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Boundary conditions for an instationary contact
line of a viscous drop spreading on a plate.

SLde Snoo

Abstract

The flow of a glass drop is studied on micro-meter scale. This flow is described by a quasi
stationary Stokes-flow with a free surface, governed by surface tension and the contact line
forces. We investigate the effects of the boundary conditions in the contact line region on the
time evolution of a spreading drop. From several modifications of the continuum model the
most suitable boundary conditions near the instationary moving contact line are a linear slip on
the fluid-solid surface and a force on the contact line in order to generate the contact angle.

Numerical results of a finite element model show that the slip-coefficient influences the contact
line velocity and that the size of the elements near the contact line has to be of the order of the
slip-length for an accurate solution. The use of smaller elements results in stiff differential
equations, thus restricting the time step of explicit methods.

1 Introduction

In glass technology many problems arise, varying in character and scale. One of them is the
morphology of the glass under pressure. The glass here is to be seen as a (Newtonian) fluid, a
situation which holds if the temperature is large enough (usually between 600 and 1200°C) to
provide for a suitably low viscosity. In the production of CRTs the moulding process involves
two scales. One is the global form of the screen, tenths of centimeters large, and one the small
dimples in the glass, needed to have sufficient roughness on the surface e.g. to prevent
reflections and for letting the fluorencent coating stick on it in a controlled way. The problem
of the morphology of such a small dimple which is of a micrometer dimension is simplified here
to the evolution of a liquid drop on a solid plate. This motion is mainly governed by the forces
in the region around the contact line. The contact line is the boundary of the free surface (of the
drop) and the solid plate.

Fluid-solid contact lines have been studied since the end of last century. Moving contact lines
have received a lot of attention since the late sixties. However, most studies have been focusing
on stationary moving contact lines, while we are interested in instationary contact lines with
special attention for the mathematical formulation, numerical (finite element) modelling and the
influence of such a contact line on the motion of a viscous fluid. The contact angle at a fluid
solid-gas interface, the surface tension and the no-slip conditions are macro scale effects of
interactions on molecular level. We remark that the surface and contact line of a fluid are not
sharply defined on this molecular level. Therefore it is not very surprising that problems may
arise when one tries to model the contact line with continuum mechanics where this contact line
is exactly defined. As clearly explained in [6, 7, 9] the combination of a no-slip condition and a
moving contact line results in a singular problem. A modification of the boundary conditions of
the problem can remove this singularity.

This paper is built up as follows. In §2 we analyse the characteristics of the glass flow in a
mould and the motion of the drop. Then in §3 we discuss the motion of the contact line. It turns
out the we first have to remove a singularity which arises in the formulation. This then gives us
suitable boundary conditions. In §4 we briefly discuss a finite element formulation and indicate
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how the subsequent simulations are carried out. The simulation of the spreading of a 10 pm
small drop of glass at constant temperature is discussed in §5. Special attention will be given to
the influence of the size of the elements. Finally we give some conclusions and suggestions in
§6.

2 Glass flow at micrometer scale

In this section we will give a model description of the glass flow at a micrometer scale during
the moulding process and show that this flow has the same characteristics as the spreading on a
solid surface of a glass drop with the same length scale. The latter motion is simple to describe
and an analytical approximation can be found using the method of matched asymptotic
expansions, see [13]. This analytical approximation can be used to verify and validate our
numerical model.

The motion of glass at temperatures above 600°C can be described by the Navier-Stokes
equation for incompressible Newtonian fluids,

R (S ali (- \7)-) \7 - Re -e r--;-+ u· y u =-Y·cr +-g.at Fr
(1)

Here Ii is the dimension free velocity, t the dimension free time, g the dimension free gravity

and

(2)

(3)

the dimension free stress tensor, with the dimension free pressure p. Re, Sr and Fr are the

Reynolds, Froude and Strouhal numbers respectively, which characterise the flow. These
numbers are expressed in the characteristic parameters of the flow. Using a pressure Pc and a
length lco characteristic for the manufacturing process, and a density p and a viscosity p,
characteristic for glass at a certain temperature, a characteristic velocity

picu =--
c Jl

and a characteristic time scale

I Jlt =_c=_
c '

Uc Pc

result. Consequently, the dimension free numbers are

(4)

2 2

F - Uc _ Pcr-----2 '
glc gJl

t I
Sr=..£...£..= 1,

Uc

(5)

with g the gravitational acceleration.

A typical value for the pressure during the moulding process is 105 kglm2
• The length scale of

the surface variations of interest in is 10 pm. The density of glass is 2500 kglm3 cf. [24]. The
viscosity of glass strongly depends on the temperature. At 600°C the viscosity is 1012 kg slm2

•

At 700, 800 and 900°C one finds 4.108,4.106 and 2.105 kg slm2 respectively. The Reynolds
number for such a flow varies from 10,26 to 10,13, and the quotient Re/Fr is of about 10,11.

Inertial and gravitational effects can thus be neglected. The motion of the fluid can thus be
described adequately by the stationary Stokes-equations for incompressible fluids



3

V·a=O,

V·ii=O.

The surface tension provides for the boundary conditions on the free surface

an =(lq - ~xt)n.

(6)

(7)

(8)

Here K is the curvature of the surface, y the surface tension and Pext the external pressure. In
dimension free quantities this reads

with

_ (1_ p-)
an= Ca K - ext n,

Ca:= Uc!l = Pele ,
y y

(9)

(10)

the so called capillary number.

As remarked above we will consider the spreading of a small drop on a solid surface as being
typical for the phenomenon we are interested in. Hence we take the size of the drop equal to the
typical length scale of 10 f.1m. The pressure in a stationary drop equals

(11)

with r the radius of the drop. The surface tension of glass equals 0.3 N/m. The pressure in a
drop with a diameter of 10 J.1rn is about 105 N/m2

, as was the pressure in the mould.

A major point of interest in the study of the evolution of a viscous blob under surface tension is
the range of time scales present in the problem. These time scales can be found from a
dimension analysis. A non-dimensional formulation based on the characteristic length Ie,
surface tension y, and viscosity f.1 one can define a characteristic velocity

and a characteristic time scale

t =.!L=ll:e e·
ue Y

(12)

(13)

At first sight it may seem strange that the characteristic velocity does not depend on the
characteristic length scale. To understand this a sinusoidal disturbance of the surface can be
considered. The velocity of the surface will be proportional to the ratio of the magnitude and
the wavelength of the sinus and thus be independent of the characteristic length. The length
scale of the geometry does not influence the velocity. On the other hand the characteristic time
is proportional to the characteristic length. As a consequence smaller geometries will evolve
faster. Under the influence of surface tension, perturbations of the surface with a short
wavelength will smooth out quickly. The long time scales in a geometry will thus be more or
less proportional to the largest length scale and the short time to the smallest length scale,
which is zero in the continuous case and equal to the length scale of discretisation in the
discrete case. This wide range of time scales may result in a stiff problem, when solving the
differential equations numerically.
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3 The moving contact line

The place where fluid-solid and fluid-gas interfaces
meet is called the contact line (which is a single
point in an axisymmetric formulation). At this line
the two interfaces form an angle, the contact angle
(see figure 1). The influence of the contact angle on
fluid flow with a free boundary was first analysed
by West in 1912 [27]. For a moving capillary with
diameter a, he found a pressure drop (P) between
the gas in front of the meniscus and the liquid at a
distance L behind the meniscus to be given by

p =8JlU.!:. - 2.Y.cosS ,
a2 a

Gas

Liquid

YLS Solid Yas

Figure 1: the contact angle B.

(14)

(15)

with U the velocity of the contact line, ).1 the viscosity, r the surface tension and 0 the contact
angle. In a stationary situation the velocity of the contact line is equal to the characteristic
velocity UC ' Furthermore, if the distance L equals the diameter a, then

p = 8.Y.(ca _COSS).
Ic 4

This analysis shows that both the surface tension and the contact angle are relevant factors in a
Stokes flow model if the capillary number is of the order of I or less.

3.1 The slip boundary condition

The modelling of a moving front of a Newtonian fluid with surface tension and a no-slip
condition results in a singular problem at the contact line [6, 7, 9]. No-slip and a moving
contact line are kinematically compatible, but give rise to a multi-valued velocity. The velocity
at the contact line will be discontinuous, the stress tensor thus unbounded and unbounded
forces are needed for the motion of the fluid at the contact line. There are two types of solutions
to this singularity problem: the use of molecular dynamic modelling [16, 17, 25] and
modification of the continuum mechanics model. The former is useful if one is interested in
effects on molecular scale, but the latter is more practical for studying macro scale effects.

Several modifications to the continuum mechanics models can be made. The most common is
the relaxation of the no-slip condition, which can be found in different forms resulting from
different assumptions. One assumption is that the fluid is not fixed to the solid, but moves with
a (non)-linear friction over the surface, the velocity thus being propotional to the shear [7, 8,
10, 12, 13, 14, 18, 19]. Such a slip is also observed in molecular dynamics simulations [17,
25]. One may also assume that the fluid is rolling over a rough surface [11]. The boundary
condition resulting from this assumption is equivalent to the one obtained with friction. Another
assumption for slip is that the fluid molecules need some time to get fixed to the solid [15].
This results in a region near the contact line where the fluid moves without friction. A weak:
point in this assumption is that the fluid in such a model is effectively not rolling over the
surface, the contactline will always consist of the same material points [9]. For different
models using slip, Dussan V. [8] has shown that the macro scale flow does not depend on the
actual formulation of the slip. It depends only on the parameter defining the slip coefficient.

Slip models are not the only solution for the singularity problem. Another modification to the
continuum mechanics model is the elimination of the contact line by assuming a precursor film
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[2]. This film is a result of vapourization and diffusion of the fluid. The macro-scale flow
obtained with this model is highly equivalent with the result of slip-models. However, Copley et
at. [4] demonstrated that this assumption actually is not valid for glass, no precursor film is
ever detected. A third modification would be to abandon the Newtonian character of the fluid.
A shear thinning behaviour of the viscosity results in a bounded force, even though the velocity
gradient is still unbounded [26]. Glass has such a shear thinning behaviour [23]. One of the
problems encountered in this model is the increasing Reynolds number near the contact line.
The flow is thus highly non-linear. The final modification is the introduction of a surface
tension gradient as a result of molecular dynamics [22]. The fluid-gas and fluid-solid interfaces
are both described by surface tensions. Chemical potentials and thermodynamic laws lead to
the a parameter called the surface tension relaxation time, which characterizes the interval of
time required for the formation of the interfacial structures. This model is very complicated for
use in a numerical method.

All modifications of the continuum mechanics model have some unknown parameter and all
models predict the same macro-scale flows. Boender et at. [3] have calculated the shape of the
meniscus from a (known) angle of the surface at some distance from the solid while ignoring
the region of a few nm from this point to the contact line. From these results it can be
concluded that any model could be adequate for the description of the macro-scale flow.
Knowing this and not being interested in the flow at nm scale, we allow ourselves to use a
simple linear slip model, which of all modifications is the easiest to implement. This linear slip
condition corresponds to a friction linear in the velocity of the fluid. The friction force has to be
in balance with the tangential forces on the fluid surface, i.e.

(an)- t =~u . t =(/.1 fA. )u . t , (16)

with a the stress tensor, t and n the tangential and normal directions on the interface, f3 the slip
coefficient and A the slip length, which is usually between 1 and 100 nm. Since the fluid cannot
move through the solid boundary we also have the boundary condition

u·n=O.

3.2 Dynamic contact angle

(17)

In literature there is no common agreement on how the contact angle at a moving contact line
behaves. One of the problems is the fact that the dynamic contact angle is not well defined.
Experimental and numerical investigations in the neighbourhood of the contact line show that
the surface of the fluid surface undergoes rapid changes near the contact line up to nm scale [3,
20]. An interesting conclusion, given by Boender [3], is that the value of the contact angle (at 1
nm from the solid surface) is dominant when the velocity is low. The dynamic contact angle is
then close to the static value, and the value of the contact angle is of little importance at higher
velocities when viscous forces dominate. Considering this and the fact that we are mainly
interested in the mathematical model for a micrometer-scale flow, we will base our model, like
most researchers, on a contact angle equal to the static contact angle.

However, the prescription of a fixed contact angle is not an easy task. It requires the velocity of
the free surface to be constant near the contact line. In stationary moving boundary flows this
is not a problem, because the whole surface is moving with a constant velocity. Solutions for
these problems can be found with iterative approximation of the surface shape. given the
position of the contact line [1, 5, 19]. For an instationary contact line the position is a priori
unknown and the velocity of the free surface is not constant. Therefore we will use another
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approach to prescribe the contact angle, which has also been used by Bach and Hassager [1]:
the precription of a force on the contact line.

The static contact angle can be expressed in terms of a force using Young's equation [28]

Ycos8 S =Y GS -Y LS = Fs · (18)

Here Os represents the static contact angle, YGS and YLS are the surface tension on the gas-solid
and liquid-solid interface and Fs the resulting force on the contact line. We now assume that the
force working at a moving contact line equals the force on a static contact line. Numerical
results in § 5 will confirm that the contact angle obtained with this force and linear slip in fact
equals the static contact angle. When using a finite element method, the force on the contact
line results in a natural boundary condition, while a fixed contact angle would result in an
essential boundary condition. The former are much easier to handle.

4 Finite Element Formulation

For the solution of the Stokes equation we use a finite element method based on the weak
formulation:

1~ (V ·u)qdQ = 0,

where v and q represent the test functions and f represents the natural boundary condition:

f=crn,

(19)

(20)

(21)

(22)

which corresponds to a force on the surface of the fluid.

For the implementation of the surface tension we use a formulation described by Bach and
Hassager [1]. Application of the Frenet formula

dt
-=1(n
ds

and partial integration of the weak formulation of the surface tension force results in the
formulation

ffy .vds =1"1 (-~XI +K"()n. vd s
"0 "0

J
SI J'\'I dv=- ~xln·vds-y t·-ds+y[v·t]\ -y[v·t]o,

So So ds
(23)

which can easily be implemented in a finite element model. The advantage of this formulation is

that the surface does not have to be smooth (S E Co). Another advantage is that the last two
terms on the right-hand side describe a force on the edges of a surface which can be used to
implement the contact angle as mentioned above in section 3.2. The above formulations are
given in general co-ordinates. The axisymmetric formulations can be found in the appendix.

For the discretization of the problem we use a Galerkin formulation and triangular Taylor
Hood elements with quadratic approximation of the velocity and a linear approximation of the
pressure. This element satisfies the Babuska-Brezzi condition, is accurate and simple to
implement. Moreover we do not want to use a penalty method, because the introduced artificial
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compressibility might give unrealistic solutions due to the large variation in pressure near the
contact line.

The problem defmed above is a stationary one. The reduction to a stationary situation is
allowed since the inertial effects can be neglected. Actually our problem is quasil.stationary, as
the boundary is moving. For the time evolution of the drop we use the following equation for
the displacement,

x=u. (24)

Here x is the velocity of the boundary and u is the velocity of the fluid at the boundary. For
the time integration in equation (24) an Euler-forward scheme is used. Every time step a
completely new mesh is generated. The time required for this is acceptable compared to the
time needed to build the matrix and solve the linear equations. It is less than 15% of the total
time. The system of equations is solve by means of a LV-decomposition.

We have implemented the problem using the finite element package Sepran [21]. The mesh
generation is done by an updated version of the mesh generator of this package which can
handle large differences in element size without problems.

5 Numerical investigation of a model of an axisymmetric drop

We have chosen to simulate a drop similar to the one used by Hocking and Rivers [13] in their
calculations and observations. This is a drop of glass with a radius ro = 1005 m. The
temperature is kept constant at 8000 e. The viscosity at this temperature fJ = 105 Nslm2

• The
surface tension Y= 0.30 Nlm. The force on the contact line FCL = 0.295 Nlm corresponds to a
stationary contact angle of 10°. We do not vary this contact angle like Hocking, because a
variation in the contact angle of 5° gives a variation in the contact line force less than 2%. This
would only give a significant variation in the solution near equilibrium. which would not be
attained in our computations.

I I I I I I I I I

Figure 2:
mesh of the drop. Figure 3: evolution of the drop in 10 time units.
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Figure 2 shows the finite element mesh
used in the computations. Figure 3
shows the evolution of the drop, with
slip length A = 10-6 m, during 10 time
units. A close-up of the contact line
region during the first 0.02 time units is
given in figure 4, from which it appears
that in this region the shape of the
surface does not vary much after a very
short transitional period. This already
shows that the evolution of the drop is a
stiff problem, i.e. there is a time scale in
the evolution, the initial contact line
movement, which is much shorter than
the time scale of interest, the evolution
of the drop. As explained in section 2.2
this stiffness is introduced by the small
elements on the surface.

Figure 4: evolution of the surface near the contact
line during 0.02 time units.

The influence of the use of larger
elements on the velocity of the contact
line is shown in figure 6. The wiggles
present in this figure are due to small
variations in the size of the elements
during the evolution of the geometry.
They are not a result of an instability in
the time integration (as we carefully
checked). These results show that small
elements are needed for an accurate
solution of the evolution of the drop.

This can be understood from looking at the velocity field (figure 5). The velocity is nearly
constant in this region accept at the solid surface where the velocity decreases exponentially,
with a characteristic length comparable with the slip length (figure 7). The use of elements
larger then the slip length results in a poor approximation of the velocity. However, the error
introduced in the velocity near the contact line results in an acceptable error for an element size
up to 50 times the slip length. Larger element sizes give a significant error in the evolution of
the drop.

Figure 5: velocity field near the contact line.
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Figure 8: microscopic contact angle in the time for different element sizes.

The microscopic contact angle in the discretized case, the angle at the corner of the element at
the contact line is shown in figure 8. One can see that for elements with a size equal to the slip
length the microscopic contact angle corresponds to the static contact angle. For larger
elements this is clearly not true, although the velocity is well approximated (figure 6).
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Figure 9: variation velocity as function of the slip length.
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Figure 10: evolution of the angle of a spherical segment fitted on the drop
for different slip lengths.

The velocity of the contact line also depends on the slip length as can be seen in figure 9. The
slip length A, has been varied using values of 10-6, 10-7 and 10-8 m. For a comparison of our
results with the calculations of Hocking we can also compute the evolution of the shape of the
drop as a function of the slip length, see figure 10. The shape is expressed in the angle between
the surface and a spherical segment fitted on the drop. The correspondence of our results with
those of Hocking and Rivers is remarkable.

6 Conclusions and Suggestions

As a first stage for the simulation of the moulding of glass we have investigated a model for the
description of the motion of dynamic contact lines. The example of the spreading drop
demonstrates that the instationary motion of a contact line can be modelled adequately,
assuming linear slip on the solid-fluid boundary and a force on the contact line. The results
obtained with our finite element model correspond to the results obtained by Hocking and
Rivers [13].

The velocity of the contact line and thus the evolution of the drop, depends on the slip length, a
parameter which is not exactly known for glass. Unfortunately, near the contact line quite small
elements are needed for an accurate solution. Elements larger than 50 times the slip length
result in significant errors in the velocity of the contact line. This is due to the exponential
decay of the velocity near the contact line. However, this element size is much larger than the
elements used by Lowndes [19], who needed a size of 0.1 of the slip-length. This difference is
due to the use of a force on the contact line instead of the prescription of the contact angle.

Small compared with scale of drop..

The fact that the elements near the contact line are much smaller than the drop introduces
stiffness in the numerical time integration, thus restricting the timestep of explicit methods.
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Computational efforts can be reduced significantly by using implicit time integration methods.
An alternative formulation of the contact line flow by means of some special large element at
the contact line might also solve this problem.

For a full description of the flow of glass during a moulding process, the model described in
this article has to be extended. The external pressure and the geometry of the mould have to be
included. The temperature dependence of the viscosity has to be added too. For this the thermal
energy equation, including radiative heat transfer, has to be added.
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Appendix: Axisymmetric formulation

The axisymmetric formulation for a Stokes flow with surface tension is not as simple as one
might hope. Some unexpected terms arise in the weak formulation of the Stokes equation,

and the surface tension boundary condition

an = (-PeXI +YK)n.

(AI)

(A2)

For the evaluation ofthe first term in (A.1) we need the gradient of u in cylindrical coordinates,

[ U",
ulp.r

U", ]
Vu = ur.lp: ulp ulp,lp + Ur uz,lp . (A.3)

r r
ur.z ulp.z u z.z

Here ur,r denotes the r-derivative of the r component of u. This gradient is substituted in the

double inproduct of stress tensor and test function v, yielding

2ur.r
ur,lp - ulp

uz,r +ur.zulp r +

[ v",
vlp.r

v., ]
, r

(Vu + VuT
): Vv = ur,lp - u'll 2( ulp,lpr+ ur )

U : vr.lp ;Vlp vlp,'Il+vr vz,'Ilz,lp +
ulp r + - ulp,z, r r r r

U vr,z vlp,z vz•z
uz,r +ur.z

z,lp +
2uz.z- ulpzr .

(A4)

In the axisymmetric case there is no dependence on <p, so all terms with rp vanish and equation
(4) is reduced to

The divergence of v, present in the pressure term of (1), equals

(rvr ) V
V·v=__·r +~+v

r r z,z·
(A6)

In axisymmetric coordinates the second term on the right hand side vanishes.

The third term in equation (1) corresponds to the boundary conditions. The boundary condition
for the free surface, the surface tension



on = (-Pex/ +YK)n,
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(A7)

is more complicated. The mean curvature of the surface K, is the sum of the two principal
curvatures,

(A.8)

RR

z

r

Figure A.l:curvature in the r-z plane.

In an axisymmetric case one curvature is the curvature in the r-z plane (see figure A 1.).

(A9)

The other curvature is the curvature in the plane constructed by the normal of the surface and a
line perpendicular to the normal and the r-z plane (the qrdirection),

n
K 2 =t rn=-....L

ljl. r (A10)

(All)

The derivative of t along the boundary cannot be computed for a boundary which is not
smooth. This derivative can be eliminated by means of partial integration

r YK In· vdr = If. yt.v .vrd~ ds = 21tJyt .\' .vrdsJr ,'ljl • .\' •

=21t(yt.vr~~ -21t J,yt. (vr)", ds

= 21t(yt.vr~~ -21t f.yt.(v ..,r+v~.v)ds

This equation can be evaluated for a piece-wise smooth boundary. The assembled equation for
the surface tension finally reads

Jr (-Pex/ +YK)n. vdr =-21t[J,(PeX,r +ynr)n. vds - J,yt. (v..,r+ v':s)ds+ (yt.vr~~]

(A. 12)
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