EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Asymptotic solution and numerical simulation of homogeneous
condensation in expansion cloud chambers

Citation for published version (APA):

Delale, C. F., Muitjens, M. J. E. H., & Dongen, van, M. E. H. (1996). Asymptotic solution and numerical
simulation of homogeneous condensation in expansion cloud chambers. Journal of Chemical Physics, 105(19),
8804-8821. https://doi.org/10.1063/1.472631

DOI:
10.1063/1.472631

Document status and date:
Published: 01/01/1996

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.1063/1.472631
https://doi.org/10.1063/1.472631
https://research.tue.nl/en/publications/83490584-ef0c-466f-8f05-dd4eb8b621ba

Asymptotic solution and numerical simulation of homogeneous
condensation in expansion cloud chambers

C. F. Delale,¥ M. J. E. H. Muitjens, and M. E. H. van Dongen
Department of Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

(Received 15 April 1996; accepted 9 August 1996

Asymptotic solution of homogeneous condensation in expansion cloud chambers in different droplet
growth regimes is presented. In particular an exactly solvable droplet growth model ranging
between the Hertz—Knudsen and continuum droplet growth laws is introduced. The distinct
condensation zones in each droplet growth regime are identified by the asymptotic solution of the
condensation rate equation and the results are compared with those of direct numerical simulations
using the classical nucleation theory. Excellent qualitative agreement is reached despite some minor
gquantitative differences in some of the condensation zones arising from the nature of the asymptotic
solution in these zones. @996 American Institute of Physids$0021-960806)52142-3

I. INTRODUCTION solvable droplet growth model in the transition regime which
yields growth rates ranging from Hertz—Knudsen to con-
Homogeneous condensation is the process of generatigiuum growth rates is constructed for an analytical solution
of clusters of vapor molecules which act as condensatioand is compared with the most widely used transition growth
nuclei by thermal fluctuationéiomogeneous nucleatipfol-  expressions. The condensation rate equation for the molar
lowed by the growth of these nuclei into droplétiroplet  fraction is then constructed from the nucleation and growth
growth). This nonequilibrium process appears in special enequations for different droplet growth regimes and is solved
vironments in physics, chemistry, biology, and many areas oOjn conjunction with the governing equations of expansion
engineering. It entered atmospheric physics as early as 18&Jud chambers by an asymptotic method in the limit of
by Aitken’s investigations and with the invention of the relatively slow nucleation process followed by rapid droplet
supersonic nozzle by de Laval, it led to investigations ingrowth. The distinct condensation zones with complete ana-
conjunction with steam turbinéswilson® examined homo- |ytical structure are then identified by the asymptotic solu-
geneous condensation in his invention of the classical clouglon. Finally the results for different initial mixture pressures
chamber which later was used for different applications in(corresponding to different droplet growth regimase com-
physics. The theory was first formulated using homogeneougared with direct numerical simulations of the rate equation
nucleation and droplet growth theories combined with thecombined with the equations of motion. Excellent qualitative
equations of motion by OswatitséhDetailed experimental and reasonable quantitative agreement between the asymp-
and theoretical investigatiofis? in different configurations totic solution and numerical simulations of the rate equation
have been performed since then. Complete analytical solys achieved despite some quantitative differences which

tions to the theory of homogeneous condensation in supefmainly arise from the asymptotic nature of the solution.
sonic nozzles have been possible in the last two decades by
B B el THEORY OF HOWOGENEQUS CONDENSATION
: nethod. 1 BXPANSION CLOUD CHAMBERS

refined® and extended to the investigation of homogeneous
condensation in shock tub&s. We consider a mixture of a condensable vapor and a

The aim of the present paper is to apply the asymptoticarrier gas in an expansion chamber with initial total pres-
method for the investigation of homogeneous condensatiofurepy, initial partial vapor pressurep(), and initial tem-
in expansion cloud chambers. For this reason the detaileperatureT,. We assume that the mixture contains no impu-
physical mechanism of homogeneous condensgtimmo-  rities such as dust particles, ions, etc. so that homogeneous
geneous nucleation and droplet growih discussed in Sec. nucleation sets in during the expansion of the mixture in
Il. The homogeneous nucleation equation is cast into a nommetastable states. As the expansion valve is opened at the
malized functional form independent of the particular theoryinitial time t; = 0, the mixture expands isentropically for a
to be employed. The growth mechanism is given a generavhile until the vapor becomes saturated with no detectable
consideration to cover growth regimes from free moleculaicondensation. As the mixture continues to expand almost
(Hertz—Knudsen to continuum. In particular an exactly isentropically further on in metastable states of the vapor,

homogeneous nucleation sets in resulting in the formation of

dpermanent address: Department of Mechanical Engineering, Istanbul Umc-:ondensatlon nUCIEI, which rapidly grow into drOpIetS' When
versity, Avcilar 34850, Istanbul and Department of Mathematics, (€ Number of growing droplets reach a certain value, drop-
TUBITAK Marmara Research Center, 41470 Gebze, Kocaeli, Turkey. wise condensation becomes detectaloleset of condensa-
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Delale, Muitjens, and van Dongen: Simulation of homogeneous condensation 8805

tion). Consequently significant deviations in the total pres-where we refer to saturation values by subscsifll primed
sure and temperature of the mixture from their isentropiovariables denote actual quantities whereas the unprimed vari-
values become observable, the nucleation rate reaches #bles correspond to their normalized valudsurthermore
peak value with a subsequent decay, and vapor depletion duwee normalize the molar specific enthalpy, the molar spe-

to droplet growth becomes noticable. The two-phase mixtureific heat of the mixture at constant pressn()e,n, and the
then relaxes toward saturated equilibrium states due to fumolar latent heak’(T') by

ther growth of the droplets. The objective is to locate the

onset of condensation, to predict the shape of the nucleation h=__ ¢ = CPT“, and L(T)= Lyi(T,) ' 7
curve in time and to obtain the structure of the relaxation A ST

zone over a wide range of initial pressures ranging from lowyhere 72 is the universal gas constant. On the other hand the
to relatively high values. timet’ is normalized as

t/

A. Governing equations t= o (8)
r
We herein present the governing equations of expansion s th L . b
cloud chambers in the two-phase homogeneous dispersé‘gIeretr Is the expansion time given by
droplet regime assuming no slip between droplets and the 1 1 dp’
surrounding mixture. We further assume that the droplets 7=~ p’ dt ©)
r t)=0

and the surrounding mixture are at the same temperdture

so that the heat released per mole of the mixture is equal to  For most applications in the range of temperatures con-

yL'(T") wherey is the molar fraction of the condensate andsjgered, the normalized molar latent heat can be taken as a
L'(T") is the molar latent heat of condensation correspondiinear function inT as

ing to temperaturel’ (one-temperature modelThe total _
mixture pressurg’ can either be precisely measured or it L(T)=aT+b. (10
can be related to the volume change during the expansionith the above normalization Eqggl), (2), (5), and(10) can
This helps us to bypass any consideration of the momentume solved forT andn to yield
equation. The conservation of energy then leads to the equa-

_ [p®pen  ay(t)

tion T(t
( ) b Cpm_bY(t)
,dh’dp’ L 1=y
av ~dr @ o
. . . . . a[p(t)]*Hepm
wheret’ is the time,n’ is the molar density of the mixture, m &(1), (11
andh’ is the mixture molar enthalpy defined by pm Cpm™ DY
! ! ! ! ! p(t)
h'=c,,,T'—yL'(T')+ constant. 2 nt)= —————, 12
P O iyoro 12
In Eq. (2 c{,m denotes the molar specific heat of the mixture
. g where
at constant pressure and is related to the molar specific heats
at constant pressure of the carrier and of the vapor t 3
Ch, by i B(t)= ft y(E)[P(&)]~ 1+ com/comdig, (13
Com=(1=Y,0)CpitYuoCpy (3)  In particular Eqs(11) and(12) reduce to the classical isen-

tropic relations for noncondensing flowg=0). For con-
densing flows Eqs(11) and (12) yield the solution for the
FémperatureT and molar densityn of the mixture at any
given instant in terms of the total pressugand the molar

p'=p/+p., (4)  fraction of the condensatg. In what follows the pressure

_ ) will be assumed to be given as a function of tinpp(t)]

wherep; andp,, respectively, denote the partial vapor pres-gither by direct measurements or by assigning a prescribed
sure of the carrier gas and of the vapor. Assuming that th?orm, and the condensate molar fractiprwill be obtained

condensable vapor and the carrier gas both obey the ideal 9ggm the asymptotic solution of the condensation rate equa-
law, we obtain the thermal equation of state of the mixture agjgp,.

wherey,q is the initial molar fraction of the condensable
vapor. On the other hand the thermal equation of state of th
mixture is constructed by Dalton’s law

p'=(1-y)n'T". ©)
We now normalize the flow variables with respect to B. Homogeneous nucleation and droplet growth
their saturation values during expansion, namely The condensation of vapor in the supersaturated state
, , A’ occurs by homogeneous nucleation followed by rapid
p= p_, T=—, and n=—, (6)  growth. Homogeneous nucleation is the process of formation
Ps s Ns of clusters of critical size in metastable equilibrium with the
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8806 Delale, Muitjens, and van Dongen: Simulation of homogeneous condensation

surrounding vapor in the absence of any foreign particleswith p; denoting the mass density of the condensed phase,
The most well-known and widely used theory of homoge-p; is the vapor pressure of the droplet surface and is related
neous nucleation is the classical nucleation theory of Becketp the saturation pressure of planar interphase. at T’ by
Doring, and Zeldovich®®which is based on the capillarity the well-known Gibbs—Thomson relation
approximation. The more systematic statistical mechanical 26" v’

theories of Lothe and Poulitiand of Reiss, Katz, and p/=p’ w(T’)exp(i, U_,) (17
Coherf® have helped improving our understanding of the o r' kT

phenomenon. Unfortunately none of these theories have begh Eq. (17) o' denotes the surface tensida,is the Boltz-
successful in comparison with measured nucleation rates faghann constanty’ is the molecular volume, and’ is a
most substances over a wide temperature rdagme have modified diffusion coefficient defined by
been successful for particular substances over restricted tem- .

perature ranges while they have proved to be considerably r— D'p'Rnm

off in comparison with measured nucleation rates for the R,(1—p,/p")

remaining substancesRecent advances in nucleation theory  ivh denoting the diffusion coefficien®. the mixture
~m

has mostly been in the direction of constructing semiphe- as constant, anR, the vapor gas constant. Equatidiis)

norr:jenologicﬁall ;nodels rt])ased OZ lTishr?r’s droplet theo(rjybognd (16) yield the appropriate droplet growth law for the
condensation. Among these models the ones propose yno—slip model assumed provided that an expression for the

D|I:jmann Snd '\gﬁ'eﬁ Deltale .a?(;j tl)v'::‘tle?, and Kallktr’rlﬁnovth Nusselt number Nuor equivalently the Sherwood number
aln \(anl hong 't seem 1o yield. he er agreemefn an | eSh) can be found. It can be shown by dimensional analysis
classical theory in comparison with experiments for a varietyy, »; o e no-slip two-phase model considered the Nusselt

of substances over a wide range of temperatures. All of thﬂumber Nu for mass transfer depends on the following non-
above theories can nevertheless be cast into a unique fun&'mensional group as:

tional form for the normalized steady-state nucleation date

(18

as Nu= f(Kn,Pr,Sc,Fay..). (19
J’ . In Eqg. (19), Kn is the Knudsen number defined by
JE?=2(D,T,y)exp[—K B(p,T.y)1, (14 "
Kn=— 20
whereJ’ is the actual nucleation rateumber of clusters of 2r’ 20

critical size formed per unit volume per unit tin&’ iS & ith |” denoting the mean free path of molecules in the gas

nor_mal_ization c_onsta_nt for nuclea_tioB, is the normalized mixture far from the droplet. Pr is the Prandtl number de-
activation functionK is the nucleation parameter, much 'essfined by

than unity, and is the normalized pre-exponential factor of
the order of unity. For applications the parametérand(’, C{,mﬂ'
and the function® andZ are identified from the particular Pr= k'
homogeneous nucleation theory to be employed. For our , ) .
consideration of homogeneous condensation in expansioff/tl Com denoting the specific heat at constant pressure of
cloud chambers, the functional for(4) can be employed, the-gas mixturek the thermal. conductlwty, ang’ the vis-
without loss of generality, to characterize the number ofcosity of the gas mixture. Sc is the Schmidt number defined
critical clusters that grow into droplets in the local thermo- y
dynamic state §,T,y). 7'

The growth of droplets is governed by interfacial rates of ~ SC= 757+ (22)
heat, mass and momentum transfer. Taking into account the
no slip condition between droplets and the surrounding mixWhich is the ratio of momentum diffusivity to mass diffusiv-
ture and the condition that the droplets are at the same teniy- FO is the Fourier number defined by
perature of the mixture in the two-phase dispersed droplet a't/
model considered herein, the droplet growth law can be ex- Fo=—+, (23
pressed by a single mass transfer equation to a spherical
droplet. This mass transfer equation can be written in termsvhich is a nondimensional group for the unsteadiness with
of a single nondimensional number, the Nusselt number Nua’ denoting the thermal diffusivity of the mixture, amg,
as refers to a group of parameters characterizing ratios of prop-
erties in the gas mixture such as the dilution ratjép’ or

(21)

= # (15) the ratio of gas constan®®,/R,. The Fourier number Fo,
2ar'A'(p,—pr) which characterizes the influence of nonstationary change of
whereM ' is the rate of mass transfer to a spherical droplet offtat€ on the droplet growth rate, assumes very high values
radiusr’ and is defined by and remains almost constant during expansions in most ap-
, plications; therefore, it need not be taken into account for
M =412/ d_r (16) most applications(the quasisteady approximatipn The
Prar groups Pr and Sc are properties of the gas mixture only and

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996
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they strictly depend on the dilution ratip,/p’. For most  Similarly utilizing Egs. (16) and (25 and neglecting the
cases their values are both close to unity and can onlelvin effect, we obtainthe free molecular or Hertz
weakly influence the forng19) for the Nussult number. The Knudsen droplet growth laws
Knudsen number Kn, on the other hand, is substantially de- .
termined by pressure and droplet size and for the no-slip — = Ak Quk(p,TLY), (29)
model assumed, it essentially determines the f@#n of the dt
droplet growth law. If Kn<1, the gas mixture acts as a con- where),, will be referred to as the Hertz—Knudsen or free
tinuum. The problem of determining the Nusselt number formglecular growth parameter aiitl, , which depends on the
the no-slip model assumed then reduces to the steady-staigal thermodynamic state, will be referred to as the free
diffusion problem and Eq(19) can then be written as molecular or Hertz—Knudsen growth function.

Nug=2. (24) Expressions for the growth parametagsandi,_x and

for the growth function€) and ), are explicitly given in

Equations(15), (16), (17), and(24) then determinghe con-  Appendix C. It should also be noted that the growth func-
tinuum droplet growth lawor the two-phase model assumed tions Q¢ and{),x are both of order of unityindeed they are
(the droplets and gas mixture are at the same temperatur@ymerically close to each otheRapid growth then suggests
there is no velocity slip between the carrier gas and the disthat bothA; and\« are large compared to unity. Indeed we
persed droplets, efc.If Kn>1 (the free molecular regimg  have
heat conduction, viscous shear, and diffusion, being proper- s s
ties of the continuum, lose their physical relevance. The N> M 1. (20
transfer rates of heat and momentum should then be exrom Egs.(28) and(29) we obtain
pressed as the sum of net energy or momentum transferred (dr/db) NU N
individually by the molecules colliding with the droplet. The c__~*¢__ "¢ (31)
mass transfer rate can similarly be obtained by the net mass (dr/dpk Nupc MhakQhx

of vapor condensing on the droplet and, for the model connoting thatr is an increasing function of timédroplet

sidered, can be calculated kpr details see Gyarmatfy) growth), by virtue of Eq.(31), we can easily show that there
o’ exists ant given by the condition Ng=Nuy, , namely
M'=4dmr'2a), ——— o= Pr) (25)
M /—2’7TRUT, (p pr fE )\CQC . (32)

with @}, denoting the mass accommodation coefficient,
which is the ratio of sticking molecules to those impinging
on it and is to be determined experimentally. Equatii,
(17), and(25) then determinghe free molecular or Hertz
Knudsen growth lawIn particular the continuum and free
molecular growth rates can each be cast into a single equ
tion if we define the normalized droplet radiusy

For droplets of size>T, the Hertz—Knudsen formula given
by Eq. (28) yields higher growth rates whereas for droplets
of sizer<ft, the continuum growth formula given by Eq.
(29) yields higher growth rates. In general, except for expan-
gjons under highly pressurized systems and aside from ano-
molies caused by nucleation theories near the coexistence
line, initial growth of droplets takes place according to the
r’ Hertz—Knudsen formuldKn>1). As droplets grow devia-
r=-—. (26)  tions from the Hertz—Knudsen formula occin=0(1)].
d The continuum droplet growth regime can be reached as-
In Eq. (26) rj is a conveniently defined normalization con- ymptotically if relatively large droplets are formed at the

-

stant for droplet growth given by local thermodynamic state, e.g., under high pressure condi-
, U3 tions where Krgl. It is then necessary to find expressions

r’s( 3ns ) 27 for droplet growth at arbitrary Knudsen number ranging

N\ amgnlt, from very small values to relatively large values compared to

o unity. Numerous expressions, called multirange expressions
with n/ denoting the actual molar density of the condensede ., see Gyarmatf3) and which interpolate between the
phase. We will herein negIeCt the so-called Kelvin eﬁeCt,HertZ_Knudsen and continuum formu|aS, have been sug-
i.e., we takep; = p;s.. in EQ.(17). Utilizing Eqs.(15), (16),  gested. One of the most widely used multirange expressions

and (24) together with the conditiom; = p,s.., the con- s given by Gyarmath{® which for the two-phase dispersed
tinuum droplet growth lavean be written in normalized form  droplet regime considered herein takes the form

as
NuGy _ VZWB;\A(l_yvo)

dr 1 = (33
dqtr AcQc(p,T.Y). (28) NU 4Kn
with
Here\¢ will be referred to as the continuum growth param- >R
eter and()., which depends on the local thermodynamic B/ = " ! Sc (34)
. . . M M .
state, will be referred to as the continuum growth function. TRm

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996
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8808 Delale, Muitjens, and van Dongen: Simulation of homogeneous condensation

The Gyarmathy formula given by Eq&33)—(34) is just an (i) At t<t; or equivalently Ke=Kn*, it should reduce to

interpolation formula between the Hertz—Knudsen and con- the Hertz—Knudsen formula.
tinuum regimes. A physical model based on the classicafii) The radius dependence of the growth rate, which is a
Langmuir model covering the intermediate regime at arbi- consequence of the growth rate dependence on the
trary Knudsen number has recently been proposed by Knudsen number, should be explicitly displayed and
Young?®? for both a pure vapor and a vapor in the presence the resulting rate equation should be solvable to yield
of an inert gas. Young's results agree well especially with an explicit expression for the droplet growth radius
the numerical simulations of the Boltzmann equaticend for all timest=t;.
with the results of model kinetic equatiofis® In addition (i) For Kn<Kn*, it should yield the continuum growth
the transition from the kinetic to diffusion controlled limit is law of Eq. (298).
satisfactorily recovered in Young's formufa.However, (iv) It should obey the general nondimensional growth ex-
Young's formula, as well as Gyarmathy’s law given by Egs. pression(19), possibly in the quasisteady approxima-
(33)—(34), are not suitable for analytical work which requires tion, for the two-phase dispersed droplet model as-
explicit determination of the droplet radius at arbitrary sumed.
Knudsen number. In what follows we introduce an exactly(v) It should yield growth rates close to well-tested and
solvable model for the droplet radius at arbitrary Knudsen generally accepted intermediate growth formulas such
number, which somewhat lies between the multirange as those by Gyarmatfyand Yound’’ Fortunately
growth rate expressions of Gyarmathynd Young?’ the growth equation
dr 1
C. An exactly solvable droplet growth model at q O AcQc (36)
. C2*C
arbitrary Knudsen number F—r*(ty) + —
Mk

The initial growth of droplets usually takes place on
clusters of critical size created in the vapor phase by homofor t=t; with superscript’ denoting conditions evaluated at
geneous nucleation. For spherical droplets, depending on thie=t;, satisfies all the above requirements. Requirentignt
critical radiusr /, and the mean free path, the initial growth ~ simply follows by evaluating Eq.36) at t=t;, where
of droplets may obey different droplet growth formulas rang-Kn=Kn* andr=r*(t;) and by assuming that the Hertz—
ing from the free molecular to the continuum growth formu- Knudsen formula of Eq(29) holds fort<t,. Requirement
las. As mentioned before, if conditions are such thasHn (i) is satisfied by solving the differential equati86) sub-
initially, droplet growth takes place according to the Hertz—ject to the initial conditiorr =r*(t;) att=t, . It then follows
Knudsen formula whereas if kal initially, the continuum  that
regime growth formula holds. At intermediate Knudsen t
number, of the order of unity, a transitional growth formula f(T;t)=rcr(T)+7\HKJ Quk(n)dn (37)
is needed. Generally initial growth takes place according to T
the Hertz—Knudsen formula because of the small size of theor t<t,(7) (the free molecular regimewheret(7) is given
critical radius; however, as droplets grow, a transitional charpy Eq. (35) and
acter may emerge. In such a case, for a droplet created at a .
normalized timer, there exists a normalized transitional time () =r*[ty(n)] - Aclc
t; (both normalized with respect to the expansion tithe ' ! M Qi
where the Knudsen number reaches a universally assumed .
value Krf calledthe transition Knudsen numhefFor t<t, n \/( AcQe
where Kre=Kn*, the Hertz—Knudsen formula given by Eq. Mk Qi
(29) is assumed to hold. Thus, for a droplet created, dhe
normalized timet, can be evaluated from

2

t
+2?\cft ( )Qc(ﬂ)dﬂ (39
1 T

for t=t,(7) (the transition regime In order to show that
requirementsiii )—(v) of Eq. (36) are satisfied, we cast Eq.

I(ty) ty (36) into the form
r*(tl)EW:rcr(T)"‘)\HKf Qpk(7)d7, (39
T Nu Nug Kn 1*]°!
wherer ., is the normalized critical radius of the dropletith Nuc NUﬁK_ Kn* 11| ° (39)
respect ta'}), r*(t,), andl(t,) are, respectively, the normal- _ R
ized radius and the mean free patioth normalized with ~Where, as mentioned before, fler 2,1 = 1"/r 4 is the normal-

respect ta'}) evaluated at=t, . In particular Eq(35) relates |;ed mean free; pgth of molecules in the gas mixture With
t, to 7 provided that a universal value for Kris assumed. 9iven by the kinetic formula

Despite the fact that one can satisfactorily use the multirange 7' 2R, T’

expressions of Gyarmatfiyand Young’ with no reference "= > o (40
whatsoever to Kh, these formulas are not suitable for the P

analytical work to be pursued herein. We therefore introducend superscript refers to transition conditions at=t;. In
an exactly solvable droplet growth equation which apparEg. (39) the ratiosl*/I and N§E/Nuj, are both ofO(1) in
ently should satisfy the following requirements: magnitude. It then follows that for keKn*, Eq.(39) yields

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996
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dr/dt

Nu/Nuy ¢

H-K

Mer r r r

FIG. 1. Comparison of different droplet growth laws as a function of the

Knudsen number. HK, Hertz—Knudsen growth la@; continuum growth ~ FIG. 2. Radius dependence of droplet growth rates in various models. HK,
law; Y, Young’'s growth model; Gy, Gyarmathy’s growth model; Tr, the Hertz—Knudsen growth lawC, continuum growth lawy, Young's growth
proposed exactly solvable growth modén* is the transition Knudsen model; Tr, the proposed exactly solvable growth mddglis the normal-
number and K is the Knudsen number of a droplet of normalized radius ized critical droplet radiug;* is the normalized droplet radius at transition,
given by Eq.(32)]. andr is the normalized droplet radius given by E§2)].

the continuum limit, i.e., Ne¢Nu.=2. Consequently Eqg.
(36) yields the continuum regime formula for Kn/Krel,;
therefore, requiremertiii) is satisfied. Using the definition '
of the Schmidt number given by E(2) and the definition Knudsef number with value Rr=1.31. Thus for

of the mean free path given by EG0) and taking into Kn=Kn =1.31., the trapS|t|on model is assumed to yield
account the thermodynamic dependence of the diffusion cgd"OWth rates given precisely by the Hertz—Knudsen formula.
efficientD’ (for most fluids it is approximately proportional 1he most commonly used Gyarmathy formula yields grovvtfn
to the square of the temperature and inversely proportional tft€S Which are considerably smaller than those of Young's

the pressure the transition growth Eq39) corresponding to  formula and the proposed model. The growth rates given by
the exactly solvable model of E¢36) can be written as Eq. (36) of this model apparently lie_between the growth
rates given by GyarmatRyand Young’ for Kn<Kn*, sat-
Nu ( NU& ) Kn Sc* 1}‘1

B >c 1 isfying requirementv). A comparison of the radius depen-
Nuc NUgik Kn* Sc ¢

Young's formula deviates from the Hertz—Knudsen formula
negligibly (within 1%). This inspires us to set the transition

(41) dence of different droplet growth formulas is shown in Fig.

) i 2. It can easily be seen that for droplets of normalized radius
whereg is defined by r<rt with t given by Eq.(32), the continuum growth formula
T*\ B~ vm)/2Avm=1) yields growth rates which are higher than those of the free
&= <?) (42) molecular formula whereas for droplets of normalized radius
r>r, the Hertz—Knudsen formula yields the highest rates.
with vy, denoting the initial adiabatic exponent of the carrieryoung’s formula yields rates which are lower than both of
gas defined byym=cpy/(Cpm—1). In general is of order  the free molecular and continuum growth rates. The pro-
unity and varies numerically between 1 and 1.5 for mosfyosed transition model, for intermediate Knudsen numbers,
expansions where the Knudsen number Kn changes by ofjelds even lower growth rateqthe rates given by
ders of magnitudgthe Schmidt number remains close to Gyarmathy’s formula, although not shown, would yield the
unity for most expansions Thus the variation of can be |owest rates for fixed size of all the growth rates discussed
neglected and itself may be treated as a constant, say withror sufficiently large droplets all of these transition models
value unity during the expansion. With this in mind, E41)  seem to approach the continuum growth law.
agrees with the nondimensional foi19) in the quasisteady
approximation. This proves that E¢36) satisfies require-
ment(iv) to a good approximation.

Finally we compare the growth rates of the propose
transition mode(Tr) with existing multirange expressions of The condensation rate equation is constructed from a
Young and Gyarmathy. Figure 1 shows a comparison of th@ucleation rate equation and a droplet growth law. Denoting
ratio Nu/Ny,k for various models. All of the transition mod- the radius of a spherical droplet at created at7 by
els (Gyarmathy?® Young?’ and this modél approach the r’(7';t’), the condensate molar fractignatt’ can be writ-
continuum model asymptotically for kn0.1. For Kr=1.31  ten as

aD' The condensation rate equation
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8810 Delale, Muitjens, and van Dongen: Simulation of homogeneous condensation

t,(7)<t. For times greater thaty(7) the growth of these
droplets proceed in the transition regime. On the other hand

rer(M) r(n.t) the group of droplets created gt still grow according to
——@ the Hertz—Knudsen formula. The limiting group of droplets
H-K o — o . ; .
r () "Iy created atr enter the transition regime at just the instant
.°' . considered. Thus the expression fgr;t) cannot in general
H-K > be given by a single formula over the whole range of Knud-

() sen numbers. Let=7*(t) be a function defined by the in-
) ’ verse of relation(45). Utilizing Egs. (37) and (38) for the
L4 H-K . T normalized radius (7;t) in the exactly solvable model pro-
> posed, the condensation rate equati4) for the molar frac-
tion y(t) then assumes the general form

3
t, T z t®) n t _ " 2(7)
y(t)=
tg n(r)
FIG. 3. Droplet growth history of groups of droplets of various sizes at any % exd _ K_lB( 7)]dr (46)

given instant (7 is the normalized time at which the groups of droplets in
transition att are created and* is the normalized droplet radius at transi- for all t< +* (t) and

"

A4

t
rcr(7)+)\HKJ’ Quk(n)dn

tion).
(1) ty(7) AcOE
y(t)= t el 7)+ Nk QHK(U)dﬂ_)\HKT
s o HK
4 _ (v J'(7") T2 3
y(t,): 2 Wn,f [r,(T,;t,)]g [V dr’. (43) )\CQC t E(T)
37y n'(7') *V nar +2xcft()90(n)dn e
HK JAN
By substituting from Eq(14) for J’ and using normalized
variables together with the definition of radius normalization y CK1B()Tdrt t Y
constant ; given by Eq.(27), the condensation rate E@3) exi (7)]d7 0 el )+ N

takes the form

3
EGXF{—KilB(T)]dT (47)
n(7)

t
y(t)=ft[r(7;t)]3&exp{—l<1B(T)Jdr. (44) XJTQHK(”)d’?
g n(r)

*
The functions and B and the nucleation parametkr are for all” t>7 (t).h t instant th dition 7% (1) |
presumably to be obtained from the particular theory of ho- n cases when at no instant the condition 7" (t) is

mogeneous nucleation to be employed. The normalized ras—at'Sﬂed’ we havehe strictly HertzKnudsen regimeThe

dius r(7;t), on the other hand, depends on the particuIarcondensation rate equation is then given by @) for all t.

regime where the droplet grows. As mentioned eatrlier, inIt may also happen, e.g., during expansions .W'th very high
general droplets initially grow in the Hertz—Knudsen regime.m't"?‘I Pressures, th‘fﬂ all drople_ts are created in a continuum
If the duration of the expansion is sufficiently large so that aSnVironment f_or which _the continuum grovyth formula of Eq.
least a group of droplets reach Knudsen numbers lower tha@s)_ holds (s_trlctly. continuum regine In this case the nor-
the transition Knudsen number Knthen the normalized ra- malized radiug (7;t) takes the form

diusr(r;t) of this group of droplets cannot be solely deter- t

mined by the Hertz—Knudsen formula given by Eg9). r(rt)= \/r<2:r(7')+2)\cf
Usually, for sufficiently long duration of the expansion, there
will be groups of droplets that grow according to different for all t during the expansion. The condensation rate equa-
growth laws. In particular there will be a group of droplets attion for the molar fractiory in this strictly continuum regime
normalized time which is just entering the transition regime then reduces to the equation

with Knudsen number Khand created at defined by

t
t=t,(7). (45) yv= fr

For any sufficiently large, 7 can be obtained by solving the
functional Eq.(35) with 7 replaced byr. It can easily be

shown that groups of droplets createdratr will grow ac-  for all t.
cording to the transition regime multirange expressions The general condensation rate equation given by Egs.
whereas groups of droplets createdratr will grow accord-  (46) and (47) is a nonlinear Volterra integral equation
ing to the Hertz—Knudsen formula of Eq29). Figure 3  coupled to the governing equations discussed in Sec. Il A. Its
shows three different groups of droplets with differentanalytical solution, though possible in principle, is difficult
growth rates at. The group of droplets created &t with  to obtain. Despite the fact that the unknown thermodynamic
normalized critical radius(7) enter the transition regime at functionsr,, Qc, Quk, 2, B and the unknown parameters

Qc(n)dny (48)

T

t
ré(r>+2xcf Qc(n)dy

T

3/2 E( T)
n(r)

xexd —K 1B(7)]dr (49
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dB) B
(a t:t—O (51)

corresponding to a maximum nucleation rate. The instant this
occurs, i.e., the point whette=t, is calledthe relative onset
point
In the intervalt;<t<t, four physically distinct conden-
sation zonegonly two are asymptotically distinctcan be
identified. These are the initial growth zofk5Z), further
growth zone(FGZ), rapid growth zone(RGZ) and onset
zone(0Z). The initial and further growth zones are defined
as the zones wherdB/dt=0(1). They are distinguished
physically in such a way that in the initial growth zone
(IGZ), B=B; whereB; denotes the frozen activation func-
tion with y=0. In this zone all of the flow variables plus their
FIG. 4. Variation of the normalized activation functi@with normalized derivatives are given by their fr_ozen values. I,n the fu,rther
time and the distinct condensation zoriBs represents the normalized fro- growth zone(FG2), wheredB/dt is still of O(1) in magni-
zen activation functioni is the normalized time at which saturation is tude, considerable deviations in the time derivatives of the
reached, and, is the turning point of the activation functids). flow variables from their isentropic values may occur despite
the fact that deviations of the variables themselves from their
isentropic values are negligibly small. The rapid growth
K, ', Ac, Mk Need to be identified by the appropriate nucle-(RGZ) and onsetOZ) zones are defined as the zones where
ation and growth equations to be employed, one in additioi!B/dt diminishes toO(K*?) asK—0. The onset zon¢D2),
has to solve Eq(35) with 7 replaced byr to obtain Eq.(45) which contains the empirical onset of condensation, is in fact
and then invert it to get the functiorf (t). Granted this first €mbedded in the rapid growth zo(RRG2). In particular the
step is taken, we can exploit the fact that the nucleatiorielative onset point;, where maximum nucleation is practi-
parameteK is small as compared to unitgorresponding to  cally reached, marks the end of the onset zone.
relatively large nucleation period during expansiand that For t>t,, vapor depletion can no longer be neglected
the growth parameters. and\ are large as compared to and two more physically and asymptotically distinct zones
unity (corresponding to rapid growth of dropleis order to ~ are identified from the asymptotic solution of the rate equa-
obtain an analytical solution of Eq$46) and (47). In this  tion. These are the nucleation zone with gro\iiz) where
way we solve Eqs(46) and (47) [and also the limiting Eq. both nucleation and droplet growth are important, and the

(49)] by Laplace’s methath?in the limit as droplet growth zongDGZ) which is dominated by droplet
growth. The nucleation zone with growth startstatt, and
K—0 and Ac, A\pgk—® with szinite. (50) extends until nucleation rates are practically negligible. Re-
HK laxation of the nonequilibrium two-phase mixture to satu-
We discuss these solutions below for different droplet@ted equilibrium states takes place in the droplet growth
growth regimes. zone (DGZ). These characteristic condensation zones are

unique in all of the different droplet growth regimes; how-
ever, different droplet growth rates lead to different asymp-

Ill. ASYMPTOTIC SOLUTION OF THE CONDENSATION ;Ost'cmextg;isséo”fe'gs.eoancsh fci”fr']: 'so'rr]r(‘j'[;‘:ggrt‘; t%g?;f :c?:étt.gﬁ
RATE EQUATION IN DIFFERENT DROPLET ymptolc expressi !

GROWTH REGIMES hold independent of any particular homogeneous nucleation
theory to be employed. Except for IGZ, where the normal-
The asymptotic solution of the condensation rate equaized temperatur@ and the normalized molar densityof the
tion in different droplet growth regimes is constructed in themixture are given by their isentropic values and the conden-
limit as K—0 and\¢, A\yx—. In all of the different growth  sation rate equation for the molar fraction is decoupled from
regimes the behavior of the activation functiBs-B(t) dis-  the rest of the governing equations, the asymptotic expres-
tinguishes the distinct condensation zones during the expagions for the condensate molar fractig(t) in distinct con-
sion. A typical variation of the activation functidhduringa  densation zones for each droplet growth regime are com-
continuous expansion is shown in Fig. 4. Reftg, witht;  bined with the solution of the governing Eq4.1)—(13) to
denoting the time when the condensable vapor becomes satyield the temperaturd(t) and the molar densityi(t) by
rated,B is infinite (vanishing nucleation ratgsFort>t., the iteration[Eq. (13) for ¢(t) is solved by quadrature utilizing
vapor expands in metastable state resulting in a decreasirige asymptotic expressions fg(t) in distinct condensation
behavior of the activation functioB. At some instant,>t,  zones in each droplet growth regiinerhus the complete
during the expansioB exhibits an absolute minimum given solution is obtained provided that we solve the condensation
by rate equation for the molar fractignin distinct condensation
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8812 Delale, Muitjens, and van Dongen: Simulation of homogeneous condensation

zones in each growth regime to obtain the correspondinginuum growth formula of Eq.(28). The condensate rate
asymptotic expressions. equation for the molar fractiog is then given by Eq(49).
The asymptotic expressions in distinct condensation zones of
this regime then follow by Laplace’s methtid? in the
double limit asK—0 and\-—, as discussed in detail in

In the free molecular regime where i, the conden-  Appendix B.
sation rate equation for the molar fractignassumes the
form of Eq. (46) for all times during the expansion. The
asymptotic solution of the rate EgL6) in the double limit as
Kio F;nd)\HK—mo has already becsn)carried out in a different ' APPLICATIONS OF THE ASYMPTOTIC THEORY
. - S , 32 AND COMPARISON WITH NUMERICAL
investigation® using Laplace’s methot!:*? The free mo- SIMULATIONS
lecular asymptotic expressions in distinct condensation zones
can be found in Ref. 16 and need not be reproduced herein. The asymptotic solution presented in the preceding sec-
(In the asymptotic expressions of Ref. 16 the condensatgon can be directly applied to predict the nucleation Hte
mass fractiorg and the normalized mass densjiyshould,  the condensate molar fractignand the flow fieldthe molar
respectively, be replaced by the molar fractiprand the densityn’ and the temperatur€’) during a continuous ex-
normalized molar densityn. In addition A=Ay and  pansion provided that the pressure variation is assuf@ed

A. Free molecular (Hertz—Knudsen) regime

Q=0 ) measuref] The thermodynamic properties such as surface
tension, diffusion coefficient, mass accommodation coeffi-
B. Transition regime cient, latent heat, etc. are given together with the identifica-

tion of the thermodynamic functions and parameters that en-
Ser the normalized nucleation and droplet growth equations.
YFhe pressure signal will be assumed to be of the form

The condensation rate equation in the transition regim
based on the exactly solvable model of Sec. Il C and give
by Eqgs.(46) and(47) is in general difficult to solve asymp-
totically in the limit as K—0 and \c, Ayk—° with
Ac/hyk=finite. A serious difficulty arises in determining p'(t")=ph
7 (t) by inverting Eq.(45). This problem can be easily by-
passedalthough solvable in principjef we assume that the
duration for which droplets grow in the initial Hertz— wherep; denotes the total initial pressure of the mixture and
Knudsen regime is small compared to the remaining periodt; is a measure of the relaxation time for the total presplre
In other words we assume that droplets of critical size enteto drop to 5% of its initial valugyg . In particular the expan-
the transition regime as soon as they are created. With thision timet, (normalization constant for the time coordinate
assumption, which is reasonable for many practical applicaef Eq. (9) becomes
tions, we obtain

™(H)=t, (52 20,
r 19 2

: (54)

t/
0.05+0.95 ex;{ - —,)
t2

(59
i.e., the function7* reduces to the identity function. The
condensation rate Eq47) for the molar fractiony in this

regime then takes the simplified form For practical applications of the theory we consider the

homogeneous condensation of water vapor in nitrogen dur-

(! AcQc(7) ing continuous expansions in cloud chambers. For the homo-
yv= fts ol 7) = Mk (7) geneous nucleation of water vapor in the range of tempera-
tures considered, we choose the classical nucleation
\/ AeQc(r) |? *3(7) theory "8 which yields nucleation rates within one or two
" Mk (7) +2ACLQC(”)d” n(r) orders of magnitude in comparison with experimefge
herein prefer the classical nucleation equation due to its sim-
Xexd —K™'B(7)]dr (63)  plicity in spite of the fact that the recent semiphenomeno-

for all t=t,. Using Laplace’s methd&®2the asymptotic so- '0gical theorie&~2* can improve the classical rates by an
=t,. ; . .
lution of Eq.(53) in the limit asK —0 andA¢ , Ayx— with order of magnitude in the range of temperatures consiglered

/M =finite, yields the asymptotic expressions in distinct The normalizations of the classical nucleation theory and of

condensation zones of the transition regime, as exhibited iff'® continuum and free molecular growth laws, from which
Appendix A. the normalized thermodynamic functios B, Qux, Qc¢,

ro» the nucleation paramet& and the growth parameters
Muk and M can be identified, are given in Appendix C to-
gether with certain thermodynamic properties of water vapor
In some extreme situations such as those encountereahd nitrogen which enter the asymptotic theory. With the
under highly pressurized conditions, droplets of critical sizeresults of Appendix C, we can calculate certain characteris-
may be created in a continuum environméf<1). In such  tics of homogeneous condensation, such as the shape of the
a case droplet growth can be evaluated solely by the comucleation curve and the condensate mass fraction during

C. Continuum regime
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FIG. 5. Comparison of nucleation rates obtained by numerical simulation§1G. 6. Comparison of molar fractions obtained by numerical simulations
and asymptotic solution for the expansion of water vapor in nitrogen withand asymptotic solution for the expansion of water vapor in nitrogen with
initial conditions py=1 bar, ,)o=1000 Pa, andry=295 K in the free initial conditions py=1 bar, (b,),=1000 Pa andly=295 K in the free
molecular (Hertz—Knudseh regime at different expansion timega) molecular (Hertz—Knudsen regime at different expansion timega)
t,=10"2s.(b) t;=10°s.(c) t4=10*s. t,=10"2s.(b) t,=10"3s.(0) t,=10"*s.

expansions, by the asymptotic theory for different initial con-in the nucleation zone with growtfNZ) is observed in the
ditions [for the results presented we fix the initial tempera-asymptotic theory. It is important to mention that there is no
ture by T;=295 K and the initial partial water vapor pres- discontinuity in the derivative of att=t,, where RGZ and
sure by 6,)o=1000 Pa and vary the initial total mixture NZ overlap.(The very sharp change thy/dt att=t, in the
pressure between 1 and 50 Hats addition we simulate the asymptotic solution of Fig. 6 should thereby not be inter-
results for the same conditions numerically for comparisompreted as a discontinuous change. The almost discontinuous
with the results of the asymptotic solutiqdetails of the behavior ofdy/dt att=t, that appears to the eye is caused
method used for numerical simulations can be found in thdy the plotter’s linear approximation between neighboring
dissertation of Muitjers). points of the turning point, where a very steep changeyin
Figure 5 shows a comparison of numerically and asympeoccurs) Once again the differences somewhat seem to di-
totically achieved nucleation rates in the Hertz—Knudsen reminish in DGZ downstream of NZ for smaller expansion
gime for different expansion times with an initial pressuretimest;.
po = 1 bar. There is an excellent agreement between numeri-  For intermediate initial pressureg, (e.g.,p, = 10 bay
cal and asymptotic nucleation rates in the ini{ig3Z) and  droplet growth takes place in the transition regime. This case
further growth (FG2) zones. Deviations begin to occur represents an opportunity to compare predictions of different
somewhere in the rapid growth zoflRG2) due to the sec- droplet growth regimes, namely the Hertz—Knudsen, con-
ond order asymptotic solutigffior the expansions considered tinuum and transition regimes. In the transition regime we
third order derivatives of the activation functi@® seem to  use the exactly solvable transition mode&l) introduced in
be important in this zone, especially near the turning pgint Sec. Il C in the asymptotic theory whereas the widely used
due to the steep changel). The maximum nucleation rates interpolation formula of Gyarmath§Gy) in numerical simu-
are somewhat an order of magnitude higher in the asymptotilations. A comparison of the asymptotic and numerical
solution than in the numerical solution. Consequently thenucleation rates obtained by the Hertz—Knudsen and transi-
nucleation rates drop in the nucleation zone with growthtion (Tr in the asymptotic solution, Gy in the numerical so-
(NZz) faster in the asymptotic solution than the numerical ondution) is shown in Fig. 7. Despite excellent qualitative
with an eventual approach toward each other. The differagreement, quantitative differences between numerical and
ences decrease as the expansion tifnis increased. Figure asymptotic solutions occuespecially in RGZ and NgZdue
6 shows a comparison of the asymptotic and numerical molaio similar reasons discussed above. The maximum nucleation
fractions in the Hertz—Knudsen regime for the same expanrates of numerical and asymptotic solutions seem to be
sion. Deviations iny also occur in the rapid growth zone within an order of magnitudga better agreement is achieved
(RGZ) where the asymptotic predictions fall below the nu- between the transition modélr) and Gyarmathy's formula
merical ones due to the reasons mentioned above, i.e., tH&y)]. The comparison of the nucleation rates in this inter-
second order approximation to the activation functi®nn mediate regime for the Hertz—Knuds€HK), continuum
the asymptotic theory. Consequently a steeper variation of (C) and transition(Tr) models by the asymptotic solution is
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FIG. 7. Comparison of nucleation rates obtained by numerical simulation$-1G. 9. Comparison of nucleation rates obtained by numerical simulations
and asymptotic solution for the expansion of water vapor in nitrogen withfor the expansion of water vapor in nitrogen with expansion time

expansion time,=10 2 s and initial conditiong}= 10 bar, @/),=1000
Pa andT(=295 K in the free moleculatHK), Gyarmathy(Gy), and pro-

t,=10"2 s and initial conditionspy=10 bar, ,),=1000 Pa, and
Tp=295 K in different growth regime$HK, Hertz—Knudsen growth law;

posed exactly solvabl@lr) models(in the transition regime the Gyarmathy C, continuum growth law; Gy, Gyarmathy’s growth mogdel
model is used for numerical simulations whereas the proposed exactly solv-
able model is used for asymptotic predictipns

similar comparison by the numerical solutiGmhere the Tr
model is replaced by the Gy formulgields similar qualita-

the asymptotic and numerical solutions for different growth
shown in Fig. 8. The Tr model yields the highest and the HKequationgHK, C, Tr for the asymptotic solution and Gy for
model the lowest maximum nucleation rates for this case. Ahe numerical solutionis given in Fig. 10. Differences be-

tween asymptotic and numerical solutions occur due to simi-
lar reasons discussed above. A better agreement between the

tive and quantitative behavior as shown in Fig. 9. Finally aasymptotic and numerical solutions is reached in this case for
comparison of the results for the molar fraction obtained by

10%° !
Asymptotic solution
10 L 0.8
. y/yvo
J [m3s7]
10" | 0.6
10" | 0.4
10" | 0.2
0
0.5 0.6 0.7 0.8 0.9

t,=10"2 s and initial conditionsp,=10 bar, @.),=1000 Pa and

T4=295 K in different growth regime$HK,

Numerical solution

Asymptotic solution

05

0.6

0.7 0.8 0.9
th,

FIG. 10. Comparison of molar fractions obtained by the asymptotic solution
FIG. 8. Comparison of nucleation rates obtained by the asymptotic solutiomnd numerical simulations for the expansion of water vapor in nitrogen with
for the expansion of water vapor in nitrogen with expansion time expansion time,=10"2 s and initial conditiongpy=10 bar, ,),=1000

Hertz—Knudsen growth law;

Pa andT{=295 K in different growth regime&K, Hertz—Knudsen growth
law; C, continuum growth law; Gy, Gyarmathy's growth model; Tr, the

C, continuum growth law; Tr, the proposed exactly solvable growth model proposed exactly solvable growth moyel
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FIG. 11. Comparison of nucleation rates obtained by the asymptotic solugig 12, Comparison of molar fractions obtained by the asymptotic solution
tion and numerical simulations for the expansion of water vapor in nitrogen, 4 numerical simulations for the expansion of water vapor in nitrogen with
with expansion timet;=10"% s and initial conditionsp;=50 bar,  gypansion time,=10-2 s and initial conditiongpy=50 bar, p,)o=1000
(P;)o=1000 Pa, and';=295 K in different growth regime€C, continuum  p, andT (=295 K in different growth regime€C, continuum growth law;

growth law; Gy, Gyarmathy’s growth model; Tr, the proposed exactly solv-Gy, Gyarmathy’s growth model: Tr, the proposed exactly solvable growth
able growth model mode).

the continuum C) and GyarmathyGy) and proposed tran-
sition (Tr) formulas.

Finally for high initial pressuregp,=50 baj the transi-
tion (Tr), Gyarmathy(Gy), and continuum €) growth laws
are compared by the numerical and asymptotic solutions.

corresponding asymptotic expressions of the condensate mo-
lar fraction are obtained in each growth regime. Nucleation
rates and condensate molar fractions during continuous ex-
ansions in cloud chambers are then calculated using the
lassical nucleation theory and different droplet growth laws.

companson of nucleation rates is plotted in Fig. 11, Whereaf:omparison of the nucleation rates and the condensate molar

a comparison of the molar fr_actlons.can be found in Fig. 12Tractions obtained by the asymptotic solution with numerical
Despite the differences previously discussed between asymp:.iations for initial pressures ranging from log}= 1

totic and numerical solutions, a better quantitative agreeme tao to high (pj=50 bay pressures shows complete qualita-

Isré::lf:fsd tfr?é t(;:‘?efsr?ceésngsn/\?:;ot?etr?éiiIttst]aotf’ tfr?(; chhoeurve and reasonable quantitative agreement despite some no-
P ' Pe(ljble deviations near the onset of condensation resulting

order asymptotic solution and of the numerical simulationsfrom the use of second order a imation to th tivati
seem to decrease. : . - approximation to the activation
function of nucleation. Maximum nucleation rates obtained
by the asymptotic and numerical solutions are within an or-
der of magnitudehigher in the asymptotic solutipn
Homogeneous condensation of a condensable vapor in a This investigation shows that the shape of the nucleation
carrier gas in expansion cloud chambers is investigated inurve, independent of the particular nucleation rate equation
detail for different droplet growth regimd$ree molecular, to be employed, can be determined satisfactorily both by
transition, and continuumdepending on the initial vapor numerical simulations and by the asymptotic solutiai
pressure with fixed initial temperature and initial partial va-though there are some differences between the solytions
por pressure. In particular an exactly solvable droplet growtiThe approach toward saturated thermodynamic equilibrium
model in the transition regime at arbitrary Knudsen numbeiis also achieved in both solutions. In cases where a very
is presented. This model yields growth rates that lie in beprecise quantitative information of the nucleation curve is
tween those given by Gyarmath§®sand Young'é’ droplet  required, the numerical simulations seem to yield quite sat-
growth formulas, the latter ones being the most widely usedsfactory results whereas the second order asymptotic theory
ones in the literature. The condensation rate equation for theould yield results within an order of magnitude compared
molar fraction constructed from an arbitrary steady-statdo those of numerical simulatiorikigher approximations of-
nucleation rate equation together with different dropletthe activation function near its turning point can definitely
growth laws(free molecular, continuum, transitipis then  improve the results; however, the analytical nature of the
solved asymptotically in the limit of relatively large nucle- solution will then be destroyedNoting that nucleation theo-
ation time (K—0) and small droplet growth timeh,, ries and nucleation rate measurements are at least off within
Ac—) and the distinct condensation zones together with thene or two orders of magnitude and taking into account

V. CONCLUSIONS
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theanalytical structure of the condensation zones exhibited dy 5 3 (1) .

by the second order asymptotic solution, the results of the gy =Felt) o exg —K™"B(t)]
second order asymptotic theory should also be considered as
being satisfactory for any practical application. dB) 32 2(1)

372302 _ -7
+3[2NcQc(D) 7K ( dt n(t)

xexd — K‘lB(t)]{ g [1420%(1)]
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APPENDIX A: ASYMPTOTIC SOLUTION OF THE
CONDENSATION RATE EQUATION IN THE
TRANSITION REGIME

In the initial growth (IGZ) and further growth(FG2)
zones wheralB/dt=0O(1), theasymptotic expression for
and dy/dt follow from the solution of the rate Eq53) by
Laplace’s methot*?for an endpoint minimum at=t in the
limit K—0 andAyk, A\c— with Ao/ =finite.

—5/2 E(t)

dB
V() =[2X o0 () P52 a) =

xexr{—KlB(t)J[Z Ja[1+202(1)]

+3q(t)[1—K‘1 ds b(t)}

dB
k-1 _—
xexr{ K b(t) T

dt

+ q3(t)} (A1)

and

YA(1)

(1)
n 86(1)

y(O=[2cQc(OT* 2601 * 15 exp[

Vaq 2(t)D g

N W

+

3
exp[—Kle]( [ 7 V7D s

xexp{—K—lz—?b(t) +q(t)(, (A2)
_ AcQc(1)

a(t)=rcr(t)—m, (A3)
_ 1 AeQc(t) |2

b(t)zzxcﬂc(t) NHKQHK(U} ’ (A4)

tY=a(t ﬂ (AS)
q(t)=a( )\/ZthQc(t)'

and whered B/dt is evaluated from

dB 4B dp
dt  gp dt

oB dT B dy
JT dt gy dt’ (A6)
EquationgAl1)—(A6) form a transcendental system fpand
dy/dt in FGZ and can be solved iteratively starting with the
local frozen solution(usually a single iteration sufficgsin
particular the expressions fogr and dy/dt in 1IGZ can be
simplified by considering the frozen limit of the thermody-
namic functions, i.e., B—B;, 32—, rg—rleg,
Qc—Qc ¢, andQp— Qg ¢ Where by subscript we mean
the frozen(isentropig value of the function.

In the rapid growth zonéRGZ) and the embedded onset
zone(0OZ), dB/dt diminishes toO(K?) asK—0 by defini-
tion. From the solution of the rate E¢53) by Laplace’s
method®*®for an end point minimum we obtain the follow-
ing expressions foy, dy/dt, andd®y/dt? in the second or-
der approximation to the activation functi@{t)

y(H)—2B(1)b(t)
V2B(1)

V2B(1)

y(t)

V2B(1)

XD_,

+3q(t)D_,

y(1) )
V20|’

y(t)—2B(t)b(t)] } exp{ y(H)b(t) — B()b2(t)

5 +{a*(t)+3a(Hb(O[28(1)]"3

(A7)
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dy 3(t) B N () B
=r3(t) —— (D) exd — K 1B()]+3[2AcQc(t) 13 28(1)] 3"‘@ exﬂ[sg(t) exd —K'B(1)]
Ja Y(H)—2B(1)b(1) y(t)—ZB(t)b(t)] p[y(t)b(t)—ﬁ(t)b%t)]
—i{D_ +2q 2(t)D_
X( 2 32 \/2,37 g “(t)D_19 2500 ex >
— RAON
D_, A8
+q(t) 280 ) (A8)
and
dy 1 dQc dy (1) drcr 1 d¥ 1 dn 1 dQ¢
a2 = 0ot dt dt Tt i @A KTBO e S @t o at agm dr T
(1)
+ 3Nk Quk (D (t) ((t) exd —K~ lB(t)]+ Jal2hcQc(1) 1% 28(1)] 4 n((t))
1 Y(Ob()—BOBXD) | | ¥*(D) y(H) —2B(1)b(1)
xXexg —K B(t)]ex;{ 5 ex 850 D_qip m (A9)
[
whereD (x) is Whittaker’s parabolic cylinder functidf®® 3
of x and of orderr and where y()= VI(Z V(D _sid —V2(B%0,+ )]
A/ ~ 2 1/2
C==C 1/2
% (BV%, +¢> \[ .
xXexp —
dB
YH)=-K >0, (A11)
. B +3ma( %+ ) | (L+erf )
pt)=5 K* G270 (A12)
)~ .2
with dB/dt evaluated from Eq(A6) andd?B/dt? evaluated *3q exp= 47 |, (AL3)
by dy 5 3(1)
——=r3(t K~ 1B(t
d’B 9B d’p oBd’T Bd% °B (dp)z at "V ny n(t) exiL - ]
a€ " ap d€ T aT d gy d | ap? | dt

2B(dT)2 azB(de (azB dpdT +— fvl(zml’z({D ad —V2(B%1+ )]

- — = - r7
d/ - ay”hdt) - TiopoT dt dt +20 7D d —v2(B 0+ )]}
#B dpdy °B dTdy (BY%, + )2
2 ry, 727 =) b+ y) —

T Gpay dt dt  aTay dt dt)” (AL3) Xexr{—T +2vaq(Ll+erf )|,
Equations (A7)—(A13) together with the governing Egs. (A16)
(12)—(13) can be solved iteratively for the flow variablas  where
T, andy in RGZ and OZ starting with a nearby upstream w=B,(t—1,)=0, (A17)

solution. In particular the solution for the flow field at the

relative onset point follows in the limit as e 2 _
P n=[2c0al28) %4 el —K 1B, (AL9)

=0, , , etc. Al4 . . : .
yon=0 f=pi 2% AL ith subscriptl denoting values of functions evaluated at

In the nucleation zone with growttNZz) the asymptotic  t=t, [€.9.,Q¢;=Qc(t)), etc]. In particular we recover the
expressions foy anddy/dt follow from the solution of the solution att=t; in the limit as¢—0. Wheny>1, we get

rate Eq.(53) where the relative onset poinf acts as an y() ~ [ 254 B2, + )32+ 60, B, + )
interior minimum for Laplace’s method. Consequently we
obtain +(32%q P8+ ) +v2q Tl (AL9)
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The growth law given by EqA19) can not persist in the
droplet growth zongDGZ) where thermodynamic equilib-

Delale, Muitjens, and van Dongen: Simulation of homogeneous condensation

dy , 3

rium is established. Using once more Laplace’s method for

an interior minimum, the solution of the rate E§3) in this
zone can be cast into the form

y=[VR+(\2m1) % ]? (A20)
d 304t
=5 C()w—vl)mzﬁ)m
1/35732
X[\/EJF(\/EM) q (A21)

\/R‘ )

with R_satisfying the scaled relaxation rate equation

dR Q¢ (A22)
dx Q¢
where the scaling laws
R=ABY b+ f 2elD g, (A23)
Y QCI
x=Apt-1), (A24)

have been introduced with the scaling paramétejiven by

A=[2Vmn %28

The nonlinear droplet relaxation EA22) is of the same

(A25)

form as nonequilibrium internal mode excitation or chemical
reaction with flow and tends to saturated equilibrium stateg(t)=
(Qc—0 as y—). It can be solved by quadrature starting

with an initial valueR obtained by matching smoothly the

solution of the nucleation zone with growthZ) with the

droplet grovvth zondDGZ) solution at a conveniently cho-

sen pointy.

APPENDIX B: ASYMPTOTIC SOLUTION OF THE
CONDENSATION RATE EQUATION IN THE
CONTINUUM REGIME

dy
The condensation rate equation of the continuum regime; -
given by Eq.(49) can be solved asymptotically in the double

limit as K—0 andAc—oe. In particular in the initial growth

(IGZ) and further growth(FG2) zones the asymptotic ex-

pressions foly and dy/dt follow by Laplace’s methaoth>?
for an end point minimum at=t in the double limit given
above.

—5/2 E(t)

3 dB
y(H=>5 ﬁ[zxcnca)]w;@/z( . E) el

Xexr{—K*B(t)]exp[ K~ 1—c(t) (B1)

and

—3/2 E(t)

3 dB
7 \/;[chﬂc(t)]S/ZKS/z( - m) o

dB
xexp{—KlB(t)]ex;{ K- l—c(t) (B2)
wherec(t) is defined by
2t
_ Mer
c(t)= 2 e0c(D) (B3)
together withdB/dt given by
dB oBdp ¢BdT B dy
_—=——t = —+— . (B4)
dt oJp dt  JT dt gy dt

Equations(B1)—(B4) together with Eqs(11)—(13) can
be solved iteratively for the flow field in IGZ and DGZ start-
ing with the local frozen solutionty=0). In particular the
expressions in the initial growth zor&GZ) can be simpli-
fied by considering the frozen limit for the thermodynamic
functions, namely,

T—Ts, n—n;, B—By, 2—>2f, Q’C_)ch! etc.
(B5)
In the rapid growth zondRGZ) and the embedded onset
zone(0Z), wheredB/dt=0(K?) ask—0, the asymptotic
expressions for the condensate molar fractjoand its de-
rivatives dy/dt and d?y/dt?> are obtained by Laplace’s
method32 for an end point minimum taking into account
the second order approximation of the activation funcon

(1)

3
2 V200280017 T

_ Y2(t)
xexd —K 1B(t)]ex;{8ﬁ(t)
p[w(t)c(t)—ﬁ(t)cza)]
ex
2
y(1)—2B(t)c(t)
g ————————— B6
5/2| m ] ( )
(1) .
dt cr(t) n(t) ex —K lB(t)]
3 (1)
+2 \/;[2)\09(:(0]3/2[2/3('[)]3/4%
x ex — K !B(t)]ex 7(H
8B(1)
p[y(t)c(t)—ﬂ(t)czml
X ex
2
y(t)—zﬁmc(t)]
g ————|, B7)
3/2] \/M (

and
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d?y 1 dQCdy S(t) drcr 1 d¥ 1 dn 1 dQ¢

A ¢ 1 ham
a2~ 0o dt dt o n @K TBO) G Gt S ar nw dt g ar T
(0 -1 3 3 _ya =) 1 Y1)
30O o) Ty X K IB(O]+ 7 Val2Ac Qe A 28(0] ¥ 155 exd —K*B(v)]exd gzos
y(He(t) - BHEA(Y) y(1)—2B(t)c(t)
ex;{ > D_1 T (B8)
|
whereD (x) is Whittaker's parabolic cylinder functidf®® " e S )
of x and of orderr and where =[2\cQc]7426)) ™ exdi—K™"Bj].  (B16)
y(t)=—K™1 d_B>0 (B9) In particular we recover the solution &t in the limit as
dt y—0. Further downstream of the nucleation zo(éZ)
1 d2B wherey>1, we get
B(t)=5 K™+ —>>0, (B10)
27 dtf y()~ 25 mw (B, + )2 (B17)
; 2 2
with dB/dt evaluated from Eq(B4) andd“B/dt” evaluated This limiting behavior ofy cannot persist in the droplet
by growth zone(DGZ) where saturated thermodynamic states
d’B 4B d2p JB d2T JB dzy 9°B (dp are reached. In this case a different scaling law for the
FTaRT dt2 o7 dt2 N dt2 ( ) stretched coordinate should be used. Using Laplace’s method
P y p for an interior minimum, one can easily show that the ex-
’B (dT)2 °B (dy) ( B dpdT pressions foy anddy/dt in this case take the form
dt dt JpdT dt dt y=[R—]3/2 (B18)
B dp dy+ #°B dT dy 811
T Gpay dt dt  aTay dt dt) (B1D)  and
; ; ; ; dy 3 Qc¢(t)
In particular the above asymptotic expressions at the relative %Y _ c 2mv) 232812 B19
onset point=t, can be obtained in the limit as dt 2 Q¢ (™28 "R, (619
v—y=0, B—B, etc., (B12) whereR satisfies the scaled relaxation rate equation
where by subscript we mean evaluated att, . dR Q¢
In the nucleation zone with growttNZ), where both azﬂ— (B20)
cl

nucleation and droplet growth are important, the asymptotic
expressions foy anddy/dt follow from the rate Eq(49) by  wjth the scaling laws introduced by
Laplace’s methott3for an interior minimum

-3 e - [ S

XD _gd —v2(B%ci+ )], (B13) x=ABR(t-1). (B22)

dy S(t) 3 The_ scaling parametét in the scaling law$B21) and(B22)
=r3(t) — oD exd — K 1B(t)]+ 7 Jav(28)Y2 is given by

A=[2\mn]?(2p)"". (B23)

(Bl +9)? "
Xexg - ———|D-sd —V2(B"e+ )], .
The relaxation rate EqB20) can be solved by quadrature
(B14)  starting with an initial valueR obtained by matching
) smoothly the solution of the nucleation zone with growth
where the stretched coordinageand the parameter, are  (Nz) with the droplet growth zonéDGZ) solution at some

defined by point . It is also worthwhile to mention that a simplified
— t—t)=0 B15 version of the qsymptotlc soluthn of'the rate equation in the
v \/E( ) (15 continuum regime appeared first in the M.S. thesis by
and Verschuereri®
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APPENDIX C: THERMODYNAMIC DATA AND 3
NORMALIZATION OF NUCLEATION AND DROPLET J=—=3(p,T.y)exd — K B(p,T,y)] (C?
GROWTH THEORIES ¢

) . ) ] in such a way that.=0(1) andB=0(1) during the period
We herein exhibit the thermodynamic properties that eny gignificant nucleation rates where the normalization con-
ter the asymptotic theory for the condensation of water vapogisnt of nucleatior’ is given by

in nitrogen. The molar latent heat of condensatidT’) for

. . . . . N2
water in the range of temperatures investigated is given by , ' (moNs)
the linear relation {'=0.266 7%m;) ">y, pi €8
L'(T')=5.6857 10°—42.75I" (J/mo)) (Cy) the nucleation parametét is given by
in agreement with Eq10), whereT’ is measured in Kelvin. o 2 3
The planar saturation pressupg, ., at T’ is then evaluated K=42.740 m (KTg)”. (C9

by the Clausius—Clapeyron relation and is given by } . o .
The pre-exponential functio® and the activation functioB

) N 4275 T assume the form
Pys«(T')=610.8 exy%— = In 27315 - , .
B(p,T,y)=[f(T)]°[In S(p,T,y)] (C10
5.6857x 10" [ 1 1 and
oz (F_ 273.15) (Pa, (€23

_ 2
f(T) (1 y/yvo) 02 (11

where 2=8.314 41 J/mol K is the universal gas constant. (P T.¥)="\/ 73 -y
The density of liquid water is taken at a constant value of ) )
p! = 995 kg/n. the molar specific heats at constant pressurdith the normalized surface tensié(T) and the supersatu-

of water vapor and nitrogen are, respectively, givenchy ration S(p,T,y) given by

= c;,H o= 32.6693J/mol Kand,’)i = c;,N =29.1615J/mol K. ' 0.712 021
2 2 _ S
The variation of the surface tensierf with temperature is f(T)= T 1- 647_3T (C12
taken to be of the form
and
’ 0.712 021
"(T")=0.11177831— ——— N/m C3 .
o' (T") % 647.3) ( ) (C3 S(p,T,y)E,p—,
pusyoc(T )
and the diffusion coefficienD’ is evaluated from ) )
2 45 T' | 2085 . (yuo_y)p ex;{A In( T T)
il B 2 © 6108\ 1-y 17 273.15
hereT’ i d in Kelvin ang’ i | +Bl<1 Tégj (€13
whereT’ is measured in Kelvin ang’ in pascal. = | = ,
T\ T 2731

With the above thermodynamic properties we can nor-
malize the nucleation rate equation and the continuum andhere A;=5.141 andB;=6.838<10°. The critical radius
Hertz—Knudsen droplet growth laws and identify the thermo<(r ) is defined by the Gibbs—Thomson relation
dynamic functions and parameters that enter the asymptotic
theory. For the nucleation rate equation we use the classical
theory given by

> p,2 AG* which in normalized form takes the form
r— = T =327 _
=\ o (T)m) 2% exp( T ) (€5 r, 0223580,  f(T)

| cr

) 2m; 1

"= kTS (14

rcr(p!T!y)E_r: NG 7 . (ClS)

wherem; andp, are, respectively, the mass of a single vapor Mo rgpikTs InS(p.T.y)
molecule and the mass density of the vapor A /(kT') The Hertz—Knudsen droplet growth law given by Egs.
is Gibbs formation energy given by (16) and (25) (neglecting the Kelvin effect and taking the

AG* 16 m o0 o' (T1)]3 mhass accqmmodation coefficiem}, equal to unity assumes

- =7 (ce)  the normalized form

KT" 3 "\p/InS KT’ q

r

with S denoting the supersaturation ratio defined 8y a:)\HKQHK(p’T’Y)! (C16

= p,/P,s=(T"). Using the expression for the surface tension o
given by Eq.(C3) and the expression for the saturation pres-Where the Hertz—Knudsen growth parameXgg is given by

sure of water vapor given by E¢C2) and relatingp,, to the 6108.Q’ 273,15 A1
normalized thermodynamic coordinateg, T,y), Eq. (C5 Nk =—— ,"7 _,E) (C17)
can be cast into the normalized form rqpi \/ZWTS.%}/,LLU Ts

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996

Downloaded-05-Sep-2011-to-131.155.2.66.-Redistribution-subject-to-AlP-license-or-copyright;-see-http://jcp.aip.org/about/rights_and_permissions



Delale, Muitjens, and van Dongen: Simulation of homogeneous condensation

and the Hertz—Knudsen growth functiof,x (of order
unity) is identified as

1 1 1
Q (p,T,y)=—ex;{—B (T_—J:|
K 10T(A1+05 HTiT 2731

X[S(p,T,y)—1]. (C18
Similarly the continuum growth law given by Eq4d.5)—(18)

and(24) and which, in neglecting the Kelvin effect, assumes

the form
dr’ 1 D’p[)s,m(T’)
A ayRT O 19

can be cast into the normalized form of Eg8), namely

dr

1
a:FRCQC(p,T,y), (C20

where the continuum growth parameteg and the con-
tinuum growth function() are identified as

N 1.4965< 10%, (Tg)2-°85(273.15>’*1
¢ pll(l_yvO)RvTépéréz

295 T,
(C2y
and
Qc(p,Ty)= W ex‘{ - Bl(%_ %J }
! .
xX[S(p,T,y)—1]. (C22
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