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Abstract

We derive generating functions for various rank statistics and we use computer algebra to
compute the exact null distribution of these statistics. We present various techniques for
reducing time and memory space used by the computations. We use the results to write
Mathematica notebooks for computing exact tail-probabilities and to extend tables of critical
values for some well-known rank statistics.

Keywords Two-sample linear rank tests, block rank tests, exact null distributions, generating
functions, computer algebra.

1 Introduction

In this paper we derive generating functions of two-sample linear rank statistics and block rank
statistics. We use these generating functions as a powerful tool for computing exact distributions.
We implemented these generating functions directly in the computer algebra package Mathematica,
which resulted in notebooks for computing exact tail-probabilities and critical values. We increased
the efficiency of the notebooks by using certain techniques for cutting off parts of the expressions
that arise during a computation. The notebooks enabled us to extend the existing tables with
critical values for various test statistics. Among them are the Van der Waerden statistic, which is
more powerful than the Wilcoxon statistic for distributions with light tails, and the well-known
Friedman statistic. The majority of the existing tables date back to the fifties and the sixties. One
often used recursions to compute the tables. Examples of such recursions can be found in Kendall
and Stuart (1977) and Gibbons and Chakraborti (1992) for the Kendall rank correlation test and
the Wilcoxon rank-sum test, respectively. The procedures for computing exact tail-probabilities
are very useful when we deal with ties, because then the (conditional) distribution depends on
the tie strucure, which makes it practically impossible to create tables with critical values for all
possible tie structures.

A major advantage of using generating functions and computer algebra systems over other ap-
proaches is that one can work directly with mathematical objects like polynomials the way we are
used to do as humans, as opposed to representations of these objects in arrays etc., which are suit-
able for computers only. Another advantage i1s that computer algebra systems use infinite precision,
so that rounding errors during computations do not occur. One may find a discussion about the
use of computer algebra within statistics and probability in Kendall (1993). Baglivo et al. (1993)
and Van de Wiel et al. (1997) use computer algebra packages to implement generating functions.



This paper is organised as follows. In section 2 we deal with two-sample rank statistics. We present
applications of a two-dimensional generating function derived in Streitberg and Rohmel (1986).
Section 3 is devoted to one of the main results of this paper: a branch-and-bound algorithm for
the computation of critical values. The algorithm is useful in those cases for which the direct
application of the Streitberg-Rohmel formula is too time- and memory-consuming. In Section 4
we use the Streitberg-Rohmel formula to derive a closed form generating function for the Halperin
statistic. We extend the Streitberg-Rohmel formula for two-sample rank statistics to a formula for
block rank statistics in section 5. Section 4 contains new tables of critical values.

For further details about the presented tests we refer to Gibbons and Chakraborti (1992).

2 Applications of the Streitberg-Rohmel formula to the
two-sample case

In this section we show how we use a two dimensional generating function to compute the null
distribution or critical values of two-sample linear rank statistics.

2.1 The Streitberg-Rohmel generating function

Suppose two independent random samples X, ..., X,, and Y7,... Y, with distribution functions
F and G| respectively, are given. We define a general two-sample rank statistic 7" and we present
a two dimensional generating function of this rank statistic.

Definition 2.1 A linear rank statistic T' is a statistic of the form

Tn =Y a(l) Z, (1)

=1

where a : {1,... N} — R is said to be a rank score function, m+n = N, Z, = 1 if the £th order
statistic of the combined sample X1,... , X, Y1,..., Y, 1s an X and Z;, = 0 otherwise.

Theorem 2.2 Let T be a linear rank statistic and Hr, (x) = Z:io Pr(Tn = t) 2 and let a(f)
be as in definition 2.1, then under Hy

Hay () = (14 2D ) (14 22 y)[y™]) )

()
where P(z,y)[[y™]] is the coefficient of y™.

Proof: for a proof we refer to Streitberg and Réhmel (1986). a

We note that Streitberg and Rohmel derive (2) under the unnecessary assumption that the scores
are nonnegative integers. In fact, their proof is also valid for arbitrary real scores. This formula
was already known to Euler (1748) in the context of generating the frequencies of all outcomes
of the sum of m integers that form a subset of N integers. Streitberg and Rohmel present sev-
eral algorithms for computing the formula. These are quite complex and translate mathematical
structures into computer structures. However, a computer algebra package deals directly with (2).

2.2 Ties

We emphasize that Theorem (2.2) also holds when ties are present. However, we have to apply
a conditional argument to the probabilities. We are aware that testing is not distribution-free
anymore, since the distribution functions determine the probability on a certain tie configuration
and tail probabilities are generally different for different tie configurations. However, it is impossible



to compute exact unconditional tail probabilities, because we do not know the probability on a
certain tie configuration, since F' and GG are unknown. We should note that the choice of the way
one deals with the scores in the case of ties influences the power of the test. Arrenberg (1994)
shows that natural ranks are better than midranks for the Wilcoxon rank-sum test. The principle
of conditional testing may be found in Lehmann (1975) and (Héjek, 1969, Ch. VII).

2.3 Applications

We represent the rank statistics by their corresponding rank scores. We denote the fth rank score
for test statistic T by ap, (£). Substition of these scores into (1) yields the rank statistic, while
substitution of these scores into (2) yields the generating function.

2.3.1 Two-sample location tests
We wish to test the null hypothesis
Hy:px = py against Hiy:ux # py,

where px and py denote the expectations of X and Y, respectively. For all tests we consider the
combined sample (X1,..., X, Y1,...,Y,) and m +n = N. Well-known scores are:

awy(£) = £, the Wilcoxon (1945) rank sum scores (3)
?
ayy(f) = @71 (N——i—l) , the Van der Waerden (1957) scores, (4)

where ®~1 denotes the inverse of the standard normal distribution function.
2.3.2 Two-sample scale tests
We wish to test the null hypothesis

Hy:ox = oy againstH; :ox # oy,

where ox and oy denote the standard deviations of the X- and Y-population, respectively. Again

we consider the combined sample (X1,..., X, Y1,...,Yy), m+n = N. The following scores are
often used:
N4+1)°
apy(0) = (E - T+) , the Mood (1954) scores (5)
N+1 .
asy(l) = £— — |’ the Freund-Ansari-Bradley (1957 and 1960) scores (6)
¢ 2
agy(l) = [(I)—l (N—H)] ,  the Klotz (1962) scores, (7)

where ®~1 denotes the inverse of the standard normal distribution function.

2.3.3 Percentile modified rank tests

The percentile modified rank statistics for location and scale were proposed by Gastwirth (1965).
One has to select two numbers s and r, and to score only the data in the upper sth and lower rth
percentiles of the combined sample. In other words, we assign the scores to the data and then we
set the scores of the observations in the middle to zero. The freedom to choose s and r enables
one to increase the power of the test statistic by incorperating knowledge of any characteristic
of the underlying distribution functions (e.g. asymmetry) into the test statistic. Let S = | N;]
and R = |N,|, where |N,| denotes the largest integer not exceeding the number ¢N, ¢ = 7, s.



The percentile modified rank statistics for location and scale are denoted by G'n,, and Jy, s,
respectively. They are defined by the following scores, where ¢y = 1 if N is odd and ey = 1/2if
N is even.

—(R—"{l+cy) Hf1<(<R
Gy, () =4 (=(N=S)+ey—1 f N=S+1<L<N (8)
0 otherwise
and
R—{+ecen f1<{<R
ajy, ()= £—=(N=S)+ex—1 ifN-S+1<(<N (9)
0 otherwise

3 Branch-and-bound algorithm

For some test statistics the number of terms in expression (2) increases very fast when N increases.
The rate of increase obviously depends on the scores. If sums of scores have relatively often the
same value (e.g., for Wilcoxon scores), the number of terms increases relatively slowly. For rank
tests that use inverse normal scores, i.e. the Van der Waerden test and the Klotz test, sums of
scores have rarely the same value. With the aid of combinatorial arguments we proved (see Van de
Wiel (1996)) that, if m = N/2, the number of different values of the Van der Waerden test statistic
Vn equals @, = %(3’” + 1). If for example N = 30, m = 15, then Q5 = 7174 454. Computation
of an expression with such a large number of terms gives memory and time problems.

We experienced that, using a Pentium 200 Mhz PC, it is possible to compute the critical values
of a two-sample linear rank statistic for N < 20 within reasonable time by simply expanding the
product in (2) with a computer algebra system. This is generally not possible for larger N and
therefore we present a branch-and-bound algorithm for computing critical values.

We note that Mehta et al. (1987) give a branch-and-bound algorithm for permutation test statis-
tics that contains some of the principles of our algorithm. However, there are some important
differences. First of all, instead of a generating function, which is a common mathematical object,
they use a network representation. Therefore, they have to set up rules for multiplication, whereas
this is trivial for the expressions that appear during the expansion of (2). Secondly, they compute
tail probabilities which is a bit easier than the computation of critical values. Furthermore, they
do not mention the order in which the scores are used in the algorithm, whereas this is important
for the speed of the algorithm for some statistics (e.g. Van der Waerden and Klotz). Finally, they
use dynamic programming for finding the largest and smallest sums of scores, whereas we use
explicit formulas.

3.1 Principles of the algorithm

We first choose an interval of which we think that it contains the critical value. An approximation
formula may help us to do so. If the interval does not contain the critical value, then this will
be detected at the end of the algorithm, enabling us to restart the algorithm with a different
interval. We rearrange the scores in decreasing order of their absolute values, so that the first
scores have the largest contribution on the sum of scores. The expressions we deal with are sums
of expressions of the form caz’y*, where ¢ is a constant, b a sum of scores and & the number of
scores that contribute to 6. We denote this expression, which we consider a polynomial in y, by
P. The term of degree k in P is denoted by P[y*]. Note that P[y*] includes y*.

Each loop we add the next score with the largest absolute value. Within each loop we use two
types of bounding rules. The first bounding rule 1s to discard of all terms consisting of too many



or too few scores, for which we use that we only need the sums of exactly m scores. For the second
bounding rule we first compute the maximum and the minimum value that can be added to b in
further iteration loops. Then we discard of each term for which the sum of b and the maximum is
smaller than the lower bound of the interval. After that, we add all coefficients of the terms for
which the sum of & and the minimum is larger than the upper bound and discard of these terms
too. We multiply this sum of coefficients with the number of ways to choose the next scores out of
the unassigned scores. The sum of all these products times 1/(%) is the right-tail probability for
the upper bound. With this probability and with the expression that is left after the last iteration
loop we find the right critical value. Before giving a formal description of the algorithm, we present
an example.

3.2 Example

This example is meant to illustrate the basic ideas of the algorithm. In this example we go through
the algorithm for the Mood test (see subsection 2.3). For the sake of brevity we take small samples
and we perform all steps only once.

Input: N = 1Q, m :.5, o :.0..05, scores: {i—l, %, 24—5, %, %, %, %, 24—5, 44—9, i—l .
Output: one-sided right critical value.

We choose an interval [{, u] of which we are sure that it contains the one-sided right critical value.
One might do this with the aid of approximations. In this case we would need quite a large
interval, because approximations are not good for such small samples. However, as we discussed
in the beginning of this section, the algorithm is designed to compute critical values for the cases
N > 20. For those cases, approximations are better, so that one can use a small interval. For this
example, let [[,u] = [56,62]. To find the critical value it is sufficient to know Pr(Tx > u) and
Pr(Tn =), <t < u.

We rearrange the scores in descending order of their absolute values:

81 81 49 49 25 25 9 9 1 1

4747474747 474444
Observe that the differences between the large unequal values in this list are larger than for the
small unequal values (compare i—l — 44—9 Wlth z — Z) Therefore, the larger scores have a larger
relative contribution on the value of the test statlstlc than the smaller ones. This would not be

the case for Wilcoxon scores, because these scores are equidistant.
We expand the product in (2) for ¢ < 6. Then we obtain:

P = 1+ (22 27—1—21‘%—1—21‘841)31—1—( +4z —1—1‘2—1—41‘2—1—41‘2—1—1‘%) 2

123 131 155 179

1
+ ( z® +2x7 +227v +8x7¢ —1—21‘7—1—21‘13_7—1—21‘%) y3

285 155

+ (3T + 42 4425 425 4 4259 4 25 )y4+(2x%+2x#+2x7) v 4zt

To compute the critical value we only need the coefficient of y®. Since there are 4 scores left to add,
we know that the terms that arise from multiplication with the term ’1” in P will not contribute
to this coefficient. Also, the terms that arise from multiplication with the term e y% in P will
not not contribute to this coefficient. Therefore, we may remove '1’ and e y% from P.

P

(29:24_5—1—29:%—1—21‘%) Y+ (x% —1—49332_7—1—1‘%—1—41‘% —1—41‘%—1—1‘%) y2

+ (21‘4 —1—21‘133+2x1‘35_1+8x¥+2x%+21‘%7+21‘%) y3
+ (x37—|—4x45—|—4x51—1—1‘53—1—41‘59—1—1‘65) y4—|—(2 Py +2m235) v



Let us now consider the term of degree 4 in P, denoted by P[y*]. Thus,
Ply*] = (a:37 4445 44 51 4 58 44 59 4 x65) ye.

Let cx® be a term of the coefficient of y*. Because m = 5, precisely one more score has to be
added to b. The maximum M 7T of the scores that are left is %, the minimum M~ is %. We know
that for computing the critical value it is sufficient to know the probabilities Pr(7Tnx > u) and
Pr(Tyw = t),l <t < u. The terms ez’ for which b + M+ < [ will not contribute to any of these
probabilities and they may therefore be deleted. In our case we have b < 56 — % = 53% So we
delete 37 + 4 2% 4+ 4 251 + 253, which results in:

Ply*] = (4259 + 25%) y*.

We also know that only those terms for which b + M~ > u will contribute to Pr(Tx > ). In this

case b > 62 — % = 61%. This is true for the term x5 and its contribution to Pr(Ty > u) equals

c(‘f)/(%) =4/252 = 0.016, where (All) is the number of ways to choose 1 score out of the 4 scores
that are not used yet. We store this contribution (or add it to the total) and we may then delete

255, The result of the removal is:
Ply*] = 4 2% y*.

It is clear that we may apply the principle of deleting parts to any term P[y?]. The result is

a new polynomial P. We use the next score, %, and multiply P by 1+ x%y. For the resulting

polynomial we repeat the previous steps until all scores are used. When all scores are used, we
know Pr(Tn > u) and Pr(Ty = t),l <t < u which suffices to find the one-sided right critical
value, i.e. the smallest value v for which Pr(7Tx > v) < o = 0.05.

3.3 Formal description of the algorithm

Input: N integer, m integer, «: « € [0, 1], v: integer, [{, u]: interval that contains the right critical
value, rank scores: reals.

Output: one-sided right « critical value of the statistic Ty with arbitrary scores.

1. Rearrange the scores such that |a(1)| > ... > |a(N)|.

2. Expand P = [[}_, (1 +z%@y).

3.5 —v,qg—0.

4. Let k be the exponent of y in an arbitrary term of P, then P — P — I, where I consists of all
terms P[y*] of P for which & > m or k < m — (N — j).

5. Let r be the smallest exponent of y in P,k — r.

6. Compute M7, i.e. the sum of the m — k largest scores and compute M~ i.e. the sum of the
m — k smallest scores.

7. Let b be the exponent of x in an arbitrary term of P[y*] then P — P — .J,y*, where .J; consists
of all terms of P[y*] for which b4+ M+t < 1.



8. Let Jy consist of all terms of P[y*] for which b + M~ > wu and add the coefficients of these
terms.

9. Multiply this sum with (ﬂj\;:i) and denote this product by t.
10. ¢ — ¢ +¢.

11. P — P — Joy".

12. Let s be the degree of P. If k < s,k — k+ 1 and go to step 5.
13.5—j+1

4.7 j < N, P — P(1+2°U)y) and go to step 4.

15.1f j > N compute Pr(Tn > u) = ﬁq, where T 18 the two-sample rank statistic.

m

16. Let b(Z) be the exponent of z in the ith term of yim. Furthermore, let ¢(i) be the coefficient
in the 7th term of yim, where P is given in increasing order of b(i) and let d(i) = ), c(j). Now

determine the first term ¢* for which d(¢*) < (Z) (o — Pr(Ty > u)). Then the one-sided right «
critical value is equal to b(7*).

3.3.1 Notes to formal description

Input: N = m + n, the total sample size, m is the sample size of the smallest sample, « is the
one-sided confidence level. One should not choose v too large, because then the expression given
in step 2 becomes too large. We experienced that v = 6 works quite well.

One may choose the interval with the aid of an approximation formula. The smaller the interval,
the faster the algorithm. If one i1s not sure whether the interval contains the critical value, one can
still use the algorithm. If the algorithm fails to give an answer then the real value will be larger
than the upper bound and one should choose a new interval for which the lower bound is equal
to the upper bound of the previous interval. If the algorithm gives an answer that is very close to
the lower bound, one should check whether the answer is equal to the exponent of the first term
of P. If this is the case then one should re-run with an new interval for which the upper bound
is equal to the lower bound of the previous interval. In fact, one can always find the exact critical
value with this method.

ad 1. The order in which the scores are used may influence the speed of the algorithm. As we
argued in the example, the larger scores may have relatively more influence on the value of the
test statistic than the smaller ones. In fact, we minimize the difference between M+ and M~ (step
6.), so that the bounding procedure works optimally.

ad 3. We consider j as the number of scores that is used in the iteration so far. Because v scores are
used in step 2 of the algorithm the initilization value of j is v. We need the variable ¢ to compute
the right-tail probability of the upper bound. This step is the start of the outer loop that ends at
step 15.

ad 4. To avoid unnecessary computations, we discard of all terms for which & > m or k£ <
m — (N — j), because we only need P[y™]. Now, N — j is the maximum that could be added to
k, because this is the number of scores that are not used yet. Therefore, we only have to consider
those terms for which m — (N —j) <k < m.

ad 6. Note that M~ may be negative as well. The m — k scores have to be chosen from the N — j
scores that are not yet used.



ad 7. We discard of all those terms for which the sum of scores is too small.
ad 8. We discard of all those terms for which the sum of scores is too large.

ad 9,10. The number (ﬂj\;:i) is the number of ways to choose m — k scores out of the N — j
unassigned scores. We consider ¢ as the number of sums of scores that exceed uw and ¢ as the

contribution to ¢ of those terms of P[y*] that satisfy the inequality in 8.
ad 14. Here we introduce the next score according to the sequence after step 1.

ad 16. Note that P now only consists of the term 3™ and its coefficient. Note that

1@< () =ity 2 ) = ety (1) 4Pty 20 <

Jzt
< Pr(u>Ty >0(1)+ Pr(In > u) < a <= Pr(Ty > (7)) < a.

The efficiency of this algorithm depends on the differences between the absolute values of the
successive scores. If these differences are relatively large then the algorithm is very efficient, because
then many terms will be removed in steps 7 and 11 in an early stage. This i1s the case when the
scores are quadratic or when they are quantiles of the normal distribution. Hence, the algorithm
is very efficient for the Mood scale test and the Van der Waerden test and especially for the Klotz
test, because the Klotz scores have both characteristics.

For some cases it may be more efficient to perform steps 4 to 12 (the bounding) only for values
of j which are a multiple of a certain integer d. This depends on the scores and the sample sizes.
When one deals with large sample sizes, we know from practical experience that one should choose
d =1 or d =2, because otherwise the expressions will be too large.

4 A generating function for the Halperin statistic
We show how we use (2) to derive a generating function with a closed form for the Halperin

statistic. This statistic is used for data that are censored at a fixed point, also known as type |
censoring.

4.1 The Halperin statistic

Let T be a fixed point and suppose we deal with mutually independent data Xi,...,X,, and
Yi1,...,Y, from which we observe

Xy -+ Xm-r,) and rp X-observations after point 7',

Yy, - Yinera) and r, Y-observations after point T,

where X(;) and Y{;) are order statistics. So we deal with two samples which are censored at the same
fixed point T'. We denote the distribution functions of the X-observations and the Y -observations
by F and G, respectively. We wish to test the null hypothesis

Hy:F(r)=G(x) foralle <T.

Halperin (1960) proposed a statistic for which he proves that it is consistent for alternatives of
the form

Hy: F(T)>G(T) foralle <T.
! F(T)>G(T)’ (T)>G(T) forallz <
The test statistic U, is given by

Uc:M(m—?“m,n—rn)—F?“m(n—rn), (10)

where M(m — ry,, n—ry,) is the Mann-Whitney statistic of the uncensored observations of the two
samples.



4.2 Generating function
For U, we define the following conditional probability generating function.

Definition 4.1 Let U, be the test statistic given in (10), then

Hy, (x|r) = Pr(Ue = ulrp + = )2, (11)

u=0

Lemma 4.2 Let A and B be events and assume that Pr(B) > 0. Furthermore, let Cy, ..., Ch,
be events that are mutually disjoint, whereas Pr(C;) > 0,Pr(BNCy) > 0, k = 1,... N, and

ch\;l Pr(C;) = 1. Then,

z

Pr(A|B) = Z r(A|B N C;) Pr(C;|B).

Proof: by straightforward verification. d

The following theorem, which is not trivial because of a tricky conditioning argument, helps us
to obtain the conditional distribution of the Halperin statistic from the distribution of the Mann-
Whitney statistic.

Theorem 4.3 Let U, denote the Halperin statistic for sample sizesm and n and let M(a,b) denote
the Mann-Whiney statistic for sample sizes a and b. Then, under Hy : F = G, with rp, = m — rpy,
and ¥, = n — Ty,

Pr(U; = u|rm, = a, 7y = b) = Pr(M(a,b) = u+ (m — a)b). (12)
Proof: see Appendix A.

Definition 4.4 Let P = ch\;o > c(0)xOyk where ¢(£) and b(€) are arbitrary real numbers.
Then,

WP, k) = Py = 3 e(0)a"?. (13)

Theorem 4.5 Let Hy (x|r) be the probability generating function (11) of the Halperin statistic
as defined in (10) and let U be the operator as defined in Definition 4.4. Then, under Hy : F = G,

m M=m+4n—r
Ho(z|r) = Z_; WMW ( E (1+2ly),m — z) , (14)

where g(i) = i(n —r+1) — %(m—i)(m—i—l—l),izo,... ,m
Proof: Using Lemma 4.2 we have
Pr(U. = ulrm +rp =7r) = Z Pr(U. = ulrpm + 1 = 7,7 = 1) Pr(rp, = i|rm + 10 = 7).
i=0 (15)

Under Hy, the X;’s and Y;’s are equally distributed and hence we have Pr(X; > T) = Pr(Y; >
T) =1— F(T). Furthermore, r,, and r, are independent. This implies that

PI‘(?“m = i|7°m +ry, = 7“) = PI‘(Tm =i =1 = Z) _ PI‘(Tm = l) PI‘(?“n =r— Z)

Pr(rm + 1 =7) Pr(rpm + 1, =7) 16
@@= By ) Emy - raoy ) 9
CFY D)1 - FOY )



So, rm given rpy + ry is hypergeometrically distributed. We now set out to rewrite (12) in a
form that suits for computing (11). We use Theorem 4.3 and the well-known relation between the
Mann-Whitney statistic and the Wilcoxon statistic for uncensored samples: M (m,n) = W(m,n)—
1

zm(m 4+ 1) to write

Pr(Us.=ulrm +rn=rrm =49 =Pr(U; =u|fm =m—4,7 =n —r+1)

=Pr(M(m—in—r+)=u+tiln—r+i)=Pr(W(im—i,n—r+i) =u—g()

1 . . .
= frny A= g, m =i —r i) (17)
where h(u — g(i),m —i,n —r+1d),i = 0,...,m is the number of rank configurations of m — ¢

uncensored X-observations and n — r + ¢ uncensored Y-observations for which W = u — ¢(¢).

Substituting (16) and (17) into (15) and (15) into (11) gives

ZZ %h(u—g(i)am—i,n—r+in“

J:g()Zhwm i,n—r+iz?

w=0

m+n)

=0 m

where we set w := u — ¢(i).

We use (2) with the Wilcoxon scores to observe that

[e%e) m+4n—r
Zh(w,m—i,n—r—l—i)xw:\ll( H (1—|—xzy),m—i). (19)
w=0 =1
After substituting (19) into (18) we obtain the desired result. O

Note on efficiency
From (17) we observe that, in order to compute Hy_ (z|r), we might also use the well-known
probability generating function of the Mann-Whitney statistic, i.e.

.- k 1 Hji(f+1 (1- lJ)
Pr(M(a,b) =k)z" = - = —. 20
2 e =0t = e .

In Halperin (1960) Halperin gives a recursive formula for computing Pr(U, = u|ry, + rp = r) that
is also based on the null distribution of the Mann-Whitney statistic M(m — i,n — r 4 4) for all
i,i = 1,...,m. From (15) we conclude that the computation of Hy_(x|r) with the aid of (20)
requires the expansion of (20) fora=m —i b=n+r—14,i=0,...,m. We experienced that this
is much more time-consuming than the computation of Hy_(#|r) with the aid of (19). The first
reason for this is that (20) is a quotient, which is harder to expand than (19). The second reason
is that (20) has to be expanded for various values of a and b, whereas the product in (19) has to
be expanded only once. For this last reason Halperin’s formula is also less efficient than (19).

5 Generating function for block rank statistics

In this section we show how to compute the null distribution of block rank test statistics. We
derive a generating function for these rank test statistics which may be seen as a generalization of
(2). The main idea is to derive a generating function for the distribution of the ranks within the
blocks and multiply these to obtain the generating function of the sum of the ranks. We note that
Streitberg and Rohmel (1987) give recursive formulas for computing the null distribution of block
rank statistics. They do not deal with the Friedman statistic.
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5.1 Block rank tests

Suppose we deal with data that are presented in the form of a two-way layout of b rows and ¢
columns. The rows indicate blocks and the columns indicate treatments. Let Y;; be the observation
in row ¢ and column j. We consider the following model:

Yij = p+ G + 5 + iy,

t=1,...,b,5=1,...t, where u is a general mean, §; is a block effect, v; a treatment effect and
€;; 1s a random error component, mutually independent and identically distributed for all ¢ and j.
We want to test the null hypothesis

Hy:y1=...=%=0 (21)
against the alternative hypothesis
Hy v # 0 for at least one j.

Within each block rank scores are assigned to the observations. The blocks are independent and
may have different rank scores. We denote the rank score for the observation in the ith block
belonging to the jth treatment by R;;. Furthermore, let 7} denote the treatment totals Zle Ry,
B; the block totals Z;Il Ri; and E the total of all rank scores Zle Z;Il Ri;. We define S =
Z;Il T]2 To test Hy we consider test statistics of the form ¢1.5 4 ¢o, where ¢; and ¢5 are constants
and ¢; > 0. We can compute the distribution of S under Hy if we can compute the joint distribution
of the T}’s under Hy. Generating functions turn out to be a convenient tool for computing the

joint distribution of the 7}’s under Hy.

5.2 A generating function for block rank statistics

As in the two-sample case we need rank score functions. The rank score function for block 7 1s

defined as
a; : {1,...,t} — R. (22)

If ties occur, then again the test becomes a conditional one (cf. our remarks in Section 2.2). We
now introduce a probability generating function for observations in one block.

Definition 5.1 The probability generating function of the row vector of the ranks within block i,
Ri = (Ri1, ..., Rit), is defined by

[ss)
Hp(8) =Y Pr(Rpy =v1,..., Ry =v)ai* . a}, (23)

where T = (x1,...,2¢),7 = (v1,... ,vt),ﬁz (0,...,0) and T = (00,...,00), which are vectors
of length t.

Theorem 5.2 Let 8; be the symmelric group of all these permutations of {1,... 1}, Under Hy :
Y1 =...=7 = 0 we have

— 1 aq; o aq; o
Hi (%) = ST et ), (24)
: gES,

Proof: We know that Pr(R;; = vy, ..., R = v1) = 0 if {v1,..., 01} # {a;(1),... ,a;(t)}. Under
Hy, we have Pr(R;; = a;(€)) = Pr(Rir, = a;({)) for all j # k, for all £ and for all . Therefore, we
have Pr(R;1 = a;(0(1)),... , Ry = a;(c(1))) = % for all & € S; and the result follows. a

We use generating function (24) to derive a formula for the probability generating function of the
vector (T1,...,T3).

11



Definition 5.3 The probability generating function of the row vector of treatment totals T =
(Th,...,Ty) is defined by

=
Hp() =Y Pr(Ty=wuy,... . T = w)ai* . af, (25)
=0
where @ = (uy,...,u;) and Z, 0 and 5 are as in Definition 5.1.

The following theorem shows that computing the null distribution of block rank statistics essen-
tially reduces to computing the null distribution within blocks and multiplication.

Theorem 5.4 The generating function of the vector T = (T4, ..., Ty) factors under Hy : v =
co.=% =0 as

b

Hp(Z) = [ Hr.(F), (26)

i=1
where ¥ as in Definition 5.1.
Proof: Let @ = (uy,...,uz), ¥ = (v1,... ,vt),ﬁ = (0,...,0) and & = (o0,...,00), which are
vectors of length ¢ and let T} = i, Rij,1 < s < b. Since we assume that there is no block

effect, R;; and Ry; are mutually independent for all i £ k,i=1,...,b,k=1,...,b and therefore
T]»s_1 and R,; are mutually independent too.

[es]
Hp(@) = > Pr(Ti=wuy,... . Ty =u)ait .. o)
a=0

=
b—1 b—1
E Pr(Ty " =up —v1,..., Y7 =y — vy)

=
d=7

7 §=0
U U
Pr(Repr = vi, ..., Ry = ve) 2y ooyt
o =
_ P Tb—l _ Tb—l _ U1—V1 Us—Vy¢
= r(Ty " =ur —wvy,. T =g — o) 2 Sy
35 a=0
v v
Pr(Rpyr = vi, ..., Rpr = ve) )" .. 2}

=

v v

= E Pr(Reyr = v1,..., Ree = vy) )" .. 2}
s

Pr(le_1 =wup,..., TP = ug) 2ty

Repeating this argument, we obtain (26). O

Expansion of (26) yields the simultaneous distribution of 71, ..., T;. Since we are interested in the
distribution of S = Z;Il T]»Z, it suffices to replace all terms of the form kz{*...z}* by k2" with
U= Z;Il u]2 Let k*2U" be a term of the new expression, then Pr(S = U*) = k*. So we are able
to determine the distribution of S and therefore also of ¢1.5 + ¢».

The problem is that the expansion of (26) might cost a lot of memory space, due to the length of
the expressions that arise. As a solution to this problem we introduce a recursion that is based on
the equiprobability of the values of 77, ... 7} and R;1, ..., R;; under Hy. We define the function
Hr. (2):

12



Definition 5.5 Let T} = S Rij 1< s<b letT = (T5,...,17), let it = (uy, ... ,u) and let
d(%) be the number of distinct permutations of i, then

Hyp (¥)= Y d@@Pr(ly =ui,..., T} = w)zi . .x}, (27)
UL 2Ug

where ¥ is as in Definition 5.1.

Since all treatment effects are assumed to be equal under Hy, the coefficients in H.(¥) equal
the probability that 7" equals one of the permutations of #. We present a recursive formula for
computing A%, (%):

Theorem 5.6 Let 17 and T* be as in Definttion 5.5, then under Hy:y1=...=7 =0
Hio(#) = I( o (7) Hi (), (28)
where I is the linear operator defined by I(cxy* ... z}") = ca:rlnax(ul"” ) .x;mn(ul"” ),

Proof: As noted before, T]»s_1 and R,; are mutually independent for all ¢ # k, ¢ =1,...,b,k =
1,...,b. Let Z, 7,0 and 3 be as in Definition 5.1 and let d(%) be as in Definition 5.5.

Fer @) Hp (F) = ) d@Pr(Ty =y, TP =) it
UL ... 2 Uy
e
Z Pr(Rs1 =v1,..., R =v)a]* .. .a)"
e
= Z d(@)Pr(Ty = up 4+ vi, ..., T = uy +vy) J:lfl"'vl it
=0
UL ... 2 Uy
We let (dy,...,%) be a tuple for which @; > ... > 4. Applying I to the entire polynomial has
the effect that those terms ca:lfl"'vl .z for which (u1 +v1,...,us + vy) is a permutation of
(@1,...,4:) sum up to one term . The sum of coefficients is the probability that 7% equals one of
the permutations of @y > ... > u;. Hence,
Iy @ Hp (7)) = Y d@Pr(Tf =, T = @) af’ o]
1> >0
= Hrp.(&). (I

Example
Let Hx\ (%) = $(adades + 2i2323) and Hp,(F) = $(ad2ozs + 212323 + z12223), then

1
x oo 6 3 2 4.5 2 4.3 4 53 3 3.5 3 3.3 5
Hp=(¥) = 1(6(9519521’3 t T12yx3 + 22523 + 2505 + ¥1T03 + 1’11’2953)
1
6 3 2 5 4 2 5 3 3 4.4 3
= 6(9@1952953 + ziwarsy + 3wy + riwary).

Using H%. (%) and I instead of Hp(Z) we gain time and memory, because H..(Z) contains much
less terms than Hp- (). Since the value of the test statistic is the same for all permutations of

(w1, ..., u), H7, (%) suffices for computing the null distribution of the test statistic.

13



t=3 | t= t=
0.12 | 0.68 11.00
0.47 | 6.53 | 168.22
7 1.53 | 33.22

10 3.43 | 99.30

DN o

20 19.17
30 | 56.57
40 | 124.60

Table 1: Computing times in seconds on a SUNSparc 5 for the Friedman test

5.3 Applications
5.3.1 The Friedman test

A well-known block rank test is the Friedman (1937) test. For the Friedman test we have
{a; (1), ... a;(t)} = {1,...,¢} for all . The Friedman test statistic is:

(E_b@;U)z

@f+gﬁiiﬁ—b@+mn)

12
Cbt(t+1) 4

12
bt + 1) 4

M- i1-

4
1

.
1

t

12

1S +3b(t+ 1) ——Z
j=
H

t

—q5+%a+m_;——3——

= 615 + Ca,
with ¢; = % and c¢; = =3b(t+1). So @ is a statistic of the form we dealt with in the previous
section. Let Tp be the vector of treatment totals for this test. By using (26) and (24) we obtain:

mﬂﬁznﬂm@:umﬂW:(%ZF%uuﬁNj. (30)

i=1

5.3.2 Computing times

In Table 1 we give computing times for the Friedman test. One may observe that the computing
times increase very quickly as the number of treatments increases. This is because the number
of configurations within a block increases by a factor ¢ + 1, when we add one treatment to ¢
treatments.

5.4 The Cochran test

The Cochran and Cox (1957) test is an example of a test where ties occur in a natural way.
Consider an experiment for which the observations can have only two values: 0 and 1. Here, 0
stands for "no success” and 1 for ”success”. We deal with blocks and for each observation within
a block the rank score does not depend on the scores of the other observations within that block.
Let 7} = Zle Ri;, Bi = Z;’:l Ri; and £ = Zle B;. If we wish to compare the treatments
it suffices to condition on the number of blocks &; with block total j,j = 0,...,, since a score

14



b | t=3| t=4] t=5]| t=6
1] 0.10 0.65 3.62 | 28.00
2|1 0.25 1.85 | 19.87 | 246.37
31 038 3.90 | 55.75
41 0.62 8.08 | 133.23

10 | 4.48 | 130.88

20 | 27.20

30 | 84.52

Table 2: Computing times in seconds on a SUNSparc 5 for the Cochran test, b; = 0%, 7 =0,...1.

equals either 0 or 1. Let us first define Cochran’s test statistic C'.

S (1 - )
Yoy Bilt - Bi)
iy D)
> =0 J(t = 5)b
Sie (T - 7)) (3D

C=1(t—1)

_ ji=1 I3
—t(t_ 1) t b 3 2p
th:1 JY5 _ijl J705
¢
tzj:l 7}2 _E2

=t-1)—
= 615—|—62,

WithSIZ;’:1 7}2’61: t(tt%l) and ¢y = —E%*(t—1)

RS tE—Z;zl 32b;

So C'is linear in S and we therefore use Theorem 5.4 with scores 0 and 1. We observe that Hp, (%)
has to be computed for all values of j for which 6; > 0,57 = 0...,¢{. We apply Theorem 5.6 and
(28) to speed up the computations.

5.5 Computing times for the Cochran test

For the case t = 2 we used the expansion of formula (26). In this case the computing times are
small: less than 1.5 sec. for b < 1000 and less than 20 sec. if 51 < 8000. If by is larger than 8000,
memory problems occur. In Table 2 we give computing times for the Cochran test for the cases
t > 2. We used (28) for the cases t > 2. We did not apply I after every step in this recursion,
but after each third step. This is because the operator I is not so fast and it has not that much
effect on the length of the expression when it was used just a few steps before in the recursion. We
present tables for the cases b; = by = b*,0 < j, k < ¢, so the number of blocks b = (¢t + 1)b*. We
should note that this is generally not the worst case. Bad cases will usually occur as b; is relatively
large for j = %t.

A Proof of Theorem 4.3
In order to prove the theorem we have to define the test statistics more formally. We first define

fz(le...le)E{Zl<...<ZZ'ST}Q{ZZ'_H>T},...,{Zn+m>T},

where £z, = 0if Z; is an X-observation and {z, = 1if Z; is an Y -observation. So when we know ¢,
we know how many X’s and Y’s are smaller or equal to 7" and we know how they are configurated.

15



Let 7, (€) and 7, (&) be the number of 0’s and 1’s in £, respectively, then we introduce two classes

Aap =16 :7m(§) = a,7,(§) = b} and

A= U A

a=1b=1
Now we formally define the statistic U, and the Mann-Whitney statistic M, 3:

Uc : -’4 - Na UC(g) = Z I{fzjzlyfzkIO} + (m - fm(g))fn(g)
j<k

Ma,b : Aa,b - Na Ma,b(g) = Z I{fzjzlyfzk:()}a
j<k

where Ig is the indicator function of the event F. We define p : A — [0, 1] as the normalized
counting measure. Then,

Pr(U, = u|fm = a,7, = b) = Pr(om = a,7n = b) (32)
and
Pr(U, = u, 7y = a, 7y = b) = Z w(& P = a, 7y =b)
EeAU(E)=u
33
= Z ﬂ(gafm:aﬂ:n:b)a ( )
EEAL b

Mg p(€)=u—(m—a)b

because u(§, 7 = a, 7, =b) = 01if & ¢ A, ;. Since we have m X’s and n Y'’s, there exist (TZ) (Tbl)
equiprobable realizations of Xi,...,X,, and Y7,...,Y) that lead to the same value of £ € Ay ;.
With N = m+n and B = a + b we denote such a realization by (w1,...,wp,wpy1, ..., WN).
Then for & € Ag s,

/T /w AF(wr) .. dF(wp)) (1_F(T))N—B (34)

— 00 — 00

N-B

g () (1-rm)

Substitution of (34) into (33) results in:

Pr(U, = u, Py = a,7p, = b) = Z .
EeAq : (35)
Mg (&)=u—(m—a)b

We return to equality (32) and note that

Pr(ipm = a, 7y = b) = Pr(ii = a) Pr(iy = b) = (m) (Z) (F(T))B (1- F(T))N_B.

¢ (36)
Substitution of (35) and (36) into (32) completes the proof:
_ _ 1
Pr(U, = u|fpm = a,7p, = b) = Z o= Pr(Map = u— (m —a)b). (37)
EEAL b
Mg (&)=u—(m—a)b
(I
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B Tables

As a result of the theorems in the previous sections, we present extended tables of critical values.
For the two-sample rank statistics we only give tables for the balanced cases n = m because of
practical reasons. The confidence levels « are two-sided, except for the Friedman statistic for which
only one-sided confidence levels exist. We give the dimensions of the new and existing tables and
the references:

¢ Freund-Ansari-Bradley: N < 80, N < 20 in Ansari and Bradley (1960).

o Friedman:t =36 <25;t =4 b6<20;t=5b<12.
t=3,b<15;¢t =4,b < 8in Hollander and Wolfe (1973),¢t = 5,6 < 8,2 = 6,5 < 6 in Odeh
(1977).

e Mood: N <62, N < 20 in Laubscher et al. (1968).
e Klotz: N <40, N < 20 in Klotz (1962)
e Van der Waerden: N < 32, N < 20 in Van der Waerden (1957).

Since the exact distributions of the Halperin test and the Cochran test do not only depend on
the sample sizes, but also on conditional arguments, it would be very paper-consuming to present
tables for these tests. For the Halperin statistic, tables are available in Van der Laan and Van
Putten (1987) for N < 24. We note that, with our method, we are able to compute p-values or
critical values of the Halperin statistic within a few seconds for N < 50.

Packages for exact values
For all test statistics presented in this paper, we wrote Mathematica packages for computing exact
p-values and critical values. These packages are available from the author.
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n|0.1 0.05 0.025  0.01 0.005 n|0.1 0.05 0.025 0.01 0.005
4133 37 37 * * 1812322.50 242850 2516.50 2618.50 2686.50
5159.25  65.25  67.25  71.25  « 1912718.75  2838.75 2942.75 30568.75 3134.75
6197.50 103.50  109.50 115.50 125.50 || 20| 3159 3295 3411 3545 3633
71151.75 161.75 169.75 179.75 185.75 || 21|3643.25 3797.25 3927.25 4077.25 4179.25
8| 222 236 248 262 268 22 4173.50 4345.50 4493.50 4663.50 4775.50
91312.25 330.26 346.25 364.25 374.25 |[23|4751.75 4945.75 5111.75 5299.75 5425.75
10142250 446.50 466.50 488.50 502.50 || 24|5382 9596 9782 5992 6134
11]556.75 586.76 612.75 640.75 660.75 || 25|6064.25 6302.25 6508.25 6740.25 6898.25
121715 753 785 821 845 26 |16802.50 7066.50 7290.50 7548.50 7722.50
131901.25 949.25 987.25 1031.25 1061.25| 27| 7596.75 T7886.75 8134.75 8418.75 8608.75
1411119.50 1173.50 1221.50 1275.50 1309.50 || 28 | 8453 8769 9041 9353 9561
15 1365.75 1433.75 1489.75 1551.75 1593.75(/29|9367.25 9713.25 10011.25 10351.25 10579.25
16| 1648 1726 1792 1868 1918 30| 10347.50 10723.50 11047.50 11417.50 11667.50
1711966.25 2058.25 2134.25 2222.25 2280.25| 31| 11391.75 11799.75 12151.75 12553.75 12825.75

Table 3: Right critical values for the Mood scale test, n = %N

n (0.1 0.06 0.025 0.01 0.005]| n|0.1 0.06 0.025 0.01 0.005
4111 12 12 * * 2312945 302.5 309.5 317.56 323.5
5165 175 175 185 241320 329 336 345 351
623 24 25 26 27 25|346.5 355.5 363.5 37256 379.5
71305 315 335 345 355 |[26]374 384 392 402 409
8139 41 42 44 45 271402.5 413.5 421.5 4325 439.5
9148.5 50.5 525 545 555 |[28|432 443 453 463 471
10160 62 64 66 67 29| 462.5 474.5 484.5 4955 503.5
111715 745 765 785 80.5 |30(494 507 517 529 537
12| 84 87 90 93 95 311527.5 539.5 550.5 563.5 572.5
131985 101.5 104.5 107.5 109.5|32|561 574 586 599 608
141113 117 120 124 126 | 33|595.5 609.5 621.5 635.5 6455
151129.5 133.5 136.5 141.5 143.5|34|631 646 659 673 683
161146 151 155 159 163 |/ 35|668.5 683.5 696.5 T11.5 7225
17]164.5 169.5 173.5 178.5 182.5|36|706 722 736 752 762
181183 189 194 199 203 |/ 37|744.5 761.5 775.5 T792.5 803.5
191203.5 209.5 214.5 220.5 224.5| 38|78 802 817 834 846
201225 231 237 244 248 || 39|825.5 843.5 859.5 877.5 889.5
2112475 2545 260.5 267.5 271.5( 40868 886 903 921 934
221270 278 285 292 297

Table 4: Right critical values for the Freund-Ansari-Bradley test, n =

19
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0.05

0.02

0.01

2.612
2.877
3.116
3.399
3.638
3.872
4.094
4.305
4.509
4.705
4.894
5.077

3.082
3.295
3.631
3.925
4.243
4.517
4.784
5.037
5.281
5.516
5.742
5.960

3.311
3.685
3.968
4.269
4.624
4.934
5.228
5.514
5.787
6.048
6.300
6.543

Table 5: Right critical values for the
Van der Waerden test, n = %N

0.05

0.02

0.01

NolNosBEN B o Iy QEISN It

10
11
12
13
14
15
16
17
18
19
20

4.149
5.122
6.155
7.285
8.448
9.616
10.797
11.965
13.127
14.292
15.450
16.607
17.761
18.912
20.061
21.208
22.352

4.149

5.229

6.445

7.612

8.903
10.002
11.338
12.555
13.757
14.966
16.167
17.365
18.559
19.750
20.937
22.121
23.301

*
5.582
6.777
8.078
9.305

10.594

11.881

13.162

14.421

15.686

16.938

18.186

19.428

20.665

21.897

23.125

24.348

Table 6: Right critical values for
Klotz test, n = %N

t b|0.1 0.05 0.01 0.001 5| 0.1 0.05 0.01 0.001 b 0.1 0.05 0.01 0.001
3 2 =* * * * 21 20 20 * * 21 36 38 40 *
31 18 18 * * 31 33 37 45 * 3| b6 64 76 86
41 24 26 32 * 41 42 52 64 74 4] 76 88 112 132
51 26 32 42 50 5| b3 65 83 105 51 96 112 146 180
6 32 42 b4 72 6| 64 76 102 128 6116 136 178 228
7| 38 50 62 86 71 75 91 123 157 71136 160 212 274
8| 42 50 72 98 8| 84 102 140 184 8154 184 246 320
91 b0 56 86 114 9] 93 115 161 211 91174 208 280 368
10] 50 62 96 126 10106 128 178 242 10194 232 312 414
11| 56 72 104 146 11115 141 197 267 11(214 256 346 460
121 62 78 114 152 12126 154 216 296 12232 280 378 506
13| 62 86 122 162 131133 169 235 323
14| 72 86 128 186 14148 180 254 352
151 74 96 134 194 15157 193 273 377
16| 78 104 150 216 16168 208 292 404
17| 86 104 158 222 17179 221 313 433
18| 86 114 162 234 181190 232 328 458
19 96 122 182 254 19(201 249 349 489
200 98 126 186 266 201208 260 370 512
211104 128 194 278
221104 134 200 296
23114 146 216 302
24122 150 222 314
25122 152 224 338

the

Table 7: Right critical values for the sum of squares of treatment totals () in the Friedman test,
b = number of blocks, ¢ = number of treatments.
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