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Hilding's theorem for Banach spaces

by

S.J.L. van Eijndhoven

In this note, we establish sufficient conditions for invertibility of bounded linear op­

erators on Banach spaces. Herewith, we extend and reprove a result of Hilding [Hi]

presented in the context of Hilbert spaces.

For a bounded linear operator T on a complex Banach space X by a(T) we denote the

spectrum of T and by p(T) its resolvent set. So p(T) = C\a(T). We recall that a(T) is

non-empty compact subset of C. By B(X, Y), we denote the collection of all bounded

linear operators from the Banach space X into the Banach space Y. Also, we write

B(X) instead of B(X, X).

Lemma 1. For T E B(X), suppose there are ao E IR and 130 > 0 such that

IITx - axil 2:: f30ll xll

for all x E X and all a ~ ao. Then the half-infinite interval (-00, ao] is contained in

p(T).

Proof. We may assume that a(T) n IR =f. 0. Let

AO := min{A E IR I A E a(T)} .

Now suppose Ao ~ ao. Put an = Ao - !, n E IN. Then for all n, an E p(T). Since
n

IITx - Aoxll 2:: f3ollxll, x EX,

T - Ao is injective (and has closed range). To arrive at a contradiction we shall prove

that T - Ao is surjective. Let y E X, and define the sequence (x n ) in X by
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By the second resolvent identity, for all n, m E IN

So the sequence (Xn)nEN converges, to x E X say. Then for all n E IN

1II(T - Ao)X - yll ::; II(T - Ao)(X - xn)11 + -llxnll ,
n

so that y = (T - Ao)X.

We conclude that Ao > ao.

Theorem 2. Let T E B(X). Suppose there are a1 E JR and f31 > 0 such that

IITx - axil 2: f3111 xll

for all x E X and a ::; a1. Then (-00, a1 + f3d c p(T).

o

Proof. Let ao = a1 + 'rJ and /30 = f31 - 'rJ, where 0 < 'rJ < f31. Then for all a with

a1 ::; a ::; ao and all x E X

We conclude that

IITx - axil 2: f30llxll

for all a ::; ao and x E X. Hence (-00, ao] c p(T). The result follows, since

(-00, a1 + (31) = U (-00, a1 + 'rJ] c p(T) .
Tf<{31

o

Theorem 3. Let T : X -t X be a linear operator. Suppose there are AI, A2 E JR with

o::; AI, A2 < 1 such that
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Then

. . 1 + A1
a) T 1S bounded w1th IITII :::; A

1 - 2

(
1 - A1)

b) - 00, 1 + A2 c p(T).

c) T is invertible with IIT-111 ::; 1 + ~2.
1 - 1

Proof.

a) Let x E X. Then

IITxl1 :::; II x ll + IITx - xII ::; (1 + Adllxll + A211Txll

1+ A1
so that IITxl1 ::; A Ilxll·

1 - 2

b) Leta:::;O,andxEX. Then

IITx - axil = IITx - x + (1 - a)xll 2:: (1 - a)lIxll- A111xll- A211 Tx ll

Hence for all x E X and a :::; 0

By Theorem 2 with a1 = 0 and {31 = 1 - ~1 , we obtain
1 + 2

(
1 - A1)

- 00, 1 + A2 c p(T) .

c) Since 0 E p(T) by b), T is invertible. Moreover

1 - A1
IITxl1 2:: 1 + A211xll, x EX,
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We mention some consequences of the above theorem.

o

Corollary 4. Let T : X -+ X be a bounded linear opertor. Suppose there is A E JR

with 0 :S A< 1 such that

IITx - xii :S Allxll + IITxl1 .

Then

(
1- A)a) - 00, -2- C p(T).

b) T is invertible with liT-III :S 1 ~ A'

Proof. Let co := min (1, II~II)' Then for 0 < c :S co,

o :S 1 - c< 1 and 0 :S A- c11T11 < 1 ,

and

IITx - xii :S (A - cllTII)llxll + (1 - c)IITxll .

Hence by the preceding theorem

( _ 00, 1- A+ciITII) C p(T)
2-c

and

2-c
liT-III :S 1 _ A- c11T11 .
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By letting c -!- 0 the assertions a) and b) follow. o

Corollary 5. Let X and Y be Banach spaces and let U : X -t Y be a bounded

invertible operator. Let AI, A2 E IR with 0 ~ Al < 1 and 0 ~ A2 ~ 1. Then for all

V E B(X, Y) satisfying that for all x E X

a) V - aU is invertible for all 0'. E ( - 00, ~ ~ ~:).

b) V is invertible and IIV-111 ~ 1 + ~21IU-111
1 - 1

Proof. Let V E B(X, Y) satisfy condition (*). Put S = VU- 1
. Then for all y E Y

We conclude from the above results that 5 - 0'./ is invertible for all 0'. E ( _ 00, 1 - ~1 )
1 + 2

1 1+A2. .
and that 115- II ~ A . Now the assertIOns a) and b) follow from the observatIOn

1 - 1

that V - aU = (5 - a1)U. 0

Definition 6. For X and Y Banach spaces, U E B(X, Y) is said to be right invertible

if there is U+ E B(Y, X) such that UU+y = y for all y E Y. U+ is called a right inverse

of U.

Remark. Recall that for X and Y Hilbert spaces the following are equivalent

1) U E B(X, Y) is right invertible.

2) U E B(X, Y) is surjective.

3) U E B(X, Y) and UU* E B(Y) invertible.

Corollary 7. Let X and Y be Banach spaces and U E B(X, Y) be right invertible

with right inverse U+. Then all V E B(X, Y) for which there are AI, A2, A3 E IR such

that for all x E X,
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where 0 :S Al +A311U+ II < 1 and 0 :S A2 :S 1, are right invertible.

Proof. Let V satisfy the condition, stated in the assertion. Then for all y E Y,

By Theorem 3, VU+ is invertible in B(Y). Hence V+ := U+(VU+t l is a right inverse

of V. Observe that

IIV+II :S (1 _A~ ~ ~:IIU+II) IIU+II .

D

Remark. Let X and Y be Banach spaces, and U E B(X, Y) be right invertible. Let

X o be a dense subspace of X and let Va : X o -+ X satisfy for all x E X o

where 0 :S A2 < 1. Then Vo extends to a bounded operator V E B(X, Y) with

and for all x E X

[Hi] Hilding, S.; Note on completeness theorems of Paley-Wiener type. Ann. of Math.

49, no. 4 (1948), pp. 953-955.
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