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My heart leaps up when I behold 
A rainbow in the sky 
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Chapter 1 

INTRODUCTION 

1.1 Development of laser-based, diagnostic tools 
in il uid dynamics 

The motivation for this work is the experimental research on heat and mass transfer 
in liquid spray environments. Liquid spraying is used in combustion engines and 
in numerous agricultural and industrial processes. In order to be able to choose 
the proper spray configuration, it is essential to develop a complete understanding 
of the fundamental phenomena that determine the spray performance. Therefore, 
diagnostic tools should be developed that are suitable for the experimental study 
of spray processes in laboratory and realistic conditions. 

light-scattering 
moving particle 

fl:'"_, 
Figure 1.1: Schematic of the optical configuration of a laser Doppler instrument for 
measuring one velocity component of the tracer particle in a fluid flow. 

Diagnostic tools based on light detection have the advantage over mechanical 
measuring probes that they are relatively easy to use in complex experimental 
situations such as in combustion research. Moreover, optical measurement tech
niques are non-intrusive; the physical phenomenon studied is not disturbed by the 
light source of the instrumentation. It is the development of this light source that 
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2 Introduction 

has undergone a revolutionary impulse since the first successful operation in 1960 
of Light Amplification by Stimulated Emission of Radiation (LASER), announced 
by Th. H. Mainam (see e.g. Ref. [25]). The directionality and exceedingly high 
radiant power of the laser beam soon resulted in a variety of improved and novel 
optical measurement techniques in the field of experimental fluid dynamics. 

Laser Doppler Velocimetry (LDV) was the first laser-based measurement tech
nique in fluid dynamics. Already in 1964, Yeh and Cummins[90] performed velocity 
measurements in a pipe flow of water using LDV. The technique is based on the 
formation of an interference pattern in the cross-over region of two crossing laser 
beams (Fig. 1.1). This region is visible because of the scattering of laser-light by 
small tracer particles in the flow. A light-collecting system observes a so-called 
Doppler signal of one tracer at a time. This signal contains a Doppler frequency 
which is proportional to the tracer velocity which is aimed to be as close as possible 
to the fluid flow. Because one tracer is evaluated at a time, no spatial flow struc
tures are measured. However, an important feature of LDV is its rapid response 
to velocity changes which allows extraction of turbulent flow properties. More is 
said on the principles a;nd practice of LDV by e.g. Durst et al.[14]. 

LASER 

fluid flow with 
(\tracer particles 
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Figure 1.2: Outline of the experimental setup for particle image velocimetry. 

In 1980, Meynart[46] proposed Particle Image Velocimetry (PIV). PIV is a 
most promising, laser-based, diagnostic technique that measures the 2D- or even 
3D-velocity data-set of an instantaneous spatial flow structure. The principle of 
this technique is the analysis of two images of the flow that is seeded with tracer 
particles illuminated by a powerful laser-light sheet. As for LDV, tracers have to 
be smaller than 10 µm in order to follow gas flow fluctuations up to 700 Hz with 
a precision of 1 % (see Ref. [15]). The local fluid velocity-vector is deduced from 
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the local average particle-image displacement between the two images (Fig. 1.2). 
A review on PIV and related techniques is given by Adrian[3]. 

light-scattering 
moving particle Phase shifted 

Doppler signals 
I 

Figure 1.3: Sketch of the phase Doppler particle analyzer; one velocity component and 
the diameter of a single particle can be obtained with this optical setup. 

Both LDV and PIV can be applied to measure the droplet velocity in a liquid 
spray. But to characterize droplets also information on size, shape, composition 
and temperature is required. In 1975, Durst and Zare[16] proposed a method 
to determine the particle size from the spatial frequency of the scattered inter
ference pattern in LDV. In 1984, Bachalo and Houser[7] presented a commercial 
Phase/Doppler instrument based on this idea; it contains three detectors collecting 
scattered laser-light at different angular positions (Fig. 1.3). From the phase shifts 
between the Doppler signals of the three detectors a drop size range over a factor of 
100 can be determined. Consequently, this instrument can measure velocity/size 
correlations of small and large particles with one optical setting. Since 1984, the 
phase-Doppler Anemometry (PDA) has been improved and successfully applied to 
for example fuel spray combustion, agricultural spray research and fire and toxic 
gas control development. 

In 1990, Naqwi et al.[51] extended PDA toward the measurement of the refrac
tive index of the light-scattering particle. Extended phase-Doppler anemometry 
(EPDA) consists of two sets of receiving optics instead of one as in Fig. 1.3. The 
sign and ratio of the two phase signals is used to recognize the transparent par
ticle material. Another extension of PDA to the measurement of the refractive 
index has been proposed by Onofri et al.[56] and is called the dual burst technique 
(DBT). Using only one receiving unit, two scattering processes, i.e. reflection and 
refraction of light by the particle, are identified in the Doppler signal. The re
flected part serves to determine the particle diameter whereas from the refracted 
part the particle refractive index and velocity can be obtained. The advantage of 
both EPDA and DBT is their large measuring range of particle refractive indices. 
Provided that one knows the relationship between the refractive index and the 
temperature, the droplet temperature can be measured as well. Unfortunately, 
the temperature can not be estimated with a precision higher than several decades 
of degrees Celsius. 

Over the years, different laser-based techniques have been proposed to measure 
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4 Introduction 

the droplet temperature. In 1985, Murray and Melton[50] presented a technique 
using the fluorescence of an organic dopant added to the droplet. The tempera
ture is determined by measuring the temperature-dependent ratio of the fluores
cence intensity of the organic dopant to the fluorescence intensity of excited state 
molecules that are formed by the binding of the solvent together with the excited 
dopant. The excitation results from ultraviolet laser absorption. A measurement 
resolution of 1 °C has been claimed. Practically, fluorescence thermometry seems 
to be complex and suffers from the necessity of the addition of a substance to the 
droplets. 

Less complex thermometric techniques have been proposed utilizing the tem
perature dependence of the index of refraction as for DBT and EPDA. In 1993, 
Massoli et al.[45] deduced the droplet temperature from the ratio of horizon
tally polarized scattered-light, detected at two different positions. One year later, 
Schaller et al.(65] presented a technique that measures the ratio of brightnesses of 
different light spots, i.e. glare points (Sec. 1.3), on the droplet surface which is 
observed through a lens of finite aperture. The ratio exhibits a monotonic depen
dence on the index of refraction. For both techniques, an accuracy of less than 
10 °C has been reported. 

All the above thermometric techniques are based on the ratio of light intensities. 
This leads to inevitable errors in dense sprays due to obstruction of the optical 
paths. But most importantly, ratioing techniques lack a certain characteristic 
structure which is needed to reject noisy data. This makes it difficult, but not 
impossible, to produce a reliable instrument. 

This thesis deals with the development of a non-intrusive measurement tech
nique, first presented by Roth et al.[59]. The technique is based on the primary 
rainbow, formed by laser-light scattering droplets. From the angular position of 
the rainbow, the refractive index is deduced and subsequently the temperature. 
The advantage of the technique is its characteristic signature as it was called by 
Sankar et al.[64]. This is the reason why these authors could manufacture a reliable 
"Rainbow Refractometer System" [62] which uses ideas proposed by Van Beeck and 
Riethmuller[70, 71]. 

1.2 Rainbow in the sky 

The background of this thesis is known as one of the most beautiful optical phe
nomena in nature, i.e. the rainbow. It is seen particularly brightly when one looks 
towards a thunderstorm shortly before sun-set having the sun shining from the 
back. Marvelously concentric coloured bands can be distinguished on a part or 
parts of a circle arranged from the inner to the outer border as violet, indigo, blue, 
green, yellow, orange and red. Sometimes, higher in the sky, a broader secondary 
rainbow is seen which is much weaker in intensity and has its colours reversed. 
The photograph in Fig. 1.4 shows that the sky below the primary and above the 
secondary rainbow is brighter than the region between both rainbows; this dark re-
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Figure 1.4: The rainbow in the sky (printed with permission of Dr. Mohan Ramamurthy 
of the University of Illinois). 

gion was already noticed by Alexander of Aphrodisias in 200 AD and is historically 
known and often cited as the Alexander's Dark Band. 

At this point, it is interesting to pose the question of what the distance is 
between the observer and the rainbow. In the case of a fountain, this distance is 
quite well defined because the rainbow is generated by the droplets in the fountain. 
But , when one is looking at a rainbow while getting wet at the same time, then one 
is unable to tell its exact position, even when reference points in the landscape are 
present. The question is related to why we see smooth coloured bands, although 
we are looking at droplets filling only a tiny volume-fraction of the space. The 
explanation lies in the limiting resolution of our imaging system, the human eye. 
Fig. 1.5 shows the eye, trying to form images of distant droplets. Due to the 
finite aperture of. the pupil, the images will be distorted by Fraunhofer diffraction 
forming Airy patterns on the eye's retina. The towering central high irradiance 
of one Airy pattern is known as the Airy disk. The diameter of this disk at the 
retina is approximately given by Hecht[26]: 

J>. 
Ddisk:::::: 2.44-D , (1.1) 

pupil 

where f is the focal length of the eye's lens, >. the wavelength of the light and 
Dpupil the diameter of the pupil. A criterion for the minimum angular separation, 
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6 Introduction 

6.<Pmin, between two distant points can be defined from the situation where the 
centre of one Airy spot touches the edge of another[26]: 

>. 
6.<famin :::::: 1.22-D · 

pupil 
( 1.2) 

For instance, when D11u.pil :::::: 2 mm, then 6.<Pmin equals ±0.02 °. With an intermedi
ate distance between the droplets of 20 cm, the observer cannot distinguish single 
droplets at a distance of 500 m. This overlapping of diffracted droplet images at 
the retina accounts for the continuous character of the rainbow in the sky. Obvi
ously, droplets further away than 500 m will also contribute to the rainbow, which 
is why one ought to speak about coloured layers instead of coloured bands. Con
sequently, one understands that the rainbow is a three-dimensional phenomenon 
which explains the problem in defining a unique position. As the scattered-light 
intensity from the droplets at 1000 m is only 25 % of the intensity of those at 500 m 
away from the eye, one can state that the rainbow is about twice as deep as the 
distance at which the human eye can still resolve two droplets. 

two overlapping 

Figure 1.5: The limiting resolution of the human eye. The scattering angle (} is the 
angle between the incident sun rays and a ray scattered from the droplet reaching the eye 
of the observer. 

The overlapping of coloured points was an effect that Georges Seurat a imed at 
in his paintings. As a pointill ist, he painted small dots about 2.5 mm from each 
other. For instance, in "Dimanche d'ete a la Grande Jatte"(1885; Art Inst itute, 
Chicago) the blending of the colours occurs in the eye when the observer stands at 
a distance of several metres. However, the painting is two-dimensional, thus there 
is no question about its position. 

Now it is understood that the rainbow is not a thing of which the position can be 
determined by the stereoscopic properties of the eyes, some rainbow characteristics 
will be explained. Therefore, one has to define the scattering angle () as the angle 
that a scattered sun ray, reach ing the observer, makes with the incident sun beam. 
The eye detects only a tiny range of scattering angles, i.e. () ± 6.B/2, from each 
droplet in the rainbow, as indicated in F ig. 1.5; for a droplet at a distance of 500 m, 
this range would be B± ~ 0.0001 °. This means that looking at a certain droplet, 
situated in a coloured layer, implies looking in a certain direction. However, due 
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P~R .... U.f.L 

l'N 

(ey~ of 
observer 

L L 

droplet 
in red part of 
primary rainbow 

Figure 1.6: The path of sun rays through two raindrops in the red parts of the primary 
and secondary rainbows. One internal reflection yields the primary rainbow and two 
internal reflect-ions result in the secondary rainbow whose colours are reversed. (} is the 
scattering angle. T is the incidence angle and T 1 is the angle between the deviated incident 
ray and the tangential to the dr·oplet suijace. 

to the limiting resolution of the human eye, the resolution in the direction is 
decreased to a range of scattering angles of about () ± !:::.. efimin/2 instead of() ± !:,.() / 2. 
Nevertheless, it was computed from Eq. 1.2 that this range is still small , which 
makes it possible to study the rainbow characteristics from the scattering di agrams 
of a single droplet. 

In 1637, Rene Descartes wast.he first to expla in the brightness of the rainbow. 
He traced the paths of light rays in a single spherica.I water drople t using the law of 
reflection and Snell's law of refraction describing how a ray devia tes upon entering 
a droplet: 

cos T = rn cos T 1
. (1.3) 

Here T is defined as the angle between an incoming ray and the tangential to the 
droplet surface and T

1 represents the angle between the same tangential and the 
refracted ray (see Fig. 1.6). mis the refractive index which depends on the density 
and temperature of the medium and on the colour of the light . The latter accounts 
for t he dispersion of light first announced by Newton in 1666; this was not seen by 
Descartes. Nevertheless, Descartes established a correct relationship between the 
angles B, T and T

1 for incoming sun rays t hat first refract, then reflect several times 
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8 Introduction 

on the internal surface of the droplet and finally refract again to emerge from the 
droplet as outlined schematically in Fig. 1.6: 

8 = 2T - 2(N - l)T1
• (1.4) 

N corresponds to the number of interactions between a ray and the surface of the 
scatterer. Fig. 1.7 has been constructed from this relationship and with the help of 
Snell's law. It shows IBI as a function of T for one internal reflection (N = 3) and 
two internal reflections (N = 4). Form, the value for red light (i.e. >. ~ 700 nm), 
an ambient temperature of T = 20 °C and a pressure of P = 1.023 bar is used. The 
scattering angle in both curves exhibits an extremum with respect to the incident 
angle. This means that near these two extrema a large range of incoming rays focus 
on two narrow ranges of scattering angles (i.e. directions), which results in two 
regions of high scattered-light intensity, called the rainbows. Descartes concluded 
that the primary rainbow arises from incoming sun rays which have experienced 
one internal reflection. IBr9 I is the scattering angle of minimum deviation known as 
the (primary) geometric rainbow angle. IBrg I is about 138.9 ° for violet and 137.4 ° 
for red light because violet is refracted more than red. Thus the spectrum of the 
sunlight is fanned out by the droplet similarly to the manner in which a prism acts 
on white light. By identical reasoning, the secondary rainbow was found to result 
from two internal reflections. 

-0 
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Geometrical optics - spherical water droplet - red light 
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IS I rainbow (N=3) 
_rn____ ----------------
ALEXANDER1S DARK BAND 

--1----------------
1 

100 ~~~~~~~~~~~~~~~~~~ 
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Figure 1. 7: The relationship between the scattering angle and the incidence angle for one 
(N = 3) and two (N = 4) internal reflections of red light in a spherical water droplet. 
Focusing of the light rays near the extrema leads to the brightness of the primary and 
secondary rainbow. 



1.2 Rainbow in the sky 

Rays forming the primary and secondary rainbows cannot come from droplets 
in the Alexander's Dark Band because to do so they would have to come from rays 
having a scattering angle less than l8r9 I for the primary bow and greater than the 
angle of maximum deviation for the secondary bow. This explains why the sky 
between both bows is darker than beneath the primary rainbow and above the 
secondary rainbow. 

Figure 1.8: The primary rainbow in the sky is situated near the surface of a cone having 
the axis formed by the sun ray passing the observer and having 180 ° minus the geometric 
rainbow angle as the cone angle. 

It is a small step from the study of a single droplet to explain the primary 
rainbow formed by an ensemble of raindrops. From the definition of the sc~ttering 
angle 8 in Fig. 1.5, it results that an entire surface in the sky exists for which 
this angle is the same. This surface lies on a cone having (180 ° - IOI) as cone
angle and having the axis connecting the observer and the sun (Fig. 1.8). When 
the raindrops are all identical and spherical, the scattered-light intensity detected 
from all drops crossing this surface is the same. Consequently, a certain coloured 
layer lies on the surface of such a cone. This cone is higher in the sky when the 
sun is lower to horizon. In an airplane the entire cone might be seen. Thus the 
rainbow is fixed to the observer; everybody has his own rainbow. 

Closer examining of Fig. 1.7 reveals more than deduced until so far. Due to the 
extremum of 8 with respect to T, there are, for IBr9 I < IOI ~ 165° concerning the 
primary rainbow, always two rays that have the same scattering angle. In 1802, 
Young was the first to realize that these rays interact according to the principle 
of optical interference that he formulated starting from the work of Christiaan 
Huygens on a wave-like theory of light. As a result of this principle, the parallel 
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10 Introduction 

rays interfere at infinity in a destructive or constructive manner according to their 
phase difference, thus forming supernumerary bows inside the primary rainbow 
(see for instance Plate 14 in Ref. [48] for a nice photograph). Based on the same 
principle of optical interference, in 1838 Airy[4] successfully developed a theory for 
the rainbow which will be treated in Chap. 4 of this thesis. 

Fig. 1.9 shows the scattered-light intensity versus the scattering angle for the 
primary rainbow according to the so-called Airy theory. The droplet diameter is 
300 µm and the wavelength of light varies from A = 700 nm for red to A = 420 nm 
for violet light. The pressure is 1.023 bar and the temperature T = 20 °C. The 
figure represents interference structures for each colour. The first series of maxima 
(seen from left to right) is known as the main rainbow maximum which for D = 
300 µm is particularly well developed as all the colours are well separated. The 
first supernumerary bow shows the same structure as the main rainbow maximum 
but is less intense. Higher-order supernumerary bows have a different arrangement 
of colours because of the strong overlapping of the colours. For this specific droplet 
size it is interesting to notice that there are gaps between the second, third and 
fourth supernumerary bow. 

Fig. 1.10 shows (normalized) Airy rainbow patterns as in Fig. 1.9 but now for 
a smaller droplet diameter of 30 µm, common for the droplet dimension in mist. 
Here, the rainbow is 464 times less intense and twice the width of the rainbow in 
Fig. 1.9. The main rainbow maximum appears almost entirely white due to colour 
mixing. Therefore, it is known as the white rainbow or mistbow. Only one or two 
coloured supernumerary bows are visible and are well separated from the white 
main maximum. It is interesting to see that for the supernumeraries the order of 
the colours is the reverse of those in an ordinary primary rainbow like in Fig. 1.9. 

The Airy theory predicts how the features of the rainbow change with droplet 
size. However, in reality, there is more than just the size of the droplet that 
determines the characteristics of the rainbow. First, one has to realize that the 
sun is not a point source. Therefore, the sunbeams are not parallel but spread 
over an angle of about half a degree, thus obliterating the colours of the rainbow. 
Secondly, a normal rain shower contains a broad spectrum of droplet diameters. 
On top of this, the large raindrops are not spherical. Fraser[l9] explains why under 
these conditions it is still possible to see supernumerary bows. 

This section on the rainbow in the sky has described only few rainbow phenom
ena that the human eye can observe. Additional phenomena are discussed in an 
almost infinite number of reference books and journal articles; Minnaert[48] and 
Humphreys[32] are among those most cited. An interesting WWW-site is About 
Rainbows[42] containing an extended list of references. From all these works it can 
be concluded that there do not exist two rainbows that are the same. Some ob
servations of abnormal rainbows, reported by Minnaert[48], are even still waiting 
for convincing explanations. 
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Figure 1.9: The rainbow according to Airy's theory for different colours. The main rain
bow maximum and supernumerary bows are predicted. The droplet diameter is 300 µm. 
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Figure 1.10: The rainbow according to the Airy theory for a droplet diameter of 30 µm. 
Mixing of colours gives rise to a white main rainbow maximum.. The order of colours in 
the first supernumerary bow is reversed. 

11 



12 Introduction 

Figure 1.11: Supernumerary bows in the monochromatic primary rainbow created by a 
nearly spherical droplet suspended from a small tube with its point ground fiat. 

1.3 Rainbow in the laboratory 

The rainbow in the laboratory discussed in this thesis is slightly different from the 
rainbow in the sky, introduced in Sec. 1.2. Therefore, it deserves some words of 
explanation. 

The rainbow in the laboratory is created by a single droplet scattering laser light 
instead of sunbeams. Consequently, the scattered-light intensity distribution is 
monochromatic. There is no mixing of colours which would blur the supernumerary 
bows. Fig. 1.11 depicts the resulting so-called monochromatic primary rainbow; 
the supernumerary bows are clearly visible. The photograph has been taken of a 
nearly spherical droplet suspended from a small tube with its point ground flat. 
The camera is focused at infinity so that the supernumerary bows correspond to 
those in the far field[74]. 

Not only the primary rainbow but also the second and even higher-order rain
bows, resulting from higher-order internal reflections, can be studied accurately by 
observing the monochromatic angular scattered-light pattern of a single droplet. 
Walker[86] studied the first 13 rainbows of water and other liquids using a student 
He-Ne laser. In theory, an infinite number of rainbows exist; the higher the order, 
the broader and dimmer the pattern becomes. 



1.3 Rainbow in the laboratory 

The Airy theory mentioned in the previous section gives a good idea of what a 
rainbow resembles. However, the theory is not complete. In 1845, Faraday found 
an interrelationship between light waves and electromagnetism. Some years later, 
Maxwell captured this discovery in a single set of mathematical equations, now 
known as the Maxwell equations. These equations were solved for the scattering 
of an incident electromagnetic plane wave by a spherical particle consisting of 
a homogeneous medium[41, 47]. The solution is called the Lorenz-Mie theory 
and is treated in Chap. 2. It gives an exact solution for the problem considered. 
Consequently, it should be able to predict at least the supernumerary bows in the 
primary rainbow region. 

137 

Lorenz-Mie theory 

Droplet diameter = 1 mm 
Refr. index = 1.33534 
Wavelength = 632.8 nm 

--- Alryfrin\s =,, l/j 

138 139 140 
Scattering angle (degree) 

141 

Figure 1.12: The monochromatic rainbow according to the Lorenz-Mie theory. A ripple 
structure is superimposed on the clearly visible Airy rainbow pattern. 

Fig. 1.12 shows the angular scattered-light distribution for 137 ° < () < 141 ° 
according to the Lorenz-Mie theory for the wavelength of the light of a He-Ne 
laser, i.e. A = 632.8 nm. The droplet size is 1 mm and the refractive index is m = 
l.33534+0i, where Oi ( i is the imaginary unit) implies that there is no absorption of 
light by the medium. The incident light is polarized normal to the scattering plane 
made by the incident and scattered wave vector. 1 The figure clearly shows the main 
rainbow maximum and the supernumerary bows. Because the main maximum 
results from the same type of optical interference as the supernumeraries, they 
are both referred to as Airy fringes or the Airy rainbow pattern. High frequency 

1 A polarization in the scattering plane would give a 25 times weaker rainbow pattern because 
the internal reflection occurs close to the Brewster angle (see e.g. Van de Hulst[77]). 
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oscillations are superimposed on these Airy fringes which are not predicted by the 
Airy theory and not visible in the rainbow in the sky. To trace the origin of this 
ripple structure in terms of geometrical rays, it is necessary to examine the angular 
frequency spectrum. 

Spectrum of derivative of rainbow pattern 

Droplet diameter = 1 mm f 
- Refractive index = 1.33534 3 
:::::i Wavelength = 632.B nm 

~ 
'~ 
"' Qi 
"'O 

~ 
Ci 
E 
<( 

0 5 10 15 20 25 
-1 

Angular frequency (degree ) 
30 

Figure 1.13: The derivative of the spectrum of the monochromatic rainbow. Each of the 
labeled peaks corresponds to the interference between two geometrical rays. 

In Fig. 1.13 the derivative of the spectrum of the monochromatic rainbow in 
Fig. 1.12 is depicted. The reason to show the derivative is to bring the amplitudes 
of the different peaks in the same order of magnitude for better readability. The 
angular frequency F corresponds to the number of light intensity oscillations per 
degree scattering angle. Each peak, labeled from F1 to F5 , can be explained by the 
principle of optical interference at infinity between two parallel rays separated by 
a distance c5;. Therefore, one can treat this interference analogous to the Young's 
double-slit experiment (Ref. [27]): 

c5; 7r 

F; = I1so 0 
i = 1..5. (1.5) 

From this equation and Fig. 1.13, the distances c51 to c55 can be computed. The 
connection between each distance and the corresponding geometrical rays can best 
be found graphically by computing the 6 - T relationship for light reflected at the 
outer droplet surface and transmitted across the drop without and with internal 
reflections, as was done for one and two internal reflections in Fig. 1.7. In this 
manner, the main contributions to the primary rainbow are found to arise from 
external reflection and one internal reflection (Fig. 1.14). The three resulting rays 
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B, C and D interfere upon emerging from the droplet at a detector placed in the 
far field to yield the 3 dominant peaks at frequencies, Fi, F2 and F3 : 

F1 : Rays B and C represent the contributions of internal reflection to the primary 
rainbow. After leaving the droplet with the same scattering angle, their 
intermediate distance is o1• Interference yields the Airy fringes corresponding 
to the peak at angular frequency F1• 

F2 : Ray C, a once-internally reflected ray, interferes with the external reflection 
(ray D) resulting in F2 • 

F3 : Ray B, the other once-internally reflected ray at scattering angle fJ, interferes 
with ray D to yield th~ angular frequency F3 . 

The relationship between Fi, F2 and F3 is given by 

(1.6) 

Peaks F2 and F3 account mainly for the ripple structure superimposed on the Airy 
fringes. 

Close study reveals that distances o4 and o5 have to result from the interference 
between internal reflection, i.e. rays B and C, and the ray E coming from the edge 
of the droplet (Fig. 1.14). The explanation of this edge ray is not yet entirely 
understood. In Fig. 1.14, it has been represented as a ray traveling along the 
curved surface of the droplet spraying energy continually forward tangentially away 
from the surface. However, according to Van de Hulst[78], the energy left in such 
a surface wave after completing half a circle around the sphere can be neglected. 
Later, Lock[37] and Van de Hulst and Wang[84] stated that edge rays might be a 
combination of N - 2 times critically-reflected rays and the higher-order rainbows 
that accumulate in the extreme edge region of the droplet. 

Optical interference between edge ray E and the external reflection (ray D) is 
weak but nevertheless visible as a small peak between F1 and F2 • An edge ray A 
probably also exists but it would be situated so close to ray C (see Ref. [84]) that 
the interference with other rays would not appear as separate peaks in the power 
spectrum of Fig. 1.13. 

An interesting alternative relationship between the monochromatic rainbow 
pattern and its spectrum is given by Van Beeck and Riethmuller[74] and is based 
on the concepts of Fourier optics (see Refs. [28, 20]). For this, the glare point 
amplitude pattern g(p) as sketched in Fig. 1.14 has to be defined. An observer 
sees the amplitude squared of g(p) on the surface of the drop. This pattern is 
the Fourier transform of the linearly-polarized Lorenz-Mie scattering amplitude, 
S1 ( 8), taken over a limited range of angles covered by an imaging lens as explained 
by Van de Hulst and Wang(84] and Lock[36]: 

g(p) = F{S1(0)}. (1. 7) 
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Figure 1.14: Rays contributing to the primary minbow. The way that rays A and E 
emerge from near to the edge of the droplet is not completely understood and is sketched 
schematically as dashed surf ace waves. 

The angular scattered-light intensity distribution i 1(0), as depicted in Fig. 1.12, is 
then 

(1.8) 

where G- 1 ( 0) designates the inverse Fourier transform of g(p), .r-1 {g(p)}. With 
the help of the Wiener-Khitchine theorem (see Refs.[28, 20]) the autocorrelation, 
symbolized by 0, of g(p) becomes 

(1.9) 

where* denotes the complex conjugate. This leads to the spectrum, IF{i1(0)}j 2
: 

(1.10) 

Hence the spectrum is the magnitude squared of the auto-correlation of the glare 
point pattern. This alternative interpretation is not different with regard to the 
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previous one. In particular Eq. 1.7 has been employed by Lock[36, 37] and Van de 
Hulst and Wang[84] to gain better insight in the glare points seen at the edges of 
the droplet at almost any scattering angle. 

1.4 Thesis overview 

The development of a laser-based measurement instrument is the subject of the 
thesis. The main purpose of the instrument is the non-intrusive measurement 
of the temperature of a single droplet in a spray. Therefore, a remote sensing 
principle is employed, based on the monochromatic rainbow described in Sec. 1.3. 

Chap. 2 deals with the Lorenz-Mie theory used for the prediction of the monochro
matic rainbow characteristics from a homogeneous sphere, necessary for the devel
opment of the rainbow technique. An simple extension of the Lorenz-Mie theory is 
attempted which enables the computation of the primary monochromatic rainbow 
for a sphere arbitrarily located in an off-axis Gaussian laser beam. 

The behaviour of the rainbow pattern for non-spherical droplets is treated in 
Chap. 3. The Airy fringes and ripple structure are computed for the specific case of 
an ellipsoidal droplet with a constant and real refractive index. A comparison with 
the Lorenz-Mie theory will be made concerning spheres to validate the developed 
theoretical approach. 

Chap. 4 examines the limits of the Airy theory by comparing it with the Lorenz
Mie theory. 

Chap. 5 explains how from a angular rainbow pattern, recorded with a linear 
COD-camera both the temperature and size of the light-scattering droplet can be 
determined. It also demonstrates how the influence of the drop non-sphericity on 
these parameters is circumvented. Experiments on satellite droplets around an 
unstable water jet will be shown. 

Chap. 6 will deal with the simultaneous measurement of the temperature, size 
and velocity of an individual droplet using a single photomultiplier to detect a 
time-varying rainbow pattern. Experimental results carried out in a full-cone 
water spray are reported as well as the detection of non-sphericity. 

The discussion and conclusions follow in Chap. 7. 
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Chapter 2 

OFF-AXIS LASER-BEAM SCATTERING 

BY A SPHERE USING LORENZ-MIE 

THEORY 

It is a challenge to characterize particles in a fluid flow without disturbing the 
phenomenon that is being surveyed. Therefore optical techniques are applied based 
on the detection of light scattered by particles. To relate the detected spatial or 
temporal intensity distribution to a certain physical quantity, all kind of scattering 
theories can be utilized. In this chapter light will be treated as electromagnetic 
waves. The scattering problem is defined in Sec. 2.1 and solved in Sec. 2.2. The 
result is known as the Lorenz-Mie theory and gives an exact solution for spherical 
particles of arbitrary size. In Sec. 2.3 the far-field solution is derived and Sec. 2.4 
treats the localization principle. 

The rainbow technique utilizes laser-light illumination. This means that the 
incident wave-front has a non-uniform light-intensity distribution unlike in the 
Lorenz-Mie theory. Moreover, when the sphere is not located on the laser-beam 
axis, the scattering problem loses its axial symmetry. An extension of the Lorenz
Mie theory is proposed in Sec. 2.5 concerning the specific situation of the off-axis 
illumination by a laser beam with a Gaussian intensity profile. 

2.1 Definition of the scattering problem for Lorenz
Mie theory 

The considered problem is sketched in Fig. 2.1. A planar monochromatic wave 
front is impinging on a sphere. The light wave consists of the mutually perpendic
ular electric field E a.nd magnetic field intensity H. The medium inside (denoted 
by subscript i) and outside the particle (subscript o) is homogeneous and free of 
charges. In that case, the electromagnetic field (E, H) has to satisfy the Maxwell 

19 
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Figure 2.1: Sketch of the Scattering Problem by a Sphere 

equations that Hecht{29] writes in the following differential form, applying SI-units: 

\7 · E 0, 
\7 · H = 0, 

aH 
\7 x E= -µat' 

aE 
\7 x H=t:-. at 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

µ is the permeability and l denotes the electric permittivity of the particular 
medium. Eqs. 2.1 and 2.2 describe the divergence-free conditions of the (E, H)
field and the other two Maxwell equations express the mutual dependence between 
both vectors. Based on the vector identity \7 x \7 x A= -6A + \7 (\7 ·A), above 
relations transform into the vector wave equations: 

a2E 
6E-µt:- =0 at2 ' 

a2H 
6H - µe at2 = O. 

Consider an electromagnetic field that is time harmonic, 

E = ee-iwt, 

H 11.e-iwt, 

(2.5) 

(2.6) 

(2.7) 
(2.8) 

where w is the circular frequency of the light being equal inside and outside the 
sphere. Then Eqs. 2.5 and 2.6 lead to the following two Helmholtz equations: 

6£ + k2£ = 0, 
611. + k211. = 0. 

(2.9) 
(2.10) 
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The wavenumber k is defined as 
m 21T 

k = wffi = w~ =Tm. (2.11) 

A is the wavelength and c the speed of light in vacuum whereas the refractive index 
of the medium is assigned to m. Note that £ and 1l are complex vector functions 
representing the complex space part of the waves. 

Eqs. 2.7 and 2.8 are the wave equations to be solved for the incident and 
scattered field and the field inside the sphere. These three fields are connected by 
the boundary conditions described at the interface between the two media. Gaufi's 
divergence theorem, ff A · n da = f ff V' · A d3 x, applied to the divergence-free 
conditions (Eqs. 2.1 and 2.2), leads to the condition that the normal components 
of the considered vector functions are continuous over the interface: 

£;·er = (Es+ Eb)· en 
1l; ·er = ("lls + 1lb) ·er. 

i -+pertains to the field inside the sphere 
b-tpertains to the incident field 
s-tpertains to the scattered field 

(2.12) 

(2.13) 

er is the unit vector in the radial direction which is normal to the interface in this 
particular case. The boundary conditions for the tangential components of the elec
tromagnetic field are found by applying Stokes' theorem, f A ·dr = ff V' x A· n da, 
to Maxwell's Eqs. 2.3 and 2.4: 

E, x er= (Es +Eb) x er, 

1l; x er= (1ls +1lb) x er. 

(2.14) 

(2.15) 

By solving the Helmholtz equations with the proper boundary conditions, the 
amplitude of the electromagnetic field (£, 1l) is obtained, everywhere inside and 
outside the sphere. But a photomultiplier, a CCD camera or a film plate detects 
the radiant energy that is transporJed by the (E, H)-field. Because this energy 
flux is fluctuating in time at optical frequencies, the quantity measured by the 
detector is an averaged energy, which is known as irradiance. It is often simply 
denoted as the intensity which reads (Stratton[66]) 

I (E x H), (2.16) 

where { ... ) symbolizes the time-averaging. In most applications, one is interested 
in the so-called far-field intensity. This can be expressed in terms of the electric 
field only (see for example Gouesbet et al.[21]): 

I :=_(Re (E) ·Re (E)). (2.17) 
m 

Since Re (E) = ~ (E + E•) (where E* denotes the complex conjugate of E), the 
far-field expression can be written as 

I 1 i:c e- . e (2.18) 
m 

after substitution of Eby ee-iwt and then performing the time-averaging. 
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2.2 Solution of the scattering problem 

When treating light as electromagnetic waves, the irradiance (Eq. 2.16) inside and 
outside the sphere, illuminated by a planar wave front, can be found by looking 
for expressions for the vector functions f. and 1'. Therefore the Helmholtz equa
tions 2.9 and 2.10 have to be solved with the appropriate boundary conditions at 
the interface. The solution was found by Lorenz[41] and Mie[47]. It is now referred 
to as the Lorenz-Mie theory and has been described later in numerous books on 
light scattering such as those of Van de Hulst[79] and Bohren and Huffman[9]. It 
is this set of references that served in a large extent for the construction of this 
section. 

The Lorenz-Mie theory expresses the (f., 1')-field in a scalar function \JI which 
is a solution of the scalar wave equation. As such the problem of solving two vector 
wave equations is reduced to seeking the solution to only one scalar wave equation. 
In order to achieve this, the following two time harmonic vector functions M and 
N have to be introduced: 

M .Me-i"'', (2.19) 

N Jle-iwt
1 (2.20) 

.M = v x (rw), (2.21) 

}/ 
V x.M 

(2.22) 
k 

.M = V x}/. 
k 

(2.23) 

Note that .M is perpendicular to the radial vector r, which is convenient when 
taking the curl of .M in spherical coordinates to calculate JI. Moreover, because 
the divergence of the curl of any vector vanishes, both .M and }/ are divergence 
free: 

V·M 0, 

V·N=O. 

They also satisfy the Helmholtz equations 

6..M + k2.M 0, 

6.}/ + k2
}/ = 0, 

if the scalar function \JI is the solution of the scalar wave equation 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

Comparing above relations for the (.M,J/)-field to those for the (f., 1')-field (pre
vious section) reveals that the vector functions .M and }/ have all the properties 
of an electromagnetic field. This field can be computed by solving Eq. 2.28. 
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Figure 2.2: Definition of the coordinate system for the scattering problem. (Eb, H 0) 

represents the incident electromagnetic field. c~' c: and C'f are the three components of 
the space part of the scattered electric field in polar spherical coordinates. The scattering 
plane is taken through the directions of the incident beam and the scattered wave at a 
certain point (r, 8, ip). 

The spherical symmetry of the problem dictates the obvious choice of spherical 
polar coordinates (r, 0, <p) as defined in Fig 2.2. Subsequently, separation of vari
ables yields the general solution of the Helmholtz equation 2.28, which is expressed 
as a linear combination of elementary solutions: 

00 OC> 

'II = LL A1n cos (l<p )P~( cos 0) Zn(kr) +Bin sin ( l<p )P~( cos 0) Zn(kr) (2.29) 
l=On=I 

where l and n are integers. A1n and Brn are the coefficients in the expansion. P~ is 
the associated Legendre polynomial and Zn(kr) is any spherical Bessel function. In 
principle, a general expression for M could now be constructed for the incident, 
internal and scattered field by substituting 'II in Eq. 2.21; .N' follows then from 
Eq. 2.22. However, this would be not sufficient because the irradiance I requires 
the electromagnetic field to be expressed in the vector pair (£, 1-l). Therefore, as 
both (£, 1-l} and (M,.N') describe the same field, E and 1i have to be written as a 
linear combination of M and .N'. Consequently, the general expression for (£, 1-l) 
implies 4 expansion coefficients (with indices l and n) for each electric field eb, e. 
and£;; the magnetic-field vector functions are coupled to the £-field by the third 
Maxwell equation (Eq. 2.3). 
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The incident field £ b 

For the incident field Eb, the 4 expansion coefficients are dictated by the imposed 
plane wave which is linearly polarized in the x-direction: 

(2.30) 

k0 is the wave number outside the particle (i.e. k0 2f m0 ). The amount of 
expansion coefficients is reduced because of the orthogonality within the set of 
elementary functions. This set and the choice of e-iwi as the time-dependent part 
of the waves determines the actual values of the remaining coefficients. After 
solving several integrals, which have been thoroughly described by Bohren and 
Huffman[9] and will not be treated here, the expression for Eb in polar spherical 
coordinates reads 

(2.31) 

and the magnetic-field intensity holds 

(2.32) 

ub and Vb designate the reduced scalar functions that have to be substituted for IJI 
in Eqs. 2.21 and 2.22 to construct the vector functions M and N for the incident 
field: 

(2.33) 

E . ~ .,.. 2n + 1 pl( O) . (k ) 
Vb = b Sill cp L..,,, i ( l) n COS Jn 0 r . 

n:l n n + (2.34) 

j,.. is the spherical Bessel function that is derived from the Bessel function of the 
first kind J,..+l.: 

2 

(2.35) 

Here the dimensionless variable p = kr has been introduced. It is this Bessel 
function that has to be used for the incident field because the Bessel function of 
the second kind is not finite at the origin. Note that ub and Vb are orthogonal 
because coscp and sincp are mutually so. Eb is the amplitude of the electric field. 
Now, one could verify, by substitution of Ub and v0 for IJI in Eqs. 2.21 and 2.22, 
that relationship 2.31 describes a simplex-polarized plane wave. 
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The scattered field £ s 

The scattered field is connected to the imposed incident field by means of the 
boundary conditions at the interface between the media, i.e. continuity of all the 
field-components over the surface. This implies that the scalar functions for the 
scattered field, u. and v., are proportional to Ub and Vb respectively: 

~ ·n 2n+l 1( (1)( ) u. = Eb cos <.p L,, anZ ( 1) pn cos 0) hn kor ' 
n=l n n + (2.36) 

E . ~ b ·n 2n + 1 pl( O)h(t)(k ) 
V 8 :::::: b Slll 'f' L,, nZ ( ) n COS n 0 r . 

n=l n n + 1 , 
(2.37) 

Therefore the scattering coefficients an and bn for the scattered field were intro
duced. Note the use of the first spherical Hankel function h~) as elementary 
solution for the r-equation of differential Eq. 2.28: 

p-:J:>n2 (-ireip 
h~>(p) = j,.(p) + iy .. (p) ~ ip . (2.38) 

y,,.(p) is the spherical Bessel function of the second kind. This Hankel function is 
used because it makes E = ee-iwt to an outgoing wave at large distance from 
the particle, as the scattered wave is supposed to be. From Eqs. 2.21, 2.22, 2.31, 
2.36 and 2.37' the 0-, 't'- and r-components of es are obtained, that is to say, £:' 
£'f and £;, respectively: 

£e Mo . .re 
s = v,, - ZJVu,,, (2.39) 

£'f =M~. - iN:_ 

M 'P E . ~ b ·n 2n + 1 ( 0) h(l)(k ) "' = bSlll<.p L,, 11 Z ( ) Tn COS n r , 
n=l n n + 1 

•f'P E . ~ .,,. 2n + 1 ( O) [h(l) (k ) _ nh~l(k0r)] 
JV,,, :::::: b Sln'f' L,, anZ ( l) 11"n COS n-1 or k 1 

n=l n n + or 

£; =M~. - iN:., 
M~. = 0, 

oo h(I}(k r) N:. = Eb COS'f' L a,.i" (2n + 1) P~(cos 0) n k ro . 
n=l o 

(2.41) 

The expressions for the magnetic-field intensity follow from Eq. 2.32. The functions 
7r n and r n (with argument cos 0) were defined as 

P~ 2n -1 n 
11"n = -=--o = --cos011"n-I --7rn-2, 

srn n-1 n 1 
(2.42) 

- d 1 ( ) Tn:::::: dOpn:::::: ncoS87rn - n + 1 11"n-l· (2.43) 
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Furthermore, the following recurrence relation was applied: 

1 d nzn(P) 
--d PZn(P) = Zn-1(P) - --. p p p 

(2.44) 

The internal field & i 

u; and v; for the internal field are, due to the boundary conditions at the interface, 
proportional to Ub and Vb of the imposed incident electromagnetic wave: 

U; = E; cos cp fen in ~n + \ P~(cosO) in(kor), (2.45) 
n=l n n + 1 

V; = Eb sin cp f dnin ~n + ~) P~( cos 0) in(k,,r ). (2.46) 
n=l n n + 

Here Cn and dn are the coefficients for the internal field. As for the incident 
field, the Bessel function in(k0 r) is applied because it is finite at the origin which 
condition the internal field evidently has to satisfy. The components of £; have 
not been written out here but can be found with the help of the Eqs. 2.21, 2.22, 
2.31 and above expressions for u; and v;. An interesting survey on the internal 
light intensity distribution of illuminated droplets has been carried out by Lock 
and Hovenac[40] using the Lorenz-Mie coefficients Cn and dn. 

Determination of coefficients an, bn, Cn and dn 

The last task is the determination of the coefficients an, bn, Cn and dn. Therefore, 
four independent equations are required which are constructed from the boundary 
conditions (Eqs. 2.12, 2.13, 2.14 and 2.15). First, to simplify the notation, the 
Riccati-Bessel functions 1/Jn(P) and (n(P) are introduced: 

1/Jn(P) = Pin(p), 
(n(P) = ph~1 >(p ). 

(2.47) 

(2.48) 

This notation is convenient for the tangential components of the vector function N 
as it contains terms like ! _dd (Pin (p)). The next definitions of the size parameters x p p 
and y are based on the fact that for the boundary conditions the radial coordinate 
r equals the radius R of the sphere: 

21fR 
x=k0 R=Tma, 

21f R 
y = k;R = -.\-m;. 

(2.49) 

(2.50) 

The continuity at the sphere surface, concerning the normal field components, 
leads to 

(2.51) 

(2.52) 
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where µ0 and µ; are the permeability outside and inside the sphere, respectively. 
Notice that here the magnetic field intensity starts to play a role. This field is 
also applied to find the last two equations needed to solve the coefficients an, bn, 
c,. and dn. These equations are deduced by subtraction of above equations (times 

a = ( n(nr~ l) P~ )-I) from the expressions describing the continuity of the 

0-component of the electromagnetic field over the particle surface: 

&: - at:;+ Et - aE; = Ef - aE[ => an (~(x) + ~~(x) = Cn t/{(y), (2.53) 
m 0 m 0 m; 

1i: - a1i~ + 1i: a1ib = 1if - a1ir => b,. (~(x) + ~~(x) = dn ~~(y}_ (2.54) 
µo µo µ; 

The prime 1 at the lliccati-Bessel functions denotes the first derivative. Eqs. 2.51, 
2.52, 2.53 and 2.54 combine to a set of linear equations, 

0 ~ 0 1/Jn(y) 
mo mi an 

(,,(x) 0 ,P,.(x) 0 bn µo µo 

= 
~ 0 0 Cn 

mo ffli 

0 ~ 0 dn 
µo 

which is solved for its coefficients: 

~n(x)~~(y) ~n(Y)~~(x)~ 
an= ~ .. (y)(~(x) (n(x)~~(y)]1;:::; ' 

bn = ~n(x)'l{;~(y) '¢n(y)'if;~(x)~ 
1/Jn(y)(~(x) (n(x)'if;~(y)~:~: ' 

'¢n(x)(~(x) -'if;~(x)(n(x) 

Cn = '¢n(y)(~(x)'/f;- (n(x)'lf;~(y)~' 

d _ ~n(x)(~(x) - 1/J~(x)(n(x) 
n - '¢n(y)(~(x)~ - (n(x)?jJ~(y)'/f;. 

_ 1/J,,(x) 
mo 

µo 

(2.55) 
_ 1/l!,(x) 

mo 

_ 1/1!,(x) 
µo 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

This completes the general solution of the problem defined in Sec 2.1. For dielectric 
media the expressions for the coefficients simplify somewhat because µ 0 µi. 
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28 Off-axis laser-beam scattering by a sphere using Lorenz-Mie theory 

2.3 Far-field approximation 

The detection of scattered light often takes place at a very large distance from 
the particle. There, the expressions for the electric-field components, Eqs. 2.39, 
2.40 and 2.41, simplify to the far-field approximation. In fact, it was already 
mentioned in the previous section that the spherical Hankel function hh1l(p), used 
to describe the scattered field (E., H,), takes its asymptotic expression provided 
that k r » n2 , which is the condition for far-field scattering. Upon substitution 
of the asymptotic expression (Eq. 2.38) in the electric-field components, Eqs. 2.39, 
2.40 and 2.41 reduce to: 

£; = 0. 

(2.60) 

(2.61) 

(2.62) 

Consequently, the electromagnetic field in the far field is an outgoing spherical 
wave because£; = 0. In the literature, the non-dimensional Lorenz-Mie amplitude 
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Figure 2.3: The angular scattered-light distribution in the far field for a spherical droplet 
of 100 µm according to the Lorenz-Mie theory. 



2.4 Localization principle 

functions S1 and S2 are extensively tabulated: 

00 2n + 1 
Si=L ( l)[an11"n(cos8)+bn'Tn(cos8)], 

n=l n n + 
00 2n + 1 

S2 = L ( l)[an'Tn(cos8) +bn11"n(cos8)]. 
n=l n n + 

(2.63) 

(2.64) 

It is important to note that Si pertains to £'; and that this electric field component 
is normal to the scattering plane that is taken through the centre of the sphere, the 
sensor and through the incident beam. S2 pertains to t:: and lies in the scattering 
plane. 

i 1 ( 8) and i 2 ( 8) are the far-field normalized intensities 

i1 = IS1l2, 
iz = IS2l2. 

(2.65) 

(2.66) 

For linearly-polarized light in the x-direction (as in Fig. 2.2), the detected light 
intensity I in a certain point (r,8,<p) follows from Eq. 2.18 and above relations as 

I= [i1 ( 8) sin2 
<p + iz(8) cos

2 <p] (k~;)2 , (2.67) 

where h denotes the intensity of the incident light. Fig. 2.3 shows the angular 
scattered-light intensity as a function of the scattering angle for 0 ° < 8 < 180 °. 
The incident light is polarized normal to the scattering plane, i.e. <p = 90 °. 
Therefore, only the intensity i 1 had to be computed. Notice that in the back
scattered region the primary and secondary rainbow are identified. 

2.4 Localization principle 

The Lorenz-Mie theory expresses the scattering amplitude S1 (and S2 ) in an infinite 
sum of partial waves Cn 

(2.68) 
n=l 

. 2n + 1 · 
with Cn = n(n + l) [an?rn(cos 8) + bn'Tn(cos8)]. 

Fig. 2.4 shows ICnl for a sphere with size parameter x 745 and a scattering angle 
8 = 139.7°, i.e. somewhere in the main rainbow maximum. The sharp drop near 
x = n is remarkable and appears to be due to the asymptotic behaviour of the 
spherical Bessel functions in the Lorenz-Mie scattering coefficients an and bn. 

Van de Hulst[80] saw the analogy with quantum mechanics; there, an electron 
colliding with a centre of disturbance, can be interpreted either as a wave or a 
particle. Similarly, the partial waves in the Lorenz-Mie series can be related to 
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Partial-wave amplitude in Lorenz-Mie series 
60 

polarization angle = 90° 
x=745 
0 = 139.7° 

40 
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0 
0 600 i 800 200 400 

n n=x 

Figure 2.4: The amplitude of the complex term Cn in the Lorenz-Mie series as a function 
of the summation integer n for a size parameter x = 745. 

geometrical rays. He stated that each term Cn corresponds to a ray at a distance 
(n + ~) 2,..:,

0 
from the symmetry axis (Fig. 2.5). Consequently, for n + t = x 

the partial wave Cn corresponds to a ray at grazing incidence and for n + ~ < x 
the ray hits the sphere. The contribution of the terms with n + t > x decreases 

Incident 
plane 
wave 

Sphere 
Symmetry axis 

Figure 2.5: The localization principle: term Cn is related to a ray passing the origin of 
the sphere at a distance (n+ t) 2~. The refractive index outside the sphere, m 0 , has been 
taken unity. 

exponentially; these terms refer to rays beyond the edge of the sphere, g1vmg 
rise to so-called surface waves (see Probert-Jones[58]). This interpretation of the 
partial waves was of great help for the computation of the infinite series. A survey 



2.5 Off-axis laser-beam scattering 

carried out by Wiscombe[89] revealed that the maximum integer, nmax, at which 
the partial-wave series can be cut off, equals 

1 

nmax i::::: X + 4.3x3. (2.69) 

The importance of the localization principle for the numerical prediction of spher
ical scattering phenomena can hardly be overestimated. It was therefore crucial 
that a rigorous justification of the principle was formulated in 1994 by Lock and 
Gouesbet[39] and Gouesbet and Lock(23] using the generalized Lorenz-Mie theory. 

2.5 Off-axis laser-beam scattering 

The scattering oflaser-light by a spherical droplet can be treated by the Lorenz-Mie 
theory as well. Therefore, the theory has to be generalized so that the incident wave 
front represents the characteristics of a laser beam. This requires a description of 
the laser beam satisfying the Maxwell equations which leads to the non-plane-wave 
character with both axial and transverse field components. Moreover, when the 
intensity profile over the beam's cross section is Gaussian, then the beam possesses 
a waist with radius w0 at a certain position along the axis (see Ref. (13]). Based on 
this description Gouesbet et al.[21] developed the generalized Lorenz-Mie·theory 
(GLMT) which handles particles with arbitrary size having any location relative 
to the Gaussian beam (Fig. 2.6). 

In many practical situations, the field components parallel to the direction 
of propagation of the laser light can be ignored; the beam reveals a plane-wave 
character with constant radius w. Moreover, when the droplet lies on the axis of 
the laser beam, then the scattering problem is axisymmetric like in the Lorenz
Mie theory. In order to account for the non-uniformity of the intensity profile, one 
simply multiplies each term C,,. by the field amplitude at the position following the 
localization principle, introduced in the previous section. As a result, the far-field 
Lorenz..Mie amplitude S1 transforms into 

9n is called the beam shape coefficient, which reads for a Gaussian beam 

9n = e-[b/w]2 = e-[(n+~)2;,.,12' 
where the impact parameter b of a geometrical ray was introduced: 

D 1 >. 
b = 2 COST ;:::: ( n + 2) 211_. 

(2. 70) 

(2. 71) 

(2.72) 

Grehan et al.[24] and Gouesbet et al.[22] demonstrated that the localization prin
ciple has a very large domain of validity concerning on-axis Gaussian illumination. 

In this section an attempt is made to use the axisymmetric Lorenz-Mie theory in 
combination with the localization principle to model off-axis Gaussian illumination 
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32 Off-axis laser-beam scattering by a sphere using Lorenz-Mie theory 

Figure 2.6: Off-axis laser-beam scattering treated by GLMT. The. laser beam is 
Gaussian-shaped over its cross section and contains a waist radius w0 • y is the off
axis distance between the centre of the laser beam and the centre of the drop. The 
geometrical rays contributing the most to the scattered-light intensity at the position of 
the detector have been traced. T is the angle of incidence for a geometrical my and b is 
the coN'esponding impact parameter (Eq. 2. 72). 

as sketched in Fig. 2.6. One aims at a simple approach which could serve as an 
alternative for the rigorous, but very complex, GLMT. It should agree with the 
latter as far as the scattered-light intensity in the primary rainbow is concerned. 

Because the Lorenz-Mie theory can only handle symmetric scattering prob
lems, one could first try to create a ring-shaped axisymmetric laser beam with 
its maximum intensity at a constant radius y, equaling the off-axis distance. The 
beam-shape coefficient for such a beam would be 

for nsplit + 1 < n :5 nmax- (2.73) 

However, this attempt would fail because the contribution of external reflection to 
the rainbow would be overestimated, as can be derived from Fig. 2.8. To overcome 
this problem one has to take a look at Fig. 2.7. It shows that the ranges of impact 
parameters, related to the contributions of the different reflections to the rainbow, 
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Geometrical optics - spherical water droplet - red light 
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Figure 2. 7: The relationship given by geometrical optics between the scattering angle 
and the impact parameter b (with D/2 = I) for external and one internal reflection. 

are well separated. Consequently, one can divide the sum of Eq. 2.70 in two parts: 

nsplit nmaz 

S1 = L g~xtcn + L g~ntcn. (2.74) 
n=l n=nsplit+l 

g~nt refers to the beam shape coefficient in the range where internal reflection 
dominates whereas g~xt pertains to the coefficient that accounts for the influence 
of external reflection to the primary rainbow. nmax was already defined in Eq. 2.69. 
Cn,pli• is assigned to a geometrical ray within the range of impact parameters that 
does not contribute to the primary rainbow. One can see in Fig. 2.7 that this 
interval is quite large. Thus, nsplit can be put quite arbitrarily at 

1 
nsplit = 2nmax• (2. 75) 

From Fig. 2.8 it is derived that g~nt has to pertain to the intensity profile of the 
off-axis laser beam 

int -[(n+!.)2'..-y]2/w2 9n = e 2 2 .. for nsplit + 1 < n :5 nmax· (2. 76) 

The expression for g~xt is different because for external reflection the laser beam 
amplitude below the symmetry axis has to be taken: 

ext -[(n+!.)2'..+y]2/w2 
9n = e 2 2 .. for 0 :5 n :5 nsplit· (2. 77) 
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llBm Real off-axis laser beam 
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Figure 2.8: Off-axis scattering treated by the Lorenz-Mie theory combined with the lo
calization principle. The approach implies an artificial symmetric laser-beam intensity 
profile. The main geometrical rays are traced that contribute to the scattered-light in
tensity at the position of the detector. The dashed rays represents an edge ray resulting 
from grazing incidence (See Chap. 1, Sec. 1.3) 

This procedure leads to a ring-shaped laser beam with a discontinuity at the radius 
( nsplit + t )>./27r, as depicted in Fig. 2.8. One has to realize that only in the rainbow 
region meaningful results can be obtained. 

Fig. 2.9 depicts the primary rainbow for the case sketched in Fig. 2.6. The 
droplet diameter is 150 µm and the wavelength is 632.8 nm. The off-axis distance 
measures 64µm. The GLMT-curve has been computed employing the program 
diagaus3.f of Onofri et al.[57]. The narrow, focussed laser beam contains a waist 
diameter of 40 µm. For the localization approach the program mie96.f of Van 
Beeck[68] was utilized. Here, the beam has a constant diameter of 40 µm. As a 
reference case, a plane-wave scattering diagram has been plotted. The character
istics of the off-axis beam have been chosen such that the intensity of internally
reflected light prevails that of external reflection. The computation using GLMT 
gives the correct diagram revealing an interference pattern where the ripple struc
ture has disappeared. For the localization approach, small undulations are still 
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Rainbow pattern with off-axis Gaussian illumination 

-- localization principle 
············· planewave 
---- GLMT 

D= 150 µm 
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A.=632.8 nm 
y=64µm 
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Figure 2.9: The rainbow pattern for an off-axis Gaussian laser beam. The distance 
between the centre of the laser beam and the symmetry axis is y = 64 µm. The three 
(normalized) curves result from computations using the Lorenz-Mie theory with localiza
tion principle, the reference case of plane-wave scattering and the rigorous GLMT. 
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Figure 2.10: The spectrum of the scattering diagrams depicted in Fig. 2.9. 
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superimposed on the Airy fringes. To trace the origin of these wavelets, the power 
spectrum is calculated (Fig. 2.10), similarly to the survey in Sec. 1.3 in Chap. 1. 
The spectrum of the plane-wave rainbow resembles the one in Fig. 1.13, showing 
all five peaks labeled from F1 to F5 • For the GLMT-computation, only the peak 
corresponding to the Airy fringes, F1, remains. The curve with legend "localiza
tion principle" contains no peaks at F2 and F3 because they would result from 
interference between internal and external reflection, though the latter is absent. 
However, 'the Fourier amplitudes near F4 and F5 are clearly non-zero. In Sec. 1.3, 
it was concluded that these peaks have to result from interference between internal 
reflection and the edge-ray contribution to the rainbow. This edge ray arises due 
to an incoming ray at grazing incidence below the symmetry axis, schematically 
presented by the dashed ray in Fig. 2.8 which explains why there should not he any 
contribution at F4 and F5• One could imagine to remove these peaks by modifying 
the beam shape coefficients near grazing incidence. Any attempt in this direction 
has failed so far; the amplitude of the undulations always increased. Apparently, 
sharp intensity changes, introduced in the artificial symmetric laser-beam, induces 
diffraction. In fact, the results of diffraction due to the discontinuity at nsplit can 
be seen in the power spectrum, depicted in Fig. 2.10. The small peaks between 
2.5 °-1 and 3.2 °-1 are not the left-overs of F2 and F3 but simply the results of 
interference between this diffraction and internally reflected rays. Namely, the 
structure moves when nsplit is changed. 
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Figure 2.11: Illustration of the localized interpretation of the different terms in the 
Lorenz-Mie series by computing Cn• instead of Cn (Eq. 2. 78). Large jumps in the curves 
are related to geometrical rays. 



2.5 Off-axis laser-beam 

In spite of the imperfections of the followed approach, one can nevertheless 
state that the localization principle is a powerful tool to predict in a easy manner 
the behaviour of the Airy fringes and the ripple structure in the primary rainbow 
when the Gaussian illumination of the droplet is not symmetric. One has to keep 
in mind though, that only the rigorous GLMT gives correct quantitative results. 

At the end of this chapter, the evolution of the Lorenz-Mie series is shown in 
Fig. 2.11 for illustration purpose of the approach followed in this section. Plotting 
the amplitude of term Cn versus n, as was done in Fig. 2.4, would not reveal why 
a certain term would correspond to e.g. an externally-reflected ray. The reason 
for this is that both the phase and the amplitude of the successive terms change 
too rapidly. Therefore, the. cumulative amplitude ICn• I is computed: 

n• 

Cn• = L9nCn 
n=:l 

with 0 :5 n* :5 oo. (2.78) 

where 9n denotes g';'1 or g~nt when n < nsplit or n > nsplit. respectively. For 
n* = nma.,, Cn• equals the Lorenz-Mie amplitude S1. The evolution of Cn• is 
computed for plane-wave scattering and for the off-axis case treated throughout 
this section. Now, it is seen that a geometrical contribution to the scattered-light 
intensity is related to a jump in the evolution that brings Cn• to another level. E.g. 
for the off-axis case, the jump around n* = 225 is not present. This means that 
there was no contribution of external reflection as expected, thus demon~trating 
in a nice way the localization principle. 
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Chapter 3 

SURFACE INTEGRAL METHOD FOR 

LIGHT SCATTERING BY ELLIPSOIDS 

So far, only light scattering by spherical particles has been considered. In numerous 
applications the scattering particles are not spherical. It is therefore necessary to 
know the influence of the non-sphericity on the behaviour of the scattered-light 
intensity distribution. In this chapter, a theoretical approach will be presented 
and applied to the first-order rainbow formed by ellipsoids. 

The approach starts by using ray optics to write an expression for the electro
magnetic field just outside the scattering particle; here, phenomena such as the 
rainbow find their roots (Sec. 3.1). These near-field scattered waves propagate 
as spherically diverging waves at large distances. To find the far-field waves, the 
vector Kirchhoff integral relation will be employed (Sec. 3.2). Sec. 3.3 checks up 
on the validity of the hybrid approach followed. A discussion about the influence 
of the drop non-sphericity on the different rainbow interference patterns concludes 
the chapter. 

3.1 Rainbow at surface of ellipsoidal droplet: a 
geometrical approach 

3.1.1 Ray tracing in an ellipsoid 

In order to trace the path of a light ray in an ellipsoidal particle with a uniform 
and real refractive index, mathematical descriptions for the ellipsoid and the light 
ray have to be found. Subsequently, a physical model for the interaction of a ray 
with an interface completes the set of tools that is required. 

The scattering ellipsoidal obstacle can be defined in Cartesian and spherical 
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40 Surface integral method for light scattering by ellipsoids 

k 
z 

y 

Figure 3.1: Definition of the coordinate systems for the ellipsoid and a wave vector. 

polar coordinates (Fig. 3.1): 

1 

4 

(e ,!..) A . e ,!.. B . e . ,!.. c e r - , 'I' 2 sm - cos 'I' e., + 2 sm - sm 'I' e 11 + 2 cos - ez. 

(3.1) 

(3.2) 

A, B and C are the 3 diameters of the ellipsoid. The unit vector representing 
the normal to the surface is essential for 3D ray-tracing. It points o~tward and is 
calculated following Kreyszig[34]: 

( 
8r 8r ) 8r 8r 

n= 8e x 84> /II 8e x 8¢11 

=~ (BCsin2 0cosef> e.r + ACsin2 0sinef> e11 +AB sin 0cos0 ez) 
or or 

/ II 80 x 84>11. (3.3) 

The geometrical ray is represented parametrically by the vector x: 

x = r + kq. (3.4) 

q is the parameter indicating the position on the path of a ray. r is the position 
vector given by Eq. 3.2. k denotes the wave vector; its components contain the 
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"direction cosines" of the light ray: 

k('1!, Y) = 2: m (sin '1! cos Y e., +sin W sin Y e11 +cos W ez). (3.5) 

The angles '1! and Y a.re defined in Fig. 3.1. If one intersection point of a. ray with 
the ellipsoid is known, then the other one can be found by solving Eqs. 3.1, 3.2, 
3.4 and 3.5 for para.meter q. 

m. me 

I 

........ ~ ........... . 
I 
I 

~nci 
I 

I 

: 'Ytr 
I 

interface 

Figure 3.2: Interaction of a geometrical ray with an interface. The plane of incidence 
is formed by the three light rays represented by the wave vectors kine kre/I and ktr; 

A ray which is incident on an interface is partially reflected and transmitted, 
as sketched in Fig. 3.2. The transmitted ray is refracted according to Snell's law: 

(3.6) 

mine and mtr designate the constant, real refractive indices of the media in which 
the incident (subscript inc) and transmitted ray (subscript tr) propagate. Simi
larly, /inc is the incident and /tr the transmitted angle with respect to the normal. 
In a three-dimensional environment the incident angle line can be represented as 

{ 

(kine· n) 
arccos k· 

/inc = '(tne . n) 
7r - arccos k· 

me 

if (kine . n) > 0 ' 
(3.7) 

Consequently, 0 < line < 90 °. kine is the amplitude of k;ne· Eqs. 3.6 and 3. 7 lead 
to the transmitted 3D wave vector: 

{ 

2>rm1r ( n x kine x n . ) 
>. II k II SJil /tr + n cos /tr 

ktr = n x inc x n 
211'm ( n x kine x n . ) 
~ II k· II SIIl/tr IlCOS/tr 

DX mcXn 

(3.8) 
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The conditions are valid when the refractive index inside the particle is higher 
than outside. The law of reflection states that the angle of reflection /re/I equals 
the incident angle /inc· Therefore, the reflected wave vector holds 

{ 

21tm· ( n X kine X n . ) 
~ II k. II Sill Ire/I + n cos /ref/ k nx aneXD 

re/I = 2,,.m n X kine X n . 
~(II k· llSlll/re/l - ncOS/reJI) nx mcXn 

(3.9) 
if mine > mtr• 

It is evident that the transmitted and reflected rays remain in the plane of incidence 
formed by the incident wave vector and the normal to the surface at the intersection 
point. 

All the relationships mentioned in this subsection form a complete set of equa
tions that is necessary for describing the tracing of a light ray in an ellipsoid. 

3.1.2 Polarization 

A polarization vector p can be assigned to a geometrical ray. The interaction of 
this vector with an interface is described by the laws of reflection and refraction 
(Subsec. 3.1.1) and by the Fresnel coefficients. These coefficients account for the 
diminishing of the light intensity of a ray and depend on the angles "Yinc, "Ytr and 
the angle that the polarization vector makes with the plane of incidence. For 
the component of p perpendicular to this plane, the next amplitude-reflection 
coefficient has to be applied (see Ref. [30]): 

- sin (line - /tr) 
r.1.. = . ' 

Sill (/inc + /tr) 
(3.10) 

where the media were assumed to be dielectric. For the parallel component the 
Fresnel coefficient reads 

tan (/inc - /tr) ru = . 
tan (/inc + /tr) 

(3.11) 

The amplitude-transmission coefficients are 

2 sin /tr cos /inc 
t.1..= . ' sm (line+ /tr) 

(3.12) 

2 sin rtr cos rinc 
tu . ( ) ( . sm /inc + /tr cos /inc /tr). 

(3.13) 

At normal incidence the above relationships reduce to 

I 
mtr - mine 

ru l"Yinc=O -r l. "Yinc=O :::: + l 
mtr mine 

(3.14) 

I I 
2mine 

t11 "Yinc"°'O = t l. "Y•nc"'O = + 
mtr mine 

(3.15) 
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To apply the Fresnel coefficients, one has to resolve the polarization vector into a 
perpendicular and parallel component with respect to the plane of incidence, i.e. 
Pinc.L and Pinell respectively: 

(Pinc · (kine x n)) ( 
Pinc.L = llkinc x nll 2 kine x n), (3.16) 

(Pinc • (kine X Pinc.L)) (k ) 
Pinell = Ilk· . 112 inc X Pinc.L • me X Pme.L 

(3.17) 

From this, the 3D-transmitted vector components can be constructed: 

Ptr .L = Pinc.L t .L, (3.18) 

( (Pine.L X kine) ·Pinell) 
Ptrll II k II II II (Pinc.L X ktr) tu. Pinc.L X inc Pinc.L X ktr 

(3.19) 

The components of the polarization vector change by internal or external reflection 
following 

Pre/l.L 

Pre/Ill 

Pinc.L r .L, 

( (Pinc.L X kine) · Pincfl) 

II k 1111 II 
(Pinc.L x kre/t) r11. 

Pinc.L X inc Pinc.L X kre/I 

···: p .... ' 
b~ 

~"'. ... ·· 
/Incoming 

/ polarization 
pb..L 

(3.20) 

(3.21) 

Figure 3.3: Definition of incoming and scattered polarization vector. The scattering 
plane is taken through the direction of the incident and scattered wave vectors. <I? is the 
angle between Pb and the scattering plane. 

The initial polarization vector to substitute for Pinc in Eqs. 3.16 and 3.17 is Pb, 

which is assigned to the incoming beam that illuminates the particle (Fig. 3.3). 
This vector makes an angle iI> with the scattering plane which is formed by the 
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wave vector of the incoming beam, kb, and the scattered wave vector kp in an 
observation point P at infinity: 

(kp x kb) . 4> (kp x kb) x kb 
Pb= llkP x kbll sm + ll(kp x kb) x kbll coscl>. (3.22) 

It is important to notice that the components of Pb parallel and perpendicular to 
the scattering plane are most likely to differ from the components with respect to 
the incident plane at the first interaction of the incoming ray with the ellipsoid. 

3.1.3 Phase 

Consider a ray in a planar wave front incident on an ellipsoidal droplet. When 
it leaves the droplet, the phase has changed. This can be due to three effects as 
described by Van de Hulst[Sl] and Hovenac[31] for example: 

1. Either internal or external reflection can be attributed to a phase change 
of 11". This is accounted for by the Fresnel reflection coefficients, treated in 
Subsec. 3.1.2. 

2. Another effect is the length of the optical path followed. At the surface where 
the rays emerge from the droplet, the phase has shifted 

211"m·N-1 
u = mo(kb · r(0i,¢1)) + TL llr(0i+i,¢;+i) r{0;,,P;)!I 

i=l 

(3.23) 

with respect to the incident wave front. N is the number of intersections 
between the light ray and the ellipsoid; r( 0;, .p,) points to the position at 
which the ith intersection occurs (Eq. 3.2). m; and m 0 are the refractive 
indices inside and outside the particle, respectively. 

3. The phase advances 11" /2 whenever two adjacent rays cross each other, i.e. 
focus. Therefore, while tracing rays one has to count the number of focal 
points denoted by integer l. In the case of external reflection ( N 1), there 
is no focus, whereas for N = 2 there is one focus before the rays exit the 
droplet. The first-order rainbow rays (N 3) encounter two or three foci. 
The reason is that after one internal reflection there is a part of the wave 
front that folds before reaching the last interface. For this folded part the 
phase has advanced 311" /2. 

3.1.4 Gain factor 

The gain factor accounts for the influence that the shape of the scatterer has on the 
angular dispersion of the light. Gain is defined as the ratio between the scattered 
energy flux near the droplet surface, I., and the incident energy flux h (Fig. 3.4): 

Gain (3.24) 
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Figure 3.4: The influence of the shape of the scatterer on the angular light dispersion. 
h is the incident irrodiance; kb and ks are the wave vectors for the incident and outgo
ing light pencils, respectively. r(01, 4'1) indicates the position of infinitesimal area da1• 

r(0N, <PN) refers to the position of the outgoing light pencil after having experienced N 
interoctions with the surface of the scatterer. 

To find an expression for Gain, the power Pb has to be defined as the radiant 
energy of a light pencil arriving on an infinitesimal surface element da 1 of the 
ellipsoid: 

(3.25) 

This power is transmitted to surface daN after N interactions of the light pencil 
with the interface of the obstacle. The scattered irradiance near daN therefore 
holds 

(3.26) 

Substitution of above expressions in Eq. 3.24 yields 

(3.27) 

For an isotropic spherical scatterer, Gain equals 1/4. 
The area dai, characterized by d01 and d</>1, and the area daN, related to d0N 

and d<f>N, are defined by 

(3.28) 

(3.29) 
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For an ellipsoid, geometrical tools can be employed to find the relati~nship between 
r(01 , ¢1) and the vector pointing to the position where the light pencil leaves the 
particle after having experienced N interactions with the surface, i.e. r( e N, </>N ). 
These tools are described in Subsec. 3.1.1 and help to calculate the Jacobian .J 
(see for example Kreyszig[35]): 

(3.30) 

Upon combining the above formulas, the gain factor becomes 

3.1.5 Scattered field at the droplet surface 

The scattered electric field at the surface of the scattering obstacle can be obtained 
with the help of ray optics. Therefore, the path of the incoming ray through the 
droplet, the state of the scattered polarization vector p., the phase changes and 
the gain factor have to be computed. This has all been covered before in the 
present section. From this, the electric field E. at the surface can be constructed: 

E _ E ~· -i(wt-u-hr/2) 
s - b Ps V uain e . (3.32) 

w is the angular frequency in vacuum. Eb is the amplitude of the incoming wave. 
u represents the phase shift due to the length of the optical path followed. l refers 
to the number of focal points passed by the light ray inside the ellipsoid. The 
Fresnel coefficients are taken into account by the polarization vector. 

The magnetic-field vector function H, is calculated from the Maxwell rela
tion 2.3 yielding 

(3.33) 

Thus, the magnetic field H. is perpendicular to the electric field E, and to the 
wave vector ks. When the (E., H,)-field results from once-internally reflected rays 
then it propagates away from the scatterer forming the Airy rainbow pattern in 
the far field. 
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3.2 Rainbow in the far field: a hybrid approach 

3.2.1 The vector Kirchhoff integral relation 

Consider the situation sketched in Fig. 3.5. A light wave, represented by vector kb, 
impinges on a transparent ellipsoid. By means of the geometrical approach of the 
previous section, an expression for the scattered field (E., H.) close to the particle 
on surface S1 can be computed. Far away from the obstacle, the scattered field 
propagates as spherically diverging waves having wave vector kp in the observation 
point P. The aim is to express the influence of the field (E., H.), represented by 
k., on the observation point P in volume V bounded by surfaces S1 and S2 • The 
electromagnetic approach followed results in the vector Kirchhoff Integral relation. 

' ' ' , 
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wave front ---... ... ... .. .. -..................... _ ........... 

Figure 3.5: The electric field in point P, Ep, can be expressed as a function of the 
scattered electromagnetic field, (E., H.), on surface S1 enclosing the scatterer. 

Let r be the radial vector. Each rectangular component of the electric field 
E(r), satisfying Maxwell equations 2.1 to 2.4, is a solution of the scalar Helmholtz 
wave equation (Sec. 2.1): 

~E(r) + k2E(r) = 0. (3.34) 

Let rp be the position vector for the observation point P. In order to express Ep(rp) 
in the boundary conditions at surface S1 , first the Green function G(r,rp) has to 
be introduced. This potential obeys 

(3.35) 
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J(r - rp) denotes D~rac's delta function which makes G(r, rp) to be the time-
harmonic scalar field resulting from a point source at r = rp. The next step 
is to apply Green's second identity on the Green function and each rectangular 
component of E(r): 

fvlG(r, rp)!lE(r) - E(r)t:..G(r, rp)] dx3 = 

fsra (r,rp)(n · \7E(r)) - E(r) (n · \7G(r,rp))] da. (3.36) 

Combining this identity with the wave equations 3.34 and 3.35 leads to an integral 
expression for Ep (where the position vectors have been left out): 

Ep = t[Es (n · \7G) - G (n ·VE.)] da. (3.37) 

Notice that E is put to Es on the surfaces bounding V. This expression can be 
modified so that only the electric field E. is needed and not its gradient \7E •. 
Therefore one has to employ the divergence theorem, several vector formulas and 
vector calculus theorems. The exact derivation is given by Jackson[33] and leads 
to 

Ep t[(n · E.)\7G + (n x E.) x \7G + iG(n x (k. x E.))] da. (3.38) 

This is the vector Kirchhoff integral relation for Ep in terms of the field on the 
boundary surfaces S1 and S2• One has to proceed by solving wave Eq. 3.35 in 
order to obtain the Green function G. The scattering problem implies the free 
field solution: 

ei(kp·(rp-r)) 

G= . 
4irllrp - rll 

(3.39) 

Based on this function one can show that the integral over S2 vanishes if the latter 
is a surface at infinity (see again Jackson[33]). As a result, the scattering amplitude 
is written as an integral of the scattered fields over surface S1 only, as was aimed 
for. The integral is simplified considerably when the observation point P is far 
from the obstacle. Then, the Green function takes its asymptotic form 

G = _l_eikprpe-i(kp·r), 
41rrp 

(3.40) 

where rp is the distance between the origin of the scatterer and point P. This 
expression for the Green function can be implemented into integral relation 3.38. 
At this stage, one can ask for the amplitude of the scattered radiation with wave 
vector kp and polarization vector pp: 

(3.41) 
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Here the vector formula ax (bx c) = (a· c)b - (a· b)c was used. Eq. 3.41 is a 
scalar form of the vectorial equivalent of the Kirchhoff integral. The expression for 
the electric field E. is given by the geometrical approach presented in the previous 
section. Consequently, substitution of Eqs. 3.31 and 3.32 in Eq. 3.41 yields 

(3.42) 

with 

f - ( (kp · r) - a) / kp, 
g = [(n · p.)(k. ·Pp) (n · k.)(p. ·Pp)- (n · kp)(p. ·Pp)+ (p. · kp)(n ·pp)] 

[ll8r(0i, cP1)/80 X 8r(0i, </li)/8</>ll ll8r(0N, </IN )/80 X 8r(0N, </IN )/8</>11 
l.:Tl l(kb · n(0i,</11))1 ]112 

i(k. · n(eN,<PN))I · 

g includes the Jacobian 3 that is necessary for the gain factor and for mapping 
from the coordinates of the scattered wave E. (e.g. 0 3 and ¢3 for the primary 
rainbow) to the corresponding coordinates at which the incident wave impinges on 
the ellipsoid, i.e. 0 1 and </>1 (see Fig. 3.4). For this, the expressions in Sec. 3.1.4 
and ray tracing tools were employed. 

Eq. 3.42 is a simple diffraction-like integral, the basis of most of the work on 
diffraction (see e.g. Refs. [8, 17, 38]). It is the starting point for the following 
subsection. 

3.2.2 Solving the Kirchhoff integral for the primary rain-
bow 

Method of stationary phase 

A solution for the Kirchhoff integral, Eq. 3.42, will be looked for. The integral is 
of the form 

(3.43) 

where f is the phase function and g the amplitude function. The phase in radian is 
given by kpf. Eq. 3.43 represents a two-dimensional generalized Fourier integral. 
Before solving it, the one-dimensional equivalent will be treated; this is a line 
integral between 'f/ 0 and 'f/ = oo: 

(3.44) 

For k11 -t oo, eikp/(ri} oscillates very rapidly. Then, A(k11 ) goes to zero provided 
that 

• g(77) does not change rapidly, that is to say lu1(17)/g(17)I « lk11J'(11)I and 
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Figure 3.7: The integrand of the rain
bow integral (Eq. 3.,f. 5) versus its inte
gral variable T/· At T/ T/e the integrand 
reveals a stationary point which is clearly 
influencing the integrand's periodic oscil
lation. 

• f ( T/) does not have any extremum nor singularity. 

This makes the Riemann-Lebesgue Lemma (see Wilcox[88]). 
If the phase function f(rt) has an extremum at rt = Tfe, then this point is 

called a stationary point. A stationary point plays a crucial role in the integral's 
asymptotic expansion. This is demonstrated by e.g. the integrand of the Airy or 
rainbow integral[82]: 

nrainbow ( z) (3.45) 

Here kpf(rt) = t7r(zq - TJ3
). For z = 13.22, this function has one stationary point 

in the range of integration, namely at T/ = T/e /13.22/3 = 2.10. It is clear from 
Figs. 3. 7 that this point affects the rapid period of oscillation of the integrand. 
This knowledge is used to generate the first term in the asymptotic expansion of 
Eq. 3.44. Therefore, by employing the Riemann-Lebesgue Lemma, g(q) is set to 
g(TJe) and f(TJ) is expanded about TJ T/e: 

(3.46) 

Subsequently, from the fact that the Gamma function r(D yields[l] 

(3.47) 
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Eq. 3.46 becomes 

(3.48) 

The procedure followed refers to the method of stationary phase. If in the path of 
integration more extrema are encountered, one simply adds the contribution for 
each maximum as given by Eq. 3.48. However, this is only valid when the maxima 
are well separated. 

Incident 
planar 
wave 
front 

ra B 

ra C 

Scattered spherical / 
wave front .... / '"'"""' '*' 

---~ 

Figure 3.8: The scattering problem considered for the !!D-Kirchhoff integral solved for 
the primary rainbow arising from a sphere. Internal and external reflections constitute 
the electric field Es near the surface (Eq. 3.32). Definitions of angles 0 1 and 0 3 follow 
Fig. 3 . ..f. The incoming wave is parallel to the z-axis so that 0p equals the scattering 
angle. 

Airy fringes 

Now, the Kirchhoff integral K(kp) will be solved for the primary rainbow arising 
from a spherical droplet with a diameter of 100 µm, i.e. A = B = C = 100 µm. 
Ray optics states that the most important contribution comes from once-internally 
reflected rays as sketched in Fig. 3.8. The external reflection interferes with these 
rays but, at this stage, this will be neglected. For the scattering problem con
sidered, the refractive indices inside and outside the sphere are m 0 = 1 and 
m; = 1.33, respectively. The incident beam of rays is parallel to the z-axis and 
linearly polarized in the x-direction. The coordinates for the observation point 
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Figure 3.9: The phase -kpfn1(01 , ¢ 1) as used for the Kirchhoff integral (Eq. 3.,f3}, 
calculated for a sphere of 100 µm in diameter and a real refmctive index of m; = 1.33. 
The observation point is placed where the rainbow is expected to be seen, i.e. (0p, </>p) = 
(140", 180°). 

Figure 3.10: The function gint(01, ¢1) as defined in Eq. 3.,f2, applied to the Airy rain
bow. 



3.2 Rainbow in the far field: a hybrid approach 

are (8p, </>p) = (140°, 180°), which is in the primary rainbow region. It is an obvi
ous choice to look for scattered-light linearly polarized in the x-direction, i.e. the 
polarization vector PP in the observation point is put to the unit vector in the 
x-direction (see Eq. 3.42). 

For the scattering problem described, Figs. 3.9 and 3.10 depict the phase 
-kpfnt(8i, </>i) (superscript int pertains to internal reflection) and the ampli
tude function gint(8i,</>i) as a function of the integration variables 8 1 and ¢1• 

For this, the geometrical tools of Sec. 3.1 have been utilized. The plotted 8i
interval ranges from 90 ° to 180 ° which covers the illuminated part of the sphere. 
A full-blown, 2D, numerical integration of the Kirchhoff integral over this domain 
appears highly unstable because the phase demonstrates steep edges that lead to 
numerous oscillations in the integrand. Therefore, it is appealing to look for the 
stationary points in the phase function and subsequently express the integral in 
terms of these points as was done for the ID-integral of Eq. 3.44. Close study of 
Fig. 3.9 reveals stationary points at 1 

(01.•Y 8' <1>1.•Y 8) (110.40' oo), 
(01.•yC,</>l•yC) = (131.70,00), 

(8lold' </>lold) = (103.10' oo). 
A stationary point in a phase function can be attributed to a geometrical ray (see 
Feynmann[l 7] and Lock and Andrews[38]). The first two stationary points corre
spond to internally-reflected rays B and C (see Fig. 3.8). The third one will not 
contribute to the integral because g = 0 at this point. Nev~rtheless, it plays an im
portant role because it corresponds to the folding point of the internally-reflected 
wave front at the droplet surface, i.e. the extremum in the curve of 8 3 versus 8 1 

(Fig. 3.11). The importance lies in the fact that between the edge and the folding 
ray, 3 foci have been passed whereas beyond the folding point, the wave front has 
only encountered 2 foci. In Subsec. 3.1.3 it was explained that this introduces a 
discontinuity of ~ in the phase at the surface of the scatterer. 

Unfortunately, a direct relationship between the integral and the stationary 
points in the phase function is not possible because the different extrema are not 
well isolated. They merge together when 8p approaches the geometric rainbow 
angle Brg and even completely disappear for 8p < Brg· Thus an alternative method 
of integration has to be found that is not affected by the merging and disappearance 
of stationary points. The approach followed here consists of choosing a path of 
integration which goes over the ridge of the phase function pnt from ( 0 1, </>1) = 
(90°,0°) to (8i,</>1) = (180°,0°) (see Fig. 3.9). This path includes the stationary 
points that are related to the different geometrical rays. But each point on the 
ridge by itself already exhibits a maximum in pnt with respect to the direction 
perpendicular to the path of integration. Consequently, this extremum can be 
approximated by the method of stationary phase which was expressed in Eq. 3.48. 

1The stationary points in /int for ¢1 = ±180 ° do not contribute to the integral because 
function gint causes the asymptotic expansions in the different extrema to cancel each other. 
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Figure 3.11: 0 3 as a function of the angle 0 1 for one internal reflection (see Fig. 3.8 
for definition of the angles). The internally-reflected wave front, upon emerging from 
the spherical droplet, folds at (0~u,4/;") = (68.6°, 180°), corresponding to a light ray 
incident at ( 0{01

d' .fi014
) = ( 103.1°' 0°). . 

Therefore, one can reduce the surface integral J{int(kp) to a line integral: 

(3.49) 

where (int is the (positive) position parameter along the path of integration. 
lfin111

( (int)! is the second derivative with respect to the direction perpendicularly 
to this path. The integer l equals 2 or 3, according to the number of focal points 
passed by the internally-reflected light-rays (Subsec. 3.1.3). 

The proposed integration method requires a robust algorithm for tracing the 
ridge of the phase function. Fig. 3.12 demonstrates the algorithm that is applied. 
It draws a straight line through the folding point ( 0i01d, </;~01d) and the edge point 
on the ridge of the phase function, (0jd'\ </;~dge): 

(3.50) 

(3.51) 

(3.52) 
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Figure 3.12: Paths of integration in the (01, <P.1)-plane. The path for internal reflection 
is determined by the ridge on the phase function and is represented by a straight line 
through the edge and folding point. The straight path of integration for external reflection 
is taken through the normal and stationary points. The latter is related to the geometrical 
ray D, as sketched in Fig. 3.8. For the scattering problem defined in that figure, r;,int = 
r;,ext = O, the edge point "edge" lies on ¢>1 = 0 ° and the normal point "norm" on 
4'1=180°. 

The plus-sign applies for 0i01d > 0id"' and the minus-sign for 0i"1d < 0idg•. Mini
mizing the function l(n·k0)lf'n1 leads to the edge point. The folding point is found 
by minimizing the function k1fnt -( r( 0 3 , ¢3 )·kb)· In the case ofa spherical droplet, 
it is obvious that the straight line defined by ( 0idg•, ¢id'•) and ( 0i01d, </ltd) will also 
go through the stationary points ( elay B, </>jay B) and ( elay C 

1 
4>~ay c ), provided that 

the scattering plane contains one of the Cartesian axes. For an ellipsoid arbi
trarily located in the incident light rays, the points do not necessarily lie on one 
line. However, the approximation of a straight line holds for certain as long as 
the 3D-scattering problem can be reduced to a 2D-problem. For now, this limits 
the applicability of the surface integral method to situations that correspond to 
geometrical rays that lie in one plane. 

Fig. 3.13 shows the phase on the line of integration as a function of the position 
parameter (int. Fig. 3.14 depicts the real and imaginary parts of the integrand of 
Kint(kp)· Numerical integration between (int 0° and (int = 90° would still 
cost days of CPU time on a DEC Alpha AXP 3000/400. This is mainly caused 
by the expensive computation of the amplitude function gint( (int) for each value 
of (int. Moreover, to obtain an entire angular rainbow pattern, Kint(kp) has to 
be evaluated for a whole range of different scattering angles ep. It has therefore 
been decided to employ a least-squares fit of gin1((int) with respect to (int before 
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Figure 3.13: The function -kvJi"t as a 
function of the integration variable (int 

employed in the line integral of Eq. 3.49. 
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Figure 3.14: The real and imaginary 
part of the integrand of the Kirchhoff in
tegral for internal reflection. 

starting the numerical integration2 • It appears that this fit is almost identical 
for any E>P in the primary rainbow region. The CPU time is thus further reduced 
about 100 times when gint( ("'t) is assumed to be independent of E>w A similar fit is 
also constructed for phase function Ji"t(('"t). This fit has to to be recomputed for 
every E>v because the dependency of th,e phase function on E>v is an essential feature 
for the calculation of the Airy fringes. On the other hand, the second derivative 
fl"t 11

( (int) with respect to the direction perpendicularly to the integration path is 
only evaluated at the folding point and then applied at every value of (int. 

Ripple structure 

Before showing results, external reflection will be included. This is rather straight
forward because of the hybrid character of the surface integral method. First, there 
is the Kirchhoff integral that results from the wave theory of light and expresses 
the far-field scattering amplitude in terms of the scattered field close to the droplet 
surface, i.e. E3 • Secondly, ray optics is used to assign Ea to geometrically-traced 
rays. The latter is employed to extend the Airy rainbow pattern with the ripple 
structure that results from interference between internal and external reflection. 
Therefore, one adds the scattered field that is assigned to external reflection, E:"'t, 
to the scattered field assigned to the internal reflection, E!nt: 

{3.53) 

From substitution in Eq. 3.41 it follows that the Kirchhoff integral for the primary 
rainbow pattern is described as a linear combination of two Kirchhoff integrals, 

2The numerical tools developed by the Numerical Algorithms Group[52] has been used. to 
compute a least-squares polynomial approximation represented in Chebyshev-series form. 
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Figure 3.15: The phase -kvrxt(01 ,tj>1) as used for the Kirchhoff integral concerning 
external reflection. The scattering problem refers to Fig. 3.8. The sphere has a diameter 
of 100 µm and a real refractive index of m; = 1.33. The observation point is placed where 
the primary rainbow is expected to be seen, i.e. (0p, t/>p) = (140°, 180°). 

one for internal and the other for external reflection: 

(3.54) 

where K'"t(kp) is given by Eq. 3.49. The Kirchhoff integral for the external re
flection can be expressed in a line integral over the ridge of the phase function for 
external reflection, as was done for K'"t(kp): 

(3.55) 

(•xt is the (positive) position parameter for the path of integration over the ridge 
of the phase -kvrxt in the (0i, 4>1)-plane (Fig. 3.15). The stationary point at 
( eray D, c/>'"Y D) ( 160 o, 180 O) Corresponds to the position at the droplet Surface for 
which the externally reflected ray D reaches the observation point (Fig. 3.8). The 
straight line of integration is taken through this stationary point and the point at 
normal incidence (0" 0 'm, c/>" 0

""): 

(3.56) 

(3.57) 

(3.58) 
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The plus sign is utilized when E>i0 Y 
0 > 0'.1°'m and the minus sign refers to the 

condition 0}0
Y 

0 < E>i0 'm. The stationary point follows from minimizing the phase 
function rxt to ( E>i, ,Pi). The normal incidence point on the ridge of the phase 
surface is related to the minimum of the function -(n·kb)rxt. In Fig. 3.16, one can 
see the phase on the path of integration. Fig. 3.17 depicts the real and imaginary 
part of the integrand of K•xt(kp)· The numerical integration is performed without 
applying least-squares fits of rxt or g•xt with respect to the position parameter 
ext. 

Phase of external reHection on line of Integration 

1150 

1050 

1000 .__ ___ ......_ ___ _._ ___ _., 

·10 10 30 50 

01- ~,,, (Degree) 

Figure 3.16: The phase -kp!°xt as a 
function of the integration variable 
employed in the line integral of Eq. 3.55. 
The stationary point refers to the posi
tion of the externally reflected ray. 
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Figure 3.17: The real and imaginary 
part of the Kirchhoff integrand for exter
nal reflection. The influence of the sta
tionary point on the oscillating function 
is evident. 

The final solution for K(kp) is solved by treating the real and imaginary part 
of the integral separately. Subsequently, the intensity I for scattered light with 
polarization vector PP in the observation point follows Eq. 2.18: 

I ex Re( Kint) Re(K'nt) + Im(K"'t) Im( Kint)+ 
Re(Kext) Re(I{ext) + Im(K""'t) Im(Kext) + 
2Re(Kint) Re(Kext) + 2lm(Kint) lm(I{ext), (3.59) 

where the variable kp has been omitted. Re and Im denote the real and imaginary 
parts, respectively. 
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Figure 3.18: The monochromatic rainbow according to Lorenz-Mie theory and the sur
face integral method. The scattering problem is a transparent sphere (D = 100 µm and 
m = 1.33}, illuminated by a planar wave front having a wavelength of 514.5 nm. 

Numerical results are presented for the spherical scattering problem of Fig. 3.8. 
The computer program kirchhoff97.f [69] solves the Kirchhoff integral for internal 
and external reflections following the hybrid approach of the preceding section. 
Fig. 3.18 depicts the resulting monochromatic primary rainbow. The computation 
took about 2000 s CPU time on a Dec Alpha AXP 3000 / 400. For the same case the 
Lorenz-Mie theory has been applied; the result is shown by the dotted curve and 
it took 50 s on the same machine. The angular positions of the extrema in both 
curves compare remarkably well. No effort was put into comparing absolute inten
sities in this work, but it is clear from the graph that the surface integral method 
overestimates the amplitude of the ripple structure relative to the amplitude of 
the Airy fringes. This remains to be examined. 

The power spectra of both curves (Fig. 3.19) reveal that the angular frequencies 
connected to internal and external reflection are well predicted. However, the 
peaks at angular frequencies 2.95 °-1 and 3.3 °- 1 only appear in the Lorenz-Mie 
computations. These resemble interference between internal reflection and rays 
coming from the edge of the scatterer (Sec. 1.3). Because the latter is not modeled 
in the surface integral method, peaks at mentioned frequencies do not exist for 
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· this method. 

Power spectra of rainbow patterns 

D= 100µm 
A.=514.5 nm 
m = 1.33-0i 

Lorenz·Mie theory 
-- Surface integral method 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
·1 Angular frequency (degree ) 

Figure 3.19: The derivatives of the spectra of Fig. 3.18. 

3.4 Primary rainbow from prolates and oblates 

In principle, the surface integral method can predict the primary rainbow pattern 
for an ellipsoid arbitrarily oriented with respect to an incident, planar wave front. 
However, the numerical method utilized in this thesis implies reliable solutions for 
2D-scattering problems only (see Subsec. 3.2.2). Here, prolates and oblates are 
considered. A prolate is an ellipsoid with one long and two short axes of equal 
length, like a rugby ball. An oblate, on the other hand, has one short and two 
long axes, like a hamburger. Already in 1910, Moebius[49] found a simple formula 
for the deviation of the geometric rainbow angle, A0r9 , for the case of collimated 
light illuminating a prolate or an oblate: 

AO = 16 (C - B) cos 
rg C + B m (3.60) 

fmCT 
with Trg = arcsin v----a-· 

Or9 is the geometric rainbow angle for a sphere (Sec. 1.2 or Sec. 4.1). B and C 
are the diameters along the y- and z-axis, respectively. The purely geometrical 
expression is limited to B / C ~ 1. This ratio and the diameter A along the x
axis determine whether the ellipsoid represents an oblate or a prolate. l{I is the 
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Figure 3.20: The scattering problem 
considered by Moebius{49} in 1910. 

Oevladon ol geometrical rainbow angle tor eUipsoid 

-60 ·30 0 30 60 90 
'I'(°) 

Figure 3.21: D.Or9 as a function of B/C 
and the angle '11 according to the expres
sion 9.60. 

angle between the incoming beam and the z-axis (Fig. 3.20). As for the surface 
integral method, the 2D-approach of Moebius only holds for ray paths that lie 
in the scattering plane taken through the incident and scattered rays. It is also 
important to realize that the Moebius' approach cannot predict the effect of the 
non-sphericity on the different intederence structures. Yet, it gives an idea about 
the shift of the entire rainbow pattern as a function of the ratio B / C and the angle 
\JI. Fig. 3.21 demonstrates that a non-sphericity of 1 % may result in a shift of 
about 1 °, although for \JI = -66 ° and W = 24 ° there is no deviation in Org at all. 

Fig. 3.22 is obtained using the surface integral method. Primary rainbows are 
shown for prolates having a short diameter of 100 µm and a long axis length of 
103 µm. The difference between both interference patterns is the relative position 
of the prolates. The dotted curve refers to a prolate with the long axis perpen
dicular to the incoming light rays, i.e. B / C 1.03 and W = 0 °. For the solid 
curve, the conditions are B/C = 0.97 and \JI = 0°. The angular difference be
tween both main rainbow maxima is approximately 6 °. Compared to the spherical 
case (Fig. 3.18), this difference is -3 ° and +3°, respectively. From the curves of 
Moebius (Fig. 3.21) one can derive that t::..Or9 = ±2.2°, which is a bit lower. 

The power spectra of the rainbow patterns (Fig. 3.23) are taken from the 
first three Airy fringes of each interference pattern. It reveals that the frequency 
F3 , associated to the ripple structure, reveals a much smaller displacement than 
the peaks at Fi and F2 • As F1 + F2 F3 (Eq. 1.6), it is understandable why 
F1 changes oppositely to F2 • In Chaps. 5 and 6 it will be seen that this is an 
important observation for the rainbow technique. 

Figs. 3.24 and 3.25 are equivalent to the two preceding figures except for the 
dimensions. The dotted curve now represents a sphere of 1015 µm. The CPU
time was approximately lOhrs on the Dec Alpha AXP 3000/400. The solid curve 

61 
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Surface integral method applied to prolates 

Long axis diameter = 103µm 
Short axis diameter= toOµm 

Refractive index = 1.33 

Long axis 
perpend. to 
incident 
(BIC=1.03) 

Long axis parallel 
to incident beam 

/ (BIC=0.97) 

130 135 140 145 
Scattering angle (degree) 

150 

Figure 3.22: Monochromatic rainbow patterns from prolates with an approximate diam
eter of 100 µm. The ratio B/C refers to Fig. 3.20. 
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Power spectra from rainbows of prolates 

-- Long axis parallel to inc. beam (B/C=0.97) 
Long axis perp. to inc. beam (BIC=1.03) 

Long axis diameter = 103µm 
Short axis diameter= 100µm 

Refractive index = 1.33 
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Figure 3.23: Derivative of power spectra of Fig. 3.22. 
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Surface integral method applied to prolate 

Long axis diameter= 1030 µm 
Short axis diameter= 1000 µm 
Refractive index = 1.33 

Sphere with 
diameter= 1015 µm 
(B/C=1) 

/ 

Long axis parallel 
to incident beam 
(B/C=0.97) 

/ 

136.5 138.5 140.5 142.5 
Scattering angle (degree) 

Figure 3.24: Monochromatic rainbow patterns from a sphere of 1015 µm and a prolate 
with a short axis of 1000 µm and two long axes of 1030 µm. The ratio B/C refers to 
Fig. 3.20. 

Power spectra from rainbow patterns of prolates 

0.0 

sphere with diameter 1015 µm (BIC=1) 
-- Long axis parallel to inc. beam (Blq=0.97) 

Long axis diameter = 1030 µm 
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Figure 3.25: Power spectra of the curves in Fig. 3.24. 
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is produced by a prolate with one long axis of 1030 µm and two short axes of 
1000 µm. The angular difference between the main rainbow maxima is ,..., 3 °. 
Comparison with Fig. 3.22 reveals that the angular shift of the rainbow pattern is 
independent of the dimension of the scatterer. This feature was already predicted 
by Moebius, though quantitatively his results differ from those obtained here. The 
absence of a dependence on the dimension does not hold for the angular frequencies 
as seen in the power spectra. In contrast to Fig. 3.23, F1 has not moved, whereas 
the peaks at F2 and F3 are displaced by ,.... 5 %. The implication oh the rainbow 
technique will be discussed in Chap. 5. 
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Figure 3.26: The phase-surface for mys having experienced one internal reflection inside 
an oblate with axis ratio 1.3. The observation point is taken in the primary rainbow region 
and lies in the plane where the cross-section of the oblate is circular. The U-shaped ridge 
is caused by the interference between skew and in-plane rays. 

The results shown in this chapter reveal only a minor part of the potential of the 
surface integral method. As the geometrical tools given in Sec. 3.1 are fully three
dimensional, the method should in principle be able to predict rainbow patterns 
including out-of-plane rays when these exist. In 1984, Marston and Trinh[44] and 
Nye[55] demonstrated that the ordinary rainbow rays (i.e. ray B and ray C in 
Fig. 3.8) can interfere with two additional once-internally reflected rays for which 
the optical paths do not lie in one plane. The first authors took photographs 
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of the scattering diagrams in the rainbow region of an oblate. For certain axis 
ratios, they observed a hyperbolic umbilic diffraction catastrophe which in fact is 
a generalization of the primary rainbow formed by a spherical drop and manifests 
parallelograms of high intensity. 

Fig. 3.26 shows the phase used for the Kirchhoff integral K;n1(kp) (Eq. 3.49) 
for an oblate with axis ratio 1.3. The observation point lies in the plane taken 
through the circular cross-section of the oblate at a scattering angle of 150 °. The 
integration is normally carried out over the ridge of the phase-surface which is ap
proximated by a straight line in the ( 0 1 , 4>1 )-plane. However, the ridge in Fig. 3.26 
is clearly not linear but U-shaped, which is caused by the skew rays which ap
peared because the scattering problem was three-dimensional. Therefore, if one 
aims at computing the resulting interference pattern, an alternative integration 
procedure has to be developed for the one used in this chapter. Fortunately, the 
non-sphericity of the scatterer has to be larger than "' 20 % before the main rain
bow maximum consists of interference structures due to out-of-plane rays. 
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Chapter 4 

AIRY THEORY FOR THE RAINBOW 

The Lorenz-Mie theory and the surface integral method presented in the preceding 
chapters are powerful tools for describing various rainbow characteristics. How
ever, they are mathematically complex and a physical interpretation is not always 
obvious. Therefore, it is interesting to discuss the applicability of ordinary geo
metrical optics to the rainbow. In Sec. 4.1, the geometric rainbow angle Org is 
derived for a spherical non-absorbing scatterer. Sec. 4.2 employs geometrical op
tics together with Huygens' principle in order to obtain the Airy theory for the 
rainbow. Sec. 4.3 compares the latter with the Lorenz-Mie theory and the surface 
integral method. 

4.1 The rainbow from a sphere according to ge
ometrical optics 

Geometrical optics treats light as rays. The light path of a ray through a trans
parent, spherical droplet results from refraction and reflection (Fig. 4.1 ). The 
relationship between the scattering angle (), the incidence angle 1, and the an
gle inside the droplet T

1
, was already found by Descartes and discussed in the 

Introduction: 

() = 2T - 2(N - l)T1
• (4.1) 

N refers to the number of interactions that a scattered light ray has experienced 
with the droplet sudace. Snell's law relates the angles 1 and 1

1 as. 

COS I m COS T
1
, (4.2) 

where m is the refractive index of the medium inside the droplet; the refractive 
index of the surrounding medium has been taken unity. Substitution of Eq. 4.2 in 
Eq. 4.1 results in the scattering angle() as a function of the incidence angle T. This 
function is drawn in Fig. 4.2 for N == 1 to N = 5. The figure indicates maxima 
in the curves for N?:.3. These maxima are related to rays for which the deflection 
is stationary with respect to small changes in T. Rainbows are observed near the 

67 



68 Airy theory for the rainbow 

N=l 

Figure 4.1: Light paths of refracted and reflected geometrical rays in a spherical trans
parent drop. Integer N refers to a scattered ray that has experienced N interface inter
actions. A scattering angle 8 can be assigned to each ray. The phase difference between 
the scattered and incident ray is computed with respect to the reference ray. 

Geometrical optics - spherical water droplet 
180 

90 -0 -
Ct> 0 
Ql 
rn 
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Figure 4.2: Scattering angle 8 as a function of angle r for refractive index m 1.33 
and for N = 1 to N = 5. 



4.1 The rainbow from a sphere according to geometrical optics 

corresponding scattering angles. Consequently, the geometrical expression for the 
rainbow of order N - 2 can be found by solving Eqs. 4.1 and 4.2 by imposing 

d()' - 0 dr N-2 - • 
(4.3) 

For the primary rainbow, this leads to the incidence angle Trg, for which the cor
responding scattering angle is the geometric rainbow angle Org: 

~ 
sinTrg=v~' 

Org = 2Trg - 4 arccos ( ~ cos Trg) • 

Fig. 4.3 depicts l0r9 I as a function of the refractive index. 
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Figure 4.3: The geometric rainbow angle l0r9 I, for N = 3 as a function of the refractive 
index, m. 

The refractive index m is a function of temperature T, the wavelength of the 
incident light>., and the pressure P. Thormahlen et al.[67] constructed a function 
form of water with >., T and P as independent variables. Its coefficients are directly 
deduced from available experimental data by least-squares fit. Fig. 4.4 depicts the 
refractive index as a function of the temperature at atmospheric pressure and at 
>. = 514.5 nm. Upon substitution of this function in Eqs. 4.4 and 4.5, the geometric 
rainbow angle depends only on the temperature when the pressure and wavelength 
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Figure 4.4: The refractive index of wa
ter as a function of the temperature for a 
pressure of P = 1 atm and a wavelength 
af light of A= 514.5 nm (see llef.{67}). 
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Figure 4.5: Geometric rainbow angle, 
IOrgl, far water droplets as a function of 
temperature for P = 1 atm, A 514.5 nm 
and far ray af order p = 2. 

are constant. This is the case when a droplet at constant pressure is illuminated 
by a laser beam. Fig. 4.5 depicts IOrgl as a function of the droplet temperature. A 
change in temperature from 0 °C to 100 °C causes a shift of the geometric rainbow 
angle of about 2.3 °. Note the small dependency of Org on the temperature between 
O"C and 20"C. 

4.2 Airy fringes 

Geometrical optics is only able to predict an approximate angle about which the 
rainbow pattern is situated. To determine rainbow phenomena such as the de
pendency of its interference structures on the droplet size, the principle of optical 
interference has to be applied, thus leaving the domain of geometrical optics. One 
can proceed by computing the phase difference A/3 between intersecting rays, that 
is to say between rays that are parallel in the far field. According to the phase 
difference, destructive or constructive interference occurs, resulting in a minimum 
or maximum in light intensity. This principle requires an expression for the phase 
f3 of a scattered light ray with respect to a reference ray as was depicted in Fig. 4.1: 

f3 27f D ( . (N sm T - l)msin r'). (4.6) 

The relationship between the angles T and r' is given by Snell's law (Eq. 4.2). 
Unfortunately, the computation of the scattered-light intensity, based on the eval
uation of 6.(3 between two parallel rays having experienced one internal reflection, 
fails near the geometric rainbow angle Org· For IOI .j_ IOrgl, the intensity would be
<:ome infinite and for IOI < IOrg I geometrical rays are non-existent, thus the intensity 



4.2 Airy fringes 

would drop to zero at once, which is not physical (see for example Nussenzveig[54] 
for graphical demonstration). To encompass these features, one needs to include 
diffraction of light rays in the neighborhood of the geometric rainbow angle. One 
possibility is to apply the diffraction-like Kirchhoff integral which was the subject 
of Chap. 3. However, in the present chapter another approach is followed which 
gives more physical insight. It is the approach of Airy[4] who tried to include 
diffraction in the geometric rainbow description by using Huygens' principle on 
the propagation of an arbitrary wave front (see for example Van de Hulst[83]). 

z 

x 

observation point 
_ ... •p 

main sense 
of propagation 

wave front at t +~t 

Figure 4.6: Propagation of a wave front according to Huygens' principle. The new wave 
front at time t + dt is made by the envelope of the secondary spherical waves emitted by 
each point on the wave front at time t. The principle has to be treated with care because 
by equal reasoning it allows the wave front to propagate backwards. 

Huygens' principle dates from 1678 and states that each point on a wave front 
emits a secondary spherical wave at time t. The envelope of these waves at time 
t + b.t interferes in a constructive manner to form the new wave front (Fig. 4.6). 
Based on Huygens' principle, in 1818 Fresnel found in a mathematical formulation 
for the amplitude of the electric field Ep in the observation point P. The formulation 
expresses Ep in terms of an integral over the electric-field amplitude in the wave 
front: 

E - ie-iwt { { eilfllrJro••-rPll da 
p - Allrfront- rpll Jl1·0 ·• • 

(4.7) 

rfront is the position vector for the wave front and rp points at the observation 
point. Note that the amplitude of the electric field in the wave front was taken 
unity. Moreover, the formula is only valid when (rfront - rp) is pointing in a 
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direction not too far from the main sense of propagation. Without this condi
tion there would also exist a wave traveling backwards, as can be deduced from 
Fig. 4.6. Fresnel introduced an artificial inclination factor in his formula to cor
rect for this inconsistency (see e.g. Hecht[30]). Later, in 1882, Kirchhoff found a 
more robust description of the Huygens' principle based on the differential wave 
equations; the forced introduction of an inclination factor was not necessary any 
longer. Kirchhoff's analysis led to Eq. 3.41 in Chap. 3. 

·b~==================:::=;~""-.:::::-.._ cd....._,~~~~~~~~.........,7"'---

e---!~~~~~~~--;.,,..__ 

d 
, ... ·,,,. e 

,-:>' . f 
/ , ,," c 

:=~============1~=================~~~~~-~~.,~-;~'I~~~~~~~-~·~ 
h 

d 

---,--

Figure 4.7: 8 rays in a plane wave front impinging on a droplet and emerging from it 
with a virtual cubic wave front near the geometric rainbow angle (see Van de Hulst[82]}. 

In order to apply Fresnel's integral to the primary rainbow, an expression for 
the wave front has to be found when it exits the droplet after one internal reflection. 
However, it is convenient to apply Huygens' principle to the virtual wave front as 
sketched in Fig. 4.7. The shape of this virtual front is approximately cubic in a 
local Cartesian ( u, v )-coordinate system. The v-axis is tangential to the deflection 
point and goes through the centre of the sphere. Ray d leaves the droplet at the 
geometric rainbow angle and virtually passes the deflection point perpendicularly. 
In the vicinity of this point, the virtual cubic wave front is in first approximation 
planar, thus identical to the incident wave front. This means that the distances 
between the rays are about the same in the virtual as in the incident wave front 
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which leads to1: 

v= ~(cosT-COSTrg)~-~ sinrr9 (r Trg)· (4.8) 

The relative angular direction() Or9 , in which the observation point is placed, is 
related to the ( u, v )-coordinates as 

du 
dv = (() - Org)' (4.9) 

and can be expanded about T = Trg: 

(4.10) 

~!I = 0 as was explained in Eq. 4.3 of the previous section. The same condition 
'Trg 

reduces the second derivative of the scattering angle with respect to the incidence 
angle into the simple expression 

{)2() I 
{)72 = 2 tan Trg • 

'Trg 

-3 
(4.11) 

The four preceding expressions are combined to form the cubic equation of the 
virtual wave front: 

u (tan Trg 
1
sin2 Trg) ~: = (4.12) 

h 

With this knowledge, the vector rfront for the wave front can be constructed: 

( 4.13) 

where the origin of the ( u, v )-coordinate system served as origin for the vector. 
Taking the same origin for rv leads to 

(4.14) 

rp is the absolute value of rv. The distance between the wave front and the point 
of observation can now be computed: 

1 In this section the angles r and () are exceptionally expressed in radian. 
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74 Airy theory for the rainbow 

Imposing the far-field condition implies that the 5th and 6th term can be neglected. 
Also the 2nd can be left out because (0 - 8r9 ) 2 «:: 1 and it is not a function of v. 
The simplified expression can be expanded in order to get rid of the square root: 

( 4.16) 

Substitution into Fresnel's integral yields 

ie'( 2frp-wt) l+co ·h:c (;, " ) h v3) e' ;\ -If ·-•rg - [j'I dv. 
>.rp' -oo 

( 4.17) 

As stationary points in the integrand only exist close to v = 0, the integral over 
the virtual wave front could be extended to v = -oo and v = +oo to generalize 
the mathematical formulation. Airy combined the positive and negative part and 
dropped the term in front of the integral in order to arrive at the rainbow integraP 

["° 1 
Drainbow(z) =Jo COS 21T (z71 - 77

3
) d'f/, (4.18) 

which is also known as the Airy function (see Abramowitz and Stegun[2]). To 
obtain the scattered light intensity in the observation point, n;ainbow(z) has to be 
evaluated. The relationship between integration variable T/ an.d the v-coordinate 
was defined as 

(~)1/3 T/ v >.D2 ( 4.19) 

The non-dimensional parameter z denotes the normalized angular deviation from 
the geometric rainbow angle and reads 

(
16D

2
) 

113 

z -(8 - Or9 ) h>.2 
( 4.20) 

Note that the rainbow integral was already utilized in Subsec. 3.2.2 (Eq. 3.45) as 
an example to illustrate the influence of stationary points on the outcome of the 
integral. The resulting method of stationary phase has been employed by Lock and 
Andrews[38] to solve the rainbow integral. The method runs into difficulties near 
Org because the stationary points merge together and disappear for 181 < IOr9 I. To 
avoid these kind of problems here, a full numerical integration has been performed 
from T/ = 0 to T/ = oo. The integration has to be done with care because the 
integrand oscillates more and more between -1 and when 77 goes to infinity. 
Consequently, the "I-a.xis cannot be divided into equidistant intervals because then 
the numerical computation would be divergent. Therefore, one has to rewrite 

2It is important to realize that in 1937, Van der Pol and Bremmer[85, 10] successfully deduced 
the rainbow integral starting from the far-field approximated Lorenz-Mie series S 1 , expressed in 
Eq. 2.63. More than forty years later, Nussenzveig[53] presented the complex angular momentum 
(CAM) theory of the rainbow based on the same derivation. 
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Figure 4.8: The square of the rainbow integral, n:ainbow(z), as a function of z, i.e. the 
non-dimensional deviation of the scattering angle from the geometric rainbow angle. 

Orainbow(z) as a sum of finite-range integrals. The boundaries of those intervals 
are 'r/i and correspond to values at which the integrand goes through the zero-axis: 

(4.21) 

The numerical value of each finite-range integral decreases with increasing 'r/i· In 
addition, it is alternately positive and negative. Thus, convergence of the series is 
ensured. 

Figure 4.8 depicts n~ainbow(z) versus z. The interference pattern is known as 
the Airy rainbow consisting of the main rainbow maximum and the subsidiary 
supernumerary bows. Note that the geometric rainbow angle is positioned at 
z = 0 and that at this angle the light intensity is only 43.93 % of the intensity in 
the main rainbow maximum. 

The Airy theory is thus able to predict a rainbow without discontinuities or 
infinite values near z = 0. Table 4.1 lists the values of z at which the first ten 
extrema in the Airy rainbow occur. It will be seen in Chaps. 5 and 6 that these 
values are of practical use for the rainbow technique. 
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n z n;ainbow ( z) 

Main rainbow maximu 1 1. 5 
Minimum 2.49550 0 

1st subsidiary maximum 2 3.46687 0.6165 
Minimum 4.36314 0 

2nd subsidiary maximum 3 5.14458 0.5081 
Minimum 5.89219 0 

3rd subsidiary maximum 4 6.57824 0.4498 
Minimum 7.!H= 0 

,/.th subsidiary maximum 5 7.8684 0.4114 
Minimum 8.4789 0 

5th subsidiary maximum 6 9.05989 0.3835 
Minimum 9.63004 0 

6th subsidiary maximum 7 i 10.17736 0.3619 
Minimum 10.71606 0 

7th subsidiary maximum 8 11.23636 0.3444 
Minimum 11.74960 0 

8th subsidiary maximum 9 12.24753 0.3299 
Minimum 12.73952 0 

I 9th subsidia 
" 

10 13.21851 0.3176 
Minimum 13.69238 0 

Table 4.1: Extrema in the square of the rainbow-integral. 

4.3 Domain of validity of the Airy theory 

The domain of validity of the Airy theory has first been estimated by Van de 
Hulst[82]. He stated that "Airy's approximation is useful as a quantitative rainbow 
theory only if no rays with a deflection more than about half a degree from the ge
ometric rainbow are involved". Later, when sufficiently fast computers were avail
able, Wang and Van de Hulst[87] carried out a comparison between the Lorenz-Mie 
theory and the Airy approximation in order to justify this statement. A similar 
comparison will be performed here but biased towards the rainbow technique which 
employs the Airy theory. The technique (Chaps. 5 and 6) does not rely on the 
accuracy of the predicted intensity distribution. It depends on the precision in the 
positions of the maxima that were listed in Table 4.1. 

In order to make a comparison between Airy and Lorenz-Mie theory, one has 
to realize that this is only possible for light polarized perpendicularly to the scat
tering plane. The reason is that no Fresnel coefficients are utilized in the Airy 
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Figure 4.9: The scattered-light intensity as a Junction of the scattering angle in the 
primary rainbow region according to three different theories. The size of the water droplet 
is D = 1 mm, the wavelength is A= 514.5 nm and the temperature equals T;;; 20 °C. 
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Figure 4.10: Identical to Fig. ,/.9 but for a droplet diameter of D;;; 150 µm. 
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theory to account for the diminishing of the light intensity assigned to a light 
ray (Subsec. 3.1.2). This is why the amplitude of the electric field in the virtual 
cubic wave front was taken constant (Eq. 4. 7). For the polarization parallel to the 
scattering plane, the internal-reflection coefficient is zero and changes sign at the 
Brewster angle. This means that part of the cubic wave front will have advanced 
1r in phase with respect to the other part. For refractive indices between 1.3 and 
1.4, the resulting discontinuity of 1r in phase occurs coincidently near the geometric 
rainbow ray, thus near the deflection point of the wave front. The first consequence 
is that the scattered-light intensity will approach zero near 8rg which explains the 
polarized behaviour of the rainbow, as mentioned in the Introduction. Secondly, 
the sign change of the Fresnel coefficient dictates that the intensity maxima will 
be situated where the Airy theory predicts minima. 

Fig. 4.9 has been produced with the polarization perpendicular to the scattering 
plane. It shows the scattered-light diagram according to three different methods 
for D = 1mm,T=20 °C and>. 514.5nm. The bold curve represents O~ainbow(z) 
resulting from the Airy theory. Therefore, the normalized angular deviation z had 
to be transformed into the scattering angle IOI using Eq. 4.20: 

( 
h>.2 )1/31800 

llJI = -Org + z l6D2 . ---;;:-· ( 4.22) 

Note that, in contrast to Eq. 4.20, IOI is expressed in degree angle. The thin curve 
in Fig. 4.9 arises from the Lorenz-Mie theory. The high-frequency oscillations have 
been filtered out so that the Airy fringes remain. The third curve is obtained by 
means of the surface integral method (Chap. 3). For this method no filtering pro
cedure was necessary qecause the ripple structure can be "switched off" through 
considering only internally-reflected light rays (Eq. 3.49). The comparison be
tween the three methods is astonishing. It shows that Van de Hulst was a bit too 
pessimistic in 1957, which he and Wang[87] recognized in 1991. The domain of 
validity of the Airy theory can be extended to rays with a deflection of at least 2 ° 
from the geometric rainbow angle. The surface integral method performs worst of 
the three methods. This is believed to be due to the approximations that had to 
be made in order to decrease the CPU time to an acceptable value (see Sec. 3.2). 

Fig. 4.10 is identical to Fig. 4.9 except for the size which now measures 150 µm 
instead of 1 mm. Note the widening of the interference pattern. The main rainbow 
maximum of the Airy pattern agrees almost perfectly with the one of the Lorenz
Mie theory. The first subsidiary maximum lies already outside the limits of validity 
which is manifested by the angular shift of 0.07 °. Remark that the surface integral 
method reveals the opposite behaviour, that is to say that correct angular positions 
of the supernumerary arcs are predicted whereas the main rainbow maximum is 
shifted ,..,, 0.2 °. 

As mentioned before, the rainbow technique relies on the precision in the de
termination of the positions of the intensity maxima, in particular the first two. 
Therefore, Figs. 4.11 and 4.12 have been plotted (see Van Beeck and Riethmuller[71]). 
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Figure 4.11: The angular positions of the first two maxima in the Airy rainbow (i.e. 
n = 1 and n 2) as a function of the droplet diameter for T = 20 °C, A= 514.5 nm and 
P = 1 atm. 
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Figure 4.12: The angular positions of the first two maxima in the Airy rainbow as a 
function of the droplet temperature for D 100 µm, A= 514.5 nm and P 1 atm. 
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80 Airy theory for the rainbow 

Fig. 4.11 shows the angular positions of the first two maxima as a function of the 
diameter of a water droplet at T 20°C. Airy and Lorenz-Mie theory compare 
well. Yet, for diameters smaller than 200 µm, small deviations occur for both max
ima in the order of 0.1°. In Fig. 4.11, this is studied more in detail by depicting 
the maxima for D = 10011m as a function of the droplet temperature. The wiggles 
in the computations of the Lorenz-Mie theory are remarkable. They are not due 
to the filtering procedure. For the main rainbow maximum, Le. n = 1, they even 
cause an ambiguity in the scattering angle around T = 20°. The curve for n 2 
reveals less wiggles but an angular shift of ,...,, 0.1 °. 

Rainbow pattern from a water droplet 

D=20µm -- Airy theory 
A.=514.5nm Lorenz-Mia theory (unfiltered) 
T =20°C Lorenz-Mia theory (filtered) 

130 135 140 145 150 155 160 
Scattering angle (degree) 

Figure 4.13: Rainbow patterns according to Lorenz-Mie and Airy theory for a droplet of 
D = 20 µm and a size parameter of x 122. This size represents about the lower limit 
for which two Airy fringes in the rainbow can be recognized. 

Fig. 4.13 demonstrates that it is dangerous to compare the Airy and Lorenz
Mie theories for sizes smaller than lOOµm (see also Roth et al.[61]). A rainbow 
pattern for a droplet having a diameter of D 20 µm is shown (with size parameter 
x = 122). Apart from Airy's rainbow and the filtered Lorenz-Mie curve, the 
un-filtered one is plotted. It is clear that the angular frequency of the ripple 
structure approaches the angular frequency of the Airy fringes. Moreover, ripple 
structure is a euphemism for an interference structure that almost dominates the 
supernumerary bows. As a consequence, the filtered pattern has to be produced 
with great care. Even then, a comparison with the Airy theory is only meaningful 
for the main rainbow maximum and one subsidiary Airy fringe. The angular shift 
between the theories is present for both maxima and has increased to ,...,, 1 °. 



Chapter 5 

RAINBOW- INTERFEROMETRIC 

MEASUREMENTS OF DROPLET SIZE 

AND TEMPERATURE 

The monochromatic rainbow can be used to non-intrusively measure size and tem
perature of single droplets. Therefore, it is possible to detect the primary rain
bow by means of a linear charge-coupled device (CCD) camera (Sec. 5.1). The 
Airy theory for the rainbow is used to determine both scalar physical quantities 
(Sec. 5.2) after the signal has been identified as coming from a spherical droplet 
(Sec. 5.3). Sec. 5.4 describes the dynamic calibration procedure necessary for the 
rainbow technique. Experimental results are presented in Sec. 5.5 and the chapter 
ends with a short discussion on a frequently-recorded type of abnormal rainbow 
pattern. 

5.1 Detection of the monochromatic rainbow by 
a linear CCD camera 

The experimental setup is depicted in Fig. 5.1. At ambient conditions (T = 
21. 7 °C), satellite droplets around a downward-directed unstable water-jet cross a 
laser beam coming from an Ar-ion laser operated at 2 W and a wavelength of A == 
514.5nm. The beam diameter measures,._, 4mm. The generated monochromatic 
rainbow is projected onto the digital linear CCD camera "JDC JOO" from I2S. The 
linear array of the camera counts 1728 pixels and measures 17.28 mm x 0.013 mm. 
The camera and laser beam form a horizontal scattering plane. The polarization 
of the laser light is linear and perpendicular to this plane. 

The linear CCD array is placed in the focal plane of a positive lens. As such, the 
detected scattered-light intensity satisfies the far-fiekl. condition. The relationship 
between the scattering angle 0 (as defined in Fig. 5.1) and the position y of the 
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82 Rainbow-interferometric measurements of droplet size and temperature 

Satellite• 
Droplets.: 

•• 0 

Unstable 
water jet 

Rainbow receiver 

Figure 5.1: Schematic of the optical configuration utilized to detect a rainbow signal with 
a linear charge-coupled device (CCD). Satellite droplets (0.5 mm < D < 1 mm} nearby 
an unstable water jet are illuminated by an Ar-ion laser beam to create the rainbow 
pattern. y indicates the position on the CCD array. 

scattered ray at the CCD array, holds 

() 
180° 

YreJ)--, 
1r 

(5.1) 

provided that y - Yref « f. Yref is the reference position on the CCD array where 
a ray with reference angle Ore! hits the array. It is important to notice that Eq. 5.1 
does not involve the position of the droplet with respect to the lens. This means 
that the position of a rainbow pattern on the CCD array is independent of the 
position of the droplet in the laser beam. Nevertheless, one has to ensure that the 
range of scattering angles reaching the lens at least matches the angular view of 
the camera, which is here "" 5 °. 

The camera has both analog and digital outputs. The digitized signal contains 
64 intensity levels and is recorded by a data-acquisition card installed inside a 
personal computer. The camera continuously takes samples of linear images that 
are integrated over 0.3 ms, which is about the transient time of the droplet in the 
laser beam. This time is long enough to acquire sufficient scattered light and is 
short enough to ensure the detection of one rainbow at a time. A signal will be 
stored as soon as the camera has detected a pattern with a peak intensity higher 
than 10 intensity levels. 

Fig. 5.2 shows the scattered-light intensity for a rainbow pattern as a function 
of the pixel number. It shows rainbow phenomena such as the Airy fringes and the 
ripple structure; related frequencies appear in the derivative of the power spectrum 
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Figure 5.2: Experimental roinbow pat
tern recorded by the linear CCD camero 
in the experimental set-up of Fig. 5.1. 
The signal is averoged over 5 pixels to 
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Figure 5.3: Derivative of the power spec
trum of the experimental rainbow pattern 
of Fig. 5.2. 

(Fig. 5.3). How to relate these characteristics to physical quantities is explained 
in the following section. 

5.2 Simultaneous determination of droplet 
and temperature 

. 
size 

In previous chapters it was seen that the rainbow pattern depends on droplet size 
and refractive jndex, therefore on the temperature. Both size and temperature 
can be determined from an experimental rainbow pattern detected by the linear 
CCD camera depicted in Fig. 5.1. To achieve this, a measurement procedure has 
to be applied that is explained with the help of Figs. 5.4 and 5.5. The various 
curves correspond to the angular positions of the maxima, 81 to 85 , of the 5 first 
Airy fringes according to the Airy theory (Chap. 4). The wavelength of the laser 
light is ,\ = 514.5 nm. In Fig. 5.4, the droplet size is varied for a constant temper
ature T = 20 °C. Fig. 5.5 represents the 5 maxima as a function of the droplet 
temperature for a diameter of D = 1 mm. From the latter figure, one can see that 
the distance between the Airy fringes is independent of the droplet temperature; 
close study reveals a change of only 1 % in this distance over a temperature range 
of 100 °C. Consequently, the droplet diameter can be deduced from any fringe 
spacing without knowing the temperature precisely beforehand. The domain of 
validity of the Airy rainbow decreases the further the Airy fringes elongate from 
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Figure 5.4: First five maxima in the 
Airy rainbow pattern as a function of the 
diameter of a water droplet at T = 20 ° C. 
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Figure 5.5: First five maxima in the 
Airy rainbow pattern as a function of the 
temperature of a water droplet having a 
diameter of D = 1 mm. 

the geometric rainbqw angle. It has therefore been decided to relate the so-called 
Airy diameter D Airy to the distance between the first two Airy fringes. Van Beeck 
and Riethmuller[72] employed Eq. 4.20 and table 4.1 in order to arrive at 

I 3 

D . -~ (COS Trg ) l ( 2.37959 180 o) 2 
(5.2) 

Airy - 4 . 3 (0 0 ) ' Sin Trg 2 - 1 1r 

with sin Trg w-. 
For m = 4/3, the relationship reduces to 

DAiry 1016.2 A (02 -Oit!, (5.3) 

with 01 and 02 defined as a positive scattering angle expressed in degree angle and 
,\ the wavelength in metre. The fringe spacing ( 02 - 01 ) has to be deduced from 
the Airy rainbow after the ripple structure has been filtered out. 

Once D Airy has been determined, one can, in principle, obtain the real part of 
the refractive index from any Airy fringe (Fig. 5.5). For the rainbow technique, 
the first fringe at 01 is applied because it compares best with the Lorenz-Mie 
computations (Sec. 4.3). 01 follows again from Eq. 4.20 and table 4.1: 

I 

O = IO I 1.08728 (,\
2 

COS Trg) 
3 

180 ° 
i rg + . l6D2 ' sm Trg Jr 

(5.4) 

and reduces for m = 4/3 to 

(5.5) 



5.2 Simultaneous determination of droplet size and temperature 

The dependency on the refractive index lies thus mainly in the geometric rainbow 
angle Or9 (Eq. 4.5). It is solved implicitly from this expression. The temperature 
is then derived from the empirical relationship between m and T, P and ,\,as was 
established by Thormahlen et al.[67]. 

Already in 1991, Roth et al.[60] applied an algorithm based on Eq. 5.4 to 
measure the droplet temperature. The knowledge needed about the diameter was 
measured from the fringes which are visible in the forward-scattered light, hence 
requiring two detectors. In the present section, it has been shown that it is possible 
to deduce the size information from fringes which are visible in the rainbow itself, 
thus needing only one detector. Moreover, the fringe spacing does not depend on 
the temperature so that the size can be measured without preliminary knowledge 
of the droplet temperature. This approach has been utilized by Van Beeck and 
Riethmuller[72, 71] and later by Sankar et al.[62] in their "Rainbow Refractometer 
System". As such, it has been shown that it is possible from one primary rainbow 
signal to simultaneously derive the size and temperature of a single droplet. How
ever, one has to realize that by using the Airy theory, the error in temperature 
grows larger than 1 °C for T < 20 °C and D < 100 µmin the case of water droplets 
at ambient temperature, as can be derived from the results in Sec. 4.3. From the 
same section, it is found that the uncertainty in the Airy diameter exceeds 3% for 
droplets smaller than 100 µm. 

5.2.1 Ripple structure 

In the experimental signal of Fig. 5.2, the ripple structure superimposed on the 
Airy fringes can be clearly identified as well as the corresponding peaks related to 
the angular frequencies F2 and F3 • It is obvious to believe that these frequencies 
can be related to the droplet diameter as well. 

The ripple structure results from interference between internal and external 
reflection. Because the latter is not included in the Airy theory, it does not appear 
in the Airy rainbow pattern. Yet, the frequencies F2 and F3 have already been 
discussed in Sec. 1.3 of the Introduction. They can be obtained from an analysis 
which is similar to Young's double-slit experiment: 

(5.6) 

From Young's experiment it follows that the angular frequency F1 equals the dis
tance between the two interfering internally-reflected rays, divided by the wave
length ,\ (Fig. 5.6). This distance is zero at the geometric rainbow angle Or9 , 

leading to 

F1l8 = 0. 
rg 

(5.7) 

For this condition, F2 and F3 are the same and are defined as the ripple frequency 
Fripple: 

(5.8) 
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86 Rainbow-interferometric measurements of droplet size and temperature 

Incident 
Wave 
Front 

Figure 5.6: Explanation of ripple frequency Fripple as the frequency of the rainbow in
terj erence pattern that results from interference between the geometrical min bow my at 
Org and external reflection. Fripple splits up in F2 and F3 for 181 > l1Jr9 I. 

The analogy with Young's fringe analysis dictates that the ripple frequency can 
be found from the distance between the geometric rainbow ray at (}rg and the 
externally-reflected ray at infinity (see Fig. 5.6 and Van Beeck and Riethmuller[70]): 

Fripple 
D 

2
,\ (COS Trg + COS (5.9) 

Trg and Org are given in Eqs. 4.4 and 4.5. Fripple can be determined experimentally 
from the power spectrum of a rainbow pattern. However, because thls spectrum 
results from the Fourier transform over a finite range of scattering angles near Or9 , 

the peak at Fripple will split in two peaks at angular frequencies F 2 and F 3, differing 
F1• If the interval of scattering angles covers two Airy fringes, then F1 approaches 
the Airy frequency FAiry, defined as 

1 
FAiry (0

2 
_ Oi)" (5.10) 

Subsequently, F2 and F3 hold 

1 
F2 = Fripple - (1 - a)FAiry = Fripple - 2FAiry, 

1 
F3 Fripvle + o:FAiry = Fripple + 2FAiry1 

(5.11) 

( 5.12) 



5.2 Simultaneous determination of droplet size and temperature 

where the coefficient a was put quite arbitrarily at t· The validity of Eq. 5.12 has 
been checked by comparing it with Lorenz-Mie computations (see Van Beeck and 
Riethmuller[70]). The results are shown in Fig. 5.7, depicting F3 as a function of 
the droplet diameter for >. = 514.5 nm. The difference between both computations 
never exceeds 1 % as long as D > lOOµm. This means that Eq. 5.12 expresses an 
accurate, almost linear, relationship between the droplet diameter and F3

1• 

Following the above analysis, one can state that it is possible to measure the 
droplet size from the ripple structure visible in the rainbow pattern. The resulting 
diameter is called the ripple diameter Dripp/e· It can be demonstrated that no 
exact preliminary knowledge of droplet temperature is required, similarly to the 
size measurement from the Airy fringes. For m = 4/3, the relationship between 
F3 and Dripple reduces 

D D 2/3 
F3 = 0.01064 'tple + 0.004947 ( rtle) , 

from which the ripple diameter has to be solved implicitly. 
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Figure 5.7: The angular frequency F3 ac,cording to Eq. 5.12 and the Lorenz-Mie theory 
as a function of the droplet diameter form= 1.33 and A= 514.5nm. 

et al.[5] studied the ripple frequency in the micrometre range. The authors success
fully established a numerical fit based on Lorenz-Mie computations. 

87 



88 Rainbow-interferometric measurements of droplet size and temperature 

Figure 5.8: Severely distorted Airy fringes. An intrusion of a cusp-shaped secondary 
roinbow into the primary roinbow region can be observed. The picture was taken by a 
camero, focused at infinity, pointed at a hanging tear-shaped drop. 

5.3 Non-sphericity detection 

5.3.1 Non-circular rainbows 

The Airy theory is valid for spherical particles. Clift et a.I.[11] have empirically 
investigated the shape of a free-falling droplet. They observed that the shape is 
clearly non-spherical and approaches that of an oblate. From an equivalent sphere 
diameter of 1 mm to 4 mm, the ratio between the axis diameters increases from 1.03 
to 1.30. Unfortunately, the rainbow strongly depends on the shape of the droplet. 
Marston[43] published in 1980 a study on the changes in the rainbow pattern 
produced by acoustically deformed droplets. He reported a shift of the rainbow as 
was already predicted theoretically in 1910 by Moebius[49]. However, the impact 
of drop non-sphericity on individual interference structures remained unclear. This 
was studied in Chap. 3 by applying Kirchhoff's theory to an ellipsoidal droplet. The 
preliminary results show that the percent change in ripple frequency is different 
from that of the Airy frequency. Moreover, this feature seems to depend on the 
equivalent sphere diameter. 

Fig. 5.8 shows a severely distorted rainbow-interference structure. The struc
ture reveals an intrusion of a cusp caustic (see for example Lock and Andrews[38] 



5.4 Dynamic calibration procedure for the rainbow technique 

or Berry(8]), probably related to the secondary rainbow, into the primary rainbow 
region. 'The pattern is created by a large pendant tear-shaped drop. The optical 
axis of the photo-camera lies in the horizontal plane containing the drop and the 
laser beam. The camera is focused at infinity to obtain the far-field scattered-light 
intensity. The picture demonstrates that the rainbow pattern can exhibit more 
than just a shift or change in frequency as a result of non-sphericity. This was 
also pointed out at the end of Chap. 3. The preliminary results of Chap. 3 and 
pictures such as in Fig. 5.8 make it clear that obtaining physical quantities from 
non-spherical drops by means of rainbow interferometry is not obvious. At this 
stage, it is better simply to reject rainbows produced by non-spherical particles, 
which implies the need for some form of detection. 

5.3.2 Selection of spherical droplets 

The detection of non-sphericity in drops is based on the comparison of the Airy 
diameter DAiry and the ripple diameter Dripple (see Van Beeck and Riethmuller[70, 
74]). In Sec. 5.2, it was explained that these diameters can be derived indepen
dently from the Airy fringes and the ripple structure using theories only valid for 
spheres. Therefore, one can expect that D Airy equals Dripple when the droplet is 
spherical. In that case, a reliable temperature measurement can be made using the 
Airy theory (see Eq. 5.4). In case of inequality in the diameters, the rainbow pat
tern is rejected. This non-sphericity detection method is based on the fact that the 
optical interference structures employed originate from different local curvatures 
of the droplet surface. The preliminary results of Chap. 3 endorse this principle 
for ellipsoids. 

5.4 Dynamic calibration procedure for the rain
bow technique 

The rainbow receiver meets the requirement for the high accuracy concerning the 
resolution in the scattering angle with respect to the optical axis of the receiving 
optics (Fig. 5.1). However, to determine the temperature, the scattering angle 
with respect to the laser beam has to be known. Because with the present set-up 
an accurate enough geometrical measurement of this angle cannot be obtained, 
a dynamic calibration procedure has to be performed in order to find the ref
erence angle Ore/ and the reference position at the linear CCD array, i.e. Yref 

(Eq. 5.1). Therefore, a rainbow pattern coming from a transparent spherical par
ticle with known refractive index has to be recorded. To this end, one applies the 
non-sphericity detection method, described in the previous section, to a rainbow 
signal acquired at isothermal conditions; the signal can be utilized for calibration 
provided the difference between ripple and Airy diameter is smaller than the un
certainty of""' 2% in the size-measurement. In that case, the reference position Yref 
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90 Rainbow-interferometric measurements of droplet size and temperature 

is assigned to the position at the CCD array at which the main rainbow maximum 
was recorded. The corresponding reference angle is then computed by Eq. 5.4. 

5.5 Experimental results 

Basic experiments have been carried out to check the non-sphericity detection 
method. The experimental setup has been discussed in Sec. 5.1. Fig. 5.9 shows a 
recorded signal. D Airy is derived with the help of the Airy theory from the differ
ence between the main rainbow maximum and the first supernumerary bow. Dripple 

comes from the properly identified peak in the spectrum of the signal (Fig. 5.10). 
D Airy equals Dripple, so the droplet is spherical; as expected, the temperature de
rived from the main maximum is the same as the ambient temperature. Another 
rainbow is presented in Fig. 5.11 with its spectrum in Fig. 5.12. Here, D Airy dif
fers from Dripple by almost 50µm, indicating that the droplet is non-spherical. The 
temperature derived from the rainbow is about 6 °C from ambient. Several signals 
of this type have been analyzed, revealing that the difference ID AirD-Dr•w1

• j has to 
Aery 

be less than 1~ in order to ensure an accuracy of 5 °C in the droplet tempera
ture. This accuracy. is expected to be higher for heated water droplets because 
for T > 20 °C, f}i reveals a stronger dependency on the temperature, as shown in 
Fig. 5.5. 

Experimental rainbow signal 

Reservoir temperature = 21. 1'C 
-; Wavalength=514.Snm 
.!!. o...,=SOOµm 
i; T...,=21.t'C 

ii.! 

~ 
~ 
:::I 

i 

! 
137 138 139 140 141 

Scattering angle (degree) 

Figure 5.9: Rainbow signal coming from 
a droplet that is spherical, i.e., the droplet 
diameter D Airy, derived from the distance 
between the first two Airy fringes, equal to 
diameter Dripple that is derived from the 
ripple structure. 
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5.6 Rainbow 
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Figure 5.11: &inbow signal coming from 
a non-spherical droplet, i.e., the droplet 
diameter D Airy unequal to Dripple· 
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Figure 5.12: Magnitude squared of the 
Fourier transform of the rainbow depicted 
in Fig. 5.11. 

These quantitative results are different from the preliminary results of Figs. 3.24 
and 3.25 in Chap. 3. There, a rainbow pattern was computed for an ellipsoid 
with a non-sphericity of 3 %. Applying the formulas in Sec. 5.2 would· yield 

ID Air])-D"w1• I ~ 1~ and the shift of the main rainbow maximum would corre-
A•ry 

spond to a temperature difference of more than 100°C and not 5°C as in the 
experiments. Further computations should clarify this contradiction. However, 
in order to perform a more valid comparison between theory and practice, it is 
essential that the shape of the droplet is known, or better, can be controlled. For 
this, it is suggested to record at the same time the rainbow pattern and the image 
of the droplet that is for instance optically or acoustically levitated. 

5.6 Rainbow patterns without ripple structure 

The non-sphericity detection method works, although its high accuracy is not yet 
understood. Sankar et al.[62] used a similar method to detect non-sphericity in 
drops. It was based on the comparison between the Airy diameter D Airy and the 
diameter provided by the phase-Doppler system. The reason for not using the 
ripple diameter Dripple was that for oscillating or evaporating droplets, the ripple 
structure can be completely damped out due to the finite integration time of the 
linear CCD camera. This was already predicted by Roth et al.[61]. Fig. 5.13 shows 
a rainbow pattern without ripple structure. The exact cause can only be traced by 
recording the (change in) shape of the droplet during the integration time of the 
CCD camera. But in any case, signals without ripple structure have to be rejected 
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if the rainbow technique is used as stand-alone apparatus. In the next chapter a 
solution to this problem will be proposed. 

30 

Experimental rainbow signal without ripple structure 

200 400 600 800 1000 1200 1400 
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Figure 5.13: Experimental rainbow pattern recorded by the linear CCD camera. No 
ripple structure is superimposed on the numerous Airy fringes. 



Chapter 6 

RAINBOW INTERFEROMETRY WITH 

WIRE DIFFRACTION 

In Chap. 5, a rainbow technique was presented for simultaneous measurement of 
droplet size and temperature. Here, a technique is discussed that in addition to 
these scalar quantities measures one velocity component of individual droplets in 
a water spray. The technique is based on rainbow interferometry in combination 
with diffraction by a wire, placed in the spatial filter of the scattered-light detector 
(Sec. 6.1 and Van Beeck and Riethmuller[73, 76]). A photomultiplier detects the 
wire-diffraction pattern superimposed on the rainbow interference pattern created 
by a droplet scattering laser-light. The velocity is determined from the equiva
lent geometric wire shadow. The necessary sphericity validation is performed by 
comparing the Airy and the ripple droplet diameters, resulting from the respective 
interference structures. The temperature is recovered from the relative position of 
the wire diffraction pattern to the main rainbow maximum (Sec. 6.2). The tech
nique has been applied to a water spray at ambient temperature (Sec. 6.3). The 
results show the importance of non-sphericity detection. A discussion on transient 
events concludes the chapter. 

6.1 Photomultiplier set-up for detection of the 
rainbow in a spray 

In Sec. 5.6, it was seen that the finite integration time of the CCD camera causes 
the ripple structure sometimes to disappear. This problem is overcome by using 
a photomultiplier instead (see Refs. [74, 75]. Moreover, a photomultiplier has the 
advantage of being more sensitive to the scattered-light intensity than a linear 
CCD array. 

Fig. 6.1 demonstrates the principle of the detection of a rainbow pattern by 
means of a photomultiplier placed in front of a pin hole. When the droplet is 
situated in the laser beam, the fringes, visible in the rainbow, appear on concentric 
cones with the droplet as apex and the axes parallel to the laser beam. These cones 

93 



94 with wire diffraction 

Pin hole+ 
Photomultiplier 

LASER 
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Figure 6.1: The principle of the detection of a time-varying rainbow interference-pattern 
by means of a photomultiplier placed behind a pin hole. The minbow fringes move in 
front of the pin hole when the droplet passes the laser beam. 

Rainbow pattern from glass bead detected by PMT 
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Figure 6.2: Experimental rainbow pattern detected by the photomultiplier set-up, de
picted in Fig. 6.1. The scattering particle was a spherical glass bead (D 5.9 mm) that 
crossed the laser beam (beam diameter w = 5 mm) with velocity v 1.8 m/s at a distance 
of l = 43 cm from the pin hole. 
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move in front of the pin hole when the droplet traverses the laser beam. In this 
way, a time-varying rainbow signal is detected. Fig. 6.2 shows an experimental 
rainbow pattern coming from a spherical glass bead. It gives an illustration of the 
principle of detection by a photomultiplier. The experimental set-up was based on 
the sketch in Fig. 6.1. 

Fig. 6.5 ; ... ,,., ...... , ......... ,i 

lens I 

-- LASER 
Mirror 

Figure 6.3: The photomultiplier set-up for detection of a rainbow pattern in a spray. 
The polarization is perpendicular to the (vertical) scattering plane which is formed by 
the laser beam and the optical axis of the rainbow detector. A wire is placed in pin hole 1 
perpendicularly to this scattering plane in order to find a reference position of the droplet 
in the laser beam. 

In a spray, several droplets cross the laser beam at the same time. In order 
to detect a rainbow coming from one single droplet, a probe volume has to be 
selected by means of a spatial filter that is placed in front of the photomultiplier 
as depicted in Fig. 6.3. The virtual measurement plane O" is positioned very close 
to the probe volume with the help of lens 2; this is to ensure a detection of a 
sufficiently large range of scattering angles around the main rainbow maximum so 
that at least two Airy fringes are observed. 

At the centre of pin hole I, a wire is fixed perpendicularly to the scattering 
plane. When the image of the droplet passes the wire, the light intensity detected 
by the photomultiplier is expected to fall to zero. In this way, a reference position 
of the droplet in the laser beam is found which serves to relate each moment in the 
time-varying rainbow signal to an absolute scattering angle. This information is 
needed to obtain the droplet temperature from the rainbow, as will be explained 
in Sec. 6.2. 

Fig. 6.4 shows a simulation of the photomultiplier signal for a refractive index 
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Simulation of PMT-signal with Lorenz-Mie theory 
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Figure 6.4: Simulation of the photomultiplier signal (using the extension of the Lorenz
Mie theory, as described in Sec. 2.5) for the set-up depicted in Fig. 6.3. A water droplet 
having a diameter of200 µm, a velocity of 1 m/s and a refractive index of m = 1.33 - Oi 
was used. The impact of the wire diffraction is modeled as a geometric shadow. 

m = 1.33-0i and a droplet diameter D 200 µm, concerning the experimental set
up of Fig. 6.3. The Lorenz-Mie theory was employed, using the method described 
in Sec. 2.5. The droplet velocity is v 1 m/ s and the beam diameter measures 
w = 2 mm. The distance between the probe volume and the virtual measurement 
plane u is 20 mm. The rainbow pattern is modulated by the Gaussian intensity 
profile of the laser beam but apart from that it reveals the same optical interference 
structures as identified in Fig. 1.12; 6.tAiry denotes the time interval between two 
Airy fringes and 6.tripple is related to the ripple structure. The influence of the 
wire on the rainbow is modeled as a geometric shadow. In this case, the velocity 
of the droplet would simply be given by 

Dwire 1 v=----, 
Atwire M 

(6.1) 

where M is the magnification factor and Atwire the time it takes the image of the 
droplet to pass the wire with diameter Dwire· This idea refers to Fiedler et al.[18] 
who used the shadow of a grating-like structure to determine the particle velocity. 
Similarly to that method, the accuracy of relationship (6.1) is determined by the 
diffraction induced by the wire which will be discussed in the following subsection. 
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Figure 6.5: The scattering problem to be considered in order to describe the effect of 
wire diffraction on the rainbow pattern concerning the set-up of Fig. 6.3. 

6.1.1 The effect of wire diffraction on the rainbow pattern 

To gain proper insight into the influence of the wire diffraction on the rainbow 
pattern, the photomultiplier set-up in Fig. 6.3 has to be carefully considered. 
Fig. 6.5 shows a simplification of the wire diffraction problem. p is the distance 
between the light source and the diffracting object, i.e. the wire, whereas l' denotes 
the distance between the wire and the virtual observation plane a'. Although this 
plane is placed in the far-field region for the rainbow pattern, the wire diffraction 
cannot be described by Fraunhofer diffraction. The reason for this is that the 
incident light is not a plane wave because the imaging lens 1 of the spatial filter 
(see Fig. 6.3) creates an image of the light source, i.e. the droplet, ideally at the 
position of the wire. Consequently, we are dealing with Fresnel diffraction (see 
Hecht[30]). 

It is important to recognize that the image of the droplet consists mainly of 
three glare points which form the origin of the rainbow (see Sec. 1.3, Van Beeck 
and Riethmuller[74] or Van de Hulst and Wang[84]). External reflection forms 
glare point 1 but for the diffraction problem its light intensity will be neglected in 
comparison with the two closely-positioned spots 2 and 3 coming from internally
reflected rays (Fig. 3.8). As these two rays have scattering angles around the 
geometrical rainbow angle Org, the corresponding glare points 2 and ·3 merge to 
one bright spot. As long as the size of this spot is smaller than the wire diameter, a 
deep shadow is to be expected when this single spot passes the obstacle. However, 
when the spot touches the edge of the wire, a diffraction pattern is generated. In 
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Figure 6.6: Heuristic model of the wire diffmction pattern at the point of observation 
in Fig. 6.5. 

the scattering plane, this pattern is assumed to be similar to the Fresnel diffraction 
pattern of a straight edge illuminated by a cylindrical wave front (Fig. 6.6) provided 
that the following condition is fulfilled (Hecht[30]): 

I 

[
2(!' + p)] 2 

Dwire )..[' p > 10. (6.2) 

Here >. denotes the wavelength of the light and Dwire, p and l' correspond to 
the dimensions given above. When the image of the droplet is well positioned 
near the wire, that is to say when p is a.bout Dwire/2, the condition is satisfied 
if Dwire > 25>.. Then, the width of the geometric wire shadow can be related to 
the time duration between signal intensities I/ /0 = 0.25, or with respect to the 
maximum signal intensity I/ I max = 0.1824, as shown in Fig. 6.6. 

Fig. 6. 7 shows an experimental rainbow pattern, recorded using the set-up of 
Fig. 6.3. The droplet image passed the wire between 200 µs < t < 220 µs. The 
resulting wire diffraction structure is not symmetric due to interference with the 
rainbow pattern. Each edge reveals a maximum, denoted by Imax,1 and Imax,2, 
which corresponds to the main maximum in the Fresnel pattern. Supernumerary 
Fresnel maxima are not clearly observed because of interference with the ripple 
structure. Following the heuristic explanation of the wire diffraction in Fig. 6.6, it 
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is assumed that the droplet image touches the borders of the wire when 1 

[ - lmin,i = 0.1824 
lmax,i - lmin,i 

with i=l,2. (6.3) 

As a result, the time interval Twire is found, that corresponds to the time it takes for 
the geometric wire shadow to pass in front of the photomultiplier. Subsequently, 
Eq. 6.1 can successfully be applied to determine the droplet velocity if one knows 
the wire diameter Dwire and the magnification factor M. 
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Experimental rainbow signal in a water spray 
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Figure 6. 7: The calibration rainbow pattern recorded by the photomultiplier in the set
up of Fig. 6.3. The dip in the rainbow pattern at 200 µs < t < 220 µs results from the 
passage of the image of the droplet across the wire. The edges of this shadow reveal the 
Fresnel diffraction of Fig. 6. 6. The width, Litwire, is related to the droplet velocity as 
explained in Subsec. 6.1.1. The centre of the wire shadow reveals the Poisson spot which 
is connected to a certain reference scattering angle. 

A remarkable feature in the dip of Fig. 6.7 is that at its centre, i.e. at time 
t = 210 µs, there appears to be a small peak. This phenomenon is believed to be 
analogous to the Poisson spot which is always visible at the centre of the shadow 
behind an illuminated circular opaque object (Ref. (30]). Therefore, the maximum 
of this peak corresponds exactly to the moment that the glare point is at the centre 
of the wire. A reference scattering angle will be assigned to the Poisson spot which 
is employed for the temperature measurement. 

that lmin,l and lmin,2 had to be introduced because total obscurity was not entirely 
obtained. The validity of the factor 0.1824 in Eq. 6.3 has therefore still to be examined. 
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6.2 Determination of droplet velocity, size and 
temperature 

In this section, the algorithm to process the rainbow photomultiplier-signal is 
presented. It is based on the determination of one velocity component from the 
time 6.twire as suggested in the previous section. The component measured is the 
one perpendicular to the optical axis of the rainbow receiver. The advantage of 
this velocity measurement, described by Eq. 6.1, is its independence of the droplet 
shape and temperature. This advantage can hardly be overestimated, especially 
when dealing with arbitrarily oriented spheroids. 

Velocity v of the droplet is related to the Airy frequency 1/ flt Airy (see Fig. 6.4) 
as explained by Van Beeck and Riethmuller[74]: 

dO 1r l >. 2 

-l dt 180° = L777 
6.tAiry (D)3. v (6.4) 

The relationship between the ripple frequency 1/ 6.tripple and the droplet velocity is 
given by the following expression, where 6.tripple is deduced from the corresponding 
peak in the power spectrum (Refs. [70, 74]): 

v -ldO _!!___ 
dt 180 ° 

1 
(6.5) 

fltripple 0.613( D /).) + 0.281( D /). )213 • 

The constants are valid for a real refractive index of m = 4/3. From Eq. 6.4, 
an Airy diameter D Airy can be deduced whereas Eq. 6.5 yields a ripple diameter 
Dripple· As v does not depend on the droplet non-sphericity, but flt Airy and 6.tripple 

do, the diameter comparison will allow the detection of non-sphericity in the same 
way as the non-sphericity detection method for the CCD camera set-up, described 
in Sec. 5.3. 

When the droplet is identified as being spherical, a reliable temperature can 
be derived from the angular position of the main rainbow maximum. Because the 
photomultiplier provides a time-varying signal, each moment has to be related to 
a certain absolute scattering angle. The relative scattering angle is found from 
Eq. 6.4: 

dO 
= dt 

v 180° 
l 1r 

(6.6) 

Integration over the time interval t - tref yields the required absolute scattering 
angle 

v 180° 
0 =Ore] - (t - tref )----~ 

1r 
(6.7) 

where Oref is a reference scattering angle at the time t = tref· The reference time 
is taken to be at the Poisson spot (Fig. 6.6). The spot is related to a fixed position 
of the droplet in the laser beam thus to a certain reference scattering angle Ore/· 
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To find the relationship between Ore/ and tr•/, the Airy theory has to be applied 
to a calibration rainbow coming from a spherical particle with known refractive 
index (see Van Beeck and Riethmuller[71, 72]): 

0 - jO I (1.08728 (A 2
cosr,9 )

113 
( _ )~) 180° 

ref - rg + . 16D2 + i1 tref l • 
sm Trg 1l" 

(6.8) 

Time t 1 corresponds to the position of the main rainbow maximum. This can be 
found accurately by filtering the ripple structure and the wire shadow out of the 
rainbow signal, as shown in Fig. 6.7. The geometrical rainbow angles 0,9 and Trg 

were already given in Eqs. 4.4 and 4.5: 

1 
Or9 =2rr9 -4arccos( cosrr9 ), (6.9) 

m 

sm Trg - ~- (6.10) 

Once the reference angle has been established, the refractive index, thus the tem
perature, of any rainbow signal can be measured. Therefore, time t 1 has to be 
determined and then Eqs. 6.8, 6.9 and 6.10 have to be solved implicitly for the 
refractive index. 

6.3 Experimental results in a water spray 

The method described in the previous section to determine droplet velocity, size 
and temperature has been applied to individual droplets in a liquid spray. The 
experimental set-up is based on the sketch in Fig. 6.3. A "full-cone" water spray 
is directed downwards and is produced by the nozzle "UniJet TG03" of Spraying 
Systems Co. The water pressure applied is 2.5 bar and measurements are taken in 
the centre of the spray, 20 cm below the nozzle exit. The droplets are assumed to 
be at ambient temperature because the water is not heated. The Ar-ion laser is 
operated at a power of 500 mW and a wavelength of 514.5 nm. No beam expander 
is utilized. The laser beam' and optical axis of the scattered-light detector form a 
vertical scattering plane. The detector, or rainbow receiver, is positioned horizon
tally to ensure the measurement of the main velocity component of the droplets. 
Pin hole 1 of the receiver measures 2 mm and the wire, placed at the centre of 
the pin hole, has a diameter of 50 µm. Pin hole 2 in front of the photomultiplier 
is no larger than 50 µm to prevent integration over the ripple structure. The dis
tance l between the probe volume and the virtual plane of observation a measures 
25.8 mm. The rainbow signal is 8-bit digitized by using a digital oscilloscope, Tek
tronix 2430, as a transient recorder. A signal consists of 1024 samples taken at 
a sampling frequency of 2.5 MHz. With the aid of an IEEE interface, the stored 
waveform is transferred to a personal computer. 

A dynamic calibration had to be performed in order to relate the centre of the 
wire shadow, i.e. the Poisson spot, to an absolute reference angle Oref as explained 
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Figure 6.8: An experimental rainbow pat
tern recorded by the photomultiplier in the 
set-up of Fig. 6.3. This signal passes 
the sphericity check because the differ
ence between the Airy and ripple diame
ter is smaller than the measurement un
certainty. 
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Figure 6.10: An experimental rainbow 
pattern recorded by the photomultiplier in 
the set-up of Fig. 6.3. Although the tem
perature based on the Airy diameter is 
close to the reference temperature, the sig
nal is rejected because of the large differ
ence between both diameters. 
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Figure 6.9: An experimental rainbow pat
tern recorded by the photomultiplier in the 
set-up of Fig. 6.3. The droplet is non
spherical, thus the signal is rejected. 
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Figure 6.11: An experimental rainbow 
pattern recorded by the photomultiplier in 
the set-up of Fig. 6.3. Exceptionally, the 
sampling frequency was 1 MHz instead of 
2.5 MHz. The signal is rejected. 
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Signal v DAiry Dripple D.D TAiry Tripple D.T I 

=9t [µm] [µm] (µm] [°C] [oc] [oCj 
Fig. 6.7 365 352 13 Tref = 25 Tref = 25 0 

Fig. 6.8 6.6 439 447 -8 25.0 24.7 0.3 
Fig. 6.9 7.6 353 277 76 13.7 22.3 -8.6 
Fig. 6.10 7.1 254 318 -64 24.4 16.9 7.5 
Fig. 6.11 4.8 366 247 119 32.4 41.4 -9.0 

Table 6.1: Experimental results obtained from rainbow-interferometric measurements of 
different droplets at a fixed position in a water spray. 

in Sec. 6.2. Therefore, a rainbow pattern coming from a spherical droplet in the 
water spray at ambient temperature was recorded for which the Airy diameter, 
obtained from Eq. 6.4, agrees with the ripple diameter (Eq. 6.5) within the mea
surement uncertainty of ±20 µm. This was the case for the signal depicted in 
Fig. 6.7. Its velocity, deduced from the dip caused by the shadow of the wire pro
jected on pin hole 2, was found to be 6.4±0.4 m/s. The droplet diameters deduced 
were D Airy 365 µm and Dripple = 352 µm. The reference temperature assigned to 
this calibration pattern equaled 25°C, i.e. the ambient temperature. The resulting 
reference angle, corresponding to the centre of the dip, was computed with the help 
of Eqs. 6.8, 6.9 and 6.10; {}ref = 138.636°. Based on this information, Table 6.1 has 
been drawn up which lists the velocity v, the diameters DAiry and Dripple and the 
difference D.D = D Airy - Dripple for four individual droplets at the same position 
in the water spray. The corresponding signals are depicted in Fig. 6.8, 6.9, 6.10 
and 6.11. The listed temperatures TAiry and Tripple are computed using the Airy 
and ripple diameters, respectively. The uncertainties in the determination of size 
and velocity limits the precision in the temperature measurement to ±3 "C. From 
the four signals only the one depicted in Fig. 6.8 passes the non-sphericity detec
tion method; D.D is -8 µm and the difference D.T = TAiry - Tripple equals 0.3"C 
which is smaller than the measurement uncertainty. Although D.T approaches zero 
when D.D does, it is premature to extract a characteristic correlation between D.D 

and 6T from the different values in Table 6.1. To find this correlation, a larger 
number of data will have to be evaluated in the future. 

6.4 Transient events 

Since the water spray utilized for the experiments in Sec. 6.3 was employed at am
bient conditions, no internal temperature gradients were present. Consequently, 
this phenomenon did not influence the accuracy of the measurements. However, 
it should be mentioned that at non-ambient conditions, large deformations of the 
rainbow pattern can occur as reported by Anders et al.[6] and Corbin et al.[12]. 
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Investigating whether a droplet-size comparison method can deal with this situ
ation is suggested. Without internal temperature gradients, the influence of the 
droplet non-sphericity on the rainbow pattern can successfully be circumvented by 
selecting spherical droplets which is achieved by comparing the ripple to the Airy 
diameter (Sec. 6.3). 

Experimental rainbow signal in a water spray 

0 ~ ~ 00 00 1001~1~100100 
Time (µs) 

Figure 6.12: An experimental minbow pattern resulting from an oscillating droplet. Note 
the absence of the shadow of the wire. Therefore, the signal is rejected. 

Apart from non-sphericity and internal temperature gradient effects, transient 
events can also influence the applicability of the rainbow technique. In combustion 
engines for instance, the rapid droplet evaporation causes f::J.tripple and f::J.tAiry to 
change during the passage of the droplet through the laser beam. In this case, no 
single droplet diameter can be assigned to the rainbow pattern. However, Sankar 
et al.[63] used this effect to measure the instantaneous droplet vaporization rate 
in controlled experiments with a burning stream of ethanol droplets. 

In our experiments, transient events also occurred through the oscillation of 
the light-scattering droplet. Fig. 6.12 shows a rainbow signal recorded using the 
photomultiplier set-up. Two strange features are observed. Firstly, two rainbows 
can be seen. Secondly, the number of Airy fringes is much higher than for the 
signals presented in the previous section. The enlargement of the angular view is 
believed to be artificial because the rainbow fringes move in front of pin hole 2 
(Fig. 6.3) not only because the droplet traverses the laser beam but also because 
the droplet, and thus the rainbow, oscillates. Fortunately, this transient event 
is revealed by the absence of a narrow wire shadow in the main rainbow maxi
mum. In our case, where C::..twire ~ 20 µs, the shadow could easily have covered 
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two entire Airy fringes! Rainbow signals without the wire diffraction pattern or 
those missing one or more Airy fringes are rejected. This implies that, when a 
narrow wire shadow is seen in the main rainbow maximum, the droplet must be 
non-oscillating. To find out whether the non-oscillating droplet is spherical, the 
diameter comparison method is used as was explained in Sec. 6.2. 

Finally, it is important to realize that, by imposing the condition that the wire 
shadow has to be somewhere in the primary rainbow maximum, the dynamic range 
of the temperature measurement is restricted, though not severely. For water 
droplets, the dynamic range would be 100 °C for a droplet diameter of 500 µm 
increasing up to 800 °C when the droplet measures about 20 µm. 
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Chapter 7 

DISCUSSION AND CONCLUSIONS 

The rainbow technique, first presented by N. Roth, K. Anders, and A. Frohn in 
1988, has been further developed in this Ph.D. thesis. The technique is based on 
the detection of a monochromatic rainbow that is created by a droplet scattering 
laser light. This artificial rainbow reveals Airy fringes (with angular frequency 
FAiry) and a ripple structure as a result of optical interference between internal 
and external reflection of laser light by the droplet. The ripple structure contains 
two closely-spaced peaks in the power spectrum, taken over two Airy fringes. The 
corresponding angular frequencies at F2 and F3 respect 

F3 - F2 = FAiry· 

The rainbow interference pattern is conventionally detected by a linear CCD cam
era. From the angular position of the main rainbow maximum, the refractive index 
of the droplet can be determined, therefore the temperature, provided the droplet 
size is known. This necessary diameter can be deduced from either the Airy fringe 
spacing or the ripple interference structure by using the Airy theory for the rain
bow. Because this theory is valid for spherical particles, both diameters are the 
same when the droplet is spherical. When the difference between the diameters 
exceeds the uncertainty in the size measurement, the particle is supposed to be 
non-spherical. In that case, no confidence can be established in· the temperature 
measurement from the main rainbow maximum because the latter depends strongly 
on the droplet shape. Therefore, rainbow signals from non-spherical particles are 
rejected following the diameter comparison method. 

A theoretical approach has been described to validate the non-sphericity de
tection method. Therefore, the change in angular frequency of the Airy fringes 
and ripple structure as well as the angular shift of the main rainbow maximum 
were predicted for an ellipsoidal droplet with constant and real refractive index. A 
vectorial equivalent of the Kirchhoff integral relation has been applied to express 
the far-field rainbow pattern in terms of the scattered field at the droplet surface. 
This near field was obtained by assigning an electric field vector to geometrically 
traced rays. As such, the contribution of internal and external reflection 'to the 
rainbow pattern could be written as a sum of Kirchhoff integrals for each geomet
rical contribution. Both integrals were solved by integrating over the respective 
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ridges in the phase functions of the integrands. In this thesis, only straight ridges 
have been treated which reduces the applicability of the presented surface integral 
method to geometrical rays that lie in one plane taken through the incoming and 
scattered wave vectors. 

The shift of the rainbow pattern due to drop non-sphericity has been computed 
for prolates using the surface integral method. The results have been been com
pared to the geometrical computations of W. Moebius, made in 1910. He predicted 
an angular shift that was independent of the droplet size. This agrees with the 
results of the surface integral method, although not quantitatively. The surface 
integral method computes an angular shift of 1 ° for 1 % non-sphericity concerning 
a prolate illuminated by a plane wave along the long axis; Moebius predicted a 
shift of 0. 75 °. 

The surface integral method is able to indicate that the influence of drop non
sphericity on the Airy fringes is different from the influence on the ripple structure. 
This feature was essential for the non-sphericity detection method. The computa
tion revealed that for a prolate with Dshort-axis == 100 µm and D1ong-axis = 103 µm, 
the Airy frequency, FAiry, changes oppositely to F2, whereas F3 hardly deviates 
from its value for an equivalent sphere. With increasing size, the dependency of 
the Airy fringes on droplet non-sphericity decreases. On the other hand, both F2 
and will alter in the same way; for an equivalent size of 1 mm, the ripple fre
quencies change 5 % for 3 % non-sphericity. These theoretical results are different 
from the experimental ones that were obtained from rainbow patterns created by 
satellite droplets around an unstable water jet. 5 % change in F3 for a millimetre
size droplet corresponded to an error in the temperature of about 5 °C which would 
relate to a non-sphericity of only a fraction of 1 % instead of 3 %. However, because 
the shape of the droplets was not known during the experiments, it is dangerous 
to compare theory and practice in a quantitative manner. For this, it is suggested 
to perform fundamental experiments on acoustically or optically levitated droplets 
so that the droplet shape can easily be assessed and/or controlled. 

The diameter-comparison method runs into difficulties when the ripple struc
ture does not appear in the rainbow signal. One has to realize that the phase of 
the ripple structure changes 90 ° when the surface of the droplet deviates from the 
spherical shape by a fraction of the wavelength of the laser light. Therefore, it 
is plausible to believe that the ripple structure will be blurred when the rainbow 
pattern is created by an oscillating drop and then detected by the linear CCD 
camera with a finite time of integration of more than 0.1 ms. A solution to this 
could be to use a laser generating a light pulse with a duration much shorter than 
the oscillation time of the droplet. In this work, another solution has been cho
sen. The CCD camera has been replaced by a photomultiplier positioned behind 
a pin hole. A time-varying rainbow signal is detected when the rainbow interfer
ence structures move in front of the pin hole when the droplet traverses the laser 
beam. Experimental rainbow signals in a full-cone water spray have been recorded, 
showing that the ripple structure is always present. 



Discussion and conclusions 

In order to simulate the photomultiplier signal, the Lorenz-Mie theory had to 
be generalized so that off-axis Gaussian illumination could be described. Instead of 
using the rigorous generalized Lorenz...Mie theory (GLMT) of G. Gouesbet and G. 
Grehan, a simplified approach was employed, based on a ring-shaped laser beam 
that respects the circular symmetry of the Lorenz-Mie theory. The localization 
principle was applied to the infinite Lorenz-Mie series in order to account for the 
non-uniform intensity profile of the laser beam. The symmetric approach of a 
non-symmetric situation dictates that meaningful results were only expected in 
the primary rainbow region where the detector was placed. There, the theoretical 
approach generates a spurious ripple structure and incorrect edge-ray contribu
tions. Nevertheless, these artifacts are minor and the agreement with GLMT
computations is quite encouraging. 

To relate the time-base of the photomultiplier signal to scattering angles, the 
droplet velocity had to be known. Therefore, a wire has been placed in the centre 
of the spatial filter of the rainbow receiver. This filter selects a probe volume in 
the water spray that contains only one droplet at a time. When the image of the 
droplet crosses the wire, a shadow is projected on the photomultiplier leading to 
a narrow dip in the main rainbow maximum. The width of the dip is related to 
one velocity component. Subsequently, the angular Airy and ripple frequencies are 
utilized to measure the droplet size and detect non-sphericity. Finally, the absolute 
scattering angle is recovered by a dynamic calibration procedure, such as for the 
CCD-camera set-up. After this, the position of the wire shadow with respect to 
the main rainbow maximum is a reliable measure for the droplet temperature. 

The photomultiplier set-up has the advantage to be very sensitive to the scattered
light intensity and to be able to detect a rainbow pattern with clear Airy fringes 
and a proper ripple structure. In addition to the size and temperature measure
ments, one velocity component is obtained. This velocity measurement is inde
pendent of the (non-spherical) droplet shape and temperature. Unfortunately, the 
superposition of a wire diffraction pattern on the monochromatic rainbow is quite 
intrusive and can interfere with the ripple frequency in the power spectrum. The 
linear CCD camera set-up does not have this major disadvantage. It is obvious to 
examine whether an apparatus combining the pros of both detectors would result 
in a more robust, non-intrusive, diagnostic tool. 
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List of symbols 

Roman symbols and abbreviations 

symbol 
an 
A 
A1n 
b 
bn 
B 
Bin 
c 
Cn 
CCD 
c 
Cn 
Cn· 
da 
d3x 
dn 
DBT 
D 
EPDA 

f 
f 
F 
GLMT 
g 

Yn 
g(p) 
Gain 

G(r,rp) 
G(O) 

dimension 

m 
J c-1 m-1/2 s-1/2 

m 

m 
J c-1 m-1/2 s-1/2 

m/s 

m 

m2 
m3 

m 

m 
m 
1/° 

J c-1 ml/2 s-1/2 1/° 

m-1 

definition 
scattering coefficient 
diameter of ellipsoid along the x-axis 
expansion coefficient 
impact parameter of a geometrical ray 
scattering coefficient 
diameter of ellipsoid along the y-axis 
expansion coefficient 
speed of light 
coefficients for internal electromagnetic field 
charge-coupled device 
diameter of ellipsoid along the z-axis 
term in Lorenz-Mie series 
Lorenz-Mie series up ton= n• 
area element 
volume element 
coefficients for internal electromagnetic field 
dual burst technique 
diameter 
extended phase-Doppler anemometry 
phase function 
focal length 
angular frequency 
generalized Lorenz-Mie theory 
amplitude function in Kirchhoff integral 
beam shape coefficient 
normalized glare-point amplitude function 
ratio between close-field scattered and 
incident irradiance 
Green function 
Fourier transform of g(p) over a limited range 
of scattering angles 
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112 List of symbols 

h coefficient in Eq. 4.12 
h(l) 

n spherical Hankel function 
I J m-2 s-1 irradiance or light intensity 
i imaginary unit 
i1 ( 8) normalized Lorenz-Mie scattered-light intensity 

distribution for a polarization normal to 
the scattering plane 

i2(8) normalized Lorenz-Mie scattered-light intensity 
distribution for a polarization parallel to 
the scattering plane 

Jn spherical Bessel function 

Jn+l Bessel function of the first kind 
2 

.J Jacobian 
K two-dimensional normalized Kirchhoff integral 
k rad m-1 wave number 
LDV laser-Doppler velocimetry 
l separation constant 
l number of focal points passed by a light ray 
l m distance between probe volume and 

plane u (Fig. 6.3) 
l' m distance between pin hole 1 and 

plane u' (Figs. 6.3 and 6.5) 
M magnification factor 
m refractive index 
n separation constant 
n• separation constant 
N number of interactions between light ray and 

surface of scatterer 
PDA phase-Doppler anemometry 
PIV particle-image velocimetry 
PMT photomultiplier tube 
p J s-1 radiant power 
pl 

n associated Legendre polynomial 
p bar pressure 
p normalized position on cross section of sphere 
q m parameter 
r m polar spherical coordinate 
r Fresnel amplitude-reflection coefficient 
R m radius 
S1(8) normalized Lorenz-Mie scattering amplitude for 

a polarization normal to the scattering plane 
S2(8) normalized Lorenz-Mie scattering amplitude for 

a polarization parallel to the scattering plane 



List of 

t s 
t 
TUE 
T oc 
u m 
u J c-1 m-1/2 s-1/2 

VKI 
v m s-1 

v m 
v J c-1 m-1/2 s-1/2 

w 
x 
x m 
y m 

y 
y m 
y m 

Yn m 
y () 

z m 
z 

Zn 

Greek symbols 

symbol dimension 
a 
/3 rad 

time 
Fresnel amplitude-transmission coefficient 
Technische Universiteit Eindhoven 
temperature 
space coordinate 
scalar function employed to compute 
MandN 
von Karman Institute 
velocity 
space coordinate 
scalar function employed to compute 
MandN 
laser beam radius 
size parameter based on m 0 

space coordinate 
off-axis distance between the centre of the 
laser beam and the centre of the droplet 
size parameter based on m; 
space coordinate 
position on linear CCD array 
spherical Bessel function of the second kind 
angle between wave vector and x-axis 
in (x,y)-plane 
space coordinate 
normalized angular deviation from the 
geometrical rainbow angle 
arbitrary spherical Bessel function 

definition 
coefficient in Eqs. 2.53, 2.54, 5.11 and 5.12 
phase between scattered and reference ray 
angle between wave vector and normal 
Dirac's delta function 
distance between two rays 
minimum angular separation 
electric permittivity 
integration variable 
Riccati-Bessel function 
integration variable 
scattering angle 
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81 0 

82 0 

El 0 

/Ii rad 

,\ m 
A 
µ J c-2 s 
11"n 

p 
p m 

(]' rad 
(]' 

u' 
u" 
T 

0 

r' 0 

Tn 

t.p 
0 

</> 
0 

<I> 0 

'I/Jn 

I)! J c-1 m-1/2 s-1/2 
I)! 0 

e 
w m-1 

{}rainbow -

Vector quantities 

symbol dimension 
A 
e 
E J c-1 m-1/2 s-1/2 
£ J c-1 m-1/2 s-1/2 
H J c-1 m-3/2 81/2 
1l J c-1 m-1/2 s-1/2 

k rad m- 1 

List of symbols 

scattering angle of main rainbow maximum 
scattering angle of first subsidiary maximum 
polar spherical coordinate for ellipsoid 
angle in Eli, ¢i-plane used for 
definition of path of integration 
wavelength of light in vacuum 
one-dimensional generalized Fourier integral 
permeability 
auxiliary polynomial 
arbitrary argument of elementary solution 
distance between the image of the droplet 
and the wire placed in the spatial filter 
phase shift due to optical path length 
virtual measurement plane (Fig. 6.3) 
image of virtual measurement plane (Fig. 6.3) 
measurement plane (Fig. 6.3) 
angle between the ray, incident on the 
external droplet surface, and the tangential 
angle between the ray, incident on the 
internal droplet surface, and the tangential 
auxiliary polynomial 
polar spherical coordinate 
polar spherical coordinate for ellipsoid 
angle between polarization vector of 
incident beam and scattering plane 
Riccati-Bessel function 
scalar function 
angle between wave vector and z-axis 
integration variable 
circular frequency of light 
rainbow integral 

definition 
arbitrary vector function 
unit vector 
electric field 
space part of electric field 
magnetic field intensity 
space part of magnetic field intensity 
wave vector 



List of 

M 
M 
n 
N 
N 
p 
r 
x 

J c-1 m-1/2 s-1/2 
J c-1 m-1/2 s-1/2 

J c-1 m-1/2 s-1/2 
J c-1 m-1/2 s-1/2 

m 
m 

electromagnetic vector function 
space part of electromagnetic vector function 
unit normal vector 
electromagnetic vector function 
space part of electromagnetic vector function 
polarization vector 
radial vector 
parametric representation of light ray 

Subscripts 

symbol 

II 
J_ 

Airy 
b 
e 

me 

min 
max 
n 
n 
0 

0 

p 
ref 
re fl 
rg 
ripple 
s 
tr 

pertains to 
component parallel to a plane 
component perpendicular to a plane 
Airy fringes 
beam incident on scatterer 
extremum 
inside the scatterer 
ray incident on a interface 
integer separation constant l 
minimum 
maximum 
integer separation constant n 
maximum of nth Airy fringe 
outside the scatterer 
laser beam waist 
observation point 
reference 
reflected ray 
rainbow according to geometrical optics 
ripple strm;ture 
scattered 
transmitted ray 

Superscripts 

symbol pertains to 

* 
first derivative 
complex conjugate 
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<.p 
() 

ext 
int 
norm 
r 

component in <.p-direction 
component in 0-direction 
external reflection 
internal reflection 
normal 
component in radial direction 

List of 

Mathematical operators 

symbol denotes 

x 
0 
* 
F{} 
.r-1n 
1 ... 1 

11 ... 11 

( ... ) 
Re 
Im 
v 
~ 

inner product 
cross product 
autocorrelation of two functions 
complex conjugate 
Fourier transform over a limited range of scattering angles 
inverse Fourier transform over a limited range of scattering angles 
modulus 
norm 
time average 
real part 
imaginary part 
gradient 
Laplacian 
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Summary 

Liquid sprays appear in a variety of aerospace, automotive and industrial applica
tions. In order to be able to employ the optimal spray configuration it is essential 
that one first develops a complete understanding of the fundamental phenomena 
that influence and control the overall spray performance for such applications. 
Toward this end, the development of advanced diagnostic tools is necessary for 
studying spray processes in both ideal laboratory conditions and realistic environ
ments. 

The objective of the thesis was to study the first-order rainbow and to apply it 
to the non-intrusive determination of droplet parameters in spray environments. 
The first-order rainbow is created in the laboratory by droplets scattering laser 
light and this is therefore monochromatic. The effect of size and temperature (and 
thereby refractive index) of spherical droplets on the rainbow characteristics have 
been predicted by the Lorenz-Mie and Airy theories. 

Experiments on satellite droplets around an unstable water jet, performed with 
a linear CCD-camera, have revealed the effect of droplet non-sphericity on the 
accuracy of the temperature and size measurements. To understand this effect 
better, a surface integral method has been developed which describes the behaviour 
of the rainbow for an ellipsoidal scatterer. The theoretical approach is based on 
the vectorial Kirchhoff integral relation taken over the electric field on the droplet 
surface, with the electric field obtained using ray-optics. The integral has been 
solved by looking for the ridge of stationary points in the integrand of the Kirchhoff 
integral. A comparison with the Lorenz-Mie theory has validated the approach in 
the special case of spherical scatterers. The surface integral method endorses 
the experimental non-sphericity detection method that selects, using the rainbow 
pattern, spherical droplets. This method has considerably improved the accuracy 
of the droplet parameters measured using the rainbow technique. 

A rainbow detection device has been developed for measuring simultaneously 
the size, temperature and velocity of individual spherical droplets in liquid sprays. 
The rainbow is recorded by a photomultiplier placed behind a pin hole and a spatial 
filter containing a wire perpendicular to the scattering plane. The wire diffraction 
and rainbow interference patterns move in front of the pin hole as the droplet 
traverses the laser beam. Preliminary experiments in a full-cone water spray at 
isothermal conditions revealed the feasibility of the device in spray environments 
and stressed the importance of the non-sphericity detection method. 
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Samenvatting 

Vloeistofverstuivers worden toegepast in de vliegtuigbouw, auto-industrie en an
dere industriele processen. Opdat de juiste verstuiverconfiguratie wordt gebruikt, 
dient men zich een volledig beeld te vormen van alle fundamentele verschijnselen 
die het gedrag van verstuivers kunnen bei'nvloeden. Daarom is het noodzakelijk 
om hoogwaardige diagnostische apparaten te ontwikkelen die dat gedrag in zowel 
realistische als geidealiseerde omstandigheden kunnen onderzoeken. 

Het promotieonderzoek had tot doel te bestuderen of de regenboog te gebruiken 
is voor het meten van fysische grootheden van druppeltjes in een verstuiver. Daar
toe is een eenkleurige regenboog gegenereerd door verstrooiing van een laserbundel 
aan druppeltjes. De Lorenz-Mie en Airy theorieen zijn aangewend om uit diverse 
regenboogverschijnselen de grootte en brekingsindex, dus de temperatuur, van de 
druppels af te leiden. 

De eerste experimenten werden uitgevoerd met een lineaire CCD-camera om 
de fijnstructuren in de regenboog waar te nemen die gevormd werden door satelli
etdruppeltjes rond een instabiele waterstraal. Het bleek dat niet-bolvormigheid de 
nauwkeurigheid van de temperatuur- en groottemeting onaanvaardbaar verlaagde. 
Om deze invloed beter te begrijpen, is een theoretisch model ontwikkeld dat de 
verandering van de relevante eigenschappen van de regenboog voorspelt voor een 
druppel met een ellipsoi'dale vorm. Het model is gebaseerd op een vektoriele uit
drukking van de Kirchhoffintegraal over het elektrische veld op het druppelopper
vlak, verkregen via geometrische optica. Door slechts het pad over de stationaire 
punten in de integrand te beschouwen, kan de oppervlakte-integraal vereenvoudigd 
worden tot een lijnintegraal. De theoretische resultaten van het model bekrachti
gen de experimentele selectie van bolvormige druppeltjes via frequentieanalyse 
van het regenboogsignaal. Deze selectiemethode heeft de nauwkeurigheid van de 
metingen aanzienlijk verhoogd. 

Een regenboogapparaat is ontwikkeld dat tegelijkertijd de grootte, temper
atuur en snelheid meet van individuele druppeltjes in een waterverstuiver. Het 
apparaat bevat een photomultiplier die de regenboog waarneemt achter een di
afragma en een ruimtefilter met daarin een draad loodrecht op het strooivlak. 
Het draaddiffractiepatroon en de eenkleurige regenboog verplaatsen zich voor het 
diafragma wanneer de druppel de laserbundel doorkruist. De experimentele re
sultaten demonstreren de toepasbaarheid van het apparaat voor onderzoek naar 
warmte- en massatransport in vloeistofverstuivers. 
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Stellingen behorende bij bet proefschrift 
"RAINBOW PHENOMENA: 

development of a laser-based, non-intrusive technique 
for measuring droplet size, temperature and velocity". 

door J.P.AJ. van Beeck 

1. Lichtverstrooiing door een bolvormig deeltje kan als een singulariteit beschouwd worden, 
gezien de grote gevoeligheid van het lichtverstrooiingspatroon voor een geringe 
afwijking van de bolvorm. 

Dit proefschrift 

2. De bewering van P.L. Marston in 1980 dat de fluctuaties in de kleuren van de regenboog, 
waargenomen tijdens een donderslag, worden veroorzaakt door druppel-oscillaties als 
gevolg van akoestische koppeling, verdient hernieuwde aandacht. 

Marston, P.L ( 1980), Appl. Opt., Vol. 19, No. 5, pp. 680-685. 

3. De mistboog is overwegend wit door diffractie en externe reflectie van zonlicht aan het 
druppeloppervlak, en niet alleen door kleurenmenging van het Airy-regenboogpatroon, 
zoals beschreven door M.G.J. Minnaert. 

Minnaert, M.G.J. (1993), light and Color in the Outdoors, pp. 201-202 
(vertaling van de originele Nederlandstalige editie, verschenen in 1937: 
- De Natuurkunde van 't Vrije Veld. I. Licht en kleur in het landschap -). 

4. De historische splitsing van het Airy-regenboogpatroon in de termen "main rainbow 
maidmum" en "supernumerary bows" is misleidend. 

5. De "complex angular momentum (CAM)"-theorie voor de regenboog, gepresenteerd in 
1979 door H.M. Nussenzveig, vindt zijn oorsprong in het werk van B. van der Pol en 
H. Bremmer in 1937, waarin het Airy-regenboogpatroon afgeleid wordt van de Lorenz
Mie-theorie. 

Nussenzveig, H.M. (1979), J. Opt. Soc. Am., Vol. 69, No. 8, pp. 1068-1079. 
Van der Pol, B. en Bremmer, H. (1937), Phil. Mag., Vol. 24, pp. 141-176, 825-864. 



6. Het verdwijnen van de fijnstructuur in de regenboog door de eindige sluitertijd van de 
CCD-camera kan vermeden worden door het gebruik van een flitslaser. 

Dit proefschrift 

7. De regenboogtechniek is de meest nauwkeurige rneettechniek om de druppeltemperatuur 
in een verstuiver te bepalen mits de Iichtverstrooiende druppels bolvormig zijn. 

Dit proefschrift 

8. In het huidige computertijdperk vergeet de onderzoeker maar al te vaak dat een 
asymptotische benadering van de wiskundige beschrijving van zijn fysisch model veel 
onnodige CPU-tijd kan besparen. 

Naar Wilcox, D.C. ( 1995), Perturbation Methods in the Computer Age, p. 189.: 
"Do as:ymptotics now, save CPU time later!" 

9. De combinatie van een nucleatie-puls techniek en Lorenz-Mie-verstrooiing biedt de 
mogelijkheid om de binaire diffusiecoefficient in condenserende dampmengsels 
nauwkeurig te bestuderen als functie van druk en temperatuur. 

Luijten, C.C.M., Bosschaart, K.J. and Van Dongen, M.E.H. (1997), to be published in Int. 
J. Heat Mass Transfer. 

10. "Particle image velocirnetry" (PIV) is een geschikte experimentele rnethode om de 
kwaliteit van het sub-rooster-model van een "large eddy"-simulatie (LES) te bestuderen. 

11. Niemand kan zo vermakelijk arrogant zijn als een jonge wetenschapper die pas een oud 
idee heeft ontdekt en denkt <lat bet origineel is .. 

Naar Harris, S.J. ( 1917), Amerikaansjoumalist en columnist. 

12. De gang van zaken rond het op de markt brengen van genetisch gemanipuleerd voedsel 
heeft de reputatie van de wetenschap schade toegebracht. 

13. Het verbluffende observatievermogen van een kat op een onderzoeksinstituut kan een 
gunstige uitwerking hebben op de kwaliteit van de onderzoeksresultaten. 

Eindhoven,26juni 1997 


