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Abstract

We consider a defect correction method which has been used extensively in applications where

solutions have sharp transition regions, such as high Reynolds number fluid flow problems. A

reliable a posteriori error estimator is derived for the defect correction method. The estimator

is developed for two examples: a) the case of a linear-diffusion, nonlinear convection-reaction

equation, and b) the nonlinear Navier-Stokes equations. Numerical experiments are provided

which illustrate the utility of the resulting adaptive defect correction method for high Reynolds

number, incompressible, viscous flow problems.
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1 Introduction

Defect correction methods were originally viewed as alternates to Richardson extrapolation for in

creasing the formal order of finite difference methods. Increasingly however, the development of the

abstract theory for these procedures, see e.g., [5], [6], [10], [18], [30], [22], [23], [34], [38], as well as the

computational practice of the methods, see e.g. [17], [24], [25], [26], [27]' [28], have evolved to using

defect correction to solve much harder, nearly singular, nonlinear problems through regularization

and correction. This is somewhat surprising since solutions of representative applications such as

high Reynolds number fluid flow problems [25], [26], [27], [28], [30J, and convection-dominated, con

vection diffusion equations are characterized by sharp layers and transition regions. Thus, in spite

of lacking the global smoothness required for the classical convergence analysis via asymptotic error

expansions, global "uniform in epsilon" convergence in the smooth region has indeed been proven

for defect correction methods in [5], [6], [18], and experimentally verified, [17], [24J - [28], even for

these challenging applications.

For such problems, grid refinement in sharp transition regions is necessary in conjunction with

the high accuracy attained in smooth regions by defect correction techniques. Reliability of the

resulting self-adaptive, defect-correction procedure is then tied to the reliability of the a posteriori

error estimator used for the defect correction discretization. We consider precisely this issue herein.

Section 2 provides an a posteriori error estimator for defect-correction methods for solving the

general parameter dependent nonlinear problem F(u, E) = O. The estimators are of the residual

type for an abstract realization of the defect correction discretization. They are further devel

oped and particularized for two representative applications: linear diffusion coupled with nonlinear

convection (section 3) and (the targeted application) the incompressible Navier-Stokes equations

(section 4).Section 5 gives some computational experiments with the resulting self-adaptive method.

To formulate the abstract problem, method and results, let X and Y be Banach spaces A E
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L(X, Y*), GO E CI(X, Y*) and € E A c IR Frechet differentiable. The problem is now to solve

F(u, €) := A(€)u + G(u) = 0, (1.1)

for u = u(€). The abstract defect correction method is given as follows. Let X h,Yh C X, Y

(respectively) be finite dimensional subspaces and Ah : X h -+ Yh*, GhO E CI(Xh,Yh*), be (finite

dimensional) approximations of A and G(·) respectively.

Let €o ~ €, Ah(€o) a "stabilized" or regularized approximation to Ah(€), and J > 1 be given. The

method we are studying computes ul , ... , uJ E Xh as follows. ul E X h satisfies

(1.2)

whereupon successive corrections are given by : for j = 1, ... , J,

(1.3)

There are numerous attractive practical features of (1.2), (1.3), cited in the above references. We take

(1.2), (1.3) as the basic algorithm and work to find a computable upper bound for Ilu - uj +11Ix. To

realize 1.3, the iterand ui+1 is typically computed with a Newton method and is root of :Ft:o(u) = 0

with F€o(u) = Ah(€o)u + Gh(u) + (Ah(€) - Ah(€o))Uj . If the regularization is performed carefully,

we often observe that only one or two Newton steps suffice in order to solve (1.3) for ui+1
, beginning

with u j and that the resulting linearized systems are much cheaper to solve than are unregularized

linear systems.

It is useful to think of (1.2) as an abstract realization of a convection-diffusion problem in which

A(€) '" €A. Suppose transition regions of the underlying physical problems are of width €11Ci..

Then, a typical choice for Ah(€o) involves increasing, on each mesh cell, € to € + O( mesh cell

diameterCi.) ~ €+ O(hl'ocal). For example, €+ O(h) for convection diffusion problems and €+ O(h2
)

for 2d incompressible, viscous flow problems.

Herein we take an approach related to the local residual error estimators of [4], [7], [8], [9], [16], [19],

[43], as adapted to nonlinear problems in, for example, [43], [34]. In contrast to most of the work on

3



error estimators for parameterized nonlinear equations, in which the goal is to construct reliably and

efficiently the solution manifold as a function of the system parameter, the goal of defect correction

type methods is to solve a nearly singular, very large, nonlinear system (such as high Reynolds

number fluid flow, [26]-[30]) via regularization by local effective viscosity adjustments followed via

anti-diffusion by correction.

2 Preliminaries

The basic assumption on (1.1) under which we proceed is that u is a nonsingular solution of (1.1),

i.e., DF(u, E) = [A(E) + DG(u)] E Isom(X, Y*), and that DG(·) is Lipschitz continuous in some

ball about the solution u.

Theorem 2.1 Suppose that u is an isolated solution of (i.l) and that DG(u) is Lipschitz continv,ous

in some ball around u. Specifically, there is a Ro > 0 such that

,:= sup
wEB(u;Ro)

Suppose that ui E B(u; R) where

IIDG(w) - DG(u)llccx,y*)
.:..:....-_:........:..,.,--__'":-'-'c.:....:....>---'...---!... < (X) •

Ilw - ullx

(2.4)

Set UO = 0 and let ui , j = 1, ... , J; be given by (1.2), (1.3). Let R h E £(Y, Yh) be a restriction

operator. Then Ilu - uH1 11x is bounded as follows.

For j = 1, ... , J - 1,

Ilu - uH1 11x ~ 211[A(E) + DG(u)t1 11.c(Y',x) {II(IY - Rh)* [A(E)UH1 + G(uH1 )]lly·

+ IIRhllccY,Yh) II(A(E) - Ah(E))Ui+l + (G - Gh)(UH1 )lly,;

+ IIRhll.c(Y,Yh) II(Ah(EO) - Ah(E)) (uH1
- ui)lly,; } .

Proof: For R given by (2.4), and w E B(u,R) eX,

w - u = DF(u, E)-1 {F(W, E) +11

[DF(u, E) - DF(u + t(w - u), E)](W - u) dt

4
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- F(U,f) }.

Therefore (as F(u, f) = 0),

Ilw - ullx :S IIDF(u,f)-lll.ccy*,x) { IIF(w,f) - F(U,f)IIY*

+ 111IDF(u,f) - DF(u+t(w-u),f)ll.ccx,y*)IIw-ullxdt}

< IIDF(u, f)-lll.c(y*,x) IIA(f)W + G(w)lly*

+ ~IIDF(u,f)-lll.c(Y*,x) 'Y Ilw - ull~·

By assumption on R, IIDF(u, f)-lll.c(y*,x) 'Y Ilw - ullx :S IIDF(u, f)-lll.c(y*,x)'Y· R :S 1. Thus,

and therefore,

Ilw - ullx < 21IDF(u,f)-111.c(Y*,x) IIA(f)W + G(w)lly*

< 21IDF(u,f)-111.c(y*,x) IIF(w,f)lly*·

The next step is to let w := uj+l and to use its determining equations (1.2), (1.3). To this end,

consider

(A(f)Ui+1 + G(uj+l) , </J)

= :~e II</Jlly

== sup {(A(f)Uj+l + G(ui+1
) , </J - Rh</J)

c/>EY

- ((A(f) - Ah(f))Uj+l + (G - Gh)(ui+1
) , Rh</J)

As, Rh E L(Y, Yh ), it follows immediately that

which completes the proof.
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Remarks: The terms A(f) - Ah(f), and G - Gh, represent consistency error terms and will

normally be of higher order. Thus the error estimator will normally be dominated by the residual

example in which consistency error terms can be significant is when Gh includes terms arising from

a subgridscale model added to the basic discretization.

3 A posteriori error estimators for a Linear Diffusion - N on-

linear Convection Problem

0 2,1
Let 0 c IR,z, X = Y :=w (0). Set Ilullx = II'\7ull£2(O) and define F(U,f) via the Riesz represen-

tation theorem as the element of X* satisfying

(F(U,f),cP):= k[f'\7U.'\7cP+g('\7u,u)cP-fcP]dX. (3.6)

Then, u is a solution of F(u, f) = 0 in X if and only if u is a weak solution of the convection-

diffusion-reaction equation:

{

2-E£:::.u + g('\7u,u) = f, in 0 C IR ,

u = 0, on ao.

Let Xh = Yh C X be a conforming finite element space (assuming 0 is a polygonal domain),

for specificity, suppose X h contains Co piecewise polynomials of degree::; k on an edge-to edge

triangulation of ITh(O) of O. The triangulation, nh(O), is assumed to have its 'minimum angle'

Bmin(nh(O)) bounded away from zero uniformly in h.

The usual Galerkin finite element approximation of (3.6) is given by: Fh(Wh,f) o E Xi: where,

The operators Ah , Gh (-) are defined analogously to F(·,·) via the Riesz representation theorem and

the relations:
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(Ah(Eo)Wh, ¢h) = z.= 1(E +diam(T)) 'VWh . 'V¢h dx,
TEIIh(ll) T

(Gh(Wh) , ¢h) = 10 [g('VWh, Wh)¢h - f¢h] dx.

With these choices of Fh, Ah, and Gh, (1.2), (1.3) becomes the usual finite element, defect correction

discretization of (3.6).

Provided, for example, g(8, t) satisfies a growth condition and III g('Vw, w) Wdx 2: 0 for W E X, it

can be shown that weak solutions of F(u, E) = 0 (3.6) exist. If F(u, E) is monotone as a function

of u, solutions are also unique (in the linear case, g('Vw,w) = b· 'Vw + pw, and this holds if

p - 1/2'V· b 2: 0). We assume that, minimally, the solution u we approximate is non-singular in

the sense that DuF(u, E) is invertible.

We also suppose that the finite element space admits the existence of an interpolation operator Rh

of the Clement type. Specifically, Rh: X f-7 Xh satisfies the following elementwise error estimate

(see [12]). For ¢ E X there are Ci = Ci(Omin(IIh(D))), i = 1,2, such that

II¢ - Rh¢/Iwi-1,2(T) ~ Clh~-jll¢llwl,2(N(T)) ,j = 1,2, }

II¢ - Rh ¢II£2(e) ~ C2h~/211¢llwl,2(N(e)) ,

(3.7)

for all elements T E IIh(D) and all edges e of the elements. Here N(T) and N(e) denote the union of

all the elements touching T and e respectively. Also he and hT will denote, as usual, the diameters

of an edge e respectively element T.

For the first term on the right hand side of (2.5) we have, for ¢ E Y, II¢IIY = 1,

L hE'VuHl .'V(¢ - Rh¢) + [g('Vuj+l ,uj+l) - f](¢ - Rh¢) dx.

TEIIh(D)

Integration by parts over each T E IIh(D) and denoting the collection of interior edges in IIh(D) by

Eh(D), with the use of estimates like
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< C 2: Ilr i+111i,2(T) 11¢IIW1 ,2(O),
T

yields

((ly - Rh)* [A(E)Uj+l + G(Uj+l)] , ¢)

2: h(-E6uj+l + g(V'Ui+1 ,ui+1
) - 1) (¢ - Rh¢)dx

TEIIh(O)

+ 2: 1E(V'Uj+l . lle)(¢ - Rh¢) de
e EEh(O) e

< C1 2: Ilrj +lII£2(T) hT 11¢llwl,2(N(T))
TEIIh(O)

+ C2 E 2: 11[V'uj+l . lle]ell£2(e) h;/211¢llw 1 ,2(N(e))

e EEh(O)

[
""""' 2 '+1 2 2 """"' +1] 2 ] 1/2 I< C LJ hT IlrJ Ib(T) + E LJ he 1/[V'uJ • lle elb(e) II¢I W1 ,2(O) ,

TEIIh(O) e EEh(O)

where r j+1 is the residual, defined per mesh element T by ri+1 := f - (-E6uj+1 + g(V'ui+1 ,ui+1)),

C = C(C1 , C2 , Bmin(IIh(O))) is a computable constant, and rule denotes the jump of u across edge

e.

With the usual conforming finite element formulation specified in this example, the second term in the

right hand side of (2.5) is identically zero. To see this note that for all ¢h E Yh, (F(ui+1, E), ¢h) =

II(A(E) - Ah(E))ui+ 1 + (G - Gh)(ui+1 )IIYh'

sup ((A(E) - Ah(E))Uj+l + (G - Gh)(ui+1
) , ¢h)

cPhEYh

sup (F(uj+l, E) - Fh(uj+l, E), ¢h) = O.
cPhEYh

As for the last term, let ¢h E Yh, II¢hIIY = 1. Then,
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< [ :L II(fO - f) V (ui+ 1 _ U j )lli2(T)] 1/2

TEIIh(n)

Combining these terms gives the following error estimate for the method (1.2), (1.3):

Ilu - uj +lllw 1 •2(O) < CIIDF(u,f)-lll.qy*,x) { :L h}lIrj +llli2(T)

TEIIh(n)

+f2 :L he 1I[Vui+1
. nelelli2(e)

eEEh(n)

+ :L II (fO - f) V(ui+ 1 - U j ) Ili2(T) }1/2 (3.8)

TEIIh(n)

In order to ensure full reliability, it remains to estimate IIDF(u,f)-l11.qy*,x) . This depends of

course upon the precise nonlinearity g(Vu, u). In general, IIDF(u, f)-lll.c(y* ,X) can be approximated

by IIDF(ui+ 1 , f)-lll.qY,;,xh) (this involves the solution of an eigenvalue problem). In some cases

this multiplier can be bounded analytically. To illustrate this, let us assume that g(Vw, w) =

f +Q' Vw+pw where p- V· Q/2 ~ Po > O. Under this assumption a solution ¢ to A(f)¢ + G(¢) = 0

exists for any f E Y*. Straightforward manipulations immediately give

fIIV¢II£2(O) :::; Cllfllw-,.2(O)

so that, in this case of a linear problem,

However, in the most interesting cases this common multiplier must be approximated (as noted

above), or estimated in an ad-hoc way via data-fitting.

4 Application to the Navier-Stokes Equations

Let d = 2,3 be the dimension of the polygonal domain n, and let L5 be the space of Lebesgue square

0 1,2
integrable functions with zero mean average. Define X = Y := ((w (n))d,L5(n)) with norm of

ii = (u,p) E X given by
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Define, via the Riesz representation theorem F(ii, f) as that element of X* satisfying

< F(ii, f), v> = k[f'\lU : '\lv + u· '\lu· v + q('\l . u - g) - p'\l . v - f· v] dx, for all v EX,

where f = Re- 1 is the inverse of the Reynolds number, ii = (u,p) E X and v = (v, q) EX.

The problem of solving F( ii, f) = 0 for ii E X is the equivalent to that of finding the weak solution

ii = (u,p) E X to the Navier-Stokes equations with f = Re- 1
:

-Re-16u + u· '\lu + '\lp = f in f!, u = 0 on af! }

'\l . u = 9 in f!, foPdx = o.

(4.9)

Given an edge to edge triangulation of f!, rrh(f!), whose minimum angle Bmin is bounded away from

zero, velocity-pressure finite element spaces can then be constructed on rrh(f!). We assume each

possess an interpolation operator ofthe Clement type (satisfying 3.7). See [12] and [20] for examples.

Let (Vh, Qh) denote those velocity-pressure finite element spaces which are assumed additionally to

satisfy the inf-sup (or Babuska-Brezzi) condition [20], [21]. Specifically, there is a (3 > 0, independent

of h, such that

.h q'\l. v dx
inf sup 0 > (3 > 0 .

OJ:.qEQh OJ:.VEVh II'\lvl/£2(O) Ilqll£2(O) -

The usual Galerkin-finite element approximation to (4.9) is then given by : Fh(iih,f)

Ah and Gh are defined analogously to section 3 by

< Ah(f)Wh, ¢h >:= I: f f '\lwh : '\lq;h dx,
TEIIh(O) T

<Gh(Wh), ¢h >:= < Fh(Wh, f) - Ah(f)Wh, ¢h >,

(4.10)

o where,

With these choices of A h , f, fo(T) := max{f,diam(T)} and Gh (·), (1.2), (1.3) reduces to the usual

finite element, nonlinear defect correction discretization of the incompressible Navier-Stokes equa-

tions (see e.g. [20], [21]). It is often highly advantageous in the algorithhm to perturb G h (·) through
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local averaging or the use of "flux limiters", see [26], [27], [28], or through the incorporation of

an appropriate subgridscale model. For example, the incorporation of the model suggested in [31]

(which we use herein) is equivalent to defining GhO as :

where the scaling term Jl(h, Re) and exponent r are discussed in [31]. This incorporation adds one

additional term to the right hand side of the error estimator but does not otherwise appreciably

alter the following analysis. Letting ¢ E Y, II¢IIY = 1 be given and consider the first term on the

right hand side of (2.5) :

L h[EV'uH1 : V'(¢J - RK ¢J) + ui +1. V'ui +1 . (¢J - RK ¢J) + (q - R~q)V'. ui +1
TEllh(O) T

- pi+1V'.(¢J - RK¢J) - g.(q - R~q) - f·(¢J - RK¢J)]dx

where ¢ = (¢J, q). Integration by parts over each T E rrh(n) and, denoting the collection of faces

(3-D), or edges (2-D), of rrh(n) in the interior of n by Eh(n), gives:

< (Iy - Rh)*[A(E)UH1 + G(ui +1)], ¢ > =

L h_rH1 . (¢J - RK ¢J) + h(q - R~q)(V' . uH1 - g) dx
TEllh(O) T T

+ L 1E[V'uH1 . lle]e . (¢J - RK ¢J) - [P]e (¢J - RK ¢J) . lle da,
eEEh(O) e

where r i +1 := f - (-Re-1.6.uH1 + u i+1 . V'uH1 + V'pi+1).

Using the Cauchy -Schwartz inequality on each element T, and face (or edge) e, and the properties

of Rh¢ from (3.7) gives:

< (ly - Rh)*[A(E)UH1 + G(ui +1)] , ¢ >::;

C [ L h~llrH1116,T + IIV' . ui+1 _ gI16,O] 1/2
TEllh(O)

[

~ -1"+1 '+1 2 ] 1/2+ C L..J he II[Re V'uJ . lle - p1 lle]ello,e ,
eEEh(O)

11



which is a bound on the first term on the right hand side of (2.5).

If the usual Galerkin formulation is used (i.e., no "subgridscale" modelling, numerical integration or

other variational crime) then, as in the previous example, the second term on the right hand side

of (2.5) is identically zero. As for the last term which involves Ah(fO) - Ah(f), let ¢ E Y satisfy

II¢IIY = 1. Then,

< (Ah(fO) - Ah(f) Hiii+l - iii) ,¢ > i (fO - f) \7(ui+l - ui ) : \7¢ dx

< [ L II(fo(T) - f) \7 (ui+1 _ ui )116,T] 1/2
TEIlh(n)

Combining these terms gives an error estimator:

Ilu -ui+l111 + lip _ pi+111

< C IIDF(ii,f)-lll£(y*,x) {[ L h}llrJ+1 116,T + 11\7. UJ+1 _ 9116,T] 1/2
TEIlh(n)

1/2

+ [ L he II [Re-1\7ui+l . ne - pi+lne]eI16,e]
eEEh(n)

+ [ L II(fo(T) - f) \7(UJ+1 _ ui )116,T] 1/2 } .
TEIlh(n)

(4.11)

(4.12)

Remark: If the aforementioned subgridscale model from [31] is used in the residual calculator, then

an extra term appears on the right hand side of this estimate. This term takes the form

1/2

[ L Ilfl(hT, Re)l\7uijr\7uilli2(T)]
TEIlh(n)

It remains, of course, to evaluate IIDF(ii, f)-lll£(y*,x)" The Navier-Stokes equations are not mono-

tone so an a priori bound of this term for all possible solutions is not possible. (Singular solutions

do exist and correspond to physically interesting flow situations.) Since IIDF(ii,f)-lll£(y*,x) is

a common multiplier of the right hand side of (4.12), it is not required for mesh redistribution,

only for the computation of a reliable upperbound in order to check if a final stopping criterion

is satisfied. Unfortunately, in general, this multiplier can only be estimated by, for example, solv-

ing an eigenvalue problem on a course mesh. This amounts to replacing IIDF(ii, f)-lll£(y*,x) by

IIDF(iii+l, f)-l11£(x H *,XH ) where H » h.
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5 Numerical Results

We give an illustration of the effectiveness of using defect correction methods, with a subgridscale

(SGS) model, in an adaptive calculation. To illustrate the method we solve an equilibrium, high

Reynolds number flow problem (4.9) via the Defect Correction Method (DCM) presented in section 1.

In the tests presented herein, we either use the k = 1 accurate mini-element, Arnold, Brezzi and

Fortin [1]' or the second order accurate Taylor-Hood pair, Taylor and Hood [40].

The nonlinear systems arising at each step of the method, denoted F(x) = 0 were linearized by

a Damped Inexact Newton Method [14], with stopping criterion IIF(x)112 < 10-8 . The resulting

non-symmetric linearized systems were solved with Sonneveld's Conjugate Gradient Squared (CGS)

in [37] (with a Vanka-like ILU(O) preconditioner [42]). The Generalized Minimal Residual method

(GMRES) of Saad and Schultz in [36], or Axelsson's Generalized Conjugate Gradient Least Squares

method (GCGLS) in [2]' [3] can also be used. However, it is our experience that they can consume

more computational time because they explicitly orthogonalize search directions. The storage of all

or several search directions further limits the amount of degrees of freedom which can be handled.

The pressure was normalized by fixing its value in one point of the domain.

The initial guess for calculations on each newly refined grid is the solution interpolated from the

previous grid. Grid to grid interpolation is easy because the grid refinement employed (see [32])

is hierarchical with conforming basis functions. Thus, the hierarchical mesh levels automatically

provide accurate initial guesses to the non-linear solver. The few non-linear iterations (Newton

steps) required reflects both this good initial guess and the regularization of the system inherent in

DCM.

We have purposely used the most conservative options at each step because we are testing the via

bility of the basic defect correction method, rather than the many possible efficiency improvements.

For example, the linear and non-linear systems were solved to essentially machine precision (rather

than truncation error of the step in question). For the same reason, on each new mesh, DCM is

restarted with an artificial viscosity solve followed by the corrections.
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For every grid, first the artificial diffused system (1.2) is solved, with EO = E + hQ
• Next, k - the

polynomial degree of the velocity approximation - anti-diffusive defect correction steps (1.3) follow,

one step for the mini-element (although the extra added basis function is a polynomial of degree

three) and two steps for the Taylor-Hood pair.

The stopping criterion used was the standard residual-based one Ilr(l) 112 < 10-11 , where r(l) is the

l-th updated residual. In all examples, the nodes were numbered left to right and bottom to up. As

usual, the ILU(O) preconditioner performs best for lower degree polynomial velocity approximations,

when mesh refinement is limited, and when nodal support points are numbered regularly. In spite

of this, we experienced no difficulties using a simple ILU(O) preconditioner, because the systems we

solve arise from a regularized artificial viscosity approximation.

The coefficients of the discrete systems were computed with quadrature rules of degree 2k. All

quadrature rules employed use quadrature points strictly inside the reference element. In the case

of k = 1, for instance, we used rule "T2 : 5-1" of degree 5 from Stroud [39], page 314. For higher

polynomial degree k, quadrature formulas were taken from Dunavant [15]. The jump integrals over

the edges, were computed with a standard Gauss-Legendre formula which is exact for all polynomials

of degree 2k.

All numerical experiments use the same mesh refinement technique. The coarse grids are of the

Tucker-Whitney triangular type described by Todd [41]. The grid refinement by Maubach [32]

and [33] was used to create the finer uniform and adaptively locally refined meshes.

The local error indicators are based on the estimator (4.12). For an element T, we measure the local

error indicator, including a possible SGS model,

Est;(T) cf [h}llrjH I16,T + IIV'· ujH
- gI16,T]

+ ci [2::: he II [Re-1V'uJ+l . ne - plH ne]eI16,e]
eET

+ cj [11(Eo(T) - E) V'(ujH
- U

j
) + ll(hT,Re)lV'ujlrV'ujI16,T]
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The local error indicators sum up to our global error estimate

Est;(D):= L Est~(T)
TEIIh (0)

(5.14)

The estimated error for T, Estc.(T) , depends on the amount of artificial viscosity fO - f =: ho..

Here we choose a > 0, a real number, and h = hT , the diameter of triangle T. The usual choice

for convection dominated convection diffusion problems (see [5], [18], [24] and [30]) is a = 1. Since

these problems typically have O(f) outflow type layers, first, we test this usual choice for convection

diffusion problems for the equilibrium Navier-Stokes equations.

The effect of the amount of artificial diffusion ho. = fo - f for DCM is explored, with the use of an

example borrowed from Kwon, Layton and Peterson [29].

Test Problem 5.1 With the domain [0, IF, we take an exact solution (u,p) given below and, by

substitution, obtain a right hand size f = f(x,y,Re):

Ul = sin 1rX sin 21rx; Uz = xZ(I - x) sin 1rY; p = (1 + y(yZ - 4)) cos 1rX.

The velocity u satisfied the homogeneous Dirichlet boundary conditions. Note that the true solution

is smooth uniformly in the Reynolds number.

We take Re = 104
, set C1 = Cz = C3 = 1, and compute Est~,(D) and the true error in the energy

norm for the discretization using a Taylor-Hood finite element approximation (conforming piecewise

quadratic velocities and piecewise linear pressure) In our tests, achieving a preassigned stopping

criterion is not primary. Rather then estimating the common multiplier IIDF-1/l, we tabulate the

ratios of the estimated errors Esto.(D)jEsh(D) and the true errors Erro.(D)/Errl(D). The energy

norm errors are defined, as usual, by

Err; (D):= L Err~ (T) , Err~ (T) := lu - uH11i,T + lip - pi+lII~,T .
TEIIh (0)

(5.15)

The first column of Table 5.1 shows the exponent a of our artificial viscosity parameter he:. The

second column shows the ratios Esto.(D)/Estl(D) of the estimated errors, and the last column

the ratios of the true errors in the energy norm: The standard choice a = 1 appears to be the
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Table 5.1: Estimated and Actual Error Ratios for DCM.

a Esto./Estl Erro./Errl

1 1.00 1.00

3/2 1.81 1.02

2 4.07 1.91

best choice for globally smooth flow problems (without transition regions). We have repeated this

experiment for more physically interesting flow problems (without a known exact solution - hence

only finding the first column in the table). In these tests, the optimal artificial viscosity parameter

again appeared to be O(h1 ). A similar trend was observed if the mini-element is used for the finite

element discretization, see Table 5.2: We note that this result is a clear case when the a = 1 result

Table 5.2: Estimated and Actual Error Ratios for DCM.

a Esto./Est1 Erro./Errl

1 1.00 1.00

3/2 1.06 0.90

2 1.41 1.20

from optimizing the energy norm true and estimated error yields a different result from optimizing

the celebrated 'eyeball' norm. For the latter case we obtained a = 2, see test problem 5.2. We do

not have a rigorous explanation of this discrepancy. For test problem 5.1, the estimated error was

an accurate estimate of the true error for our choice of constants Cj . We observed, for example,

with the mini-element: Esti (0) / Erri (0) ~ 0.51/0.50 ~ 1.02.

Test Problem 5.2. The Navier-Stokes equations with f = 0 and 9 = 0, adapted from Mohammadi

and Pironneau [35]).

The domain 0 of this pipe cavity flow problem is shown in Figure 5.5. The Reynolds number is

Reynolds number 1/Re = 1.75.10-5 (see [13], [11] and [44]) The fluid flows in from the left (standard
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paraboloid profile U2(X, y) = 4y(1 - y) along boundary {(x, y): x = 0, Y E [0,1]}) and out at the

pipe's right end (with the same profile). The Dirichlet boundary conditions are homogeneous except

for the pipe's in and out flow boundaries (the tests in [1:1.] use Neumann boundary conditions on the

outflow boundary of the pipe, the validity of either boundary conditions can be argued).

We expect at least three interesting physical structures to appear at higher Reynolds number: A

large recirculating region in the cavity, a seperation line near the cavity-pipe juncture, and very small

recirculating eddy where the flow leaves the cavity to re-enter the pipe. The last two structures are

expected to carry most of the energy of the flow field. First, we determine which order of artificial

diffusion a gives the sharpest resolution of transition regions and physical structures. We use the

mini-element in order to test the resolution as a function of a. The fine uniform grid in figure 5.1

contains approximately 20,000 triangles. The flow fields are shown in figures 5.2 - 5.4. The velocity
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Figure 5.1: The uniform grid upon which the artificial viscosity parameter a is tested in figures 5.2

- 5.4.
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vectors have been rescaled so that all arrows have the same length. Figure 5.2 indicates that a
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Figure 5.2: The a = 1 flow field.

large amount of O(h) viscosity is undesirable. The separation curve in the flow field computed with

O(h2
) artificial viscosity in figure 5.4 closely resembles the separation curve calculated in [35]. For

our numerical test with adaptive refinement, we will therefore use a = 2.

Next, Test problem 5.2 is solved with the use of adaptive refinement. Assume that the grid rrh(O)

contains N(T) elements. For a given refinement threshold C > 0, a triangle T is refined if Est~(T) >

C/N(T), and a collection of descendant triangles T are taken out (de-refined) if they all satisfy

Est~(T) < C 2 /2N(T). We set C1 = C2 = C3 = 1 and use a refinement threshold C = 4/10.

The amount artificial viscosity is set to h2 (a = 2), and a Taylor-Hood finite element DCM dis-

cretization is used in combination with a r-Laplacian: h31V'uj - 11subgrid scale model. The initial

grid is shown in figure 5.5, and every second grid obtained by the adaptive refinement procedure is

shown in figures 5.5 - 5.8. Figure 5.8 shows the finest grid, created by the adaptive refinement
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Figure 5.3: The a = 3/2 flow field: A better approximation with O(h3/ 2 ) artificial viscosity plus

three corrections.

- based on the criterion described above. The amount of triangles is about 20,000. This is almost

the same as in the case of the uniform refinement, but the adaptive refinement better resolves the

regions of physical activity, because it is concentrated in the regions of expected physical activity.

Along the boundaries of the inflow and outflow pipe the refinement take places, because the residual

term h}llr i+1 116,T + IIV'· ui+1
- 91l6,T includes uV'u, which is large due to its not matching exactly

the imposed outflow velocity. Further refinement is situated along a shear-layer/separation curve be-

ginning at the reentrant corner (1, 1) and ends at a certain point along wall {(x, y): x = 7, y E [1, 7]}.

This layer 'seperates' the fast flow through the pipe from the slower cavity flow. The velocity vector

plot related to Figure 5.8 is shown in Figure 5.9. The plotting routine used sets all vectors to be of

equal length, in order to make the circular cavity recirculating flow clearly visible. This round flow

is much slower than the through flow and would hardly show up if vector were scaled proportional to

their velocity. A magnification of the grid and related flow field is provided in figures 5.10 and 5.11.

These figures show the shear layer connects to the boundary of the cavity at a point which is
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Figure 5.4: The 0: = 2 flow field: O(h2 ) artificial viscosity plus three corrections yield the best

resolution (uniform mesh).

situated lower than in the case of the uniform refinement. Furthermore, the adaptive refinement

picks up a small vortex in the outflow pipe.

The amount of visible triangles E per grid G is shown in the third column of Table 5.3. The related

number of degrees of freedom for velocity and pressure combined is provided in the second column.

Finally, the maximum amount of non-linear iterations needed in order to solve all linearized systems

is given in the last column.

The subgrid scale model used prevents non-physical solutions caused by overcorrecting in the DeM.

For instance, in some computed approximate solutions to this problem with the mini-element without

a subgrid scale model, we observed non-physical eddies in the left hand side which increased in

number and decreased in size as the mesh was refined.
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Figure 5.5: The initial grid for adaptive calculations.

6 Conclusions

Adaptive defect correction discretizations show great promise for approximating flows of incompress-

ible viscous fluids at higher Reynolds numbers. The method is especially attractive since it is easy

to introduce a subgridscale model (or turbulence model) into the calculation without significantly

increasing the cost of resolving the nonlinearity in the system. In fact, we have seen that without

simpel subgridscale models DCM can overcorrect and cause a limited number of non-physical small

eddies to form. These are easily eliminated by the subgridscale model.

The use of a posteriori error estimators and self-adaptive algorithms is especially promising when

a subgridscale model is used in the discretization. Specifically, when the error is estimated with

respect to solutions of the unperturbed Navier-Stokes equations, a subgridscale model can be used

with impunity to eliminate non-physical eddies.

We highly recommend the pipe driven cavity (test problem 5.2) as a challenging test problem, similar

in spirit to the driven cavity but perhaps more physically reasonable.
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Figure 5.6: The second adaptively refined grid.

Based on the succes of the adaptive defect correction methods herein, two natural questions arise

for further study: (1) Efficiency improvement of the method via for instance inexact solvers and

the elimination of the artificial viscosity step from one grid to the next; (2) Analysis of the defect

correction method applied at each time step in an evolutionary problem.
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