

Model-based specification of design patterns

Citation for published version (APA):
Bijlsma, A., Geldrop - van Eijk, van, H. P. J., Gool, van, L. C. M., Hemerik, C., Huizing, C., Kuiper, R.,
Roosmalen, van, O. S., Woude, van der, J. C. S. P., & Zwaan, G. (1999). Model-based specification of design
patterns. Nieuwsbrief van de Nederlandse Vereniging voor Theoretische Informatica, 1999, 9-14.

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/215b9294-667c-4492-8951-1bd8b9e1ec63

Model-based specification of design patterns
SOOP-working group12

Department of Computing Science
Eindhoven University of Technology

Motivation

A considerable interest in design patterns has sprouted in the last couple of years. This interest has been
stimulated by the appearance of some excellent books on the subject. A notable example is the book by
Gamma et al. [1]. At the time the first ideas of patterns in software engineering were developed, a
couple of essential ingredients were available. First, the mechanisms of behavioral and structural
abstraction as offered by object-oriented methods (i.e. encapsulation and inheritance). Second, the
availability of a notation to communicate the patterns (i.e. OMT [2] as proper predecessor of UML [3]),
and last but not least, relevant design-experience with object-oriented systems. The latter is important
because patterns are supposed to capture experience on how to solve certain often-occurring problems
in system design. Many of the patterns described by Gamma are intended for improving a design by
changing class dependencies (possibly without affecting resulting object dependencies) such that
groups of classes are de-coupled from others. For example, the observer pattern can be used to make
problem specific classes (“concrete subject”) independent of the user interface (“concrete observer”)
such that the changes in the user interface will not affect the implementation of a problem solution. It is
interesting to observe that such patterns lean very heavily on inheritance and the related extended
object substitutability.

Although the book of Gamma is impressive in its clarity, it has the drawback that it describes the
intended application of patterns informally and intuitively. The descriptions of how a pattern works are
typically operational. Although they can be understood well by the human reader, such an informal
approach hampers specification and implementation of a level of tool-support for design patterns that
goes beyond (trivial) diagram manipulation. In addition, it is very difficult to establish correctness of a
design or implementation as a whole and the correct application of a pattern in particular. Therefore,
the SOOP working group in Eindhoven has set itself the goal to develop a specification formalism that
helps to formally specify patterns. The result of the attempt should be the construction of tools
supporting pattern application and ultimately the establishment of a formal pattern language.

Requirements for a specification formalism

When one tries to develop a specification formalism that is to be used in practice, one must consider
the generally accepted design approach and try to adapt the formalism to it, rather than adapt the design
approach to the formalism. Following the principle of direct mapping (see Meyer [4]), design of an
object-oriented program starts from a model of the problem domain. This model is successively refined
into an implementation adding user-interface classes, adding auxiliary container classes that group
objects in a way that facilitates efficient inter-object navigation, and applying design patterns to
improve the modularity of the class structure. In our opinion, a specification formalism must tie in with
this approach, i.e. it must parallel the decomposition of an object-oriented model and its refinement
from analysis to implementation. In fact, decomposition of the implementation and specification should
be isomorphic, i.e., yield a one to one correspondence between certain specification expressions and
classes in the implementation. A consequence is that a specification of a class’s behavior must only
involve specifications of classes on which it directly depends. Specification fragments can then be
taken from a context and can be reused elsewhere, just as implementation fragments can. Design
patterns can be seen as such specification fragments.

Model based specification

We follow the approach of Design by Contract [4,5], particularly advocated by Meyer. A contract is a
specification of benefits and obligations in interactions between classes. In each interaction one class is
the client, the other the supplier. A contract can be specified as pre- and post-conditions on operations

1 Structured Object-Oriented Programming; email: soop_l@win.tue.nl;
2 members: Lex Bijlsma, Rik van Geldrop, Louis van Gool, Kees Hemerik, Kees Huizing, Ruurd
Kuiper, Onno van Roosmalen, Jaap van der Woude, Gerard Zwaan.

offered on the interface of a class. A pre-condition specifies the conditions that must be realized before
the operation is invoked by an instance of the client class and the post-condition specifies the
obligations of the invoked instance of the class, the supplier.
There are several methods to specify contracts. We think that the most intuitive and concise way to
express them is by way of a model. A model is a mathematical way to describe the state of an object. It
must be detailed enough to express the result of method invocations. A model is intuitively appealing
because it is very close to a description in terms of implementation variables. Although it may give a
bias towards the actual implementation of the specified behavior, it does not force a particular
implementation upon the programmer. In actual fact, rules can be given that relate a model and the
method specifications to a specification of behavior in terms of implementation variables.

Example

Consider a class DateSet depicted in the above UML diagram. The purpose of objects of this class is
to keep a number of dates of the month, e.g. to be used for certain appointments. We adopt the
following model for this class.

 model : s ∈℘(Ζ)

The restriction on the values of dates in s is introduced using a, so called, model invariant.

inv I(s) : (∀i : i ∈s : 1≤i≤31)

Naturally, the possible use and implementation of this class entirely depends on the offered operations
and their specified behavior, and not on this model.

{1≤n≤31} DateSet::add (n : int) { modify({s}) ∧ s = s• ∪ {n} }
{1≤n≤31} DateSet::del (n : int) { modify({s}) ∧ s = s• \ {n} }
{ true } DateSet::present(n : int) : bool {return (n∈s)}
{ true } DateSet::empty() : bool { return (s = ∅)}

The modify clause is a shorthand for the restriction that all other variables of the (current) model except
the ones specified in the set, must be left unchanged by the operation. Absence of this clause implies
no restrictions. However, queries may only return values and the restriction modify(∅) is always
implicitly assumed. The dotted variable, e.g. s• , indicates the old value of s, i.e. the value in the
precondition. Consider now an implementation of DateSet. We assume that a boolean array is used to
keep track of which days belong to the set s . Hence a[i-1] has the value true if i∈s . This relation can
be expressed in a, so called, implementation invariant.

inv Im(a,s) : (∀i : 1≤i≤31 : a[i-1] = i∈s)

The pre- and post-conditions applicable to an operation m() implemented using this representation, i.e.
in terms of the implementation variables must satisfy the following refinement rule for any of its
operations m() with pre- and post-conditions Prem and Postm :

{ (∃s::I(s) ∧ Im(a,s) ∧ Prem(s)) } DateSet::m() { (∃s::I(s) ∧ Im(a,s) ∧ Postm(s)) } (1)

From this rule we can easily derive the following pre- and post-conditions for, e.g., the operation
DateSet::add in terms of the implementation variables a[i].

{1≤n≤31} DateSet::add(n : int) { modify(a[n-1]) ∧ a[n-1] }

This suggests the simple implementation of setting a[n-1] equal to true.
End of example

DateSet

- s

+ <<update>> add (n : int)
+ <<update>> del (n : int)
+ <<query>> present (n : int) : bool
+ <<query>> empty () : bool

An identical relationship to the refinement rule (1) exists between specifications of methods in
subclasses of classes. In that case the implementation invariant in (1) has to be replaced by the subtype
invariant which relates the variables of the sub-class to those of the super-class. Meyer [4] provides
some rules as to how pre- and post-conditions and invariants may change under inheritance and when
invariants should hold. In general it is too restrictive to require that the invariant holds during the
complete execution of a method. The usual scheme is that every method has to restore the invariant at
the end of the method and that it may assume that the invariant holds at the beginning. In the presence
of re-entrancy, however, this scheme is too weak. In the next section we will deal with this problem.

Proof obligations and re-entrancy

For simplicity, in this section we assume that the model and the implementation are identical, so we
leave out the implementation invariant and only mention the model invariant I. Furthermore, we
assume that all constructors establish the invariant. Consider the following general form of a method
with its specification and implementation:

{ Prem } m() { Postm } : {Q1 } S1; { R1} o1->m1(); { Q2 } S2; { R2} o2->m2();... Sn {Rn }

The proof obligations for methods are, to begin with:

1. (Prem ∧ Ithis) → Q1 and Rn → (Postm ∧ Ithis)
2. { Ri } oi->mi() { Qi+1 }
3. {Qi } Si { Ri }

Since various forms of mi() may be invoked depending on the dynamic type of the object that o1 refers
to, the following rules apply. Assume that the static type of o1 is C and D is a sub-type (sub-class) of
C we write D<:C. Since, by hypothesis, that the subtype invariant between D and C is trivial, we find
from the refinement rule (1):

 PreC::mi → PreD::mi and (PostD::mi ∧ ID) → (PostC::mi ∧ IC)

This is intuitive because D::mi() can be actually invoked wherever mi() appears. This states that the
post-condition and invariants must be strengthened in such subclasses and preconditions must be
weakened.

As follows from proof obligation 1, the invariant may be assumed when a method starts and need not
be established by the caller. The reason is that the client object will be found to satisfy its invariant
automatically if every operation on the object satisfies the invariant. This reasoning, however, is not
necessarily correct. The problem here is re-entrancy. Assume in the above program sketch that the
object o invokes operations of other objects and that ultimately control re-enters the object, this,
executing m(). At that point we have no guarantee that the invariant holds unless we demand that:

Ri → Ithis

Thus it seems necessary to demand some stronger property of the invariant namely that it holds
whenever control leaves an object.

Vulnerability of invariants

Another problem is possible sensitivity of invariants with respect to modifications in other objects. It is
possible that the invariant Ithis is formulated in terms of properties of other object this depends on, e.g.
the object referred to by o in the above program. This is no problem in the above method m() because
we explicitly require restoration of the invariant by execution of this method. However, if methods of
the object referred to by o are invoked directly, i.e. without going through this, it can no longer be
guaranteed that the invariant Ithis holds when entering m(). We say that Ithis is vulnerable to changes in
the objects o can refer to.

We consider the forward-backward problem as described by Meyer [4]. It concerns a hypothetical
variant of asymmetric marriage relations.

We assume asymmetric model for men and women.

 Man: model wife : Woman*
inv M : wife ≠∅ → wife->husband = this

 Woman: model husband : Man*

Thus it is always required that if a man has a wife, his wife has him as a husband. The converse is not
required. Although the following method implementation seems to preserve the invariant

{ w≠∅ } w->marry(this); wife = w; {modify({wife}) ∧ wife = w ∧ wife->husband=this},

even in the strong sense (at invocation of w->marry(this)) it is not preserved in general. For example,
the execution of the following program fragment

Man m1,m2;
Woman w;
m1.marry(&w);
w.marry(&m2); { m1.wife->husband = &m2 } ,

that may appear anywhere, will break the invariant of the object m1. Note that introduction of a tighter
specification for the marry operation in Woman would not solve the problem because new methods
can be introduced in derived classes that could destroy the invariant of men in a similar fashion. We
have to solve this problem because we do not want correctness of a class-implementation to depend on
code that can appear just anywhere and could even be added in later program extensions. The solution
we propose is to introduce a so-called post-invariant that restricts changes in women, i.e. must be
added as a conjunction to all methods’ post-conditions.

 Woman: model husband : Man*
post P: husband• ≠∅ ∧ husband•->wife = this → husband = husband•

Furthermore we have to restrict calls to Woman::marry to those women who are not someone’s wife
by strengthening the precondition:

{ m≠∅ ∧ (husband=∅ ∨ husband->wife≠this)}
Woman::marry(Man* m)
{ modify({husband}) ∧ husband = m }

With this specification of Woman it can now be shown that the invariant for men can not be broken by
methods of Woman. Note the appearance of the dot-notation in the post-invariant. Note that we have
indeed arrived at a situation where we only need to consider the local view from class Man to satisfy
our proof obligations. This is what we want to achieve in general. It would mean that proofs can be
provided class by class in an incremental fashion. The feasibility of this goal has not yet been
established.

Note that in the specification of the class Man other possible side-effects on women, e.g. a change of a
possible variable name is not specified. Since the modify clause is defined as only referring to local
variables, it does not forbid these side-effects. We could extend the semantics of the modify clause
along these lines, but then again we would end up with a non-local specification. Therefore, we
propose to formulate restriction locally by explicitly specifying which methods may be called. For
example the post-condition of Man::marry method we extend to:

modify({wife}) ∧ calls({w->marry}) ∧ wife = w ∧ wife->husband=this

Man

+ marry(w:Woman*)

Woman

+ marry(m:Man*)0..10..1

#wife#husband

0..1 0..1

The calls-clause implies the possible (external) modifications as expressed in the modify-clauses of the
callable methods. Note that calls({w->marry}) does not imply that w->marry will definitely be
invoked.

Tracing the calls-clauses it is possible to establish whether re-entrancy is at all possible or not.
Consider our husbands and wives. It can be seen that it is not possible to enter any instance of the class
Man before the Man::marry() method is finished. In this case we can then relax the condition that the
invariant is maintained in the strong sense and even the following implementation can be proved
correct.

{ w≠∅ ∧ (husband=∅ ∨ husband->wife≠this)}
wife = w; w->marry(this);
{modify({wife}) ∧ calls({w->marry}) ∧ wife = w ∧ wife->husband=this }

The Observer pattern

We will briefly show how the sketched approach can be applied to the Observer pattern as described in
[1]. In addition to the classes Subject and Observer, the pattern describes concrete versions of these
classes that can be derived from them. In this process some methods must be defined

Subject model state : void*
obs ∈℘(Observer*)

post (∀o : o ∈obs : o->copy(this) =state)

{ true } Subject::attach(o:Observer*) { modif({obs}) ∧ calls({o->update}) ∧ obs = obs• ∪ {o} }
{ true } Subject::detach(o:Observer*) { modif({obs}) ∧ obs = obs• \ {o} }
{ true } Subject::getState() : void* { modif(∅) ∧ calls(∅) ∧ return(state) }
{ true } Subject::notify() { modif(∅) ∧ calls({ o->update | o∈obs }) }

Observer model copy ∈ Subject → void*

{ this ∈ s->obs }
Observer::update(s:Subject*)
{ modif({copy(*s)}) ∧ calls({s->getState}) ∧ copy(*s)=s->state }

Subject

- state

attach(o:Observer*)
detach(o:Observer*)
+ getState():void*
+ notify()

Observer

- copy

+ update(s:Subject*)0..*0..* 0..*0..*

obs

ConcreteSubject

+ getState():void*

ConcreteObserver

+ update (s:Subject*)

A spreadsheet cell fulfills the roles of a subject and an observer simultaneously. This is readily
implemented by multiple inheritance. The model for class Cell contains variables corresponding to the
models of both Subject and Observer.

Cell: model state : Number
 obs : ℘ (Observer)
 copy : Cell → Number
 formula : (Cell →Number) → Number

inv state = formula(copy) ∧ (∀p: this∈FREEVAR(p.formula) →p∈obs)
post (∀o: o∈obs: o->copy(this) = state)

Just consider the specification for Cell::update :

{ this ∈ s->obs }
Cell::update(s : Subject*)
{ modif({copy(*s)}) ∧ calls({s->getState, notify }) ∧ copy(*s)=s->state }

Note that according to the modify-clause in Subject, Subject::state may not be changed by
Subject::notify. In cell, however, Cell::state must be kept equal to cell::formula(copy) which is
modified by Cell::update. A cyclic dependency of a cell to itself that would lead to such self-
modifications is excluded by this specification. Hence, an implementation of Cell would inlcude an
invariant that forbids cyclic dependencies.

References
[1] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns, Elements of

ReusableObject-Oriented Software”, Addison-Wesley, 1995.
[2] J.Rumbaugh, M. Blaha, W. Premerlani and F. Eddy, “Object Oriented Modeling and

Design”, Prentice Hall, 1991.
[3] Grady Booch, James Rumbaugh and Ivar Jacobson; The Unified Modeling Language

User Guide, Reading Massachusetts: Addison-Wesley, 1995.
[4] Bertrand Meyer, “Object Oriented Software Construction”, second edition, Prentice Hall,

1997.
[5] C. Szyperski, “Component Software, Beyond Object-Oriented Programming”, Addison

Wesley, 1997.

Subject
- state

attach(o : Observer*)
detach(o : Observer*)
+ getState():void*
+ notify()

Observer
- copy

+ update(s : Subject*)0..*0..* 0..*0..*

obs

Cell
- formula

+ setFormula(f:String)
+ update(s:Subject*)

