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Synopsis

A model is presented that predicts the critical shear rate of shear thickening of soft sphere colloidal
suspensions. It is based on the idea that shear in a colloidal crystal leads to a periodic variation of
the elastic modulus with time. At a specific shear rate an acoustic resonance occurs which leads to
an increase of the viscosity. Good agreement with experimental results could be obtained by fitting
the single parameter of the model. ©1998 The Society of Rheology.@S0148-6055~98!01505-3#

I. INTRODUCTION

When imposing a simple shear flow to an equilibrium colloidal crystal composed of
particles with a soft interaction potential, these particles may arrange themselves into a
long-ranged structure of hexagonal layers sliding over each other. The existence of this
ordered state will be the starting point of our treatment. Experimental investigations
@Hoffman ~1972!; Ackerson and Clark~1981!; Barnes~1989!; Boersmaet al. ~1990,
1991!# indicate that this structure disappears with increasing shear rate. This disappear-
ance is accompanied by a pronounced increase of the viscosity, denoted as shear thick-
ening. We will develop a model based on the assumption that this destruction of the
periodic structure is due to the occurrence of an acoustic resonance within the sheared
lattice.

Damped acoustic shear waves travel through a viscoelastic continuum as shown first
by Joanny~1979! and later by Pieranski~1983!. Within a sheared crystal the elastic
modulus in the shear gradient direction varies periodically. Harrowell and Fixman~1987!
demonstrated that this periodic variation amplifies long-wavelength transverse modes. By
using an extension of the Lindemann criterion@Lindemann~1910!# they could predict an
instability of the sheared colloidal crystal due to an acoustic resonance mechanism. Ronis
and Khan~1990! improved the approach of Harrowell and Fixman~1987!. They analyzed
the macroscopic equations of motion of a dilute colloidal crystal under shear and studied
the dependence of the acoustic resonance on the system size.

In contrast to the previous authors, we will apply a ‘‘two-medium’’ model, in which
both media are considered as infinite, viscoelastic continua that are coupled with each
other. One medium is an elastic colloidal crystal of monodisperse solid particles dis-
persed in the other medium, the viscous medium. The shear is applied to the viscous
solvent and is transmitted to the particles. In our approach we suppose that all viscous
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effects are taken into account by the viscous medium with viscosityh1 . This includes the
viscous solvent with a viscosityh0 , all hydrodynamic interactions between the particles
and the viscous damping of movements of the colloidal crystal. Similar models have been
used by other investigators in concentrated polymer solutions and gels@Hardenet al.
~1991!# and in dilute colloidal crystals@Lindsay and Chaiken~1985!#. Taking into ac-
count the time-periodic variation of the elastic modulus in the sheared suspension, an
acoustic resonance occurs. This phenomenon is accompanied by shear thickening. The
model presented here will allow the calculation of the critical shear rateġc for the
maximum increase of the viscosity. This shear rate will be compared with experimental
results.

II. THEORY

A. The hydrodynamic model

The starting point of our model is the two-medium assumption according to which one
medium can be treated as a Newtonian fluid with effective viscosityh1 and densityr1 .
The shear-induced colloidal crystal represents the other medium; it is an elastic con-
tinuum with densityr2 and elastic modulusE. The effective viscosityh1 corresponds to
that of the real suspension with a volume fractionF of the colloidal particles. This
viscosity is due to the viscous solvent and to the hydrodynamic interactions between the
particles, to the viscous medium. In our approach the related viscous damping of the
colloidal particles is captured in the properties of the viscous medium. We will use a
phenomenological equation based on percolation theory, which describes how the vol-
ume fraction influences the viscosity of a suspension consisting of hard spheres dispersed
in a solvent with a viscosityh0 .

Furthermore we assume that under the influence of a simple shear flow a spatial
distribution of monodisperse particles in hexagonally close packed~hcp! layers occurs
with the close packed array of particles pointed alongex , the mean flow direction. The
layers are orthogonal to and periodic in theez direction ~shear gradient direction!. The
applied simple shear flow

v0 5 F 0 0 ġ0

0 0 0

0 0 0
G r ~1!

allows the hexagonal planes to slip freely over each other, as discussed, e.g., by Hoffman
~1972! and Ackerson and Clark~1983!. The motion of the colloidal particles causes the
elastic properties of the sheared colloidal crystal in theez direction to vary periodically in
time and space. The time periodicity is determined by the externally applied~macro-
scopic! shear rateġ0 . We define a modulusM (t) of the sheared colloidal crystal as the
tensor:

M ~ t ! 5 EF 1 0 0

0 1 0

0 0 12e cos~Gġ0t!
G. ~2!

Here E is the isotropic elastic modulus~linear compression! of the undisturbed two-
dimensional hcp crystal ande is a small-valued parameter that describes the modulation
of the elastic modulus. The value of the parameterG depends on the direction of the shear
and the structure of the lattice@Ronis and Khan~1990!#. For a simple shear in an
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orthorhombic lattice the value ofG is given byG 5 2pgz /gx , with the lattice constants
gx andgz in the x andz directions. The shear rate can be scaled by

ġ 5 ġ0G. ~3!

The modulus of a crystal at rest, in principle being a tensor of fourth order, is simplified
as being isotropic of second order. This assumption is made because the nondiagonal
terms in simple shear cannot be defined well. Additionally our main interest is in local
movements of the suspension in thez direction, which are being induced by the particles
in xy planes that slide over each other.

In this work we are interested in the effects of deviations from affine, uniform shear
field. Therefore, we introduce a displacement fielddu for the positionu of the colloidal
particles and a velocity deviation fielddv for the velocityv of the viscous medium:

u 5 v0t1du ~4!

and

v 5 v01dv. ~5!

The interaction between the elastic crystal and the viscous continuum is treated as an
effective local friction force proportional to the local difference between velocities of the
particles of the colloidal crystal and the viscous medium.

In our case of two infinite coupled media, these assumptions lead@see also Joanny
~1979! and Lindsay and Chaikin~1985!# to a set of linearized coupled equations of
motion. The equation for the viscous medium with a density (12F)r1 is:

~12F!r1

]dv

]t
5 divs~1!2J~dv,du̇!. ~6!

For the crystal continuum with a densityFr2 we arrive at

Fr2

]2du

]t2 5 divs~2!1J~dv,du̇!. ~7!

Here s(1) and s(2) are the stress tensors within the viscous medium and in the elastic
crystal, respectively. The medium-crystal coupling vectorJ takes care of the Stokesian
friction between particles and liquid medium~‘‘action is reaction’’! and takes the form

J } j~F!~du̇2dv! ~8!

while the hydrodynamic friction coefficientj~F! is an increasing function of the volume
fraction.

On hydrodynamic length and time scales, i.e., neglecting the diffusive motion of the
colloidal particles, the coupling between the velocities of the colloidal crystal and the
solvent is very strong. Following Lindsay and Chaikin~1985! we confine our investiga-
tion to the limit of strong coupling. The essential physics of the strong coupling is when
the solvent velocity approaches the velocity of the colloidal crystal

du̇ ' dv. ~9!

In this limit the coupled set of the equations of motion reduces to a single formula:

r
]2du

]t2 5 divs, ~10!
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with

r 5 ~12F!r11Fr2,

~11!
s 5 s~1!1s~2!.

The stress tensor term in Eq.~10! becomes

divs 5 M „t…Ddu1h1Ddu̇ ~12!

while h1 is the high shear viscosity of the suspension, corresponding to a layered hcp
structure andD is the Laplace operator.

B. The acoustic resonance

In order to investigate Eq.~10! we introduce a spatial Fourier transform of the defor-
mation field:

A~k,t ! 5 Ed u~r ,t !e2 j kr d3r , ~13!

whereA(k,t) is the time and wave number dependent amplitude of local displacements
of a volume element from its initial position. Inserting~13! in ~10! we obtain

r
]2A~ t !

]t2 1k2h1

]A~ t !

]t
1k2M ~ t !A~ t ! 5 0. ~14!

According to Eq.~2! the modulusM (t) is periodic with time. Therefore Eq.~14! is a
Mathieu equation@Mc Lachlan~1964!#. Equation~14! can be solved for small values of
the parametere as a Taylor expansion of the amplitude in factors ofe :

A~ t ! 5 A~0!~ t !1eA~1!~ t !1O~e2!. ~15!

Substituting this expansion in~14!, the zero order ine leads to a damped wave equation
in the unsheared system:

]2A~0!~ t !

]t2 1k2b
]A~0!~ t !

]t
1k2c2A~0!~ t ! 5 0, ~16!

where the coefficientb is given by

b 5
h1

r
~17!

and the sound velocityc of the suspension is given by

c2 5
E

r
. ~18!

Equation~16! can be solved by writing the zero-order amplitude as a damped wave:

A~0!~ t ! 5 A~0!e2pt. ~19!

Substitution of Eq.~19! in ~16! gives a dispersion relation inp

p22bk2p1c2k2 5 0. ~20!

Herep is either real, describing an overdamped creeping motion, with
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p1,2 5
bk2

2
6Ab2k4

4
2c2k2 ~21!

or complex, related to damped propagating waves, with

p1,2 5 d6 j v ~22!

while

d 5
bk2

2
,

~23!

v 5 Ac2k22
b2k4

4
.

Now we will investigate contributions toA(k,t) originating from first order perturba-
tions in e. Because theEx and Ey moduli are assumed to be constant, the transverse
modes inex andey are always damped waves. However in Eq.~14! we get a contribution
in the z direction from the first order ine of the form

]2Az
~1!~t!

]t2
1k2b

]Az
~1!~t!

]t
1k2c2Az

~1!~t! 5 c2k2Az
~0!~e2p1t1e2p2t!cos~ġt!, ~24!

where we have chosen a linear combination of~19! with the solutions~21! and~23!. This
formula can be solved by means of a Laplace transform as performed in Appendix A.

For damped propagating waves withp1,2 given by~22! the amplitude of the first order
becomes infinite at a specific, externally applied shear rate. For this instability the am-
plitudes in theez direction become

Az
~0!~t,v! 5 2Az

~0!e2dt cos~vt!,

~25!

Az
~1!~t! 5

2Az
~0!c2k2e2dt

~d 21v2!~ġ 224v2!
$2v@v cos~vt!1d sin~vt!#cos~ġt!

2ġ @d cos~vt!2v sin~v t!#sin~ġt!%.

The first order amplitude has a singularity, as known from the theory of Mathieu
equations@Mc Lachlan~1964!#, at a critical value of the shear rate equal to 2v with

Gġc~k! 5 2v~k! 5 2Ac2k22
b2k4

4
~26!

for a wave with wave numberk. The dependence of the scaled critical shear rate onk is
displayed in Fig. 1, for a suspension of polyvinylchloride particles in dioctylphthalate
~PVC/DOP! with G 5 1 ~this suspension will be discussed in more detail in Sec. III!. For
practical systems the range of possible values of wave numberk is limited both by the
system size and by the root in Eq.~26!.

The singularity of the amplitudeAz(k,t) describing propagating acoustic shear waves
is essentially a resonance effect. At first sight it seems unclear which wave numberk0
from the range of possible wave numbers,k dominates this instability. However from
dimension analysis of the argument under the root in~26! we know that the size of the
wave vector can be written as
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uk0u 5 a0

c

b
~27!

while we interpreta0 as a free, dimensionless parameter. Below we will estimate the
value of this unknown parameter from experiments.

Using ~27! and ~3! the critical shear rate in Eq.~26! turns into

ġc 5
a0

G
A42a0

2 1

t
, ~28!

whereG anda0 are dimensionless constants; the characteristic relaxation timet is given
by

t 5
b

c2 5
h1

E
. ~29!

Note for a suspension with a constant elastic modulus the instability takes place at a
constant critical shear stress:

s~c! 5 a0A42a0
2 E

G
. ~30!

From dimensional analysis alone it would also have been possible to determine that
any critical stress must scale withE. However, the extra of our theory is that:~i! it
proposes an explicit mechanism for the critical behavior,~ii ! it shows that at this condi-
tion the viscosity is at a maximum, and~iii ! it indicates how the viscosity rises on
approaching the critical criterion. In Sec. II C we will quantify this viscosity increase in
the vicinity of the critical condition.

FIG. 1. The critical shear rate~at maximumh! as a function of the wave vector amplitudek for a PVC-DOP
suspension (F 5 0.45).
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C. Excess dissipation

Here we will consider the relative increase in dissipation, due to an increase of the
amplitude of the first order ine. The average rate of energy dissipationW of a wave in the
z direction, with amplitudeAz and with angular frequencyv, is given by@Landau and
Lifshitz ~1964!#

Wdis~v! 5
v

2p
E

0

2p/v
Fdis~ t,v!Ȧz~ t,v!dt ~31!

in which the dissipative force density component

Fdis 5 k2h1Ȧz~ t,v! ~32!

is given by the second term of Eq.~14!.
The relative increase of the dissipation, due to the contribution of the wave amplitude

of the first order ine, can in good approximation be evaluated from

DWrel
dis~ ġ,v! }

*0
2p/vȦz

~1!~ t,ġ,v!2dt

*0
2p/vȦz

~0!~ t,ġ,v!2dt
. ~33!

The time derivatives of the amplitudes are

Aż
~0!

~t,v! 5 22Az
~0!e2d t@v sin~vt!1d cos~vt!#,

~34!

Ȧz
~1!~t,v,ġ! 5 2

2Az
~0!k2c2e2dt

~ġ 224v2!~d 21v2!
$@dġ 2 cos~vt!1v~2d 22ġ 212v2!sin~vt!#cos~ġ t!

2ġ @~d 22v2!cos~vt!22dv sin~vt!#sin~ġt!%.

Substituting the latter equations into~33! and usingv from ~26! we arrive at

DWrel
dis~ ġ,ġc! }

1

G4~ ġ0
2
2ġc

2!2 . ~35!

The extra dissipation will lead to an increase of the viscosity of the sheared system,
which in turn has a maximum when the externally applied shear rateġ0 equals the
critical shear rateġc . Thus this acoustic-resonance instability is accompanied by an
increase of the viscosity~shear thickening!.

Note that the critical shear rate for shear thickening defined here differs from the one
generally employed in discussions of the shear rate dependence of the viscosity. The
latter critical shear rate is at the point where the viscosity starts to increase, whereas in
the sense of a resonance the critical shear rate corresponds to the maximum of the
viscosity.

D. Estimation of the free parameter

In order to estimate the free parametera0 of Eq. ~27! we will study two experimental
examples and predict the critical shear rates:~i! a suspension of PVC particles dispersed
in DOP as investigated by Hoffman~1982!, and ~ii ! a suspension of glass particles in
glycerol/water as investigated by Boersmaet al. ~1990!.
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In order to evaluate the critical shear rate using~28! we have to determine the elastic
modulus and the viscosity of the sheared suspension. We neglect, as a first order approxi-
mation, the shear rate dependence ofE of the colloidal crystal, which leads to the as-
sumption:

E~ġ! ' E~ġ 5 0!. ~36!

We assume an ordering of the particles as in a two-dimensional hcp lattice. On closest
passage two particles in successive layers have the same interparticle distance in the
direction of the shear gradient as two adjacent particles have within a layer. The volume-
fraction dependent elastic modulusE under shear can now be approximated from its
value under equilibrium conditions. At rest the elastic modulusE is related to the equi-
librium shear modulusG according toE 5 2G(11r), wherer is the Poisson contrac-
tion ratio. Assuming a Poisson contraction ratio of; 0, E 5 2G. Buscall derived an
expression forG of a two-dimensional hcp crystal@Buscallet al. ~1982!#:

G~F! 5
pNn~F!xe~F!2

64

]2U~x,k!

]x2 U
x 5 xe

, ~37!

wherexe is the interparticle center to center distance scaled bys0 5 2a and wherea is
the particle radius. Here the numberN of nearest neighbors per unit cell is taken as
N 5 8. The number densityn of the particles at volume fractionF obeys the formula

n~F! 5
F

V0
~38!

while

V0 5 4
3pa3 ~39!

is the volume of a particle. The distanceh between the surfaces of two nearest neighbors
in a hexagonally layered structure@Boersma~1990!# is

h~F! 5 S8pa3

3)F
D1/3

22a. ~40!

The two-particle interaction potential is assumed to be given by the Poisson–Boltzmann
theory as a screened Coulomb potential in the Derjaguin constant potential approximation
@Russelet al. ~1989!#:

U~x,k! 5
pe0ers0

z2 C0
2 ln~11e2k~x21!!. ~41!

Here we used a scaled Debye reciprocal lengthk defined byk 5 kDs0 , where

kD 5 A2NaCz
2e0

2

e0e rkBT
. ~42!

We will use the result from a phenomenological theory that describes the low shear
viscosityh low of a hard sphere suspension. The influence of the temporary formation of
clusters of colloidal particles on the viscosity of the sheared colloidal suspension has
been determined by Campbell and Forgacs~1990!, applying a percolation theory. They
established an equation for the low shear suspension viscosityh low :
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hlow~F! 5 h0FexpSFhcp2Fp

Fhcp2F
D 21G ~43!

for volume fractionsF . Fp . The parameterFp is the percolation threshold, which is
independent of the underlying structure (Fp 5 0.16), andFhcp 5 p/3A3 5 0.605 is the
maximum packing fraction of a hexagonally layered structure;h0 is the viscosity of the
solvent fluid.

In our analysis we need the viscosityh1 of the suspension in the high shear rate limit,
but undisturbed by the resonance. In order to obtain that viscosityh1 we introduce an
unknown coefficientj0 which we assume to be independent of the volume fraction:

h1~F! 5 hlow~F!j0 , ~44!

while h low is given by Eq.~43!. We can write Eq.~28! in the form

ġc 5 j
E~F!

hlow~F!
~45!

while we have reduced all unknown parameters to a single fitting parameterj:

j 5
a0

Gj0
A42a0

2. ~46!

With the equations given the theoretical and experimental values of the critical shear
rate can be compared as a function of the volume fraction. We use the set of data
@Hoffman ~1982!; Boersmaet al. ~1990!# as summarized in Table I. Note that the value
for the salt concentration of the PVC in DOP suspension originates from an estimation
using Fig. 9 of Hoffman~1974! for the used surface potential.

1. PVC in DOP

The shear rates at the maximums of the viscosity measurements~critical shear rates!
with PVC latexes by Hoffman~1982! are summarized in Table II. By choosing the
parameterj 5 20 we fitted our model to the experimental values of the critical shear rate
at the lower volume fractions~higher critical shear rates!. In doing so the formula of
Campbell and Forgacs was used without any modification. For the other volume fractions
we obtain quite good agreement. Deviations occur especially for very high volume frac-
tions. Here the critical shear rate is very small and the strong coupling limit may not be

TABLE I. Physical parameters of the suspensions discussed.

Parameter ~i! PVC in DOP ~ii ! Glass in glycerol/water

relative dielectric constant 5.2 48.65
of the solventer
radius of the particlesa 0.62531026 m 1.231026 m
surface voltage of the 9031023 V 7531023 V
particlesC0
temperature,T 298 K 293 K
valency of the ions,z 1 1
density of the solventr0 981 kg/m3 1000 kg/m3

density of the particlesr1 1400 kg/m3 2530 kg/m3

solvent viscosityh0 0.054 Pa s 0.14 Pa s
salt concentration,C 0.00167 mol/m3 0.01 mol/m3
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perfectly valid. This is because the movement of the particles and the solvent may be
different for small shear rates. The dependence of the critical shear rate on the volume
fraction is shown in Fig. 2 for the used set of data~filled squares: experimental, open
squares: theoretical!. At small volume fractions the critical shear rate is small but it
increases with increasing volume fraction. This originates from the fact that at small
volume fractions the viscosity is almost constant when increasingF, while the elastic
modulus increases appreciably, according to~37!. Unfortunately the rise in viscosity due
to shear thickening reduces with decreasing volume fraction. This appears to be the
reason for not clearly finding this phenomenon at low values off. With increasingf the
critical shear rate reaches a maximum atFm and thereafter decreases with increasing
volume fraction, because in this region the viscosity increases faster than the elastic
modulus does. The acoustic resonance can occur only forF , Fhcp, because the
viscosity of the sheared hcp-layered structure becomes infinite atFhcp.

Also indicated in Table I is a fit of our model to experimental data assuming thatfmax
may be optimized when the particles are not perfectly monodisperse. The combination

TABLE II. Comparison of experimental and theoretical values of the
critical shear rate for PVC/DOP suspensions.

Volume
fraction

F

Critical shear rateġc ~l /s!
theory

Critical shear rate
ġc ~l /s!, experiments

@Hoffman ~1982!#
fmax 5 0.605

j 5 20
fmax 5 0.622

j 5 13

0.45 523 409 400
0.47 447 376 390
0.49 316 297 300
0.51 170 193 180
0.53 57 92 70
0.55 7 24 18
0.57 0.1 3 ' 4

FIG. 2. Comparison of the theoretical and experimental critical shear rates~at maximumh! with PVC-DOP
suspensions~h!, ~j! and glass-in-glycerol/water suspensions~n!, ~m!.
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fmax 5 0.622,j 5 13 now gives considerable improvement in the comparison of cal-
culated and measured critical shear rates. However we will not further elaborate on this.

Using the set of parameters employed before for monodisperse particles
(fmax 5 0.605, j 5 20!, the dependence of the predicted critical shear rate has been
determined as a function of the salt concentration at a constant volume fractionF
5 0.45. The result is shown in Fig. 3. As the viscosity was assumed to be independent

of the salt concentration, the critical shear rate is now only influenced by the dependence
of the elastic modulus on the salt concentration. At very high salt levels the double layer
repulsion@ ; k2 exp2kx, see Eqs.~37! and~41!# is effectively suppressed by compres-
sion of the double layers, resulting in a negligible modulus. On decreasing the salt level,
double layers expand and repulsive interaction becomes appreciable leading to a notice-
able modulus and an increasing critical shear rate. On further decreasing the salt level the
double layers are so extended that the interaction energy becomes almost linear in the
distance. According to Eq.~37! this results in a reduction of the modulus and thus of the
critical shear rate.

Another characteristic of the critical shear rate is how it depends on the particle size.
As can be seen from Fig. 4 the critical shear rate increases drastically on reducing the
particle size at constant volume fractionF 5 0.45 and salt concentrationC 5 0.00167
mol/m3. This is due to the fact that with decreasing particle sizes at constant volume
fraction and salt concentration the elastic modulus increases, becausek decreases in Eq.
~42!.

2. Glass in glycerol/water (86.1% mass/mass)

Applying the same formalism developed above, the critical shear rate can be evaluated
while we again set the free parameterj 5 20, again withfmax 5 0.605. The experimen-
tal values of the critical shear rate have been obtained from the maximum of the viscosity
in Boersmaet al. ~1990!. The results are summarized in Table III. The range of volume
fractions is smaller than with Hoffman’s experiments. The agreement between the ex-
perimental and theoretical data is reasonable. Note that the maximum of the viscosity
versus shear rate curve was difficult to determine at the lower volume fractions, because
the variations in the viscosity are rather small. The results are also plotted in Fig. 2~solid

FIG. 3. Model prediction of the dependence of the critical shear rate~at maximumh! on the salt concentration,
with F 5 0.45 and with the other system parameters equal to those used in Fig. 2.
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triangles: measured, open triangles: theoretical!. It is remarkable that Hoffman’s and
Boersma’s results coincide at higher volume fractions, and so do the theoretical predic-
tions usingj 5 20 in both cases. The theoretical predictions deviate at low volume
fractions due to the fact that the double layer thickness is smaller in the case of glass
suspension, leading to a faster drop in modulus when reducing the volume fraction.

As with the PVC/DOP suspension the critical shear rates deviate from the expected
value for high values of the volume fraction, presumably because the strong coupling
assumption is no longer justified. That the agreement between experiment and theory is
slightly less than with the PVC/DOP system may also be due to the larger polydispersity
in the size of the glass particles as compared with that of the PVC particles.

FIG. 4. Model prediction of the dependence of the critical shear rate~at maximumh! on the particle size, with
F 5 0.45 and with the other system parameters equal to those used in Fig. 2.

TABLE III. Comparison of experimental and theoretical values of the
critical shear rate for glass in glycerol/water suspensions.

Volume fraction
F

Critical shear rateġc ~l /s!
theory;fmax 5 0.605,j 5 20

Critical shear rate
ġc ~l /s! experiment

@Boersmaet al.
~1990!#

0.5 233 ' 200
0.54 32 70
0.55 10 14
0.57 0.1 6
0.585 931026 4
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III. DISCUSSION

A. Comparison with experiments

The application of light, x-ray and neutron scattering techniques allows the simulta-
neous investigation of the microstructure and the transport properties, as first utilized by
Hoffman ~1972! with a PVC latex in DOP. He established the connection between an
order–disorder transition and the variation of the transport properties. Ackerson found
similar transitions in dilute dispersions@Ackerson and Clark~1983!#. Starting at high
shear rates and going down to lower values he denoted the transition from a disordered
structure into a sheared layer structure as transition I. Decreasing the shear rate further, a
transition into a polycrystalline~disordered! structure occurs. Here the layered structure
becomes unstable. He denoted this as transition II. In our interpretation the equilibrium
state of a colloidal crystal is unstable against a shear perturbation and forms a disordered
structure at a critical shear strain as discussed by Kaldasch~1996!. On increasing the
shear rate, a shear induced order transition takes place, which is similar to transition II as
denoted by Ackerson, but passed in the opposite direction. Transition I, however, is the
instability, where the hexagonal planes disappear due to an acoustic resonance.

When the relaxation time of the suspension in the equilibrium colloidal crystal is large
at high volume fractions and high Pe´clet numbers, the nonequilibrium structure layered
structure seems to be frozen when the perturbation starts with high shear rates as in an
experiment carried out by Yan and Dhont~1993!.

The shear thickening as well as the shear melting transition in colloidal suspension has
been of interest to many authors. Before the work of Hoffman~1972! shear thickening
was considered as a rheological phenomenon and mainly treated in a phenomenological
manner as summarized in the review by Barnes~1989!.

Experimentally shear thickening is found normally to be related to ‘‘dilatancy,’’ im-
plying a ‘‘temptative’’ expansion of the suspension volume under a continuous shear
deformation. In the present model such dilatancy is not accounted for explicitly, due to
the assumption that the system is infinitely large. Due to these infinite distances any
reduction in liquid pressure induced by the acoustic waves~not evaluated in our model!
will not lead to a nonzero pressure gradient and no volumetric change is predicted.
Experimentally this dilatancy effect is reflected in the often observed gradual descent in
viscosity of a suspension under critical shear conditions due to migration of liquid from
parts in the measuring cell where the shear rate is lower in areas where the critical
condition is present.

An underlying assumption within the present model is that the time-averaged micro-
structure persists on both sides of the critical shear rate. In practice resonances may lead
to imperfections in the ordering, which eventually may result in a shear-induced order–
disorder transition. This may also explain why beyond the critical shear rate the predicted
shear thinning is not found experimentally. For this reason our model is expected to have
predictive capabilities only on the low shear rate side of the resonance state. Even if
thermodynamically the favorite structure beyond the critical shear rate is an ordered one,
disorder may persist due to disturbances continuously imposed by the flow which have
extremely large relaxation times.

Decreasing the absolute value of the surface charge and the concentration of the
counter ions by varying thepH value, Laun~1988! obtained the expected shift of the
critical shear rate of dilatancy to lower values for decreasing repulsive forces~smaller
elastic modulus! by investigating a concentrated polystyrene latex dispersion. In the same
publication the temperature dependence of a suspension of polystyrene particles in
diethyleneglycol/formamide has been studied. It was found that the critical shear rate
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shifts to lower values for decreasing temperatures. A similar result has been obtained by
Boersmaet al. ~1990! from a polystyrene in water/glycerol suspension. These results are
in agreement with the model, since the increase of the viscosity with decreasing tempera-
tures shifts@according to Eq.~28!# the critical shear rate to lower values. The critical
shear stress is expected to be rather independent of the temperature according to Eq.~30!
because the elastic modulus varies only slightly with the temperature.

With the same argument we can understand the effect of solvents of different viscosity
on shear thickening. Figure 11 of Barnes~1989! and Fig. 9 of Boersmaet al. ~1990!
confirm in Eq.~30! that for equal elastic moduli the transition takes place at a constant
stress.

The increase of the critical shear rate for decreasing particle sizes, as shown by Barnes
~1989!, is partially due to the increase of the elastic modulus with decreasing particle
diameter according to a decrease in the scaled Debye parameterk in Eq. ~42!. Also the
liquid viscosities of the suspensions with larger particles usually are larger. Note that our
model is developed under the assumption of monodisperse particles. A polydisperse
distribution has been found experimentally to correspond with a less pronounced increase
of the viscosity. In the approach here a possible explanation for this phenomenon is that
the density variations become less periodic in the sheared colloidal crystal and the reso-
nance effects are reduced.

We also compare the theory with recent, well documented results by Chow and
Zukowski ~1995a,b! for suspensions with particle radii of 0.12–0.26mm. For this pur-
pose only those systems for which, apart fromG0 , also values oftC and ġc are avail-
able, are useful to some extent, these systems having 0.525, F , 0.595. Note that
the indexc indicates the shear condition where the viscosity signal just starts to exhibit
slight noise that they interpret as an indication of the start of shear thickening. Conse-
quently,hc is the viscosity just before the onset of thickening. That definition, as also
used by Hoffman and by Boersmaet al., deviates from our present criterion in that we
consider the condition of maximum viscosity. Predictingġc by calculatingG0 /hc leads
to an overestimation ofġc by a factor 1164 ~their Table 2!. The amount of data by them
do not allow drawing definite conclusions on the dependence ofġc on F. However their
results suggest that the maximumġc is at much largerF than with the results shown in
Fig. 2. This can be well explained from our model when realizing that with small values
of the electrical double layer thicknessd ln(G0)/dF is much larger, which leads to much
larger values ofF at which the increase ofh overrules the increase ofG0 .

The systems of Chow and Zukowski seem to behave differently from the systems of
Hoffman and Boersma. First, their moduli are lower by a multiplication factor between
0.001 and 3 when compared with results assessed on the basis of the Derjaguin formula
for electrostatic repulsive interactions~as no electrokinetic data are available we assumed
c0 5 20.050 V!. The dependence ofG0 on F for Chow’s systems suggests that the
particles behave as constant charge particles rather than having constant potential. More-
over, theory predictsG0 to scale approximately witha22 while the experimental data
indicate ana13 scaling. Second, their values ofh rel

c vary between; 40 and ; 90, the
lowest value occurring at the highest value ofF: at 0.595. It is evident that on the basis
of, for example, the theory of Campbell and Forgacs@our Eq.~43!# hc should be much
higher due to the divergence atFhcp 5 0.605. This anomaly has already been noted by
Chow and Zukowski in that they did not clearly findġc scaling with h/a. Only by
deliberately setting the divergent condition at 0.68 can a reasonable consistency between
the theoretical and experimental levels ofh rel

c be found~within ; 40%!. In keeping with
their results they found thatġc ; G0 /h0 whereh0 is the solvent viscosity. It is evident
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that on the basis of those results we are not allowed to invalidate the previously reported
scaling ofġc with h/a by Boersmaet al. ~1990!.

Experimental results on the system size dependence of the critical shear rate of shear
thickening obtained by Chow and Zukoski~1995b! show that it is important especially at
high volume fractions. They found that the critical shear rate decreases with decreasing
system sizes. According to our model the system size becomes limiting when the corre-
sponding wavelengthksysis comparable or larger than the wavelengthk0 of the dominant
deformation wave of the sheared suspension. The experimentally found dependence ofġc
on k is expected only to occur whenks is on the right side of the maximum of theġc(k)
dependence as shown in Fig. 1. However the experimental investigations by Chow and
Zukoski ~1995a! show that the critical shear rate is independent of the system size for
practical systems~ . 1 mm!.

Finally we note that the model presented, being applied here to electrostatically sta-
bilized suspensions, is expected to be also applicable to sterically stabilized colloidal
suspensions, when using the appropriate formulas@Boersmaet al. ~1990!#.

B. Comparison with other models

Other explanations for shear thickening in colloidal suspensions have been given by
Hoffman ~1974!, Ackerson and Clark~1981!, and Boersmaet al. ~1990!. The basic idea
of Hoffman is that a shear stress couple acting on a doublet of particles in a sheared
crystal is the reason for the instability. In the model presented here the reason for the
instability comes from the periodic modulation of the modulus in the flow gradient
direction, leading to a resonance between the modulation frequency and the eigenfre-
quency of propagating acoustic shear waves.

An increase of the local oscillations coming from the acoustic resonance can lead to a
structural transition with a formation of clusters~flow blockage!, when the forces acting
on a colloidal particle are of the order of the repulsive stabilization as assumed by
Boersmaet al. In this case the critical shear rate of shear thickening is ruled by Boers-
ma’s equation@Boersma~1990!; Boersmaet al. ~1995!# with the critical shear rate

ġc 5
2pe0erC0

2

6ph0a
2

kh

2
. ~47!

Note that the acoustic resonance can be expected to cause instability even in very
dilute suspensions accompanied by a global disordering and an alteration of the dynamic
properties. Such phenomena have been observed by Lindsay and Chaikin~1985!. The
attempt by Chow and Zukoski~1995b! to expand Boersma’s approach to dilute suspen-
sions, by creating a maximum of the critical shear rates at a specific volume fraction
Fmax, evolves in the model presented here in a natural way~Fig. 3!.

IV. CONCLUSIONS

The model presented here explains shear thickening of sheared colloidal suspensions
as the occurrence of an acoustic resonance. The resonance is the result of the periodic
modulation of the elastic modulus in a shear colloidal crystal structure. Applying the
hydrodynamic equation of the colloidal suspension—the critical shear rate, where a maxi-
mum in the viscosity occurs, can be derived. A good agreement with experimental results
for high critical shear rates could be found. For low critical shear rates the used approxi-
mations have to be improved.
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APPENDIX A

When using as initial conditions that bothA(1) 5 0 anddA(1)/dt 5 0 at t 5 0, then
the standard Laplace transform of Eq.~24! becomes

A~1!~s! 5
c2k2A~0!

s22bk2s1c2k2 S s1p1

~s1p1!21ġ 21
s1p2

~s1p2!21ġ 2D. ~A1!

The reverse Laplace transform of~A1! contains the sum of all residualss1 of A(1)(s1)
with Re(s1) , 0. The poless1 of A(1)(s1) are at

s1 5 2p12jġ, s2 5 2p11jġ,

~A2!
s3 5 2p22jġ, s4 5 2p21jġ.

The reverse Laplace transform of~A4! thus has the form

A~1!~t! 5 c2k2A~0! (
l 5 1

4

@~s1sl!e
stA~1!~sl!#s 5 sl

. ~A3!

Using ~A1! and ~A2! in ~A3! we obtain the time dependent first order amplitude:

A~1!~t! 5 c2k2A~0!S~~p12p2!cos~ġ t!2ġ sin~ġ t!!e2p1t

p1@ġ
21~p1p2!2#

2
@~p12p2!cos~ġ t!1ġ sin~ġ t!#ep2t

p2@ġ
21~p11p2!2#

D.
~A4!

In the case of damped propagating wavesp1 and p2 are given by Eq.~22! and the
amplitude turns into

A~1!~t! 5
2A~0!c2k2edt

~d 21v 2!~ġ 24v2!
$2v@v cos~vt!1d sin~vt!#cos~ġt!

2ġ @d cos~vt!2v sin~vt!#sin~ġt!%. ~A5!
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