons Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag
van de Rector Magnificus, prof.dr. J.H. van Lint,
voor een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op

dinsdag 26 maart 1996 om 16.00 uur.

door

Johannes Wilhelmus Gerardus Fleurkens

geboren te Venray

Dit proefschrift is goedgekeurd door de promotoren:

prof.Dr.-lng. J .A.G. Jess
prof.ir. M.P.J. Stevens

en de copromotor:

dr.ir. J.T.J . van Eijndhoven

©Copyright 1996 J .W.G. Fleurkens
All rights reserved. No part of this publication may he reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechani
ca}, photocopying, recording, or otherwise, without prior written permission from
the copyright owner.

Druk: Wibro dissertatiedrukkerij, Helmond

CJP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Fleurkens, Johannes Wilhelmus Gerardus

Interactive modeHing and simulation of heterogeneous
systems I Johannes Wilhelmus Gerardus Fleurkens.
Eindhoven: Eindhoven University ofTechnology.- lll.
Proefschrift Technische Universiteit Eindhoven.- Met lit.
opg.- Met samenvatting in het Nederlands.
ISBN 90-386-0377-0
Trefw.: elektronische schakelingen I simulatie.

Contents

Abstract vii

Samenvatting .. . i x

Preface .. . xiii

1 Introduetion 1

1.1 Background 1
1.2 Design and simu1ation in ESCAPE .••••.••.•••••.•... • •. 4
1.3 Examples .. . 9
1.4 Related work 12
1.5 Outline of this thesis 16

2 Event driven simulation 17

2.1 Introduetion .. . 17
2.2 Simu1ation roodels 19
2.3 Discrete event simu1ation 21

2.3.1 Simu1ation approaches 21
2.3.2 Time advance mechanisms 24

2.4 Event driven simu1ation 25
2.4.1 The simu1ation state ofthe system 25
2.4.2 Event types 27
2.4.3 Examples using various delay roodels 31
2.4.4 Delta delay events 32

2.5 Event processing and management 33
2.6 Interaction between simu1ator and editor 36
2.7 Animation 42
2.8 Discrete event monitors 43

2.8.1 Discrete event automata 47
2.8.2 Examples and resu1ts 50

2.9 Hierarchy .. . 51
2.9.1 Related work 53
2.9.2 Managing hierarchy 53
2.9.3 Design management 57

3 Multi-model simulation 59
3.1 Introduetion 59

V

vi Interactive ModeHing and Simulation ofHeterogeneous Systems

3.2 Foreign language roodels . 61
3.2.1 The foreign language interface 62
3.2.2 Compiled simulation . 65
3.2.3 Experimental results . 67

3.3 External simulator interface . 68
3.3.1 Synchronization of simulation time 76
3.3.2 Example: The PLATO piecewise linear simulator . . 79
3.3.3 Simulation examples and results 82

3.4 Token flow roodels . 83
3.4.1 Petri nets . 85
3.4.2 Data flow graphs . 89
3.4.3 Simulation of data flow graphs 92

3.5 Run-time configuration of the simulator 96

4 Simulation examples . 99
4.1 Introduetion . 99
4.2 The inner product calculation chip . 99
4.3 The bit blitter . 102
4.4 Simulation of traflic on a road . 103
4.5 Model of a railroad and block control system 106

5 Design process integration . 113
5.1 Introduetion . 113
5.2 A programmabie graph view . 114
5.3 Inter process communication and the inter tooi protocol . 117
5.4 Contiguration of the user interface . 119
5.5 The interactive data access language 121
5.6 An example: the integration ofNEAT andESCAPE 122

6 Concluding remarks . 125

A The LISP-like HDL . 141
A.l. Introduetion . 141
A.2. The language . 141
A3. Summary offunctions . 141

B Simulating the bit blitter . 147

C The inter tooi protocol . 151

Notation . 155

Biography . 157

Abstract

Simwation is used intensively to validate the functional behaviour of elec
tronic systems. It may be used to make estimations on timing, performance
and power issues. Simwation is also of great value during the prototyping and
debugging of system descriptions in the specification phase. Both the increas
ing size and complexity of systems to be designed, the migration ofthe initia}
specification to higher abstraction levels as wellas a reduction ofthe time to
market put new demands on simwation tools.

Simwation performance and the ability to simulate different types ofmodels
are important parameters in developing a simulator that satisfies current
and future needs. The key issue is to provide the flexibility to simulate a large
variety of models without sacrificing simwation performance. Besides raw
simwation performance, the design time itself should bereducedas much as
possible.

This thesis describes the concepts and techniques that can be used to develop
an event driven simulator that

• reduces the design cycle time to facilitate the prototyping and debugging
of systems, and that allows to explore the design space;

• allows to simulate multiple types of models homogeneously.

All these concepts and techniques have been implemented in a tool called ES

CAPE.

A reduction ofthe design cycle time has been achieved by embedding a grapb
ics editor and discrete event simulator into a single tool. This allows a tight
integration ofthe various phases ofthe design cycle, which reduces the over
all design time significantly. The time consuming net list compilation phase
is avoided by incrementally updating the simwation model with each modifi
cation of the underlying descriptions it is composed of. As opposed to other
simwation tools, in which the compilation or elaboration of the simwation
model consumes a large part ofthe designer's time, the simwation model can
be re-simulated without perceivable delay to the designer. It is even possible
to modify parts ofthe model during simulation, for instanee to investigate the
influence of errors on various aspects of the model.

vii

VUl Interactive ModeHing and Simulation of Heterogeneaus Systems

The simulator also features various facilities to support the designer in ana
lysing simulation results: the behaviour of the system may he animated or
visualized during simulation. Furthermore, erroneous behaviour may he de
tected at a higher level of abstraction. This is achieved by hierarchically de fin
ing monitors that process sequences of events and replacing such sequences
by events at a higher level of abstraction. These events do not influence the
progress ofthe simulator itself.

This thesis also describes the problems and that are associated with multi
model simulations as wellas some solutions. Since it is very hard to antici
pate which modelsneed to he supported in nearfuture, the simulation kemel
should he flexible enough

• to deal with multiple types of models at the same time;

• to he able to support relatively easy a new type of simulation model.

Performance and flexibility have been the dominating issues in the research
of integration techniques that allow homogeneaus simulation of multiple
types of models.

The basic approach that has been takenhereis that different types ofsimula
tion algorithms and different types of simulators are mapped onto theevent
driven paradigm: one event driven simulation kemel can handle different
timing representations and different delay models. This kemel also orches
trates the execution of all modelsin a unified and proper way. Different types
ofevents are used to accomplish this. To facilitate the integration ofextemal
simulators, both a simulation interface and a model encapsulation technique
have been developed that deal with event conversion, value conversion and
synchronization between the various models.

Finally, this thesis describes which techniques have been used to he able to
customize the design and simulation tooi and how it may he interfaced with
other design tools. As a result, it can easily he incorporated into an existing
design flow. When used in master mode, the tooi may he used as a generic
frontend, or as a simulation and visualization tooi of other design tools, when
used in slave mode. A very successful example is the integration with an ar
chitectural synthesis system.

The solutions presented in this thesis are substantiated by practical imple
mentations and validated by a large variety of examples. They may he a pplied
to various application areas, even in other disciplines.

Samenvatting

Simulatie is een intensief gebruikt middel om het funktionele gedrag van
elektronische systemen te controleren. Het wordt gebruikt om schattingen te
maken op het gebied van tijdsgedrag, prestatie en vermogensgebruik Simu
latie is eveneens een waardevol hulpmiddel bij het ontwikkelen van prototy
pes en het elimineren van fouten in systeembeschrijvingen tijdens de specifi
katie van het gewenste gedrag. Omdat de grootte en de complexiteit van
systemen toeneemt, systemen op een steeds hoger abstractieniveau beschre
ven worden en omdat tegelijkertijd systemen steeds sneller op de markt moe
ten komen, worden steeds hogere en nieuwe eisen aan simulatieprogramma
tuur gesteld.

De snelheid waarmee gesimuleerd kan worden en de mogelijkheid om ver
schillende types van modellen te kunnen simuleren zijn belangrijke eisen die
gesteld worden bij de ontwikkeling van een simulator die zowel aan de huidi
ge als aan toekomstige behoeftes moet voldoen. Het is erg belangrijk om een
groot scala van modellen te kunnen simuleren zonder de snelheid van de si
mulatie daaraan op te offeren. Behalve de invloed van de snelheid van de si
mulatie zelf moet ook de ontwerptijd zoveel mogelijk bekort worden.

In dit proefschrift worden een aantal concepten en technieken beschreven
voor een event gestuurde simulator zodanig dat

• de iteraties tijdens het ontwerpen zo kort mogelijk worden en ook het aan
tal iteraties zo klein mogelijk is; dit bevordert de ontwikkeling van prototy
pes en maakt het gemakkelijker om fouten in beschrijvingen op te sporen
en te verwijderen. Verder is het mogelijk om verschillende alternatieven af
te wegen;

• verschillende soorten modellen tegelijkertijd op een homogene wijze gesi
muleerd kunnen worden.

Al deze concepten en technieken zijn geïmplementeerd in een programma ES

CAPE geheten.

De vermindering van de tijd om een ontwerpcyclus te doorlopen is mogelijk
gemaakt door een grafische editor en een diskrete event simulator in één pro
gramma onder te brengen. Dit maakt het mogelijk om de verschillende fases
van de ontwerpcyclus te integreren, waardoor de ontwerptijd aanzienlijk ge
reduceerd kan worden. De veel tijd kostende netlijst compilatie wordt verme-

IX

x Interactive ModeHing and Simulation of Heterogeneaus Systems

den door het simulatiemodel incrementeel aan te passen, als één van de be
schrijvingen waaruit het model is opgebouwd veranderd wordt. In
tegenstelling tot andere simulatoren, waar het compileren of het uitwerken
van het simulatiemodel een groot gedeelte van de tijd van de ontwerper kost,
kan het simulatiemodel zonder enige merkbare vertraging opnieuw gesimu
leerd worden. Het is zelfs mogelijk om tijdens de simulatie delen van het mo
del te veranderen, bijvoorbeeld om de invloed van fouten op verschillende as
pecten van het model te onderzoeken.

De simulator bevat eveneens een aantal eigenschappen die de ontwerper hel
pen bij de analyse van de simulatieresultaten. Het gedrag van het systeem
kan nl. grafisch weergegeven worden tijdens de simulatie. Eveneens kan fou
tief gedrag ontdekt worden op een hoger abstractieniveau. Dit wordt bereikt
door monitoren hierarchisch te definiëren die sequenties van events kunnen
verwerken en deze vervangen door eventsopeen hoger abstractieniveau. De
ze events beïnvloeden het gedrag van het te simuleren systeem verder niet.

Daarnaast beschrijft dit proefschrift de problemen met betrekking tot, en een
aantal oplossingen voor simulaties van een aantal verschillende soorten mo
dellen. Omdat het erg lastig is om rekening te houden met de modellen die
gebruikt gaan worden in de nabije toekomst, moet de kern van de simulator
flexibel genoeg zijn om

• tegelijkertijd verschillende types simulatiemodellen aan te kunnen;

• relatief gemakkelijk een nieuw type simulatiemodel te kunnen toevoegen.

De efficiëntie en de flexibiliteit zijn de belangrijkste aspecten geweest bij het
onderzoek naar integratietechnieken voor het op uniforme wijze simuleren
van verschillende types modellen.

De basistechniek is dat verschillende algoritmes en simuiatoren op hetzelfde
event gestuurde model zijn afgebeeld: de kern van het simulatieprogramma
kan omgaan met verschillende representaties van de tijd, verschillende ver
tragingsmodellen en controleert de uitvoering van alle modellen op een uni
forme en correcte wijze. Dit is gerealiseerd door het gebruik van verschillende
soorten events. Om de integratie van andere simuiatoren te ondersteunen
zijn een simulatie-interface en een encapsulatietechniek ontwikkeld. Deze
zorgen voor de conversie van de events, de conversie van de signaalwaardes
en de synchronizatie tussen de verschillende modellen en simulatoren.

Tenslotte beschrijft dit proefschrift een aantal technieken zodat het program
ma gemakkelijk aan de wisselende eisen van gebruikers kan worden aange
past en zodat dit programma kan samenwerken met andere ontwerptools.
Deze technieken maken het mogelijk om het programma te gebruiken in een

Samenvatting xi

bestaand ontwerptraject. Het programma kan met name gebruikt worden
om andere programma's aan te sturen of voor het simuleren en het grafisch
weergeven van gegevens van andere ontwerptools. Een goed voorbeeld is de
succesvolle integratie met een architectuursynthesesysteem.

De oplossingen die aangedragen zijn in dit proefschrift zijn geïmplementeerd
en gecontroleerd met een grote verscheidenheid aan voorbeelden. Ze kunnen
gebruikt worden voor een groot aantal toepassingsgebieden, zelfs in andere
vakgebieden.

Preface

This thesis is based on the research that has been performed in the Design
Automation Section of the Department of Electrical Engineering of Eindho
ven University ofTechnology in the Netherlands. In this period, an interac
tive flexible design and simwation tooi called ESCAPE has been developed, in
which a discrete event simulator and a grapbics editor have tightly been inte
grated. The concepts and techniques that have been applied in this tooi are
described in this thesis.

Acknowledgements

I would like to thankJochen Jess for givingme the opportunity to workin his
research group and the Dutch Foundation on Fundamental Matter (FOM)
and STW for sponsoring the research project under contract EEL 88.1427.

I would like to thank the following people for their contributions to my re
search work: Ronald Tangelder [Fle91], Pim Buurman [Fle93a] and Koen van
Eijk [Fle95], and the students who helped me. Furthermore, I would like to
thank the people who have provided some of the examples: Arnold Niessen
who developed the basic components of the railroad model, Wim Philipsen
who developed the model ofthe bit blitter, but in particular Geert Janssen.

I also would like to thank all other memhers ofthe Design Automation Section
for providing a stimulating environment and a good atmosphere.

I am very grateful to Gjalt de Jong for thoroughly proofreading the draft ver
sion of my thesis and for the many discussions I have had with him.

And last but not least, I would like to thank my parents and my sister for giv
ing me support throughout my study.

Xlll

Chapter

1 Introduetion

1.1 Background

Today's market, in which electronic products have a short life time, requires
that new products are put on the market as soon as possible, while the produc
tion costs are minimized. The total costs ofmanufacturing electronic products
are greatly reduced, if the number of components of these products are de
creased. This can be achieved by integrating more components on a single
chip. Although the progressin technology makes it possible to integrate more
and more components on a single chip every year, the design process itselfis
becoming more and more a limiting factor for manufacturing ICs with com
plex designs.

To design an IC, which performs exactly as specified, is an extremely difficult
task. Therefore, this taskis usually divided into a number ofimplementation
steps. A sequence ofimplementation steps transforms an initial specification
of a system into a mask description ofthe layout ofthe chip, which can be pro
cessed in a foundry. Every implementation step has to be validated intensive
ly. Ifthe result ofthis validation does not sabsfy, the implementation step has
to be repeated. If the validabon phase does not detect erroneous behaviour,
the resulting design can serve as the specification ofthe next implementation
step. In this thesis, an iteration ofimplementation and validabon activities
between two levels is referred to as the design cycle (see tigure 1.1). To facili
tate the design task, design automation tools have been developed inthelast
decades for implementing and validating designs.

The implementabon steps have been automated toa large extent by develop
ing synthesis tools for different abstraction levels. As a result, the level ofini
tial specification is moved from the layout level to the system level. Currently,
most research in this area is focussed on architectural synthesis, hardware
software co-design, and system level synthesis tasks like specification, parti
tioning and interface synthesis. This thesis deals with the other phase of de
sign acbvity: the validabon part ofthe design cycle. The thesis especially fo
cusses on validation at the highest levels of abstraction. Design validation is
extremely important, because undetected errors may result in expensive re
designs and long delays before the resulting product can be put on the market.

1

2 Interactive ModeHing and Simulation of Heterogeneons Systems

Besides forvalidation purposes, simulation mayalso be used to make estima
tions on timing, performance and power issues.

to system level
I '
\ I

~
I \

implementation (0 \ validation
\ I
\ I

I

to layout level

Figure 1.1. A step in the design trajectory

Simulation has been and currently is tlie most important technique to vali
date the functional behaviour of a system. Implementation steps are vali
dated by comparing the simulation results at two different abstraction levels.
Synthesis tools should make the validation process easier: in principle, they
should produce results that are correct by construction. However, in practice
the results of each synthesis tooi have to he validated as intensively as the
results of other approaches, because of bugs and deficiencies in those tools.
Therefore, validation remains an important (and the most time consuming)
design activity.

Sim ulation can not guarantee the correctnessof a design in all circumstances,
because the number of cycles required to get full coverage of errors is too large
to perform this taskin reasonable time. Despite this fact, simulation is fully
accepted in the design community. Forma! verification techniques are a
promising alternative to simulation as a validation technique and their ap
plication often guarantees full coverage of errors [McM94]. Although much
progress has been made in this area, these tools often fail to handle real-life
designs and definitely can not handle full system specifications. Therefore,
both simulation and verification tools should supplement each other to per
form system validation. A simulator may alsoassist verification tools in lo
cating and correcting design errors, e.g. by feeding the simulatorwithoutput
traces ofverification tools that lead to erroneous behaviour. But the most im
portant application area of simulation will he its use during the prototyping,
validation and debugging phases of an initia! specification of a system.

Introduetion 3

A number of problems are associated with the simulation oflarge systems.
The increasing complex:ity of systems makes simwation a difficult and time
consuming task. Even worse, the computational time increases exponentially
with a decreasing level of abstraction, which is often required to accurately
simulate a system. For instance, simulating a complete system at the circuit
level is nowadays (almost) infeasible, because it may require several days or
even weeks. A n urnher of sol u ti ons exist for this problem: mixed-level sim ula
tors handle the problem by simulating various parts ofthe model at different
levels of abstraction. This solution reduces the computational costs ofthe sim
wation task significantly. Other techniques like parallelor distributed simu
lation, or improvements on the simwation algorithm itself, only give minor
(i.e. linear) performance improvements.

Not only much computational time is required to validatea system descrip
tion, but the time spent by the designer to iterate through the design cycle is
increasing rapidly as well. This is caused by both the complexity ofinterpret
ing simwation results, and the separatipn of synthesis and validation tools.
The latter problem often causes expensive re-simulations for small design
changes. Simwation time is also reduced by incremental simwation tools
[Cho88], which restriet re-simulation to those regions ofthe system, that are
affected by design modifications. This approach takes a large amount of
memory to store simwation histories and is only useful in the debugging
phase, when only small modifications are made to the design. Mostworkin
this area still focusses on the lower levels ofthe design trajectory, in particu
lar logic and switch-level simulation.

Validation at the system level introduces another problem: systems often con
tain subsystems of different nature and the design of each subsystem may in
volve a different design trajectory. Often, each subsystem is best modelled us
ing the most natural and appropriate description language or, from
simwation point of view, the most appropriate model of computation. The
choice of an appropriate description language mayalso depend on the back
end design tools for that particwar subsystem. Different descriptive means
can also he used to model different properties or aspects of a system. For
instance, a Petri net could model the communication behaviour between dif
ferentcomponentsof a system: the operational semantics of a Petri net de ter
mine when a component needs to he evaluated. The (functional) behaviour of
each component could he described using a hardware description language.
In this case, the Petri net might he verified for properties like liveness and
deadlock by dedicated analysis tools, while a simulator might he used to vali
date the overall system behaviour.

Validation of such heterogeneous systems can only he performed efficiently
and accurately, ifmultiple modelsof computation are supported by the sim u-

4 Interactive ModeHing and Simulation of Heterogeneaus Systems

lation tool. Since it is very hard to anticipate on the roodels of computation
that are going to he used to descri he systems, it has to he relatively straight
forward to include support for new roodels of computation in the simwation
tool.

In the next section, an overview is given of a design tool called ESCAPE, which
tries to cope with the problems related to the validation of complex heteroge
neaus systems.

1.2 Design and simulation in ESCAPE

ESCAPE is a highly interactive and flexible design environment. It can he used
to capture complex heterogeneaus system descriptions and verify these de
scriptions through simulation. lts open architecture makes possible easy
adaptation to different application areas and simwation needs. The environ
ment provides an incremental design and validation strategy and animation
techniques to visualize the activity and other properties ofthe system under
design. This allows fast exploration ofthe designspace and easy debugging
of a system description.

ESCAPE has evolved from a simple schematics entry program called ESCHER
[Lod86] that has been extended with a discrete event simulator [Jan89] to
wards a sophisticated design environment, which combines textual and
graphical design en try and the validation of systems composed of these de
scriptions. The role of schematics entry in the CAD community has partly
been replaced by popular hardware description languages (HDLs) like VHDL
[IEE88] and Verilog [Tho91]. HDLs are used to describe both structure and
functional behaviour of systems, but can be combined with graphics en try as
well. Often, a graphical representation of a system gives a better perception
of the system's overall structure. Especially, if these graphical representa
tions are used for visualization purposes by other tools, they are preferred
over textual descriptions. Graphicallanguages and graphical design capture
have gained in popularity lately, because of standardization of graphics li
braries and fast graphics workstations. Graphicallanguages or descriptions
are used for various purposes:

• structural decomposition of a description, which is analogous to the use
hierarchy in schematics capture programs;

• functional decomposition of either hardware or software descriptions;

• design methodologies which rely on a graphics formalism.

In ESCAPE, a combination of graphical and textual formatscan be used to de
scribe a system. Systems are described hierarchically and consist of compos-

Introduetion 5

ite and primitive modules. A composite module is described using another
graphical description, that again consists of other composite or primitive
modules. Primitive modules require a textual description to document their
behaviour. Such a description is not necessarily a pure behavioural one: it
might contain structural data as well, if that is supported by the hardware
description language. In this thesis, a primitive module is related toa textual
description, mostly descrihing its behaviour, whereas a composite module is
related toa graphical description, mostly descrihing structure.

The internal organization of ESCAPE is depicted in figure 1.2. ESCAPE is com
posed of several functional components, which are controlled through the
user interface and which access the same data structures through the ap
plication procedural interface (API). The organization of ESCAPE will he dis
cussed in more detailstarting with the internal data structures. This will also
give more detailed information on the ca pa hilities of this interactive design
and simulation environment.

I r---

USERINTERFACE I
I

' ~
I
I
I

lf
I
I m

I [SIMULATOR I ··········I i x
EDITOR TOOL -1

m
INTERFACE ::D z

)>

' r
m z
~
::D
0

APPLICATION PROCEDURAL z
~

INTERFACE m
z
-1

INTERNAL DATA STRUCTURES

c=::> ~~------~
VI9WS

-

Figure 1.2. Schematic overview of ESCAPE.

The internal data structures store all data that is manipulated in a single ses
sion. In ESCAPE, a basic entity is called a design. Each design is a collection of
different views, which represent various aspects and alternative imple
mentations of a design. The following view types are defined:

6 Interactive ModeHing and Simulation of Heterogeneaus Systems

• The symbol view which is used to de fine both the representation of a design
and its interface.

• The network view which is used to capture structural descriptions of a de
sign. Another design is instantiated in this view using its symbol view.

• The graph view which is used to capture graph models. Graph models are
often used as an intennediate fonnat in synthesis and verification tools.
Many fonnalisms and representations in CAD applications arebasedon
graphs. Examples are finite state machines, data flow graphs, Petri nets.
A special definition language is developed to describe different classes of
graphs: it allows to customize this view to he able to capture different types
ofgraphs.

• The text view which is primarily used to capture behavioural descriptions
of a design.

• The link view which is used to define a set of relations between different
objectsin views of one or more designs. In this thesis, such rel a ti ons are re
ferred to as explicit relations, i.e. explicitly defined by a user.

Besides explicit relations, some relations are directly modelled (hardcoded)
in the Wlderlying data structures: these relations are required by the built-in
tools to correctly access and modifY design data. They are referred to as im
plicit relations. This is opposed to the explicit relations which can be used
without any restrietion to model additional relations between various views.
Multiple sets of explicit relations are used to capture different infonnation.
Each set is considered as a separate link view.

An example of an implicit relation is the link between a module in the network
view and the symbol view ofthe design, ofwhich this module is an instantia
tion. This relation is mandatory and roodels hierarchy. Explicit relations are
for instanee used to relatenodes in the three graph representations ofthe ar
chitectural synthesis system NEAT [Hei94]: ESCAPE is able to capture and
visualize the design data used by this synthesis system by storing the rela
tions between the various representations of synthesis data.

Each view consists of two data structures: the graphical data structure and
the network data structure. Data in bothof these data structures is strongly
related. Data ofparticular objects (e.g. a module, a wire or some textual in
formation) are represented in either data structure or both. The graphical
data structure stores all data of an object related to its position, size and ap
pearance on the screen. The graphical data structure is used to build and
modifY the network data structure in an incremental way. The network data

Introduetion 7

structure always represents an up-to-date net list of the system that is di
rectly accessable by other tools, like the built-in event-driven simulator.

All functionality to ere a te, modify, dele te and access the objectsin the intern al
data structures is accessable through an application procedural interface.
Tools or new functions can he built which are compiled and linkedintoa single
program (executable). In ESCAPE, a grapbics editor and a discrete event simu
lator have been integrated tightly in a single program. This reduces the over
head of transferring simulation data using files or other mechanisms pro
vided by the operating system toa minimum. U sing the sa me concepts, more
tools could he integrated in the sam~ tooi as well: this would further reduce
the overhead between two or more design steps, and allow incremental up
dates and validation of multiple implementation or synthesis steps.

One ofthe componentsof ESCAPE is theevent driven simulator, which is fully
embedded within the tooi or environment: it executes in the same address
space as the editor. The performance of this simulator is not affected by the
integration itself: the network data structures are optimized for access by the
embedded simulator. The close interaction between simulator and editor re
duces the design time: for instance, excessive net list compilation times for
large net lists are avoided, because each modification immediately updates
all data structures. In ESCAPE, it is even allowed to modify a designduringa
simwation experiment, which gives the opportunity to explore the design
space and to simulate exceptions without any overhead.

With ESCAPE, the operation of a system can he animated. The simulator pro
vides the functionality to highlight objects on specific conditions and to anno
tate simwation data on the screen. Although animation reduces the perfor
mance of the simulator, it greatly improves the understanding of the
operation of the system. It also improves the debugging capabilities of the
tooi, since the location of errorscan he isolated easily. Furthermore, the con
cept of discrete euent monitors is provided tobetter support the validation of
complex systems: a discrete event monitor analysestheevent trace of a simu
lation run and can abstract from unnecessary low level details.

EscAPE deals with the specific demands for system level modeHing and simu
lation: models of different domains can he combined in a single simwation
modeland the result is simulated in a homogeneous way. To accomplish this,
various techniques are used:

• the use of differentevent types that manipulate the behaviour ofthe simu
lator;

8 lnteractive ModeHing and Simulation of Heterogeneaus Systems

• the generation of code to embed models automatically into discrete event
compatible models. The resulting model can contain a complete scheduler,
which handles the event interface to the outside world;

• programmabie simwation interfaces, through which an extern al simulator
can be connected to the event driven simulator.

The same techniques are used to sirnul a te partial implementations of a sys
tem: this may be required for analog subsystems and other critica} parts of
an electronic system. In principle, these techniques can be used for hardware
software co-design as well (see section 1.4).

Currently, the behaviour ofprimitive modulescan bedescribed by

• a hardware description language basedon the LISP [Ste84] language. Be
sides the statements found in other LISP languages, this language pro
vides statements to define the animation of the system's components.

• programming languages like C and FORTRAN. A foreign language inter-
face allows interactive and efficient simwation of compiled code models.

• a behavioural subset ofVHDL as described in [Hou93].

• token flow models, in particwar the ASCIS data flow graph.

• roodels simulated by an external simulator. An external simulator inter
face provides the necessary means to u se ESCAPE as a simulation backplane.
Differentmodelscan possibly he executed on different machines in the net
work, but this only improves performance, ifthe overhead of communiea
tion costs is small with respect to the computational costs of executing the
mode Is.

The tool interface gives access to the API from the extern al environment. This
interface can be used in both master and slave mode. In slave mode, ESCAPE

is invoked by another tooi, which sends a series of commands to ESCAPE to
visualize output or to perform other tasks. In master mode, external pro
grams or tasks are starled through the user interface and the results are re ad
back by ESCAPE. These results can again be visualized in one ofits view win
dows. In master mode, different tasks can be scheduled simultaneously, ei
ther on the same workstation or on different workstations in the network.
This interface can he used for various purposes and provides users with all
the flexibility and customizability they need to integrate various tools with
ESCAPE and to use the functionality of ESCAPE without additional program
ming effort.

Introduetion 9

1.3 Examples

In this section, two small examples are presented that give an impression of
the ca pa hilities of ESCAPE:

• a delay insensitive two-place one-bit ripple buffer;

• a 5 x 5 Conway's Game of Life board showing a glider pattern.

A delay insensitive circuit called RIPP2 [Ber92] is a two-place one-bit "rip
ple" buffer, w hich is composed of a number ofbasic components. The set ofba
sic components has been defined in [Ber88] and can he used to compile any
program written in Tangram into a delay-insensitive circuit. Tangram is a
HDL basedon Communicating Sequentia} Processes (CSP) [Hoa78].

All basic components have been defined in ESCAPE as primitive modules. De
fining a primitive module comprises of drawinga symbolic representation in
the symbol view and editinga textual description representing the behaviour
ofthe component. Some components have a more detailed implementation as
well. For this example, the built-in LISP-like HDL has been used, which is
described in more detail in appendix A. The basic component uariable is de
picted in tigure 1.3 as an example.

ack_out

dataü_in

datal_in

Figure 1.3. Symbol view of variable.

The corresponding behaviour is:

(behaviour var
(term dataO_in)
(term data1_in)
(term dataü_out)
(term data1_out)
(term req_in)
(term ack_out)
(state value)

req_in

dataü_out

datal_out

10 Interactive Modelling and Simulation of Heterogeneaus Systems

;; start simulation with random contents :
(if (= (simtime) 0) (setq value (random 2)))

(color (or req_in dataO_in data1_in))

(if (or dataO_in data1_in)
(progn

(setq value data1_in)
(delay 1 ack_out 1))

;else both low
(delay 1 ack_out 0))

(delay 1 dataO_out (and req_in (not value)))
(delay 1 data1_out (and req_in value))
(write value)

In this description, the statements, which are used to visualize the activity
ofthe module during simulation, can easily be identified. The color statement
will highlight the module, if one or more of the module's inputs are high.
Otherwise, the module will have its default colour. The write statementdraws
the current value ofthe state variabie value in the module.

The implementation of this component can be modelled in the network view
as well (see figure 1.4): the designer may choose to expand an instanee of de
sign variabie and simulate its implementation instead ofits behavioural de
scription. For debugging purposes, a lower level implementation can he
shown in a separate view window.

dataO_in

dataO_out

ack_out req_in

datal_out

datal_in

Figure 1.4. lmplementation of basic component variable.

The next example is a network representing a world consisting of 25 cells of
Conway's Game ofLife [Gar70, Gar71]. This game is considered to be a cellu
lar automaton: each cell ofthe autornaton exchanges information withits 8

Introduetion 11

neighbours. Each cell has a state variabie that indicates ifthis cellis alive
or dead. The following rules are applied to each cell of the automaton:

• a cell will he alive in the next generation, if exactly three of its neighbours
are alive in the current generation;

• a cell will stay alive in the next generation, iftwo or three ofits neighbours
are alive in the current generation;

• ifnone ofthe rules above applies toa cell, it will starve in the next genera
tion.

De pending on the starting pattem of alive cells on the board, new generations
will he generated from it. Some pattems are known to move itself along the
board forever (e.g. gliders and fishes), other pattems oscillate with a specific
period of generations before the orignal pattem is generated again. Large
pattems have been developed for this type of cellular automaton. Examples
are blockpushers and large ships having satellites. These pattems consist of
numerous smaller patterns.

The behaviour of each life cell is described as follows:

(behaviour life_cell
"Conway's game of life. description of 1 cell."
(term nw_in) (term nw_out)
(term no_in) (term no_out)
(term ne_in) (term ne_out)
(term ea_in) (term ea_out)
(term se_in) (term se_out)
(term so_in) (term so_out)
(term sw_in) (term sw_out)
(term we_in) (term we_out)
(term init) ; used to set initia! state
(term elk} ; global control
(state alive) ; holds state of cell : alive or death
(local count) ; counts number of living neighbours

(if (= (simtirrie) 0} ; initialize state
(setq alive init))

(color alive) ; color cell according state
(if elk

(progn ; determine new state of cell
(setq count (+ nw_in no_in ne_in ea_in se_in so_in sw_in we_in)}
(setq alive (or (= count 3} (and alive (= count 2}}}))

;; else
;; inform neighbours of this cell's current state:
;; refrain events: clock triggers evaluation

12 Interactive Modelling and Simulation of Heterogeneaus Systems

(delay 0 nw_out alive 1)
(delay 0 no_out alive 1)
(delay 0 ne_out alive 1)
(delay 0 ea_out alive 1)
(delay 0 se_out alive 1)
(delay 0 so_out alive 1)
(delay 0 sw_out alive 1)
(delay 0 we_out alive 1)

In the declaration section, the ports for communicating the state, the clock
that controls the execution ofthe celland the port that sets the initial state
of the cell, are easily identified, as well as the state variable, that indicates
its lifeness, and a local variabie for counting the neighbours alive. The algo
rithm itselfis straightforward: ifthe value ofthe clock rises to high, the rules
ofthe game are applied to the cell using the values on its input ports. The re
sult is commnnicated to the other cells using refrain events: these events do
not cause the cell to be evaluated. lnstead, ifthe value ofthe clock falls to low,
the evaluation of alllife cells is triggered.

Using a small world consisting of 5 x 5 cells, a glider patternis initialized in
the first generation. During simulation, the state of each cellis animated on
the screen: the glider pattern starts to move from cell to cell, while it is rotat
ing aronnd. Some snapshots of this animation are presented in figure 1.5.

Larger worlds ha ving more life cells have been developed as well. The under
lying structural models forthese examples have been generated using a spe
cial purpose program for placement and a routing program for schematics.
Examples are:

• a 18 by 11 world starting with a oscillator as initial generation. This oscilla
tor has a cycle of 16 generations;

• a 80 by 30 world starting with multiple glider patterns as initia! generation.

The simwation speedforthese examples is dependent on the number of cells,
and it is notdependent on the total numberofcells alive because in each cycle
all cells are evaluated. The evaluation of a cellis triggered by the clock signal,
which is an input of every cell. The behaviour of a model ofwhich the speed
mostly depends on the number of cells alive would be more complicated.

1.4 Related work

The fnnctionality offered byESCAPE has overlap with various kinds of systems.
The most important one is Ptolemy. Simwation backplanes and mixed-level
simulators are other types of simulators, which have some overlap. Another

Introduetion 13

Figure 1.5. Animated simulation of Conway's Game of Life.

category of systems are development systems for DSP applications, which are
readily available on the market. These and some other types oftools are ex
plained in more detail in this section.

Ptolemy [Buc94] is a framework to capture and validate heterogeneous sys
tems. It is focussed towards designing signal processing and telecommunica
tion systems, but is used in other application areas as well. Ptolemy is based
on an object-oriented programming paradigm. It consistsof akernel on top
of which different models of computation (called domains) can be used.
Among others, the following domains can be used : synchronous data flow, dy
namic data flow and discrete event. Ptolemy has also been used for hardware
software co-design: a dedicated simulatorfora DSP microprocessor has been
coupled to the system [Kal92] . If such a simulator would be available in pub
he, such a simulator could easily be coupled to ESCAPE as well.

In Ptolemy, there isonetop-level view of a simwation model. It is called the
Universe and has a domain associated with it. The Universe contains a num
ber of computational blocks, which opera te in the same domain. These blocks

14 Interactive ModeHing and Simulation of Heterogeneaus Systems

are called Stars. Stars are interconnected, which allows the transfer of data
between them. In addition, the Universe contains a scheduler, which controls
the execution order of these blocks. Modelsof other domains can be included
in the Universe using aso called Wormhole, which behaves like a regular star.
A Wormhole interfaces the foreign domain with the domain ofthe Universe
using an interface called the EventHorizon. Each domain provides an inter
face to this EventHorizon.

In Ptolemy, different domains are hierarchically nested. Each foreign domain
has its own scheduler, which controls the execution of the stars in this do
main. During simulation, the current simulation time is known to all schedul
ers. Combined with a conservative scheduling approach, no deadlock can oc
cur in the coordination ofthe various schedulers. However, this approach may
restriet the feedback of inner domain particles to the outer domains or have
a significant performance penalty.

The Simulator Coupling System (SiCS) [Nie92, Ocz91], is a simulation back
plane, which can be used to simulate systems composed of different models
of computation. Si CS consists of a coupling kernel and a user interface. Un
like ESCAPE, Si CS itselfprovides no support for simulating modelsof computa
tion. Si CS contains a procedural interface for the interfacing between a simu
lator and the simulation kernel. This interface contains various functions for
signa} administration, signa} manipulation and simulation control and en
ables the coupling of external simulators to the backplane. In [CFI94], a draft
proposal for a standard on simulation backplane programminginterfaces is
described. In this document, much attention has been paid to the data types
and the representation ofvalues, the synchronization ofthe simulators, the
user interface, and the resolution and conversion functions.

As opposed toa simulation backplane, other examples ofmulti-domain simu
lators are various mixed-mode simulators, which have been developed in the
last decade. An overview ofmany mixed-mode simulators is given in [Sal90].
A mixed-mode simulator is oriented towards simulation at various well-de
fined levels of abstraction in order to reduce the computational complexity of
simulating large systems. The main difference between these simulators and
a simulation environment like ESCAPE, is that they do not provide the func
tionality to integrate new domains or levels of abstraction within the system,
especially ifthe simulation paradigm is not event-based. This aften implies
that the integration of a new model of computation results in the development
of a (partly) new simulator. An example ofthis are the various derivations of
the ELDO simulator [Hen85], of which VHDL-ELDO is the latest one
[Tah93].

Introduetion 15

STATEMATErM [Har90] is a design framework, which can be used to specify
and validate reactive systems. The design methodology is based on three
graphics formalisms: module charts, activity charts and statecharts. Module
charts represent the structural view of the system; this is analogous with
structural descriptions in other tools, like the network view in ESCAPE. Beha
viour is described using both activity charts and statecharts. Activity charts
are used to specify the functional behaviour of components used in the module
charts. The interaction between these components or, in other words, the
specification of the control activities is described by statecharts [Har87].

Statecharts are a graphics formalism that offersome extensions to the FSM
formalism to facilitate the description of complicated control activities. To re
duce the complexity ofthis task, hierarchy is allowed by repeated decomposi
tion of states into substates. Another difference is that the thread of control
of a stateehart is not necessarily sequentia!. Furthermore, statecharts allow
broadcasting of messages to apply actions to multiple states, e.g. a reset.

STATEMATE is a good example ofthe fact, that visual formalisros are getting
more important and that they gain in popularity. This effect is reinforeed by
the development ofworkstations with powerlul graphics capabilities and the
standardisation of graphics libraries. Like with ESCAPE, it is possible to ani
mate the operation of the system in STATEMATE. The specification of the
system can be analysed interactively or in batch mode. Various debugging
commands are provided to control the execution of the model.

Related to the work described above is the SpeeCharts language [Vah91].
used for specific system level synthesis tasks like partitioning and interface
synthesis. The language is based on hierarchical and concurrent state dia
grams (comparable to statecharts) and is extended with VHDL based
constructs.

In [Hoe92], a design system for the specification and implementation of digi
tal signal processor arrays is described. In this system, different applications
like a network editor and a simulator are sharing a common data structure.
A communication mechanism is used to notify other (passive) applications of
modifications in the sta te of the system (ca used by the execution of an a pplica
tion).

Visual hardware description languages are another example of design cap
ture systems, which rely heavily on graphics. In [Gol93], a visuallanguage
for VHDL is described consisting of a graphics editor and a compiler that
translates the graphical descriptions into a textual VHDL description for
analysis and simulation purposes. Visual HDLs are also available commer
cially and often consist of graphical design capture, simwation and code gen-

16 Interactive ModeHing and Simulation of Heterogeneaus Systems

eration tools. The grapbics formalisros are often derivatives of FSM, flow
chart and block diagram approaches. The output of such systems is a
description in a standard HDL like VHDLor Verilog, which serves as input
for other simulation and synthesis tools. The HDL code generation offered by
these tools is tailored for commercially available synthesis tools. In genera!,
these systems lack the extendibility of a system like ESCAPE. A designer is re
stricted to use the graphicallanguages provided by the system and can't in
clude other models of computation.

1.5 Outline of this thesis

In chapter 2, the capabilities ofthe discrete event simulator are discussed in
detail. It is also explained how the design cycle (edit- elaborate- simulate
-analyse) time is reduced by applying incremental techniques and run-time
analysis techniques. In chapter 3, various approaches are discussed that al
low simulation of multiple models of computation and models at various ab
straction levels by the discrete event simulator.

Throughout chapters 2 and 3 examples and experimental results are used to
illustrate the various concepts and approaches applied in the prototype ES

CAPE. In chapter 4, some additional examples are given that illustrate the
flexibility, modelling capabilities and performance ofthe simulation environ
ment.

In chapter 5, some additional features of ESCAPE are described. It showshow
it is customized and integrated withother tools in the design flow. Finally,
some concluding remarks are made on this research project and some sugges
tions are proposed to extend the prototype tool and to apply the techniques
and concepts described in this thesis to other simulators.

Chapter

2 Event driven simulation

2.1 Introduetion

Simulation is widely being used to validate the functionality and the perfor
mance of a description of a system under design at various levels of abstrac
tion. At each level, a simulator meets different requirements with respect to
model size, level of detail ofthe models and computational costs. The follow
ing levels are distinguished:

• System level. At this level, a system is described as a number of interacting
components, which are described by a model of computation or a behavioral
description. Subsystems may be of different nature: digital hardware, ana
log hardware, firmware or software components.

• Architectural or functionallevel. The function of a (sub)system is described
as an algorithm, which receives data from its environment and issues data
to its environment after calculation. Descriptions at this abstraction level
often serve astheinput specifications for architectural synthesis tools.

• Register Transfer Level (RTL). The system is modelled as a datapathand
a controller. The datapath consists of computational blocks, multiplexers
and registers. Data is read from the registers and fed to the computational
blocks. After calculating the resulting output values, these values are
transferred back to the registers. The multiplexers are used to direct the
flow of data through the system. The controller is a finite state machine
(FSM), that specifies how the data is transferred in each state.

• LogicaZievel (gate level). The following classification is used for models at
this level: combinationallogic, sequentiallogic and asynchronous logic. Se
quentiallogic can be handled in a similar way as combinationallogic by cut
ting the nets at the flip-flops creating new inputs and outputs. Much re
search has been conducted at this abstraction level to increase the
performance oflogic simulation: optimization ofthe simwation algorithm
for specific delay models, parallellogic simulators [Mat92] and hardware
accelerators [Sas83, Bla84]. Note that raw simwation speed is not always
the most important aspect of a simulator. A software implementation may
be indispensable for debugging the model and may complement the use of
a hardware accelerator [Bee90]. Many of the simwation techniques that
have been developed for this abstraction level are being applied to higher

17

18 Interactive ModeHing and Simulation of Heterogeneous Systems

levels of abstraction as well, for instanee hardware acceleration at the RTL
[Tak90] and distributed simwation at the behaviourallevel [Gho95].

• Switch level. This level is used to model digital circuits as a network of
nodes and transistors. Each transistor represents both a switch and a at
tenuator. At this abstraction level, many aspectsMOS circuitscan he mod
elled quite accurately. However, the computational costs are small
compared to simwation at the circuit level. Examples of switch level simu
lators are MOSSIM 11 [Bry84] and COSMOS [Bry87]. In [Gen86], the model
is refined using a networkof switches, capacitors and resistors. In this mod
el, analog values insteadof a set of discrete values are used to model the
strengtbs of the components. This enables to simulate a model fairly de
tailed with respect to timing aspects.

• Circuit level (electricallevel). The model of a system is a set of ditTeren ti al
equations, which are composed from the model equations of each compo
nent and from Kirchhotrs voltage and current laws. To simula te this model,
the DC solution and the transient solutions have to he calculated from
these equations. Simwation at this level produces the most detailed re
sults. However, it is also most expensive with respect to computational
costs. Spice [Nag75] and its numerous derivatives symbolize simwation at
this abstraction level.

At various levels of abstraction, VHDL and Verilog are used as the standard
hardware description languages. Forthese languages, many simulators are
commercially available from various CAD tooi vendors. Models written in
these languages can he simulated together as well: this is referred to as co
simulation. There arealso hardware accelerators available for VHDL simula
tion as well as techniques for parallel simwation [Vel92].

Simwation models at all abstraction levelscan he divided in two classes: time
discrete and time continuous models. The definitions are given below:

DEFINITION 2.1: A time discrete (simulation) model is a model ofwhich the
(simulation) state can only change at a countable number
of time points.

DEFINITION 2.2: A time continuous (simulation) model is a model ofwhich
the (simulation) state changes continuously with respect
to the simwation time.

Discrete and continuous models ditTer in the following ways:

The simwation time in a discrete simwation model is in general represented
by an integer number, whereas the simwation time in a continuous simula
tion model is represented by a floating point number. In a continuous simula
tor, the simulation model is often described using differential equations; in

Event driven simulation 19

a discrete simulator, the model is composed of executable components, that
are invoked by a scheduler. Events are used to model activity in such models.
In this thesis, the term discrete event simulation refers to models, that are
simulated by an event drivenor a similar simulation algorithm, (e:g. a com
piled simulator, see section 2.3.1).

This thesis primarily focuses on simulation ofmodels at the register transfer
level and higher levels of abstraction. These models are mostly modelled us
inga time discrete model. Models without an explicit notion of time and mod
els ofpartial implementations at lower level of abstractionscan be combined
with time discretemodelsas well. Therefore, we restriet ourselves to discrete
event simulation.

2.2 Simulation models

Systems are composed of computational blocks. These blocks are connected
with each other by nets. Nets are used to communicate values from one com
putational block to others. A system Sis described with the 7 -tuple:

(2.1)

where

- J1'b is the set of modules or components.

- Jf is the set of nets or signals.

- '1' is the set ofports. This set contains both primary input and output ports
of the system, and the input and output ports of the modules.

- ~ is the set of behavioural descriptions.

- P .Jtb : '1' - J1'b U { 0 } is a function that maps each port to a module. In
case p E '1' is a primary port, P .Ab(p) will return empty.

- Px : '1' - Jf is a function that maps each port to a net.

- Mcy, : J1'b - ~ is a function that assigns a behavioural description toeach
module.

The system model of Sin (2.1) describes a structure. To complete this model,
each module requires a behavioural description. The term computational
block is used for a module, which has a behavioural description associated
with it. A behaviour B E ~ is described with the 5- tuple

20 Interactive ModeHing and Simulation ofHeterogeneous Systems

B = (/, 0 , Q, init, exec) (2.2)

where

- I is the set of input ports.

- 0 is the set of output ports.

- Q is the set of state variables (memory elements).

- init is a function that calculates the initial values of all state varia bles,

- exec is a function that calculates the values of the output ports for a time
point greater or equal than the current time point from the values of the
input ports and the values ofthe state varia bles. The new values ofthe state
variables are calculated from the values ofthe input ports and the current
values ofthe state variables as well. Timemayalso be used in the function
to account for time-dependent behaviour.

The exec function calculates the new values ofthe output ports at future time
points. Note that more than one value may result from this calculation. How
ever, the number ofvalues produced should be finite. Otherwise, the function
exec will not terminate after activation ofthe behavioural model. This leads
to an erroneous condition during simulation, ifmore componentsneed to be
activitated, which is usually the case.

The behaviour of each module of(2.1) is described using (2.2). The inputs and
outputs ofbehaviour B correspond with the ports ofthe module it is assigned
to. An input gets its val ue from the net, that is connected to the corresponding
port ofthe module. An output drives the net, that is connected to the corre
sponding port ofthe module. In figure 2.1, it is depicted how a module inter
acts with its environment. The behaviour of a module is executed or simu
lated, if activity occurs at one or more of the module's inputs.

Q

Figure 2.1. The execution of a model in its environment

system
outputs

Event driven simwation 21

A behaviour described using (2.2) closely resembles the description of a fini te
state machine. However, there are some differences:

• The data types associated with /, 0 and Q are not necessarily finite. The
type of an element of these sets may for instanee he a boolean, a natural
number, a floating point number or some abstract data type.

• The model may have internal non-determinism. Even if a model bas inter
na! non-determinism, still its overall behaviour may he deterministic: the
relation between the values at the input and output ports may still he deter
ministic.

• The behaviour may he dependent on time. Although it is not explicitly rep
resented in (2.2), the exec function takes time as an argument.

Finally it should he noted that notation (2.1) doesnotaccount for hierarchical
descriptions. This is not necessary, since its purpose is to represent a valid
simulation model.lt does not describe how the model is composed from a hier
archy of structural and behavioural descriptions! This is part ofthe internal
representation ofthe tools used. The model that is actually simulated is rep
resented by this notation. Insection 2.9, it is explained in detail, how hierar
chy can he dealt with.

2.3 Discrete event simulation

Discrete event simulatorscan he classified with respecttotheir overall simu
lation approach and their time advance mechanism. Depending on the type
ofmodels to he simulated, they determine its accuracy and performance.

2.3.1 Simulation approaches

Various approaches can he used to simulate a discrete model:

• Euent driuen simulation. A component ofthe system is evaluated depend
ing on the activity in the system. Activity is expressed by events, which de
note value changes in the simulation model.

• De mand driuen simulation. An alternative approachtoevent driven simu
lation is demand driven simulation [Smi87]. This approach may reduce the
number of component evaluations compared to event driven simulation,
because demand driven simulation propagates requests for simulation val
ues backwards through the circuit and through time. Event driven simula
tion propagates simulation values forward through the circuit in response
to input port events.

• Obliuious simulation. All components ofthe system are evaluated at every
time point. The execution order ofthe componentsis determined statically

22 Interactive ModeHing and Simulation of Heterogeneaus Systems

and can he used to compile the simulation model. Therefore, oblivious simu
lation is often referred to as compiled simulation.

• Process (interaction) oriented simulation. All components ofthe system are
executed independently and communicate with each other using events.
Events, which arelocalto a component, are isolated from events occurring
in other components and can be executed in arbitrary order. Communiea
tion between components leads to synchronization.

• Cycle-based simulation. In a cycle-based simulator, all components are
evaluated at clock boundaries and there is no notion of time. Cycle-based
simulators are used because oftheir high simwation performance forfunc
tional validation of synchronous designs. Traditionally, they can not sup
port all features as provided by a popular popular hardware description
language like VHDL. Often, they are used in conjunction with an event
driven simulator to he able to support all design methodologies and styles,
for instanee asynchronous designs.

Euent driuen simulation versus obliuious simulation

The advantage of using event driven simwation instead of oblivious simula
tion is its flexibility:

- an event driven simulator handles both synchronous and asynchronous cir
cuits or systems. In [Wan90], a technique is described that is able to compile
asynchronous circuits by identifying strongly connected componentsin the
circuit description;

- an event driven simulator handles multi-delay models, whereas most
oblivious simulatorscan only simulate zero or unit delay models [Mau92];

- an event driven simulator handles different delay models. More specific,
the possibility to cancel events scheduled for future time points, allows the
simulation of more complex delay models;

- an event driven simulator reduces the number of component evaluations,
which is dependent on the activity in the system under simulation.

Although an event driven simulator avoids unnecessary component evalua
tions, the overhead ofmanaging and processing events reduces its efficiency.
In general, compiled simulation is getting more efficient compared to event
driven simulation with an increasing level of activity in a system. For logic
simulation, activity levels of about 1% have been reported [Bar87]. In this
case, the complexity ofthe behavioural descriptions ofthe componentsis very
low and therefore the overhead of scheduling and processing events is rela
tively high. At higher levels of abstract ion, event driven simulation is pre-

Event driven simulation 23

ferred because ofits flexibility. The overhead of event scheduling and proces
sing is reduced because ofthe complexity ofthe behavioural descriptions.

Computer hardware plays also a dominant role in the trade-off between
event driven versus oblivious simulation. The performance of microproces
sors is getting higherand higher every year. A compiled simulator can better
exploit a cache in a computer architecture than an event driven simulator.
Therefore, the use of a compiled simulator is getting more attractive with the
progress in processor technology.

Process oriented simulation and process rnadeling

Process oriented simulation provides a higher conceptual view on the system
and reduces the complexity of developing simulation roodels for large sys
tems: each component in the model is considered as a separate process, which
interacts with its environment. In figure 2.2, a process oriented simulation
model is depicted with two processes, that are communicating with each oth
er. Process A and B run independently. Each process executes its task: such
a taskis a repetition of a number of subtasks.

Figure 2.2. Process oriented simulation model

The behaviour ofthe processes is synchronized, if communication takes place
between A and B. If process A is executing fa ster than process B, at some time
point message #l will he senttoB andAcontinues withits task. Aftera while,
process A has to he suspended, because it requires a message from B. At some
point in time, B requires a message from A, and detects its reception. B can
immediately continue processing. Aftersome time message #2 will he sent to
A. After reception of this messa ge, A can resume processing its own task.

Process oriented simulation can he emulated using an event driven simulator
basedon a scheduling technique. It is also possible to model various process

24 Interactive ModeHing and Simulation of Heterogeneous Systems

networks and communication channels, that can he simulated with an event
driven model. An example of a process network with communication channels
modelled in VHDLis described in [Sri92]. In [Rou89], VHDLis viewed as a
process oriented simwation language. In general, a process oriented simula
tion model can he mapped onto an event driven simwation model, if each pro
cess cycle has at least one synchronization point, where it is suspended: this
is the point, at which the process synchronizes with its outside environment.
Otherwise, the process will not terminate after activation. This is not a re
quirement in a process oriented simulator: the simulator itselfsuspends and
activates the processes of the model.

2.3.2 Time advance mechanisms

Another important aspect of a discrete event simulator is the time advance
strategy: two strategiescan he used to advance the simwation time: fixed-in
crement time advance or next-event time advance. Using a flxed-increment
time advance strategy, events are processed at equidistant points in time.
Each event is scheduled at a time point, that is an integer multiple of some
time constant ó. The length of the interval between two time points in
fluences the accuracy and the performance of the simulator. With a next
event time advance, events can he scheduled and processed at arbitrary
points in time. Especially for detailed models, this approach has to he used
to guarantee accurate simwation results.

Note that a fixed-increment time advance strategy is a special case of the
next-event time advance. If events are scheduled with delays, which are an
integer multiple of some time interval, the performance of the simulator is
increased using a flxed-increment time advance strategy: it reduces the time
to insert a newly scheduled eventin the event queue.

A flxed-increment time advance does not impose any restrietion on the time
interval that is associated with ó: this is an issue during the development of
the simwation model. A proper choice of ó can increase the performance of
the simulator. This will he explained later in this chapter.

Event driven simulation 25

2.4 Event driven simulation

An event driven simulation algorithm provides the flexibility required to con
trol various types of computional models. Events also provide with an easy
means for interaction between the simulator and its environment. In this the
sis, the following definition is used:

DEFINITION 2.3: An event models a future change of a simulation variable.

An event Eis described with the 6-tuple:

E = (time, insert, type, object, value, data) (2.3)

where

- time : the time point an event is scheduled for.

- insert: the insertion time ofthe event. It is used to order allevents that are
scheduled for the same time point. The implementation normally ensures
a proper order of events scheduled for the same time point: this attribute
is only used to describe this order. In this thesis, it is assumed that all
events schedwed for the same time point are ordered using this attribute.

- type : the type of the event, which determines, how the event will he pro
cessed.

- object: the object in the model of(2.1) theevent is scheduled for. This object
is either a net, a module or a port.

- ualue : the value the object will be set to, when the event is processed.

- data : an additional data field needed for particwar types of events.

2.4.1 The simulation state of the system

Let Om be the set of state variables, that are associated with the behaviour
of a module min (2.1). Let N be the set of variables associated with the nets
of(2.1).Then Vrepresents the set of all state variables in the model:

V= Nu (U Om) (2.4)
mEJit:,

Note that the subsets, that compose Vare disjoint. Let Lv be a mapping from
the state variables to a value domain 0:

Lv: V-+ D (2.5)

26 Interactive Modelling and Simulation of Heterogeneaus Systems

In case of all simulation variables are of type integer, the range of L v would
be N. Because the simulation variables may be of different types, the range
of L vis not defined explicitly.

Let E 0 be thesetof all events, that are defined using tuple (2.3). The powerset
of E 0 is defined as

P(E0) = { x I x Ç E0 } (2.6)

Let Eq be a set of events

(2.7)

Eq represents the set of events that are scheduled at a particular simulation
time point tk" Thus Ve E Eq: time(e) ~ tk. The time and insert attributes of
theevents in this set induce the ordering ofthe elementsof Eq-

The simulation state of the system is then the tuple:

(2.8)

At the start of a simulation run, the state is initialized by executing the init
functions of all behaviours and by setting the val u es of all nets. N ote tha t this
function merely sets the values of all state varia bles. Then, the exec functions
of all modules is called: this schedules the events, which will be processed in
the first simulation cycle.

lnitialization results in the initia! simulation state (L0 , E0).

After initialization, the simulation state is updated each simulation cycle.
Let (Lk, Ek) be the simulation state after k simulation cycles. First, the
events are selected from Ek, that must be processed in the current cycle. This
is a partitioning of Ek into two disjoint sets Esel and Enext

Esel = { e E Ek I V e' E Ek: (time(e) ::::; time(e')) } (2.9)

and

(2.10)

Then theevents of Esel are processed in order- the insert attribute is used
to determine this order. This results in the generation of new events and a
modification of a subset of V. The new simulation state is then (Lk+ 1 , Ek+ 1).

Ek+ 1 contains the union of Enext and the newly created events.

Note that the simulation time is not explicitly specified in this equation as
time is changing implicitly as events are processed by the simulator. To ac-

Event driven simulation 27

count for the fa ct, that the value ofthe simwation doek is essential for correct
processing of events 1, the simwation time is explicitly represented in the sim
wation state:

(2.11)

where it is assumed that the simwation time is represented by a non-nega
tive integer.

It is also possible to describe the overall system state using the system states
of each submodeL This is interesting to describe parallel discrete event simu
lators or mixed-level simulators.

The simwation state of a submodel i is

(Tsim• Lv, Eq); = (Tsimi• Lv;• Eq,i)

The overall simulation state is then (Tsim• Lvr Eq) with

• Tsim = m!n Tsim,i
I

• Lv = l} Lv,;
I

• Eq =U E . i q,l

2.4.2 Event types

Event types are used to model different delays in the simulator and to orches
trate other activities during simulation. The following event types are avail
able:

Nomina[delay events

Nominal delay events are used to model a simplepure transport delay in the
simulator. The following subtypescan be distinguished:

• Anormalevent will cause the net's fanout list to be processed, if and only
ifthe new net value (as specified in the event) differs from the current net
value.

• A refrain event will never cause the net's fanout list to be processed.

• A trigger event will always cause the net's fanout list to be processed.

The nomina} delay model is associated with these event types, i.e. if an event
is scheduled at time point t with a nomina} delay of i time units, the effect of
1. In a distributed simulation environment for instance, it is essen ti al that allevents are

processed in a non-decreasing order.

28 Interactive ModeHing and Simulation of Heterogeneaus Systems

this event will always occur after i time units. In figure 2.3, a model of the
nominal delay model is depicted.

The se mantics of the various types of nomina} delay events differ in the way
the modules of the net's fanout list are processed. The use of nomina! delay
events will never result in the invalidabon of other events already scheduled
fora particular net. As a result, ifthe ports driving the net are using nomina!
delay models, it is not necessary to maintain an ordered list of events sched
uled for this net. This is explained in more detail in section 2.5.

f

Figure 2.3. Model of a tunetion f with a nominal delay of !1.

Note that in literature on logic simulation, e.g. [Bre76], the nomina} delay
model is often referred to as a transportor pure delay model, w hich differs se
mantically from the transport delay model as used in VHDL. The nomina!
delay model is too simp Ie to be used for modeHing non-fixed delay character
istics of hardware components, but it is very efficient to be used for compo
nents with fixed delay characteristics.

The nomina! delay event type can also be applied for modelling networks, in
which data is transportedat different speeds. For example, in a computer net
work packets may travel along different routes from the souree host to the
destination host and they may arrive in a different order. This is modelled by
using a continuously changing delay for all nodes in the network: this may
reverse the order in which packets are sent from one node to another node.

The transport and inertial euent types

The nomimal event type is less suited for modeHing the delay charaderistics
of hardware components and transmission line delays. Therefore, both the
transport and the inertial delay models as defined in VHDL are supported
within the simulator. In [Gho89], the limitations ofthe transport delaymodel
are described and a preemptive scheduling mechanism is described to model
inertial delays accurately. Note that the use ofthe word transport has a differ
ent meaning here as compared to the pure delay model. For this work, the
transportand the inertial event type are defined to support the transportand
inertial delay models respectively.

Event driven simulation 29

The semantics of these event types are described by operations on a set of
events. Let Es be a set containing all events scheduled for a net s E Jf at a
particwar simwation time point tk

(2.12)

If n = 0, Es is the empty set and thus no events are schedwed for this net.
New events are added and deleted from this set during simwation. Ifthe cur
rent simwation time equals tk, the following property holds for all events in
Es:

'r/e E Es : time(e) 2: tk (2.13)

Note that theevents ofthis set can be sorted using their time and insert at
tributes. Let enew be a new event schedwed for this net.

After schedwing either a transportor inertial event, this set is updated using

Es,new = (Es I Eo,type) U { enew} (2.14)

with type E { transport, inf]rtia/} and Eo,ryp9 thesetof events that is removed.
Schedwing a transport delay results in

ED.transport = { e E Es I time(e) 2: time(enew) } (2.15)

Thus, scheduling a new transportevent type for a net results in the removal
of all events that are already scheduled for that net at time points equal to
or greater than the time point the new event is scheduled for.

Scheduling an inertial delay results in

E D,inertial = E D,prev U E D,transport (2.16)

with Eo,prev = { e E E5 I time(e) < time(enew) A value(e) ;;é value(enew) }

Thus, scheduling a new inertial event for a net results in the removal of all
events that are already scheduled for that net except if

• the event is scheduled at a time point that is smaller than the time point
the new event is scheduled for and,

• the value ofthe event is equal to the value ofthe newly scheduled event.

This implies that an event is only processed, iffno other event with a different
value is scheduled for the same net in the meantime. With an inertial delay
model, puls es are not propagated, if the width of a pul se is shorter than the
delay specified. Note that the actual delay value may vary for different condi
tions.

30 Interactive ModeHing and Simulation of Heterogeneaus Systems

In [Ram92], a modelling technique for timing effects is presented as well as
more complex delay functions like the edge triggered inertial delay function
and the smoothing transport delay function. For many applications, these
very detailed timing models are not required .

The cancelled event

An eventof type cancelled is used to indicate that an event does not require
further processing in subsequent phases of the simulation algorithm. Differ
ent phases in the simwation algorithm can convert an event of most other
types into the type cancelled. N ormally, this event type is only used internally
by the simulator. Currently, cancellation is used in the preprocessing phase
ofthe simwation algorithm for the nomina! delay event types to prevent fur
ther processing.

The simulation control and synchronization event types

Several event types are defined to control and to synchronize the simulator:

• An interrupt event suspends the simwation run unconditionally. Simula
tion can he resumed afterwards without any restriction. Interrupt events
are scheduled out-of-band, i.e. they are added in a special queue, which is
processed before all other events are processed.

• An event of type synchronize is used to synchronize the internal time
doek with external processes. This is for instanee used if an external simu
lator is connected to theevent handler using inter-process communication.
Events ofthis type are processed in a different way than other events. More
information on this can he found in chapter 3.

• A timeout event is used to notify that some condition has not occurred in
time. Normally, the occurrence ofthis condition cancels the timeout event.

The action event

This type of event allows to extend the functionality of the simwation algo
rithm.lt can he used to execute specific tasks, which are related to the simu
lation experiment, and, to extend the simulator with new domains or abstrac
tion levels. The following data can he specified for this event type: the function
that has to he called during processing, the time after which theevent has to
he called and an additional data field (which is often called a elient data field).

In principle, all simwation tasks could he executed using the action event.
However, this would reduce the performance of the simulator significantly,
since the processing of each event would require an additional function call.

Event driven simulation 31

2.4.3 Examples using various delay models

Different delay models are associated with the various event types described
in the previous section. The nomina} delay model is the most simple one and
is less expensive with respect to computational costs than the transportand
inertial delay models.

Two very simple examples clearly illustrate the ditierences between nomina!,
transport and inertial delay. In the first example, a simple inverter is used
ha ving a constant delay of 8 ns. In figure 2.4, the output signals of inverters
using different delay models are depicted for an arbitrary input signal. For
a constant delay, the nomina! and transport delay model exhibit identical be
haviour. The inertial delay model has a different behaviour: it consumes all
pulses having a length shorter than the inertial delay specified.

input

nomina! ·n_n·
!---:-----;,-, I I I 1--:-0 ----!

transport ----.-----. __ · --JITlJl~' __ _J

inertial

'
0

' '
8

10

I I I I I I '
16 20 24 28 38

18 26 30

Figure 2.4. Example with nomina!, transportand inertial delay

The second example better illustrates the differences between nomina!,
transport and inertial delay model. In this case, a sim ple in verter is used with
the following characteristics:

• ifthe input raises to 1, the output will fall to 0 after 8 ns;

• ifthe input falls to 0, the output will raise to 1 after 12 ns;

In figure 2.5, the input signa} and the output signals for the various delay
models are depicted. The simple nomina} delay model differs considerably
from the transportand inertial delay models and is not really suited for mod
elling different delay conditions (e.g. a difference in rise and fall delay). For
this particwar example, the difference in rise and fall delay causes the output

32 Interactive ModeHing and Simulation of Heterogeneous Systems

to stay high, although the input stays high after t = 20. This is clearly the
wrong behaviour, since this example roodels an inverter. The problem is
caused by the reversed order in which theevents ofthe pulse between t = 18
and t = 20 are processed. This annihilates the effect ofthe last input change.

input

nomina!
I

' !U '

' ' ' ' ' n transport--.,---.,

I
'

' ' ' ' '
'

inertial

' ' ' ' ' ' .
8 16 20 24 30

10 18 22

Figure 2.5. Example with nominal, transportand inertial delay

2.4.4 Delta delay events

During simulation, events are normally generated and scheduled with a
delay value t11 > 0. It is also possible to schedule events with a delay value
of 0. Such a delay is called a delta delay. A delta delay is an infinitesemal
delay, that does notforward the simwation time. The number of delta delay
steps that may lie between two simwation time points is not determined. A
complete simulation run could end at simwation time 0 after iterating
through many delta time delay steps. In literature, the time points ofthe sim
wation doek and the delta time points in between are sometimes referred to
as macro time and micro time [Bel93].

The delta delay is used in a simulator to be able to handle concurrency using
a sequentia! algorithm: events that are scheduled for the sametime point are
handled sequentially in an event driven simulator. The processing order may
not influence the assignment ofvalues to variables in the model: therefore the
assignment itself is delayed for an infinitesimal delay allowing that the cur
rent values of all variables will be used before any assignment is being done.
Once, all assignments are scheduled using the proper values ofthe variables,
the new values are assigned to the variables. This technique allows to swap
the values oftwo variables without a temporary variable.

Event driven simwation 33

2.5 Event processing and management

During the simulation of a model, events are generated as various compo
nents of the model are executed. These events need to he stored in a data
structure and are retrieved by the simulator at the proper time point. These
data structures need to he optimized with respecttoevent insertion, deletion
and traversal. Which data structure is more suitable, depends on the simula
tion algorithm used, the time advance strategy and the delay models of the
components.

Various data structures can he used to implement an event queue. The most
simple implementation is a linked list. The time complexity ofinserting and
deleting events is 0 (N). Other implementations of an event queue are binary
search trees, heaps and Fibonacci heaps with better time complexity for the
various operations.

There are also more specialized data structures, that are often used to impie
ment event queues. The time of each event is used to store the event at the
proper place in the event queue. An example of this is a linear indexed list
[Kle84]: this list contains a number ofheaders that pointtoa list containing
events fora particular time point or time interval. Depending on the orga
nization and the resolution of the time, the time complexity of inserting an
even t is linear in the number of time point headers. This approach can he used
for both time advance strategies.

Iftime can he represented by a natural number, w hich is the case if a fixed-in
crement time advance is used, then the use of a timewheel is an efficient way
to store and retrieve events [Ulr69]. Each slot in this timewheel is called an
event list header (ELH), which gives access to allevents scheduled fora par
ticular time point. Each ELH points to the first and lastevent scheduled for
this time point using a startand end pointer (see figure 2.6). Besides regular
events, the ELH may also point to other event lists, like the list storing out
ofband events.

Out of bandevents are used to control the simulation algorithm and to per
form dedicated tasks. They could he coded in the simulation algorithm as
well, but this would result in checking their occurrence with each pass ofthe
simulation loop. As an example, the interrupt event is always scheduled out
of band. Scheduling the interrupteventas a regular event, would require an
additional preprocessing step to detect its occurrence. Alternatively, restor
ing theevent queue after the detection of an interrupt requires to store their
original and new types.

Insertion of an eventin the timewheel is accessing the end pointer ofthe ap
propriate event list. This operation takes 0(1) (constant) time. Deleting spe-

34 Interactive ModeHing and Simulation of Heterogeneaus Systems

Figure 2~6. Data structure to store events

cific events from the timewheel is a time-consuming operation: deleting all
events scheduled for a particular net implies that the whole data structure
has to be searched. Therefore, all events scheduled fora particular net may
be linked into a doubly linked list. Each net driver, as the he ad of this list is
called, gives easy access to an ordered list of events (with respect to time)
scheduled for that net. Only specific nets require this additional data struc
ture for easy removal of events: this strongly depends on the delay roodels
used for the ports, that drive the net.

Events, which are scheduled with a delay greater than the size of the time
wheel, require an additional data structure for storage. These events are put
on an overflow list, which is a doubly linked list for easy insertion and deletion
of eve'nts. Insertion ordeletion of events in the overflow list, is more expensive
than inserting it in the time-wheel itself. Therefore, theevents stored in the
overflow list are nottransferred to the time-wheel each time alleventsfora
particular time point are processed, but periodically after processing all en
tries once (a complete turn ofthe wheel).

Algorithm 2.1 shows a simpleversion of a simulation algorithm using a fixed
time increment strategy. After (re-)initialization ofthe internal simulation
modeland the simulator, a loop is repeatedly executed processing events gen
erated for a particular time point. Another loop is embedded into this loop to
be able to process delta delay events.

Event driven simulation

Algorithm 2.1: Event driven simwation algorithm

1. init_update_simulation_state (); /* initialisation of simulator •;
2. do { /* handle all events tor current time point •;
3. transfer_overflow_list_events () ;
4. do { /*handle all events tor current delta *I
5. process_oob_events () ;/* out-of-band events */
6. if (continue_processing) {
7. unlink_event_list ();
8. select_active_modules ();
9. process_active_modules ();
10.
11. handle_system_interface ();
12. } while ('delta events scheduled');
13. tsim : = tsim + 1; / * fixed-increment of one time unit *I ·
14. } while ('events scheduled' or 'stop condition' = true);

35

In algorithm 2.2, the event processing routines for the nominal delay types
are shown in more detail. In algorithm 2.1, the preprocessing is handled in
line 8, and the processing in line 9.

Algorithm 2.2: Event processing for nominal delay types

1. const wheelsize = 1 024; /* size is arbitrary here *I
2. TimeWheel wheel (wheelsize];
3. Queue evlist;
4. Event event;
5.
6. evlist = wheel ltsim mod wheelsize];
7. wheel [tsimmod wheelsize] = 0;
8.
9. /* preprocessing phase •;
10. foreach (event E evlist)
11 . switch type (event) {
12. normal:
13. if (value(event) == value(net))
14. then {
15. type(event) = cancelled;
16. break;
17.
18. /* fall through */

36

19.
20.
21.
22.

Interactive Modelling and Simulation of Heterogeneaus Systems

refrain, trigger:
value(net) = value(event);

default: /* error: unknown type of event */

23. /*processing phase */
24. foreach (event E evlist)
25. switch type (event) {
26. normal, trigger:
27. process_fanout_list (net(event));
28. break;
29. default: /* error: unknown type of event *I
30.
31

This section described the kernel ofthe event driven simulator. The next sec
tion will descri he how this simulator is embedded into ESCAPE and tightly inte
grated with the other parts ofthe simwation environment.

2.6 Interaction between simulator and editor

System validation not only requires much computational time, but also much
time spent by the designer to iterate through the design cycle. Developments
for simulators have mostly been focussed on the first aspect: building more
powerlul simulators for various abstraction levels. The second aspect, the re
ducti9n ofthe overall design time, is also very important for fast simulation.
Examples of situations, where it helpstoreduce design time, are:

• The prototyping of an initia} specification of a system. Such a prototype is
executable in the sense that it can he simulated. It serves as a master refer
ence throughout the rest of the design process.

• Debugging and re-simulating a system description. Each iteration in
volves editing the description, compiling the underlying net list, simulating
the system and analysing the results.

In [Hey88], the architecture of a highly integrated simwation system is de
scribed. The often used text-based interfaces between CAD tools are replaced
by a persistent programming technique, that handles communication of data
between tools. The tools have access toa common database. Files in the data
base are viewed as an extension ofthe memory, that is dynamically allocated
by a tool. This mechanism is known as a persistent heap. The implementation
ofthis heap uses the file system to realize the communication between vari-

Event driven simulation 37

ous CAD tools. The efficiency and performance ofthis technique is quite low,
iffast interaction between two or more CAD tools is required.

In ESCAPE, the integration between the various tools, the graphics editor and
the simulator to be more specific, is achieved by integrating them into a single
tooi: theeditorand simulator run in the same address space and share all
data kept in memory. Ho wever, the requirements of data structures to manip
ulate graphics data efficiently are completely different from the require
ments of data structures to simulate a networkof components with an event
driven simwation algorithm. Therefore, both a graphics and a network data
structure are used, in which design objects may be stored as two different
data objects.

In tigure 2. 7, the relations between the dataobjectsin the network data stroc
ture and the graphics data structure are depicted. In the graphics data struc
ture, some objects are stored hierarchically in order to reduce the number of
objects that have to be queried during a search: symbols and ports of an
instanee arestoredas data of an instance.

network
data structure

grapbics
data structure

* : hierarchical relation

Figure 2.7. Relations between objectsin network view

The graphics data structure stores all data related to the positions, sizes and
relations ofthe graphical objects. The following operations are the most im
portant ones:

• an insert of an object,

38 Interactive ModeHing and Simulation of Heterogeneous Systems

• a deletion of an object,

• a point query,

• a region query.

Performance and memory requirements are the most important aspects of a
data structure storing geometrical data. In literature, various data struc
tures have been described [Ros85]. In ESCAPE, three different data structures
have been implemented and can be selected by the designer:

• a linked list;

• a multiple storage radix hash tree [Fon87];

• a storage minimizing automatic level sifting database for two-dimensional
object location [She90].

The use ofthe region query data structures is often more useful in batch tools
than in interactive editors. This is in particular true for schematics because
the density of the objects is less than the density of objects in a layout. The
performance of the linked list is suilleient for most applications. The opera
tions applied to very large schematics (more than 500000 objects) can be
executed without observable delay to the designer. The memory require
ments of a linked list are also much lower than of the other two data struc
tures. Therefore, for most examples the linked list has been used as the
grapbics data structure.

Algorithm 2.3 shows a simple example of an incremental update ofthe data
structures afteradding a new wire to the network view. First, a grapbics ob
ject of typewireis created. This object is stored in the grapbics data structure.
In line 3, the grapbics data structure is searched for objects that touch or over
lap the bounding box ofthis wire. The objects, that are found with tbis query,
are stored in a buffer.

The objectsin the buffer are examined one by one. The relative position with
respect to the wire and the type ofthe object determine how the network data
structure is affected. This may lead to one or more ofthe following actions in
the network data structure:

• the creation of a new net;

• the joining of two or more nets;

• the addition of an input or output terminal of a module to a net;

• the addition of a primary input or output to a net.

Combinations of the actions above may occur as well.

Event driven simulation 39

Each cammand supported by the editor updates both graphics and network
data structures in a similar way. Although the overall structure of algorithm
2.3 seems simple, it is a quite complicated task to keep the data structures
up-to-date and consistent for various editing commands or combinations of
those commands. Despite this complexity, even complex operations, that ma
nipulate hundreds of objects with a single command, allow incremental up
dates of all data structures without observable delays.

Algorithm 2.3: Example of updating data structures incrementally

1 . /* add wire */
2. wire = CreateWire (.....);
3. AddToGraphicsDb (db, wire);
4. ;w use graphics data structure to update network data structure */
5. RegionSearchGraphicsDb (db, resbuf, wire->bounding_box);
6. while (! objbuf_empty (resbuf)) {
7. object= get_from_objbuf (resbuf);
8. switch (object->type) {
9. case wire:
10.
11 . case instance:
12.
13. case primary_port:
14.
15.
16.}

The incremental updates on the data structures required by the simulator al
low fast interaction between the editors and the simulator integrated in the
system. The following interaction models are implemented:

• Tool context switching. Using this interaction model, the simulator has to
he halted before any modification ofthe design is made. After editing and
debugging the design, the simulator can restart immediately without re
compilation of the underlying net list. This interaction model closely re
sem bles the traditional way of editing and simulating a design. However,
the tight integration of editor and simulator in a single tooi strongly re
duces the overall design time.

• Run-time updating. Using this interaction model, the design data, that is
accessed by the simulator, can he modified while the simulator is running.
Such modifications are a pplied to the designdata after the processing ofthe
events scheduled for a particwar time point or, to he more specific, a delta

40 Interactive ModeHing and Simulation of Heterogeneous Systems

time point. In algorithm 2.1, this interaction is handled in line 11. After up
dating the design data, the simulator continues at its current state. Note
that this state can be changed as a side effect: as an example consider the
deletion of a net, which causes allevents scheduled for that netto be deleted
as well.

Run-time updating is a more interactive approach than tool context switch
ing. It may be very useful, if a designer wants to change the behaviour of a
module to explore the design space. For instance, a designer could change ei
ther the delay model or the delay val u es of a specific model. It is also possible
to induce a fault in the modeland to investigate its influence on the behaviour
ofthe model. Run-time updating is a technique that adds some overhead dur
ing the editing and simwation of a system, since more consistency checks
have to be performed and more data needs to be updated. Usually, run-time
updating is allowed for modifying the behaviour of a primitive module, where
as tool context switching is used for modifying the structure of a composite
module.

Using tool context switching, the design cycle time may be reduced even fur
ther by applying an incremental simwation algorithm [Cho89]. An incremen
tal simwation algorithm only simulates those partsof a design that have been
modified since a previous simwation run. This means that the simwation re
sults of a previous simwation run are incrementally updated for those parts
of the design that have been modified: the computational costs are propor
tional to the size ofthe modifications and not to the overall size ofthe system.
This is possible by storing simulation state data from the previous simwation
run as well as modifications during an edit session.

Various implementations are possible of an incremental simwation algo
rithm:

• an incremental-in-space algorithm is described in [Hwa87]. Components
that are modified are marked by sending modification tokens to the simula
tor [Hwa88]. These components may affect other componentsintheir fan
out trees as well: these nodes are modified by a traversal algorithm prior
to simulation. After marking all possibly affected components, the simula
tor only simulates the marked components using theevent histories ofthe
components at the boundary ofthe affected area as input values.

• An incremental-in-time algorithm is described in [Cho88] . This algorithm
only simulates those components ofthe system, whoseinput values or in
ternal states are different from the values ofthe previous simwation run.
Components, whoseinput values or internal states differ from the previous
run, are called active and the other components are called inactive. Simula-

Event driven simulation 41

tion starts by scheduling all active components. Active components will re
peatedly be scheduled until they become inactive.

In [Cho88], it is stated that the incremental-in-space algorithm is more effi
cient, if the components of the system have many internal state variables.
The incremental-in-time algorithm is preferred for systems with feedback
loops and busses and without components with many internal state vari
ables. In [Jon92], a different incremental simwation technique is used in an
zero/integer delay switch-level simulator. Like ESCAPE, the simulator is inte
grated with a schematic capture in a single tooi.

At higher levels of abstraction, the application of an incremental simwation
algorithm is less useful, since both time-shifts and the use of more abstract
data types require massive re-simulation. The influence oftime shifts on re
simulation is depicted in figure 2.8: it shows two signals, ofwhich sigrial Bis
delayed in time with respect to signa! A. It is important to note that signa! A
is the result ofthe first simwation runfora particwar net and signa! Bis the
result of the second simwation run for the same net. For instance, the delay
ofthe component driving the net has been increased by L1 T. In an incremental
simulator, this time-shift would have resulted in many events, that mark
time points for re-simulation.

signa! A

I I I I

events I I I I I I I

Figure 2.8. Events due to time shift between signals A and 8

It is a topic for future research to investigate, in which cases it is more useful
to re-simulate the system completely using a conventional simwation algo
rithm and in which cases an incremental simwation algorithm is best applied
to re-simulate the system. It might even be possible to use a combination of
both strategies for different parts ofthe system. A disadvantage ofusing an
incremental simwation algorithm is the storage of a huge amount of simula-

42 Interactive ModeHing and Simulation of Heterogeneaus Systems

tion data from the previous simwation run. This may limit the use ofsuch a
technique because of memory requirements.

2. 7 Animation

Most simulators store their results in large files, which can be viewed as large
listings or as signal diagramsusinga signal viewer. Alternatively, design sys
tems often provide back annotation onto the schematic as an additional
means to examine simwation results. The increasing size and complexity of
systems makes the analysis of simwation results a large and complicated
task. Often, system designers create a high level specificabon of the system.
This specificabon serves as a basis for other designers to further implement
the system into silicon. A clear understanding of the system's functionality
and of the interaction between the various subsystems reduces misunder
standings about the implementation.

In genera!, run-time animation is a very useful feature in a simwation envi
ronment, since

• it helps other designers to understand complex system behaviour more eas
ily and more intuitively;

• errors are detected and corrected more easily; therefore, it facilitates de
bugging;

• communication between the increasingly large number of independent
modules becomes more important. Visualization techniques help under
stand this communication behaviour.

In ESCAPE, animated simwation is supported in the LISP-like HDL. Special
statements allow highlighting of nets and modules on specific conditions.
This is used to show how the system operates. Additional modulescan easily
be added to the simwation model: such modules are used to model the envi
ronment ofthe system. An example is the railroad example presented in chap
ter 4.

Although animation greatly helps to understand the operation ofthe system,
it has a disadvantage: it greatly reduces the performance of the simulation.
Especially, in a tightly integrated system like ESCAPE, each animation request
decreases simwation performance. Therefore, animation should only be used
for high-level models, where performance is not a dominating issue. A de
signer can control the animation interactively during simwation and thus
make a trade-off between performance and the level of animation.

Simwation results can also be presentedinspecial purpose view windows. An
example of such a window is a frequency analyzer display, which shows the

Event driven simwation 43

spectrum of a specific signal. Such a window is coupledtoa signal by connect
ing the appropriate module to that signal. Such functionality is found insome
commercially available DSP application development environments. Howev
er, most of these display windows are provided by the vendor and are only cus
tomizable through some parameters. In ESCAPE, new displaywindowsare eas
ily added to the system using the foreign language interface (see section
3.2.1).

2.8 Discrete event monitors

The validation of a design is an important activity in the design process, be
cause undetected errors may cause expensive redesigns and delay the design
project. Because ofthe increasing level of complexity, it is becoming more and
more time-consuming fora designer to obtain an acceptable level of conti
denee in the correctness of the design. This problem can he alleviated by a
tighter integration of evalaation and analysis methods into the design envi
ronment [Bus89, Aug90].

A complex and time-consuming part ofthe validation processis the analysis
ofthe simwation results and the detection of erroneous behaviour. Therefore
the ability to check ifthe simulated behaviour is consistent with a given set of
requirements, would improve the efficiency of the validation process, espe
cially ifthis is done duringa simwation run. This involves the two subprob
lems of specifying how the design is supposed to behave, and comparing the
simulated behaviour with the specified requirements. In this section the lat
ter pro blem is discussed in the context of event driven simulation. This covers
many simulators used today at various abstractions levels, including simula
tors for popular hardware description languages like VHDLand Verilog.

Most hardware description languages are primarily aimed at specifying a de
sign by descrihing a model that implements the desired behaviour at some
level of abstraction. Only limited support is provided to express the properties
the model should comply with. For example, VHDL provides the assert
construct to check constraints on the state of a model at specific points in time.
More complex conditions involving time can he included by extending the de
scription ofthe system with additional modules. It may even he necessary to
extend the interface of existing modules in the design to make parts ofthe in
ternal state observable from the outside. These modifications usually lead to
less comprehensible models and may even introduce new errors in the design.

In [Aug90], the VAL language is proposed as an annotation language for
VHDL. It extends the language with a small set ofnew constrocts for abstract
specification. For example, it is possible to express complex timing
constraints on signals. A preprocessor is used to translate an annotated de-

44 Interactive ModeHing and Simulation of Heterogeneaus Systems

scription to a regular VHDL description which automatically checks if the
simulated behaviour complies with the abstract specifications. In [Gen92),
the language is extended withso-called event pattern mappings to reduce the
complexity of the simulation results. It is based on recursively recognizing
and naming patterns of events. This enables the designer to view the simula
tion results on a higher level of abstraction, and therefore effectively reduces
the amount of information that has to he inspected. The presented imple
mentation analyses the event traces of the simwation in a post-processing
step.

There exist numerous methods to specify requirements imposed on a design.
For example, timing diagrams are frequently used to specify both qualitative
and quantitative timing constraints. In [Bor92), a formal version of these dia
grams is proposed, which also covers more complex aspects such as timing
constraints on conditional and iterative event sequences. It would he very
useful if such constraints could he combined with a design specification, inde
pendent ofthe languages used to describe this specification.

In a discrete event simulator, the behaviour ofthe simwation model is charac
terized by theevent trace that is generated duringa simwation run. To ana
lyse this trace, a general mechanism is required to inspeet the events sched
uled for specific state variables and nets in the model. The main requirements
for such a mechanism are that it does not influence the simwation results and
that it has an acceptable effect on the performance ofthe simulator. Further
more, it must he applicable to different simwation algorithms, modelsof com
putation and abstraction levels. Therefore, the concept of a discrete event
monitor is introduced.

DEFINITION 2.4: A discrete event monitor (DEM) is an object which observes
theevents generated and processed for specific elementsin
the simulation model. ·

Although DEMs can he used as a post-processing step of a simwation run,
they are intended to he embedded in the discrete event simulator itself. In an
incremental simwation environment [Cho88, Jon92), this concept especially
contributes to efficient validation of system behaviour, as it can he used to ob
serve theevents that model the differences with respect to the previous simu
lation run.

ADEM specification consists ofthree parts: an interface part, a declaration
partand the part that defines the functions supported by the DEM (see tigure
2.9).

Event driven simwation

dem (net ... , net ... , dem ...) /*interface */
{

/* declarations *I
state ... ;

I* internal functions */
init { ... }
exec { ... }
exit { ... }
report { ... }

Figure 2.9. Global structure of a DEM specification.

45

In the interface part, the variables which relate to the simulation modeland
other DEMs are specified. During instantiation ofthe DEM, each variabie in
the interface part is attached to an object in the simulation modelor another
instantiation of aDEM. This mapping is described separately to make the
specificabons reusable. Currently, the following types of variables are al
lowed in the interface part:

• A net variabie is used to access the events which are scheduled for the net
to which this variabie is attached.

• A module variabie is used to access the intern al variables (forinstance state
variables) ofthe module it is attached to.

• ADEM variabie is the port, on which higher level events can he scheduled
by a DEM. Such an event will immediately activate the monitors that are
attached to this variable. Note that aDEM can only schedule events that
activa te other DEMs, but it is notallowed to schedule events that influence
the simulation model itself.

In figure 2.10, the relationship between the objectsin the simulation model
and the DEMs are depicted.

In the declaration part, state variables may he declared: they are used to store
the state ofthe monitor and may have different (abstract) types. Each instan
tiation of a monitor allocates its own state variables, which can he accessed by
the DEM's internal functions. Currently, the following definitions ofinternal
functions can he specified:

• The init function, which is called before the first event is processed. This
function can he used to initialize internal DEM variables and to allocate

46 Interactive Modelling and Simulation of Heterogeneaus Systems

r---------------------,
I I
I I
: : Disc~ete event
1 1 morutors
I I
I I
L--- ____ .J

Simulation model

Figure 2.10. Relations between the simuiatien model and discrete
event monitors

additional resources required by the monitor. Note that state variables are
allocated by the create function during instantiation ofthe DEM.

• The exec function, which is called if an input variabie of the monitor re
ceives an event. In this function, new events can be scheduled, which acti
vate other monitors at higher levels. In addition, specialevent typescan be
scheduled, which are handled by the simulator to detect time outs and oth
er exceptions. Note that this does not influence the simulation model itself,
but that this events are used to present this information to the designer.

• The exit function, which is called after the simulation run has finished. It
is used to evaluate the final state ofthe monitor and to clean up resources.

• The report function of a monitor is used to evaluate the current state of a
monitor and to collect statistica} information of a simulation run. It may be
called any time by the user but could also be embedded into the simulation
algorithm.

DEMs can be specified using a conventional programming language. The
DEM specification has its own syntax that is translated in C language
constructs by a preprocessor. After processing, it can be compiled and linked
with the simulator. In case of ESCAPE, this preprocessing is handled internally
and the result may he loaded dynamically after compilation.

In algorithm 2.4, the operation ofDEMs within a discrete event algorithm is
shown. The algorithm presented here is a slightly modified version of algo
rithm 2.1. First, the model is initialized by initializing all nets and modules
(steps 1 and 2). The behavioural descriptions of all modules are executed to
activate the modules. This results in the generation of events, which will be

Event driven simwation 47

processed by the simulation loop. The last step of the initialization phase is
the activation of all DEMs,just before the processing of events starts (step 3).

Algorithm 2.4: Simulation algorithm with DEM interface

1. foreach (n E N) init_net (n);
2. foreach (m E M) init_module (m);
3. foreach (d E DEM) init_dem (d);
4. repeat {
5. foreach (event E queue (~)) preprocess_event (event);
6. foreach (event E queue (~)) {
7. execute_dems (event);
8. foreach (m E fanout (net (event))) execute_module (m);

9. ~ = .1 + 1;
} until event queue empty;

10. foreach (d E DEM) exit_dem (d);

A DEM can pass information to another DEM by scheduling higher level
events for that DEM. This raises the level of abstraction and therefore re
duces the number of events that has to be examined by the designer. If an er
ror is detected at the highest abstraction level, it can be traeed back to its
souree in the simulation model (see figure 2.11). This is achieved by repeated
ly annotating the souree ofthe eventinto theevent itself. lnteracting DEMs
can herepresentedas a directed acyclic graph. Usually, this graph is a tree. If
a DEM schedules an event foranother monitor, this monitor is immediately
activitated. No additional delay model is associated with these events, since
this could he the souree of more misunderstandings about the interpretation
of the simulation results.

2.8.1 Discrete event automata

DEMs are specified using a convential programming language. Although this
does not impose any restrietion on descrihing the DEM, the user needs to
know some implementation details. Therefore, a specification language for
DEMs has been developed. This language also serves as an intermedia te lan
guage to facilitate the integration of other specification methods like timing
diagrams.

The underlying model ofthis specification language is a deterministic autom
aton in which transitions are labelled with conditions and actions. The condi-

48 Interactive ModeHing and Simulation of Heterogeneous Systems

l increasing
DEM
abstraction
level

Figure 2.11. Event propagation and trace back to simuiatien model

tions define theevents inducing a transition. The conditions can include the
values of state variables and the attributes of an event. The actions descri he
the effects of a transition, which may include the generation ofnew events for
other discrete event monitors. This model is expressive enough for descrihing
a large class of constraints, and can be executed efficiently duringa simula
tion run. A description in this specification language is called a discrete euent
autornaton (DEA).

In tigure 2.13, an example is given of a DEA which validates the correctness
of a dual rail encoded interface. The states ofthis autornaton are depicted in
tigure 2.12. This example is used to illustrate the main aspects of the lan
guage. The header specifies the name ofthe DEA and declares its parameters.
In this particwar case, the parameters are the three nets on which the com
munication takes place. The body ofthe description consists oftwo sections,
which respectively deelare the state variables and specify the behaviour of
the automaton. Optionally, a third section can he added to customize the way
the information about the state is reported to the user.

Event driven simulation

ack.down

Figure 2.12. Discrete event autornaton of dual rail encoded interface

monitor dual_rail_decoder (net d1, net dO, net ack)
/* This monitor checks the correctness of a dual rail

encoded interface and translates the data transfers
to higher level events. *I

variables {
int data;

process {
while (true) {

select { / * valid data */
d1.up : data = true;
dO.up : data = false;

} ;
event (data) ; /* create high- level event *I
select {ack.up}; /* acknowledge */
if (data== true) /* invalidation of data */

select {d1.down};
el se

select {dO.down};
select {ack.down}; /* invalidation of acknowledge *I

Figure 2.13. An example of a discrete event automaton.

49

50 Interactive ModeHing and Simwation of Heterogeneaus Systems

The select statement is the main construct to define the behaviour of a DEA.
This statement specifies a single state ofthe autornaton and the transitions
leaving that state. Each transition is defined by a set of event labels and the
corresponding actions. An event label specifies the object for which theevent
must he scheduled, the value ofthe eventand optionally the type ofthe event.
By default, a transition sets the autornaton to the next sequentia} state. Con
trol structures are provided to support the description of conditional and re
peating patterns of behaviour. As a result, many requirements can he de
scribed very concisely by a DEA. Every state can he given a name, although
this is not shown in the example.

The event statement can he used to generate events for other DEA.s. In the
example, every successful data transfer results in the generation of a new
event, that can he processed by aDEM at a higher level, ifno explicit destina
tion is given. This is normally the parent in the hierarchy ofDEMs (as in this
example). It also shows how DEAs can he used to implement event pattem
mappings [Gen92]. These mappings are very useful for comparing a detailed
simwation model with a specification at a higher level of abstraction.

2.8.2 Examples and results

DEMs have been used to validate event traces ofvarious examples. The prim
itive componentsof all examples are modelled using the LISP-like hardware
description language supported by ESCAPE. The following examples are pres
ented in table 2.1:

• An implementation of the asynchronous two place ripple buffer presented
insection 1.3. For this example, the absence ofunexpected request and ac
knowledgement events has been validated.

• An abstract model of a railroad. The model is composed oftwo abstraction
layers: one layer models the environment, in particwar the transportation
of the trains, and the other one models the control a spects of the system.
The handshake protocol used to move the trains has been validated. This
example is presented in chapter 4.

• An architectural model fora Kulisch inner product chip . The timing ofthe
adder stations in the model has been validated. This example is also pres
ented in chapter 4.

These examples differ considerably in size and complexity, both in the struc
tural and the behavioural respect. The complexity ofthe DEMs is comparable
to that ofthe DEA shown in tigure 2.13.

Event driven simulation 51

Table 2.1. Effect of DEMs on simulation performance

Model
#DEMs %DEM

name #mods #nets time

ripple buffer 14 38 4 5.4

8 5.5
16 6.3

railroad 483 1480 4 4.9

8 5.5
16 6.2

Kulisch 679 754 2 2.3
inner product 4 2.6

chip 8 3.0

The results show that little overhead is introduced by extending the simula
tion algorithm to support DEMs. Of course this also depends on the cornplex
ity and internal structure ofthe simulation modeland the connected DEMs.
Forthese particular examples, the total decreasein performance is less than
7%. Comparable results have been found for other simulation models. This
demonstrates the efficiency of the proposed methods and the applied imple
mentation techniques.

2.9 Hierarchy

In the previous sections, a system is described using a two-level representa
tion: the system is composed of a number of subsystems or modules, which are
interconnected by nets: one top level description of a composite module con
sisting of a number ofprimitive modules. Each primitive module has a beha
vioural description. However, most systems use structural hierarchy to man
age the complexity of descrihing a large system and to reduce the total
amount of design data. Hierarchy can also he used for behavioural decomposi
tion of complex system at high abstraction levels.

In ESCAPE, the management ofhierarchy presents some additional problems.
In section 2.6, the interaction models between the editor and the simulator
have been described: a modification incrementally updates all data struc
tures. Using hierarchy, the composite module, in which the modification is
made, may he used multiple times or even in a hierarchy of a nother top level
description. The basic problem is how to propagate these modifications
through the hierarchy and which instantiations of the modified module
should he replaced or modified as well.

52 Interactive ModeHing and Simulation of Heterogeneaus Systems

With a hierarchical approach, a system is represented as a collection aftwo
level hierarchical designs in an editor. In the ESCAPE terminology, a network
view of a design contains instantiations of syrnbol views of other designs. If
one selects one design as the top level ofthe description, it is possible to com
pose a hierarchical treefromthese parent/child relationships. Figure 2.14 de
picts a very simple representation of such a hierarchy showing the relations
between various modules. In this figure, Ristheroot design, 3 and 5 are com
posite modules, and the other modules are primitive.

Figure 2.14. Two-level (hierarchical) representation

Simulation or verification tools usually require that such a description is flat
tened (for instance, VHDL simulators may compile the hierarchy into a
nested function call hierarchy). Flattening means that the hierarchy is ex
panded into a singletwo-level description (see figure 2.15). This expansion
recursively replaces each composite module by its network view description,
which consistsof a number of modules connected by nets, while connections
are properly updated. After flattening, the resulting system description only
contains primitive modules with a proper model of computation.

Figure 2.15. Simulation representation of designRafter expansion.

Flatteningis often embedded into a net list compiler, which compiles a hierar
ebical description into a format or data structure, that can be accessed by a
simulator. In a traditional environment, netlist compilation is performed by
a separate tooi or by the simulator prior to a simwation run. Small modifica
tions in a description often result in long compilation times ofthe underlying
net list, because the hierarchy has to be expanded and flattened again. This
problem is prevented by keeping the resulting hierarchy up-to-date and by

Event driven simwation 53

propagating all modifications in a description through the whole hierarchy.
This results in an incremental approach for the complete hierarchy.

2.9.1 Related work

Last years, some attention has been paid to incremental net listing to reduce
excessive re-compilation times. In [Jon89a], a technique is described that al
lows incremental net list compilation. The technique is fast enough to update
designs, that are being modified in the testing phase, without observable de
lays. The underlying data structure for this compilation technique is a design
DAG, which is a more compact representation of a hierarchical tree. This rep
resentation is described in more detail in [Jon89] together with online/offiine
netlist compilation techniques.

In [Cae93], a process-Ievel debugger for the GRAPE environment is de
scribed. This debugger animates program behaviour of complex parallel pro
grams using a hierarchical graphical representation. During debugging, a
top-down approach is used: the level of detail of erroneous processes can he
expanded. A record-replay mechanism guarantees reproducible program be
haviour. Although the designer can select the level of detail in the graphical
representation (by expanding the hierarchy), the underlying model is always
completely executed. This zoomingapproach is not possible, ifthe underlying
model is modified as well, for instanee replacing a model with its more de
tailed implementation. The record-replay mechanism can only reproduce the
original behaviour, ifno state variables are presentor ifthe execution ofthe
model is fully repeated.

2.9.2 Managing hierarchy

In section 2.6, the interaction strategies between editor and simulator have
been explained for a flat model. In this section, it is explained how hierarchy
is represented that allows easy interaction between editor and simulator. It
is basedon the idea to keep both the (partial) flattened net listand the hierar
ebical data, from which this net list is derived, up-to-date.

Some additional advantages of these methods are

• it allows easy switching between different simulation configurations: a
structural and hierarchical description of part ofthe system is replaced by
a behavioural one or vice versa.

• it allows interactive expansion or reduction of (parts of) the hierarchy.

In tigure 2.16, the relations between various objectsof a composite module
and its implementation are depicted using dashed arrows . These are required

54 Interactive ModeHing and Simulation of Heterogeneaus Systems

to keep the hierarchy up-to-date. Note that the composite module is normal
ly embedden into another composite module and that its ports are connected
tonets in that module. These relations may he used to build two alternative
representations of a hierarchical design.

/1 i ~\ / jl \
/ / . \

• - - -/- - - - - - - - - -,f - - - - J- - - - - - - - - _\. - - - - - - - -·
' / \

\
\
\
\

Figure 2.16. Relations used to maintain hierarchical information

In the first alternative, hierarchical trees are built for the modules and nets,
and additional data is stored in the portsofthese objects to he able to traverse
the hierarchy. Note that ports are stored at the modules and that nets refer
to these ports fortheir fanin and fanout lists. During expansion, a composite
module is replaced by a copy ofthe objects described in its network view (cir
cuit). The newly created objects are merged with the existing data structure
using parenUchild relationships. This procedure is repeated for all modules
and stops if a primitive module is selected.

After full expansion, a hierarchical tree is built for the modules and one hier
arebical tree per net. This method expands the hierarchy downwards: the
primitive modules are pushed downwards and constitute the leafcells ofthe
module tree.

All modules, nets and portscan he accessed traversing the various trees and
usingthe relations between the various objects. lt is difficult to present all the
relations offigure 2.16 in a single figure for the hierarchy offigure 2.14. To
give an impression, figure 2.17 depiets the child relations between the various
modules afterexpansion. Note that to access all modules connected toa single
net, the top parent ofthe net has to he found and then all subnetscan he tra
versed using the parenUchild relations ofthe subnets it is composed of. It is
also clear, that sometimes one has to deseend in the hierarchy to access a

Event driven simwation 55

primitive module. In the flattened net list offigure 2.15 each module is im
mediately accessible at the top level.

Figure 2.17. Expanding the hierarchical tree downwards

This representation of a hierarchy requires the simulation algorithm to be
changed to be able to simulate a hierarchical description. Modules at any lev
el in the hierarchy are generally connected to modules at various other levels
in the hierarchy. Therefore, the event scheduling and processing routines
have to be changed. If an event is scheduled fora net that spans more levels
in the hierarchy, it will be scheduled for its top parent net, which can be found
by traversing parentJchild relations. At the time the event is processed, the
modules on this net's fanout list can easily be accessed by traversing the sub
nets in a recursive way (see algorithm 2.5).

Algorithm 2.5: Processing a hierarchical fanout list

process_fanout_list (Net net)
{

Port p;
foreach (p E net->fanouts)
{

if (p->child)
process _fanout_list (p->child->net) ;

el se
process_event (net, p);

Clearly, this approach decreases the perfonnance of the simulator, if deep
hierarcbies are used to model the system. In that case, many child relations

56 Interactive Modelling and Simulation of Heterogeneaus Systems

have to he traversed to access all modules connected to the net. A solution for
this problem is the introduetion of skip pointers. Intermedia te norles in the
hierarchy, which are fully expanded, are skipped. As a result, the leafnodes
of the net tree representation will directly point to the top node of the net.
During simulation, at most one additional pointer has to he traversed to ac
cess each module connected to a particular net.

Therefore, an alternative representation ofboth net listand hierarchical in
formation may he used. To the simulator, the net list is sirnilar to a normally
flattened net list (figure 2.15). Ho wever, it is still possible to traverse the hier
arebical data the net list is built from.

In this representation, the composite modules are pushed downwards. To
represent the net listand original hierarchy, the same relations are used be
tween modules, nets and ports (see figure 2.16). The original hierarchical
relations are accessible using the parent/child relationships ofthe modules,
nets and ports respectively. In figure 2.18, the resulting tree after expansion
is depicted. Againjust one ofthe relationships is shown in this figure and only
for the modules: it allows access to all modules in the expanded list and the
composite modules they are expanded from.

Figure 2.18. Expanding the hierarchical tree upwards

The second expansion method does not require any modifications in the simu
lator, but it is much more complicated to keep the resulting data structure
consistent, if modifications are made to the circuit after expansion. Many
commands provided by the API, mostly editing commands, have to perform
complicated actions to keep the resulting data structure up-to-date. The hi-

Event driven simulation 57

erarchical infonnation, which can be accessed using the various parentlchild
relations ofthe objects, has to be traversed frequently.

An additional improvement is the replacement of a hierarchical tree by a di
rected acyclic graph (DAG), in which a subgraph may represent multiple co
pies ofisomorphic circuitry. However, each copy has to storesome unique data
(e.g. the value that a particular signal carries), that has to be represented ex
plicitly in the data structure of a node. A DAG representation would facilitate
incremental updating of the hierarchy after modifying a subdesign.

2.9.3 Design management

In the previous section, the management ofhierarchy using an incremental
approach has been described. In addition to rnanaging hierarchy, each compo
nent of a system can have different implementations, simulation models and
status during design. A component may even have multiple descriptions that
need to be simulated using different algorithms or another simulator (see
chapter 3). Before each simulation run starts, it has to be determined, how
the overall simulation model is built using the hierarchy, versions and simu
lation views ofvarious components. But there are more problems associated
with editing and simulating designs. A few examples are:

• A child design is used as an instanee oftwo other parent designs. After sirn
ulating one of these designs, the child design has to be modified. Have these
changes to be effectuated for the other parent design as well?

• A specific component has multiple models of computation or behavioural
descriptions. The system needs to track, which description is used for each
instantiation of the design. How can this be done in a consistent way?

• The time representation of a component may be different for various types
ofmodels or in different simulation runs. This is especially true, if different
types ofmodels are simulated in a single run (see chapter 3). How can the
system maintain time parameters of a model in a consistent way?

In genera}, the problems related to design data management are handled by
a CAD framework [Wol93]. Such a framework manages different relations
and aspects of design data.

As an example, the relation between hierarchy and versioning is presented
in figure 2.19. Consider, the hierarchical description of a nand gate, which is
composed of an and gate and an inverter (not). If a new version is created of
the inverter, there are two approaches to update the versions ofits ancestors.
These approaches are referred to as dynamic and static binding ofhierarchy.

58 Interactive ModeHing and Simulation of Heterogeneous Systems

dynamic binding

f----+-- version
~-~.-'--- design

static binding

Figure 2.19. Dynamic and static binding of hierarchy

The problem is that on the one hand the management of these problems
should he an integral part ofthe simulator, but on the other hand part of these
problems are solved by a CAD framework. Most frameworks are able to man
age at least hierarchy and versionsin a consistent way. In [Bin94], the func
tionality of a CAD framework is used to build system simwation environ
ments.

Although a CAD framework may facilitate the use of tools and the manage
ment of simwation data, it does not solve the problem ofbuilding a simulation
model that is composed of a number of submodels, in particwar if these sub
roodels are of a different type. Therefore, the management of data related to
the design and the underlying simwation model is an important parameter
in the development of a simwation tool or environment itself.

Chapter

3 Multi-model simulation

3.1 Introduetion

In the previous chapter, the discrete event simulator and its embedding into
ESCAPE have been discussed in detail. In this chapter, it is explained how the
discrete event simulator of ESCAPE is extended to support simwation of differ
ent models of computation. This support is required

• to be able to simulate differentmodelsof computation (atthe highest levels
of abstraction, in particwar the system level);

• to be able to simulate partial implementations at lower levels of abstrac
tion.

The motivation for the ability to simulate differentmodelsof computation is
thatin nearfuture complete systems like telecommunication and multimedia
systems are going to he integrated into a single IC. These systems consist of
digital components such as DSP cores, general purpose processor cores and
standard logic cells, analog components and embedded memories, and, the
software that is mapped into these memories. There is also a tendency that
processor cores are bought from other parties together with simwation and
verification models. These models have to he integrated with modelsof other
parts ofthe system to create an overall model that is executable or simulat
able.

The motivation for the ability to simulate partial implementations is that it
is impossible to simulate a complete system at a low abstraction level, each
time a part ofthat system has been implemented or refined. Ifthis partial im
plementation can he simulated together with the rest ofthe system modelled
at a higher abstraction level, the operation of that implementation is more
easily validated: the system itself provides test veetors during simulation.

Furthermore, design flows are often adapted to particwar needs for different
projects. Different tools are used to accomplish a specific design task. Each
tooi may use its own descriptive means to model behaviour and other proper
ties of a design. A simulator has to he flexible enough to deal with a rapidly
changing design flow and the descriptions used by the tools in this flow.

59

60 Interactive ModeHing and Simulation ofHeterogeneous Systems

Therefore a simulator must provide facilities for fast integration or coupling
ofnew types ofsimulation models. Furthermore, the simulator must simu
late these types ofmodels together in a homogeneous way. Simulation ofvari
ous types of simulation roodels is often referred to as co-simulation. Exam
ples of types of simulation roodels that should he handled by the simulator
are:

• roodels documented in HDLs, that are not supported by ESCAPE;

• roodels based on other computational paradigms;

• analog models;

• digital roodels with a different accuracy;

• optimized versus non-optimized digital models;

• software roodels (hardware/software co-design).

The basic idea to combine these roodels into a single overall simulation model
is to use events as the unifying mechanism. Theevent handler ofthe built-in
event driven simulator fuiflis a central role: it controls the execution of all
types of simwation models. The following aspects have to he dealt with:

• different granularity of time and the representation oftime in the simula
tor. A token flow graph may even have no notion of time at all, but this re
stricts its embedding in an overall (timed) simwation model;

• synchronization ofthe local simulation time in various components;

• different data types and representations for the values of nets in different
simulators.

The following techniques are used to handle various types ofmodels in a ho
mogeneous way:

• by using different types of events;

• by embedding roodels with local control;

• by using an external simulator interface.

The terminology used in this chapter is explained by tigure 3.1. A simwation
model of a system is composed of a hierarchical description of components.
This hierarchy is depicted as a tree in the picture to the left. Allleafnodes in
this tree are primitive components, whereas all other nodes are composite
components. Each primitive component has a description ofits internal beha
viour. This may he a description in a language supported by ESCAPE or in an
input language of an external simulator integrated with ESCAPE's simulator.
The latter description could even contain hierarchy, ifthat is supported by the
external simulator. This hierarchy is hidden from escape. Note that the beha-

Multi-model simulation 61

viour of a composite node in ESCAPE is implicitly described by its structure and
the components in that structure.

A primitive component together withits behaviour description is often called
a model. The cl a ss ofbehaviour descriptions that are executed using an exter
nal simulator or a dedicated simulation algorithm is often called the model
ofcomputation orthe type of model. The picture to the right showshow a vari
ety of built-in roodels and external simulators simulating roodels is sirou
lated together using the event handler of the built-in simulator in a central
role.

extemal simulators

Figure 3.1. Simulating models both internally and externally.

In the remainder ofthis chapter, it is first explained how a foreign language
interface can be used in a flexible and interactive simulation environment.
Next, a genericinterface to external simulators is described. Then the simula
tion of data flow roodels and the co-simulation of discrete event roodels and
data flow roodels is explained in more detail. Finally, it is described how a sim
ulator is contigured at run-time to improve the overall simulation perfor
mance.

3.2 Foreign language models

The incorporation of foreign language roodels is an important feature for a
simulator. It allows to write roodels in a regular programming language like
C. This is important because

• prototype programs are often written in a programming language;

• it provides access to the operating system and to other programs.

62 Interactive ModeHing and Simwation of Heterogeneaus Systems

Nowadays, most commercial simulators provide an application program
mabie interface to include models written in a programming language. Most
ofthe time this interface is basedon the language C [Ker88]. In this section,
a technique is descri bed, which may he used to specify an interface of a simu
lation model written in a foreign language, that is independent ofthe simula
tor the model will he simulated with. This feature is used in ESCAPE to he able
to detect the necessity of re-compilation, if the compiled model gets out of
date. It also allows to re-use the model with multiple simulators that are able
to process the syntax of the language.

A foreign language interface of a simulator may he used for various purpos es:

• To specifY the behavioural description of a module in a programming lan
guage like C, Pascal or Fortran. Models may he used for both simulation
and execution as part of a regular program written in software.

• To conneet an external simulatortoa module. The module is executed like
any other module by theevent handler ofthe internal simulator. It behaves
like an internal simulation model.

• To import other discrete models. A separate compiler translates a descrip
tion into C files and an interface file. For instance, a (symbolic) description
of a fini te state machine is translated into regular C code and an interface.
After loading, the resulting compiled model is executed very efficiently dur
ing simulation.

3.2.1 The foreign language interface

Many foreign language interfaces are provided as a C library, which allows
open access to the simulator and its internal data structures. Such a C library
is very tedious to use and highly dependent on the simulator. Instead a lan
guage has been developed, that allows to specify the interface between a for
eign language model and a simulator. This language relieves the designer
from the task to write an interface using the functions provided by a C library
and the rnacros defined in include files . A preprocessor builtinto the simula
tor translates the language into the appropriate interface functions. This
hides many implementa ti on details from the designer. The language in which
a foreign language interface is specified, is called ESCAPE-C .

Another reason to develop a language is the highly interactive nature of ES

CAPE. As described insection 2.6, there are two interaction strategies between
the editor and the simulator: objects in the model may he modified anytime,
even during simulation. With both strategies, it is very important that refer
ences in the loaded object are consistent with the interface of the design.
Otherwise, severe run-time errors may a hort the program. The preprocessor
easily detects modifications with respect to the last time it processed the in
terface file. Ifnecessary, the model is compiled and loaded again. An example

Multi-model simulation 63

may illustrate the importance ofusing up-to-date models: if a port of a design
is deleted, it still may he referenced in the object that is currently loaded for
simulation. Trying to access the port will result in a fatal run-time error.

The steps that have to he taken to load a foreign language model dynamically
into the address space of ESCAPE are depicted in figure 3.2. First, the interface
file is processed by the simulator, in our case ESCAPE, that willload the result
ing object code after compiling and linking the C files ofthe model. In ESCAPE,
the steps are invoked through the user interface or automaticallyin the ini
tialization phase of a simwation run. Second, all C files are compiled and
linked with those options enabled, that allow dynamic loading of the object
code2. Finally, the resulting object is loaded run-time by the program and the
modelloaded may he called during simwation as part of a larger simwation
model.

I
These processes 1

are normally
identical. \

I
I

\

I.--____,...______,

\
\

Phase 1: parsing the
interface

Phase 2: compiling and
linking of all files

Phase 3: load and
execute

Figure 3.2. Flow to dynamically load a foreign language model.

In figure 3.3, a very simple example of a module's interface written in theES
CAPE-C format is shown. The section between the %% delimiters is processed

2. Dynamic or run-time loading is a technique that allows to add new functionality to an
executing program. It requires compilation and linkage using special options. Mter
linking, functions and variables in the object code can be accessed like any other
function in the program without any overhead.

64 Interactive ModeHing and Simulation of Heterogeneous Systems

byESCAPE and converted into the C language, that can be compiled by an ANSI
C compiler. The other sections ofthe file and all other files are plain C and are
not processed. Therefore, C programs modelling behaviour are easily inter
faeed with the discrete event simulator. Similar parsers could be developed
to be able to incorporate the model into another program or to execute it as
a stand-alone executable. Such a parser has to be written only once, whereas
normally each model has to be adapted toa particular foreign language inter
face.

r regular C */
0/o0/o
nand2 (input in1,

input in2,
output out)

delay (out, 1, !(in1 && in2). NORMAL);

0/o0/o
/* reg u lar C *I

Figure 3.3. Example of an ESCAPE-C file

During pre-processing, the terminals found in the interface are searched for
in the port lists ofthe appropriate design. Ifthe corresponding port has been
found, it is replaced by a C variable, which references the data structure of
the corresponding port stored with the instance. After compilation, the port
can immediately be accessed during the execution of the instance's simula
tion model. Ifthe portisnot found, a warrling is issued and the corresponding
port is considered to be dangling. Note that these steps have to be performed
only once for each design, not for each instanee of that design.

The format may be used to define state variables as well. No te that static vari
ables as defined in ANSI C would be shared by multiple calls for different
instances. However, all state variables of a model have to be stored uniquely
with each instanee using that model. Therefore, state variables of a model
have to be declared explicitly in the interface. During preprocessing, a data
structure containing all state variables is defined tagether with a create func
tion that is called during initialization ofthe simwation model. Calling the
function creates a data structure that allows private access to state variables
for each instantiation of the model.

To be able to load a compiled model dynamically, it has to be compiled and
linked to create either a special object file or a shared library. This is highly
dependent on the operating system. After compilation, the object can be

Multi-model simulation 65

loaded by the program. AB a result, the function in the object code is callable
using a special function provided by the operating system. If the function is
loaded properly, the simulator may call it without any overhead during simu
lation. Dynamic loading of object code is a technique that improves both flexi
bility and performance.

3.2.2 Compiled simulation

The foreign language interface may he used to integrate other simwation
models with the simulator, e.g. optimized logic models used at the gate level.
A frontend has been built to allow compiled simulation oflogic modelsas sub
madeis of a larger system. The interface ofthe models will he generated in the
ESCAPE-C format. A logic model is a number of input variables, output vari
ables and expressions that describe relations between logic variables (input,
output and intermedia te varia bles). It is the representation of a model using
boolean expressions during logic synthesis.

In a compiled logic simulator, the input description is analyzed before simula
tion todetermine the execution order of each expression. A gra ph is built from
the logic expressions constituting the model. Each expression describes a
relation between an output variabie and a number of input varia bles. Each
variabie is represented in the graph as a node. In the graph, there is an edge
from the node re presenting an input variabie of an expression tothenode rep
resenting the output variabie ofthat expression. AB a result, a directed acyclic
graph (DAG) is built from the expressions ofthe logic model.

Let G = (V, E) he the DAG representing a logic model. The model may also
he at a higher level of abstraction, but the restrietion is that it is not asynchro
nous. The input variables are represerited in this graph as nocles which have
outgoing edges only. The output variables are represented as nocles which
have incoming edges only.

The set of predecessor nocles of a node is defined as:

pred(v) = { w I (w, v) E E} (3.1)

The set of successar nocles of a node is defined as:

succ(v) = { w I (v, w) E E} (3.2)

The function level assigns to each node of V a number

level : V--+ N (3.3)

in such a way, that the levels assigned to all predecessors of a node are smaller
than the level assigned to the node itself. This process is often called rank or-

66 Interactive ModeHing and Simulation of Heterogeneaus Systems

dering or levelizing in simulation literature. In genera}, this algorithm is
called a topological sort. The function level is defined as follows:

{

0, if pred(v) = 0
level(v) = max (level(w) + 1), if pred(v) ;:é 0

wEpred(v)
(3.4)

The code generator generates C statements from the logical description in the
order determined hy the rank ordering. The rank ordering ensures that the
expressionscan he calculated with the proper values for all variahles. An ex
ample of a small part of generated C code is depicted in figure 3.4.

void sim_logic (int lv[])
{

lv[514) = ! ((lv[126))&&(lv[7])&&(lv[9])) i

lv[575] = ! ((lv[126])&&(lv[7])) i

lv[647) = ! ((lv[7]) 11 (lv [8])) i

lv[8 5 7] = !((lv [7])11(lv [ll]))i
lv[864] = !(((lv[129))11(lv[l28)))&&

((lv[7]) 11 (lv[8])))i

lv[884] = ! ((lv[7)) 11 (lv [8])) i

lv[894) = ! ((lv[128)) I I (lv [7]) I I (lv[9])) i

Figure 3.4. Part of generated C code trom logic expressions.

The code generator can generate statements using either logica} or hitwise
operators. The advantage ofusing logica} operators is that the evaluation of
the resultingoperands ofan expression is ahorted, ifthe evaluation ofthe pre
vious operand results in a fixed value, for instanee if one ofthe operandsin
a logica} and evaluates to 0.

The advantage of using hitwise operators is that it allows the parallel sim ula
tion of multiple testvectors. This implies that if there are multiple modules
with the same logica} description as hehaviour, the calculation oftheir output
values can he performed in parallel with no performance penalty. Using a
computer with 32-hit arithmetic, it is possihle to execute 32 instantiations of
the sametype in parallel. Of course, it is also possihle to calculate 32 testvee
tors in parallel for specific simulation experiments.

Multi-model simulation 67

3.2.3 Experimental results

The compiled logic simulator has been evaluated using a few benchmark cir
cuits. These benchmark circuits consist of

• the two largest examples ofthe ISCAS '85 benchmark circuits [Brg85].

• the primes examples. The circuit primes n calculates, ifthe number at its
n inputs is prime or not. Ifthe number is prime, it will set the first output
bit to a logicall. Otherwise, it will set its first output bit to a logica} 0 and
set the remaining output bits re presenting the smallest divisor ofthe num
ber at the input bits. These primes circuits have been used as logic synthe
sis benchmarks in [Ber92].

In table 3.1, the system resources used by the compiled models are listed. The
size ofthe shared library depends on the number of expressions and the com
plexity ofthese expressions. This is illustrated best by the primes examples:
the number in the name of the example is related to the number of expres
sions (it equals the number of input bits ofthe circuit). Before logic synthesis,
the number of expressions equals 2n, where nis the number in the name of
the example. Also, the complexity ofthe expressions depends on the number
of input varia bles, which is equal to n. This is still roughly true after logic syn
thesis. The primes circuits used in these benchmarks are the expressions af
ter logic synthesis.

The compile times of these circuits are also listed. In [Bry87], the overhead
of compiling into C code is estimated at least 70 percent. It can be reduced by
generating executable target machine code. This is often referred to as native
compiled code generation.

Table 3.1. U sage of system resources

name si ze of library compile time
[kbytes] [sec]

c6228 120 10
c7552 160 11

primes9 30 8

primes12 320 38

primes14 1500 165

primes16 5900 641

In table 3.2, some characteristics ofthe benchmarks are listed as wellas the
number of simwation veetors that can be executed per second. The bench
marks have been run on a HP 90001755. The variation in benchmarks clearly

68 Interactive ModeHing and Simulation of Heterogeneaus Systems

illustrates the difference in time it requires to perform exhaustive simwation
fora model giving a 100% error coverage. For instance, the c7552 benchmark
circuithas 207 inputs: exhaustive simulation of all possible input patterns re
quires 2207 input patterns. Given a simwation speed ofroughly 1400 veetors
per second, it will take a bout 1050 years to simwate it completely, even if 32
veetors are simwated in parallel. However, the largest circuit (primes 16) ha v
ing 16 inputs requires only 65536 input patterns and can he simwated com
pletely within 3 minutes (simwating 32 veetors in parallel).

Table 3.2. Simwation reswts of compiled logic simwation models

name inputs outputs express10ns veetors I sec

c6228 32 32 2416 1607

c7552 207 107 3513 1397

primes9 9 5 464 7764

primes12 12 7 2960 402

primes14 14 8 17133 46

primes16 16 9 60080 13

In table 3.3, the simwation performance of the LISP-like HDL descriptions
and compiled Ccodeis compared. Note that it only compares raw simwation
speed: the time to build the internal data structures for the LISP-like HDL de
scription and the time to compile the Ccodeis not included here3.

Table 3.3. Comparison of interpreted and compiled models

Number of evaluations per time unit
speed up name

lisp compiled

primes9 1102 2568 2.33

primes12 400 2396 5.99

primes14 84 1228 14.62

primes16 - 227 -

3.3 External simulator interface

Although the built-in simwation models and the foreign language interface
allow many models to he simwated, it is very important to he able to simwate
more different typesmodelsin the overall simwation model together. This in
cludes some types ofmodels which are incompatible with the discrete event
3. The simulation of the LISP-like HDL description of the primes16 example bas been

aborted after three hours, because it would conswne too much memory resources: the
intemal data structures required for this example could not be built at the time ofthe
benchmarking.

Multi-model simulation 69

paradigm, and other types ofmodels may only differ in subtie details like time
representation and time advance mechanism or the representation of signal
values. Often, dedicated simulators are required to he able to simulate a mod
el accurately (e.g. a simulator for switched capacitor circuits [Fan83]) or to get
a reasonable performance during simwation (e.g. co-simulating software on
a microprocessor model [Row94]). It is often not possible to translate or com
pile such a model into a model that is compatible with built-in types ofmodels
that arebasedon the discrete event paradigm.

A simulator should he flexible enough to incorporate new types ofmodels into
the system or to integrate external simulators in order to he able to simulate
complex heterogeneous systems. It is essential that all types ofmodels used
to describe a system are simulated in a single simwation run. This implies
that a simwation environment should provide the flexibility to include new
simwation algorithms or integrate external simulators in a simple and
straightforward way. Even then, this is often a quite complicated and time
consuming task. In this section, a technique is described that facilitates the
integration of new types of simwation models and allows the simwation of
thesemodelsin a homogeneous way. Seen from the simulator, all models be
have like regular discrete event models.

The following terminology is often used for simulators that are able to simu
late multiple types ofmodels:

DEFINITION 3.1: A mixed mode simulator is a simulator that is able to
simulate both digital and analog models.

DEFINITION 3.2: A mixed level simulator is a simulator that is able to
sirnul a te roodels at various levels of abstraction.

DEFINITION 3.3: Co-simulation is the ability to simulate different types of
roodels together in one simwation environment.

The terms mixed mode simulator and mixed level simulator are often inter
changedor appear as synonyms, because the simulator processes the analog
partsof a system at the circuit level and the digital parts at a higher level of
abstraction. Co-simulation is often referred to in the context of simulating
processor roodels running software or in the context of simulating roodels
written in the popular HDLs like Verilog and VHDL in one environment.

In the past, mixed mode and mixed level simulators have been introduced to
he able to simulate a system composed ofboth analog and digital components
at various levels of abstraction. They have primarily been introduced to re
duce the simwation time. Simwation at multiple levels of abstraction greatly
reduces the computational costs, because large parts ofthe system are simu
lated at a high level of abstraction. Only those parts of the system are sim u-

70 Interactive ModeHing and Simulation ofHeterogeneous Systems

latedat a low level ofabstraction, that really need to he simulated at that level
in order to simulate it accurately. For instance, the analog components of a
system are simulated at the circuit level, whereas the digital components are
simulated at the register transfer level.

In [All90], three basic types of mixed mode simulators are identified4 :

• The use of an analog simulator to perform both analog and digital simula
tion. One method is to model digital components using the sa me techniques
as analog components (e.g. differential equations in a circuit simulator).
This results in high computational costs for the overall model. Another
method is to provide an interface to include discrete event modelsin partie
war análog model representation.

• The use of a digital simulator to perform both analog and digital simula
tion. Time continuous analog models are transformed into time discrete
models. It allows fast and efficient simulation of analog components, but it
often proves to he inaccurate.

• The use of both analog and digital simulators that are coupled together.
This type allows to combine both performance for the digital components
and accuracy for the analog components.

The last type of mixed mode simulation ensures the best accuracy and effi
ciency, but it strongly depends on the approach that is used to couple the sim
ulators. In [Sal90], three approaches are distinguished for coupling simula
tors:

• The manual approach. This approach is very tedious to use and very inac
curate as well. The designer has to iterate a number of simwation runs with
different simulators to simulate the model. The results produced by one
simulator have to he used by the other simulator in the next run. However,
effects occurring at the interface between two or more models, that are sim
ulated by two different simulators, can hardly he simulated and the final
results will he veryinaccurate aftersome iterations. The manual approach
is a very time consuming activity for the designer and it is mainly listed in
this overview to show the necessity of a re al coupling between two or more
simulators.

• The glued approach. Two or more simulators are coupled using either an
inter process communication mechanism or a procedural interface. The lat
ter may he combined with a run-time loading technique. With this ap
proach, each simulator has its own user interface and uses its own input
languages. One ofthe simulators may serve as a master, that controls the

4. The problem of mixed level simwation is closely related to the problem of mixed mode
simwation and therefore it is assumed here that mixed level simwation is part of
mixed mode simulation.

Multi-model simulation 71

execution ofthe other simulators (the slaves). Ifa simulator is coupled with
other simulators, the mapping between signals and the conversion ofsignal
values has to he handled, as wellas the time advancement mechanism and
the synchronization of all simulators.

• The fully integrated approach. Different models are simulated using differ
ent algorithms, that use the same time representation, time advancement
mechanism (see section 2.3.2), data representation ofsignal values and the
underlying net list. The algorithms used to handle different types of roodels
are especially designed to operate in the mixed mode simulator. In most
mixed mode simulators of this type, the resulting simwation engine uses
an event driven paradigm.

The main difference between the glued approach and the fully integrated ap
proach is that with the glued approach integration is handled at the simulator
level whereas with the fully integrated approach integration is handled at the
algorithmic level. Consequently, ifa new type ofsimulation model is to he add
ed using a glued approach, the corresponding simulator needs to he coupled
with the other simulators. With a fully integrated approach a dedicated algo
rithm has to he written that allows simwation ofthis type of model. The latter
is often too expensive if the simulator has already been developed.

Simwation backplanes use a glued approach to conneet simulators with each
other. The simwation backplane provides all functionality that is required to
conneet a simulator properly to another one. It provides functions that allow
synchronization ofthe simwation time between various simulators and func
tions to convert data values to standardized formats that are used to transfer
data from one simulator to another one. Because all functionality for interfac
ing a simulator is provided by the backplane, the effort to couple a simulator
to it is greatly reduced and it is restricted to modifying the simulator itself.

In ESCAPE, a different approach is being used. Unlike with a simwation back
plane, the built-in discrete event simulator is used as a platform, with which
external simulators can he coupled. Events are used as the unifying mecha
nism to integrate different types ofmodels homogeneously. As a result, mod
elscan he simulated by the internal simulator or by external simulators. One
ofthe key differences withother approaches is the role ofthe built-in simula
tor. It serves both as a simwation engine for internal models and as a back
plane to extern al models. This improves the efficiency ofthe simulator consid
erably.

Simwation algorithms or simulators may he integrated with the built-in dis
crete event simulator either loosely coupled (glued) or tightly integrated to
simulate a new type of model. This depends on the effort put into modifying
or implementing the simwation algorithm to he included. The open architec-

72 Interactive ModeHing and Simwation of Heterogeneous Systems

ture ofthe built-in simulator allows integration at various levels ofinterac
tion. Depending on the time and effort, one can make a trade-offbetween im
plementation time and accuracy desired to integrate a new type of simulation
model.

In figure 3.5, the ditTerenee between internaland external simwation models
is depicted. An internal model is directly executable by the internal discrete
event simulator. An external simulation model consistsof an external sirnul a
tor and an interface to the internal simulator. This interface consists oftwo
abstraction layers: the physical interface and the external simulator inter
face. The interface makes an external simulation model behave like an inter
na! simulation model: the simwation engine activates components, forwhich
events are scheduled. Some ofthe components are handled internally but oth
ers are simulated externally.

physical interface

Figure 3.5. lnternal and external simulation models

The following definitions are important in the remainder of this section:

DEFINITION 3.4: An instantiation of an external simulator is a functionally
equivalent copy of a simulator. Multiple instantiations of
the same simulator do not share resources and may
execute different parts of the simulation model
independently.

DEFINITION 3.5: A global net (signa!), in the context of multi-model
simulation, is a net (signal) that connects at least one
internal simulation model with at least one external
simulation model or two or more external simwation
models.

DEFINITION 3.6: A local net (signa!), in the context of multi-model
simulation, is a net (signa!) that connects either one or
more internal simulation models or local subroodels of a
single external simulation model.

The external simulator interface consists oftwo abstraction layers. The lower
layer represents the physical interface between ESCAPE and the external sim-

Multi-model simulation 73

ulator. The implementation of this layer is partly operating system depen
dent. Different approaches have been incorporated in ESCAPE. They can he di
vided in two categories:

1. The external simulator is dynamically loaded into the address space of Es
CAPE. After loading, the functions that control the execution of the
external simulator are accessible by the event handler of the built-in
simulator. Run-time loading techniques are highly dependent on the
operating system that is being used. In genera}, special attention needs
to he paid to an implementation of a simulator to he able to instantiate it
multiple times in the same address space. Note that this may require
some major modifications in the souree code ofthe external simulator.

2. The external simulator is connected to the centralevent handler using an
inter process communication (IPC) mechanism provided by the UNIX
operating system. IPC decreases the performance of simulating the
complete simwation model, because it introduces communication
overhead. The amount of overhead depends on the IPC mechanism.
However, the ability to simulate the complete system often outweighs this
disadvantage. Because the external simulator runs independently as
another process, synchronisation between the processes is required to
orchestrate the proper execution of modelsin multiple processes. IPC
techniques can also he applied to distribute the simwation of different
models across various machines in the network. Multiple instantiations
of the same type of simulator may he used without any restriction.

The upper layer controls the operation ofthe external simulator and manages
theevent flows between the external simulator and the centralevent handler.
This layer is completely embedded in the discrete event simulator. In this the
sis, the upper layer is referred to as the external simulator interface.

In figure 3.6, an abstract model ofESCAPE's external simulator interface is de
picted [Fle93b]. This model tries to visualize the flow of events between the
central event handler of ESCAPE and an external simulator, and, the opera
tions that can he perfonned onto these events. In practice, all componentsof
the external simwation model, like the eventand value conversion modules,
are tightly integrated with the internal data structures and the simwation
algorithm ofthe internal simulator. Each component is customized depend
ing on the external simulator to he connected and the model to he simulated
by this simulator: this data is stored with the simwation model itself and is
loaded during the initialization phase of a simwation run.

At the moment the external simulator is instantiated (coupled), the conver
sion routines of the interfaces are installed and stored in the proper objects
of the internal network data structures. The synchronization component is
global to all external simulator interfaces. It detennines from the flow of
events between an external simulator and the internalevent driven simula-

74 Interactive ModeHing and Simulation of Heterogeneaus Systems

r::::=-------::1
11 internal ESCAPE 1

I
simulation I

model

I~
I
I

simulation
event

1

handler

I '--------T-----

1

I ESCAPE edit and control I
~-------!J
Figure 3.6. Model of the external simulator interface

tor when the simwation doek ofthe internal simulator can he updated. The
synchronization strategy used is important for the overall performance and
accuracy ofthe simulation run. Especially, if an external simulator is coupled
through IPC, synchronization strongly influences the overall performance:
since it may run completely independent from the internal simulator, it has
to he controlled and synchronized by the internal simulator using the ap
propriate messages or events.

The event conversion blocks convert internal events in messages or events
that pass signal values of global nets from the internalevent handler to an
external simulator, and vice versa. These blocks also control and abserve the
activation and suspension ofthe execution of an external simulator. This in
formation is used by the synchronization block to update the simwation time
of the internal simulator. Event conversion routines are invoked in the first
phase of the simwation algorithm, when the contents of each event is eva
luated to determine which components need to he simulated in the second
phase. Multiple event conversion routines may he defined fora single net. The
souree of an event (which is actually the port ofthe model that propagated the
event) determines which routines are invoked.

The value conversion routines are installed at the ports ofthe component that
is simulated by an external simulator. If such a component is activated, the

Multi-model simulation 75

signal values at the input ports are converted and propagated to the external
simulator. Then the external simulator continues the execution ofthe model.
After suspension ofthe execution ofthe model, the signal values at the output
ports are converted and propagated to the internal simulator. It is important
to note that a proper choice for the value conversion routines reduces the
number of events that are communicated across the interface; such a reduc
tion increases the performance of the simulator significantly.

An external simulator interface has to he defined only once for a particular
simulator. Such an interface can he instantiated multiple times within a
single session or in another session. The only restrietion is imposed by the
way the external simulator is connected to the central event handler: in case
the external simulator is run-time loaded into the same address space, it is
only possible to load a single instantiation ofsuch a simulator, unless the sim
ulator has been implemented in such a way that the problem of global and
static variables is solved: they will he shared between the various instantia
tions of a particular simulator. With IPC, there is virtually no limit to the
number ofinstantiations of an external simulator running either on the sa me
machine or another machine in the network.

The effort to integrate an extern al simulator consists of two tasks:

• Adapting and compiling the souree code of the simulator to he integrated.
The availability of souree code is a prerequisite to he able to ere a te an effi
cient interface between this simulator and the centralevent handler ofthe
internal simulator. The main body ofthe simulator has to he split in differ
ent functions. The minimal set offunctions to he able to invoke an external
simulator is: an initialization function, a basic simulation step function and
some functions to propagate and to receive signa! values. lf the external
simulator is event driven, the souree code to write these functions is often
easily identified and isolated.

• Defining the simulation interface in ESCAPE. Currently, this is done by cod
ing a special data structure, which adapts the centralevent handler to han
dle synchronization and event conversion. The value conversion routines
are stored with the global nets and can he overloaded any time. This allows
the simulation ofvarious models using the same external simulation inter
face. lt is also used to adjust the accuracy of the value conversion itself,
which strongly influences the overall performance of the simulator.

Although it has been stressed in this section that the availability of souree
code is a prerequisite, the foreign language interface of an existing simulator
may he used to integrate a simulator with ESCAPE as well. The problem that
bas to he solved is that both simulators are scheduling and processing events
continuously and they are both trying to control the simulation. However, the

76 Interactive ModeHing and Simulation of Heterogeneaus Systems

simulation algorithm of ESCAPE also handles inter process communication.
The inter tooi protocol (see section) could be used to control the activation of
different components by the simulators and to synchronize the simulation
time.

3.3.1 Synchronization of simulation time

An external simulator keeps track ofits own simulation time. A correct and
accurate simulation ofthe overall model requires careful synchronization of
the simulation time ofthe external simulator(s) and the internal event driven
simulator. This is especially true, if an external simulator runs in its own ad
dress space communicating with the central event handler through IPC.

Using a single simulator, the paradigm associated with performing a simula
tion is selecting theevent with the smallest time stamp from theevent queue
and executing the simulation code that is associated with that particular
event. The problem using multiple simulators is that in any simulator all
events need to be processed in a non-decreasing order with respect to their
time stamps. The same problem is solved for parallel discrete event simula
tors (PDES). Much research has been conducted in this area. In VLSI design,
the focus of attention has been the parallel simulation oflogic. The results ob
tained may be applied as well to higher levels of abstraction.

The problem is closely related with maintaining the simulation state as de
fined in equation (2.11): (Tsim• Lv, Eq). In a PDES, the global simulation state
is distributed across multiple logica! processes (LPs) [Fuj90]. A logica} pro
cess i maintains the simulation state (Tsim• L v• Eq) i• while interaction be
tween these processes is performed by communicating events. If each LP pro
cesses events in a non- decreasing order, it is ensured that no causality errors
occur. This is referred to as satisfying the local causality constraint.

Most ofthe time PDES algorithms are classified into two categories: conser
vative and optimistic. The definitions of these are:

DEFINITION 3.7: A conservative approach always processes events in a
strictly non-decreasing order by advancing the local
simulation time to the smallest time stamp of an event
received from any neighbouring LP. It preserves causality
constraints at all times. This implies that an LP has to be
halted regulary to wait until other LPs have completed
their tasks.

DEFINITION 3.8: An optimistic approach processes each event at the time
stamp it is received and the local simwation time is
advanced to the time stamp of that event. If an event is

Multi-model simulation 77

received with a time stamp smaller than the local
simwation time, the LP has to perform a rol/back
operation to a state with a local simwation time that is
smaller than the time stamp of the newly received event.

One of the problems using a conservative approach is the prevention of a
deadlock situation. To prey~nt deadlock, null messages are sent that carry
a time stamp only but that do not contain data. The Chandy-Misra [Cha81]
algorithm is an alternative approach that avoids the use ofnull messages. Af
ter detecting a deadlock situation, it breaks the deadlock using a special algo
rithm. One ofthe probieros using an optimistic approach is that each LP has
tosave its state on a regular basis, which may be a time consuming operation.
Furthermore, a rollback also requires anti-events to be sent to cancel events
that have been sent out in the meantime. The first optimistic approach has
been called the Time Warp mechanism [Jef85]. Many alternatives have been
presented later for both approaches.

In [Rey88], a more detailed classification is described for PDES algorithms.
It is interesting to note that one can also distinguish between asynchronous
and synchronous approaches. In an asynchronou~ approach, each LP rnain
tains its own simwation time, whereas in a synchronous only one global simu
lation time is maintained. More recently, a state ofthe art overview of parallel
logic simwation techniques has been publisbed in [Bai94]. These approaches
may also be applied for multi-model or heterogeneaus simulation, either in
ESCAPE or another mixed-level simulator.

In a fully integrated approach, only one event queue and only one simwation
time is maintained: in that case, no synchronizing mechanism is required to
orchestrate the multiple simwation processes, but still care has tobetaken
to integrate the algorithms in such a way that accurate simulation is ensured.
Often, one can not afford to use the integrated approach and one has to use
a glued approach. In that case, careful synchronization of the simwation
times in the simulators is a must. One ofthe main differences between syn
chronization ofthe simwation times in a glued mixed-level simulator and the
synchronization of different LPs at the sa me abstraction level is that one has
to deal with different time scales as well. The most important conservative
approaches that are applied in mixed-levelimixed-mode simulators are
[Sal94]:

• The loek-step method. The analog simulator determines the step size, be
cause it uses the smallest time scale. It controls the digital simulator, which
has to use the time points determined by the analog simulator.

• The digital controlled method. The digital simulator controls the analog
simulator. After applying a time step in the digital simulator, the analog

78 Interactive Modelling and Simulation ofHeterogeneous Systems

simulator is forced to simulate up to that time point. In this period, no
events from the analog simulator are being processed.

Many variants on these two a pproaehes are developed de pending on the orga
nization of the event queues implemented in the simulators used in the
mixed-level simulator.

In [Ben91] a variant is described, which the authors refer to as a variant of
the loek-step method. This variant is used to couple the Mozart and ELDO
simulators. The fixed-increment time advance mechanism of Mozart con
trols the next-event time advance mechanism ofELDO. IfELDO generates
an event for Mozart before its stop time, it is scheduled for the next fixed time
point in Mozart and control is returned to Mozart. Delta delay events ofELDO
are scheduled at the next fixed time point ofMozart to prevent a roUback to
a previous time point. Depending on the time scale used in Mozart, this seems
to be a decision that may campromise the accuracy.

In ESCAPE, the strategy depends on the external simulator that will be con
nected. An alternative approach may be used, if all simulators use a fixed
time increment strategy. In that case, the time step of ESCAPE is set the least
common multiple ofthe time steps of all simulators. Note that this requires
the delay values ofthe internal HDL models to be adjusted to exhibit the cor
rect timing behaviour. This is solved internallyin the simulator by updating
the simwation model.

If a next-event time advance is used by an extern al simulator, it is controlled
by the internal event driven simulator. A similar control strategy is used as
in [Ben91]. Delta delay events, which are considered an artifact ofthe simula
tor, are notallowed to be scheduled by an external simulator onto a global net.
Simulators at a low level of abstraction hardly use delta delay events, where
as in higher level models the use of a delta delay may help to implement the
correct behaviour.

Another problem is the scheduling of delta delay events for global nets by the
internal simulator: normally, this should result in another invocation ofthe
external simulator at this time point or ifthe event is discarded, the external
simulator is using the previous incorrect value as an input. Therefore it can
be specified, if all delta delay events on a global net should be handled first
before the external simulator is called. This has a penalty with respect to sim
wation performance. The scheduling of delta delay events for global nets may
also be prohibited.

Multi-model simulation 79

3.3.2 Exarnple: The PLATO piecewjse linear simulator

PLATO is a mixed-level simulator, basedon a continuous dynamic piecewise
linear (PL) modeling technique. Using this technique, both analog and digital
components can he modeled at severallevels of accuracy. The homogeneous
modeling makes no difference between analog and digital components
[Buu93]. The PLATO PL simulator has several advantages compared to the
well-known SPICE simulator [Nag75]. lts main advantage is its global con
vergence property while solving the PL equations. This property is based on
the global convergence of the algorithm devised by Van de Panne [Pan7 4],
which is the core ofthis PL simulator. This algorithm can handle discontinui
ties without any problems.

To solve the dynamic PL equations during transient analysis, the Van de Pan
ne algorithm is combined with an integration method. The metbod applied is
an impheit multirate method, which implies that the differential equations
are solved by assigning different timesteps to subsets of equations (subcir
cuits) [Eij90]. The circuit is split dynamically into these subcircuits. AB a re
sult, most computational effortis put in solving the active parts ofthe circuit.
An event driven technique is used and at each event either the PL equations
are solved or a new integration step is determined. In figure 3.7, an example
of a few signals and the barcode representing the events, is depicted.

11 ' I~-~~~~ --------,~111 ~ I , 1111

Figure 3.7. Example showing output values and event densities of
PLATO signals.

Although PLATO is an event driven simulator, thesemantics ofthe events in
PLATO are different from the semantics in ESCAPE, and both simulators use
a different timing control mechanism: PLATO is a multirate event-driven
simulator, in which events can he scheduled at non-equidist ant time points,

80 Interactive ModeHing and Simulation of Heterogeneaus Systems

whereas ESCAPE uses a fixed increment time advance strategy by default. Typ
ically many PLATO events are generated and processed between two time
points in ESCAPE. This depends on the activity ofthe various subcircuits. The
events scheduled for local signals are always handled internally by PLATO.
Events scheduled for global signals are forwarded to ESCAPE, if the corre
sponding value conversion routine detects a possible modification ofthe sig
nal value.

PLATO has been coupled to ESCAPE using both an IPC technique as well as a
run-time loading technique [Fle93a]. The souree code ofthis simulator has
been modified in order to provide the following functions:

• the initialization routine

• the simwation step routine

• the global signal mapping routine (to pass the value ofthe signal).

In algorithm 3.1, the simulation step routine is shown. AE many events may
be generated between the start time and the stop time, this routine contains
an event loop to processlocal events (lines 5 - 17). Note that in a more inte
grated approach these events could have been handled by theevent handler
of ESCAPE. Before entering the simwation loop, the values ofthe global input
signals are stored in the internal data structures ofPLATO.

Algorithm 3.1: The simwation step routine

1. procedure execute_plato (stop-time)
2. {
3. update_global_signals () ;
4. /* simulation loop*/
5. while (time< stop-time) {
6. event = next_event () ;
7.
8. time = time (event) ;
9. update_cluster (cluster (event), time) ;
10. if (type (event) = pwl)
11. van_de_panne (cluster (event))
12. else
13. foreach (leafcell E cluster (event))

new_time_step (leafcell) ;
14.
15. foreach (leafcell E cluster (event))

new_event (leafcell) ;
16.

Multi-model simulation

17.
18. propagate_global_signals () ;
19. send_synchronization_event () ;
20. }

81

After leaving the simwation loop, the values of all global output signals are
propagated, while the appropriate value conversion routines convert the val
ue of each global signal and determine if the resulting value results in the
generation of an event scheduled for the internalevent handler. Control is re
turned to the internal event handler by sending a synchronization event.

In figure 3.8, the events scheduled for a specific signal are depicted as
(time, va/ue) pairs. Let's assume that the value represents a voltage. Note
that the figure doesnotpresent information on the time points that theevents
have been generated. The first time axis represents the real time used by
PLATO. The second time axis resembles the discrete time points used by the
internal simulation algorithm of ESCAPE. The relation between the discrete
time point kand thefloatingpoint timeofthe external simulator is t = L1 x k.

l signal value

i• + • I I I I I
I I I I I

-t-----t---
1 I
I I
I I
I I
I I

-~-----~----+----~-----+-
1 I I I I
I I I I I
I I I I I

I I I I
I I I I

I I I I I I I

---~----+----~-----+--t-----1------+-
1 I I

I I I I

I I !real simtfiation tife·
I I
I I I I I

I I I

I. .l I I I D.
k-2 k-1 k k+l k+2 k+3 k+4

time points

Figure 3.8. lnterpolation of signal values at fixed time points.

The signal's value plays an important role to synchronize the time clocks of
the simulators, since it is one of the preconditions that determines the dis
crete time points at which control is returned to the central event handlerand

82 Interactive ModeHing and Simulation of Heterogeneaus Systems

the time points at which execution of the model is continued. Another pre
condition is of course the activity at the input ports of the model.

Normally, the time starups of these events do notmatch with the time starups
ofthe internal simulator. However, it is essential that the value ofthe signal
is calculated as accurate as possible at these fixed time points. In the PLATO
simulator, the signa} values used by the integration method are used to cal cu
late the values of the signa} at these fixed time points.

3.3.3 Simulation examples and results

Two examples, which are explained in more detail in [Buu93], are presented:

• a switch capacitor filter;

• an analog to digital converter.

A switch capacitor filter is modelled using the piecewise linear modeHing
technique and is simulated by PLATO. As an input ofthe filter, a discrete sine
generator is used, which is modelled using the LISP HDL. The output of the
filter is fed to a 256-point fast Fourier transform (FFT), modelled using the
FORTRAN language and called through the programming language inter
face. For demonstration purposes, the output ofthe FFT is visualized using
a special-purpose view window representing a frequency analyzer. The
switch capacitor filter itself contains a number of switches, capacitors and op
erational amplifiers (see figure 3.9).

Figure 3.9. Switch capacitor filter

The analog to digital converter circuit consists ofthe analog-digital converter
itself, two analog multiplexers, an analog subtraeter and a number of digital

Multi-model simulation 83

components to control the other components ofthe circuit. The digital compo
nents have been simulated byESCAPE and the other partsin PLATO.

The simwation times of these examples are presented in table 3.4. A dynamic
loading technique has been used to conneet PLATO and ESCAPE. The results
have been obtained using animated simulation: only the activity on the nets
has been visualized.

Table 3.4. Run times of mixed level benchmarks

benchmark run time [sec]

ND converter 4.4

switch capacitor filter and FIT 30.0

The complete ND converter benchmark has been simulated with the piece
wise linear simulator PLATO as well. Both the run times and the simwation
results have been compared with the mixed level experiment:

• The simwation results ofthe mixed level simulator are as accurate as the
results obtained for the complete benchmark with PLATO.

• The run times ofthe mixed level simulator are much better than the run
times ofPLATO: 4.4 versus 18.9 seconds. Note that for this particwar ex
ample only a few digital components have been simulated in ESCAPE giving
already a performance increase by a factor 4.

PLATO has also been connected to ESCAPE using an IPC technique based
on sockets. Running PLATO on a different workstation in another network
bridged to the workstation ESCAPE was running on, the run times ofthis ex
periment are about 17 seconds. Although much communication overhead re
duces the sünulation performance, it is important to be able to conneet to dif
ferent workstations, for instanee to distribute the simwation task.

3.4 Token flow models

In this section, the simwation of token flow models is discussed. Token flow
models are often used to model (specific aspects oD systems during the syn
thesis and verification of protocols and hardware.

The following definitions are very important to describe (and execute) the
behaviour of a token flow model:

DEFINITION 3.9: A taken is an abstract representation of a data item, a
condition or an event. A token is non coloured if no data
associated it. Otherwise, a token is coloured.

84 Interactive ModeHing and Simulation of Heterogeneaus Systems

DEFINITION 3.10: A firing rule defined for a component defines which
conditions have to he satisfied before a component may he
executed.

Token flow models are represented as directed graphs. Two types ofrepresen
tation are being used in literature. The first representation is a directed
graph G = (V, E), where

• v E V represents an actor. An actor may fire, if the token distri bution at
the input edges satisfies the actor's firing rule.

• e E E represents a queue that holds zero or more tokens.

The second representation of a token flow model is a bipartite directed graph
G = (P, T, E), where

• p E Pis a place that holds zero or more tokens,

• t E T is an actor or transition,

• e E E, E Ç (P x T) U (T x P) is an edge connecting a place and a transi
tion or vice versa.

There are many application areas, where token flow simwation may help to
prototype and validate system behaviour:

• Simwation of complex concurrent system behaviour. At the system level,
a process network may he used to define a number of concurrent processes
and its communication behaviour. Each process may he modelled using dif
ferent descriptive means, for instanee a hardware description language or
a programming language.

• Concurrent simwation of a Petri net and a system model may he used to
validate the communication behaviour ofthe system model at a higher ab
straction level.

• Simwation of the behaviour of synchronous data flows for DSP applica
tions.

• Simwation of the behaviour of data flow graphs during the architectural
synthesis of digital systems.

First, some types oftoken flow models will he discussed. Then the simwation
of these models is discussed. This is illustrated using the ASCIS data flow
graph and a Petri net as examples. Furthermore, it is described how token
flow models are simwated in a discrete event simulator and how token flow
models are integrated with discrete event models in a homogeneous way.

Multi-model simulation 85

3.4.1 Petrinets

Petrinets [Pet81] are used to model a great variety ofreal-life systems, in
particwar concurrent systems. Examples are computer networks, communi
cating processes, asynchronous logic. They may be used to model and verify
the communication behaviour of complex concurrent processes.

A Petri net is defined as a graph

PN = (P, T, F) (3.5)

with

• P { p1, p2 , ... , Pn}, n 2: 0, the set ofplaces.

• T { t1, t2 , ... , tm}, m 2: 0, the set oftransitions.

• V= PuT, the set ofnodes with Pn T = 0.

• F Ç (P x T) U (T x P), the set of edges. This relation is sometimes re
ferred to as the flow relation.

Some types ofPetri nets allow multiple edges between a place and a transi
tion. This is accounted for by using a weight function defined on the set of
edges, that replaces an equivalent number of edges between a transition and
a node:

W : (P x T) U (T x P) -+ N (3.6)

This function returns 0, ifno edge is present between a transition and a place:
V f f/. F : W(t) = 0.

The set ofinput places of a transition is

/(t) = { p E p I (p, t) E F} (3.7)

The set of output places of a transition is

O(t) = { p E PI (t, p) E F} (3.8)

Note that in general the sets /(t) and O(t) are not disjoint. The input and out
put transitions of a place may be defined in a similar way.

A marking 11 of a Petri Net PN is a function

(3.9)

This function returns for each place the number oftokens in that place. The
marking 11 can be defined as a vector as well: ïi = (11 1, 11 2• . .. , 11 n) with 11 i
the number oftokens in place Pt

86 Interactive ModeHing and Simulation of Heterogeneaus Systems

A marked Petri net is a Petri net PN with a marking f1. and is denoted as
M = (PN, f1.) or M = (P, T, F, f1.). An example is depicted in figure 3.10.

Figure 3.10. Example of a marked Petri Net.

A transition tj E Tin a marked Petri net M = (PN, f1.) is enabled if for all
P; E /{tj) :

(3.10)

A transition tj E Tin a marked Petri net M = (PN, f1.) may fire, whenever
it is enabled: a transition fires by removing tokens from its input places and
generating new tokens which are added to its output places. Firing a transi
tion tj E T, results in a new marking f.J.' :

V p; E (l(t) U O{tj)) :

f.J.' (P;) = fl.(P;) - W((P;· t)) + W((tj' P;)) (3.11)

The equations (3 .10) and (3.11) describe the operational semantics of a
marked Petri net. Equation (3.10) is referred to as the firing rule of a marked
Petri net.

In the Petri net offigure 3.10, transition t1 is enabled. Mter firing this transi
tion, the resulting markingis depicted in figure 3.11. Now, transition t2 is en
abled for firing. Note that t1 can fire again before t2, if a new token arrives in
p 1 (for instanee ifthis net is part of a larger net).

The next state function ó returns the new marking for a marking and a tran
sition that is being fired:

{

f.J.', if Vp E /(t) :fl.(P) ~ W((p, t))
Ó'" t) =

VA- • 0, Otherwise (3.12)

Multi-model simulation

Figure 3.11. The marking of the Petri Net of tigure 3.10 after ti ring
transition t1.

87

Using equation (3.12), the set oftransitions that is enabled in a marking J.1.
IS:

enabled(jl) = { tE T I ó(jl, t) ;é 0 } (3.13)

Let J.l.o be the initial marking of a marked Petri net M. Firing an enabled tran
sition, t;

0
E enabled(J.I.o), results in a new marking J.1. 1: J.1. 1 = Ó(J.I.o• t;). In the

marking f.1. 1, an enabled transition, t;, E enabled(J.1. 1), can be fired resulting
in marking f.1. 2: f.1. 2 = Ó(J.1. 1, t;). ,

The execution of a Petri net can be described by a sequence of markings:

(3.14)

An alternative notation to describe the execution of a Petri net is a sequence
oftransitions, that have been fired:

(3.15)

The sequences Hf-i and Ht are related by f.1. k+ 1 = ó (f.l. k• t;), k ~ 0. The execu
tion order given by Hf-i or Ht normally represents only one of the possible
executions ofthe marked Petri net: one ofthe enabled transitionsis selected
for firing in eachmarking f.1. k This choice determines the resulting new mark
ing: existing enabled transitions may become disabled and new transitions
may become enabled.

Let R be a function, which returns the set ofmarkings that are immediately
reachable from a marking fJ.:

R(M) = { f./. 1 I 3 t E T: f.l. I = ó (f.l., t) } (3.16)

The reachable set of a marked petri net Mis defined as the reflexive transitive
ciosure of (3.16):

88 Interactive ModeHing and Simulation of Heterogeneous Systems

R*(M) = U Rn(M)
n~O

(3.17)

with

Ro(M) = f-l
Rk+1(M) = { J-l 1 I 3f-l E Rk(M): (3t E T: J-l 1 = O(J-l, t))}

The following properties are defined for a marked Petri net
M = (P, T, F, f-lo) with reaebabie set R*(M) :

• M is k-bounded, iff V f-l E R*(M) : (V p E P: J-l(P) ~ k), i.e. the num
ber of tokens in any place may never exceed k. If k = 1, then Mis called
safe. Note that the property ofboundedness can be defined fora single place
or a subset of the places of the net. Boundedness is a useful property to
verify the number of resources that are required to execute the net.

• Mis strictly conservative, iff

n n
I J-l(Pi) = I f-lo(Pi) (3.18)

i= 1 i= 1

The reachability set of a marked Petri net can be very large. The state space
associated with a marked Petri net consisting of n places, is kn, ifthe net is
k-bounded. Therefore the codomain ofthe reachability set is P(k~. The reach
ability set is often presented as a tree called the reachability tree. The root
node of this tree is the initial marking of the marked Petri net.

In [Sub86], an interactive tooi for modeling and analyzing Petri nets is de
scribed. With this tooi, a Petri net is executed graphically and the tooicantest
for properties like safeness, boundedness, conservation, reversability, and
deadlock. Many other analysis and verification tools are developed for vari
ous types ofPetri nets [Fel92]. They often include a net editor and an interac
tive simulator. The execution or simwation of a Petri net is not only to show
one of the possible behaviours of the net, but also to execute a path in the
reachability graph that leads to a specific condition in the net. In the latter
case, simwation may help to locate and correct the errors found with an anal
ysis tooi.

A simple algorithm to execute a Petri net is depicted in algorithm 3.2. The
function get_enabled_transition selects one out of more enabled transitions
and therefore determines the path in the reachibility graph. The function
fire_transition removes the appropriate number tokens from its input places
and produces tokens that are put into its output places. This is foliowed by
adding and deleting transitions from the set of enabled transactions. These
actions are equivalent to an update ofthe marking shown in equation (3.11).

Multi-model simulation 89

Algorithm 3.2: Executing a Petri net

1. initialize_tokens () ;
2. update_enabled_transitions () ;
3. /* markingis valid */
4. while (t = get_enabled_transition ()) {
5. fire_transition (t) ; /*updates token distribution */
6. update_enabled_transitions () ;
7. /* markingis valid */
8.

In (2.11), the simwation state of a model is defined as the 3-tuple
(Tsim' Lv, Eq). Fora Petri net:

• Tsim = 0. No delays are normally associated with the firing of a transition
unless a timed Petri net is simulated.

• Lv = f.l· The marking ofthe Petri net is the state ofthe simwation model.

• Eq are the transitions which are enabled.

Similar to the simwation of a discrete event model, the simwation of a Petri
net proceeds until Eq = 0. Note that an arbitrary element from Eqmay he se
lected as the transition to he Eq fired. The firing of a transition may remove
or add new elements to Eq-

If a Petri net is used as a submodel of a larger simwation model, it is executed
at the current simwation time using delta delays. lts simwation state con
tributes to the global simwation state as described insection 2.4.1. During
simwation, the simwation time ofthe Petri net always equals the global sim
wation time. In section 3.4.3, it is discussed how a token flow model is simu
lated by a discrete event simwator.

3.4.2 Data flow graphs

Data flow graphs are often used as an representation ofbehaviour in various
synthesis problems. The synchronous data flow graph is used to represent the
behaviour of a DSP algorithm. In architectural synthesis, various types of
data flow graphs are used as an intermedia te representation of behaviour
[Gaj92].

A data flow graph (DFG) is defined as a directed graph:

G = (V, E) (3.19)

90 Interactive ModeHing and Simulation of Heterogeneaus Systems

with

• V = { v1, v2
eration.

, ... , Vn } , n ~ 0, the set ofnodes. A node represents an op-

• E = { e 1, e2 , ... , em } , E Ç V x V, m ~ 0, the set of directed edges.
Each edge, ek = (V;, vj) represents a FIFO (First In First Out) queue. In
general, the firing ofthe node V; puts a new token in the queue of ek and
the firing of node vj removes a token from the queue of ek

A theory of data flow graphs is described in [Jon93]. A more detailed defini
tion is used in that thesis. It also adds ports to the definitions ofthe nodesin
a data flow graph. Although the ports of a node are required to describe the
firing rul es of specific nodes, the definition described in (3.19) is sufficient. In
the implementation, the ports are important to he able to execute the beha
viour of a node properly.

The set of input edges of a node V; E V is

/(v;) = { (vj, v;) E E } (3.20)

The set of output edges of a node V; E V is

(3.21)

The firing rules ofthe nodesin a data flow graph depend on the type of node.
In [Kav86], the firing rules of various nodes are divided into 5 different
classes: conjunctive, disjunctive, collective, selective and distributive. In
[Lee95], each node may have a set offiring rules. A node may fire if and only
if one of its firing rul es is satisfied.

By analogy with Petri nets, the marking f.1- of a data flow graph Gis a function

f.1-: E- 0* (3.22)

where 0 is a value domain and 0* is the domain of sequences with elements
from 0. With an edge e;, an ordered stream of n data values or tokens is
associated:

(3.23)

As an example, the firing rule of an operator node is descri bed. An opera ti on
V; may fire if

(3.24)

Firing the operator node results in a new token distribution:

Multi-model simulation 91

Vek = (vj, v;) :ft (ek) = < dk
2

, dk
3

, ... , dkn > (3.25)

Vek = (vi, vj) : Jt(ek) = < dk,• dk2' ... , dkn' d0 > (3.26)

where d0 is the result of applying the operator to the data values ofthe to
kens on the input edges.

A delay is associated with each node in the data flow graph. The actual delay
of a node is dependent on the module type that actually implements the beha
viour ofthat node. The function o is defined with the following domain and
co-domain:

o: V-+ N (3.27)

In analogy with a Petri net, the simwation state of a data flow graph is repre
sented by (Tsim• LV' Eq) with

• Tsim the current simwation time. This may remain 0 during simulation, if
only the preeedenee relations are used to simulate the flow graph.

• Lv = #· The marking ofthe data flow graph as defined in (3.22).

• Eqare the nodes that may be fired at this time point.

In this section, the ASCIS data flow graph [Eij9l] is used as an example. This
DFG serves as an intermediate representation used in the architectural syn
thesis tooibox NEAT. Various (subsets of) hardware description languages,
like VHDLand Hardware C [Ku88], and other languages can be translated
into a DFG.

In figure 3.12, the ASCIS data flow graph ofthe calculation ofthe faculty of
a number is depicted. This representation is compiled from the following de
scription in Hardware C:

process fac (input, output)
in input;
out output;

output= 1;
while (input > 0) {

output = output * input ;
input = input- 1 ;

In the figure, the entry and exit nodes are easily identified. These nodes are
used to build a loop construct. The output ofthe operation node >is connected

92 Interactive ModeHing and Simulation of Heterogeneaus Systems

to the control input of all en try and exit nodes. During initialization, all en try
nodes require a token at their control input, which allows external data to he
passed from outside to inside the loop construct. Mter termination ofthe it
eration in the loop construct, a token is left at the control inputs of each en try
node. The corresponding tokens have been removed from the exit nodes to he
able to pass data from inside to outside the loop construct.

I
I
I
I
I
I
I
I
I
I
I
L __

I
I
I
I
I
I
I
I

)
---<

~

Figure 3.12. A DFG example of the calculation of the faculty of a
number.

3.4.3 Simulation of data flow graphs

In section 3.4.1, the simwation of a Petri net has briefly been discussed. In
this section, the simwation oftoken flowmodelsis discussed in more detail.
Throughout this section, the ASCIS data flowgraphand the Petri net used
as exam ples of a token flow model. The sa me concepts may he a pplied toother
variantsof a token flow model, for instanee a coloured Petri net [Jen92] or a

Multi-model simulation 93

synchronous data flow graph as used in descrihing signal processing applica
tions [Lee87].

The simwation of data flow graphs may he handled in many different ways.
Examples are

• a purely functional simwation satisfying all preeedenee constraints but
without taking timing information into account;

• a simwation taking timing information into account (delay values of
nodes);

• a simwation in which the firing of nodes is controlled by a previously
derived schedule;

• a simwation in which a control flow graph controls the execution of a data
flow graph.

In [Geu93], the development of an interactive simulator for data flow graphs
is described: in particular, the ASCIS data flow graph is simulated numerical
ly, symbolically (with some restrictions) or a combination of these two. This
simulator operates independently ofthe event driven simulator and it is em
bedded into ESCAPE in a similar way as the event driven simulator (see also
figure 1.2): it directly accesses the internal representation (network data
structure) ofthe graph, which are kept up-to-date incrementally during an
edit session.

This simulator does nottake timing information into account. It basically
uses a delta delay to simulate the data flow graph. Two event lists are used
to orchestrate a proper execution of the graph.

The problem of simulating a data flow graph taking timing information into
account is directly related to the problem of scheduling a data flow graph in
architectural synthesis. A schedule of a data flow graph specifies at which
time point a node should he executed or fired relative to the time point it
started execution. A data flow graph G = (V, E) represents a partial order
-< on its nodes v E V [Sto92].

Scheduling assigns toeach node in the data flow graph a start time such that
all preeedenee constraints are preserved and the execution of the complete
graph is terminated before a pre-defined time T max:

T :V~ N sched (3.28)

such that

(3.29)

94 Interaetive ModeHing and Simulation of Heterogeneaus Systems

The as soon as possible (ASAP) sehed ule of a D FG exeeutes the DFG in a mini
mum time preserving all preeedenee eonstraints. The ASAP sehedule of a
data flow graph G = (V, E) is a function that returns the start time for
each node v. It is defined as

{

0,
ASAP(v) = max (ASAP(w) + o(w)),

wEpred(v)

if pred(v) = 0
if pred(v) ~ 0 (3 .30)

For each node v, ASAP(v) returnsits start time. lts execution terminates at
ASAP(v) + o (v). This is called the finish time of a node. An ASAP schedule
represents the fastest possible execution time of a data flow graph, that pre
serves all preeedenee constraints.

It is easy to verify, that if a tok en is put on each input node of a data flow graph,
each node will be fired at the time point determined by this ASAP schedule
after starting its execution.

Another schedule that preserves all preeedenee constraints, while minini
mizing the execution time of a data flow graph is the as late as possible sched
ule. It requires a maximal time T max. in which the data flow graph should be
executed. Of course, T max should be equal to or larger than the largest finish
time of any node in the data flow graph:

'r/v E V: ASAP(v) + o(v) ~ Tmax (3.31)

The ALAP schedule of a data flow graph is a function that returns the finish
time for each node v. It is defined as

{

Tmax
ALAP(v) = min (ALAP(w)- o(w)),

wEsucc(v)

if succ(v) = 0
if succ(v) ~ 0 (3.32)

If a token flow graph is executed by a discrete event simulator, the following
tasks need to be handled in the simulator:

• firing the nodes that satisfy the preeedenee constraints,

• rnanaging the enabling and disabling ofnodes,

• mapping the schedule using events such that each node is executed at the
proper time point. Ifno timing information is taken into account, this condi
tion is irrelevant. If no schedule information is used, the data flow graph
will execute an ASAP schedule.

Disabling of previously enabled nodes should be possible during token flow
simulation. This is illustrated using the Petri net depicted in figure 3.13. It

Multi-model simulation 95

shows a conflict: the enabled transition t2 will be disabled beca use ofthe firing
of transition t1•

Figure 3.13. A conflict because the firing of transition t1 disables
the firing of transition t2 .

Simulating a token flow graph, an event is defined as:

DEFINITION 3.11: An event indicates a future firing of a token flow node.

This means that the enabling and disabling of nodes should be handled by
scheduling events and cancelling events in the discrete event simulator.

In tigure 3.14, an embedding technique is applied to use a data flow graph as
a discrete event model. The execution ofthe data flow graph is initialized by
changing the value on port Pc in· The termination ofthe execution ofthe data
flow graph is passed to the sy~tem by scheduling an eventon port Pc out· Nor
mally, some protocol is involved in the communication with the contr~ller. For
instance, one could also use 4 control ports using a four phase handshake pro
tocol.

The input ports of the data flow graph itself are insensitive to events. An
eventon a net connected with such an input port never triggers the execution
ofthe DFG. Only an eventon the input ofthe controller may trigger the execu
tion ofthe DFG. Once, the execution ofthe DFG has finished, the output val ue
is scheduled as an eventon port p d,out' but as a refrain event: it does not trig
ger the execution of other modules connected to this net. The termination of
the execution ofthe DFG is passed to the environment by scheduling an event
on the output port of the controller.

96 Interactive ModeHing and Simulation of Heterogeneaus Systems

L..------------ · .. ·

Pc,in
----,

I
I
I

--"(,7-·----.J

Pc, out

Figure 3.14. A DFG instantiated as a discrete event model

3.5 Run-time configuration of the simulator

In this chapter, it has been described how differentmodelsof computation can
he included into an event driven driven simulation algorithm. In the previous
chapter, various techniques have been described that allow easy prototyping
and debugging of simulation models. Summarizing, the following aspects
have to he dealt with:

• different event types;

• different timing models;

• different data types and conversion between these types;

• synchronization between slave simulators running independently;

• discrete event automata;

• complex nets and busses;

• animated simulation.

Many ofthe techniques are dealt with in the simulation algorithm, in particu
lar the event handler. This unnecessarily decreases simulation performance
in those runs, in which a particular feature is not used. Therefore, the possi
bility to adapt or modify the simulation algorithm is very useful.

In figure 3.15, it is depicted how the simulator can he adapted to particular
simulation needs. The simulation kemel is generated from a set of options,

Multi-model simulation 97

that resembie the requirements to simulate a particular model, and the tem
plate files. The template files contain constrocts that allow to generate code
fora particular simulation feature or algorithm. The code is generated either
to create a stand-alone batch simulator or to create a module, that can be
loaded run- time in the current application. In the latter case, the existing
simulation kernel is replaced by a fine-tuned new one.

contiguration
phase

si mulation
phase

Figure 3.15. Flow to contigure a simulator.

batch/runtime

This approach is not only useful to adapt the event-driven simulator to specif
ic designer's needs. This may increase overall simulation performance. The
simulation algorithm (and thus theevent handler) itself can he adapted as
well for specific design flows and design implementations. This is illustrated
best by the following examples:

• If a detailed timing simulation is performed using floating point values as
delays, the next-event approach is better suitedas overall timing advance
approach. Themainloop ofthe event driven simulator is replaced to accom
plish this.

98 Interactive ModeHing and Simulation of Heterogeneaus Systems

• Ifthe execution order ofthe modules in the toplevel description ofthe sys
tem can be determined, this order can be compiled to improve simwation
performance. In this case, theevent driven simulator is replaced by a com
piled routine of the execution order of all modules.

Dedicated simwation algorithms may be stored with particwar examples for
fast and efficient simulation. Such an algorithm is run-time loaded on the de
mand together with the simwation modelsof all components. Various options
may be chosen to make a trade-off between accuracy and performance. As a
result, the simwation environment offers flexibility and customization at
various levels of detail:

• the main algorithm of the discrete event simulator can be chosen, for
instanee oblivious simwation or cycle-based simulation;

• the addition of a new type of simwation models (models of computation),
or, the integration of a specific simwation algorithm or simulator, for
instanee switch level simulation;

• the addition of a new model (of a specific type), for instanee a 2-input nand
gate at the switch level.

The flexibility and opennessof a simulator is a very important aspect during
the implementation ofthe simulator. It is very hard to adapt an existing simu
lator in order to get a more open architect ure. Especially, commercial simula
tors lack the mechanism to be able to use them with another simulator. They
merely provide a foreign language interface to allow the simwation ofmodels
written in C. More attention should be paid to provide that functionality in
a simulator, that allows easy integration with other simulators. That would
give other companies the opportunity to integrate those simulators together
that suits their needs fora specific design flow.

Chapter

4 Simulation examples

4.1 Introduetion

In the previous chapters, some results have been presented that illustrate the
performance and the costs of specifïc features of ESCAPE. In this chapter, some
examples are presented to illustrate the flexibility and simwation capabili
ties of ESCAPE. The examples presented in sections 4.4 and 4.5 clearly illus
trate the advantages ofusing animation to present simwation results. Both
examples rely on a handshake protocol, that is used to move the objects along
the road or railroad respectively. The railroad example is based on the traffic
example.

4.2 The inner product calculation chip

The inner product z = x.y oftwo n-tuple vectors, x= (x1' X2, ... , Xn) and
Y = (Y1, Y2• ... , Yn), is defined as

n

z =I x;* Y;
i= 1

(4.1)

The computation of the inner product requires n multiplications and n - 1
additions. During this computation 2n - 1 rounding errors may occur, which
can have a great influence on the final result. This problem can be solved by
storing each intermediateresult using a long accumulator. A long accumula
tor is a shift register with a full adder connected to it. The length ofthe shift
register is determined by the length of the mantissa, the range of the expo
nents and an additional number to account for overflows. Note that the addi
tion of a multiplication results can he done serially, which may be too slow,
or in parallel, which requires a huge full adder. Therefore, other architectures
have been investigated.

In figure 4.1, one architecture is depicted (see also [Fle91] and [Tan92] for
more details) consisting oftwo circular shift registers (rings). Both rings store
the intermediate results (summands) of the inner product calculation: one
ring stores all positive results and the other ring all negative results. The I/0
module calculates the final result from the results stored in both rings.

99

100 Interactive ModeHing and Simulation of Heterogeneaus Systems

negative ring

1 : dispatcher
2: adder station

Figure 4.1. Architecture of the inner product calculation chip.

In the rings, data is shiftedeach clock cycle: in the next clock cycle, the value
ofthe bit shifted in a specific flip flop is doubled (see figure 4.2). The following
equation describes the value ofthe flip flop at position i at clock cycle k:

V;(k) = b;(k)2(i+k+m)modN (4.2)

with m E N an arbitrary constant, that determines the LSB/MSB boundary
at t = 0 and b; the state of the flip flop i in the ring. Note that
b(i + 1) mod N(k + 1) = b; mod N (k}. At each time point, a specific exponent is
assoc1ated with each bit in the ring.

The Sign Mantissa Exponent (SME) module takes the jfh element from each
input vector and calculates the sign, mantissa and exponent ofthe multiplica
tion ofboth elements. A number of adder stations are attached to both rings
at equidistant places. The mantissa of a new multiplication result is inserted

Simwation examples 101

t = k m-2 m-1 m m+l

t = k + 1 m-1 m m+l rh+2

Figure 4.2. Shifting bits with different weight in a ring

by a particular station ifthe exponent ofthe result is equal to the exponent
of the data at the insertion point in the rings. Depending on the sign of the
result, the mantissa is added to either ring. The time between the acceptance
of the mantissa and the insertion into the ring is called the hold time.

To he able to add numbers in parallel to a ring, each adder station has alocal
carry. This also explains why two rings are being used: if a two's complement
representation of a number in a single ring is used, all the leading bits of a
number have to he toggled ifthe sign of an intermediateresult changes due
to an addition. In that case the carry has the ripple through all bits up to the
MSB to change the sign ofthe number blocking the insertion of a number at
any station. A sign-magnitude representation can not he used in combination
with multiple adder stations, because at all times the sign must he known to
each station to decide if a number should he added or subtracted.

The dispatcher is used todetermine which station is most appropriate. It cal
culates the hold times of all stations and selects the station with the minimal
hold time, which is not busy yet. To calculate these times, it uses the exponent
of a multiplication result and the current position ofthe LSB in the ring. Th is
position is kept in the ring counter. Once an adder station has been selected,
both the hold time and the mantissa are sent to the selected station.

The optimal number of adder stations depends on the desired throughput of
data from multiplier to the adder stations and the ring length. The optimal
number has been calculated using a C program. The result ofthis calculation
was eight. However, different simulations in ESCAPE showed that this archi
tecture is extremely sensitive to congestion, if an adder station is selected
thatis already busy. In that case, the next adderstation will he selected which
increases the hold time. This leads to a decrease in performance. The results
ofthe HDL simulations in ESCAPE and some additional performance analysis
have resulted in a new and better architecture for this chip: this architecture
guarantees a constant throughput independent ofthe data.

102 Interactive ModeHing and Simulation of Heterogeneaus Systems

In table 4.1, some statistics of the models of the various architectures are
listed. Kulisch 1 is the original architecture and Kulisch 2 is the improved ar
chitecture.

Table 4.1. Statistics on the size of the Kulisch examples.

name instances nets grapbics obj. size [MB]

Kulisch 1 679 843 3512 5
Kulisch 2 706 910 3952 5

In table 4.2, the simulation statistics of these examples are listed. The results
have been obtained by executing about 100 runs of500 simulation cycles. The
table contains both the simulation runswithand without animation. This is
indicated by the + and- symbols following the name ofthe benchmark. The
following sequences are used:

• +I+ : all objects are updated during simulation;

• -1+: only instances and wires are updated during simulation;

• -1- : no objects are updated during simulation.

Table 4.2. Simulation statistics and performance of the Kulisch examples.

name av. # events av. # av. #draw av. elapsed
evaluations requests cpu time

[* 1000] [* 1000] [* 1000] [sec]

Kulisch1 +I+ 68.7 39.1 293.0 9.4

Kulisch 1 -1 + 68.9 39.1 156.2 8.3

Kulisch1-l- 68.3 39.0 0.0 5.0

Kulisch2 +I+ 131.6 64.1 712.9 14.3

Kulisch2 -1+ 131.6 64.1 476.4 10.8

Kulisch2 -1- 131.6 64.1 0.0 6.3

These examples genera te an extremely high number of draw requests during
simulation, which strongly influences the simulation performance.

4.3 The bit blitter

A bit blitter (block image transferrer) is a grapbics processor that is designed
to handle blocks ofbitplane data . It improves on the performance of a general
purpose processor in manipulating blocks ofbitplane data. A simulation mod
el ofthis processor has been developed using the LISP HDL described in ap
pendix A, this as a part of the test case described in [Phi88].

Some ofthe features ofthe blitter are:

Simwation examples 103

• it can use a bi-directional addressing scheme,

• it can perform a logic operation on data before transferring of that data,

• it can copy data,

• it can shift two ofits data sources,

• it can perform an area fill.

In tigure 4.3, the simwation model ofthe bit blitter is depicted. It consistsof
two parts: the blitter itselfincluding some additional models for simwation
control and a model of part of a display.

Figure 4.3. Simulation model of the blitter

In appendix B, some snapshots of a simwation ofthe bit blitter are depicted.
Some ofthe features ofthe blitter are visualized in these snapshots.

4.4 Simulation of traffic on a road

In this example, the road is composed of different modules with 4 ports, that
are used to communicate data, which controls the behaviour ofthe cars. Each
module represents a road segment, which has a notion ofthe presence of a car.
Each car has a random speed, which is modeled using a random delay for
propagation to the next road segment (module). They rnaintaio a minimum

104 lnteractive ModeHing and Simulation of Heterogeneous Systems

distance of one road segment, even ifcars have to stop for a red traffic light.
The behaviour of a road segment is:

(behaviour road_segO
(term in)
(term out)
(term ack_in)
(term aék_out)
(state car 0)
(state sched 1)
;; car drives into this segment
(if (and in (not car)

(progn
(setq car 1)))

;; request to move forward
(if car

(progn
(color 1)
(delay 0 ack_out 1)))

; schedule car to move
(if (and sched car (not ack_in))

(progn
(delay (+ 1 (random 5)) out 1)
(setq sched 0)))

; carmoves to next segment
(if ack_in

(progn
(color 0)
(delay 0 out 0)
(delay 0 ack_out 0)
(setq sched 1)
(setq car 0)))

A simwation snapshot ofthis model is presented in figure 4.4. It clearly shows
the cars that are moving in one lane and the single car that is moving in the
other lane. The cars in the first lane pass a point in the road, which will pos
sibie genera te a new car after each pass of another car after a random delay.
The actual generation only occurs, ifthe associated road segment does not al
ready contain another car. This results in an increasing number of cars in this
lane to the point in time, where no new car can be generated anymore. Once
the lane contains many cars, the random speed of the cars clearly shows the
conditions and overall behaviour that occurs in a trafiic jam.

Simulation examples

r·~-::c-·-··· -··· · · ·

~

~
n lla:n,

-~~: iJl====~~

--·-···- ""': - ~ ;

Figure 4.4. Snapshot of the simulation of road traffic

105

The simwation performance is directly related to the number of events that
need to he processed every clock cycle. This number is dependent on the num
ber of cars that are moving. Because new cars are generated during simwa
tion, the number of events and computational time is increasing as simwa
tion time passes. To give an impression, a number ofbenchmarks have been
performed with a constant number of cars. This is shown in table 4.3.

Table 4.3. Traflic benchmarks with animation

cars Av. # events Av. #draw calls Av. cpu time

2 2900 20100 0.81
4 4800 38100 1.31

6 6800 56200 1.55
8 8600 73400 2.11

10 10600 91800 2.78

In table 4.4, some simwation data is listed without using animation during
simwation. Instead ofthe numberof draw calls, the average number of evalu
ations is listed.

106 Interactive ModeHing and Simulation of Heterogeneaus Systems

Table 4.5. Traffic benchmarks without animation

cars Av. # events Av. # evals Av. cpu time

2 2900 1900 0.51

4 4800 3100 0.67

6 6700 4300 0.73
8 8600 5500 0.82

10 10500 6700 1.00

4.5 Model of a railroad and block control system

This example shows the advantage of animated simulation: the correct beha
viour ofthe overall simwation model is shown by highlighting the modules,
if the internal state indicates the presence of a train.

The building blocks of this example are described in more detail in [Nie91]
and are composed of a number of primitive modules. This example contains
models on two levels: the track level and the controlleveL The track level is
used to simulate trains. which move along the tracks. The controllevel han
dles the signals that guard each block and the switches that determine the
route of the tra ins.

In figure 4.5, three componentsof a track are depicted. Each component ofthe
track has a state variable, which indicates the presence of a train. The ports
orthese components are connected using abutment. Each component has four
ports, that are used by the handshake protocol that moves the t rains along
the track. The lengthof a train is initialized during the initialization ofthe
model: a module will execute the handshake protocol to move the train num
ber oftrain's length times. The number of trains and the lengthof each train
in the model therefore determine the simwation performance. Two ports for
communicating the presence of a train to the controllevel (i.e. in_L_occ and
out_R_occ).

The largest example, which has been composed, is an abstract map ofthe Lon
don Underground consisting of more than half a million graphics objects (see
figure 4.6). In this example, hierarchy is used to enable crossings of different
Underground lines; the objects rnadelling these parts ofthe railroad lines can
easily be identified: the parallelograms and rectangles. The network view of
these modules models the railroad, which are simulated at a lower level in the
hierarchy. The trains moving on these parts of the tracks can be visualized
in a separate window. The visualization oflower levels in the hierarchy may
be selected during the simulation. This example clearly shows that very large
examples can be captured and simulated by ESCAPE.

Simulation examples 107

r------------ .. .------ I - I -
I

I

I
I

I
I

I
I

I

~ ~
out L irt_R
I-

~ sgX ~
in_I;._occ ~ut_R_oc

• ~
in_L oui_R

I
I

I
I

I
I

'--- I - I '---·------------1

Figure 4.5. Modelling of tracks and trains moving along it.

Figure 4.6. · Map of London Underground

In tigure 4.7, a snapshot is depicted that has been taken during the simula
tion ofthis example. One can easily identify five trains, tha t are moving along
the tracks and the signals that show the presence of a train in a particular
track. All signals are set correctly depending on the speed and direction ofthe
trains. As a result, a train will wait for free tracks to prevent collisions. The
speed of a train and the direction, if more than one choice is possible, are cho
sen randomly during simulation. Despite this, the controllevel manages to
control the trains without deadlock and collisions.

108 Interactive ModeHing and Simulation of Heterogeneous Systems

Figure 4.7. Simulation snapshot of railraad example.

The simwation performance ofthe model is related to the number of events
per time step. This depends on:

• the number of control blocks;

• the number of trains;

• the length of the tra ins;

• the average length of the blocks used in the example;

• the average speed of the trains.

The speed of the trains is modeled using different delay times. These times
are chosen randomly, but depend on the signals along the track. The speed
averages a constant value for the different benchmarks.

In tigure 4.9, the average number of events as a function of the number of
trains is depicted for three different number of blocks.

Simwation examples

·- r-

. .
s g ~ . . .

~
I :
rXX)

r-

.

.

.
'-

r- r-

.
'-- -

- - - -
.

- - '- '-
block12 . IJ .

r- r-

. . .
'- '-

rxn
. . .

I

r-

.
~g ~ .
.
. I
1----

Figure 4.8. A block consisting of the track components, a control
block and two signals

1 2 3 4 5 .
#trams

Figure 4.9. Average number of events for various number of
blocks and number of trains.

109

In figure 4.10, the average number of events as a function ofthe length ofthe
train is depicted: the linear increase is expected, because an active track mod
ule is performing the handshake protocollength of train times.

In figure 4.11, the average number of events is shown fora constant track
length composed ofblocks with different size. It clearly shows that it is more
efficient to build tracks using large blocks.

The simwation performance of each railraad example is determined by the
size ofthe modeland the number oftrains. Various examples that vary con
siderably in size and complexity, have been edited and simulated using ES-

110 Interactive ModeHing and Simulation of Heterogeneous Systems

8 10
lengtb of train

Figure 4.10. Average number of events for various lengths of the
trains

90.-----------------------------------~

80

70

60

50

40

30

20

10
0

4 6 8 10 12

Figure 4.11. Average number of events for various block lengths

CAPE. Table 4.6lists some statistics ofvarious examples. Note tbat tbe num
ber of instances, nets and grapbics objects are tbe totals for tbe model itself
and tbey do not include tbe designs tbe model is composed of. Tbe size oftbe
model includes all models tbat are required to build tbe simwation modeland
also includes tbe event listand tbe maximum number of events used during
simulation.

Table 4.6. Statistics on tbe size of some railroad examples.

name instances nets grapbics obj. size [MB]

small 483 1546 5164 7

Simulation examples 111

small2 848 2657 8954 8

large 8114 22879 80253 31

London1 23719 70951 245586 87

London2 24894 71400 247071 86

London3 54170 154201 536222 229

In table 4.7, some statistics ofthe simwation runs and the run times ofthe
various railroad examples are listed. As some parameters of these examples
are modified randomly during simwation, these numbers have been for a
number of consecutive runs of intervals of5000 doek cycles (the largest delay
value used in the model is 100). The number of runs, which have been used
to average the overall reswts, have been at least 100.

Table 4.7. Simwation statistics and performance ofthe railroad examples.

name av. # events av. # av. #draw av. elapsed
evaluations requests cpu time

[* 1000] [* 1000] [* 1000] [sec]

small 14.3 2.4 14.3 1.5

small2 24.8 3.9 25.0 2.0

large 16.0 2.9 9.0 3.7
London1 62.2 14.0 23.7 8.5
London2 195.6 41.8 85.8 18.2

London3 50.5 9.9 19.0 7.5

Chapter

5 Design process integration

5.1 Introduetion

In the previous chapters, different aspects ofthe simwation ofheterogeneous
systems have been described. However, the simwation (validation) of sys
tems is only one ofthe activities in the design flow. To he ofreal use, a toollike
ESCAPE needs to he tightly integrated withother tools in the design flow. To
achleve this, ESCAPE is extended with some functionality for easy customiza
tion and tool integration in different application areas. Some other advan
tages of an open architecture are:

• the user interface is configurable to different needs;

• the built-in functionality is easy accessible by other tools;

• the internal data is accessible by other tools;

• the process ofintegrating a simulator or a nother design tool may he simpli
fied.

Related work in this area are the extension and customization languages,
that are provided with some commercial CAD systems. An example of such
a language is SKILL [Bar90], that is provided with Cadence Design Frame
work II. SKILL is a fully featured programming language basedon the LISP
language [Ste84]. Besides many ofthe function found in LISP, SKILL also in
cludes functions to access the underlying CAD framework and tools, and func
tions to build user interface components. It has proven to he a very usefullan
guage; although it was originally intended for customization purposes and
small additions of functionality only, it has been used to develop large pro
grams as well.

In this chapter a numberoffeatures are described, which allow customization
and extension of ESCAPE itself as wellas integration with other applications
or tools. For instance, ESCAPE has been used in combination with the following
tools:

• a term rewrite program to simplify the expressions generated during the
symbolic simwation of data flow graphs;

113

114 Interactive ModeHing and Simulation of Heterogeneaus Systems

• some formal verification tools to visualize output results by annotation
onto a schematic (network view);

• the tools for place and route oflayout data;

• the architectural synthesis tools ofthe NEAT system (see section 5.6).

5.2 A programmabie graph view

Graphs are used to capture differentaspectsof a design at all abstraction lev
els (from the layout to the system level) in the design trajectory. At the higher
abstraction levels, they are used to capture system structure and behaviour.
Examples are data flow graphs, control flow graphs, Petri nets, finite state
machines and state charts. Each graph formalism differs with respect to its
structural representation and its graphical representation. This is referred
to as the type (definition) ofagraph. Therefore, the graph view, unlike the oth
er views in ESCAPE, is customizable and even programmable. As a result, ES

CAPE may he used as a graph editor that serves as a user interface to many
other application areas as well.

The graph definition language is a language using the syntax ofthe LISP lan
guage. It is used to specify the structural and graphical attributes of a specific
type of graph, its nodes and its edges. This information is used to build the
graphics and the network data structure of a graph ofthis type.

As an example, a simple graph definition of a Petri net is as follows:

(graph-definition "petri"
(scale 1 000)
(directed)

;; nodes
(node "transition"

(fill-color "black")
(bounding-object (poly (-10 -1) (-10 1) (10 1) (10 -1) (-10 -1)))

)
(node "place''

(fill-color "black")
(bounding-object (circle 0 0 8))

;; edges are not explicitly specified

Design process integration 115

In this graph definition file, two node types have been defined: a transition
and a place. In particular, the graphical representations ofthe nodes are spe
cified. It is also specified that a Petri net is a directed graph.

Another definition of a node is the branch in the data flow graph definition
file (see tigure 5.1).

control

n

Figure 5.1. Branch node of a data flow graph

(node "branch"

(ports

)

(input "control")
(input "in")
(output "selected" (props {prop ("variable"))))

(function "dfgsim_branch")

In the data flow graph definition file, the portsof each nodeneed to he speci
fied as well. The branch node may have a variabie number of output ports.
This depends on the number of branches that may he selected using the con
trol input port. In addition, a function is specified for each node type: this is
the function that is called during simwation of a data flow graph.

The flow for visualizing and manipulating different types of graphs is de
picted in tigure 5.2. The graph definition files are read by ESCAPE to he able
to visualize all nodes and edges (graphics data) and to pass properties for the
internal data structures. Even specific functions may be passed through a
definition file. The structure of a graph is read by a graph placement tool and
the data resulting from this placement is sent to ESCAPE using the inter tooi
protocol (see section 5.3). The information stored in the graph definition file
could he used by the placement algorithm to find a better placement. There
fore, some placement programs will read this data as well.

116 Interactive Ma delling and Simulation of Heterogeneaus Systems

graph
data

escape
schematic

file

graph definition files

Petri net

DFG

CFG

FSM

Figure 5.2. Customizing the graph view

Different placement algorithms could he used depending on the structure of
the graph. Therefore, it is anticipated that many placement programs will
he provided. This is one ofthe reasons to implement these placement tools as
stand-alone tools. In principle, the designer can select one of the available
graph placement tools for the placement of a specific graph. Many algorithms
have been developed for the placement of different types of grap hs. An over
view is given in [Ead89]. Two algorithms have been implemented for the
placement ofthe ASCIS data flow graph:

• a dedicated placement algorithm that exploits specific properties of the
structure of a data flow graph;

• an algorithm basedon an algorithm published in [Sug81], which minimizes
the number of edge-crossings in the graph.

Design process integration 117

After placement, the coordinates of all nodes are sent to ESCAPE, which is then
able to draw the graph using both the information from the placement as well
as the graphical representations ofthe nodes and edges as specified in the
graph definition file. Of course, the resulting layout but also its structure
(connectivity) may he manipulated afterwards; a graph mayalso he captured
interactively using the graphics editor.

Related workin this area is the interface description language described in
[New88], which is developed for an extendible directed graph editor called
EDGE.

5.3 Inter process communication and the inter tooi protocol

An inter process communication (IPC) module is build into ESCAPE to he able
to embed it in an existing CAD environment (e.g. a framework) or to conneet
external tools with it. This IPC module allows the communication between
ESCAPE and other applications running on the same machine and other ma
chines in the network as well as the communication between various ESCAPE

programs running on possibly different machines. The processing of incom
ing communication messages is tightly integrated with the processing of
graphical events. This even allows the processing of communication mes
sages duringa simulation run.

In figure 5.3, the interaction between ESCAPE and other tools on various hosts
is depicted. ESCAPE is able to set up communication with other tools on the
same machine directly or on any other machine running the daemon pro
gram. Note that the daemon is only involved in setting up the communication
between an external tool and escape. lfthis succeeds, the tool communicates
directly with ESCAPE.

HOSTl HOST2

Figure 5.3. Inter process communication with ESCAPE.

118 Interactive ModeHing and Simulation of Heterogeneaus Systems

ESCAPE can he used in two major modes in combination withother applica
tions:

• Slave mode: another application invokes ESCAPE and controlsits execution.
In this mode, ESCAPE serves as a graphical backend for other applications.

• Master mode: the execution of one or more applications is controlled byES
CAPE. Both batch and interactive tools are controllable from ESCAPE using
either a synchronous or an asynchronous communication strategy.

An ASCII protocol called the inter tooi protocol (ITP) provides access to the
application procedural interface (API) ofESCAPE: it provides access to internal
functions and varia bles. A textual description has been chosen toserve as an
interface to the API, beca use it is less sensitive to errors. If a procedural inter
face is used, an error may result in program termination. The line oriented
ITP allows easy recovery from errors in syntax and arguments. Another ad
vantage of an ASCII protocol is that an existing tool is easily adapted for read
ing and writing messages to ESCAPE.

A summary ofthe ITP is given in appendix C. The ITP includes different kinds
of commands, for instance:

• user interface and control commands built in ESCAPE,

• commands to set up and to control the simulator,

• commands to manipulate views and objects in these views

• commands to visualize data associated with objects or the objects them
selves,

• commands to provide user interaction (e.g. selection lists, messages)

• and even run-time specification of graph definition files.

The concept of a context is introduced that determine if a command may he
executed and which data it should affect. Each time a new context is opened
it is pushed on a stack. Only commands that may he executed within that con
text are executed and all other commands are discarded. Ifthe current con
text is closed, it is popped from the stack and the previous context is restored.
This concept makes it also possible to re-use commands for different pur
poses. For instance, the color command may he used in different context to
set the current colour for drawing purposes.

The following text shows an excerpt from the ITP communication between an
external tool andESCAPE tosend graph definition data and the graph itself:

graph sample dynamic

Design process integration

#node definition
node-definitien mynode

beunding-object box 0 0 8 4
add--box 0 0 8 4
add-text 1 1

text name = <name>
align center

end-add-text
color fill green
property myvar

end-node-definitien

#node data
add-node 1 1 n1 mynode
add-node 3 3 n2 mynode
add-node 8 1 n3 mynode

add-hyper-edge someedgenet
nodes name n1 n2 n3
add-line 1 1 3 3
add-line 1 1 8 1

end-add-hyper-edge

end-iJraph
set-graph <none> dynamic

view-link myset
link graph sample type dynamic node n1
link graph sample type dynamic edge someedge

end-view-link

119

In tigure 5.4, the organization ofthe inter tooi communication is depicted. An
external tooi writes messages to the IPC channel, which are read by the ITP
parser built in ESCAPE. Once a complete command is parsed, the appropriate
function in the API is called. This function may access the internal data struc
tures. To communicate with an external tooi, ESCAPE formats a specific mes
sages and sends it via the appropriate IPC channel.

5.4 Configuration of the user interface

The open architecture of ESCAPE can only be exploited, ifthe user interface is
customizable as well. A customization language has been developed, that
may be used to adapt and to extend the user interface to specific needs. The
language also serves as a tool encapsulation language. Using this language,
ESCAPE is easily interfaced with other CAD tools or environments.

120 Interactive ModeHing and Simulation of Heterogeneaus Systems

Figure 5.4. Inter tooi communication with ESCAPE

The language to customize the user interface provides the following features:

• variables and some programming constructs,

• interactive editing of commands and queries,

• access to internal functions,

• invocation of external programs using various communication schemes,

• synchronization mechanisms.

In tigure 5.5, an excerpt from a definition ofthe menu to interface with the
NEAT system is shown. The set command is used to set the value of a vari
able. A few variables are already defined in ESCAPE. The value of a variabie
can also be set interactively. This is shown in the actionspart ofthe definition
of a push button.

Design process integration 121

In the strings specifying commands, variables are specified between < and >.
The parser replaces the variabie during the execution ofthe command by its
actual value.

;; variabie declarations
(set interactiva false)
(set neatbin "./neat/bin")
(set designpath ".")

;; the pulldown menu
(pulldown "neat)

(resources
(label-string "Neat'')
(mnemonic "N")

;; a push button
(push "hc2dfg"

(actions
(set prompt (variable interactive))
(extern "<neatbin>/hc2asd -i <designpath>l<basename>.hc"

"-o <designpath>l<basename>.asd"
)
(set prompt false)
(extern "<dfgread> -v -d -g <graphdefs> "

"<designpath>/<basename.asd"
(io-mode read)

(resources
(label-string "he -> dfg")
(mnemonic "h")

Figure 5.5. Part of a menu definition

5.5 The interactive data access language

An interactive data languages has been developed that provides program
ming ca pa hilities and read access to the internal data structures of ESCAPE

[Luk92]. This interactive data access language may be used for the following
purposes:

122 Interactive ModeHing and Simulation of Heterogeneaus Systems

• to add new functionality to a program in an interactive and easy way;

• to safely prototype new algorithms that use the existing data structure of
ESCAPE;

• to inspeet data stored in the internal data structures of ESCAPE;

• togenera te complex structural descriptions; in that case, a combination of
both procedural and graphical constructs (the graphics editor) can he used
to describe structure. An example ofsuch a system is described in [Ebe89].

Although the LISP interpreter has been developed to he used with ESCAPE, it
may he used with any other C program as well. The interpreter provides a
general interface to access to the data structures of a C program. To enable
this, the interpreter needs to he linked with the C program. The following
steps have to he performed to use the interpreter and to access the data struc
tures and variables ofthe C program:

• The C program explicitly publishes the types, functions and variables that
the user wants to access using the interpreter. In the LISP interpreter,
these C objects have a special type and are treated differently from other
types.

• The interpreter is initialized.

• The LISP objects that embed the C objects are created and bound to user
defined names. All functions, that have been published, are added to the
interpreter as well and may he used as any regular LISP function.

Once this process is completed, the user may use the interpreter to develop
programs in the LISP language or to load and execute functions that have
been developed previously. Within the interpreter, full re ad accessis provided
to the data structures and variables of the C program that have been pub
lished.

5.6 An example: the integration of NEAT and ESCAPE

NEAT (New Eindhoven Architectural synthesis Tooi-box) is an open inter
face for architectural synthesis [Hei94]. NEAT uses three graph representa
tions to capture all data during the various synthesis steps:

• The ASCIS data flow graph is used to describe the behaviour of a design.
Usually, a data flow graph is the intermediate representation ofthe beha
viour of a design generated from a hardware description language like Si
lage, VHDL or Hardware C.

• The control (flow) graph is a representation of a fini te state machine. Each
node represents a state, whereas the edges specify the threads of control
(state transitions).

Design process integration 123

• The network graph is used to describe the structure of a design: it is a repre
sentation ofthe design at the register transfer level.

Furthermore, inter- and intra-relations are used to represent the relation
ships between different objects in the various graphs. These relations are
generated by the various synthesis tools.

The following actions have been performed to enable the interaction between
NEAT and ESCAPE:

• The definition ofthe three graph representations used in the NEAT envi
ronment: the data flow graph, the control graph and the network graph.

• The development of a dedicated placement tooi for data flow graphs, which
places control flow graphs and network graphs as well. This tooi reads the
ASCII data format used in the NEAT system and generates ITP messages
that are read by ESCAPE.

This allows to store the graphs in ESCAPE and to present them graphically. N ot
only the graphs are stored but also the inter- and intra-domain relations be
tween these graphs and their objects.

ESCAPE has been used both in master as in slave mode to interact with the
tools ofthe NEAT system. In master mode, tools in the NEAT system are in
voked from the user interface of ESCAPE. The user interface to control NEAT
has been defined using the UI contiguration language. Once, the tooi has ter
minated successfully, the results are read by the graph placement program,
which sends the graphs and their relations to ESCAPE. Then the designer can
inspeet the results on the screen.

In slave mode, ESCAPE is invoked from another tooi and its standard input/out
put streams may he used to send a series ofiTP commands to ESCAPE, which
transfers all design data from the synthesis tooi to ESCAPE.

The experiments to integrate NEAT andESCAPE have shown that is very use
ful to have a grapbics backend for synthesis tools. The backend is able to visu
alize all synthesis data. A designer can inspeet all data and interactively vali
date that the results are correct. Besides tooi control and visualization, such
a backend mayalso he used to animate the behaviour of a tooi onto the data
during synthesis. For instance, the progress ofthe scheduler may he visual
ized. It is even possible to adapt the scheduler program to allow user control
during scheduling.

Chapter

6 Concluding remarks

In this thesis, some concepts and techniques applied toa discrete event simu
lation tool are described that

• reduce the design cycle time to facilitate prototyping, debugging and de
sign space exploration,

• allow to compose a homogeneous discrete event simwation model from dif
ferent types of simwation models.

A prototype of a flexible and interactive simwation environment, called ES

CAPE, has been developed, in which these concepts and techniques have been
incorporated. Many experiments have shown its usefulness for modeHing and
simulating a great variety of examples. I t cao easily be adapted to fulfil differ
ent simwation needs oot only for CAD applications but for other real world
applications as well. The prototype is oot only used as a modeHing and simu
lation tool but as a generic frontend toother CAD tools as well, because ofits
flexibility and openness.

The reduction ofsimulation time and overall design time has been tackled by
tightly integrating the various phases of design and simulation. To be more
specific, the following features have been provided:

• Incremental updating of and direct access to internal data structures.

• Support ofhigly interactive interaction models between the simulator and
the editor.

• Animation/visualization of system behaviour during simulation.

• Support of discrete event monitors to detect erroneous behaviour at higher
levels of abstraction.

The integration ofvarious types ofmodels such that is possible to simulate
heterogeneous systems, is basedon the idea to map different simwation algo
rithms onto the event driven simwation paradigm. Different types of events
are used to model different delay models and interconneet behaviour, to con
trol and to synchronize multiple simulators, and to execute user-defined
functions at specific time points. Besides events, an external simulator inter-

125

126 Interactive ModeHing and Simulation of Heterogeneaus Systems

face and a model encapsulation technique are used to simulate different types
of models homogeneously.

The open architecture ofthe simulator allows for extension at three different
levels of detail:

• new models of a specific type,

• new types of models,

• the simwation algorithm itself.

No te that most simulators claim to he flexible ifthey just support the addition
of new modelsof a specific type (as opposed to using only predefined compo
nents from a number oflibraries).

Besides its use as a modeHing and simulation tooi, ESCAPE may be used as a
generic user frontend for other CAD tools. The flexibility ofthe user interface
and its graphics capabilities are used to control CAD tools and to visualize
output results of these tools. Especially, its use in combination with the archi
tectural synthesis tooibox NEAT has proven to be very successful.

Suggestions for future work

Many suggestions can be made to enhance the prototype. In the remainder
of this section, a few important ideas are proposed that need to be investi
gated to he able to decide on the usefulness ofsuch a tool as a product for real
life design projects. Using such a project as an example may help to identify
potential deficits. It may also be worthwhile to apply the concepts described
in this thesis to a commercially available simulator. The prerequisites for
such an approach are described here as well.

First, a few inadequacies of the current prototype are described that need
some additional research.

In ESCAPE, events are used for many purposes and the efficient management
of these events is important to limit the decreasein performance. Flexibility
and opennessin generalleads to a performance penalty in simulation speed.
Events are managedindifferent data structures to fulfil different tasks dur
ing simulation, for instance:

• the master event queue to process events in a non-decreasing order,

• the storage of events and state variables to perform incremental simula
tion,

• the storage of events and state variables to he able to restore a previous
simwation state.

Concluding remarks 127

It is very important to reduce the number of data that has to he managed dur
ing simulation, as it has costs in both performance and memory usage. This
is a topic that may he investigated more thorough in the near future.

EscAPE lacks support to manage design data. This manifests itselfin setting
up simwation experiments invalving hierarchy, alternatives and multiple
types of simwation models. A real topic for future research is how the man
agement of designs may he combined with an incremental update approach
ofthe simwation model as currently used in ESCAPE. This support is required
to he able to use such a tool in reallife design practices. This problem has not
been addressed yet, because it should he dealt by CAD frameworks.

As stated before, many ofthe concepts and techniques described in this thesis
may he applied to an existing commercial (event driven) simulator as well. A
commercial simulator may serve as a basis on top ofwhich software modules
are developed that allow the simwation of different models of computation
that interface with the underlying simwation paradigm. Most simulators
today include a foreign language interface, but the openness and flexibility
of such an interface are very limited. It basically allows to include C models
in a very primitive manner. It could however he investigated, ifthis is sufti
eient to integrate more complex models or even other simulators.

Of course, it would even he betterif commercial vendors would put simulators
on the market that have an open architecture instead of a foreign language
interface. Such an architecture should allow to include models simulated on
tha t simulator as a submodel of another simulator. Al though s u eh simulators
are not on the market today, it is possible to integrate a commercial simulator
with ESCAPE using its foreign language interface. However, this approach
seems to he restricted to a single simulator to avoid deadlock and synchro
nization problems. It may he interesting to investigate this problem in more
detail, since re-use of existing simulators to build a heterogeneaus simula
tors is very cost effective.

The last suggestion concerns the u se of ESCAPE as a generic user frontend. In
the prototype, many of the features to customize ESCAPE are developed in
isolation. A good alternative would he to provide a programming language
that offers all these features including full access to the data structures and
functionality of the tool.

Heferences

[All90] ALLEN, P.E., B.P. LUM SHUE CHAN and W.M. ZUBEREK, "Comparison
of Mixed Analog-Digital Simulators," in Proceedings 1990 IEEE
International Symposium on Circuits and Systems, pp. 101-104,
New Orleans, Louisiana, May 1-3, 1990.

[Aug90] AUGUSTIN, L.M., D.C. LUCKHAM, BA GENNART, Y. HuH and AG. STAN
CULESCU, "Hardware Design and Simwation in VAUVHDL," Kl.uw
er Academie Publishers, Dordrecht, 1990.

[Bai94] BAILEY, M.L., J.V. BRINER JR. and R.D. CHAMBERLAIN, "Parallel Logic
Simwation ofVLSI Systems," in ACM Computing Surveys, vol. 26,
no. 3, pp. 255-294, September 1994.

[Bar87] BARZILAI, Z., J.L. CARTER, B.K ROSEN and J.D. RUTLEDGE, "HSS- A
High-Speed Simulator," in IEEE Transactions on Computer
Aided Design, vol. 6, no. 4, pp. 601-616, July 1987.

[Bar90] BARNES, T.J., "SKILL™: A CAD System Extension Language," in
Proceedings 27th ACM I IEEE Design Automation Conference, pp.
266-271, Orlando, Florida, June 24--28, 1990.

[Bee90] BEECE, D.K, R. DAMIANO, G. PAPPand R. SCHOEN, "The EVE Com
panion Simulator," inProceedings European Conference on Design
Automation, pp. 290-295, Glasgow, Scotland, March 12-15, 1990.

[Bel93] BELHADJ, M., R. McCONNELL and P.L. GUERNIC, "A Framework for
Macro- and Micro-time to Model VHDL Attributes," in Proceed
ings European Design Automation Conference with EURO-VHDL,
pp. 520-525, Hamburg, Germany, September 20-24, 1993.

[Ben91] BENKOSKI, J., J. DESNARD, S. GAI, M. MAGNI and E. PROFUMO, "Mo
zart-MM: A Mixed-Mode and Multi-Level Simwation System," in
Proceedings 1991 IEEE International Symposium on Circuits and
Systems, pp. 2387-2390, Singapore, 1991.

[Ber88] BERKEL, C.H. VAN, M. REM and R.W.J.J. SAEIJS, ''VLSI Program
ming," in 1988 IEEE International Conference on Computer De
sign: VLSI in Computers & Processors, pp. 152-156, Rye Brook,
New York, October 3-5, 1988.

129

130 Interactive ModeHing and Simulation of Heterogeneaus Systems

[Ber92] BERKEL, K VAN, "Handshake Circuits: An Intermediary between
Communicating Processes and VLSI," Ph.D. thesis, Eindhoven
University ofTechnology, The Netherlands, 1992.

[Ber93] BERKELAAR, M.RC.M., "Area-Power-Delay Trade-offin Logic Syn
thesis," Ph.D. Thesis, Eindhoven University of Technology, The
Netherlands, 1993.

[Bin94] BINGLEY, P. and W. VAN DER LINDEN, "Application of Framework
Technology in System Simwation Environments," in Proceedings
ofthe Seminar Database Systems andApplications for the Nineties,
Delft University ofTechnology, The Netherlands, October 11-12,
1994.

[Bla84] BLANK, T., "A Survey of Hardware Accelerators in Computer-Aided
Design," in IEEE Design & Test of Computers, vol. 1, no. 3, pp.
21-39, August 1984.

[Bor92] BORIELLO, G., "Formalized Timing Diagrams," in Proc. European
Conference on Design Automation, pp. 372-377, 1992.

[Bre76] BREDER, MA. and A.D. FRIEDMAN, "Diagnosis & Reliable Design of
Digital Systems," Computer Science Press, Woodland Hills,
California, 1976.

[Brg85] BRGLEZ, F. and H. FuJIWARA, "A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran," in 1985
IEEE International Symposium on Circuits and Systems, pp.
695-698, Kyoto, Japan, June 5-7, 1985.

[Bry84] BRYANT, RE., "A Switch-Level Modeland Simulator for MOS Digi
tal Systems," in IEEE Transactions on Computers, vol. 33, no. 2, pp.
160-177' 1984.

[Bry87] BRYANT, RE., D. BEATY, K BRACE, K CHO and T. SCHEFFLER, "COS
MOS: A Compiled Simulator for MOS Circuits," in Proceedings
24th Design Automation Conference, pp. 9-16, Miami Beach, Flori
da, June 28 -July 1, 1987.

[Buc94] BUCK, J.T., S. HA, EA. LEE and D.G. MESSERSCHMITT, "Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous Sys
tems," in International Joumal of Computer Simulation: Special
Issue on "Simulation Software Deuelopment", vol. 4, pp. 155-182,
April1994.

References 131

[Bus89] BUSCHKE, R. and K LAGEMANN, "An Approach to Understanding
Evaluation of Simulation Results as an Integrated Task," in Pro
ceedings IEEE Custom Integrated Circuits Conference, pp.
13.6.1-13.6.4, 1989.

[Buu93] BUURMAN, H.W., "From Circuit to Signal: Development of a Piece
wise Linear Simulator," Ph.D. Thesis, Eindhoven University of
Technology, The Netherlands, 1993.

[Cae93] CAERTS, C., R. LAUWEREINS and J.A. PEPERSTRAETE, "PDG: A Pro
cess-Level Debugger for Concurrent Programs in the GRAPE Rap
id Prototyping Environment," in Proceedings Fourth International
Workshop on Rapid System Prototyping, pp. 17-30, Research
Triangle Park, North Carolina, June 28-30, 1993.

[CFI94] CAD FRAMEWORK INITIATIVE, INC., "Simulation Backplane Program
ming Interface Specification," Working Group Draft Propos al, Ver
sion 0.6.0, January 1994.

[Cba81] CHANDY, KM. and J. MISRA, "Asynchronous Distributed Simulation
via a Sequence of Parallel Computations," in Communications of
the ACM, vol. 24, no. 4, pp. 198-206, April 1981.

[Cbo88] CHOI, K, S.Y. HWANG and T. BLANK, "lncremental-in-T.ime Algo
rithm for Digital Simulation," in Proceedings 25thACM I IEEE De
sign Automation Conference, pp. 501-505, Anaheim, California,
June 12-15, 1988.

[Cho89] CHOI, K, "Incremental Approach to Digital Simulation," Ph.D.
Thesis, Department ofElectrical Engineering, Stanford Universi
ty, June 1989.

[Ead89] EADES, P. and R. TAMASSIA, "Algorithms for Drawing Graphs: An
Annotated Bibliography," Technica! Report No. CS-89-09, Depart
ment of Computer Science, Brown University, Providence, Rhode
Island, October 1989.

[Ebe89] EBELING, C. and Z. Wu, "WireLisp: Combining Graphics and Proce
dures in a Circuit Specification Language," in Proceedings of the
ICCAD-89, pp. 322-325, Santa Clara, California, November 5-9,
1989.

[Eij90] EIJNDHOVEN, J .T.J. VAN, M.T. VAN STIPHOUTand H.W. BUURMAN, "Mul
tirate Integration in a Direct Simulation Method," in Proceedings

132 Interactive ModeHing and Simulation of Heterogeneaus Systems

ofthe European Design Automation Conference, pp. 306-309, Glas
gow, Scotland, March 12-15, 1990.

[Eij91] EIJNDHOVEN, J.T.J. VAN, G.G. DE JONG and L. STOK, "The ASCIS Data
Flow Graph: Semantics and Textual Format," EUT Report
91-E-251, Eindhoven University ofTechnology, The Netherlands,
June 1991.

[Fan83] FANG, S.C., Y.P. TSIVIDIS and 0. WING, "SWITCAP: A Switched Ca
pacitor Network Analysis Program," in IEEE Circuits and System
Magazine, vol. 5, no. 3, pp. 4-10, September 1983.

[Fel92] FELDBRUGGE, F., "Petri Net Tool Overview 1992," in Petri Net News
letter, no. 41, April 1992.

[Fle91] FLEURKENS, J.W.G. and R.J.W.T. TANGELDER, "The High Level De
sign of a Chip for Scientific Computation," in Proceedings of the
CampEuro 91, pp. 811-815, Bologna, Italy, May 13-16, 1991.

[Fle93] FLEURKENS, H., "lnteractive System Design in ESCAPE," in Pro
ceedings ofthe IEEE International Workshop on Rapid System Pro
totyping, pp. 108-113, Research Triangle Park, North Carolina,
June 28-30, 1993.

[Fle93a] FLEURKENS, H. and P. BuuRMAN, "Flexible Mixed-Mode and Mixed
Level Simulation," in Proceedings ofthe 1993 Internation Sympo
sium on Circuits and Systems, pp. 2137-2140, Chicago, Illinois,
May 3-6, 1993.

[Fle93b] FLEURKENS, H. and J. JESS, "ESCAPE: A Flexible Design and Simu
lation Environment," in Proceedings SAS/MI '93 Workshop, pp.
277-288, Nara, Japan., October 20-22, 1993.

[Fle95] FLEURKENS, J.W.G., C.AJ. VAN EIJK and J.AG. JESS, "Run-time Con
sistency Checking in Discrete Simulation Models," in Proceedings
European Design and Test Conference ED&TC 1995, pp. 223-227,
Paris, France, March 6-9, 1995.

[Fon87] FONTAYNE, Y.D. and R.J. BOWMAN, "The Multiple Storage Radix
Hash Tree: An lmproved Region Query Data Structure," in Pro
ceedings of the International Conference on Computer-Aided De
sign, pp. 302-305, Santa Clara, California, November 9-12, 1987.

[Fuj90] FuJIMOTO, R.M., "Parallel Discrete Event Simulation," in Commu
nications ofthe ACM, vol. 33, no. 10, pp. 30-53, October 1990.

References 133

[Gaj92] GAJSKI, D.D., N.O. OUTI, AC.-H. Wu and S.Y.-L. LIN, "High-Level
Synthesis: Introduetion to Chip and System Design," Kluwer Aca
demie Publishers, Dordrecht, 1992.

[Gar70] GARDNER, M., "Mathematica} Games," in Scientific American, pp.
120-123, October 1970.

[Gar71] GARDNER, M., "Mathematica} Games," in Scientific American, pp.
114-117, April1971.

[Gen86] GENDEREN,AJ. VAN andAC. DE GRAAF, "SLS:ASwitch-level Timing
Simulator," in The Integrated Circuit Design Book, pp. 2.93-2.112,
1986.

[Gen92] GENNART, BA and O.C. LucKHAM, ''Validating Discrete Event Simu
lations using Event Pattem Mappings," in Proceedings 29thACM I
IEEE Design Automation Conference, pp. 414-419, 1992.

[Geu93] GEURTS, L.J .F., "Graphical Simwation of Data Flow Graphs," Mas
ter Thesis, Eindhoven University ofTechnology, The Netherlands,
1993.

[Gho89] GHOSH, S. and M.-L. Yu, "APreemptive Scheduling Mechanism for
Accurate Behavioral Simwation of Digital Designs," in IEEE
Transactions on Computers, vol. 38, no. 11, pp. 1595-1600, Novem
ber 1989.

[Gho95] GHOSH, S. and M.-L. Yu, "An Asynchronous Distributed Approach
for the Simwation of Behavior-Level Models on Parallel Proces
sors," in IEEE Transactions on Paralleland Distributed Systems,
vol. 6, no. 6, pp. 639-652, June 1995.

[Gol93] GOLIN, E.J., A.C. FENG, L. HUANG and E. HUGHES, "A Visual Design
Environment," in Proceedings IEEE I ACM International Confer
ence on CAD-93, pp. 364-367, Santa Clara, California, November
7-11, 1993.

[Har87] HAREL, D., "Statecharts: A Visual Formalism for Complex Sys
tems," in Science of Computer Programming, vol. 8, pp. 231-274,
1987.

[Har90] HAREL, D., H. LACHOVER, A. NAAMAD, A. PNUELI, M. POLITI, R. SHER
MAN, A SHTULL-TRAURING and M. TRAKHTENBROT, "STATEMATE: A
Working Environment for the Development of Complex Reactive
Systems," in IEEE Transactions on Software Engineering, vol. 16,
no. 4, pp. 403-414, April 1990.

134 Interactive ModeHing and Simulation of Heterogeneous Systems

[Hei94] HEIJLIGERS, M.J.M., H.A. HILDERINK, AH. TIMMER and J.A.G. JESS,
"NEAT: an Object Oriented High-Level Synthesis Interface," in
Proceedings 1994 IEEE International Symposium on Circuits and
Systems, pp. 233-236, London, May 30- June 2, 1994.

[Hen85] HENNION, B., P. SENN and D. COQUELLE, "A New Algorithm for Third
Generation Circuit Simulators: The One-Step Relaxation Meth
od," Proceedings of the 22nd Design Automation Conference, pp.
137-143, Las Vegas, Nevada, 1985.

[Hey88] HEYDEMANN, M., A PAIGNAUD and D. DURE, "The Architecture of a
Highly Integrated Simulation System," in Proceedings 25th ACM I
IEEE Design Automation Conference, pp. 617-621, Anaheim,
California, June 12-15, 1988.

[Hoa78] HOARE, C.A.R., "Communicating Sequentia! Processes," in Commu
nications ACM, vol. 21, no. 8, pp. 666-677, August 1978.

[Hoe92] HoEVEN, A VAN DE, "Concepts and Implementation of a Design Sys
tem for Digital Signal Processor Arrays," Ph.D. Thesis, Delft Uni
versity ofTechnology, The Netherlands, October 1992.

[Hou93] HouF, H., ''VHDL Simulation in ESCAPE," Master Thesis, Eindho
ven University ofTechnology, The Netherlands, December 1993.

[Hwa87] HWANG, S.Y., T. BLANK and K CHOI, "Incremental Functional Simu
lation of Digital Circuits," in Proceedings of the ICCAD-87, pp.
392-395, Santa Clara, California, November 9-12, 1987.

[Hwa88] HwANG, S.Y., T. BLANK and K CHOI, "Fa st Functional Simulation: An
Incremental Approach," in IEEE Transactions on Computer-Aided
Design, vol. 7, no. 7, pp. 765-774, July 1988.

[IEE88] IEEE, "IEEE Standard VHDL Language Reference Manual,"
IEEE Std 1076-1987, New York, 1988.

[Jan89] JANSSEN, G.L.M.J., "Circuit ModeHing and Animated Interactive
Simulation in ESCHER," in Proceedings SCS European Simula
tion Multiconference: Simulation applied to manufactoring, energy
and environmental studies and electranies and computer engineer
ing, pp. 265-270, Rome, Italy, June 1989.

[Jef85] JEFFERSON, D.R., "Virtual Time," in ACM Transactions on Program
ming Languages andSystems, vol. 7, no. 3, pp. 404-425,July 1985.

References 135

[Jen92] JENSEN, K, "Coloured Petri Nets: Basic Concepts, Analysis Meth
ods and Practical U se," vol. 1, Springer-Verlag, Berlin Heidelberg,
1992.

[Jon89] JONES, L.G., "Fast Online/Offiine Netlist Compilation ofHierarchi
cal Schema tics," in Proc. of the 27th ACM I IEEE Design Automa
tion Conference, pp. 822-825, Las Vegas, Nevada, June 25-29,
1989.

[Jon89a] JoNES, L.G., "Fast Incremental Netlist Compilation ofHierarchical
Schematics," in Proceedings ofthe ICCAD-89, pp. 326-329, Santa
Clara, California, November 5-9, 1989.

[Jon92] JONES, L.G., "An Incremental Zero/Integer Delay Switch-Level
Simwation Environment," in IEEE Transactions on Computer
Aided Design, vol. 11, no. 9, pp. 1131-1139, September 1992.

[Jon93] JONG, G.G. DE, "Generalized data flow graphs: theory and applica
tions," Ph.D. Thesis, Eindhoven University of Technology, The
Netherlands, 1993.

[Kal92] KALAVADE, A and E.A. LEE, "Hardware/Software Co-Design Using
Ptolemy- A Case Study," in Proceedings of the IFIP International
Workshop on Hardware I Software Co-Design, Grassau, Germany,
May 19-21, 1992.

[Kav86] KAVI, KM., B.P. BUCKLES and U.N. BHAT, "A Formal Definition of
Data Flow Graphs Models," in IEEE Transactions on Computers,
vol. C-35, no. 11, pp. 940-948, November 1986.

[Ker88] KERNIGHAN, B.W. and D.M. RITCHIE, "The C Programming Lan
guage: Second Edition," Prentice-Hall, Englewood Cliffs, 1988.

[Kle84] KLECKNER, J.E., "Advanced mixed-mode simulation techniques,"
Ph.D. Thesis, University ofCalifornia, Berkeley, May 1984.

[Koe87] KOENIG, P.M., "SEE-SAW- A graphical Interface for System Level
Design," Research Report No. CMUCAD-87-49, Department of
Electrical and Computer Engineering, Carnegie Meiion Universi
ty, Pittsburgh, Pennsylvania, December 1987.

[Ku88] Ku, D. and G.D. MICHELI, "Hardware C-A Language for Hardware
Design," Technica} Report CSL-TR-90-419, Stanford University,
1988.

136 Interactive ModeHing and Simulation of Heterogeneaus Systems

[Lee87] LEE, E.A and D.G. MESSERSCHMITT, "Synchronous Data Flow," in
IEEE Proceedings, vol. 75, no. 9, pp. 1235-1245, September 1987.

[Lee95] LEE, E.A and T.M. PARKS, "Dataflow Process Networks," in IEEE
Proceedings, vol. 83, no. 5, pp. 773-799, May 1995.

[Lod86] LODDER, A, M.T. VAN STIPHOUT and J.T.J. VAN EIJNDHOVEN,
"ESCHER: Eindhoven SCHematic EditoR reference manual,"
EUT Report 86-E-157, Eindhoven University ofTechnology, The
Netherlands, February 1986.

[Luk92] LUKASSEN, R.J.P.B., "Using LISP as an Interactive Database Access
Language," Master Thesis, Eindhoven University of Technology,
The Netherlands, June 1992.

[Mat92] MATSUMOTO, Y. and K TAKI, "Parallel Logic Simwation on a Distrib
uted Memory Machine," in Proceedings European Conference on
Design Automation, pp. 76-80, Brussels, Belgium, March 16-19,
1992.

[Mau92] MAURER, P.M., "Two New Techniques for Unit-Delay Compiled
Simulation," in IEEE Transactions on Computer-Aided Design,
vol. 11, no. 9, pp. 1120-1130, September 1992.

[McM94] McMILLAN, KL., "Fitting Formal Methods into the Design Cycle,"
in Proceedings 31st Design Automation Conference, pp. 314-319,
San Diego, California, June 6-10, 1994.

[Nag75] NAGEL, L.W., "SPICE2: A Computer Program to Simulate Semicon
ductor Circuits," Memorandum No. ERL-M520, University of
California, Berkeley, 1975.

[New88] NEWBERY, F.J., "An Interface Description Language for Graph Edi
tors," in Proceedings IEEE Workshop on Visual Languages, pp.
144-149, Pittsburgh, Pennsylvania, 1988.

[Nie91] NIESSEN, A.J., "Simulatie en verificatie van een modulair blokbe
veiligingssysteem," Training Report, Eindhoven University of
Technology, The Netherlands, November 1991 (in Dutch).

[Nie92] NIEMEYER, M., "Multi-Simulator Coupling," in Proceedings of the
Synthesis and Simulation Meeting and International Interchange
SASIMI '92, pp. 233-242, April6-8, 1992.

[Ocz91] ÜCZKO, A and C. ÜCZKO, "Putting Different Simwation Models To
gether - The Simwation Contiguration Language VHDLIS," in

References 137

Proceedings ComputerHardware Description Languages and their
Applications, pp. 115-129, Marseille, France, April22-24, 1991.

[Pan7 4] PANNE, C. VAN DE, "A Complementary Variant ofLemke's Metbod for
the Linear Complementary," in Mathematica[Programming, vol.
7,pp.283-310, 1974.

[Pet81] PETERSON, J.L., "Petri Net Theory and the Modeling of Systems,"
Prentice-Hall, Englewood Cliffs, 1981.

[Phi88] PHILIPSEN, W.J.M., "The Blitter Project. A Test Case," Master The
sis, Eindhoven University ofTechnology, The Netherlands, 1988.

[Ram92] RAMMIG, F.J., "Synthesis Related Aspectsof Simulation," in The
Synthesis Approach to Digital System Design, vol. 170, pp.
303-333, Kluwer Academie Publishers, Dordrecht, The Nether
lands, 1992.

[Rey88] REYNOLDS JR., P.F., "A Spectrum of Options for Parallel Simula
tion," in Proceedings ofthe 1988 Winter Simulation Conference, pp.
325-332, San Diego, California, December 12-14, 1988.

[Ros85] ROSENBERG, J.B., "Geographical Data Structures Compared: A
Study of Data Structures Supporting Region Queries," in IEEE
Transactions on Computer-Aided Design, vol. 4, no. 1, pp. 53-67,
January 1985.

[Rou89] ROUMELIOTIS, M. and J.R. ARMSTRONG, "HDL Modeling for Process
Oriented Simulation," in Proc. of the IFIP WG 10.2 Eight Int. Con{
on Computer Hardware description Languages and their Applica
tions, pp. 1-8, Amsterdam, The Netherlands, April27-29, 1989.

[Row94] RowsoN, JA, "Hardware/Software Co-Simulation," in Proceed
ings 31st Design Automation Conference, pp. 439-440, San Diego,
California, June 6-10, 1994.

[Sal90] SALEH, RA and AR. NEWTON, "Mixed-Mode Simulation," Kluwer
Academie Publishers, Dordrecht, 1990.

[Sal94] SALEH, R.A., S. Jou and AR. NEWTON, "Mixed-Mode Simwation and
Analog Multilevel Simulation," Kluwer Academie Publishers, Dor
drecht, 1994.

[Sas83] SASAKI, T., N. KOIKE, K ÜHMORI and K TOMITA, "HAL; A Block Level
Hardware Logic Simulator," in Proceedings 20th ACM I IEEE De-

138 Interactive Modelling and Simulation of Heterogeneaus Systems

sign Automation Conference, pp. 150-156, Miami Beach, Florida,
June 27-29, 1983.

[Sbe90] SHERER,A.D., B.S. STANOJEVICH and R.J. BüWMAN, "SMALS: ANovel
Database for Two-Dimensional Object Location," in IEEE Trans
actions on Computer-Aided Design, vol. 9, no. 1, pp. 57-65, Janu
ary 1990.

[Smi87] SMITH, S.P., M.R. MERCER and B. BROCK, "Demand Driven Simwa
tion: BACKSIM," in Proceedings 24thACM I IEEE Design Automa
tion Conference, pp. 181-187, Miami Be ach, Florida, June 28 -J uly
1, 1987.

[Sri92] SRIVASTAVA, M.B., "Rapid-Prototyping ofHardware and Software in
a Unified Framework," Ph.D. Thesis, Department of EECS, U.C.
Berkeley, California, 1992.

[Ste84] STEELE, G.L., "Common LISP: The Language," Digital Equipment
Corporation, 1984.

[Sto92] STOK, L., "Architectural Synthesis and Optimization ofDigital Sys
tems," Ph.D. Thesis, Eindhoven University of Technology, The
Netherlands, Jwy 1992.

[Sub86] SUBODH-KUMAR, M.P. and Y.N. SRIKANT, "Graphical Simwation of
Petri Nets," in Computers and Graphics, vol. 20, no. 3, pp. 225-228,
1986.

[Sug81] SuGrYAMA, K, S. TAGAWA and M. TüDA, "Methods for Visual Under
standing of Hierarchical Systems," in IEEE Transactions on Sys
tems, Man, and Cybernetics, vol. SMC-11, no. 2, pp. 109-125, Feb
ruary 1981.

[Tah93] TAHAWY, H.E., D. RüDRIGUEZ, S. GARCIA-SABIRO and J.-J. MAYOL,
''VHDeLDO: A New Mixed Mode Simwation," in Proceedings Euro
pean Design Automation Conference with EURO-VHDL, pp.
546-551, Hamburg, Germany, September 20-24, 1993.

[Tak90] TAKASAKI, S., N. NüMIZU, Y. HIRABAYASHI, H. ISHIKURA, M. KURASHITA,
N. KOIKE and T. NuKATA, "HAL lil: Function Level Hardware Logic
Simwation System," in 1990 IEEE Int. Conf on Computer Design:
VLSI in Computers & Processors, pp. 167-174, Cambridge, Massa
chussetts, September 17-19, 1990.

References 139

[Tan92] TANGELDER, R.J.W.T., "The Design of Chip Architectures for Accu
rate Inner Product Computation," Ph.D. Thesis, Eindhoven Uni
versity ofTechnology, The Netherlands, 1992.

[Tho91] THOMAS, D.E. and P.R. MooRBY, "The Verilog Hardware Description
Language," KI uwer Academie Publishers, Boston, 1991.

[Ulr69] ULRICH, E.G., "Exclusive Simulation of Activity in Digital Net
works," in Communications oftheACM, vol. 12, no. 2, pp. 102-110,
February 1969.

[Vah91] VAHID, F., S. NARAYAN and D.D. GAJSKI, "SpecCharts: A Language for
System Level Synthesis," in Proceedings Computer Hardware De
scription Languages and their Applications, pp. 165-17 4, Mar
seille, France, April 22-24, 1991.

[Vel92] VELLANDI, B. AND M. LIGHTNER, "Parallelism Extraction ad Program
Restructuring of VHDL for Parallel Simulation," in Proc. Euro
pean Conference on Design Automation, pp. 81-87, Brussels, Bel
gium, March 16-19, 1992.

[Wan90] WANG, Z. and P.M. MAURER, "LECSIM: A Levilized Event-Driven
Compiled Logic Simulator," in Proc. of27thACM I IEEE DesignAu
tomation Conference, pp. 491-496, Orlando, Florida, June 24-28,
1990.

[Wol93] WOLF, P. VAN DER, "Architecture of an Open and Efficient CAD
Framework," Ph.D. Thesis, Delft University of Technology, The
Netherlands, June 1993.

Appendix

A The LISP-like HDL

A.I. Introduetion

In this appendix, an overview is given ofthe LISP-like HDL. This language
can be used to describe the behaviour ofprimitive componentsin ESCAPE. The
language contains primitive functions to interface with theevent driven sim
ulator and to visualize simwation results.

A.2. The language

The HDL supports different types of varia bles. The following types can be
used in the declaration part:

- Ports, which are used to communicate values between a module and its en
vironment. Ports have also to be defined in the symbol view of the corre
sponding design.

- State variables, which are used to model memoryelementsin a behavioural
description. A state variabie holds a value between consecutive evaluations
of a description and it is initialized before the beginning of a simwation ex
periment.

- Local variables, which are used to simplify expressions. Alocal variabie is
initialized before each evaluation of a behavioural description.

In addition,parameters can be used in the body of a behavioural description.
The value of a parameter can be modified using the user interface at any time
in a simwation experiment. After modification, its new value will be used im
mediately. Parameters are objects stored in the network view, whereas the
other types are embedded in the behavioural description language. Note that
a parameter is bound to an instanee of a design not to a design itself.

A.3. Summary of functions

A summary ofthe most important functions ofthe LISP-like HDL is given
below. In this HDL, the number 0 is equivalent with the logica] value false.
Any number not equal to 0 is equivalent with the logica] value true.

141

142 Interactive ModeHing and Simulation of Heterogeneaus Systems

(+ { <number> }*)
Returns sum ofthe <number>'s. When no arguments are supplied, it returns
the integer 0.

(- <number-1> { <number> }*)
With one argument negates <number-1>. Otherwise, successively subtracts
the <number>'s from <number-1>.

(* { <number> }*)

Returns product ofthe <number>'s. When no arguments are supplied, it re
turns the integer 1.

(! <number-1> <number-2> { <number> }*)
Returns <number-1> divided by product of <number-2> andrestof <num
ber>'s. Uses integer division. The result when attempting to divide-by-zero
is undefined.

(mod <number> <divisor>)
Returns remainder of <number> divided by <divisor> (also a number).Uses
C-language % operator.

(< <number> { <number> }*)

Returns true if <number>'s are monotonically increasing.

(<= <number> { <number> }*)

Returns true if <number>'s are monotonically non-decreasing.

(= <number> { <number> }*)
Returns true if all <number>'s are equal.

(>= <number> { <number> }*)

Returns true if <number>'s are monotonically non-increasing.

(> <number> { <number> }*)
Returns true if <number>'s are monotonically decreasing.

(random [<range> [<init-seed-p>]])
Returns a pseudo-random integer. Ifthe first argument is supplied then an
integer in the range [O .. <range>-1] is returned. If <init-seed-p> is true the
random number seed is setbasedon the current time and pid prior to calling
the generator.

(min <number> { <number> }*)

Returns smallest of all the <number>'s.

The LISP-like HDL

(max <number> { <number> }*)

Returns largest of all the <number>'s.

(and { <form> }*)

143

Evaluates the <form>'s in order from left to right until one of them yields
false, then false is returned. Any remaining <form>'s are not evaluated at all.
In case ofno argument returns true; ifall arguments evaluate to true, the val
ue of the last <form> is return ed.

(or { <form> }*)

Eval uates the <form>'s in order from left to right until one ofthem yields true,
then this value is returned. Any remaining <form>'s are not evaluated at all.
In case of no argument or all arguments evaluate to false, false is returned.

(eqv <arg> { <arg> }*)

Returns true if all its arguments are logically equivalent, i.e. either all true
or all false.

(not <arg>)
Returns the complement ofthe truth value ofthe argument.

(setq <Var> <form>)
Sets (assigns) to <var> the value of <form>. The <var> argument (symbols)
is not evaluated, the <form> argument is. Returns the value assigned.

(delay <time> {<net> I (<bus-net> <offset>)} <value> [<event-type>])
Causes an eventof type <event-type> to he schedwed for the <net> (or the
wire of a bus specified by <bus-net> and <offset>) to occur at a time <time>
afterthe current simwation clock value. At that time in the future the net will
change to the value <value>.
Allowed event-type values are:
0 normal, conditional evaluation ofmodwes in net's fanout list
1 refrain, no evaluation ofmodwes
2 trigger, forced evaluation ofmodwes
3 cancelled, no effect
4 interrupt, interrupts simwation
Returns <value>.

(if <test> <then-form> [<else-form>])
If <test> yields true evaluates <then-form>, else <else-form>. Returns the
value ofthe last form evaluated. If <test> evaluates to false and there is no
<else-form> present, false is returned.

(case <keyform> {({ ({ <key> }*) I <key> }* { <form> }*)}*)
Evaluates <keyform>, which must reswt in an integer value. Then treats

144 Interactive ModeHing and Simulation of Heterogeneaus Systems

clause by clause in order until one is found where <keyform> matches the
<key>. Ifso, evaluates the <form>'s in the clause as an implicit progn and re
turns result oflast. If no key matches, it returns 0.

(while <test> { <form> }*)
While <test> yields true execute the <form>'s. Always returns false.

(for (<init> <test> <step>) { <form> }*)
C-like for statement. This statement is equivalent with:

(progn
<init>
(while <test>

{ <form> }*

<step>

(progn { <form> }*)
Evaluates the body <form>'s inorderfrom left to right, and returns the result
of evaluating the last one. When it is said that a function evaluates its forms
or body as an implicit progn it is understood that the evaluation takes place
as if (progn ...) was actually typed around those forms.

(write <value>)
Writes integer <value> in bounding box of instance, returns this value.

(write <control-string> [<argl> [<arg2> [<arg3>]]])
Formats a string out of a <con trol-string> and <arg>s. <arg> may he string
or integer value. Formatting and substituting the arguments into the con
trol-string is done similar to the C language (s)printf routine. The result is
a string which is written in the bounding box ofinstance. The control-string
may contain %s, %d, or %c to substitute successive following arguments. To
include% itselfyou must write it twice: %%.Returns 0.

(simtime)
Returns simwation time value.

(color <value>)
Colors instanee box when <value> is true.

(fillcolor <r> <g> <h> [<index>])
Sets color used by function "color" using the arguments that specify the val
ues ofthe red green and blue components, which must he in the range [0 .. 100].
<index> specifies the color index in the table reserved for animation. If <in
dex> is omitted, the color index 0 is assumed.

The LISP-like HDL 145

(make-bitvector <length>)
Dynamically allocates bit vector of that length, i.e. number of bits. Returns
the vector initialised to all bits zero. Since there is as yet no automatic gar
bage collection of used space, use this function with care. Best is to call only
once, for instanee at start of simulation.

(bit <vector> <index>)
Returns value of bit vector element at index. Indices count from zero. Value
returned is in fact integer, either 0 for false, 1 for true.

(setbit <vector> <index> <Value>)
Sets bit in bit vector at index to value. Value is integer, 0 for false, any other
value for true. Returns value.

(<< <vector> <shifts> [<fiJI-in>])
Shifts bits in bit vector left over number of shifts places. Left means towards
higher indices (corresponds to usual model of bitvector to represent binary
numbers). Bits shifted out are lost. Bits with value fill-in are shifted in at the
right, by default fill-in bits are false. Returns modified bit vector.

(>> <vector> <shifts> [<fill-in>])
Shifts bits in bit vector right over number of shifts places. Right means to
wards lower indices (corresponds to usual model of bitvector to represent
binary numbers). Bits shifted out ar-e lost. Bits with value fill-in are shifted
in at the left, by default fill-in bits are false. Returns modified bit vector.

(interrupt <time>)
Schedules an interrupt type of event. Equivalent to (delay <time> 0 0 4). Re
turns 0.

Appendix

B Simulating the bit blitter

In this appendix, some snapshots ofthe animated simulation ofthe bit blitter
are depicted. The first snapshot (see figure B.l) shows the bit blitter after ini
tialization of an image in the left half of the display. The figures B.2 and B.3
show the execution ofthe first operation: the image in the left halfofthe dis
play is copied toa specific position in the right half ofthe display. At t = 105,
this operation is completed.

yJ

~
0 8 ~

-

-!::::0
..:...._

......_

0

Figure 8.1. Simulation snapshot at t = 0.

In figure B.4, the first picture shows the bit blitter after completion of a move
of the image in the right half of the display. The second picture is taken after
completion of a fill operation ofthe image in the right half ofthe display. The
next figure shows the bit blitter after completion of an invert operation of pix
els in a specific area ofthe right half ofthe display. The last picture shows the
display after translating the whole contents ofthe display.

147

148 Interactive ModeHing and Simulation of Heterogeneaus Systems

IIIIIIIIÜ!ïmmmm- 1111111Dl9mmm
Figure 8.2. Simulation snapshots at t = 21 and t = 37.

Figure 8.3. Si mulation snapshots at t = 65 and t = 105.

11 I I

1111111'+mn-m
Figure 8.4. Simulation snapshots at t = 305 and t = 525.

Simulating the bit blitter 149

Figure 8.5. Si mulation snapshots at t = 725 and t = 1059.

Appendix

c The inter tooi protocol

Tahle C.l gives a swnmary ofthe inter tool protocol (ITP). The following sym
hols are used in this tahle:

• 0 : Opens the context associated with the en try in the table. The previous
context is saved hy pushing it on a context stack (First In Last Out mecha
nism).

• • : Closes the current context and the previous context is restored by pop
pingit from the context stack, ifthe stack is not empty.

• • : Command may he applied in this context.

• 0 : Command may be applied in this context, but it is not recommended.

An example is the add-edge command. This command is processed in the
none, design andgraph contexts. Otherwise, it is ignored. The add-edge com
mandopens the add-edge context, which is closed by the end-add-edge com
mand. Note that commands listed in the none context column may he applied
at any time in a inter tool session.

Table C.l. Summary ofthe inter tooi protocol.

~
I~ Dl Dl

Dl ~ 0. 0. Dl en co < :J 0. î Dl î Dl ~ 0. ~ 't 0. 0. itï :J CD
(Q CD 0. 0. 0. 0. CD ~

't 0. ~ 0 en iil ~ 3 J, :J I en CD J.. i. u ~. :J tëi" "0 cr !:!?. :J '< ê.
_L

CD 0 0. :J 0 3 CD b -·
:J ::r

~ 0 Dl ~ CD (Q 0. ~ iD :J d
CD :J cr :J !:!?. :E ;>\

(") CD 0
CD Dl

add-arc • • • • • 0

add-arrow • • • • • • 0

add-box • • • • • 0

add-circle • • • • • 0

ad d-ei rele-are • • • • • 0

add--edge • • • n
add-i nstanee • • • 0

add-line • • • • • • 0

add-net • • • n
add-node • • • []

151

152 Interactive ModeHing and Simulation ofHeterogeneous Systems

~
I~ Ol Ol

Ol Ol 0.. 0..
Ol (/) <D :5. :::;)

~
0.. 0.. Ol 0.. 0.. 0.. Ol

0.. <D 0.. <0 l. 0.. .!.. 0.. x <D :J <D ~ ?- 0.. I 0.. ro iil ?- I 0.. -1 0 !!?. :E 3 :J (/) <D .!.. i. u I
:J "'0 <D ~ :J '< 3 <
<D <0 0 rr 0.. :J 0 3 <D ~ (i) :::;) '::T

~ Q_ Ol <0 !E. 0.. x ro :J d
<D :J <D er :J - ~ :E A" (") 0 Q?_ <D

add-oval • • • • • D

add-terminal • • • • D

add-text • • • • • D

add-wire • • • D

base-length •
clear-textview •
close-view-window •
delete-all-view-links •
delete-graph •
design • D

dest-port •
end-add-edge •
end-add-instance •
end-add-net •
end-add-node •
end-add-symbol •
end-add-terminal •
end-add-text •
end-add-wire •
end-design •
end-graph •
end-network •
end-select-list •
end-symbol •
end-text-view •
end-view-link •
error • • • • • • • •
graph • •
item •
link •
laad-design •
message • • • • • • • •
network • [Ï

open-view-window •

The inter tool protocol 153

~
~ lll lll

lll lll Q_ Q_
lll Ul Cii < :::J Q_ Q_ lll Q_ Q_ Q_ lll !!?..

:::J
Q_ (Q ga_ ~ ?- l. Q_ ?- J, .l.. Q_ Q_ x Ciï
<D Dl Q_ Q_ <D I. i 0 !!1. ~ 3 :::J ?- <D .l.. I r :::J "0 0" <D Ul :::J '< 3 ~-<D (Q :::r Q_ ii) :::J 0 3 <D -·
:::J ~ Q_ (Q ga_ Q_ ~ ëO -· <D :::J d

<D :::J <D 0" :::J !a. :E "' () 0 ~ <D

orig-port •
prompt-dialog •
property •
quit • 0 0 0 0 0 0 0 0 0

reset-sim •
select-list • 0

set-design •
set-editor-mode •
set-graph •
set-view-window •
show-text-view •
show-world • 0 0 0 0 0 0 0 0 0

start-sim •
stop-sim •
symbol • 0

text • •
text-view • 0

view-link • c
warning • • • • • • • • • •
zoom-in • 0 0 0 0 0 0 0 0 0

zoom-out • 0 0 0 0 0 0 0 0 0

aEA

AU8

An8

A\8

AÇ8

P(A)

Ax8

f:A-+8

Nota ti on

a is an element of A.

The uni on of the sets A and 8.

The intersection of the sets A and 8.

The difference of the sets A and 8.

The set A is a subset of the set 8.

The powerset of set A.

The Cartesian product of the sets A and 8.

The class offunctions defined on A x 8 with domain A and
codomain 8.

The function f defined on A x 8 with domain A and codo
main 8. Note that f ç;; A x 8.

155

Biography

Hans Fleurkens was born on February 17th, 1965 in Venray, the Nether
lands. He studied Electrical Engineering at Eindhoven U niversity ofTechnol
ogy, the N etherlands, where he graduated from in August 1988. After receiv
ing his degree, he has worked for half a year on artificial intelligence
techniques in control engineering at Delft University of Technology, the
Netherlands.

From April1989, he has been working towards a Ph.D. degree in the Design
Automation Section ofthe Department ofElectrical Engineering at Eindho
ven University ofTechnology. He expects to receive this degree basedon the
work described in this thesis on March 26, 1996.

Hans Fleurkens has worked in the Mathematica! Sciences Department of
IBM Thomas J. Watson Research Center, Yorktown Heights, New York from
October 1990 till May 1991.

From November 1994, he is workingat Philips Research in Eindhoven, the
Netherlands.

157

Stellingen

behorende bij het proefschrift
lnteractive ModelZing and Simulation of Heterogeneous Systems

van Hans Fleurhens

1. Er zijn een aantal factoren die invloed hebben op de snelheid waannee
een schakeling gesimuleerd kan worden. De gedragsbeschrijving van
het systeem zelf is een factor waarvan de invloed vaak onderschat wordt.

[Dit proefschrift]

2. De standaardisatie van de interface van commercieel verkrijgbare simu
latoren is zinvoller dan de standaardisatie van de interface voor een
zogenaamd simulation backplane.

[Dit proefschrift]

3. Het gebruiken van een interactief ontwerp- en/of simulatiesysteem
hoeft niet ten koste te gaan van de prestatie van de simulator zelf.

[Dit proefschrift]

4. De enige manier om de snelheid van simuleren orde groottes te
verbeteren is het verhogen van het abstractieniveau van de
systeembeschrijving. Andere technieken die eigenschappen van een
systeembeschrijving gebruiken om efficiënter te kunnen simuleren
hebben veel kleinere snelheidsverbeteringen tot gevolg.

[SALEH, RA and AR. NEWTON, "Mixed-Mode Simulation," Kluwer Aca
demie Publishers, Dordrecht, 1990]

5. Het opbouwen van een complexe datastructuur door middel van het
toevoegen van nieuwe elementen leidt in het algemeen tot minder fouten
dan het afbreken van die datastructuur door het verwijderen van
elementen.

6. Hardware software co-design zou voor vele ontwerpers de alternatieve
betekenis kunnen hebben van het omzeilen van de fouten in de software
van de programmatuur, waannee de hardware ontworpen wordt.

7. De keuze van een passende ontwerptooi of -omgeving voor een bepaald
ontwerpprobleem is net zo moeilijk als het kiezen van een passende wijn
bij een bepaald gerecht.

8. In een onderlinge vergelijking van de kwaliteiten van verschillende
faculteiten zou de toegankelijkheid van de gebouwen voor studenten en
medewerkers eveneens een belangrijk aspect moeten zijn.

9. Het heffen van belasting op de feitelijke commerciële waarde van gratis
verkrijgbare software in bepaalde Amerikaanse staten is een maatregel
die aangeeft dat overheden erg vindingrijk zijn in het bedenken van
onzinnige oplossingen voor hun begrotingstekort.

10. De bedragen die geboden worden voor het uitzenden van betaald voetbal
zijn een maat voor de hoeveelheid geld die beleidsmakers van diverse
zendgemachtigden voor hun eigen bestaansrecht en een plaats op alle
kabelnetwerken over hebben.

11. Een van de gevolgen van privatisering zou een afgeslankte minder geld
kostende overheid moeten zijn.

12. De snelle groei van het gebruik van het Internet na de introduktie van
het World Wide Web en de bijbehorende eenvoudig te gebruiken
interactieve toegangsprogrammatuur toont aan dat het ontwerp van
een goede user interface zichzelf terugverdient.

13. Met gratis software kan door derden veel geld verdiend worden.

