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Asymptotic solution and numerical simulation of homogeneous
condensation in expansion cloud chambers

C. F. Delale,a) M. J. E. H. Muitjens, and M. E. H. van Dongen
Department of Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

~Received 15 April 1996; accepted 9 August 1996!

Asymptotic solution of homogeneous condensation in expansion cloud chambers in different droplet
growth regimes is presented. In particular an exactly solvable droplet growth model ranging
between the Hertz–Knudsen and continuum droplet growth laws is introduced. The distinct
condensation zones in each droplet growth regime are identified by the asymptotic solution of the
condensation rate equation and the results are compared with those of direct numerical simulations
using the classical nucleation theory. Excellent qualitative agreement is reached despite some minor
quantitative differences in some of the condensation zones arising from the nature of the asymptotic
solution in these zones. ©1996 American Institute of Physics.@S0021-9606~96!52142-2#

I. INTRODUCTION

Homogeneous condensation is the process of generation
of clusters of vapor molecules which act as condensation
nuclei by thermal fluctuations~homogeneous nucleation! fol-
lowed by the growth of these nuclei into droplets~droplet
growth!. This nonequilibrium process appears in special en-
vironments in physics, chemistry, biology, and many areas of
engineering. It entered atmospheric physics as early as 1880
by Aitken’s investigations1 and with the invention of the
supersonic nozzle by de Laval, it led to investigations in
conjunction with steam turbines.2 Wilson3 examined homo-
geneous condensation in his invention of the classical cloud
chamber which later was used for different applications in
physics. The theory was first formulated using homogeneous
nucleation and droplet growth theories combined with the
equations of motion by Oswatitsch.4 Detailed experimental
and theoretical investigations5–12 in different configurations
have been performed since then. Complete analytical solu-
tions to the theory of homogeneous condensation in super-
sonic nozzles have been possible in the last two decades by
the pioneering work of Blythe and Shih13 and Clarke and
Delale14 using an asymptotic method. The method has been
refined15 and extended to the investigation of homogeneous
condensation in shock tubes.16

The aim of the present paper is to apply the asymptotic
method for the investigation of homogeneous condensation
in expansion cloud chambers. For this reason the detailed
physical mechanism of homogeneous condensation~homo-
geneous nucleation and droplet growth! is discussed in Sec.
II. The homogeneous nucleation equation is cast into a nor-
malized functional form independent of the particular theory
to be employed. The growth mechanism is given a general
consideration to cover growth regimes from free molecular
~Hertz–Knudsen! to continuum. In particular an exactly

solvable droplet growth model in the transition regime which
yields growth rates ranging from Hertz–Knudsen to con-
tinuum growth rates is constructed for an analytical solution
and is compared with the most widely used transition growth
expressions. The condensation rate equation for the molar
fraction is then constructed from the nucleation and growth
equations for different droplet growth regimes and is solved
in conjunction with the governing equations of expansion
cloud chambers by an asymptotic method in the limit of
relatively slow nucleation process followed by rapid droplet
growth. The distinct condensation zones with complete ana-
lytical structure are then identified by the asymptotic solu-
tion. Finally the results for different initial mixture pressures
~corresponding to different droplet growth regimes! are com-
pared with direct numerical simulations of the rate equation
combined with the equations of motion. Excellent qualitative
and reasonable quantitative agreement between the asymp-
totic solution and numerical simulations of the rate equation
is achieved despite some quantitative differences which
mainly arise from the asymptotic nature of the solution.

II. THEORY OF HOMOGENEOUS CONDENSATION IN
EXPANSION CLOUD CHAMBERS

We consider a mixture of a condensable vapor and a
carrier gas in an expansion chamber with initial total pres-
surep08 , initial partial vapor pressure (pv8)0 and initial tem-
peratureT08 . We assume that the mixture contains no impu-
rities such as dust particles, ions, etc. so that homogeneous
nucleation sets in during the expansion of the mixture in
metastable states. As the expansion valve is opened at the
initial time t08 5 0, the mixture expands isentropically for a
while until the vapor becomes saturated with no detectable
condensation. As the mixture continues to expand almost
isentropically further on in metastable states of the vapor,
homogeneous nucleation sets in resulting in the formation of
condensation nuclei which rapidly grow into droplets. When
the number of growing droplets reach a certain value, drop-
wise condensation becomes detectable~onset of condensa-
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tion!. Consequently significant deviations in the total pres-
sure and temperature of the mixture from their isentropic
values become observable, the nucleation rate reaches its
peak value with a subsequent decay, and vapor depletion due
to droplet growth becomes noticable. The two-phase mixture
then relaxes toward saturated equilibrium states due to fur-
ther growth of the droplets. The objective is to locate the
onset of condensation, to predict the shape of the nucleation
curve in time and to obtain the structure of the relaxation
zone over a wide range of initial pressures ranging from low
to relatively high values.

A. Governing equations

We herein present the governing equations of expansion
cloud chambers in the two-phase homogeneous dispersed
droplet regime assuming no slip between droplets and the
surrounding mixture. We further assume that the droplets
and the surrounding mixture are at the same temperatureT8
so that the heat released per mole of the mixture is equal to
yL8(T8) wherey is the molar fraction of the condensate and
L8(T8) is the molar latent heat of condensation correspond-
ing to temperatureT8 ~one-temperature model!. The total
mixture pressurep8 can either be precisely measured or it
can be related to the volume change during the expansion.
This helps us to bypass any consideration of the momentum
equation. The conservation of energy then leads to the equa-
tion

n8
dh8

dt8
5
dp8

dt8
, ~1!

wheret8 is the time,n8 is the molar density of the mixture,
andh8 is the mixture molar enthalpy defined by

h85cpm8 T82yL8~T8!1constant. ~2!

In Eq. ~2! cpm8 denotes the molar specific heat of the mixture
at constant pressure and is related to the molar specific heats
at constant pressure of the carrier gascpi8 and of the vapor
cpv8 by

cpm8 5~12yv0!cpi8 1yv0cpv8 , ~3!

where yv0 is the initial molar fraction of the condensable
vapor. On the other hand the thermal equation of state of the
mixture is constructed by Dalton’s law

p85pi81pv8 , ~4!

wherepi8 andpv8 , respectively, denote the partial vapor pres-
sure of the carrier gas and of the vapor. Assuming that the
condensable vapor and the carrier gas both obey the ideal gas
law, we obtain the thermal equation of state of the mixture as

p85~12y!n8T8. ~5!

We now normalize the flow variables with respect to
their saturation values during expansion, namely

p[
p8

ps8
, T[

T8

Ts8
, and n[

n8

ns8
, ~6!

where we refer to saturation values by subscripts ~all primed
variables denote actual quantities whereas the unprimed vari-
ables correspond to their normalized values!. Furthermore
we normalize the molar specific enthalpyh8, the molar spe-
cific heat of the mixture at constant pressurecpm8 , and the
molar latent heatL8(T8) by

h[
h8

RTs8
, cpm[

cpm8

R
, and L~T![

L8~T8!

RTs8
, ~7!

whereR is the universal gas constant. On the other hand the
time t8 is normalized as

t[
t8

t r8
, ~8!

wheret r8 is the expansion time given by

1

t r8
[2S 1p8

dp8

dt8 D
t
0850

. ~9!

For most applications in the range of temperatures con-
sidered, the normalized molar latent heat can be taken as a
linear function inT as

L~T![aT1b. ~10!

With the above normalization Eqs.~1!, ~2!, ~5!, and~10! can
be solved forT andn to yield

T~ t !5
@p~ t !#1/cpm

12
b

cpm
y~ t !

1
ay~ t !

cpm2by~ t !

1
a@p~ t !#1/cpm

cpm@cpm2by~ t !#
f~ t !, ~11!

n~ t !5
p~ t !

@12y~ t !#T~ t !
, ~12!

where

f~ t ![E
ts

t

y~j!@p~j!#2~11cpm!/cpmdj. ~13!

In particular Eqs.~11! and ~12! reduce to the classical isen-
tropic relations for noncondensing flows~y[0!. For con-
densing flows Eqs.~11! and ~12! yield the solution for the
temperatureT and molar densityn of the mixture at any
given instantt in terms of the total pressurep and the molar
fraction of the condensatey. In what follows the pressure
will be assumed to be given as a function of time [p5p(t)]
either by direct measurements or by assigning a prescribed
form, and the condensate molar fractiony will be obtained
from the asymptotic solution of the condensation rate equa-
tion.

B. Homogeneous nucleation and droplet growth

The condensation of vapor in the supersaturated state
occurs by homogeneous nucleation followed by rapid
growth. Homogeneous nucleation is the process of formation
of clusters of critical size in metastable equilibrium with the
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surrounding vapor in the absence of any foreign particles.
The most well-known and widely used theory of homoge-
neous nucleation is the classical nucleation theory of Becker,
Döring, and Zeldovich,17,18which is based on the capillarity
approximation. The more systematic statistical mechanical
theories of Lothe and Pound19 and of Reiss, Katz, and
Cohen20 have helped improving our understanding of the
phenomenon. Unfortunately none of these theories have been
successful in comparison with measured nucleation rates for
most substances over a wide temperature range~some have
been successful for particular substances over restricted tem-
perature ranges while they have proved to be considerably
off in comparison with measured nucleation rates for the
remaining substances!. Recent advances in nucleation theory
has mostly been in the direction of constructing semiphe-
nomenological models based on Fisher’s droplet theory of
condensation.21 Among these models the ones proposed by
Dillmann and Meier,22 Delale and Meier,23 and Kalikmanov
and van Dongen24 seem to yield better agreement than the
classical theory in comparison with experiments for a variety
of substances over a wide range of temperatures. All of the
above theories can nevertheless be cast into a unique func-
tional form for the normalized steady-state nucleation rateJ
as

J[
J8

z8
5S~p,T,y!exp@2K21B~p,T,y!#, ~14!

whereJ8 is the actual nucleation rate~number of clusters of
critical size formed per unit volume per unit time!, z8 is a
normalization constant for nucleation,B is the normalized
activation function,K is the nucleation parameter, much less
than unity, andS is the normalized pre-exponential factor of
the order of unity. For applications the parametersK andz8,
and the functionsB andS are identified from the particular
homogeneous nucleation theory to be employed. For our
consideration of homogeneous condensation in expansion
cloud chambers, the functional form~14! can be employed,
without loss of generality, to characterize the number of
critical clusters that grow into droplets in the local thermo-
dynamic state (p,T,y).

The growth of droplets is governed by interfacial rates of
heat, mass and momentum transfer. Taking into account the
no slip condition between droplets and the surrounding mix-
ture and the condition that the droplets are at the same tem-
perature of the mixture in the two-phase dispersed droplet
model considered herein, the droplet growth law can be ex-
pressed by a single mass transfer equation to a spherical
droplet. This mass transfer equation can be written in terms
of a single nondimensional number, the Nusselt number Nu,
as

Nu5
Ṁ 8p8

2pr 8D8~pv82pr8!
, ~15!

whereṀ 8 is the rate of mass transfer to a spherical droplet of
radiusr 8 and is defined by

Ṁ 8[4pr 82r l8
dr8

dt8
~16!

with r l8 denoting the mass density of the condensed phase,
pr8 is the vapor pressure of the droplet surface and is related
to the saturation pressure of planar interphasepvs,`8 at T8 by
the well-known Gibbs–Thomson relation

pr85pvs,`8 ~T8!expS 2s8

r 8

v8

kT8D . ~17!

In Eq. ~17! s8 denotes the surface tension,k is the Boltz-
mann constant,v8 is the molecular volume, andD8 is a
modified diffusion coefficient defined by

D8[
D8r8Rm

Rv~12pv8/p8!
~18!

with D8 denoting the diffusion coefficient,Rm the mixture
gas constant, andRv the vapor gas constant. Equations~15!
and ~16! yield the appropriate droplet growth law for the
no-slip model assumed provided that an expression for the
Nusselt number Nu~or equivalently the Sherwood number
Sh! can be found. It can be shown by dimensional analysis
that for the no-slip two-phase model considered the Nusselt
number Nu for mass transfer depends on the following non-
dimensional group as:

Nu5 f ~Kn,Pr,Sc,Fo,g`!. ~19!

In Eq. ~19!, Kn is the Knudsen number defined by

Kn[
l 8

2r 8
~20!

with l 8 denoting the mean free path of molecules in the gas
mixture far from the droplet. Pr is the Prandtl number de-
fined by

Pr[
cpm8 h8

k8
~21!

with cpm8 denoting the specific heat at constant pressure of
the gas mixture,k8 the thermal conductivity, andh8 the vis-
cosity of the gas mixture. Sc is the Schmidt number defined
by

Sc[
h8

r8D8
, ~22!

which is the ratio of momentum diffusivity to mass diffusiv-
ity. Fo is the Fourier number defined by

Fo[
a8t r8

r 82
, ~23!

which is a nondimensional group for the unsteadiness with
a8 denoting the thermal diffusivity of the mixture, andg`

refers to a group of parameters characterizing ratios of prop-
erties in the gas mixture such as the dilution ratiopv8/p8 or
the ratio of gas constantsRm/Rv . The Fourier number Fo,
which characterizes the influence of nonstationary change of
state on the droplet growth rate, assumes very high values
and remains almost constant during expansions in most ap-
plications; therefore, it need not be taken into account for
most applications~the quasisteady approximation!. The
groups Pr and Sc are properties of the gas mixture only and
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they strictly depend on the dilution ratiopv8/p8. For most
cases their values are both close to unity and can only
weakly influence the form~19! for the Nussult number. The
Knudsen number Kn, on the other hand, is substantially de-
termined by pressure and droplet size and for the no-slip
model assumed, it essentially determines the form~19! of the
droplet growth law. If Kn!1, the gas mixture acts as a con-
tinuum. The problem of determining the Nusselt number for
the no-slip model assumed then reduces to the steady-state
diffusion problem and Eq.~19! can then be written as

NuC52. ~24!

Equations~15!, ~16!, ~17!, and~24! then determinethe con-
tinuum droplet growth lawfor the two-phase model assumed
~the droplets and gas mixture are at the same temperature,
there is no velocity slip between the carrier gas and the dis-
persed droplets, etc.!. If Kn@1 ~the free molecular regime!,
heat conduction, viscous shear, and diffusion, being proper-
ties of the continuum, lose their physical relevance. The
transfer rates of heat and momentum should then be ex-
pressed as the sum of net energy or momentum transferred
individually by the molecules colliding with the droplet. The
mass transfer rate can similarly be obtained by the net mass
of vapor condensing on the droplet and, for the model con-
sidered, can be calculated by~for details see Gyarmathy25!

Ṁ 854pr 82aM8
p8

A2pRvT8
~pv82pr8! ~25!

with aM8 denoting the mass accommodation coefficient,
which is the ratio of sticking molecules to those impinging
on it and is to be determined experimentally. Equations~16!,
~17!, and ~25! then determinethe free molecular or Hertz–
Knudsen growth law. In particular the continuum and free
molecular growth rates can each be cast into a single equa-
tion if we define the normalized droplet radiusr by

r[
r 8

r d8
. ~26!

In Eq. ~26! r d8 is a conveniently defined normalization con-
stant for droplet growth given by

r d8[S 3ns8

4pz8n̄l8t r8
D 1/3 ~27!

with n̄l8 denoting the actual molar density of the condensed
phase. We will herein neglect the so-called Kelvin effect,
i.e., we takepr8 5 pvs,`8 in Eq. ~17!. Utilizing Eqs.~15!, ~16!,
and ~24! together with the conditionpr8 5 pvs,`8 , the con-
tinuum droplet growth lawcan be written in normalized form
as

dr

dt
5
1

r
lCVC~p,T,y!. ~28!

HerelC will be referred to as the continuum growth param-
eter andVC , which depends on the local thermodynamic
state, will be referred to as the continuum growth function.

Similarly utilizing Eqs. ~16! and ~25! and neglecting the
Kelvin effect, we obtain the free molecular or Hertz–
Knudsen droplet growth lawas

dr

dt
5lHKVHK~p,T,y!, ~29!

wherelHK will be referred to as the Hertz–Knudsen or free
molecular growth parameter andVHK , which depends on the
local thermodynamic state, will be referred to as the free
molecular or Hertz–Knudsen growth function.

Expressions for the growth parameterslC andlH–K and
for the growth functionsVC andVHK are explicitly given in
Appendix C. It should also be noted that the growth func-
tionsVC andVHK are both of order of unity~indeed they are
numerically close to each other!. Rapid growth then suggests
that bothlC andlHK are large compared to unity. Indeed we
have

lC@lHK@1. ~30!

From Eqs.~28! and ~29! we obtain

~dr/dt!C
~dr/dt!HK

5
NuC
NuHK

5
lCVC

rlHKVHK
. ~31!

Noting that r is an increasing function of time~droplet
growth!, by virtue of Eq.~31!, we can easily show that there
exists anr̂ given by the condition NuC5NuHK , namely

r̂[
lCVC

lHKVHK
. ~32!

For droplets of sizer. r̂ , the Hertz–Knudsen formula given
by Eq. ~28! yields higher growth rates whereas for droplets
of size r, r̂ , the continuum growth formula given by Eq.
~29! yields higher growth rates. In general, except for expan-
sions under highly pressurized systems and aside from ano-
molies caused by nucleation theories near the coexistence
line, initial growth of droplets takes place according to the
Hertz–Knudsen formula~Kn@1!. As droplets grow devia-
tions from the Hertz–Knudsen formula occur@Kn5O~1!#.
The continuum droplet growth regime can be reached as-
ymptotically if relatively large droplets are formed at the
local thermodynamic state, e.g., under high pressure condi-
tions where Kn!1. It is then necessary to find expressions
for droplet growth at arbitrary Knudsen number ranging
from very small values to relatively large values compared to
unity. Numerous expressions, called multirange expressions
~e.g., see Gyarmathy25! and which interpolate between the
Hertz–Knudsen and continuum formulas, have been sug-
gested. One of the most widely used multirange expressions
is given by Gyarmathy,25 which for the two-phase dispersed
droplet regime considered herein takes the form

NuGy
NuHK

5
A2pBM8 ~12yvo!

4Kn
~33!

with

BM8 5A2Rv

pRm
aM8 Sc. ~34!
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The Gyarmathy formula given by Eqs.~33!–~34! is just an
interpolation formula between the Hertz–Knudsen and con-
tinuum regimes. A physical model based on the classical
Langmuir model covering the intermediate regime at arbi-
trary Knudsen number has recently been proposed by
Young26,27 for both a pure vapor and a vapor in the presence
of an inert gas. Young’s results agree well especially with
the numerical simulations of the Boltzmann equation28 and
with the results of model kinetic equations.29,30 In addition
the transition from the kinetic to diffusion controlled limit is
satisfactorily recovered in Young’s formula.27 However,
Young’s formula, as well as Gyarmathy’s law given by Eqs.
~33!–~34!, are not suitable for analytical work which requires
explicit determination of the droplet radius at arbitrary
Knudsen number. In what follows we introduce an exactly
solvable model for the droplet radius at arbitrary Knudsen
number, which somewhat lies between the multirange
growth rate expressions of Gyarmathy25 and Young.27

C. An exactly solvable droplet growth model at
arbitrary Knudsen number

The initial growth of droplets usually takes place on
clusters of critical size created in the vapor phase by homo-
geneous nucleation. For spherical droplets, depending on the
critical radiusr cr8 and the mean free pathl 8, the initial growth
of droplets may obey different droplet growth formulas rang-
ing from the free molecular to the continuum growth formu-
las. As mentioned before, if conditions are such that Kn@1
initially, droplet growth takes place according to the Hertz–
Knudsen formula whereas if Kn!1 initially, the continuum
regime growth formula holds. At intermediate Knudsen
number, of the order of unity, a transitional growth formula
is needed. Generally initial growth takes place according to
the Hertz–Knudsen formula because of the small size of the
critical radius; however, as droplets grow, a transitional char-
acter may emerge. In such a case, for a droplet created at a
normalized timet, there exists a normalized transitional time
t1 ~both normalized with respect to the expansion timet r8!
where the Knudsen number reaches a universally assumed
value Kn* called the transition Knudsen number. For t<t1
where Kn>Kn*, the Hertz–Knudsen formula given by Eq.
~29! is assumed to hold. Thus, for a droplet created att, the
normalized timet1 can be evaluated from

r * ~ t1![
l ~ t1!

2Kn*
5r cr~t!1lHKE

t

t1
VHK~h!dh, ~35!

wherer cr is the normalized critical radius of the droplet~with
respect tor d8!, r * (t1), andl (t1) are, respectively, the normal-
ized radius and the mean free path~both normalized with
respect tor d8! evaluated att5t1 . In particular Eq.~35! relates
t1 to t provided that a universal value for Kn* is assumed.
Despite the fact that one can satisfactorily use the multirange
expressions of Gyarmathy25 and Young27 with no reference
whatsoever to Kn* , these formulas are not suitable for the
analytical work to be pursued herein. We therefore introduce
an exactly solvable droplet growth equation which appar-
ently should satisfy the following requirements:

~i! At t<t1 or equivalently Kn>Kn*, it should reduce to
the Hertz–Knudsen formula.

~ii ! The radius dependence of the growth rate, which is a
consequence of the growth rate dependence on the
Knudsen number, should be explicitly displayed and
the resulting rate equation should be solvable to yield
an explicit expression for the droplet growth radius
for all times t>t1.

~iii ! For Kn!Kn*, it should yield the continuum growth
law of Eq. ~28!.

~iv! It should obey the general nondimensional growth ex-
pression~19!, possibly in the quasisteady approxima-
tion, for the two-phase dispersed droplet model as-
sumed.

~v! It should yield growth rates close to well-tested and
generally accepted intermediate growth formulas such
as those by Gyarmathy25 and Young.27 Fortunately
the growth equation

dr

dt
5

1

F r2r * ~ t1!1
lCVC*

lHKVHK*
G lCVC ~36!

for t>t1 with superscript* denoting conditions evaluated at
t5t1 , satisfies all the above requirements. Requirement~i!
simply follows by evaluating Eq.~36! at t5t1 , where
Kn5Kn* and r5r * (t1) and by assuming that the Hertz–
Knudsen formula of Eq.~29! holds for t,t1. Requirement
~ii ! is satisfied by solving the differential equation~36! sub-
ject to the initial conditionr5r * (t1) at t5t1 . It then follows
that

r ~t;t !5r cr~t!1lHKE
t

t

VHK~h!dh ~37!

for t<t1~t! ~the free molecular regime!, wheret1~t! is given
by Eq. ~35! and

r ~t;t !5r * @ t1~t!#2
lCVC*

lHKVHK*

1AS lCVC*

lHKVHK*
D 212lCE

t1~t!

t

VC~h!dh ~38!

for t>t1~t! ~the transition regime!. In order to show that
requirements~iii !–~v! of Eq. ~36! are satisfied, we cast Eq.
~36! into the form

Nu

NuC
5F11S NuC*NuHK*

21D KnKn*
l *

l G21

, ~39!

where, asmentioned before, NuC* 5 2, l [ l 8/r d8 is the normal-
ized mean free path of molecules in the gas mixture withl 8
given by the kinetic formula

l 85
h8

2

A2pRmT8

p8
, ~40!

and superscript* refers to transition conditions att5t1 . In
Eq. ~39! the ratiosl * / l and NuC* /NuHK* are both ofO~1! in
magnitude. It then follows that for Kn!Kn*, Eq. ~39! yields
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the continuum limit, i.e., Nu'Nuc52. Consequently Eq.
~36! yields the continuum regime formula for Kn/Kn*!1;
therefore, requirement~iii ! is satisfied. Using the definition
of the Schmidt number given by Eq.~22! and the definition
of the mean free path given by Eq.~40! and taking into
account the thermodynamic dependence of the diffusion co-
efficientD8 ~for most fluids it is approximately proportional
to the square of the temperature and inversely proportional to
the pressure!, the transition growth Eq.~39! corresponding to
the exactly solvable model of Eq.~36! can be written as

Nu

NuC
5F11S NuC*NuHK*

21D Kn

Kn*
Sc*

Sc

1

j G21

, ~41!

wherej is defined by

j[S T*T D ~32gm!/2~gm21!

~42!

with gm denoting the initial adiabatic exponent of the carrier
gas defined bygm[cpm/(cpm21). In generalj is of order
unity and varies numerically between 1 and 1.5 for most
expansions where the Knudsen number Kn changes by or-
ders of magnitude~the Schmidt number remains close to
unity for most expansions!. Thus the variation ofj can be
neglected andj itself may be treated as a constant, say with
value unity during the expansion. With this in mind, Eq.~41!
agrees with the nondimensional form~19! in the quasisteady
approximation. This proves that Eq.~36! satisfies require-
ment ~iv! to a good approximation.

Finally we compare the growth rates of the proposed
transition model~Tr! with existing multirange expressions of
Young and Gyarmathy. Figure 1 shows a comparison of the
ratio Nu/NuHK for various models. All of the transition mod-
els ~Gyarmathy,25 Young,27 and this model! approach the
continuum model asymptotically for Kn,0.1. For Kn>1.31

Young’s formula deviates from the Hertz–Knudsen formula
negligibly ~within 1%!. This inspires us to set the transition
Knudsen number with value Kn*51.31. Thus for
Kn>Kn*51.31, the transition model is assumed to yield
growth rates given precisely by the Hertz–Knudsen formula.
The most commonly used Gyarmathy formula yields growth
rates which are considerably smaller than those of Young’s
formula and the proposed model. The growth rates given by
Eq. ~36! of this model apparently lie between the growth
rates given by Gyarmathy25 and Young27 for Kn,Kn*, sat-
isfying requirement~v!. A comparison of the radius depen-
dence of different droplet growth formulas is shown in Fig.
2. It can easily be seen that for droplets of normalized radius
r, r̂ with r̂ given by Eq.~32!, the continuum growth formula
yields growth rates which are higher than those of the free
molecular formula whereas for droplets of normalized radius
r. r̂ , the Hertz–Knudsen formula yields the highest rates.
Young’s formula yields rates which are lower than both of
the free molecular and continuum growth rates. The pro-
posed transition model, for intermediate Knudsen numbers,
yields even lower growth rates~the rates given by
Gyarmathy’s formula, although not shown, would yield the
lowest rates for fixed size of all the growth rates discussed!.
For sufficiently large droplets all of these transition models
seem to approach the continuum growth law.

D. The condensation rate equation

The condensation rate equation is constructed from a
nucleation rate equation and a droplet growth law. Denoting
the radius of a spherical droplet att8 created att8 by
r 8(t8;t8), the condensate molar fractiony at t8 can be writ-
ten as

FIG. 1. Comparison of different droplet growth laws as a function of the
Knudsen number. HK, Hertz–Knudsen growth law;C, continuum growth
law; Y, Young’s growth model; Gy, Gyarmathy’s growth model; Tr, the
proposed exactly solvable growth model@Kn* is the transition Knudsen
number and Kˆ n is the Knudsen number of a droplet of normalized radiusr̂
given by Eq.~32!#.

FIG. 2. Radius dependence of droplet growth rates in various models. HK,
Hertz–Knudsen growth law;C, continuum growth law;Y, Young’s growth
model; Tr, the proposed exactly solvable growth model@r cr is the normal-
ized critical droplet radius,r * is the normalized droplet radius at transition,
and r̂ is the normalized droplet radius given by Eq.~32!#.
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y~ t8!5
4

3
pn̄l8E

ts8

t8
@r 8~t8;t8!#3

J8~t8!

n8~t8!
dt8. ~43!

By substituting from Eq.~14! for J8 and using normalized
variables together with the definition of radius normalization
constantr d8 given by Eq.~27!, the condensation rate Eq.~43!
takes the form

y~ t !5E
ts

t

@r ~t;t !#3
S~t!

n~t!
exp@2K21B~t!#dt. ~44!

The functionsS andB and the nucleation parameterK are
presumably to be obtained from the particular theory of ho-
mogeneous nucleation to be employed. The normalized ra-
dius r (t;t), on the other hand, depends on the particular
regime where the droplet grows. As mentioned earlier, in
general droplets initially grow in the Hertz–Knudsen regime.
If the duration of the expansion is sufficiently large so that at
least a group of droplets reach Knudsen numbers lower than
the transition Knudsen number Kn* , then the normalized ra-
dius r (t;t) of this group of droplets cannot be solely deter-
mined by the Hertz–Knudsen formula given by Eq.~29!.
Usually, for sufficiently long duration of the expansion, there
will be groups of droplets that grow according to different
growth laws. In particular there will be a group of droplets at
normalized timet which is just entering the transition regime
with Knudsen number Kn* and created att̄ defined by

t5t1~ t̄ !. ~45!

For any sufficiently larget,t̄ can be obtained by solving the
functional Eq.~35! with t replaced byt̄. It can easily be
shown that groups of droplets created att,t̄ will grow ac-
cording to the transition regime multirange expressions
whereas groups of droplets created att.t̄ will grow accord-
ing to the Hertz–Knudsen formula of Eq.~29!. Figure 3
shows three different groups of droplets with different
growth rates att. The group of droplets created att,t̄ with
normalized critical radiusr cr~t! enter the transition regime at

t1(t),t. For times greater thant1~t! the growth of these
droplets proceed in the transition regime. On the other hand
the group of droplets created ath.t̄ still grow according to
the Hertz–Knudsen formula. The limiting group of droplets
created att̄ enter the transition regime at just the instantt
considered. Thus the expression forr (t;t) cannot in general
be given by a single formula over the whole range of Knud-
sen numbers. Lett̄5t* (t) be a function defined by the in-
verse of relation~45!. Utilizing Eqs. ~37! and ~38! for the
normalized radiusr (t;t) in the exactly solvable model pro-
posed, the condensation rate equation~44! for the molar frac-
tion y(t) then assumes the general form

y~ t !5E
ts

t F r cr~t!1lHKE
t

t

VHK~h!dhG3 S~t!

n~t!

3exp@2K21B~t!#dt ~46!

for all t,t* (t) and

y~ t !5E
ts

t* ~ t !F r cr~t!1lHKE
t

t1~t!

VHK~h!dh2
lCVC*

lHKVHK*

1AS lCVC*

lHKVHK*
D 212lCE

t1~t!

t

VC~h!dhG3 S~t!

n~t!

3exp@2K21B~t!#dt1E
t* ~ t !

t F r cr~t!1lHK

3E
t

t

VHK~h!dhG3 S~t!

n~t!
exp@2K21B~t!#dt ~47!

for all t.t* (t).
In cases when at no instant the conditiont.t* (t) is

satisfied, we havethe strictly Hertz–Knudsen regime. The
condensation rate equation is then given by Eq.~46! for all t.
It may also happen, e.g., during expansions with very high
initial pressures, that all droplets are created in a continuum
environment for which the continuum growth formula of Eq.
~28! holds ~strictly continuum regime!. In this case the nor-
malized radiusr (t;t) takes the form

r ~t;t !5Ar cr
2 ~t!12lCE

t

t

VC~h!dh ~48!

for all t during the expansion. The condensation rate equa-
tion for the molar fractiony in this strictly continuum regime
then reduces to the equation

y~ t !5E
ts

t F r cr2 ~t!12lCE
t

t

VC~h!dhG3/2 S~t!

n~t!

3exp@2K21B~t!#dt ~49!

for all t.
The general condensation rate equation given by Eqs.

~46! and ~47! is a nonlinear Volterra integral equation
coupled to the governing equations discussed in Sec. II A. Its
analytical solution, though possible in principle, is difficult
to obtain. Despite the fact that the unknown thermodynamic
functionsr cr , VC , VHK , S, B and the unknown parameters

FIG. 3. Droplet growth history of groups of droplets of various sizes at any
given instantt ~t̄ is the normalized time at which the groups of droplets in
transition att are created andr * is the normalized droplet radius at transi-
tion!.
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K, z8, lC , lHK need to be identified by the appropriate nucle-
ation and growth equations to be employed, one in addition
has to solve Eq.~35! with t replaced byt̄ to obtain Eq.~45!
and then invert it to get the functiont* (t). Granted this first
step is taken, we can exploit the fact that the nucleation
parameterK is small as compared to unity~corresponding to
relatively large nucleation period during expansion! and that
the growth parameterslC andlHK are large as compared to
unity ~corresponding to rapid growth of droplets! in order to
obtain an analytical solution of Eqs.~46! and ~47!. In this
way we solve Eqs.~46! and ~47! @and also the limiting Eq.
~49!# by Laplace’s method31,32 in the limit as

K→0 and lC , lHK→` with
lC

lHK
5finite. ~50!

We discuss these solutions below for different droplet
growth regimes.

III. ASYMPTOTIC SOLUTION OF THE CONDENSATION
RATE EQUATION IN DIFFERENT DROPLET
GROWTH REGIMES

The asymptotic solution of the condensation rate equa-
tion in different droplet growth regimes is constructed in the
limit asK→0 andlC , lHK→`. In all of the different growth
regimes the behavior of the activation functionB5B(t) dis-
tinguishes the distinct condensation zones during the expan-
sion. A typical variation of the activation functionB during a
continuous expansion is shown in Fig. 4. Fort<ts , with ts
denoting the time when the condensable vapor becomes satu-
rated,B is infinite ~vanishing nucleation rates!. For t.ts , the
vapor expands in metastable state resulting in a decreasing
behavior of the activation functionB. At some instantt l.ts
during the expansion,B exhibits an absolute minimum given
by

S dBdt D
t5t l

50 ~51!

corresponding to a maximum nucleation rate. The instant this
occurs, i.e., the point wheret5t l is calledthe relative onset
point.

In the intervalts<t<t l four physically distinct conden-
sation zones~only two are asymptotically distinct! can be
identified. These are the initial growth zone~IGZ!, further
growth zone~FGZ!, rapid growth zone~RGZ! and onset
zone~OZ!. The initial and further growth zones are defined
as the zones wheredB/dt5O(1). They are distinguished
physically in such a way that in the initial growth zone
~IGZ!, B5Bf whereBf denotes the frozen activation func-
tion with y[0. In this zone all of the flow variables plus their
derivatives are given by their frozen values. In the further
growth zone~FGZ!, wheredB/dt is still of O~1! in magni-
tude, considerable deviations in the time derivatives of the
flow variables from their isentropic values may occur despite
the fact that deviations of the variables themselves from their
isentropic values are negligibly small. The rapid growth
~RGZ! and onset~OZ! zones are defined as the zones where
dB/dt diminishes toO(K1/2) asK→0. The onset zone~OZ!,
which contains the empirical onset of condensation, is in fact
embedded in the rapid growth zone~RGZ!. In particular the
relative onset pointt l , where maximum nucleation is practi-
cally reached, marks the end of the onset zone.

For t.t l , vapor depletion can no longer be neglected
and two more physically and asymptotically distinct zones
are identified from the asymptotic solution of the rate equa-
tion. These are the nucleation zone with growth~NZ! where
both nucleation and droplet growth are important, and the
droplet growth zone~DGZ! which is dominated by droplet
growth. The nucleation zone with growth starts att5t l and
extends until nucleation rates are practically negligible. Re-
laxation of the nonequilibrium two-phase mixture to satu-
rated equilibrium states takes place in the droplet growth
zone ~DGZ!. These characteristic condensation zones are
unique in all of the different droplet growth regimes; how-
ever, different droplet growth rates lead to different asymp-
totic expressions in each zone. It is important to note that the
asymptotic expressions for the condensate molar fraction
hold independent of any particular homogeneous nucleation
theory to be employed. Except for IGZ, where the normal-
ized temperatureT and the normalized molar densityn of the
mixture are given by their isentropic values and the conden-
sation rate equation for the molar fraction is decoupled from
the rest of the governing equations, the asymptotic expres-
sions for the condensate molar fractiony(t) in distinct con-
densation zones for each droplet growth regime are com-
bined with the solution of the governing Eqs.~11!–~13! to
yield the temperatureT(t) and the molar densityn(t) by
iteration @Eq. ~13! for f(t) is solved by quadrature utilizing
the asymptotic expressions fory(t) in distinct condensation
zones in each droplet growth regime#. Thus the complete
solution is obtained provided that we solve the condensation
rate equation for the molar fractiony in distinct condensation

FIG. 4. Variation of the normalized activation functionB with normalized
time and the distinct condensation zones~Bf represents the normalized fro-
zen activation function,ts is the normalized time at which saturation is
reached, andt l is the turning point of the activation functionB!.
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zones in each growth regime to obtain the corresponding
asymptotic expressions.

A. Free molecular (Hertz–Knudsen) regime

In the free molecular regime where Kn@1, the conden-
sation rate equation for the molar fractiony assumes the
form of Eq. ~46! for all times during the expansion. The
asymptotic solution of the rate Eq.~46! in the double limit as
K→0 andlHK→` has already been carried out in a different
investigation16 using Laplace’s method.31,32 The free mo-
lecular asymptotic expressions in distinct condensation zones
can be found in Ref. 16 and need not be reproduced herein.
~In the asymptotic expressions of Ref. 16 the condensate
mass fractiong and the normalized mass densityr should,
respectively, be replaced by the molar fractiony and the
normalized molar densityn. In addition l5lHK and
V5VHK .!

B. Transition regime

The condensation rate equation in the transition regime
based on the exactly solvable model of Sec. II C and given
by Eqs.~46! and ~47! is in general difficult to solve asymp-
totically in the limit as K→0 and lC , lHK→` with
lC/lHK5finite. A serious difficulty arises in determining
t* (t) by inverting Eq.~45!. This problem can be easily by-
passed~although solvable in principle! if we assume that the
duration for which droplets grow in the initial Hertz–
Knudsen regime is small compared to the remaining period.
In other words we assume that droplets of critical size enter
the transition regime as soon as they are created. With this
assumption, which is reasonable for many practical applica-
tions, we obtain

t* ~ t !5t, ~52!

i.e., the functiont* reduces to the identity function. The
condensation rate Eq.~47! for the molar fractiony in this
regime then takes the simplified form

y~ t !5E
ts

t H r cr~t!2
lCVC~t!

lHKVHK~t!

1AF lCVC~t!

lHKVHK~t!G212lCE
t

t

VC~h!dhJ 3 S~t!

n~t!

3exp@2K21B~t!#dt ~53!

for all t>ts . Using Laplace’s method
31,32 the asymptotic so-

lution of Eq.~53! in the limit asK→0 andlC , lHK→` with
lC/lHK5finite, yields the asymptotic expressions in distinct
condensation zones of the transition regime, as exhibited in
Appendix A.

C. Continuum regime

In some extreme situations such as those encountered
under highly pressurized conditions, droplets of critical size
may be created in a continuum environment~Kn!1!. In such
a case droplet growth can be evaluated solely by the con-

tinuum growth formula of Eq.~28!. The condensate rate
equation for the molar fractiony is then given by Eq.~49!.
The asymptotic expressions in distinct condensation zones of
this regime then follow by Laplace’s method31,32 in the
double limit asK→0 andlC→`, as discussed in detail in
Appendix B.

IV. APPLICATIONS OF THE ASYMPTOTIC THEORY
AND COMPARISON WITH NUMERICAL
SIMULATIONS

The asymptotic solution presented in the preceding sec-
tion can be directly applied to predict the nucleation rateJ8,
the condensate molar fractiony, and the flow field~the molar
densityn8 and the temperatureT8! during a continuous ex-
pansion provided that the pressure variation is assumed~or
measured!. The thermodynamic properties such as surface
tension, diffusion coefficient, mass accommodation coeffi-
cient, latent heat, etc. are given together with the identifica-
tion of the thermodynamic functions and parameters that en-
ter the normalized nucleation and droplet growth equations.
The pressure signal will be assumed to be of the form

p8~ t8!5p08F0.0510.95 expS 2
t8

t28
D G , ~54!

wherep08 denotes the total initial pressure of the mixture and
t28 is a measure of the relaxation time for the total pressurep8
to drop to 5% of its initial valuep08 . In particular the expan-
sion timet r8 ~normalization constant for the time coordinate!
of Eq. ~9! becomes

t r85
20

19
t28 . ~55!

For practical applications of the theory we consider the
homogeneous condensation of water vapor in nitrogen dur-
ing continuous expansions in cloud chambers. For the homo-
geneous nucleation of water vapor in the range of tempera-
tures considered, we choose the classical nucleation
theory17,18 which yields nucleation rates within one or two
orders of magnitude in comparison with experiments~we
herein prefer the classical nucleation equation due to its sim-
plicity in spite of the fact that the recent semiphenomeno-
logical theories22–24 can improve the classical rates by an
order of magnitude in the range of temperatures considered!.
The normalizations of the classical nucleation theory and of
the continuum and free molecular growth laws, from which
the normalized thermodynamic functionsS, B, VHK , VC ,
r cr , the nucleation parameterK and the growth parameters
lHK andlC can be identified, are given in Appendix C to-
gether with certain thermodynamic properties of water vapor
and nitrogen which enter the asymptotic theory. With the
results of Appendix C, we can calculate certain characteris-
tics of homogeneous condensation, such as the shape of the
nucleation curve and the condensate mass fraction during
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expansions, by the asymptotic theory for different initial con-
ditions @for the results presented we fix the initial tempera-
ture byT085295 K and the initial partial water vapor pres-
sure by (pv8)051000 Pa and vary the initial total mixture
pressure between 1 and 50 bars#. In addition we simulate the
results for the same conditions numerically for comparison
with the results of the asymptotic solution~details of the
method used for numerical simulations can be found in the
dissertation of Muitjens33!.

Figure 5 shows a comparison of numerically and asymp-
totically achieved nucleation rates in the Hertz–Knudsen re-
gime for different expansion times with an initial pressure
p08 5 1 bar. There is an excellent agreement between numeri-
cal and asymptotic nucleation rates in the initial~IGZ! and
further growth ~FGZ! zones. Deviations begin to occur
somewhere in the rapid growth zone~RGZ! due to the sec-
ond order asymptotic solution~for the expansions considered
third order derivatives of the activation functionB seem to
be important in this zone, especially near the turning pointt l
due to the steep change inB!. The maximum nucleation rates
are somewhat an order of magnitude higher in the asymptotic
solution than in the numerical solution. Consequently the
nucleation rates drop in the nucleation zone with growth
~NZ! faster in the asymptotic solution than the numerical one
with an eventual approach toward each other. The differ-
ences decrease as the expansion timet28 is increased. Figure
6 shows a comparison of the asymptotic and numerical molar
fractions in the Hertz–Knudsen regime for the same expan-
sion. Deviations iny also occur in the rapid growth zone
~RGZ! where the asymptotic predictions fall below the nu-
merical ones due to the reasons mentioned above, i.e., the
second order approximation to the activation functionB in
the asymptotic theory. Consequently a steeper variation ofy

in the nucleation zone with growth~NZ! is observed in the
asymptotic theory. It is important to mention that there is no
discontinuity in the derivative ofy at t5t l , where RGZ and
NZ overlap.~The very sharp change indy/dt at t5t l in the
asymptotic solution of Fig. 6 should thereby not be inter-
preted as a discontinuous change. The almost discontinuous
behavior ofdy/dt at t5t l that appears to the eye is caused
by the plotter’s linear approximation between neighboring
points of the turning pointt l where a very steep change iny
occurs.! Once again the differences somewhat seem to di-
minish in DGZ downstream of NZ for smaller expansion
times t28 .

For intermediate initial pressuresp08 ~e.g.,p08 5 10 bar!
droplet growth takes place in the transition regime. This case
represents an opportunity to compare predictions of different
droplet growth regimes, namely the Hertz–Knudsen, con-
tinuum and transition regimes. In the transition regime we
use the exactly solvable transition model~Tr! introduced in
Sec. II C in the asymptotic theory whereas the widely used
interpolation formula of Gyarmathy~Gy! in numerical simu-
lations. A comparison of the asymptotic and numerical
nucleation rates obtained by the Hertz–Knudsen and transi-
tion ~Tr in the asymptotic solution, Gy in the numerical so-
lution! is shown in Fig. 7. Despite excellent qualitative
agreement, quantitative differences between numerical and
asymptotic solutions occur~especially in RGZ and NZ! due
to similar reasons discussed above. The maximum nucleation
rates of numerical and asymptotic solutions seem to be
within an order of magnitude@a better agreement is achieved
between the transition model~Tr! and Gyarmathy’s formula
~Gy!#. The comparison of the nucleation rates in this inter-
mediate regime for the Hertz–Knudsen~HK!, continuum
(C) and transition~Tr! models by the asymptotic solution is

FIG. 5. Comparison of nucleation rates obtained by numerical simulations
and asymptotic solution for the expansion of water vapor in nitrogen with
initial conditions p0851 bar, (pv8)051000 Pa, andT085295 K in the free
molecular ~Hertz–Knudsen! regime at different expansion times.~a!
t2851022 s. ~b! t2851023 s. ~c! t2851024 s.

FIG. 6. Comparison of molar fractions obtained by numerical simulations
and asymptotic solution for the expansion of water vapor in nitrogen with
initial conditions p0851 bar, (pv8)051000 Pa andT085295 K in the free
molecular ~Hertz–Knudsen! regime at different expansion times.~a!
t2851022 s. ~b! t2851023 s. ~c! t2851024 s.
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shown in Fig. 8. The Tr model yields the highest and the HK
model the lowest maximum nucleation rates for this case. A
similar comparison by the numerical solution~where the Tr
model is replaced by the Gy formula! yields similar qualita-
tive and quantitative behavior as shown in Fig. 9. Finally a
comparison of the results for the molar fraction obtained by

the asymptotic and numerical solutions for different growth
equations~HK, C, Tr for the asymptotic solution and Gy for
the numerical solution! is given in Fig. 10. Differences be-
tween asymptotic and numerical solutions occur due to simi-
lar reasons discussed above. A better agreement between the
asymptotic and numerical solutions is reached in this case for

FIG. 7. Comparison of nucleation rates obtained by numerical simulations
and asymptotic solution for the expansion of water vapor in nitrogen with
expansion timet2851022 s and initial conditionsp08510 bar, (pv8)051000
Pa andT085295 K in the free molecular~HK!, Gyarmathy~Gy!, and pro-
posed exactly solvable~Tr! models~in the transition regime the Gyarmathy
model is used for numerical simulations whereas the proposed exactly solv-
able model is used for asymptotic predictions!.

FIG. 8. Comparison of nucleation rates obtained by the asymptotic solution
for the expansion of water vapor in nitrogen with expansion time
t2851022 s and initial conditionsp08510 bar, (pv8)051000 Pa and
T085295 K in different growth regimes~HK, Hertz–Knudsen growth law;
C, continuum growth law; Tr, the proposed exactly solvable growth model!.

FIG. 9. Comparison of nucleation rates obtained by numerical simulations
for the expansion of water vapor in nitrogen with expansion time
t2851022 s and initial conditionsp08510 bar, (pv8)051000 Pa, and
T085295 K in different growth regimes~HK, Hertz–Knudsen growth law;
C, continuum growth law; Gy, Gyarmathy’s growth model!.

FIG. 10. Comparison of molar fractions obtained by the asymptotic solution
and numerical simulations for the expansion of water vapor in nitrogen with
expansion timet2851022 s and initial conditionsp08510 bar, (pv8)051000
Pa andT085295 K in different growth regimes~HK, Hertz–Knudsen growth
law; C, continuum growth law; Gy, Gyarmathy’s growth model; Tr, the
proposed exactly solvable growth model!.
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the continuum (C) and Gyarmathy~Gy! and proposed tran-
sition ~Tr! formulas.

Finally for high initial pressures~p08550 bar! the transi-
tion ~Tr!, Gyarmathy~Gy!, and continuum (C) growth laws
are compared by the numerical and asymptotic solutions. A
comparison of nucleation rates is plotted in Fig. 11, whereas
a comparison of the molar fractions can be found in Fig. 12.
Despite the differences previously discussed between asymp-
totic and numerical solutions, a better quantitative agreement
is reached for this case. This demonstrates that, for higher
pressures, the differences between the results of the second
order asymptotic solution and of the numerical simulations
seem to decrease.

V. CONCLUSIONS

Homogeneous condensation of a condensable vapor in a
carrier gas in expansion cloud chambers is investigated in
detail for different droplet growth regimes~free molecular,
transition, and continuum! depending on the initial vapor
pressure with fixed initial temperature and initial partial va-
por pressure. In particular an exactly solvable droplet growth
model in the transition regime at arbitrary Knudsen number
is presented. This model yields growth rates that lie in be-
tween those given by Gyarmathy’s25 and Young’s27 droplet
growth formulas, the latter ones being the most widely used
ones in the literature. The condensation rate equation for the
molar fraction constructed from an arbitrary steady-state
nucleation rate equation together with different droplet
growth laws~free molecular, continuum, transition! is then
solved asymptotically in the limit of relatively large nucle-
ation time ~K→0! and small droplet growth time~lHK ,
lC→`! and the distinct condensation zones together with the

corresponding asymptotic expressions of the condensate mo-
lar fraction are obtained in each growth regime. Nucleation
rates and condensate molar fractions during continuous ex-
pansions in cloud chambers are then calculated using the
classical nucleation theory and different droplet growth laws.
Comparison of the nucleation rates and the condensate molar
fractions obtained by the asymptotic solution with numerical
simulations for initial pressures ranging from low~p0851
bar! to high ~p08550 bar! pressures shows complete qualita-
tive and reasonable quantitative agreement despite some no-
table deviations near the onset of condensation resulting
from the use of second order approximation to the activation
function of nucleation. Maximum nucleation rates obtained
by the asymptotic and numerical solutions are within an or-
der of magnitude~higher in the asymptotic solution!.

This investigation shows that the shape of the nucleation
curve, independent of the particular nucleation rate equation
to be employed, can be determined satisfactorily both by
numerical simulations and by the asymptotic solution~al-
though there are some differences between the solutions!.
The approach toward saturated thermodynamic equilibrium
is also achieved in both solutions. In cases where a very
precise quantitative information of the nucleation curve is
required, the numerical simulations seem to yield quite sat-
isfactory results whereas the second order asymptotic theory
would yield results within an order of magnitude compared
to those of numerical simulations~higher approximations of-
the activation function near its turning point can definitely
improve the results; however, the analytical nature of the
solution will then be destroyed!. Noting that nucleation theo-
ries and nucleation rate measurements are at least off within
one or two orders of magnitude and taking into account

FIG. 11. Comparison of nucleation rates obtained by the asymptotic solu-
tion and numerical simulations for the expansion of water vapor in nitrogen
with expansion time t2851022 s and initial conditionsp08550 bar,
(pv8)051000 Pa, andT085295 K in different growth regimes~C, continuum
growth law; Gy, Gyarmathy’s growth model; Tr, the proposed exactly solv-
able growth model!.

FIG. 12. Comparison of molar fractions obtained by the asymptotic solution
and numerical simulations for the expansion of water vapor in nitrogen with
expansion timet2851022 s and initial conditionsp08550 bar, (pv8)051000
Pa, andT085295 K in different growth regimes~C, continuum growth law;
Gy, Gyarmathy’s growth model; Tr, the proposed exactly solvable growth
model!.
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theanalytical structure of the condensation zones exhibited
by the second order asymptotic solution, the results of the
second order asymptotic theory should also be considered as
being satisfactory for any practical application.
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APPENDIX A: ASYMPTOTIC SOLUTION OF THE
CONDENSATION RATE EQUATION IN THE
TRANSITION REGIME

In the initial growth ~IGZ! and further growth~FGZ!
zones wheredB/dt5O(1), theasymptotic expression fory
anddy/dt follow from the solution of the rate Eq.~53! by
Laplace’s method31,32for an endpoint minimum att5t in the
limit K→0 andlHK , lC→` with lC/lHK5finite.

y~ t !5@2lCVC~ t !#3/2K5/2S 2
dB

dt D
25/2 S~ t !

n~ t !

3exp@2K21B~ t !#H 34 Ap@112q2~ t !#

3expF2K21
dB

dt
b~ t !G13q~ t !F12K21

dB

dt
b~ t !G

1q3~ t !J ~A1!

and

dy

dt
5r cr

3 ~ t !
S~ t !

n~ t !
exp@2K21B~ t !#

13@2lCVC~ t !#3/2K3/2S 2
dB

dt D
23/2 S~ t !

n~ t !

3exp@2K21B~ t !#H Ap

4
@112q2~ t !#

3expF2K21
dB

dt
b~ t !G1q~ t !J , ~A2!

wherea(t), b(t), andq(t) are defined by

a~ t ![r cr~ t !2
lCVC~ t !

lHKVHK~ t !
, ~A3!

b~ t ![
1

2lCVC~ t ! F lCVC~ t !

lHKVHK~ t !G
2

, ~A4!

q~ t ![a~ t !A ~2dB/dt!

2KlCVC~ t !
, ~A5!

and wheredB/dt is evaluated from

dB

dt
5

]B

]p

dp

dt
1

]B

]T

dT

dt
1

]B

]y

dy

dt
. ~A6!

Equations~A1!–~A6! form a transcendental system fory and
dy/dt in FGZ and can be solved iteratively starting with the
local frozen solution~usually a single iteration suffices!. In
particular the expressions fory and dy/dt in IGZ can be
simplified by considering the frozen limit of the thermody-
namic functions, i.e., B→Bf , S→Sf , r cr→r cr,f ,
VC→VC, f , andVHK→VHK, f where by subscriptf we mean
the frozen~isentropic! value of the function.

In the rapid growth zone~RGZ! and the embedded onset
zone~OZ!, dB/dt diminishes toO(K1/2) asK→0 by defini-
tion. From the solution of the rate Eq.~53! by Laplace’s
method15,16 for an end point minimum we obtain the follow-
ing expressions fory, dy/dt, andd2y/dt2 in the second or-
der approximation to the activation functionB(t)

y~ t !5@2lCVC~ t !#3/2@2b~ t !#25/4
S~ t !

n~ t !
expF g2~ t !

8b~ t !Gexp@2K21B~ t !#S H 34 ApD25/2Fg~ t !22b~ t !b~ t !

A2b~ t !
G

1
3

2
Apq̄ 2~ t !D23/2Fg~ t !22b~ t !b~ t !

A2b~ t !
G J expFg~ t !b~ t !2b~ t !b2~ t !

2 G1$q̄ 3~ t !13q̄~ t !b~ t !@2b~ t !#1/2%

3D21F g~ t !

A2b~ t !
G13q̄~ t !D22F g~ t !

A2b~ t !
G D , ~A7!
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dy

dt
5r cr

3 ~ t !
S~ t !

n~ t !
exp@2K21B~ t !#13@2lCVC~ t !#3/2@2b~ t !#23/4

S~ t !

n~ t !
expF g2~ t !

8b~ t !Gexp@2K21B~ t !#

3S Ap

4 HD23/2Fg~ t !22b~ t !b~ t !

A2b~ t !
G12q̄ 2~ t !D21/2Fg~ t !22b~ t !b~ t !

A2b~ t !
G J expFg~ t !b~ t !2b~ t !b2~ t !

2 G
1q̄~ t !D21F g~ t !

A2b~ t !
G D , ~A8!

and

d2y

dt2
5

1

VC~ t !

dVC

dt

dy

dt
1r cr

3 ~ t !
S~ t !

n~ t !
exp@2K21B~ t !#F 3

r cr~ t !

drcr
dt

1
1

S~ t !

dS

dt
2

1

n~ t !

dn

dt
2

1

VC~ t !

dVC

dt
1g~ t !G

13lHKVHK~ t !r cr
2 ~ t !

S~ t !

n~ t !
exp@2K21B~ t !#1

3

4
Ap@2lCVC~ t !#3/2@2b~ t !#21/4

S~ t !

n~ t !

3exp@2K21B~ t !#expFg~ t !b~ t !2b~ t !b2~ t !

2 GexpF g2~ t !

8b~ t !GD21/2Fg~ t !22b~ t !b~ t !

A2b~ t !
G , ~A9!

whereDn(x) is Whittaker’s parabolic cylinder function34,35

of x and of ordern and where

q̄~ t ![a~ t !A A2b~ t !

2lCVC~ t !
, ~A10!

g~ t ![2K21
dB

dt
.0, ~A11!

b~ t ![
1

2
K21

d2B

dt2
.0, ~A12!

with dB/dt evaluated from Eq.~A6! andd2B/dt2 evaluated
by

d2B

dt2
5

]B

]p

d2p

dt2
1

]B

]T

d2T

dt2
1

]B

]y

d2y

dt2
1

]2B

]p2 S dpdt D
2

1
]2B

]T2 S dTdt D
2

1
]2B

]y2 S dydt D
2

12S ]2B

]p]T

dp

dt

dT

dt

1
]2B

]p]y

dp

dt

dy

dt
1

]2B

]T]y

dT

dt

dy

dt D . ~A13!

Equations ~A7!–~A13! together with the governing Eqs.
~11!–~13! can be solved iteratively for the flow variablesn,
T, and y in RGZ and OZ starting with a nearby upstream
solution. In particular the solution for the flow field at the
relative onset point follows in the limit as

g→g l[0, b→b l , S→S l , etc. ~A14!

In the nucleation zone with growth~NZ! the asymptotic
expressions fory anddy/dt follow from the solution of the
rate Eq. ~53! where the relative onset pointt l acts as an
interior minimum for Laplace’s method. Consequently we
obtain

y~c!5n l S 34 Ap$D25/2@2&~b l
1/2bl1c!#

12q̄ l
2D23/2@2&~b l

1/2bl1c!#%

3expF2
~b l

1/2bl1c!2

2 G1FAp

2
q̄ l

3

13Apq̄l~b l
1/2bl1c!G~11erf c!

13q̄l exp~2c2! D , ~A15!

dy

dt
5r cr

3 ~ t !
S~ t !

n~ t !
exp@2K21B~ t !#

1
3

4
Apn l~2b l !

1/2S $D23/2@2&~b l
1/2bl1c!#

12q̄ l
2D21/2@2&~b l

1/2bl1c!#%

3expF2
~b l

1/2bl1c!2

2 G12&q̄l~11erf c! D ,
~A16!

where

c[Ab l~ t2t l !>0, ~A17!

n l[@2lCVCl#
3/2~2b l !

25/4
S l

nl
exp@2K21Bl #, ~A18!

with subscript l denoting values of functions evaluated at
t5t l @e.g.,VCl5VC(t l), etc.#. In particular we recover the
solution att5t l in the limit asc→0. Whenc@1, we get

y~c!;Apn l@2
5/4~b l

1/2bl1c!3/216q̄l~b l
1/2bl1c!

1~3!23/4q̄ l
2~b l

1/2bl1c!1/21&q̄ l
3#. ~A19!
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The growth law given by Eq.~A19! can not persist in the
droplet growth zone~DGZ! where thermodynamic equilib-
rium is established. Using once more Laplace’s method for
an interior minimum, the solution of the rate Eq.~53! in this
zone can be cast into the form

y5@AR̄1~A2pn l !
1/3q̄l #

3, ~A20!

dy

dt
5
3

2

VC~ t !

VCl
~A2pn l !

2/3~2b l !
1/2

3
@AR̄1~A2pn l !

1/3q̄l #
2

AR̄
, ~A21!

with R̄ satisfying the scaled relaxation rate equation

dR̄

dx
5

VC

VCl
, ~A22!

where the scaling laws

R̄[Lb l
1/3Fbl1E

t l

t VC~t!

VCl
dtG , ~A23!

x[Lb l
1/3~ t2t l !, ~A24!

have been introduced with the scaling parameterL given by

L[@2Apn l #
2/3~2b l !

1/6. ~A25!

The nonlinear droplet relaxation Eq.~A22! is of the same
form as nonequilibrium internal mode excitation or chemical
reaction with flow and tends to saturated equilibrium states
~VC→0 asx→`!. It can be solved by quadrature starting
with an initial valueR̂ obtained by matching smoothly the
solution of the nucleation zone with growth~NZ! with the
droplet growth zone~DGZ! solution at a conveniently cho-
sen pointx̂.

APPENDIX B: ASYMPTOTIC SOLUTION OF THE
CONDENSATION RATE EQUATION IN THE
CONTINUUM REGIME

The condensation rate equation of the continuum regime
given by Eq.~49! can be solved asymptotically in the double
limit as K→0 andlC→`. In particular in the initial growth
~IGZ! and further growth~FGZ! zones the asymptotic ex-
pressions fory and dy/dt follow by Laplace’s method31,32

for an end point minimum att5t in the double limit given
above.

y~ t !5
3

4
Ap@2lCVC~ t !#3/2K5/2S 2

dB

dt D
25/2 S~ t !

n~ t !

3exp@2K21B~ t !#expF2K21
dB

dt
c~ t !G ~B1!

and

dy

dt
5r cr

3 ~ t !
S~ t !

n~ t !
exp@2K21B~ t !#

1
3

4
Ap@2lCVC~ t !#3/2K3/2S 2

dB

dt D
23/2 S~ t !

n~ t !

3exp@2K21B~ t !#expF2K21
dB

dt
c~ t !G , ~B2!

wherec(t) is defined by

c~ t ![
r cr
2 ~ t !

2lCVC~ t !
~B3!

together withdB/dt given by

dB

dt
5

]B

]p

dp

dt
1

]B

]T

dT

dt
1

]B

]y

dy

dt
. ~B4!

Equations~B1!–~B4! together with Eqs.~11!–~13! can
be solved iteratively for the flow field in IGZ and DGZ start-
ing with the local frozen solution~y[0!. In particular the
expressions in the initial growth zone~IGZ! can be simpli-
fied by considering the frozen limit for the thermodynamic
functions, namely,

T→Tf , n→nf , B→Bf , S→S f , VC→VCf , etc.
~B5!

In the rapid growth zone~RGZ! and the embedded onset
zone~OZ!, wheredB/dt5O(K1/2) asK→0, the asymptotic
expressions for the condensate molar fractiony and its de-
rivatives dy/dt and d2y/dt2 are obtained by Laplace’s
method31,32 for an end point minimum taking into account
the second order approximation of the activation functionB.

y~ t !5
3

4
Ap@2lCVC~ t !#3/2@2b~ t !#25/4

S~ t !

n~ t !

3exp@2K21B~ t !#expF g2~ t !

8b~ t !G
3expFg~ t !c~ t !2b~ t !c2~ t !

2 G
3D25/2Fg~ t !22b~ t !c~ t !

A2b~ t !
G , ~B6!

dy

dt
5r cr

3 ~ t !
S~ t !

n~ t !
exp@2K21B~ t !#

1
3

4
Ap@2lCVC~ t !#3/2@2b~ t !#23/4

S~ t !

n~ t !

3exp@2K21B~ t !#expF g2~ t !

8b~ t !G
3expFg~ t !c~ t !2b~ t !c2~ t !

2 G
3D23/2Fg~ t !22b~ t !c~ t !

A2b~ t !
G , ~B7!

and
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d2y

dt2
5

1

VC~ t !

dVC

dt

dy

dt
1r cr

3 ~ t !
S~ t !

n~ t !
exp@2K21B~ t !#F 3

r cr~ t !

drcr
dt

1
1

S~ t !

dS

dt
2

1

n~ t !

dn

dt
2

1

VC~ t !

dVC

dt
1g~ t !G

13lCVC~ t !r cr~ t !
S~ t !

n~ t !
exp@2K21B~ t !#1

3

4
Ap@2lCVC~ t !#3/2@2b~ t !#21/4

S~ t !

n~ t !
exp@2K21B~ t !#expF g2~ t !

8b~ t !G
3expFg~ t !c~ t !2b~ t !c2~ t !

2 GD21/2Fg~ t !22b~ t !c~ t !

A2b~ t !
G , ~B8!

whereDn(x) is Whittaker’s parabolic cylinder function34,35

of x and of ordern and where

g~ t ![2K21
dB

dt
.0, ~B9!

b~ t ![
1

2
K21

d2B

dt2
.0, ~B10!

with dB/dt evaluated from Eq.~B4! andd2B/dt2 evaluated
by

d2B

dt2
5

]B

]p

d2p

dt2
1

]B

]T

d2T

dt2
1

]B

]y

d2y

dt2
1

]2B

]p2 S dpdt D
2

1
]2B

]T2 S dTdt D
2

1
]2B

]y2 S dydt D
2

12S ]2B

]p]T

dp

dt

dT

dt

1
]2B

]p]y

dp

dt

dy

dt
1

]2B

]T]y

dT

dt

dy

dt D . ~B11!

In particular the above asymptotic expressions at the relative
onset pointt5t l can be obtained in the limit as

g→g l[0, b→b l , etc., ~B12!

where by subscriptl we mean evaluated att5t l .
In the nucleation zone with growth~NZ!, where both

nucleation and droplet growth are important, the asymptotic
expressions fory anddy/dt follow from the rate Eq.~49! by
Laplace’s method31,32 for an interior minimum

y~c!5
3

4
Apn l expF2

~b l
1/2cl1c!2

2 G
3D25/2@2&~b l

1/2cl1c!#, ~B13!

dy

dt
5r cr

3 ~ t !
S~ t !

n~ t !
exp@2K21B~ t !#1

3

4
Apn l~2b l !

1/2

3expF2
~b l

1/2cl1c!2

2 GD23/2@2&~b l
1/2cl1c!#,

~B14!

where the stretched coordinatec and the parameternl are
defined by

c[Ab l~ t2t l !>0 ~B15!

and

n l[@2lCVCl#
3/2~2b l !

25/4
S l

nl
exp@2K21Bl #. ~B16!

In particular we recover the solution att5t l in the limit as
c→0. Further downstream of the nucleation zone~NZ!
wherec@1, we get

y~c!;25/4Apn l~b l
1/2cl1c!3/2. ~B17!

This limiting behavior ofy cannot persist in the droplet
growth zone~DGZ! where saturated thermodynamic states
are reached. In this case a different scaling law for the
stretched coordinate should be used. Using Laplace’s method
for an interior minimum, one can easily show that the ex-
pressions fory anddy/dt in this case take the form

y5@R̄#3/2 ~B18!

and

dy

dt
5
3

2

VC~ t !

VCl
~A2pn l !

2/3~2b l !
1/2AR̄, ~B19!

whereR̄ satisfies the scaled relaxation rate equation

dR̄

dx
5

VC

VCl
~B20!

with the scaling laws introduced by

R̄[Lb l
1/3Fcl1E

t l

t VC~t!

VCl
dtG , ~B21!

x[Lb l
1/3~ t2t l !. ~B22!

The scaling parameterL in the scaling laws~B21! and~B22!
is given by

L[@2Apn l #
2/3~2b l !

1/6. ~B23!

The relaxation rate Eq.~B20! can be solved by quadrature
starting with an initial valueR̂ obtained by matching
smoothly the solution of the nucleation zone with growth
~NZ! with the droplet growth zone~DGZ! solution at some
point x̂. It is also worthwhile to mention that a simplified
version of the asymptotic solution of the rate equation in the
continuum regime appeared first in the M.S. thesis by
Verschueren.36
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APPENDIX C: THERMODYNAMIC DATA AND
NORMALIZATION OF NUCLEATION AND DROPLET
GROWTH THEORIES

We herein exhibit the thermodynamic properties that en-
ter the asymptotic theory for the condensation of water vapor
in nitrogen. The molar latent heat of condensationL8(T8) for
water in the range of temperatures investigated is given by
the linear relation

L8~T8!55.68573104242.75T8 ~J/mol! ~C1!

in agreement with Eq.~10!, whereT8 is measured in Kelvin.
The planar saturation pressurepvs,`8 at T8 is then evaluated
by the Clausius–Clapeyron relation and is given by

pvs,`8 ~T8!5610.8 expF2
42.75

R
ln

T8

273.15

2
5.68573104

R
S 1T8

2
1

273.15D G ~Pa!, ~C2!

whereR58.314 41 J/mol K is the universal gas constant.
The density of liquid water is taken at a constant value of
r l8 5 995 kg/m3. the molar specific heats at constant pressure
of water vapor and nitrogen are, respectively, given bycpv8
5 cpH2O8 5 32.6693J/mol Kandcpi8 5 cpN28 5 29.1615J/mol K.

The variation of the surface tensions8 with temperature is
taken to be of the form

s8~T8!50.111 773S 12
T8

647.3D
0.712 021

~N/m! ~C3!

and the diffusion coefficientD8 is evaluated from

D85
2.45

p8 S T8

295D
2.085

~m2/s!, ~C4!

whereT8 is measured in Kelvin andp8 in pascal.
With the above thermodynamic properties we can nor-

malize the nucleation rate equation and the continuum and
Hertz–Knudsen droplet growth laws and identify the thermo-
dynamic functions and parameters that enter the asymptotic
theory. For the nucleation rate equation we use the classical
theory given by

J85A2

p
s8~T8!~mv8!23/2

rv8
2

r l8
expS 2

DG*

kT8 D , ~C5!

wheremv8 andrv8 are, respectively, the mass of a single vapor
molecule and the mass density of the vapor andDG* /(kT8)
is Gibbs formation energy given by

DG*

kT8
5
16

3
pS mv8

r l8 ln SD
2Fs8~T8!

kT8 G3 ~C6!

with S denoting the supersaturation ratio defined byS
[ pv8/pvs,`8 (T8). Using the expression for the surface tension
given by Eq.~C3! and the expression for the saturation pres-
sure of water vapor given by Eq.~C2! and relatingrv8 to the
normalized thermodynamic coordinates (p,T,y), Eq. ~C5!
can be cast into the normalized form

J[
J8

z8
5S~p,T,y!exp@2K21B~p,T,y!# ~C7!

in such a way thatS5O~1! andB5O(1) during the period
of significant nucleation rates where the normalization con-
stant of nucleationz8 is given by

z850.266 75~mv8!23/2yvo
2

~mvns8!2

r l8
, ~C8!

the nucleation parameterK is given by

K542.7406S r l8

mv8
D 2~kTs8!3. ~C9!

The pre-exponential functionS and the activation functionB
assume the form

B~p,T,y!5@ f ~T!#3@ ln S~p,T,y!#22 ~C10!

and

S~p,T,y!5Af ~T!

T3 S 12y/yvo
12y D 2p2 ~C11!

with the normalized surface tensionf (T) and the supersatu-
rationS(p,T,y) given by

f ~T!5
1

T F12
Ts8

647.3
TG0.712 021 ~C12!

and

S~p,T,y![
pv8

pvs,`8 ~T8!

5
ps8

610.8S yvo2y

12y D p expFA1 lnS Ts8

273.15
TD

1
B1

Ts8
S 1T2

Ts8

273.15D G , ~C13!

where A155.141 andB156.8383103. The critical radius
(r cr8 ) is defined by the Gibbs–Thomson relation

r cr8 5
2mv8

r l8

s8

kT8

1

ln S
~C14!

which in normalized form takes the form

r cr~p,T,y![
r cr8

r d8
5
0.223 55mv8

r d8r l8kTs8

f ~T!

ln S~p,T,y!
. ~C15!

The Hertz–Knudsen droplet growth law given by Eqs.
~16! and ~25! ~neglecting the Kelvin effect and taking the
mass accommodation coefficientaM8 equal to unity! assumes
the normalized form

dr

dt
5lHKVHK~p,T,y!, ~C16!

where the Hertz–Knudsen growth parameterlHK is given by

lHK5
6108.0t r8

r d8r l8A2pTs8R/mv
S 273.15Ts8

D A1 ~C17!
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and the Hertz–Knudsen growth functionVHK ~of order
unity! is identified as

VHK~p,T,y!5
1

10T~A110.5! expF2B1S 1

Ts8T
2

1

273.15D G
3@S~p,T,y!21#. ~C18!

Similarly the continuum growth law given by Eqs.~15!–~18!
and~24! and which, in neglecting the Kelvin effect, assumes
the form

dr8

dt8
5

1

r 8

D8pvs,`8 ~T8!

r l8~12yvo!RvT8
~S21! ~C19!

can be cast into the normalized form of Eq.~28!, namely

dr

dt
5
1

r
lCVC~p,T,y!, ~C20!

where the continuum growth parameterlC and the con-
tinuum growth functionVC are identified as

lC5
1.49653104t r8

r l8~12yvo!RvTs8ps8r d8
2 S Ts8295D

2.085S 273.15
Ts8

D A1
~C21!

and

VC~p,T,y!5
1

10pT~A121.085! expF2B1S 1

Ts8T
2

1

273.15D G
3@S~p,T,y!21#. ~C22!

1J. Aitken, Trans. R. Soc. Edinburgh30, 337 ~1880/81!.
2A. Stodola,Dampf-und Gasturbinen~Springer, Berlin, 1922!.
3C. T. R. Wilson, Philos. Trans. R. Soc. London, Ser. A189, 265 ~1897!.
4K. Oswatitsch, ZAMM22, 1 ~1942!.
5P. P. Wegener and L. M. Mack, Adv. Appl. Mech.5, 307 ~1958!.

6Nucleation, edited by A. C. Zettlemoyer~Dekker, New York, 1969!.
7F. F. Abraham,Homogeneous Nucleation Theory~Academic, New York,
1974!.

8J. L. Katz, J. Chem. Phys.52, 4733~1970!.
9P. E. Wagner and R. Strey, J. Chem. Phys.80, 5266~1984!.
10R. Strey, P. E. Wagner, and T. Schmeling, J. Chem. Phys.84, 2325

~1986!.
11C. Hung, M. Krasnopoler, and J. L. Katz, J. Chem. Phys.90, 1856~1989!;
92, 7722~1990!.

12F. Peters and B. Paikert, Exps. Fluids7, 521 ~1989!.
13P. A. Blythe and C. J. Shih, J. Fluid Mech.76, 593 ~1976!.
14J. H. Clarke and C. F. Delale, Phys. Fluids29, 1389~1986!.
15C. F. Delale, G. H. Schnerr, and J. Zierep, Phys. Fluids A5, 2969~1993!.
16C. F. Delale, G. H. Schnerr, and J. Zierep, J. Fluid Mech.287, 93 ~1995!.
17R. Becker and W. Do¨ring, Ann. Phys.24, 719 ~1935!.
18Y. B. Zeldovich, Acta Physicochim. USSR18, 1 ~1943!.
19J. Lothe and G. M. Pound, J. Chem. Phys.36, 2080~1962!.
20H. Reiss, J. L. Katz, and E. R. Cohen, J. Chem. Phys.48, 5553~1968!.
21M. E. Fisher, Physics3, 255 ~1967!.
22A. Dillmann and G. E. A. Meier, J. Chem. Phys.94, 3872~1991!.
23C. F. Delale and G. E. A. Meier, J. Chem. Phys.98, 9850~1993!.
24V. I. Kalikmanov and M. E. H. van Dongen, J. Chem. Phys.103, 4250

~1995!.
25G. Gyarmathy,Multiphase Science and Technology 1~McGraw-Hill, New
York, 1982!, pp. 99–279.

26J. B. Young, Int. J. Heat Mass Transfer34, 1649~1991!.
27J. B. Young, Int. J. Heat Mass Transfer36, 2941~1993!.
28V. G. Chernyak and A. Ye. Margilevsky, Int. J. Heat Mass Transfer32,
2127 ~1989!.

29R. E. Sampson and G. S. Springer, J. Fluid Mech.36, 577~1969!; 40, 859
~1970!.

30P. N. Shankar, J. Fluid Mech.40, 395 ~1970!.
31A. Erdelyi, Asymptotic Expressions~Dover, New York, 1956!.
32L. Sirovich, Techniques of Asymptotic Analysis~Springer, New York,
1971!.

33M. J. E. H. Muitjens, Ph.D. dissertation, Eindhoven University of Tech-
nology, 1996.

34M. Abramowitz and A. Stegun,Handbook of Mathematical Functions
~Dover, New York, 1965!.

35I. S. Gradshteyn and I. M. Ryzhik,Tables of Integrals, Series and Prod-
ucts ~Academic, New York, 1980!.

36M. Verschueren, M.S. thesis, Eindhoven University of Technology, 1995.

8821Delale, Muitjens, and van Dongen: Simulation of homogeneous condensation

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996

Downloaded¬05¬Sep¬2011¬to¬131.155.2.66.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions


