
 

Exact distributions of two-sample rank statistics and block
rank statistics using computer algebra
Citation for published version (APA):
Wiel, van de, M. A. (1998). Exact distributions of two-sample rank statistics and block rank statistics using
computer algebra. (Memorandum COSOR; Vol. 9814). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/e4efa1f7-b02f-4118-bdd9-85105718e0a5


Memorandum COSOR 98-14, 1998, Eindhoven University of Technology

Exact distributions of two�sample rank statistics and block

rank statistics using computer algebra

M�A� van de Wiel
Department of Mathematics and Computing Science

Eindhoven University of Technology
P� O� Box ���

���� MB Eindhoven� The Netherlands
markvdw�win�tue�nl

URL	 http	

www�win�tue�nl
math
bs
statistics
vdwiel

Abstract

We derive generating functions for various rank statistics and we use computer algebra to

compute the exact null distribution of these statistics� We present various techniques for

reducing time and memory space used by the computations� We use the results to write

Mathematica notebooks for computing exact tail�probabilities and to extend tables of critical

values for some well�known rank statistics�

Keywords Two�sample linear rank tests� block rank tests� exact null distributions� generating
functions� computer algebra�

� Introduction

In this paper we derive generating functions of two�sample linear rank statistics and block rank
statistics� We use these generating functions as a powerful tool for computing exact distributions�
We implemented these generating functions directly in the computer algebra package Mathematica�
which resulted in notebooks for computing exact tail�probabilities and critical values� We increased
the e�ciency of the notebooks by using certain techniques for cutting o� parts of the expressions
that arise during a computation� The notebooks enabled us to extend the existing tables with
critical values for various test statistics� Among them are the Van der Waerden statistic� which is
more powerful than the Wilcoxon statistic for distributions with light tails� and the well�known
Friedman statistic� The majority of the existing tables date back to the �fties and the sixties� One
often used recursions to compute the tables� Examples of such recursions can be found in Kendall
and Stuart �	
��� and Gibbons and Chakraborti �	

� for the Kendall rank correlation test and
the Wilcoxon rank�sum test� respectively� The procedures for computing exact tail�probabilities
are very useful when we deal with ties� because then the �conditional� distribution depends on
the tie strucure� which makes it practically impossible to create tables with critical values for all
possible tie structures�

A major advantage of using generating functions and computer algebra systems over other ap�
proaches is that one can work directly with mathematical objects like polynomials the way we are
used to do as humans� as opposed to representations of these objects in arrays etc�� which are suit�
able for computers only� Another advantage is that computer algebra systems use in�nite precision�
so that rounding errors during computations do not occur� One may �nd a discussion about the
use of computer algebra within statistics and probability in Kendall �	

��� Baglivo et al� �	

��
and Van de Wiel et al� �	

�� use computer algebra packages to implement generating functions�

	



This paper is organised as follows� In section  we deal with two�sample rank statistics� We present
applications of a two�dimensional generating function derived in Streitberg and R�ohmel �	
����
Section � is devoted to one of the main results of this paper� a branch�and�bound algorithm for
the computation of critical values� The algorithm is useful in those cases for which the direct
application of the Streitberg�R�ohmel formula is too time� and memory�consuming� In Section �
we use the Streitberg�R�ohmel formula to derive a closed form generating function for the Halperin
statistic� We extend the Streitberg�R�ohmel formula for two�sample rank statistics to a formula for
block rank statistics in section �� Section � contains new tables of critical values�
For further details about the presented tests we refer to Gibbons and Chakraborti �	

��

� Applications of the Streitberg�R�ohmel formula to the

two�sample case

In this section we show how we use a two dimensional generating function to compute the null
distribution or critical values of two�sample linear rank statistics�

��� The Streitberg�R�ohmel generating function

Suppose two independent random samples X�� � � � � Xm and Y�� � � � � Yn with distribution functions
F and G� respectively� are given� We de�ne a general two�sample rank statistic T and we present
a two dimensional generating function of this rank statistic�

De�nition ��� A linear rank statistic T is a statistic of the form

TN �
NX
���

a���Z�� �	�

where a � f	� � � � � Ng � R is said to be a rank score function� m� n � N � Z� � 	 if the �th order
statistic of the combined sample X�� � � � � Xm� Y�� � � � � Yn is an X and Z� � � otherwise�

Theorem ��� Let TN be a linear rank statistic and HTN �x� �
P�

t�� Pr�TN � t�xt and let a���
be as in de�nition ���� then under H�

HTN �x� �
	�
N
m

� �	 � xa��� y� � � � �	 � xa�N� y���ym��� ��

where P �x� y���ym�� is the coe�cient of ym �

Proof� for a proof we refer to Streitberg and R�ohmel �	
���� �

We note that Streitberg and R�ohmel derive �� under the unnecessary assumption that the scores
are nonnegative integers� In fact� their proof is also valid for arbitrary real scores� This formula
was already known to Euler �	���� in the context of generating the frequencies of all outcomes
of the sum of m integers that form a subset of N integers� Streitberg and R�ohmel present sev�
eral algorithms for computing the formula� These are quite complex and translate mathematical
structures into computer structures� However� a computer algebra package deals directly with ���

��� Ties

We emphasize that Theorem ��� also holds when ties are present� However� we have to apply
a conditional argument to the probabilities� We are aware that testing is not distribution�free
anymore� since the distribution functions determine the probability on a certain tie con�guration
and tail probabilities are generally di�erent for di�erent tie con�gurations� However� it is impossible





to compute exact unconditional tail probabilities� because we do not know the probability on a
certain tie con�guration� since F and G are unknown� We should note that the choice of the way
one deals with the scores in the case of ties in�uences the power of the test� Arrenberg �	

��
shows that natural ranks are better than midranks for the Wilcoxon rank�sum test� The principle
of conditional testing may be found in Lehmann �	
��� and �H�ajek� 	
�
� Ch� VII��

��� Applications

We represent the rank statistics by their corresponding rank scores� We denote the �th rank score
for test statistic TN by aTN ���� Substition of these scores into �	� yields the rank statistic� while
substitution of these scores into �� yields the generating function�

����� Two�sample location tests

We wish to test the null hypothesis

H� � �X � �Y against H� � �X �� �Y �

where �X and �Y denote the expectations of X and Y � respectively� For all tests we consider the
combined sample �X�� � � � � Xm� Y�� � � � � Yn� and m � n � N � Well�known scores are�

aWN
��� � �� the Wilcoxon �	
��� rank sum scores ���

aVN ��� � ���
�

�

N � 	

�
� the Van der Waerden �	
��� scores� ���

where ��� denotes the inverse of the standard normal distribution function�

����� Two�sample scale tests

We wish to test the null hypothesis

H� � �X � �Y againstH� � �X �� �Y �

where �X and �Y denote the standard deviations of the X� and Y �population� respectively� Again
we consider the combined sample �X�� � � � � Xm� Y�� � � � � Yn�� m� n � N � The following scores are
often used�

aMN
��� �

�
��

N � 	



��

� the Mood �	
��� scores ���

aAN
��� �

����
�
��

N � 	



����� � the Freund�Ansari�Bradley �	
�� and 	
��� scores ���

aKN
��� �

�
���

�
�

N � 	

���
� the Klotz �	
�� scores� ���

where ��� denotes the inverse of the standard normal distribution function�

����� Percentile modi�ed rank tests

The percentile modi�ed rank statistics for location and scale were proposed by Gastwirth �	
����
One has to select two numbers s and r� and to score only the data in the upper sth and lower rth
percentiles of the combined sample� In other words� we assign the scores to the data and then we
set the scores of the observations in the middle to zero� The freedom to choose s and r enables
one to increase the power of the test statistic by incorperating knowledge of any characteristic
of the underlying distribution functions �e�g� asymmetry� into the test statistic� Let S � bNsc
and R � bNrc� where bNqc denotes the largest integer not exceeding the number qN� q � r� s�

�



The percentile modi�ed rank statistics for location and scale are denoted by GN�r�s and JN�r�s�
respectively� They are de�ned by the following scores� where cN � 	 if N is odd and cN � 	� if
N is even�

aGN�r�s
��� �

	

�
��R � � � cN � if 	 � � � R
� � �N � S� � cN � 	 if N � S � 	 � � � N
� otherwise

���

and

aJN�r�s��� �

	

�

R� � � cN if 	 � � � R
�� �N � S� � cN � 	 if N � S � 	 � � � N
� otherwise

�
�

� Branch�and�bound algorithm

For some test statistics the number of terms in expression �� increases very fast when N increases�
The rate of increase obviously depends on the scores� If sums of scores have relatively often the
same value �e�g�� for Wilcoxon scores�� the number of terms increases relatively slowly� For rank
tests that use inverse normal scores� i�e� the Van der Waerden test and the Klotz test� sums of
scores have rarely the same value� With the aid of combinatorial arguments we proved �see Van de
Wiel �	

��� that� if m � N�� the number of di�erent values of the Van der Waerden test statistic
VN equals Qm � �

� ��m � 	�� If for example N � ���m � 	�� then Q�� � � 	�� ���� Computation
of an expression with such a large number of terms gives memory and time problems�
We experienced that� using a Pentium �� Mhz PC� it is possible to compute the critical values
of a two�sample linear rank statistic for N � � within reasonable time by simply expanding the
product in �� with a computer algebra system� This is generally not possible for larger N and
therefore we present a branch�and�bound algorithm for computing critical values�

We note that Mehta et al� �	
��� give a branch�and�bound algorithm for permutation test statis�
tics that contains some of the principles of our algorithm� However� there are some important
di�erences� First of all� instead of a generating function� which is a common mathematical object�
they use a network representation� Therefore� they have to set up rules for multiplication� whereas
this is trivial for the expressions that appear during the expansion of ��� Secondly� they compute
tail probabilities which is a bit easier than the computation of critical values� Furthermore� they
do not mention the order in which the scores are used in the algorithm� whereas this is important
for the speed of the algorithm for some statistics �e�g� Van der Waerden and Klotz�� Finally� they
use dynamic programming for �nding the largest and smallest sums of scores� whereas we use
explicit formulas�

��� Principles of the algorithm

We �rst choose an interval of which we think that it contains the critical value� An approximation
formula may help us to do so� If the interval does not contain the critical value� then this will
be detected at the end of the algorithm� enabling us to restart the algorithm with a di�erent
interval� We rearrange the scores in decreasing order of their absolute values� so that the �rst
scores have the largest contribution on the sum of scores� The expressions we deal with are sums
of expressions of the form cxbyk � where c is a constant� b a sum of scores and k the number of
scores that contribute to b� We denote this expression� which we consider a polynomial in y� by
P � The term of degree k in P is denoted by P �yk�� Note that P �yk� includes yk�
Each loop we add the next score with the largest absolute value� Within each loop we use two
types of bounding rules� The �rst bounding rule is to discard of all terms consisting of too many

�



or too few scores� for which we use that we only need the sums of exactly m scores� For the second
bounding rule we �rst compute the maximum and the minimum value that can be added to b in
further iteration loops� Then we discard of each term for which the sum of b and the maximum is
smaller than the lower bound of the interval� After that� we add all coe�cients of the terms for
which the sum of b and the minimum is larger than the upper bound and discard of these terms
too� We multiply this sum of coe�cients with the number of ways to choose the next scores out of
the unassigned scores� The sum of all these products times 	�

�
N
m

�
is the right�tail probability for

the upper bound� With this probability and with the expression that is left after the last iteration
loop we �nd the right critical value� Before giving a formal description of the algorithm� we present
an example�

��� Example

This example is meant to illustrate the basic ideas of the algorithm� In this example we go through
the algorithm for the Mood test �see subsection ���� For the sake of brevity we take small samples
and we perform all steps only once�

Input� N � 	��m � �� � � ����� scores� f��	 �
	

	 �

��
	 �



	 �

�
	 �

�
	 �



	 �

��
	 �

	

	 �

��
	 g�

Output� one�sided right critical value�

We choose an interval �l� u� of which we are sure that it contains the one�sided right critical value�
One might do this with the aid of approximations� In this case we would need quite a large
interval� because approximations are not good for such small samples� However� as we discussed
in the beginning of this section� the algorithm is designed to compute critical values for the cases
N � �� For those cases� approximations are better� so that one can use a small interval� For this
example� let �l� u� � ���� ��� To �nd the critical value it is su�cient to know Pr�TN � u� and
Pr�TN � t�� l � t � u�

We rearrange the scores in descending order of their absolute values�

f
�	

�
�
�	

�
�
�


�
�
�


�
�
�

�
�
�

�
�



�
�



�
�
	

�
�
	

�
g

Observe that the di�erences between the large unequal values in this list are larger than for the
small unequal values �compare ��

	 � 	

	 with 


	 �
�
	�� Therefore� the larger scores have a larger

relative contribution on the value of the test statistic than the smaller ones� This would not be
the case for Wilcoxon scores� because these scores are equidistant�

We expand the product in �� for � � �� Then we obtain�

P � 	 �
�
x

��

� � x
��

� � x
��

�


y �

�
x
��

� � �x
��

� � x
��

� � �x
��

� � �x
	�

� � x
��

�


y�

�
�

x
��

� � x
���

� � x
���

� � �x
���

� � x
���

� � x
���

� � x
���

�


y�

�
�
x�� � �x	� � �x�� � x�� � �x�
 � x�

�
y	 �

�
x

���

� � x
�	�

� � x
���

�


y� � x

���

� y

To compute the critical value we only need the coe�cient of y�� Since there are � scores left to add�
we know that the terms that arise from multiplication with the term �	� in P will not contribute
to this coe�cient� Also� the terms that arise from multiplication with the term �x

���

� y� in P will
not not contribute to this coe�cient� Therefore� we may remove �	� and �x

���

� y� from P �

P �
�

x
��

� � x
��

� � x
��

�


y �

�
x
��

� � �x
��

� � x
��

� � �x
��

� � �x
	�

� � x
��

�


y�

�
�

x
��

� � x
���

� � x
���

� � �x
���

� � x
���

� � x
���

� � x
���

�


y�

�
�
x�� � �x	� � �x�� � x�� � �x�
 � x�

�
y	 �

�
x

���

� � x
�	�

� � x
���

�


y��

�



Let us now consider the term of degree � in P � denoted by P �y	�� Thus�

P �y	� �
�
x�� � �x	� � �x�� � x�� � �x�
 � x�

�
y	�

Let cxb be a term of the coe�cient of y	� Because m � �� precisely one more score has to be
added to b� The maximum M� of the scores that are left is 


	 � the minimum M� is �
	 � We know

that for computing the critical value it is su�cient to know the probabilities Pr�TN � u� and
Pr�TN � t�� l � t � u� The terms cxb for which b � M� � l will not contribute to any of these
probabilities and they may therefore be deleted� In our case we have b � �� � 


	 � ���
	 � So we

delete x�� � �x	� � �x�� � x��� which results in�

P �y	� �
�
�x�
 � x�

�
y	�

We also know that only those terms for which b�M� � u will contribute to Pr�TN � u�� In this
case b � � � �

	 � �	�
	 � This is true for the term x� and its contribution to Pr�TN � u� equals

c
�
	
�

�
�
�
N
m

�
� ��� � ���	�� where

�
	
�

�
is the number of ways to choose 	 score out of the � scores

that are not used yet� We store this contribution �or add it to the total� and we may then delete
x�� The result of the removal is�

P �y	� � �x�
 y	�

It is clear that we may apply the principle of deleting parts to any term P �yd�� The result is

a new polynomial P � We use the next score� 

	 � and multiply P by 	 � x

�

� y� For the resulting
polynomial we repeat the previous steps until all scores are used� When all scores are used� we
know Pr�TN � u� and Pr�TN � t�� l � t � u which su�ces to �nd the one�sided right critical
value� i�e� the smallest value v for which Pr�TN � v� � � � �����

��� Formal description of the algorithm

Input� N integer� m integer� �� � � ��� 	�� v� integer� �l� u�� interval that contains the right critical
value� rank scores� reals�
Output� one�sided right � critical value of the statistic TN with arbitrary scores�

	� Rearrange the scores such that ja�	�j � � � � � ja�N �j�

� Expand P �
Qv
i�� �	 � xa�i�y��

�� j � v� q � ��

�� Let k be the exponent of y in an arbitrary term of P � then P � P � I� where I consists of all
terms P �yk� of P for which k 	 m or k 
 m� �N � j��

�� Let r be the smallest exponent of y in P� k� r�

�� Compute M�� i�e� the sum of the m � k largest scores and compute M� i�e� the sum of the
m � k smallest scores�

�� Let b be the exponent of x in an arbitrary term of P �yk� then P � P � J�y
k� where J� consists

of all terms of P �yk� for which b�M� � l�

�



�� Let J� consist of all terms of P �yk� for which b � M� � u and add the coe�cients of these
terms�


� Multiply this sum with
�
N�j
m�k

�
and denote this product by t�

	�� q� q � t�

		� P � P � J�y
k�

	� Let s be the degree of P � If k 
 s� k� k � 	 and go to step ��

	�� j � j � 	�

	�� If j � N � P � P �	 � xa�j�y� and go to step ��

	�� If j 	 N compute Pr�TN � u� � �

�Nm�
q� where TN is the two�sample rank statistic�

	�� Let b�i� be the exponent of x in the ith term of P
ym

� Furthermore� let c�i� be the coe�cient

in the ith term of P
ym

� where P is given in increasing order of b�i� and let d�i� �
P

j�i c�j�� Now

determine the �rst term i� for which d�i�� �
�
N
m

�
�� � Pr�TN � u��� Then the one�sided right �

critical value is equal to b�i���

����� Notes to formal description

Input� N � m � n� the total sample size� m is the sample size of the smallest sample� � is the
one�sided con�dence level� One should not choose v too large� because then the expression given
in step  becomes too large� We experienced that v � � works quite well�
One may choose the interval with the aid of an approximation formula� The smaller the interval�
the faster the algorithm� If one is not sure whether the interval contains the critical value� one can
still use the algorithm� If the algorithm fails to give an answer then the real value will be larger
than the upper bound and one should choose a new interval for which the lower bound is equal
to the upper bound of the previous interval� If the algorithm gives an answer that is very close to
the lower bound� one should check whether the answer is equal to the exponent of the �rst term
of P � If this is the case then one should re�run with an new interval for which the upper bound
is equal to the lower bound of the previous interval� In fact� one can always �nd the exact critical
value with this method�

ad 	� The order in which the scores are used may in�uence the speed of the algorithm� As we
argued in the example� the larger scores may have relatively more in�uence on the value of the
test statistic than the smaller ones� In fact� we minimize the di�erence between M� and M� �step
���� so that the bounding procedure works optimally�

ad �� We consider j as the number of scores that is used in the iteration so far� Because v scores are
used in step  of the algorithm the initilization value of j is v� We need the variable q to compute
the right�tail probability of the upper bound� This step is the start of the outer loop that ends at
step 	��

ad �� To avoid unnecessary computations� we discard of all terms for which k 	 m or k 

m � �N � j�� because we only need P �ym�� Now� N � j is the maximum that could be added to
k� because this is the number of scores that are not used yet� Therefore� we only have to consider
those terms for which m� �N � j� � k � m�

ad �� Note that M� may be negative as well� The m� k scores have to be chosen from the N � j
scores that are not yet used�

�



ad �� We discard of all those terms for which the sum of scores is too small�

ad �� We discard of all those terms for which the sum of scores is too large�

ad 
�	�� The number
�
N�j
m�k

�
is the number of ways to choose m � k scores out of the N � j

unassigned scores� We consider q as the number of sums of scores that exceed u and t as the
contribution to q of those terms of P �yk� that satisfy the inequality in ��

ad 	�� Here we introduce the next score according to the sequence after step 	�

ad 	�� Note that P now only consists of the term ym and its coe�cient� Note that

d�i� �

�
N

m

�
��� Pr�TN � u�� �	

X
j�i

c�j��

�
N

m

�
� Pr�TN � u� � �

�	 Pr�u 	 TN � b�i�� � Pr�TN � u� � ��	 Pr�TN � b�i�� � ��

The e�ciency of this algorithm depends on the di�erences between the absolute values of the
successive scores� If these di�erences are relatively large then the algorithm is very e�cient� because
then many terms will be removed in steps � and 		 in an early stage� This is the case when the
scores are quadratic or when they are quantiles of the normal distribution� Hence� the algorithm
is very e�cient for the Mood scale test and the Van der Waerden test and especially for the Klotz
test� because the Klotz scores have both characteristics�

For some cases it may be more e�cient to perform steps � to 	 �the bounding� only for values
of j which are a multiple of a certain integer d� This depends on the scores and the sample sizes�
When one deals with large sample sizes� we know from practical experience that one should choose
d � 	 or d � � because otherwise the expressions will be too large�

� A generating function for the Halperin statistic

We show how we use �� to derive a generating function with a closed form for the Halperin
statistic� This statistic is used for data that are censored at a �xed point� also known as type I
censoring�

��� The Halperin statistic

Let T be a �xed point and suppose we deal with mutually independent data X�� � � � � Xm and
Y�� � � � � Yn from which we observe

X���� � � � � X�m�rm� and rm X�observations after point T�

Y���� � � � � Y�n�rn� and rn Y �observations after point T�

where X�i� and Y�j� are order statistics� So we deal with two samples which are censored at the same
�xed point T � We denote the distribution functions of the X�observations and the Y �observations
by F and G� respectively� We wish to test the null hypothesis

H� � F �x� 
 G�x� for all x � T �

Halperin �	
��� proposed a statistic for which he proves that it is consistent for alternatives of
the form

H� �
F �x�

F �T �
	

G�x�

G�T �
� F �T � 	 G�T � for all x � T �

The test statistic Uc is given by

Uc � M �m� rm� n� rn� � rm�n� rn�� �	��

where M �m� rm� n� rn� is the Mann�Whitney statistic of the uncensored observations of the two
samples�

�



��� Generating function

For Uc we de�ne the following conditional probability generating function�

De�nition ��� Let Uc be the test statistic given in ��	
� then

HUc�xjr� �
�X
u��

Pr�Uc � ujrm � rn � r�xu� �		�

Lemma ��� Let A and B be events and assume that Pr�B� 	 �� Furthermore� let C�� � � � � CN �
be events that are mutually disjoint� whereas Pr�Ci� 	 ��Pr�B � Ci� 	 �� k � 	� � � � � N� andPN

k�� Pr�Ci� � 	� Then�

Pr�AjB� �
NX
i��

Pr�AjB �Ci� Pr�CijB��

Proof� by straightforward veri�cation� �

The following theorem� which is not trivial because of a tricky conditioning argument� helps us
to obtain the conditional distribution of the Halperin statistic from the distribution of the Mann�
Whitney statistic�

Theorem ��� Let Uc denote the Halperin statistic for sample sizesm and n and letM �a� b� denote
the Mann�Whiney statistic for sample sizes a and b� Then� under H� � F � G� with �rm � m� rm
and �rn � n� rn�

Pr�Uc � uj�rm � a� �rn � b� � Pr�M �a� b� � u� �m � a�b�� �	�

Proof� see Appendix A�

De�nition ��� Let P �
PN

k��

P
� c���x

b���yk � where c��� and b��� are arbitrary real numbers�
Then�

��P� k� � P ��yk�� �
X
�

c���xb���� �	��

Theorem ��	 Let HUc�xjr� be the probability generating function ���
 of the Halperin statistic
as de�ned in ��	
 and let � be the operator as de�ned in De�nition ���� Then� under H� � F � G�

HUc�xjr� �
mX
i��

	�
r
i

��
m�n
m

�xg�i� �

�
M�m�n�rY

���

�	 � x�y��m � i

�
� �	��

where g�i� � i�n � r � i� � �
� �m � i��m � i� 	�� i � �� � � � �m�

Proof� Using Lemma �� we have

Pr�Uc � ujrm � rn � r� �
mX
i��

Pr�Uc � ujrm � rn � r� rm � i� Pr�rm � ijrm � rn � r��
�	��

Under H�� the Xi�s and Yj�s are equally distributed and hence we have Pr�Xi 	 T � � Pr�Yj 	
T � � 	� F �T �� Furthermore� rm and rn are independent� This implies that

Pr�rm � ijrm � rn � r� �
Pr�rm � i� rn � r � i�

Pr�rm � rn � r�
�

Pr�rm � i� Pr�rn � r � i�

Pr�rm � rn � r�

�

�
m
i

�
�F �T ��m�i�	� F �T ��i

�
n
r�i

�
�F �T ��n�r�i�	� F �T ��r�i�

m�n
r

�
�F �T ��m�n�r�	� F �T ��r

�

�
m
i

��
n
r�i

�
�
m�n
r

� �

�	��






So� rm given rm � rn is hypergeometrically distributed� We now set out to rewrite �	� in a
form that suits for computing �		�� We use Theorem ��� and the well�known relation between the
Mann�Whitney statistic and the Wilcoxon statistic for uncensored samples� M �m�n� � W �m�n��
�
�m�m � 	� to write

Pr�Uc � ujrm � rn � r� rm � i� � Pr�Uc � uj�rm � m � i� �rn � n � r � i�

� Pr�M �m � i� n� r � i� � u� i�n� r � i� � Pr�W �m � i� n� r � i� � u� g�i��

�
	�

m�n�r
m�i

� h�u� g�i��m � i� n� r � i�� �	��

where h�u � g�i��m � i� n � r � i�� i � �� � � � �m is the number of rank con�gurations of m � i
uncensored X�observations and n � r � i uncensored Y �observations for which W � u � g�i��
Substituting �	�� and �	�� into �	�� and �	�� into �		� gives

HUc�xjr� �
�X
u��

mX
i��

�
m
i

��
n
r�i

�
�
m�n�r
m�i

��
m�n
r

�h�u� g�i��m � i� n� r � i�xu

�
mX
i��

	�
r
i

��
m�n
m

�xg�i� �X
w��

h�w�m� i� n� r � i�xw�

�	��

where we set w �� u� g�i��

We use �� with the Wilcoxon scores to observe that

�X
w��

h�w�m� i� n� r � i�xw � �
�m�n�rY

���

�	 � x�y��m � i

� �	
�

After substituting �	
� into �	�� we obtain the desired result� �

Note on e
ciency
From �	�� we observe that� in order to compute HUc�xjr�� we might also use the well�known
probability generating function of the Mann�Whitney statistic� i�e�

�X
w��

Pr�M �a� b� � k�xk �
	�
a�b
a

�
Qa�b
i�a�� �	� xi�Qb

i�� �	� xi�
� ���

In Halperin �	
��� Halperin gives a recursive formula for computing Pr�Uc � ujrm � rn � r� that
is also based on the null distribution of the Mann�Whitney statistic M �m � i� n � r � i� for all
i� i � 	� � � � �m� From �	�� we conclude that the computation of HUc�xjr� with the aid of ���
requires the expansion of ��� for a � m� i� b � n� r� i� i � �� � � � �m� We experienced that this
is much more time�consuming than the computation of HUc�xjr� with the aid of �	
�� The �rst
reason for this is that ��� is a quotient� which is harder to expand than �	
�� The second reason
is that ��� has to be expanded for various values of a and b� whereas the product in �	
� has to
be expanded only once� For this last reason Halperin�s formula is also less e�cient than �	
��

� Generating function for block rank statistics

In this section we show how to compute the null distribution of block rank test statistics� We
derive a generating function for these rank test statistics which may be seen as a generalization of
��� The main idea is to derive a generating function for the distribution of the ranks within the
blocks and multiply these to obtain the generating function of the sum of the ranks� We note that
Streitberg and R�ohmel �	
��� give recursive formulas for computing the null distribution of block
rank statistics� They do not deal with the Friedman statistic�

	�



��� Block rank tests

Suppose we deal with data that are presented in the form of a two�way layout of b rows and t
columns� The rows indicate blocks and the columns indicate treatments� Let Yij be the observation
in row i and column j� We consider the following model�

Yij � �� �i � �j � ij �

i � 	� � � � � b� j � 	� � � � t� where � is a general mean� �i is a block e�ect� �j a treatment e�ect and
�ij is a random error component� mutually independent and identically distributed for all i and j�
We want to test the null hypothesis

H� � �� � � � � � �t � � �	�

against the alternative hypothesis

H� � �j �� � for at least one j�

Within each block rank scores are assigned to the observations� The blocks are independent and
may have di�erent rank scores� We denote the rank score for the observation in the ith block
belonging to the jth treatment by Rij� Furthermore� let Tj denote the treatment totals

Pb
i�� Rij�

Bi the block totals
Pt

j�� Rij and E the total of all rank scores
Pb

i��

Pt

j�� Rij� We de�ne S �Pt

j�� T
�
j � To test H� we consider test statistics of the form c�S�c�� where c� and c� are constants

and c� 	 �� We can compute the distribution of S under H� if we can compute the joint distribution
of the Tj�s under H�� Generating functions turn out to be a convenient tool for computing the
joint distribution of the Tj �s under H��

��� A generating function for block rank statistics

As in the two�sample case we need rank score functions� The rank score function for block i is
de�ned as

ai � f	� � � � � tg � R� ��

If ties occur� then again the test becomes a conditional one �cf� our remarks in Section ��� We
now introduce a probability generating function for observations in one block�

De�nition 	�� The probability generating function of the row vector of the ranks within block i�
Ri � �Ri�� � � � � Rit�� is de�ned by

HRi
��x� �

���X
�v���

Pr�Ri� � v�� � � � � Rit � vt�x
v�
� � � �xvtt � ���

where �x � �x�� � � � � xt�� �v � �v�� � � � � vt���� � ��� � � � � �� and ��� � ��� � � � ���� which are vectors
of length t�

Theorem 	�� Let St be the symmetric group of all these permutations of f	� � � � � tg� Under H� �
�� � � � � � �t � � we have

HRi
��x� �

	

t 

X
��St

x
ai�����
� � � �x

ai���t��
t � ���

Proof� We know that Pr�Ri� � v�� � � � � Rit � vt� � � if fv�� � � � � vtg �� fai�	�� � � � � ai�t�g� Under
H�� we have Pr�Rij � ai���� � Pr�Rik � ai���� for all j �� k� for all � and for all i� Therefore� we
have Pr�Ri� � ai���	��� � � � � Rit � ai���t��� � �

t� for all � � St and the result follows� �

We use generating function ��� to derive a formula for the probability generating function of the
vector �T�� � � � � Tt��

		



De�nition 	�� The probability generating function of the row vector of treatment totals T �
�T�� � � � � Tt� is de�ned by

HT ��x� �

���X
�u���

Pr�T� � u�� � � � � Tt � ut�x
u�
� � � �xutt � ���

where �u � �u�� � � � � ut� and �x��� and ��� are as in De�nition ���

The following theorem shows that computing the null distribution of block rank statistics essen�
tially reduces to computing the null distribution within blocks and multiplication�

Theorem 	�� The generating function of the vector T � �T�� � � � � Tt� factors under H� � �� �
� � � � �t � � as

HT ��x� �
bY

i��

HRi
��x�� ���

where �x as in De�nition ���

Proof� Let �u � �u�� � � � � ut�� �v � �v�� � � � � vt���� � ��� � � � � �� and ��� � ��� � � � ���� which are
vectors of length t and let T sj �

Ps
i�� Rij� 	 � s � b� Since we assume that there is no block

e�ect� Rij and Rkj are mutually independent for all i �� k� i � 	� � � � � b� k � 	� � � � � b and therefore
T s��j and Rsj are mutually independent too�

HT ��x� �

���X
�u���

Pr�T� � u�� � � � � Tt � ut�x
u�
� � � �xutt

�

���X
�u��v

���X
�v���

Pr�T b��� � u� � v�� � � � � T
b��
t � ut � vt�

Pr�Rb� � v�� � � � � Rbt � vt�x
u�
� � � �xutt

�

���X
�v���

���X
�u��v

Pr�T b��� � u� � v�� � � � � T
b��
t � ut � vt�x

u��v�
� � � �xut�vtt

Pr�Rb� � v�� � � � � Rbt � vt�x
v�
� � � �xvtt

�

���X
�v���

Pr�Rb� � v�� � � � � Rbt � vt�x
v�
� � � � xvtt

���X
�u���

Pr�T b��� � u�� � � � � T
b��
t � ut�x

u�
� � � � xutt

� HRb
��x�HT b�� ��x��

Repeating this argument� we obtain ���� �

Expansion of ��� yields the simultaneous distribution of T�� � � � � Tt� Since we are interested in the
distribution of S �

Pt

j�� T
�
j � it su�ces to replace all terms of the form kxu�� � � �xutt by kxU with

U �
Pt

j�� u
�
j � Let k�xU

�

be a term of the new expression� then Pr�S � U�� � k�� So we are able
to determine the distribution of S and therefore also of c�S � c��

The problem is that the expansion of ��� might cost a lot of memory space� due to the length of
the expressions that arise� As a solution to this problem we introduce a recursion that is based on
the equiprobability of the values of T�� � � � � Tt and Ri�� � � � � Rit under H�� We de�ne the function
H�
Ts��x��

	



De�nition 	�	 Let T sj �
Ps

i�� Rij� 	 � s � b� let T s � �T s� � � � � � T
s
t �� let �u � �u�� � � � � ut� and let

d��u� be the number of distinct permutations of �u� then

H�
Ts��x� �

X
u������ut

d��u� Pr�T s� � u�� � � � � T
s
t � ut�x

u�
� � � �xutt � ���

where �x is as in De�nition ���

Since all treatment e�ects are assumed to be equal under H�� the coe�cients in H�
Ts��x� equal

the probability that T equals one of the permutations of �u� We present a recursive formula for
computing H�

Ts��x��

Theorem 	�� Let T sj and T s be as in De�nition �� then under H� � �� � � � � � �t � �

H�
Ts��x� � I

�
H�
Ts�� ��x�HRs

��x�

� ���

where I is the linear operator de�ned by I�cxu�� � � �xutt � � cx
max�u����� �ut�
� � � �x

min�u����� �ut�
t �

Proof� As noted before� T s��j and Rsj are mutually independent for all i �� k� i � 	� � � � � b� k �

	� � � � � b� Let �x��v��� and ��� be as in De�nition ��	 and let d��u� be as in De�nition ����

H�
Ts����x�HRs

��x� �
X

u������ut

d��u� Pr�T s��� � u�� � � � � T
s��
t � ut�x

u�
� � � � xutt

���X
�v���

Pr�Rs� � v�� � � � � Rst � vt�x
v�
� � � �xvtt

�

���X
�v���

u������ut

d��u� Pr�T s� � u� � v�� � � � � T
s
t � ut � vt�x

u��v�
� � � �xut�vtt �

We let �!u�� � � � � !ut� be a tuple for which !u� � � � � � !ut� Applying I to the entire polynomial has
the e�ect that those terms cxu��v�� � � �xut�vtt for which �u� � v�� � � � � ut � vt� is a permutation of
�!u�� � � � � !ut� sum up to one term � The sum of coe�cients is the probability that T s equals one of
the permutations of !u� � � � �� !ut� Hence�

I
�
H�
Ts����x�HRs

��x�


�
X

�u�������ut

d��!u� Pr�T s� � !u�� � � � � T
s
t � !ut�x

�u�
� � � �x�utt

� H�
Ts��x�� �

Example
Let H�

T���x� � �
��x��x

�
�x� � x��x

�
�x

�
�� and HR�

��x� � �
��x��x�x� � x�x

�
�x� � x�x�x

�
��� then

H�
T���x� � I

�	

�
�x�x

�
�x

�
� � x	�x

�
�x

�
� � x	�x

�
�x

	
� � x��x

�
�x

�
� � x��x

�
�x

�
� � x��x

�
�x

�
�


�

	

�
�x�x

�
�x

�
� � x��x

	
�x

�
� � �x��x

�
�x

�
� � x	�x

	
�x

�
���

Using H�
Ts��x� and I instead of HT ��x� we gain time and memory� because H�

Ts��x� contains much
less terms than HTs��x�� Since the value of the test statistic is the same for all permutations of
�u�� � � � � ut�� H�

T b
��x� su�ces for computing the null distribution of the test statistic�

	�



b t � � t � � t � �
 ��	 ���� 		���
� ���� ���� 	���
� 	��� ���

	� ���� 

���
� 	
�	�
�� �����
�� 	����

Table 	� Computing times in seconds on a SUNSparc � for the Friedman test

��� Applications

	���� The Friedman test

A well�known block rank test is the Friedman �	
��� test� For the Friedman test we have
fai�	�� � � � � ai�t�g � f	� � � � � tg for all i� The Friedman test statistic is�

Q �
	

bt�t� 	�

tX
j��

�
Tj �

b�t � 	�



��

�
	

bt�t� 	�

tX
j��

�
T �
j �

b��t� 	��

�
� b�t� 	�Tj

�

� c�S � �b�t� 	��
	

t

tX
j��

Tj

� c�S � �b�t� 	��
	

t

bt�t� 	�


� c�S � c��

�
�

with c� � ��
bt�t��� and c� � ��b�t�	�� So Q is a statistic of the form we dealt with in the previous

section� Let TF be the vector of treatment totals for this test� By using ��� and ��� we obtain�

HTF ��x� �
bY
i��

HRi
��x� � �HRi

��x��b �

�
	

t 

t�X
p��

x
�p���
� � � �x

�ip�t�
t

�b

� ����

	���� Computing times

In Table 	 we give computing times for the Friedman test� One may observe that the computing
times increase very quickly as the number of treatments increases� This is because the number
of con�gurations within a block increases by a factor t � 	� when we add one treatment to t
treatments�

��� The Cochran test

The Cochran and Cox �	
��� test is an example of a test where ties occur in a natural way�
Consider an experiment for which the observations can have only two values� � and 	� Here� �
stands for "no success" and 	 for "success"� We deal with blocks and for each observation within
a block the rank score does not depend on the scores of the other observations within that block�
Let Tj �

Pb
i�� Rij� Bi �

Pt
j�� Rij and E �

Pb
i�� Bi� If we wish to compare the treatments

it su�ces to condition on the number of blocks bj with block total j� j � �� � � � � t� since a score

	�



b� t � � t � � t � � t � �
	 ��	� ���� ��� ����
 ��� 	��� 	
��� �����
� ���� ��
� �����
� ��� ���� 	����

	� ���� 	�����
� ���
�� ����

Table � Computing times in seconds on a SUNSparc � for the Cochran test� bj � b�� j � �� � � � t�

equals either � or 	� Let us �rst de�ne Cochran�s test statistic C�

C � t�t� 	�

Pt
j��

�
Tj �

E
t

��
Pb

i�� Bi�t �Bi�

� t�t� 	�

Pt

j��

�
Tj �

E
t

��
Pt

j�� j�t � j�bj

� t�t� 	�

Pt
j��

�
Tj �

E
t

��
t
Pt

j�� jbj �
Pt

j�� j
�bj

� �t� 	�
t
Pt

j�� T
�
j �E�

tE �
Pt

j�� j
�bj

� c�S � c��

��	�

with S �
Pt

j�� T
�
j � c� � t�t���

tE�
P

t

j
�
j�bj

and c� � �E��t���

tE�
P

t

j
�
j�bj

�

So C is linear in S and we therefore use Theorem ��� with scores � and 	� We observe that HRi
��x�

has to be computed for all values of j for which bj 	 �� j � � � � � � t� We apply Theorem ��� and
��� to speed up the computations�

��� Computing times for the Cochran test

For the case t �  we used the expansion of formula ���� In this case the computing times are
small� less than 	�� sec� for b� � 	��� and less than � sec� if b� � ����� If b� is larger than �����
memory problems occur� In Table  we give computing times for the Cochran test for the cases
t 	 � We used ��� for the cases t 	 � We did not apply I after every step in this recursion�
but after each third step� This is because the operator I is not so fast and it has not that much
e�ect on the length of the expression when it was used just a few steps before in the recursion� We
present tables for the cases bj � bk � b�� � � j� k � t� so the number of blocks b � �t � 	�b�� We
should note that this is generally not the worst case� Bad cases will usually occur as bj is relatively
large for j  �

�t�

A Proof of Theorem ���

In order to prove the theorem we have to de�ne the test statistics more formally� We �rst de�ne

� � ��Z� � � � �Zi� 
 fZ� 
 � � � 
 Zi � Tg � fZi�� 	 Tg� � � � � fZn�m 	 Tg�

where �Zj � � if Zj is an X�observation and �Zj � 	 if Zj is an Y �observation� So when we know ��
we know how many X�s and Y �s are smaller or equal to T and we know how they are con�gurated�

	�



Let �rm��� and �rn��� be the number of ��s and 	�s in �� respectively� then we introduce two classes

Aa�b � f� � �rm��� � a� �rn��� � bg and

A �
m�
a��

n�
b��

Aa�b

Now we formally de�ne the statistic Uc and the Mann�Whitney statistic Ma�b�

Uc � A �N� Uc��� �
X
j�k

If�Zj����Zk��g � �m� �rm�����rn���

Ma�b � Aa�b �N� Ma�b��� �
X
j�k

If�Zj����Zk��g�

where IE is the indicator function of the event E� We de�ne � � A � ��� 	� as the normalized
counting measure� Then�

Pr�Uc � uj�rm � a� �rn � b� �
Pr�Uc � u� �rm � a� �rn � b�

Pr��rm � a� �rn � b�
���

and

Pr�Uc � u� �rm � a� �rn � b� �
X

��A�Uc����u

���� �rm � a� �rn � b�

�
X

��Aa�b�
Ma�b����u��m�a�b

���� �rm � a� �rn � b��
����

because ���� �rm � a� �rn � b� � � if � �� Aa�b� Since we have m X�s and n Y �s� there exist
�
m
a

��
n
b

�
equiprobable realizations of X�� � � � � Xm and Y�� � � � � Yn that lead to the same value of � � Aa�b�
With N � m � n and B � a � b we denote such a realization by �w�� � � � � wB� wB��� � � � � wN ��
Then for � � Aa�b�

���� �rm � a� �rn � b�

�

�
m

a

��
n

b

�
Pr�w� 
 � � � 
 wB � T�wB�� 	 T� � � � � wN 	 T �

�

�
m

a

��
n

b

��Z T

��

� � �

Z w�

��

dF �w�� � � � dF �wB�
�

	� F �T �
N�B

�

�
m
a

��
n
b

�
B 

�
F �T �

B�
	� F �T �

N�B
�

����

Substitution of ���� into ���� results in�

Pr�Uc � u� �rm � a� �rn � b� �
X

��Aa�b�
Ma�b����u��m�a�b

�
m
a

��
n
b

�
B 

�
F �T �

B�
	� F �T �

N�B
�

����

We return to equality ��� and note that

Pr��rm � a� �rn � b� � Pr��rm � a� Pr��rn � b� �

�
m

a

��
n

b

��
F �T �

B�
	� F �T �

N�B
�

����

Substitution of ���� and ���� into ��� completes the proof�

Pr�Uc � uj�rm � a� �rn � b� �
X

��Aa�b�
Ma�b����u��m�a�b

	

B 
� Pr�Ma�b � u� �m � a�b�� ����

�

	�



B Tables

As a result of the theorems in the previous sections� we present extended tables of critical values�
For the two�sample rank statistics we only give tables for the balanced cases n � m because of
practical reasons� The con�dence levels � are two�sided� except for the Friedman statistic for which
only one�sided con�dence levels exist� We give the dimensions of the new and existing tables and
the references�

� Freund�Ansari�Bradley� N � ��� N � � in Ansari and Bradley �	
����

� Friedman� t � �� b � �# t � �� b � �# t � �� b � 	�
t � �� b � 	�# t � �� b � � in Hollander and Wolfe �	
���� t � �� b � �# t � �� b � � in Odeh
�	
����

� Mood� N � �� N � � in Laubscher et al� �	
����

� Klotz� N � ��� N � � in Klotz �	
��

� Van der Waerden� N � �� N � � in Van der Waerden �	
����

Since the exact distributions of the Halperin test and the Cochran test do not only depend on
the sample sizes� but also on conditional arguments� it would be very paper�consuming to present
tables for these tests� For the Halperin statistic� tables are available in Van der Laan and Van
Putten �	
��� for N � �� We note that� with our method� we are able to compute p�values or
critical values of the Halperin statistic within a few seconds for N � ���

Packages for exact values
For all test statistics presented in this paper� we wrote Mathematica packages for computing exact
p�values and critical values� These packages are available from the author�
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