EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Exception handling in control systems

Citation for published version (APA):
Beek, van, D. A. (1993). Exception handling in control systems. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR398543

DOI:
10.6100/IR398543

Document status and date:
Published: 01/01/1993

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR398543
https://doi.org/10.6100/IR398543
https://research.tue.nl/en/publications/0d237de0-9895-4ebd-91f3-70e214bf9d3c

Exception Handling in
Control Systems

Print: Wibro, Helmond.

Cover design: D. van der Pol.

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Beek, Dirk Albert van

Exception handling in control systems / Dirk Albert van
Beek. - Eindhoven : Eindhoven University of Technology
Thesis Eindhoven. - With index, ref. - With summary in
Dutch.

ISBN 90-386-0262-6

Subject heading: control systems ; exceptions.

Exception Handling in Control Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven,
op gezag van de Rector Magnificus, prof. dr. J.H. van Lint,
voor een commissie aangewezen door het College van
Dekanen in het openbaar te verdedigen op
donderdag 1 juli 1993 om 16.00 uur

door
DIRK ALBERT VAN BEEK

geboren te Eindhoven

Dit proefschrift is goedgekeurd door de promotoren
prof. dr. ir. J.E. Rooda

€n

prof. drs. C. Bron

Acknowledgement

The research that I have done in the Vredestein factories in Doetinchem,
where the ROSKIT kernel [Rossingh and Rooda, 1985] is used for machine
control, has been of great importance for the development of the concepts
presented in this dissertation. I would like to thank dr.ir. JH.A. Arentsen who
made my stay there possible, and ing. G. Huizing, ir. T.J. Rossingh and
ing. M.F.M. Seinhorst for the stimulating discussions with them.

Summary

This thesis deals with the required concepts and mechanisms for exception
handling in control systems.

There is much confusion in the literature about the meaning of exceptions and
the relationship of exceptions and errors. In this thesis, the most important
terms relating to errors and exceptions are accurately defined, while retaining
a high level of compatibility with the way these terms are used in the
literature.

A treatment is presented of the most important concepts relating to the three
stages of error handling: error detection, error diagnosis and confinement, and
error recovery and fault repair. Only forward error recovery is covered in this
thesis.

Several satisfactory and more or less similar exception handling mechanisms
exist for the handling of internal exceptions. These mechanisms and a
traditional mechanism are briefly evaluated. The resume response from an
exception handler is rejected as being undesirable in both single and multi-
process environments.

A literature search has yielded several proposals and existing mechanisms for

exception handling in controlling systems or, more generally, in a multi-
process environment. No publications, however, have been found which
describe the essence of the required functionality of such mechanisms.
Therefore, 'constraint of an operation' and 'constraint violation' have been
introduced as new concepts. The constraint of an operation is that part of its
precondition which is invariant over the operation: it has to be valid
throughout the execution of the operation. A violation of an operation's
constraint causes an exception occurrence in the process executing the
operation and should result in the raising of an exception. ‘

The concepts constraint and constraint violation have been used to describe
the required functionality of mechanisms for the handling of exceptions in
controlling systems. Several existing and proposed mechanisms have been

evaluated using this functionality. The mechanisms have been evaluated as
either offering a functionality which is too restricted for controlling systems,
as offering an incorrect or undesirable functionality, or as inadequate in other
ways.

A new mechanism for the handling of constraint violations has been
introduced. The mechanism has been realized by means of constraint monitors
which are used to specify and monitor constraints of operations independently
of other operations, which is an important requirement for the creation of
modular subprograms. A constraint monitor bound to a single operation can
also be used to specify a constraint which is common to several operations.

A constraint monitor is bound to an operation, and consists of a constraint
and an exception. The violation of the constraint which is monitored by a
constraint monitor results in the creation of a pending exception. The
exception is not immediately raised, since this can result in time-dependent
run-time errors due to violations of the intermal invariants of a process.
Pending exceptions are raised at interaction points, which are natural places
for intemnal invariants to hold, but they are not raised in exception handlers.

Several constraints can be violated at the same time by concurrently executing
processes. This can result in more than one pending exception in a process.
Some criteria for the selection of a pending exception have been evaluated.
The pending exception that should be selected is the one belonging to the
constraint monitor which was enabled first, and thus at the outermost level.
The other pending exceptions can be discarded.

The only systems considered are systems that can be modeled as discrete
event systems.

The new mechanism is independent of a particular programming language.
The functionality of the mechanism therefore deals with the common
requirements of languages for the control of industrial systems. Language-
specific elements are not treated.

Constraint monitors have been successfully implemented in Process Calculus,
which is a language for the specification, simulation and control of industrial
systems. The simplicity and power of the new mechanism is illustrated with a
case concerning the control of a transport system.

Samenvatting

Dit proefschrift beschrijft een studie naar de vereiste concepten en
~ mechanismen voor de athandeling van excepties in besturingssystemen.

Er bestaat veel verwarring in de literatuur ten aanzien van de betckenis van
excepties en de relatie tussen excepties en fouten. In dit proefschrift zijn de
belangrijkste termen betreffende fouten en excepties nauwkeurig gedefinieerd,
waarbij een hoge mate van compatibiliteit is behouden met het gebruik van
deze begrippen in de literatuur.

De belangrijkste concepten betreffende de drie stadia van foutafthandeling
namelijk foutdetectie, foutdiagnose en schadebeperking, en tenslotte
foutherstel zijn behandeld. Dit proefschrift gaat uit van voorwaarts
foutherstel.

Er bestaan verschillende bevredigende en min of meer gelijkwaardige
mechanismen voor de athandeling van interne excepties. Deze mechanismen
en een traditioneel mechanisme zijn kort geévalueerd. De hervattingsresponsie
vanuit een exceptie-afhandelaar (Eng. exception handler) is verworpen als
zijnde ongewenst, zowel in een enkel sequentiéel proces als in een omgeving
met parallelle processen. '

Een literatuuronderzoek heeft verschillende voorstellen en bestaande
mechanismen opgeleverd voor het afhandelen van excepties in
besturingssystemen of, meer in het algemeen, in cen omgeving van parallelle
processen. Er zijn echter geen publicaties gevonden waarin de essentie van de
gewenste functionaliteit van zulke mechanismen is beschreven. Daarom zijn
de 'constraint van een operatie' en ‘constraint-schending’ als nieuwe concepten
geintroduceerd. De constraint van een operatie is dat deel van haar preconditie
dat invariant is over de operatie: hij moet gelden gedurende de uitvoering van
de operatie. Een schending van een constraint van een operatie veroorzaakt
een exceptiegeval (Eng. exception occurrence) in het proces dat de operatie
uitvoert, hetgeen zou moeten leiden tot het activeren (Eng. to raise) van een
exceptie.

viii

De concepten constraint en constraint-schending zijn gebruikt om de gewenste
functionaliteit van exceptie-afhandelingsmechanismen in besturingssystemen
te beschrijven. Verschillende bestaande en voorgestelde mechanismen zijn aan
de hand van deze functionaliteit ge¢valueerd. De mechanismen blijken na
evaluatic ofwel een functionaliteit te bieden die te beperkt is voor
besturingssystemen, die foutief of ongewenst is, ofwel die in andere opzichten
inadequaat is.

Een nieuw mechanisme voor het athandelen van schendingen van constraints
is geintroduceerd. Het mechanisme is gerealiseerd door middel van ‘constraint
monitors' die worden gebruikt om constraints van operaties onafhankelijk van
andere operaties te specificeren en te bewaken, wat een belangrijk vereiste is
voor de onwikkeling van modulaire subprogramma's. Een constraint monitor
die gebonden is aan een enkele operatie kan ook worden gebruikt voor de
specificatiec van een constraint die gemeenschappelijk is voor verscheidene
operaties.

Een constraint monitor wordt gebonden aan een operatie, en bestaat uit cen
constraint en een exceptie. De schending van de constraint die wordt bewaakt
door een constraint monitor resulteert in de creatie van een hangende -exceptie.
De exceptie wordt niet onmiddellijk geactiveerd, aangezien dit aanleiding kan
geven tot tijdsathankelijke executie-fouten ten gevolge van schendingen van de
interne invarianten van een proces. Hangende excepties worden geactiveerd op
mteractle-punten wat natuurlijke plaatsen zijn waar inteme varianten gelden,
maar zij worden niet geactiveerd in exceptie-athandelaars.

Verschillende constraints kunnen op hetzelfde moment worden geschonden
door gelijktijdig uitgevoerde processen. Dit kan resulteren in meer dan een
hangende exceptie in een proces. Een aantal criteria voor de selectie van een
hangende exceptie is geévalueerd. De hangende exceptie die geselecteerd zou
moeten worden, is degene die behoort biy de constraint monitor die als eerste,
en dus op het buitenste niveau, is geactiveerd. De andere hangende exceptles
kunnen worden verwijderd.

De enige systemen welke zijn beschouwd zijn systemen die kunnen worden
gemodelleerd als 'discrete event' systeem.

Het nieuwe mechanisme is onafhankelijk van een specificke programmeertaal.
De functionaliteit van het mechanisme betreft daarom de gemeenschappelijke

ix

vereisten van talen voor het besturen van industriéle systemen. Taal-specifieke
elementen zijn niet behandeld.

Constraint monitors zijn met succes geimplementeerd in Procescalculus, een
taal voor het specificeren, simuleren en besturen van industriéle systemen. De
eenvoud en kracht van het nicuwe mechanisme is verduidelijkt aan de hand
van een voorbeeld betreffende de besturing van een transportsysteem.

Table of contents

Summary v

Samenvatting vii

Chapter 1
Introduction 1

1.1
12

Background 1
Scope of the thesis 2

Chapter 2
Modeling control systems using Process Calculus 5

2.1

22

23

Process Calculus 5

2.1.1 Processors and interactions 5

2.1.2 Graphical representation of models 6

2.1.3 The use of classes for the specification of processor models 9
2.1.4 Compound ports and interaction paths 10

‘The realization of controlling systems 13

2.2.1 Using simulation to test controlling systems 13
2.2.2 The transition from simulation to the control of the actual system
13
2.2.3 The interaction mechanism between the controller and the driver
15
An example: The control of an error-free transport system 16
2.3.1 Description of the system 16
2.3.2 Conventions used in the control model 21
« Synchronization between controlling processors without using
sensors 21
o The connection of compound ports with compound interaction
paths 21
» The grouping of methods in protocols 22
« Reference to methods 22
2.3.3 The implementation of the model 23

Xii

Chapter 3
Errors 27
3.1 Definition of terms 27
3.1.1 Systems and states 27
3.1.2 Specifications, goals, preconditions and failures 29
3.1.3 Correctness and errors 31
3.14 Faults 36
3.1.5 Robustness 36
3.2 Some general concepts regarding errors 37
3.2.1 The causes of precondition errors and internal state errors * 37
3.2.2 Errors in the controlling and controlled system 38
« Errors in the controlling system 38
« Errors in the controlled system 40
« Comparison of errors in the controlling and controlled system .
40
3.2.3 The three stages of error handling 41
3.3 Error detection 42
3.3.1 The importance of early error detection 42
3.3.2 The use of sensors 42
3.3.3 Time-outs 42
3.3.4 State checks 43
3.3.5 Error detection by the supporting system 44
3.4 Error diagnosis and damage confinement 44
3.4.1 Definitions 44
3.4.2 Error diagnosis 45
3.4.3 Damage confinement 45
3.44 Emergency stops 46
3.4.5 The safe state of machine parts 47
3.5 Error recovery and fault repair 48
3.5.1 Backward error recovery and state restoration 48
3.5.2 Forward error recovery 50
3.5.3 Fault repair 50

3.6 Summary 51

Chapter 4

Basics of exception handling 53

4.1 Definition of terms 53
4.1.1 Operations 53
4.1.2 Exceptions, exception occurrences and exception conditions 54
4.1.3 Signaling, handling, declaring and raising exceptions 58

Table of contents xiii

42

43

44

4.5

4.6

4.1.4 The relationship between exceptions and errors 59

4.1.5 The relationship between exception occurrences and errors 59

Basic requirements for a mechanism for the handling of internal

exceptions 60

Traditional ways of exception handling 63

4.3.1 Using returned values as exception codes 63

4.3.2 Other mechanisms 64

Advanced exception handling mechanisms 65

4.4.1 Exceptions 66

4.4.2 Exception handlers 66 «

4.4.3 The handling of exceptions 68

4.4.4 The termination and resumption model 69

4.4.5 Handler responses 70

4.4.6 The functionality of exception handlers in control systems 71

The exception handling mechanism in Smalltalk-80 72

4.5.1 Exceptions and signals 72
« The hierarchy of signals 73

4.5.2 Exception handlers 74

4.5.3 The handling of exceptions 75

4.5.4 Handler responses 75

Evaluation 77

4.6.1 A general evaluation of the advanced exception handling
mechanisms 77

4.6.2 The return response as an inadequate default response 78

4.6.3 The resume response as an inadequate response in a sequential
process 79

4.6.4 Conflicts between the resume response and critical regions 80

Chapter 5
The handling of constraint violations 81

5.1

52

53

Definition of terms 81

5.1.1 Constraints, constraint functions and constraint violations 81
5.1.2 The active constraints of a process 83

5.1.3 Different kinds of invariant 85

Constraints 86

5.2.1 The local specification of the constraints of an operation 86
5.2.2 The specification of constraints common to many operations 86
Constraint violations 88

5.3.1 A traditional way to detect constraint violations 88

5.3.2 Constraint violations by controlling processes 90

Xiv

5.4

55

5.3.3 Some relationships between constraint violations, exceptions and
the violation of invariants 93

Requirements for a mechanism for the handling of constraint violations

96

Known mechanisms for the handling of constraint violations 99

5.5.1 The select-interaction functionality 99

5.5.2 Raising exceptions in other processes 100

« Ada 101
o VAXELN 102
« ROSKIT 103

o Szalas and Szczepanska's proposal 104
+ Real-time Euclid 104 ;

553 Hand]mg the exception of one process in another process 105
5.5.4 Dealing with exceptions in parallel constructs 106
5.5.5 Other mechanisms 107

« Antonelli's dissertation 107

o Lieber's dissertation and similar proposals 108

o CforUnix 110

« Proposals by Issarny and Banétre 111

Chapter 6
A new mechanism for the handling of constraint vmlatlons 113

6.1

6.2
6.3

The specification of constraints with constraint monitors 113
6.1.1 Definition of terms 113
6.1.2 The binding of constraint monitors to blocks 114
6.1.3 The language dependency of constraint monitors 115
6.1.4 The binding of constraint monitors to identifiers 115
Pending exceptions as a result of constraint violations 116
Raising pending exceptions 117
6.3.1 Instant and delayed response controlling systems 117
+ Instant response controlling systems 118
+ Delayed response controlling systems 118
6.3.2 A strategy for raising pending exceptions in instant response
controlling systems 119
« Raising pending exceptions at interaction points 119
« No raising of pending exceptions in exception handlers 121
« The monitoring of constraints 122
o The exit point of a protected block 124
o Summary 127

Table of contents XV

6.3.3 Raising pending exceptions in delayed response controlling
systems 127
6.3.4 Overriding the default strategy for raising pending exceptions
129
6.4 Handling exceptions resulting from constraint violations 130
6.5 Discarding pending exceptions 131
6.5.1 Dealing with multiple pending exceptions 131
6.5.2 The argument for discarding pending exceptions 132
6.6 Selecting a pending exception for raising 133
6.7 The nesting of blocks with the same constraints 136
6.8 The evaluation of constraint functions 137
6.9 Conflicts between the resume response and constraint monitors 138
6.10 The implementation of constraint monitors in Process Calculus 140
6.10.1 Monitoring constraints by executing receive actions 140
6.10.2 The definition of constraint monitors 140
6.10.3 Binding constraint monitors to blocks 142
6.10.4 The use of constraint monitors together with exception handlers
142
6.10.5 Specifying multiple constraint monitors 143
6.10.6 Some additional functionality of constraint monitors 144
6.10.7 Binding the same constraint monitor to nested blocks 145
6.10.8 The desired send primitives to signal constraint violations 146

Chapter 7
The specification of controlling systems illustrated by a case 149
7.1 Requirements regarding the functionality of control systems 149
7.2 Additional exception handling methods for controlling systems 150
7.3 The retry strategy in a sequential process 153
7.4 Different control modes 155
7.5 The control model 159
7.5.1 The structure of the model 159
7.5.2 The definition of the constraint monitors 161
7.5.3 Constraint violations between CtrlEndSection and CtriTraverse
161
7.5.4 Interaction mechanisms used for the synchromzation between
controlling processors 163
7.5.5 Synchronization between controlling processors without using
sensors 164
7.5.6 Constraint violations between CtriTraverse and CtrITruck 166
7.5.7 Constraint violations in the CtrlTruckExp model 166

xvi

7.6

The retry strategy in a multi-process environment 169

7.6.1 Exceptions in a group with a master and slaves 169

7.6.2 The BroadCaster processor 170

7.6.3 The definition of constraint monitors for the retry strategy 171
7.6.4 An illustration of the retry strategy used in SlaveForkLifter 172
7.6.5 An illustration of the retry strategy used in CtriTruck 174

Chapter 8
Conclusions 177

8.1
82

Evaluation 177
Recommendations for future research 180

References 183

Appendix A
An intreduction to Smalltalk-86 191

L]

Classes and Instances 191
Messages and Methods 192
Inheritance 193

Variables 193

Blocks 194

« Control Structures 195
» Some final syntactic issues 196

Appendix B

The semantics of the Smalltalk methods used in the program
examples 197

B.1 Methods from the Smalltalk system 197

B.2 Methods for the modeling with Process Calculus 198

B.3 Methods for exception handling in Process Calculus 200

Index 205

Curriculum Vitae 209

Chapter 1
Introduction

1.1 Background

An important aspect in the design of industrial control systems is the handling
of errors. The amount of code required for error recovery is usually many
times greater than the amount needed to control the system under error-free
circumstances. In [Gini, 1985] it is observed that the amount of code for error
recovery in a robotic environment often amounts to 80% of the total amount
of code. This enormous amount of code for error recovery is specific to
industrial control systems. Controlled physical systems suffer from
deterioration due to wear and ageing; they also exhibit a stochastic behaviour
in certain respects. Components, for instance, have tolerances and robots
suffer from imprecise positioning. Such characteristics will lead to errors.

The terminology in regard to control systems, controlling systems and
controlled systems is taken from [IEC 50, 1975]. According to this standard,
a control system may be divided into two interdependent parts: the controlled
system, which comprises the operative equipment executing the physical
process; and the controlling system, which interacts with the supervisor, the
process to be controlled and possibly other controlling systems in the control
system's environment. The controlling system receives feedback information
from the controlled system, and controls this system by means of output
commands.

An important concept which facilitates the handling of errors in a structured
way 1s the concept of exception. Most research concerning exception handling
has focused on the use of exceptions in sequential systems. This is reflected in
the definition of programming languages that offer advanced exception
handling mechanisms. These mechanisms are usually restricted to exceptions
within a sequential process.

Because of the inherent parallelism of controlled systems and their associated
controlling systems, an exception handling mechanism is needed for the
handling of exceptions in a multi-process environment.

2 Chapter 1

1.2 Scope of the thesis

There is much confusion in the literature about the meaning of exceptions and
the relationship of exceptions and errors. Many definitions are imprecise or
incorrect, or contain undesirable subjective elements. In Chapter 3 and 4, the
most important terms relating to errors and exceptions are accurately defined.
The important characteristics of the most frequently used exception handling
mechanisms in sequential processes are evaluated. We concentrate on forward
error recovery, backward error recovery and redundancy techniques that aim
to provide fault tolerance in the presence of incorrect components in a
controlling system are not covered. Apart from the new. definitions and the
evaluation of exception handling mechanisms, Chapters 3 and 4 mainly give a
general treatment of the state of the art concepts regarding error and exception
handling.

The exception handling mechanisms for sequential processes can also be used

in control systems. Their usefulness, however, is restricted to exceptions

related to a single process. A different or additional mechanism is needed in a

multi-process environment. The development of such a mechanism is the

objective of this thesis. The new mechanism is described in Chapter 6. ,
The most important aspect in the development of an exception handling

mechanism is a clear definition of the desired functionality. In order to be able

to describe the essence of the desired functionality, ‘constraint of an operation’

and ‘constraint violation' are introduced as new concepts in Chapter 5. The
desired characteristics of the new mechanism are defined using these

concepts. Some important existing and proposed mechanisms are evaluated

against this framework.

The only systems considered in this thesis are systems that can be modeled as
discrete event systems, such as robotic systems, manipulators, transporting
systems, etc. Continuous systems, such as chemical reactions and the
continuous flows of liquids, are not considered. Nevertheless, most of the
theory developed in this thesis is independent of the kind of controlled system.

The new mechanism is independent of a particular programming language.
The functionality of the mechanism therefore deals with the common
requirements of languages for the control of industrial systems.

In this thesis, parallel controlling processes are considered to exist throughout
the life of an executing control program. Some languages allow parallel
constructs such that father processes create concurrently executing children

Introduction 3

and wait for their — possibly exceptional — termination. They require the same
newly-developed mechanism if they are used for the control of systems. The
additional features that are necessary to deal with the specific problems
introduced by children terminating with an exception have been disregarded.
Exceptions occurring during the execution of an interaction, such as during a
rendezvous, are also language specific and are therefore also not covered.

Process Calculus [Rooda, 1991},Awhich is described in Chapter 2, has been
complemented with the new mechanism. Process Calculus is a powerful
language for the specification, simulation and control of industrial systems.

Finally in Chapter 7, the mechanism developed is illustrated with reference to
a case.

Chapter 1

Chapter 2
Modeling control systems using Process
Calculus

The concepts, theories and mechanisms developed in this thesis are
independent of a specific programming language. Only the implementation of
the developed mechanism is realized in Process Calculus. Many examples are
used throughout this thesis in order to illustrate the different concepts,
theories and mechanisms. These examples are mainly implemented in Process
Calculus.

Process Calculus is treated in [Rooda, 1991a and 1991b]. More information
can be found in [Rooda, 1981; Overwater, 1989; Wortmann, 1991] where the
respective terms SOLE, Process Interaction Approach and ProcessTalk are
used instead of Process Calculus.

In this chapter, Process Calculus is treated in such a way that the examples
using Process Calculus can be understood. It is also shown how Process
Calculus can be used to specify controlling systems and test them by means of
simulation, and how controlling systems are interfaced with the controlled
system. Finally, a transport system is considered, together with the
specification of its controlling system without error handling. The transport
system will be used as the basis of many subsequent examples.

2.1 Process Calculus
2.1.1 Processors and interactions

Using Process Calculus, an industrial system is specified or modeled as a
collection of processors and interaction paths. Interaction paths are connected
to processors by means of ports on the processor. A processor can have send
ports and receive ports. Interaction paths establish a connection between a
send port on a processor and a receive port on another processor. The
interaction path is used to transfer an object from one processor to another

6 Chapter 2

processor. An object leaves a processor through a send port and enters
through a receive port. When an object i1s actually being transferred from one
processor to another processor, an interaction is said to take place. Processors
do not refer to surrounding processors; they only interact via their ports.

The main interaction mechanism used is the synchronous interaction
mechanism. This mechanism stipulates that an interaction can take place
between two processors if they are both prepared to interact: i.e. one of them
must be executing a send action to a send port and the other processor must
be executing a receive action from a receive port. Naturally, there must ex;st
an interaction path between the two ports

More than one interaction path may be connected to a single port. In this case,
the interaction can take place between the single port and any one of the other
ports that are connected to it by means of interaction paths. If a processor
executes a send or receive action to a port, and no other processor connected
to that port is executing a corresponding receive or send action, then the
processor is blocked until the send or receive action can take place.

There are two kinds of processors: leaf processors and expanded processors.
The model of a leaf processor is a process description. Processes are only
associated with leaf processors. Only leaf processors can execute send and
receive actions.

The model of an expanded processor is a collection of processors — known as’
the child processors of the expanded processor — and interactions. The
expanded processor is known as the parent of its child processors. The ports
of an expanded processor are connected through interaction paths with the
ports of its child processors. Expanded processors do not execute a process,
but merely act as an abstraction of a collection of processors and interactions.

2.1.2 Graphical representation of models

Processors are represented graphically by a circle. The name of the processor
is presented within the circle. An interaction path is represented by an arrow,
starting at a send port and ending at a receive port. The ports are situated on
the edge of the circle. The name of the port to which an arrow is connected
can be displayed near the end of the arrow, where it connects to the circle. A
dotted line may be used to connect the name of the port to the port itself, at
the end of the arrow (see Figure 2.1.1).

Modeling control systems using Process Calculus 7

ManufacturingCellA model

iLifterlsUp iPicketHasﬁFﬂ’roduct

iLiﬁel’!fUp iPickeﬂias?rodud

" Lifting
Machine

Picking
Machine

Figure 2.1.1 Model of a manufacturing cell without expanded processors.

A model of an expanded processor is graphically depicted by means of a
rectangle with a label bearing the name of the processor. The model of an
expanded processor contains further processors and interactions. This model
of an expanded processor can be referred to as its expansion. The ports of the
expanded processor are depicted graphically in the expansion by their port
names. If more than one arrow is connected to a port name in the expansion of
a processor, the port name can be copied to different locations in the
expansion and other arrows can be connected to the copied port names in
order to achieve a clearer layout.

Figures 2.1.1 and 2.1.2 show examples of two functionally equivalent models
of a manufacturing cell. The only difference is the hierarchical ordering of the
processors. The manufacturing cell consists of a controller and two physical
machines: a lifting machine and a picking machine. In this model of the
manufacturing cell, the processor for the controller is connected with the
processors for the controlled machines by means of interaction paths. The
lifting machine has actuator olLifterUp and sensor iLifterlsUp, while the picking
machine has actuator oPickerPickProduct and sensor iPickerHasProduct. The
actuators and sensors are modeled by ports with corresponding names.

The first model uses no expanded processors. In the second model, the
expanded processor Machines is added. The processors Controller,
LifingMachine and PickingMachine in Figure 2.1.1 have the same model as the
corresponding processors in Figure 2.1.2.

8 Chapter 2

ManufacturingCellB model

olifterlUp ..o

olifterUp

Machines model

olifterUp oPickerPickProduct

iLifterlsUp iPickerHasProduct

Lifting
Machine

Picking
Machine

Figure 2.1.2 Model of a manufacturing cell with an expanded processor.

Modeling control systems using Process Calculus 9

2.1.3 The use of classes for the specification of processor models

The model of an expanded processor is specified graphically, which has been
shown in the previous section.

The model of a leaf processor is a process description. The language used for
these process descriptions is the task language, which is based on the object-
oriented programming language Smalltalk-80. For a more detailed description
of Smalltalk, see for example [Goldberg and Robson, 1989]. An introduction
to Smalltalk is given in Appendix A. The most important elements of the task
language are given in Appendix B.

Ports are referred to by name in process descriptions. Names in Smalltalk are
represented by strings (see Appendix A), such as 'oLifterUp’. An example of
the representation of a send action by the processor Controller (from Figure
2.1.1) which sends the object true to the port olifterUp is self send: true to:
‘oLifterUp’.

Some classes of the Smalltalk-80 system cannot be used in the task language,
and new classes for the creation of Process Calculus models have been added.
The most important class which has been added is the class Bubble. This
class includes, amongst others, methods used to send objects to, and to receive
objects from, ports. These methods are used by leaf processors. The class
Bubble also includes methods which are used for the specification of the
models of expanded processors.

Bubble is an abstract class, which means that instances of Bubble are
normally not created. Instead, additional subclasses of Bubble are created for
all processors with a different functionality. Subclasses of Bubble can also be
abstract classes. An example of a class hierarchy is shown below:

Bubble
Buffer
Fifo
Stack
WaferProcessingModule
Cleaner
Fumace

10 Chapter 2

The classes Bubble, Buffer and WaferProcessingModule are abstract classes.
In these classes, the methods which are common to their subclasses are
specified. So in the class Bubble, which is at the root of all processor classes,
the methods are specified which are common to all processor classes. The
classes Fifo, Stack, Cleaner and Furnace are not direct subclasses from
Bubble, but they do inherit from Bubble.

The model of a processor is determined by the class of the processor. A
processor is an instance of a class which inherits from the class Bubble. A
class can have several instances. Processors which are instance of the same
class have the same model. Such processors can be used in different models,
or several times in the same model. They have the same functionality, but they
need not have the same internal state. Buffer processors of the same class, for
instance, can be used at various places in the same model: they will all have
the same functionality, but they can each contain other buffered elements,
depending on their environment.

2.1.4 Compound ports and interaction paths

An expanded processor serves as an abstraction of the detailed description of
its model, which consists of other processors and interactions. This is an
important concept which helps to make the complexity of systems manageable
by showing only the relevant amount of detail at each level of abstraction.

Process Calculus does not provide a similar mechanism for ports and
interaction paths. Ports and interaction paths cannot be 'expanded'.

In many systems, especially in control systems, it is essential that irrelevant
detail in the presentation of ports and interaction paths can be hidden by using
abstraction. Consider, for example, the interactions between the controlling
processor ControllerC and the model of the controlled machines MachinesC in
Figure 2.1.3. In the model of ManufacturingCeliC, we are not interested in the
exact representation of all the sensors and actuators, since there could be
hundreds of them.

In order to make it possible to refer to a collection of ports or interaction
paths with a single entity, we have introduced a new kind of port and
interaction path: a compound port and a compound interaction path. The 'old'
ports and interaction paths will be referred to as simple ports and simple
interaction paths. When the type of a port or interaction path is not explicitly
specified as simple or compound it can be either of the two.

Modeling control systems using Process Calculus Il

Ports can be hicrarchically ordered by means of compound ports. A
compound port is a collection of other simple or compound ports. Objects can
only be sent to and received from simple ports.

Interaction paths can be hierarchically ordered by means of compound
interaction paths. A compound interaction path is a collection of other
compound or simple interaction paths.

Compound ports on different processors can only be interconnected by means
of compound interaction paths. Simple ports on different processors can only
be connected with each other by means of simple interaction paths,

Simple interaction paths are always unidirectional. A compound interaction
path can be unidirectional, bidirectional or nondirectional; the direction
depends on the interaction paths which it contains. A compound interaction
path is nondirectional if it either contains no interaction paths or only
nondirectional interaction paths; it is unidirectional if it contains only
unidirectional interaction paths with the same direction, and possibly some
additional nondirectional interaction paths; and it is bidirectional if it contains
bidirectional interaction paths or unidirectional interaction paths in opposite
directions.

Compound ports are represented graphically by their names with hyphens as
suffixes. Compound interaction paths are represented by arrows which can be
unidirectional, bidirectional or nondirectional.

Figure 2.1.3 shows a model which is functionally equivalent with the models
shown in Figures 2.1.1 and 2.1.2. The only difference is that Figure 2.1.3
uses compound ports and compound interaction paths. The sensors are
modeled by the compound port i-. This port contains the compound ports
i-lifter- and i-picker-. The port ilifter- contains the simple port i-lifter-isUp and
the port i-picker- contains the simple port i-picker-hasProduct. The actuators
are likewise modeled by the compound port o-.

In the expansion of MachinesC, the names of the ports i- and o- are shown in
the right-hand part of the model. No interaction paths are connected to these
compound ports. The ports i- and o- contain other compound ports. These can
also be used in the model to connect interaction paths. In the example, the
compound ports i-picker- and o-picker- are connected by means of compound
interaction paths to the processor PickingMachineC. In this way, all the simple
ports contained in i-picker- (in this case only one, viz. i-picker-hasProduct) and
o-picker- are connected by means of simple interaction paths to

Chapter 2

ManufacturingCellC model

MachinesC model |

o-lifter-up
i-lifter-isUp

Picking
MachineC

Lifting
MachineC

Figure 2.1.3 Model of a manufacturing cell with an expanded processor
and compound ports and interaction paths.

PickingMachineC. The processor LiftingMachineC is directly connected by
means of simple interaction paths to the ports o-lifter-up and i-lifter-isUp. These
different possibilities show, by way of example, how compound and simple
ports can be used in a model.

Maodeling control systems using Process Calculus 13

Send and receive actions can only take place on simple ports such as in, out,
o-lifter-up or i-lifter-isUp. An example of a representation of a send action by
the processor ControllerC (from Figure 2.1.3) which sends the object true to
the port o-lifter-up is self send: true to: o-lifter-up’.

2.2 The realization of controlling systems
2.2.1 Using simulation to test controlling systems

Controlling systems can be tested in two ways: they can be connected to the
actual controlled system or they can be tested by means of simulation using a
Process Calculus model of the controlled system.

Testing by means of simulation can have significant advantages in the

following situations:

o Testing using the actual controlled system is hazardous because of the
possibility of damage to the controlled system due to errors in the
software of the controlling system.

o The actual controlled system is already operative and has to be taken out
of production to test the new controlling system.

e The actual controlled system is not available. It may not yet have been
built, or it may be at a remote location.

e The actual controlled system has a long cycle time. In this case, using the
actual system for testing will take a long time. The time to simulate a
control system is unrelated to the real time in the actual system, and can
therefore be done more efficiently.

The main disadvantage of simulation-based testing is the time and effort
needed to model the controlled system. The advantage gained by simulation-
based testing of the controlling system must outweigh the effort needed to
model the controlled system. In order to successfully use a model of the
system, it is necessary that the model is sufficiently accurate.

2.2.2 The transition from simulation to the control of the actual
system

When the controlling system has been tested using a simulation model of the
controlled system, the transition from simulation to actual control must be
made. This can be done relatively simple using Process Calculus. Two models
can be used: one for simulation-based testing and one for the control of the

14 Chapter 2

actual controlled system. In both of these models the same controlling
processor is used.

This approach is demonstrated in Figure 2.2.1. The model SimulatedSystem
contains the processors Controller, which is the controlling processor, and the
processor Machines which is a model of the controlled system. After the
SimulatedSystem model has been tested using simulation, the ActualControl
model can be used for the control of the actual controlled system, which
system is indicated by a dotted rectangle named Machines. The two processors
Controller have the same model: they are both instance of the same class
Controller. Therefore their functionality is identical. In the model of
ActualControl, the processor Driver replaces the processor Machines from the
SimulatedSystem model. The Driver converts the objects it receives from the
Controller into controlling signals to the corresponding actuators on the actual
controlled machines. The Driver likewise converts the signals from the sensors
to objects which are sent to the Controller.

SimulatedSystem model | ActualControl model

Controller

Machines

Figure 2.2.1 Models for simulation and actual control.

Modeling control systems using Process Calculus 15

2.2.3 The interaction mechanism between the controller and the
driver

The interaction mechanism between the control processor and the driver will
not always be the same: it is partly determined by the type of physical
interface, and types of actuator and sensor used. A motor with an accurate
positioning unit which is controlled through an RS232 interface is interfaced
differently from binary actuators and sensors.

The interfacing of most actuators can be done simply by sending an object to
a specific port on the driver processor. The port name determines the actuator.
The object received determines the desired new state of the actuator. For a
binary actuator, the objects to be sent could be true and false, meaning that the
actuator concerned should be turned on or off respectively.

The sensors can be penodically polled by the driver. The polling period is
contained in the driver. The sensors that need to be polled are determined by
the send ports present on the driver. Every send port is associated with a
sensor. After every poll, the driver should send the new values of the sensors
whose values have changed to the corresponding ports on the driver
processor.

The controlling processors should be able to read the values of all sensors at
any time, using a non-blocking receive operation. This means that the driver
should at all times be ready to send the values of all sensors to all sensor
ports. The easiest way to do this is to use the method Bubble >>
send:continuousTo: in the dniver (see Appendix B.2). In a controlling
processor, a receive action from a port connected with a sensor port on the
driver would then yield the value of the sensor. If a blocking receive action is
desired, the required object to be received can be specified in the receive
action. For example, the way to wait until the sensor connected to the port
productPresent becomes active, would be to use the expression:

self receive: true from: ‘productPresent’.

This receive action will remain blocked until the true object can be received
from the port productPresent. The precise semantics of the method Bubble >>
receive:from is explained in appendix B2.

16 Chapter 2

2.3 An example: The control of an error-free transport
. System

2.3.1 Description of the system

The concepts treated in the previous sections will now be illustrated with an
example. The example is based on an actual system for the movement of tyres
around a bicycle tyre factory. The actual system, however, has been
simplified and changed to yield a system which is easier to understand.

Tyres are made of rubber. A part of the production process is the
vulcanization of the newly-made rubber tyres in a furnace. Tyres are
transported on trays, which each carry seven tyres. The furnace operates in
batch mode, so the trays are stacked up approximately twenty high.

A schematic diagram of the system is shown in Figure 2.3.1. Sensors are
represented by the symbol: >', '<', or 'A". In the control program, the sensors
will be represented by ports with the name of the sensor, prefixed by the
machine part that the sensor belongs to, prefixed by an 'i' indicating input. The
sensor opened in the figure, for example, is represented by the port
i-holder-opened. ‘

The trays are transported on multiple-section conveyor belts. When the trays
arrive at the traversing-shuttle they are stacked. The traversing-shuttle will be
referred to as 'traverse' for ease of reference. Every time a new stack of, say,
twenty trays is ready, the traverse moves the stack onto a fork-lift truck. The
fork-lift truck then moves the stack to the furnace and deposits it there.

The sections are meant to buffer the incoming trays when the stack is
transported to the fork-lift truck. In reality, there are more sections than just
the two drawn in the figure. Each section is equipped with a sensor to stop the
section when the tray cannot be moved to the next section.

The traverse is equipped with four holders which hold the stack. Two of these
are shown in Figure 2.3.1. The pusher consists of a plate which can move in a
vertical direction to push a tray against the stack. The plate comes up between
the two small side-belts of the last section. The pusher is driven by two
cylinders. One of them has a large stroke to push the tray up against the stack.
The stack holders will then be opened. Consequently the pusher cylinder with
the small stroke will push the complete stack up, so that the stack holders can
close under the new tray at the bottom of the stack. After this the pusher will

17

Modeling control systems using Process Calculus

‘SAD4) 40f wdisAS J10dsuvs] [°€°7 24n31]

8
2
-
[
2 .
S =i 2
E m a bl
3 5 &
g g - g
\ \ \ \
-~ N — N\
¥onn ! esleAr)
umo(s) > _l||||||
M -
: @
i = W. =
! = ol
. LS g
: g
m wogsi> | Py ——= (4 } ()
L eurpuey = = | =
; Aen suopoes
SIPPINS! > —
i AP
i dns! I L] < pasop
! iof = m io} lspo
dnsi > i = =] (\v Y
= = < peuedo

¥oes

18 - Chapter 2

go down. The three positions of the pusher plate are detected by the sensors
pusher-isDown, pusher-isMiddle and pusher-isUp.

When the pusher passes the sensor pusher-isMiddle while going down, and the
stack has reached its maximum size, the traverse will transport the stack to
the fork-lift truck. The traverse is movable, because in the actual system there
is also a sampling station. This station can remove a single tray from the
stack at approximately midway between the sensors traverse-atPusher and
traverse-atFork. This station is omitted in the simplified diagram of Figure
2.3.1.

When the traverse reaches the fork-lift truck, the fork will go up, lifting the
trays above the traverse. After that, the truck will go backwards in the
direction of the furnace. When it reaches the position indicated by the sensor
truck-canTumToFurnace, the fork will start rotating 180 degrees to the
furnace, while at the same time going down to the middle position. The truck
will stop when it has reached the furnace, where it will deposit the stack.
Finally, the truck will go back to the traverse.

The movements of the traverse, fork lifter, fork turner and the truck are all
implemented using bidirectional motors. Each motor is controlled using two
binary actuators: one for the direction and one for the power (on/off function).
Sensors are installed at the extremes of all trajectories.

The part of the controlling system to be analized is restricted to the part which
concerns the transfer of the stack from the traverse to the fork-lift truck and
the transportation of the stack to the furnace. ‘

The model is shown in Figure 2.3.2a. The TransporterDriver interfaces the
CtriTransporter with the sensors and actuators on the physical machine. The
Ctilinterface processor interfaces with the controlling processors ' of the
previous machines. The control processors are shown in Figures 2.3.2b and
2.3.2¢c. In order to keep the control simple, the machines will be initially
treated as ideal: errors will thus not be taken into account. At the start of the
production cycle, the machine is supposed to be in its reset position as shown
in Figure 2.3.1. Chapter 7 will present a control system which takes full
account of error handling. -

Modeling control systems using Process Calculus 19

TransporterControlSystemideal model

Ctrl
Transporter

Transporter
Driver

Figure 2.3.2a Model of the controlling system of an error-free transporter.

20 Chapter 2

CtriTransporter model |
i-sections-tray2 i-traverse- i-forkTurner-
i-forkLifter-
l-pusher- i-holder-
i-truck-
sync- sync2-
o CtiEnd
Section i
ki /
synct- sync-
o-truck- ,, .
mmi- o-pusher- o-halder- mmi- mme-
o-forkLifter-
o-sections-motor2 o-traverse-)
o-forkTurner-

F igure 2.3.2b Model of the CtriTransporter processor.

CtriTruckExp model |

i-truck-

mmi-

sync- CtriTruck

i~forkTurmner-

mmi- mml-

SlaveFork
Turner

SlaveFork
Lifter

o-forkLifter- o-truck- o-forkTurner-

Figure 2.3.2c Model of the CtriTruckExp processor.

Modeling control systems using Process Calculus 21

2.3.2 Conventions used in the control model
Synchronization between controlling processors without using sensors

As is apparent from the figures, each machine part (such as the traverse, the
holders and the fork lifter) is directly controlled by only one processor. This is
done in order to keep the control system clearly structured. Furthermore, this
approach makes it easier to reset a system, a topic which will be returned to in
Chapter 7.

~ The controlling system is interfaced with the control system through actuators
and sensors. The machine is made to change state by driving the actuators,
The controlling system can then wait for the desired state change of the

machine by waiting for the desired state change of the sensors. ‘

In Process Calculus, the parallelism of control systems is modeled by separate
processors. These controlling processors can have interactions amongst
themselves, as well as with the actuators and sensors, by means of a driver
processor (see Figure 2.2.1). Many controlling systems can be modeled using
controlling processors that only interact with the sensors and actuators and
not with each other. In Process Calculus models, controlling processors
usually interact both with the controlled machine and amongst themselves.
The reason for this is that each machine part is controlled by a single
processor. It is possible that a processor controls several sequentially-
operating machine parts, but a machine part is normally not controlled by
more than one processor. If a processor has to wait for a machine part
controlled by another processor to reach a certain state, this synchronization
is achieved by means of an interaction with the processor controlling the
machine part in question, rather than by synchronization with the machine
part's sensors. This is done in order to achieve a safer system in the presence
of errors. This will be dealt with in greater detail in Section 7.5.5.

The connection of compound ports with compound interaction paths

Two compound ports are connected by means of a compound interaction path.
The convention adopted in this case is that, unless apparent otherwise, both
compound ports correspond and each of the ports of one compound port is
connected through an interaction path with a corresponding port of the other
compound port. Simple ports correspond when they have the same name.
Compound ports correspond when they consist of the same number of ports

22 ~ Chapter 2

and for each port there is a corresponding port in the other compound port.
An exception to this rule is that a send port out can correspond with a receive
port in. Consider Figure 2.3.2b, for example. In this figure, there is an
interaction path connecting the ports sync2- on CtriTraverse and sync- on
CtriTruckExp. The port sync2- has, amongst other ports, a send port
traverseAtFork. This port is connected by means of an interaction path with a
receive port traverseAtFork in the port sync- on CtriTruckExp. When these ports
are used in send or receive actions they have to be referred to using their full
name as, for example, in the message: self sendTo: 'sync2-traverseAtFork’.

The grouping of methods in protocols

The methods of a processor class are grouped into protocols. The protocols
used in this example are the protocols ‘process control and 'machine io’.
Protocols are only used for grouping related methods. In this way methods
can be more easily located during the development of programs. Protocols are
not part of the Smalltalk language.

The methods in which synchronization is only achieved by interactions with
the machine's sensors and actuators are grouped under the protocol 'machine
io’. The protocol 'process control' contains methods that preferably only
contain interactions with other control processors and no interactions with
sensors and actuators. This separation introduces a form of structuring into
the code. In cases where it is desirable to mix interactions with the controlled
machine and other controlling processors in a single method, these methods
are also grouped under the protocol 'process control'.

Reference to methods

A method methodName defined in a class ClassName can be referred to as
follows: ClassName >> methodName. Methods that belong to the same
protocol of a certain class can also be listed with a heading in italics, defining
the class and the protocol, followed by a list of method definitions. Each
method definition begins with the name of the method in bold type, followed
on the next line by the indented code for the method. Comments in methods
are typed in italics between quotes: "".

For example:

Modeling control systems using Process Calculus 23

- ClassName protocol: ‘protoco/lName’ -----—

methodName1
"code for first method”

methodName2
"code for second method”

2.3.3 The implementation of the model

The send and receive actions in CtriTraverse >> stackToTruck (shown below)
are synchronization actions with the processors CtlEndSection and CtriTruck
to achieve synchronization between the machine parts pusher, traverse and
forkLifter that are controlled by the respective processors CtriEndSection,
CtriTraverse and CtriTruck. The methods traverseToFork and traverseToPusher
that are used in the method CtriTraverse >> stackToTruck implement a direct
control of the traverse by means of the sensors and actuators, and are not
shown here.

-—--- CtriTraverse protocol: ‘process control’ ---—-

body
stackSize >= self maxStackSize ifTrue: [self stackToTruck].
self stackTray "add a new tray to the stack”
stackToTruck

self receive: 'belowMiddle’ from: 'sync1-pusherState’.
self receiveFrom: 'sync2-truckResetAtTraverse’.

self traverseToFork.

self sendTo: 'sync2-fraverseAtFork’.

self receiveFrom: 'sync2-forkisUp'.

self traverseToPusher

The following code is part of the code for the processor CtiTruck. This
processor drives the truck directly by means of methods in the protocol
'machine io'. Due to the parallelism, the fork lifter and the fork turner are
controlled by separate processors: SlaveForkLifter and SlaveForkTurner. The
coordination of the movements of the truck, fork lifter and fork turner is
determined by the CtiTruck processor. The processors SlaveForkTurner and
SlaveForkLifter receive their commands from CtriTruck. The command is

24 Chapter 2

translated into an action performed by the machine part that they control and
an acknowledgement is sent to CtriTruck when the action is finished.

- CtHTruck protocel: ‘process control’ --——-

body
self receiveStackFromTraverse.
self transportStackToFurnace.
self giveStackToFumace.
self goBackToTraverse

receiveStackFromTraverse
self sendTo; 'sync-truckResetAtTraverse’.
self receiveFrom: 'sync-traverseAtFork’.
self send: #forkUp to: 'forkLifter-command'.
self receiveFrom: 'forkLifter-ack’.
self sendTo: 'sync-forkisUp’

transportStackToFurnace
self toTumPointAtTraverse.
self send: #orkDownToMiddle to: ‘forkLifter-command’.
self send: #umToFurnace to: ‘forkTurner-command’.
self continueToFurnace.
self receiveFrom: *forkLifter-ack’.
self receiveFrom: 'forkTurner-ack’

- CiriTruck protocel: ‘machine io’ --=ew-- —

toTumPointAtTraverse
self putOn; 'o-truck-toFurnace’.
self putOn: ’o-truck-power’.
self receive: true from: 'i-truck-canTumToFumace’

continueToFurnace
self receive: true from: ’i-truck-atFurnace’.
self putOff: 'o-truck-power

In the method SlaveForkLifter >> body (shown below), the command is
received from the CtiTruck processor. The command is, for instance, the
symbol #orkUp. The message self perform: #forkUp will result in the 'method
forkUp being executed by the SlaveForkLifter processor.

Modeling control systems using Process Calculus 25

-—-—-—- SlaveForkLifter profocol: ‘process control’

body

| command |

command := self receiveFrom: 'master-command’.
self perform: command.

self sendTo: 'master-ack’

----- SlaveForkLifter protocol: ‘machine io” -

forkUp ,
self putOn: 'o-forkLifter-up’.
self putOn: "o-forkLifter-power’.
self receive: true from: 'i-forkLifter-isUp’.
self putOff: "o-forkLifter-power’

26

Chapter 2

Chapter 3
Errors

An ideal manufacturing system will generate no errors: machines never
malfunction; operators do not come into dangerous zones near the machines;
and once a machine has started producing an order, it will continue without
interruption until the order is finished. Unfortunately, real world systems are
not ideal: errors in manufacturing processes are unavoidable. In order to
ensure the safety of the operators and machines and to enable efficient
continuation of the production process after an error, errors will have to be
handled. In fact, error handling has a major effect on the safety, reliability and
efficiency of a manufacturing system.

This chapter starts with a definition of errors and related terms. Thereafter,
successive sections will deal with other aspects associated with errors. This
will be done in an abstract way, independent of specific implementations.

3.1 Definition of terms

3.1.1 Systems and states

In order to be able to define precisely terms like error and failure, it is
necessary to start with the definition of a system. Many different definitions of
a system can be found in the literature. The definition given here is based on
the definitions of [Melliar-Smith and Randell, 1977] and [Lee and Anderson,
1990]. It is useful for an analysis of system correctness, errors, and faults.
Since errors and faults are only relevant when the desired behaviour of a
system is known, the definition is restricted to systems which have been
designed to provide a specified service. The definition is as follows:

A system has been designed to provide a specified service to its environment
and is either atomic or consists of a set of cooperating components.
Components themselves are systems, so the definition is recursive.

28 Chapter 3

A system is considered to be atomic when its internal structure cannot be
discemed or is not of interest. Therefore, a system may be considered as
atomic when only its specification is of interest; how its functionality is
implemented is not relevant.

The behaviour of a system is deterr;lined by its design and its state.

The design of a system consists of the selection of the components (if present)
and the interrelationships between the components themselves and between the
components and the environment. The design of the system can be regarded as
the algorithm of the system. The initial internal state of the system, that is the
state of the system prior to any inputs, is also considered to be part of the
design. '

System designs are not restricted to software systems. The design of a
machine without a controlling system, for example, is the mechanical
construction of the machine. '

There are two kinds of state: external and internal states. Extemal states are
the states of the system which are relevant for the system's environment.
Internal states are relevant for the internal operation of the system. The
relationship between internal and external states is as follows:

The internal state of a system is defined as the aggregation of the external
states of its components. The external state of a system is an abstraction of
its internal state. ‘

It follows directly from the definitions that the external state of a system is
also an abstraction of the aggregation of external states of its components.

When a system is active, it will change from one internal state to another. As
a result its external state will change, but it may take several transitions from
one internal state to another in order to effect one external state transition.
The external states are defined by an abstraction function which maps the
internal states onto external states. The mapping is done in such a way that
one or more internal states are mapped onto the same external state.

External states are important if we are interested in what a system does, and
internal states are important if we are interested in how a system does what it
does. The relationship between the internal states of a system and between the
internal and external states is determined by the design.

" Errors 29

The specification of a system concerns only the external behaviour of the
system. As Randell et al. (1978) put it: 'The specification only defines the
external states of the system, the operations that can be applied to the system,
the results of these operations, and the transitions between external states
caused by these operations, the internal states being inaccessible from outside
the system'.

3.1.2 Specifications, goals, preconditions and failures

The specification of a system is the agreed description of the service that the
system is designed to provide to its environment. It determines the required
behaviour of the system in terms of a relationship between the inputs or input
sequences to the system and the associated responses. It can be viewed as a
contract between the designer and the user of the system.

A system will be designed for a specific purpose. This purpose is specified by
the goal of the system. The goal is specified as a relationship between the
inputs to the system and the desired resulting responses of the system. The
goal is also referred to as the primary goal of the system.

Usually the specification will place certain restrictions on the system's inputs
and on the behaviour of the system's environment, so that the system can
realize its goal when those conditions are met. These restrictions are specified
by the precondition of the system. The set of inputs or input sequences with
the states of the system's environment that satisfy the precondition is termed
the standard domain.

The precondition refers to the external state of the system if the system
interacts with other systems. In such a case, the precondition specifies for all
interactions the kind of behaviour that the system requires from the other
systems, so that the system will be able to achieve its goal. The precondition
requires more than just correct behaviour of the systems with which the
system interacts. Consider, for example, a system which controls a cylinder.
The precondition of the controlling system will specify that the air pressure
supplied to the cylinder is sufficiently high. This requires more than just
correct operation of the compressor, because correct operation of the
compressor does not guarantee the delivery of air. The precondition of the
compressor will require the availability of mains voltage. If there is no mains
voltage, then the compressor will not be able to supply air. Thas is still correct

30 Chapter 3

behaviour of the compressor, since the specification of the compressor does
not require it to operate without mains voltage.

Note that the precondition is not necessarily the weakest precondition. This
point is explained at the end of this section.

A system often also has a secondary geal which should be achieved in the
event of the precondition not being met. The (primary) goal of a manipulator,
for example, might be to pick up a product and deposit it somewhere else. In
the case of a power failure, the secondary goal could specify that the product
must not be dropped and that the manipulator remain in position.

A system is said to operate in its standard domain if the inputs that are
applied to the system and the state of the system's environment belong to the
system's standard domain.

The specification of a system thus consists of a goal, together with the
associated standard domain, possibly complemented by a specification with a
secondary goal for operation outside the standard domain. This
complementary specification need not be defined for the complete complement
of the standard domain, but can be restricted to a subset. The complete
domain for which the specification is defined is the defined domain of the
system.

In this thesis, we will only consider specifications that specify a deterministic
effect for the inputs. Therefore, reliability specifications, such as the
specification that a testing unit will correctly identify faulty items in 99% of
the cases tested, are not considered. With such a specification it is impossible
to determine whether the unit has functioned according to its specification if,
for example, only one test is considered in which the unit mistakenly
determines that a faulty item is satisfactory. ’

The specification of a system permits a comparison to be made between the
actual behaviour and the required behaviour of the system, and can thus be
used to define system failure. The following definition is based on the one
from [Lee and Anderson, 1990].

A failure of a system occurs when the behaviour of the system deviates for
the first time from that required by its specification.

Errors 31

Failure is defined only for inputs from the defined domain. If inputs from
outside the defined domain are presented to a system, this is an erroneous
action by the user or from the environment of the system, since the system is
not being operated within its specification, Failure of the system itself is not
defined for such cases: its response is undefined. The undefined system
response could, however, easily result in a failure of the system which
presented the erroneous inputs to the original system.

In [Lee and Anderson, 1990] it is required that the behaviour of a system is
specified for all inputs. For many systems, however, this requirement is too
strong. It contradicts the 'programming by contract' principle [Meyer, 1988],
which implies a clear agreement about the responsibilities of the user and the
implementer of an operation. If, for example, the precondition of an operation
is always explicitly tested by the invoker of the operation, it is not necessary
to define the operation's behaviour for invocations outside of its standard
domain. Duplication of the precondition test in the operation itself would, in
this case, serve no purpose and would, in fact, lead to a more complex and
therefore more error-prone program.

It may, however, be interesting to observe whether or not the goal can still be
satisfied outside the standard domain. This depends on how the precondition
is defined. If the precondition is the weakest precondition for the specified
goal, the goal cannot be satisfied for any inputs outside the standard domain.
This is a consequence of the definition of the weakest precondition, which
determines all inputs for which the goal can be satisfied. If the precondition is
stronger than the weakest precondition, then the goal could be satisfied for
those inputs outside the standard domain that satisfy the weakest
precondition. Such a situation can occur when the weakest precondition is not
exactly known. An example of this is the specification of a temperature range
over which a component is guaranteed to achieve its goal. In this case, the
goal may also be achievable for temperatures which are slightly outside the
given range.

3.1.3 Correctness and errors

A system is correct if its behaviour conforms to its specification for all
inputs that belong to its defined domain. Therefore, correctness of a system is
only defined for the inputs belonging to its defined domain: it means that for
those inputs it will never fail.

32 Chapter 3

Note that this definition of correctness makes no assumption whatever about
the correctness of the system's design or its components. The correctness of
the system can be determined by the user of the system, using only the
system's specification. The correctness of the system, its design and its
components are linked in the following definition.

The design of a system is correct if, under the assumption that the system's
components are correct, the system is correct when started from its initial
state.

This means that an incorrect design can be corrected in three ways. First, the
specification of the system can be changed. This is usually undesirable, unless
the specification does not correctly express the expectations and ideas of both
user and designer. In that case, there is an error in the Speciﬂcationl Second,
the design can be changed by exchanging one or more of the system's
components for a component with a more appropriate specification. Third, the
design can be changed by correcting the interrelationships.

Now that the correctness of a system and design are defined, the definition of
correct and erroncous internal states, and internal state errors can be given.

The internal state of a system is correct if it cannot cause system failure.
More specifically, there may not exist a sequence of inputs from the system's
defined domain that will lead to failure of the system, assummg that the
system's components and design are correct.

The internal state of a system is erroneous if it can cause system failure.
More specifically, there must exist a sequence of inputs from the system's
defined domain that will lead to failure of the system, assummg that the
system's components and design are correct.

An error in the internal state of a system (or an internal state error) is a part
of an erroneous internal state which needs to be different in order to make the
erroneous internal state correct.

The above given definition of internal state errors is more restricted than the
definitions usually found in the literature such as in [Laprie, 1992] and in
[Lee and Anderson, 1990]. In [Laprie, 1992] an error is defined as being
liable to lead to a subsequent failure even though, due to (for example)
redundancy the error can in practice never lead to system failure. In the view

Errors 33

of Lee and Anderson (1990), an internal state is erroncous if it can lead to
system failure or if corrective action is needed to prevent system failure, even
though failure can no longer occur due to the corrective action. They consider
corrective action to be an essentially subjective element in the definition of
internal state errors. Although these definitions seem to reflect the way that
the term error is used by many people in the field, they cannot be used
objectively in order to determine whether the internal state of a given system
with a given specification is erroneous. This is due to the use of the subjective
elements of being liable, redundancy and corrective action in the definitions.
Hence the restricted definition of internal state errors is used in this thesis.

Two examples are given to illustrate the inadequacy of the unrestricted
definitions of (internal state) errors.

The first example concerns an automatic insertion system which places
components on a printed circuit board. Suppose that the components to be
placed have pre-formed leads. If the leads are not pre-formed within certain
tolerances, they cannot be directly inserted into the holes in the printed circuit
board. Their leads must be correctly formed first. For this purpose, the system
is equipped with a vision system to determine whether the leads are correctly
formed. If they are not, the component leads are reshaped. Whether or not
incorrectly formed leads are considered to be an internal state error would
depend on the view of corrective action. If reshaping the leads is considered to
be corrective action, then the incorrect leads would be an error. If, however,
reshaping the leads is considered to be part of the normal processing, then
leads that need to be reshaped would not be an error.

The second example is the fragment of a Pascal program shown below. It is
used to get the name of a person. A person is asked to type his name. If the
name is mistyped, for example because it contains a digit, the person is asked
to type his name again.

repeat
name := getName()
until namelsCorrect(name)

If the name is mistyped and the second call to getName is considered to be
either redundant or a corrective action necessary to prevent system failure,
then the mistyped name would be an error. If it were to be considered as part
of the normal processing, then the mistyped name would not be an error.

34 Chapter 3

Using the restricted definmition of internal state errors, the internal states in
both examples are correct and therefore do not contain errors, because the
internal states cannot lead to system failure.

The failure of a component of a system need not lead to errors in the system's
internal state. In practice, however, the external state of such a failed
component is often termed erroneous. Erroneous external states and external
state errors are therefore introduced as new terms.

The external state of a system is erroneous if it deviates from the external
state as required by the system's specification.

An error in the external state of a system (or an external state error) is a part
of the external state which deviates from the external state as required by the
system's specification,

Therefore, failure of a component will lead to errors in its external state. The
internal state of a system is a collection of the external states of its
components. Therefore, an error in the external state of one of a system's
components can be an internal state error in the system itself, depending on
whether or not it can lead to failure of the system.

An error in the internal state of a system does not necessarily lead to system
failure. Certain internal state errors may go unnoticed for a long time and lead
to failures only when certain input sequences are applied to the system.
Consider, for example, a system with a buffer which buffers components of a
certain type in a first-in last-out sequence. If an erroneous component is
supplied to the buffer, followed by many correct components, the incorrect
component may never be retrieved from the buffer at all, in which case the
system will not fail.

In practice, it is not always possible to uniquely define internal state errors. If
the design of a system is not correct, the assumption that the system's design
is correct will yield a design which is different from the original one. An
incorrect design can often be corrected in more than one way. These different
correct designs can lead to the determination of different sets of internal state
errors.

i

Another type of error is a precondition error, which is defined as follows:

Errors 35

A precondition error is that part of the input to a system or part of the state
of the system's environment which does not satisfy the system's precondition.

Precondition errors are not internal state errors, since they do not refer to a
system's internal state.

The term precondition error is taken from [Srinivas, 1978]. The use of
preconditions is especially associated with Hoare, who introduced pre- and
postconditions in [Hoare, 1969] to specify the meaning and prove the
correctness of programs. Note that a precondition error is nof an error in a
precondition. It is the input that is erroneous, and not the precondition itself.

The specification of the goal of a system determines the precondition
necessary to enable the goal to be achieved and thus directly affects the
presence of precondition errors in inputs. Consider for example a robot that
assembles two components. If assembly is not possible because of
inaccuracies in the component's dimensions, the components could be placed
in a separate container. If the goal of the assembly process is specified to be
the assembly of the components, then inaccurate dimensions would be a
precondition error. If the goal were to be specified as the assembly of the
components when possible and the placement of those components with
inaccurate dimensions in a separate container, then inaccurate dimensions
would not be a precondition error.

The concepts defined so far will be clarified using an example of a simple
transport system consisting of a conveyor belt with controller. The belt carries
similar products that are spaced apart at a certain distance. When a product is
detected near the end of the belt, the belt is stopped for a predefined period of
time and a pneumatic cylinder will extend to push the product off the belt.
The system consists of the following components: controller, cylinder, belt,
component detector and the products.

Suppose the air supply to the cylinder ceases. When the first product is
detected near the end of the belt, the belt will be stopped. The controller will
then drive the cylinder valves in order to make the cylinder push. Since there
is no air pressure, the cylinder will not extend. The absence of pressure is a
precondition error for the cylinder: it makes it impossible for the cylinder to
satisfy its goal. The cylinder does not fail, however, because it is specified not
to operate when the air pressure is too low. If the system is specified to push a
product off the belt within half a second after the belt has been stopped, the
system will fail if the cylinder does not extend on time. The internal state

36 Chapter 3

error which caused system failure is the absence of air pressure. The position
of the cylinder shaft, which is retracted instead of extended, will be an
external state error of the system.

The controller could detect that the cylinder does not extend. For this purpose,
the cylinder can be supplied with a limit detector to indicate when it is fully
extended. If, after activation of the cylinder valves, the limit detector is not
activated within a predefined period of time, the controller can detect this
external state error of the transport system by means of a time-out. It can then
alert the operator. Afier restoration of the air supply by the operator, the
controller can retry activating the cylinder so that the system can. continue
successfully. If the transport system is considered to be a component in the
encompassing production system which also includes the operator as a
component, then failure of the transport system need not lead to internal state
errors in the production system. This is the case when the operator can
recover from the external state error of the transport system and keep the
production system operating within the spec:ﬁcatlons

3.1.4 Faults

There are some related definitions of faults in the literature. In [Lee and
Anderson, 1990] faults are considered to be errors at a certain hierarchical
level. They state that a fault in a system is an error in the internal state of one
of its components — which is termed a component fault — or an error in the
design of the system — which is termed a design fault. In [Melliar-Smith et al.,
1976] and {Randell et al., 1978] faults are defined to be the mechanical or
algorithmic cause of an error, whereas errors are only defined in internal
states. In [Laprie, 1989] faults are defined as the adjudged or hypotheszzed
cause of an error.

A fault in a system can remain undetected for a long time. A fault will only
affect the operation of the system when the part of the system containing the
fault is used. When a fault causes an erroneous mtemal state or failure, this is
known as the manifestation of the fault.

3.1.5 Robustness

The robustness of a system concerns the correctness of the system and the
way in which the system responds to inputs that do not belong to its standard
domain. A system is robust when it satisfies the following two requirements:

Errors 37

o All inputs that can possibly be offered to the system are in the defined
domain, so that for all possible inputs to the system the system's response
is defined.

» The system is correct.

This means that a robust system has a defined response, which conforms to
the specifications, for all possible inputs.

Robustness and correctness can be achieved for small and simple systems like
known mathematical algorithms, which remain unchanged over a long time:
correctness can even be proved. For complex, practical systems the
realization of a robust system is a target which should be aimed at. It is,
however, practically impossible to actually achieve such a target. Even
achieving correctness of complex systems is extremely difficult: in practice,
all large and complex systems contain some residual errors. Achieving
robustness is even more difficult, because large and complex systems can take
an enormous number of undesirable inputs for which the system's response
must nonetheless be defined.

Current research thus does not only focus on achieving 100% error-free
software. It is accepted that some errors will inevitably remain undetected in
complex systems. However, the employment of redundancy can lead to the
achievement of fault tolerance, so that higher levels of a system can correct
failures at lower levels, making it possible for the top level of the system to
continue to function (within reasonable limits). See for example [Bendell and
Mellor, 1986]. Such techniques can help in creating robust systems. They are,
however, not treated in this thesis.

3.2 Some general concepts regarding errors
3.2.1 The causes of precondition errors and internal state errors

We first consider the behaviour of a correct system consisting of correct
components and thus also of a correct design. Even if all inputs belong to the
defined domain of the system, inputs that do not satisfy the system's
precondition can still cause precondition errors. It seems useless to offer such
inputs to a system, since the system's goal cannot be satisfied in that case. It
cannot, however, always be avoided. Firstly, when the same input to the

38 Chapter 3

system can be offered from several places in the system's environment, it can
be more economical to test the precondition in the system itself, where the test
need only be performed at one place, rather than test the precondition at every
place where the input is offered to the system. Secondly, it may be impossible
(or highly impractical) to explicitly test the precondition. When a robot needs
to assemble two components, it can be easier to just try to assemble the two
components and see whether they fit, rather than to check the components in
advance. Even if they are checked in advance — by (say) using vision
techniques — the tester can fail by letting faulty components pass, which will
lead to a precondition error in the assembly process.

Incorrect designs are an evident cause of internal state errors. This can be
illustrated by the following example. Referring to the conveyor belt example
in Section 3.1.3, let us assume that the cylinder is misaligned with the position
of the product detector. This will cause the belt to stop at the wrong moment,
so the cylinder will miss the product when it extends. The external!states of
the cylinder, the belt and the product are all correct when regarded
individually; it is their incompatibility which causes the internal state of the
control system to be erroneous.

A simple error can lead to many other errors; this is known as error
propagation. The process of error propagation is a chain which starts with an
error, which error leads to failures, which in turn lead to further errors, and so
on.

The following situation is an example of error propagation. If the product
detector fails due to a fault in the detector, the controlling system will not be
able to detect an arriving product. The error in the external state of the
product detector is an internal state error in the control system, causing its
failure when the belt does not stop and the cylinder does not extend when the
component is in front of the detector. This leads to errors in the internal and
external states of the control system. Note that, as in the previous example,
the internal state of the control system is erroneous, but the external states of
the belt, the cylinder and the product themselves are correct.

3.2.2 Errors in the controlling and controlled system
Errors in the controlling system

These errors can be divided into hardware and software errors.

Errors 39

Hardware errors are errors in the computer hardware. They will normally be
very rare. They are possible, however, and should be taken into account in
order to avoid serious damage to the machine, should they occur. An example
of this type of error is a bus error (a conflict on the internal computer bus) or
a memory read error. Errors of this kind should be detected by the operating
system of the computer and brought to the attention of the user control
program. In this way, the control program can take the necessary actions to
bring the machine to a safe position and report the error. Often specialized
hardware, such as watchdog timers, is used in order to detect and handle fatal
program failures or crashes.

Software errors are errors in the control program. They can appear in many
different forms. Some examples of software errors are:

o Parameters may be incorrectly adjusted. A product may be placed at an
incorrect position. This may lead to faulty products or to actual errors that
cause part of the production process to fail.

¢ Synchronization of processes may be incorrect. Since control systems are
inherently parallel, the state of the machine will be changed by a number
of different processes. If a process controls a machine part, it must be
certain that the operations of that part do not conflict with operations of
machine parts controlled by other processes. Incorrect synchronization
may lead to collisions of machine parts.

¢ Mathematical algorithms may be incorrect. This may lead to precondition
errors such as division by zero or reference to a non-existent element in an
array. If incorrect algorithms lead to such precondition errors, they can be
detected by the program and brought to the attention of the user by means
of an error message. If incorrect algorithms do not lead to detectable
precondition errors or to a violation of invariants that are checked by the
program, they will lead to failure of the system without waming.

Obviously, it is preferable not to have errors resulting from incorrect designs,
rather than to detect and correct them. Prevention of such errors can be
achieved through the careful analysis and specification of the system. This
should be followed by careful implementation of the control program, and
possibly by simulation of the system.

40 Chapter 3

Errors in the controlled system

Errors in the controlled system can have many different causes. They can be a
result of errors in the machine parts, errors in the materials used in the
production process, or an incorrect design of the controlling or controlled
system.

Machine parts may fail in various ways. Detectors may not be correctly A

adjusted, causing them to detect at the wrong moment. A motor may not
respond when power is applied, or it may suddenly cease to operate due to
overheating. ,
Failures may also be caused by wear, lack of maintenance or incorrect
adjustment. A cylinder may start to extend and retract more slowly over a
period of time. This may be fatal in time-critical applications.

Tolerances in the dimensions of materials can result in errors, for example
resulting in impossible assembly operations. Tolerances in the positioning of
products when handled by machines can result in errors. A robot may not be
able to pick up a product if the gripper is not properly aligned with the
product.

Comparison of errors in the controlling and controlled system

Errors in the controlling system are usually less frequent than errors in the
controlled system. The computer hardware is usually much more reliable than
the machines it controls. Many errors in the computer software can be found
using simulation models and through real-time testing. The problem with
testing, be it with the aid of simulation models or in real-time, however, is that
it can only be used to indicate the presence of errors and not their absence.
Since computer software does not suffer from deterioration over time,
software errors will not recur once they have been corrected. The only cause
of new software errors over time is a changed demand, resulting in the making
of new specifications and changes to the software.

Unfortunately, the controlled machines do suffer from deterioration over time
due to wear and ageing, possibly introducing new errors. They also exhibit a
stochastic behaviour in certain respects. Machines and robots inevitably
suffer from imprecise positioning, and all components have tolerances in their
dimensions. In the controlled systems, faults can recur after they have been
corrected. Machine errors are therefore more frequent than other kinds of
errors. Fortunately, machine errors can be handled more easily than software
errors. This is because the designer of a system knows in advance that certain

Errors 41

machine errors can occur and can then take measures to handle the errors. It
is also known that software errors may occur, but one does not know exactly
what kinds of error will occur. If one were to know this, immediate action
would be taken to correct the errors. Therefore, in this work emphasis will be
placed on the handling of errors in the controlled system.

3.2.3 The three stages of error handling
The handling of errors can be divided into three consecutive stages:

e error detection
» error diagnosis and damage confinement
¢ error recovery and fault repair.

Error detection deals with the detection of errors, either by an operator or,
preferably, by the control program. Error diagnosis deals with the
determination of all errors in the system which are related to the detected
error. Damage confinement is used to prevent further propagation of errors.
Error recovery is the part of the error handling process in which the system is
transformed from an erroneous state to an error-free state, so that normal
system operation can continue.

Practical systems vary greatly in respect of the complexity of the error
handling techniques employed. The simplest systems may rely entirely on
operators for the detection and recovery of errors. In these systems, the whole
system often needs to be reset after an error. The most advanced systems use
artificial intelligence techniques. These systems employ fully automatic error
detection, diagnosis and recovery for most errors. Only the parts of the
production system that cannot sensibly continue due to the error will be
affected.

In this thesis, attention will focus primarily on control systems that do not
employ artificial intelligence techniques for recovery from errors. In the
ensuing Sections 3.3, 3.4, and 3.5, the three stages in the handling of errors
will be further elaborated on.

42 Chapter 3

3.3 Error detection
3.3.1 The importance of early error detection

A fault or error in a component can lead to the failure of that component,
leading to an error in its external state. If the component is a part of another
component, then the error in the external state of the first component can be

an error in (the internal state of) the second component. This error can, in |

turn, lead to failure. In such a way faults, failures and errors can spread
throughout the components of a system. Clearly, errors should be detected as
early as possible, in order to prevent their propagation through the system.
Even if there is no danger of errors spreading throughout the system, errors
should be detected as early as possible for reasons of damage confinement and
efficiency. It may seem that certain control actions can be effected without
error detection. A control program which is waiting for a detector to be
activated will be blocked if the detector is not activated due to an error. This
will eventually be noticed by the operator, who has to discover the cause of
the error himself. This is, however, very inefficient in terms of the resultant
throughput of the system.

3.3.2 The use of sensors

In order to detect errors in the controlled system, its state must be known. The
control program can determine this state by means of its sensors, or by
enquiring about the status of intelligent machine parts with' built-in
controllers. Apart from this latter case, the detection of errors in the
production process will be accomplished by reading the sensors. If an error is
detected, it can be very difficult for the control program to determine the
cause of the error. This depends on the number of sensors used for error
detection.

Controlling systems use two main methods to detect errors in the controlled
system: time-outs and state checks.

3.3.3 Time-outs

It is relatively easy to detect errors using time-outs. This notion is inspired by

the observation that most errors do not occur at random moments, but rather
in response to stimuli from the controlling system. A cylinder, for example,

Errors 43

could be obstructed when extending, so that its end position detection switch
would not be activated. Clearly, this error can only occur when the cylinder is
first made to extend by the control program. The error can be detected by the
control program by specifying a maximum time to wait before the switch is
activated. Since the program will need to wait for the switch in any case, the
only extra thing to do is to specify a maximum time to wait. This method of
error detection is thus based on the assumption that certain operations
performed by the machine should be finished within a certain period of time.
The controlling system will specify a maximum time to wait for all such
operations. When this period of time is exceeded, a time-out will occur,
indicating an error. The time-out method can only be used in sensor-driven
systems in which the computer uses sensors for every action it orders the
machine to do. Using sensors is the only way to check the completion of the
actions of the machine. If, for example, a robot is made to pick up a product,
it could be made to close its fingers, wait a short time and then continue, but,
without a sensor, there is no way of telling whether there is actually a product
in the robot's hand.

3.3.4 State checks

Detecting errors using state checks is accomplished by testing the state of the
controlled system by means of the sensors. If the established state is different
from what is expected, an error is detected. The error can be due to an
incorrect state of the controlled system, or to an error in the controlling
system itself.

The testing of the controlled system's state can take place at explicit points in
the program. Consider, for example, two machine parts that move through the
same space. Before moving into the shared space, the controller of each part
could check that the other part is not in the shared space.

The testing could also be effected during an operation. Consider a robot
moving a part to another place. During the movement, the detector which
indicates the presence of the part in the robot's hand could be continuously
tested.

Some checks must be performed throughout the control program. This is
necessary to detect errors that can take place in large parts of the production
cycle. The emergency switch, for example, can be pressed at any time and
requires immediate action. Thus this event must be monitored at all times.

44 Chapter 3

Intervention of an operator can also take place at any point in the control
cycle. Therefore, all actions of the control program that take more time than
the operator is prepared to wait must be interruptible.

3.3.5 Error detection by the supporting system

Errors in the supporting hardware cannot be detected by user programs.
Examples of this kind of error are memory faults. Other errors, such as
precondition errors in the inputs of system calls, are more easily detected by
the supporting system than by the user program. Examples of this kind of
error are division by zero and indexing a non-existing element in an array. Not
only should these errors be detected by the supporting system, but a

mechanism must also exist to bring such errors to the attention of the user
program so that it can take the necessary actions to handle the error.

3.4 Error diagnosis and damage confinement
3.4.1 Definitions '

As shown in Section 3.3.1, a detected error can be the result of other errors in
the system. Errors propagate through the system, and only when they are
detected can further error propagation be prevented. This is known as damage
confinement.

In the context of error handling in manufacturing processes, damage can have
two meanings.

The first meaning of damage is the total of all errors in the system that are
related to the detected error. As shown in Section 3.3.1, a single fault can
cause many errors to spread through the system. Therefore, when one of these
propagated errors is detected, many more may exist due to the original fault.
Determuning all the related errors, and the fault which caused them, is known
as error diagnosis.

Damage can also mean physical damage, such as personal injury, clamage to
machines or to the products being processed.

Errors 45

3.4.2 Error diagnosis

Error diagnosis need not be an explicit phase in the handling of errors: it can
take place implicitly. The point in the controlling process at which a machine
error is detected approximately determines the state of the machine. A direct
approximation of the resultant damage can be made from this approximated
state of the machine, together with the detected error. Consider, for example,
a robot holding a product in its hand. The robot takes the product to another
station. If the product-sensing detector were suddenly no longer to indicate the
presence of the product, this would imply an error. If the error occurred while
the robot's hand moved over a transporting belt, the robot hand controller
would assume that the product was dropped onto the belt, possibly causing
other errors. Without further testing, the controller would signal the error to
the belt controller. Here the outcome of the error diagnosis stage was that the
belt was also affected by the error. The only information used to come to this
conclusion was the detected error itself and the implicitly available state of the
error detecting process. If the damage cannot be assessed accurately enough
because, for example, not enough detectors are available, then the human
operator can be used to assess the damage.

3.4.3 Damage confinement

It is the task of the control program to detect errors as soon as possible in
order to prevent further damage. The control program cannot usually
determine the exact cause of a detected error. Therefore, it should immediately
bring all parts of the machine that could lead to further damage into a safe
state. This should be done in response to all errors interrupting the normal
flow of control in a process.

Let us consider a simple automatically guided vehicle which goes back and
forth between two positions. Suppose that a controlling process switches the
motor of this vehicle on. The motor must be switched off when the vehicle
reaches its destination. If, however, the normal flow of control of the
controlling process is interrupted due to an error shortly after the motor has
been switched on, the vehicle would continue uncontrolled. To prevent this
from happening, the controlling process should be designed in such a way that
the vehicle is always stopped when the flow of control is interrupted due to an
error.

46 Chapter 3

Hardware measures for damage confinement are needed, in addition to the
software measures. A frequently used device for this purpose is a watchdog
timer that should be pericdically reset by the software. If it is not reset in
time, for example due to a software crash, the timer automatically disables the
outputs of the computer system and sets them to a predefined state.

In many cases, the damage cannot be exactly determined. In these cases, the
control program should make a realistic worst-case assumption to prevent
further damage. Consider, for example, a simple fork-lift truck carrying a
heavy load. Suppose that the truck moves a short distance to another location
and simultaneously the fork moves upwards. If the controller detects an error
because the truck does not reach its destination in time, this could be due to
failure of the truck detector. In this case, stopping the truck would suffice.
But the controlling system should stop both the truck and the fork movements,
since a collision with another object is also possible. '

In most situations, the error should be reported to the operator. The operator
can then check the system to see if the damage prevention actions of the
controlling system have been sufficient. If the controlling system cannot
automatically recover from the error, the operator can assess the damage and
decide how to recover from the error.

It is not always obvious how machine parts should be brought into a safe
state. The control program usually does not know exactly what has happened.
In many cases, however, there is a rather straightforward solution to this
problem, based on the safety requirements regarding emergency stops by the
operator. This is explained in the following two sections. ‘

3.4.4 Emergency stops

Since the control system has a limited number of detectors, it can only have a
limited view of the production process and cannot detect all errors. Therefore,
any production system must have emergency buttons which can be pressed by
the operator in the case of a serious error which has not been detected by the
controlling system. The emergency button will be pressed, for example, when
the operator sees that another person is in danger of being injured by the
machine. :

The pressing of an emergency button must bring the machine or a part of it to
an immediate stop. This can be done in two ways: electromechanically, by

Errors 47

having the emergency switch directly switch off the power supply of all
machine parts; or the control program can detect the activation of the
emergency button and then bring the machine into a safe state by control
commands.

The safest way to deal with emergency stops is to use both ways. This has
two advantages. If the control program were to fail because of a software
error, the machine is switched off anyway by direct interruption of the power
supply. On the other hand, a person could accidentally deactivate the
emergency button prematurely. In this case, the machine will not suddenly
become operational again, because it is also kept in a safe state by the control
software. It is not always possible to use this kind of error handling in the
case of an emergency stop: in complex and critical systems such as nuclear
power plants, it is not possible to simply switch off the power supply in the
case of an emergency stop. In such systems, the control software should be
reliable enough to handle emergency stops by itself.

3.4.5 The safe state of machine parts

Pressing the emergency button will often switch off all energy supplies to the
controlled system. As a result of this, the machine parts should automatically
go into a safe state. A safe state is a state from which no damage to machines
or products and no human injury will result and which will not lead to any
additional errors. It follows that the machine parts should be constructed in
such a way that they automatically go to a safe state when the power supply
is disconnected. The safe state of a machine part depends on its function.
Preferably the safe state of a moving machine part should be such that it can
be freely moved by manual power. In this way, a person who is stuck in the
machine can be released.

In the case of a cylinder, for example, a type with two valves could be chosen.
Under normal operating conditions, one of the two valves will be closed and
the other one open. If power is removed from the valves they will either both
open or both close. The cylinder shaft should then be freely movable.

In some cases, a freely movable part is impractical. A machine part which
lifts a heavy load, for example, should not be left to move freely after an
emergency stop: rather, it should be blocked to prevent the heavy load from
falling. In this case, a brake could be put on the cylinder shaft. The brake
should be free when power is applied to it, and it should be on when the
power is switched off.

48 Chapter 3

The safe state that a machine part should be brought into in the case of an
error can often be precisely the state it goes to after an emergency stop. This
follows from the fact that both after an emergency stop and after another error
duning the production process the main goals are often the same: the
prevention of possible personal injury and damage to the machine. There are
also some differences. An emergency stop should only be used in emergencies.
Therefore, it really does not matter if production time is lost due to an
emergency stop. For less serious errors, however, it is important to handle
errors as efficiently as possible. In many cases, bringing a machine part to the
single safe state is a simple and reliable concept.

3.5 Error recovery and fault repair

If a system is in an erroneous state, there are two possibilities for returning
the system to a correct state.

Selective changes can be made to the state in order to remove the errors. This
is known as forward error recovery, and it is suitable for control systems. It is
mainly used to recover from anticipated errors.

The other possibility is to discard the current state completely and retum toa
previously recorded state of the system. This is termed restoring the state of
the system. If the errors which caused the state to be erroneous occurred after
the recording of the state, then the restored state will be error-free. This is
known as backward error recovery, and it can be used effectively to recover
from unanticipated damage. It is, however, difficult to use when physical
processes are controlled.

The following sections will deal with state restoration and forward and
backward error recovery.

3.5.1 Backward error recovery and state restoration

The simplest form of state restoration uses fixed states to which a system can
return. If there is only one fixed initial state to which the system can return,
this state is known as the reset state and state restoration will mean resetting
the system. An example of this is found in personal computer systems: if a
fatal error occurs, such that the system no longer responds to the user, then
the user can resct the computer ;

Errors 49

A more powerful form of state restoration can restore the state of the system
to certain states which have previously occurred, taking into account all
events that have happened in the system. The point in time at which the state
of a system is recorded for a possible subsequent restoration is a recovery
point. Restoring the recorded state belonging to a recovery point is known as
restoring the recovery point.

Backward error recovery can be used effectively to recover from
unanticipated errors. This is because no knowledge is required about the
erroncous state. The only thing that is important is that the state at the
recovery point to be restored is error-free and consistent.

The problem with backward error recovery is that it only works with
recoverable components. This is not a problem in pure software systems,
where values can be automatically restored independently of their current
values. Physical systems, however, are usually not so easily recoverable: if a
hole has been drilled, it cannot be undrilled. In order to make such a
component recoverable, it could be replaced by another still intact component.
The recovery of a robot to a previous state would imply moving the robot
itself, and all its parts, back to their previous positions.

Other problems arise when concurrent processes are used. These problems
arise from the fact that processes interact for the purposes of synchronization
and information exchange. If a recovery point is restored in a process which
has interacted with other processes after the recovery point, then these other
processes will also need to be restored to previous recovery points. The
recovery of these processes may again trigger recovery in other processes,
including the original one. This effect is known as the domino effect [Randell,
1977].

The technique of recovery blocks [Homing et al., 1974] uses a recovery point.
This technique is based on supplying redundant algorithms for the same task.
A recovery point is established before entering the recovery block. The task is
first executed by the primary algonthm. An acceptance test must be specified
to determine if the task has been successfully fulfilled. If not, the recovery
point is restored and another algorithm is tried.

Because recovery blocks use a recovery point, they share the problems
associated with recovery points discussed above.

50 Chapter 3

3.5.2 Forward error recovery

Forward error recovery methods make incremental changes in the current
erroneous state in order to come to a correct state. In order to be able to make
the right changes in the erroneous state, the state has to be fairly accurately
known. Therefore, forward error propagation is especially useful for
recovering from anticipated errors. Consider, for example, an automatic part

feeder. If the feeder were regularly to suffer from jammed parts, it could be |

equipped with an air jet propulsion system. Upon detection of a jammed part,
a forward error recovery mechanism could automatically blow the jammed
part out of the way.

As shown in the previous section, resetting a system to a predefined state is a
form of state restoration. Resetting a system is also possible using forward
error recovery. In fact, this is a more powerful form of resetting. Resetting a
system using state restoration completely discards all information relating to
the previous state. In many cases, it is necessary or useful to take the present
state into account when resetting a system. Consider, for example, a process
which takes finished products from a transporting belt and puts them into a
container at predefined places. If an error occurs which forces the resetting of
the system, the initial state of the process cannot be completely restored, since
the system must remember the places in the container that are already
occupied.

Because of the simplicity of forward error recovery and the 'problems
associated with backward error recovery, this thesis will be limited to a
treatment of forward error recovery.

3.5.3 Fault repair

Error recovery and fault repair can be viewed as two distinct phases. Error
recovery enables the process to recover from the error, and fault repair will
correct the fault which caused the error, thereby preventing recurrence of the
same or a similar error. Fault repair is usually part of the error recovery
process. Consider, for example, a vehicle which is blocked by an obstacle. If
the obstacle is removed so that the vehicle can continue, fault repair is part of
the error recovery. If, however, the vehicle recovers from the error by moving
around the obstacle, fault repair could take place later by removing the
obstacle.

Errors 51

3.6 Summary

The definition of errors is based on the definition of a system as either being
atomic or consisting of a set of cooperating components. The behaviour of a
system is determined by its design and its state. There are two kinds of state:
external and infernal states. Extemal states are the states of the system which
are relevant for the system's environment. Internal states are relevant for the
internal operation of the system. The internal state of a system is defined as
the aggregation of the external states of its components. The external state of
a system is an abstraction of its intemal state.

A system will be designed for a specific purpose. This purpose is spec1ﬁed by
the goal of the system. Usually, the specification will place certain restrictions
on the system's inputs and on the state of the system's environment, so that the
system can realize its goal when those conditions are met. These restrictions
are specified by the precondition. of the system. The complete domain for
which the system's specification is defined is the defined domain of the
system. A failure of a system occurs when the behaviour of the system
deviates for the first time from that required by its specification.

The definitions given above are used in the definition of errors. In order to
avoid the ambiguity in many of the definitions of errors in the literature,
different kinds of error have been distinguished. The definitions are as
follows.

The internal state of a system is erroneous if it can cause system failure.
More specifically, there must exist a sequence of inputs from the system's
defined domain that will lead to failure of the system, assuming that the
system's components and design are correct.

An error in the internal state of a system (or an internal state error) is a part
of an erroneous internal state which needs to be different in order to make the
erroneous internal state correct.

An error in the external state of a system (or an external state error) is a part
of the external state which deviates from the external state as required by the
system's specification.

A precondition error is that part of the input to a system or part of the state
of the system's environment which does not satisfy the system's precondition.

52 Chapter 3

Some different causes of errors have been treated, and errors in the controlling
and controlled system have been distinguished. Errors in the controlled system
have been shown to be more frequent than errors in the controlling system,
mainly because errors in the controlled system can recur once corrected, due
to their stochastic nature. Software errors will not recur once they have been
corrected.

Finally, the three stages of error handling have been treated. These are error
detection, error diagnosis and damage confinement, and finally error recovery
and fault repair.

Chapter 4
Basics of exception handling

An error is a common concept, although the exact meaning of errors is not as
easily defined as might appear at first sight, as has been shown in the previous
chapter. Exceptions are related to errors. The definition of exceptions is even
more difficult than the definition of errors. It appears that many papers differ
in their definitions of exceptions, sometimes exceptions are not defined at all.
Some existing definitions of exceptions are evaluated in this chapter, resulting
in a definmition of exceptions and related terms. The relationship between
errors and exceptions is also investigated. Finally, several mechanisms are
treated for the handling of exceptions in a sequential process.

‘4,1 Definition of terms
4.1.1 Operations

An exception is always related to an operation in a sequential process. An
operation is a special kind of system. The meaning of operation is not
restricted to procedures or functions. An operation is a logically related
group of statements or expressions in a sequential process with a single entry.

The meaning of goal and precondition has already been given in relation to
systems in Section 3.1.2. They will be repeated briefly here.

An operation is designed for a specific purpose. This purpose is specified by
the goal of the operation. The goal is a relation between the inputs to the
operation and the resulting responses of the operation.

The precondition of an operation specifies the restrictions on the operation's
inputs and on the state of the operation's environment, so that the operation
can realize its goal when those conditions are met. The precondition refers to
the external state of the operation if the operation interacts with operations in
other processes.

54 Chapter 4

4.1.2 Exceptions, exception occurrences and exception conditions

Unfortunately, many different definitions of exceptions exist. Some of these
definitions are cited in order to give the reader an impression of the different
ideas about exceptions in the literature.

In [Young, 1982] the term exception is used to denote the occurrence of an
error. Horowitz (1983) explains that the term exception is chosen to
emphasize that the condition which arises need not be an error, but merely
some event whose possibility requires versatility of action. Dony (1990)
defines an exception as a situation leading to the impossibility of finishing a
computation, whereas Cox and Gehani (1989) define an exception as an event
that occurs infrequently, possibly indicating an error. A quite different
definition is given by Szalas (1985): 'Exceptions are rare situations detected
by a run-time system or by a user program.' Lee and Anderson (199:0) use the .
component model of a system for the definition of exceptions. They do not
give a formal definition of exceptions, but rather state that: 'The abnormal
responses from a component are commonly referred to as exceptional
responses or exceptions, particularly in software systems.' In [Knudsen,
1987] the following definitions are given: 'An exception occurrence is a
computational state that requires an extraordinary computation. Exceptions
are associated with classes of exception occurrences. An exception is raised if
the corresponding exception occurrence has been reached.’ ‘

Probably the most frequently cited article about exceptions is [Goodenough,
1975], which covers many exception handling concepts. Goodenough defines
exception conditions as follows: 'Of the conditions detected while attempting
to perform some operation, exception conditions are those brought to the
attention of the operation's invoker.' Another frequently cited article is [Liskov
& Snyder, 1979]. Like Goodenough, these authors refer to exception
conditions, which they also call exceptions. They do not give a formal
definition, but state that: "The term 'exception’ is chosen because, unlike the
term 'error’, it does not imply that anything is wrong." Christian, in his articles
[Christian, 1982, 1984], defines an exception occurrence as an invocation of
an operation or program in its exceptional domain, where the exceptional
domain contains all initial states for which the goal of the operation or
program cannot be reached by its normal execution. |

A deﬁnition of exceptions should describe their most essential characteristics.
It should also be consistent with the use of exception in the terminology

Basics of exception handling 55

exception condition, exception occurrence, exception declaration, exception
handler and signaling, raising, catching and handling an exception.

The most essential characteristic of exceptions is also the common part of
many different exception definitions. It is the fact that, when an exception
occurs during the execution of an operation, the operation cannot achieve its
goal, for example, due to division by zero or due to the pressing of the
emergency button by the operator.

Here exceptions are considered only in relation to programs, not in physical
systems themselves. This is because the terminology of signaling and
handling of exceptions is based on programs and is not relevant to physical
systems.

The term exception is used in many different ways, which makes it difficult to
define exceptions accurately. They can be defined more easily if the term
exception occurrence is defined first. Its definition is related to the definition
given by Knudsen (1987) and Christian (1982, 1984):

An exception occurrence is a computational state such that some invoked
operation cannot realize its goal.

Clearly, this definition implies that the determination of exception occurrences
is dependent on what is regarded as the goal of an operation. The word
computation is used to emphasize that exception occurrences are related to the
execution of a program. They occur and must be handled at run-time.

The computational state can be restricted to the state of the process executing
the operation, but it can also include parts of the state of the process's
environment,

The invoked operation which cannot realize its goal can be any operation in
the call chain of the process: it need not be the operation called last. Consider,
for example, the inversion of a singular matrix. If this operation is attempted,
all states reached in this operation and in operations that are subsequently
called will be exception occurrences. This is due to the fact that the inversion
operation will not be able to reach its goal, even though operations called by
the inversion operation to perform the desired calculations will be able to
reach their goals.

This definition comes close to the definitions in [Christian, 1982, 1984].
There are, however, some important differences:

56 Chapter 4

First, in our definition, an exception occurrence is not exclusively related to
initial states, as in Christian's definition. This is because exception
occurrences can also be related to the state of the environment of the process
executing the operation, such as the state of an emergency button. The cause
of this difference is that Christian's definition is based on internal exceptions
and disregards external exceptions. (Internal and external exceptions will be
defined later in this section.)

Second, the use of the term normal execution is avoided in our definition,
because 'normal’ is essentially a subjective term and, even more importantly,
because it suggests that the operation could realize its goal in an;abnormal
way. The essence of an exception occurrence, however, is that some invoked
operation cannot (in any way) realize its goal. It is important that the passive
voice is not used in this statement, because it may be possible to realize the
goal of the operation, but the particular operation itself cannot realize it.
Consider the example of the memory allocation problem in a multi-process
environment (which is often cited as an illustration of the use of the resume
response). Suppose that the allocate function is invoked when all memory has
already been allocated. The allocate function will try to allocate memory from
the memory pool directly, which will not be possible, and so an exception
occurrence results. This exception could be handled by making other process
release some memory. After that, the handler could issue a resume response,
and the allocate function could resume execution by allocating the desired
memory from the pool. In this case, the goal of the allocate function is the
direct allocation of the requested memory from the pool. An exception is
raised only when this is not possible. When the memory is finally!allocated
after the resume response, the allocate function has realized a secondary goal,
namely the allocation of the requested memory afier the deallocation of
memory by other processes. If the allocate function were to be rewritten in
such a way that it would itself request other processes to deallocate some
memory in the case of insufficient memory in the pool, then this allocate
function would have a different goal, namely the allocation of the request
memory at the time when enough memory is available.

Christian's definition could be changed by taking account of external
exceptions and leaving out the term ‘normal execution'. This would lead to the
following definition: an exception occurrence is an invocation of an operation
in its exceptional domain, where the exceptional domain contains all states for
which the operation cannot reach its goal. In this thesis, however, the

Basics of exception handling 57

definition of an exception occurrence as a computational state will be used,
which has been defined earlier in this section.

All attempts to define an exception simply as an error, event, condition or
response are bound to be unsatisfactory because of the many different uses of
exceptions. Errors, events and responses, for example, cannot be raised and
do not have a condition. Therefore, we will not explicitly define what an
exception is, but rather give its characteristics and, in the next section, explain
its use. ‘

An exception is associated with a class of exception occurrences [Knudsen,
1987].

The exception condition describes the common aspect of the exception
occurrences associated with the exception.

Exception occurrences and exceptions are either internal or external. The
definitions are as follows. '

An internal exception occurrence is an exception occurrence of which the
computational state is completely determined by the internal state of a
sequential process.

An external exception occurrence is an exception occurrence of which the
computational state is determined by the internal state of a sequential process
and the external states of one or more other processes.

An internal or external exception is an exception which is associated with a
class of internal or external exception occurrences respectively.

External exception occurrences can appear to be internal. This is due to the
fact that controlling systems must sample the state of the controlled system.
The sampled values of the sensors constitute a part of the internal state of the
controlling system. An exception occurrence caused by the (sampled) value of
the state of a sensor may therefore seem to be an internal exception
occurrence. In reality, however, the sampled values are used under the
assumption that they are equivalent to the corresponding actual values of the
physical sensors. So, the exception occurrences are, in fact, determined by the
actual values of the sensors and are therefore external.

58 Chapter 4

In other cases, the inputs supplied to a process will actually cause internal
exception occurrences. This is the case, if the inputs need only be received
once and can consequently be used throughout the process, eventually
resulting in the production of outputs. If such inputs contain precondition
errors, they will lead to internal exception occurrences in the process.

In the literature, the terms asynchronous and synchronous exceptions are
sometimes used instead of external and internal exceptions respectively.

4.1.3 Signaling, handling, declaring and raising exceptions

When an exception occurrence is detected in an operation, the corresponding
exception or exception condition should be signaled. By signaling the
exception, the specific information about the exception occurrence is lost.
How the signaling of an exception is actually implemented depends on the
programming language used. When an exception is signaled, it must be
handled. The handling of exceptions refers to the way a program recovers
from a situation in which some invoked operations cannot realize their goal, to
a situation where all invoked operations can, in principle, realize their goal.
There are several exception handling mechanisms in programming languages.
In the simplest programming languages, signaling an exception is done by
returning an error code. This is described in Section 4.3.1. Some
programming languages offer a more sophisticated mechanism for exception
handling.

In some languages, exceptions can be declared in an exception declaration
using the predefined exception type. In an exception declaration, a new
exception is declared and an identifier is bound to this exception, so that the
identifier denotes the exception. Other language constructs offered by these
languages to support the exception handling mechanism are constructs for the
raising of exceptions, which are comparable with predefined raise procedures,
and the declaration of exception handlers. An exception is signaled by
raising the exception by means of the raise procedure. Raising an'exception
will result in the activation of an exception handler which was bound to the
exception. The functionality of the exception handling mechanism of these
languages will be elaborated further in Section 4.4.

In Smalltalk-80, instances of class Signal are used to denote exceptions. The
raising of such a signal in the case of an exception occurrence leads to the

Basics of exception handling 59

creation of exception objects, which are instances of the class Exception. The
functionality of the exception handling mechanism in Smalitalk-80 will be
elaborated further in Section 4.5. '

The detection of an exception occurrence should lead to the signaling of the
corresponding exception. This can be done by raising the exception or, for
example, by returning an error code. On the other hand, exceptions should
only be raised in the case of an exception occurrence. In fact, we regard the
raising of exceptions in other cases as bad programming practice.

When the invocation of a program unit results in an exception occurrence
which is either handled in a handler bound to the unit, or propagated to the
unit's invoker, the unit is said to terminate with an exception. Such a
termination of the unit can also be referred to as an exceptional termination.
This definition assumes that exception handling follows the termination model
or, in the case of the resumption model (see Section 4.4.4), that it does not use
the resume response. The other possibility is normal termination of the unit,
by executing the statement just before the block's end identifier (or other
symbol or identifier which closes the block), or by executing a return
statement.

4.1.4 The relationship between exceptions and errors

Exceptions are used in programs in order to facilitate the handling of
precondition errors in a structured way, and in order to facilitate the creation
of robust programs in the presence of precondition errors. Exceptions and
exception occurrences are only defined in relation to the execution of
programs. Errors, on the other hand, are not restricted to any particular kind
of system.

Exceptions can, to some extent, also be used for the handling of errors in the
design of a controlling or controlled system; but only if the incorrect design
leads to precondition errors or to the violation of invaniants (which can be
detected by means of assertions).

4.1.5 The relationship between exception occurrences and errors

An exception occurrence will ultimately always be caused by an error. This -
error can either be an internal or external state error, or a precondition error.: -

60 Chapter 4

If a system is correct and (recursively) all its components are correct, then all
exception occurrences will be the result of precondition errors. If the system
and its components are also operated in their standard domain, so that no
precondition errors can occur, then the goals of all components can be
realized and so no exception occurrences will take place. The relation between
exception occurrences and errors will be elaborated further below.

If the weakest precondition of a system is not satisfied, then it will be
impossible to realize the system's goal and so an exception occurrence will
result. Therefore, precondition errors which violate the weakest precondition
of a system always lead to exception occurrences. Precondition errors which
do not violate the weakest precondition of a system may lead to exception
occurrences.

Exception occurrences need not always be caused by precondition errors.
They can also be caused by incorrect designs that lead to internal state errors.

Internal state errors can lead to exception occurrences, depending on the
inputs to the system. As explained in Section 3.1.3, internal state errors need
not always lead to failure of a system. Certain internal state errors will only
lead to failure in the presence of certain inputs to the system. If thelinputs are
such that failure will result, it will obviously also be impossible for some
operation to realize its goal, and so there will also be an exception occurrence.
If the inputs are such that failure does not result and the goal of the system
can be realized, then the internal state error will not lead to an exception
occurrence. :

External state errors can lead to exception occurrences. However, this is not
always the case, because the external state errors of a component can be
corrected by the encompassing system, for example by using redundancy.

Exception occurrences can coincide with internal or external state errors, but
cannot cause them.

4.2 Basic requirements for a mechanism for the handling of
internal exceptions |

Some of the requirements for an exception handling mechanism are
application independent, while others do depend on the kind of application.
When developing and testing a program, for example, an appropriate response

Basics of exception handling 61

to an error would be to stop execution of the program and enter a debugger.
In real-time systems, this response would be unacceptable. The requirements
that should be met by a general-purpose mechanism for the handling of
intemal exceptions are given below. These requirements should also be met by
exception handling mechanisms used in languages for the control of industnal
systems, together with additional requirements concerning constraint
violations. Constraint violations will be treated separately in Chapter 5.

1. The mechanism should facilitate the creation of robust programs.

2. All exception occurrences which are detected should allow for damage
confinement and error recovery code to be executed.

3. The mechanism should be easy to use and understand. It should consist of
a small number of orthogonal elements. This means that the elements can
be used independently of other programming elements and do not overlap.
This is a cniterion which is often used in the design and analysis of
programming languages.

4. There should be a clear separation of the code for normal program
operation and the code for exception handling.

5. User programs should be able to handle exceptions detected in the user
program itself and those detected in the routines of the supporting system
in the same way.

6. If an exception occurrence results in the termination of a call chain of
several levels, each level should be allowed to fulfil its own finalization
obligations.

A consequence of the second requirement is that the often encountered way of
error handling which simply results in an error message and a user process
being killed is unacceptable.

In addition to requirement number 3, it should be noted that is not necessary
to strive for absolute orthogonality.

Requirement number 6 is a result of the use of different levels of abstraction
which makes complex programs manageable. These different levels of
abstraction should be used both for the normal operation of a program and for
the exception handling operation.

62 Chapter 4

Finalization obligations are the actions that have to be taken in order to bring
a component in which an exception has occurred to a safe and consistent state
after the exception occurrence, so that the component's invanants that have
been invalidated due to the exception occurrence are restored.

Consider the fork-lift truck example from Section 2.3. This example is
slightly modified so that CtriTruck directly controls the fork-lift, see Figure
4.2.1. Here there are three levels of abstraction. The first level is the global
process cycle represented by the body. The second level consists of the taking
of the stack with the necessary synchronization with the stack supplying
process. The actual control of the actuators and detectors of the fork-lift takes
place at the third level.

CtriTruck >> body

“Finalization obligations:
Return the fork-lift truck to the predefined reset position”

self receiveStackFromTraverse.
self transportStackToFumnace.
self giveStackToFumace.

self goBackToTraverse

CtriTruck >> receiveStackFromTraverse

"Finalization obligations:
Correct the synchronization with the CtriTraverse processor”

self sendTo: 'sync-truckResetAtTraverse’.
self receiveFrom: 'sync-traverseAtFork'.
self forkUp.

self sendTo: 'sync-forkisUp’

CtriTruck >> forkUp

*Finalization obligations:
Stop the motor of the fork lifter”

self putOn: 'o-forkLifter-up'.
self putOn: 'o-forkLifter-power’.
self

receive: true

from: 'i-forkLifter-up’

within: 6 seconds

ifTimedOut: ['raise exception”].
self putOff: 'o-forkLifter-power’

Figure 4.2.1 Three levels of abstraction with different finalization
obligations

Basics of exception handling 63

Suppose that the end detector is not activated in time while moving the fork
up, possibly because of a defect in the detector. If the error cannot be
corrected, it is not possible to continue the process cycle and all three levels
should be terminated. At the third level the exception handling operation
would consist of stopping the fork-lift motor. At the second level the
synchronization with the CtriTraverse processor would need to be corrected.
This is necessary to prevent the CtriTraverse processor from waiting for a
signal that the fork is up, which signal will no longer arrive. Finally, in the
body, the fork-lift truck could be retumed to a predefined reset position. Each
level executes only the finalization operations necessary due to its own
premature termination.

4.3 Traditional ways of exception handling
4.3.1 Using returned values as exception codes

The simplest way of exception handling is by passing special codes through
arguments or returned values of procedures or methods. This is the way
internal exceptions are handled in the Unix operating system written in the C
- programming language. It is also the method that must be used in Sequential
Function Charts [IEC 848, 1988] when goto-like jumps are to be avoided.
Although the advantage of this method is that it is very simple to understand
and requires no special support, the drawbacks to this way of exception
handling are so severe that this method is unsuitable for use in industnal
control systems. In this section, it will be shown that this method cannot
satisfy the requirements defined in the previous section,
Using returned values as exception codes means that the results of all
operations must be checked for the occurrence of exceptions. This has several
severe consequences:

1. The creation of robust programs becomes problematic. The amount of
code needed just to check error retumn codes becomes enormous. A single
test can ecasily be forgotten. This will not hinder normal program
operation and may thus remain unnoticed for a long time. Only when an
ermor occurs, will the failure to test for the error occurrence cause the
program to continue in an erroneous state with possibly disastrous
consequences. Also, it can be very difficult to detect the cause of such
errors.

64 Chapter 4

2. Many system operations do not return any error values. Therefore, no

error recovery code can be executed for these errors. Consider, for
example, arithmetic operations such as division. A simple division could
result in a division by zero error. It is unacceptable that such an error
simply prints an error message on the terminal and stops the system,
because this makes it impossible for the user program to do any damage
confinement and error recovery.
Error information could be supplied in global variables in an environment
with a single user process. In a multi-process environment, this will lead
to unpredictable and possibly erroneous program operation. In such a
case, there should be a 'global' error variable for every process. The
problem which still remains is that sequential errors overwrite the global
error variable: if an error is undetected due to omission to test the global
error variable, another error may result, which overwrites the original
error information. More important even than this is the fact that such
schemes are highly impractical, and that it is undesirable to use a second
mechanism for the handling of errors that cannot be handled by retummg
error codes.

3. The exception testing code will be intermingled with the code for normal
program operation, leading to programs that are hard to read.

Figure 4.3.1 gives an example of this way of exception handling. The send
and receive operations are not checked for error return codes. If errors can
occur during execution of these statements, then they should also be checked
for error return codes.

4.3.2 Other mechanisms

There are several other traditional mechanisms for the handling of exceptions.
The reader is referred to [Goodenough, 1975], which contains an extensive
treatment of these mechanisms. They will not be dealt with further here. The
VAXELN system [Digital, 1986] has some similarities with the exception
handling mechanisms treated in Section 4.4. It also has special exception
handling capabilities for multi-process environments. Its treatment will
therefore be deferred until Section 5.5.2.

Basics of exception handling 65

CtriTruck >> body
(self receiveStackFromTraverse) == #ok ifF alse: [t #error].
(self transportStackToFurnace) == #ok ifFaise: [t #error].)
(self giveStackToFurnace) == #ok ifFalse: [t #emror].
(self goBackToTraverse) == #ok ifFalse: [T #error].
T #ok

CtriTruck >> receiveStackFromTraverse
self sendTo; 'sync-truckResetAtTraverse’.
seif receiveFrom: 'sync-traverseAtFork’.
(self forkUp) == #ok ifFalse: [T #emor].
self sendTo: 'sync-forkisUp'.

T #ok

CiriTruck >> forkUp
self putOn: "o-forkLifter-up’.
self putOn: "o-forkLifter-power'.
self
receive: true
from: ‘i-forkLifter-up’
within: 6 seconds
ifTimedOut:
[self putOff: ‘o-forkLifter-power’.
T #error].
self putOff: 'o-forkLifter-power'.
1 #ok

Figure 4.3.1 Exception handling by returning error codes.

4.4 Advanced exception handling mechanisms

Exceptions have been defined in Section 4.1. In order to support the handling
of exceptions, some programming languages have implemented advanced
exception handling mechanisms. This section discusses these mechanisms,
using the mechanisms of two imperative programming languages as an
example. The advanced exception handling mechanisms of most programming
languages differ only in minor aspects, the underlying concepts being the
same. This section will focus on the common qualities of the mechanisms
rather than on the differences. The examples given will use either the ModPas
[Bron and Dijkstra, 1987a] or Ada programming language [Ichbiah, 1983].
Modular Pascal, or ModPas, is a Pascal based language which includes
modules. It was one of the first languages to include an advanced exception

66 Chapter 4

handling mechanism. The exception handling mechanisms of Modular Pascal
and Ada are based on [Bron and Fokkinga, 1976].

4.4.1 Exceptions

Exceptions can be declared in exception declarations. This is done as follows
in ModPas and Ada respectively:

EXCEPTION xFatalError; {ModPas exception declaration}
ILLEGALPARAMETER : exception; — Ada exception declaration

Exceptions are signaled by raising them in a raise statement. In ModPas, the
raising of an exception is syntactically equivalent to the invocation of a
parameterless procedure. In Ada, this is done by means of the predefined raise
operation.

xFatalError; {raising a ModPas exception}

raise ILLEGALPARAMETER; - raising an Ada exception

4.4.2 Exception handlers

An exception handler is bound to a syntactical unit and to an exception. In
this way associations or bindings between the handler and the unit, and
between the handler and the exception are created. In some programming
languages, a handler can be bound to multiple exceptions. Several exception
handlers can be bound to the same unit. The kind of unit that exception
handlers can be bound to depends on the programming language used.
Handlers can usually be bound to procedure and function bodies. Some
languages also allow handlers to be bound to blocks (other than procedure
and function bodies) and to modules or packages. The binding of a handler to
a unit and to an exception is usually static, which means that the association
between the handler and the unit and between the handler and the exception is
determined at compile-time. In ModPas, procedure and function bodies may
be prefixed by handlers, the form of which is: BUT FOR <exception identifier>:
<handler body> DO. In Ada, handlers can be attached to a block, a body of a
subprogram, a package or a task. They are specified by means of the reserved
word exception followed by the declaration of one or more handlers at the end

Basics of exception handling 67

of a unit. The form of a handler is: when <exception identifier> => <handler
body>.

BUT FOR xFatalError: write(" fatal error ! ’) DO
BEGIN

calculate;

{rest of ModPas program}
END;

begin

CALCULATE;

— rest of Ada program
exception

when ILLEGALPARAMETER => PUT(" illegal parameter ! ”);
end;

A unit is said to have a handler for a specific exception if a handler which can
catch the exception is bound to the unit. A handler can catch only those
exceptions that are bound to it. In the previous example, the ModPas body
has a handler for the xFatalError exception and the Ada block has a handler
for the ILLEGALPARAMETER exception. Most programming languages allow
special handlers to be defined that can catch any exception, or all exceptions

~for which no other handlers are defined. This kind of handler will be referred
to as an any handler or others handler. This is necessary for the handling of
'out of scope exceptions' and to allow for finalization obligations. Out of
scope exceptions are exceptions which are propagated out of the scope of
their declaration. If this occurs, the only way to catch them is with an 'any
handler'. In ModPas, an any handler is specified by means of specifying xAny
as the exception of a handler and in Ada others is used for this purpose:

PROCEDURE readlnputsFromFile;
BUT FOR xAny: {close file}; xReraise DO
{xReraise is explained in Section 4.4.5}
BEGIN
{open file};
{process file}
END

begin

-- Ada program
exception

when others => PUT(” error | "); raise;

’ — raise is explained in Section 4.4.5
end;

68 Chapter 4

4.4.3 The handling of exceptions

In order to understand exception handling mechanisms, the concepts of
invoker, invocation and activation point should first be understood.

A subprogram is defined only once in a program, but it can be called at many
different points. Each call of the subprogram results in a different subprogram
invocation. The invocation of a subprogram is the activation of the
subprogram's body in the environment of the subprogram's textual definition.
The activation point of a subprogram invocation is the point in a unit from
where the subprogram is called or invoked.

The invoker of a subprogram's invocation, SI, is the invocation of the
smallest enclosing unit of SI's activation point.

In contrast to subprograms, the other units (namely blocks, modules and
packages) cannot be called from different points in the program. They are
defined and activated at one and the same place. Therefore, the invoker of a
block's, module's or package's invocation is simply the invocation of its
smallest enclosing syntactical unit.

We will often simply refer to the invoker of a unit instead of the more precise
terminology invoker of a unit's invocation.

When an exception is raised explicitly, the exception will be handled in the
invocation of the smallest enclosing unit of the exception raising statement.

An exception which has been raised is handled as follows in a unit's
invocation, Ul.

If the unit has a handler for the exception, control will pass to the handler. If
the unit has no handlers for the exception, the exception will be propagated to
UI's invoker, which means that the exception will be handled in UI's invoker.

Note that the definition of an invoker as the invocation of a smallest enclosing
unit is, strictly speaking, not precise enough. Consider the following example:

fortin1 .. 10 loop
begin
PROCESSPRODUCT(l);
exception
when FAIL => PUT("Processing failed for product number "'); PUT(l)
end;
end loop;

Basics of exception handling 69

The procedure PROCESSPRODUCT is called for 10 products. If the
exception FAIL is signaled during the processing of one of these products, an
error message including the product number is printed by the exception
handler. When the loop is executed, each value of | will result in a different
invocation of PROCESSPRODUCT. There is, however, only one activation
point: PROCESSPRODUCT(l). The smallest enclosing block of the activation
point is the begin end block. Suppose the FAIL exception is signaled when the
fifth product is processed. Then the invoker of the invocation of
PROCESSPRODUCT(5) would be the invocation of the begin end block. But
there have already been five subsequent invocations of the block. In this case,
clearly the last invocation is meant, since the invocations of the block for the
products 1 to 4 have already terminated. In the case of recursion, however,
many nested invocations of a recursive procedure may exist. The invoker of
subprogram's invocation, S, is then obviously meant to be the invocation of
the smallest enclosing unit of SI's activation point, from which SI was
actually invoked. A

4.4.4 The termination and resumption model

When an exception in a unit is propagated to the unit's invoker, the question
arises of what happens with the unit's invocation. There are two possibilities.
The simplest possibility is to terminate the invocation of the unit. This
strategy is adopted in, for example, ModPas, Ada and Clu [Liskov and
Snyder, 1979]. It is known as the termination model. The other possibility is
to keep the invocation intact, so that, after the exception has been handled, the
execution of the program can be resumed at the point where the exception was
raised. This strategy is adopted in, for example, Smalltalk-80 and VAXELN.
It is known as the resumption model. Conceptually, and from the viewpoint of
the implementation, the termination model is much simpler than the
resumption model. Also, in most cases, it is preferable in order to avoid goto-
like programming, which is allowed in the resumption model. The
disadvantages of the resumption model will be further discussed in Sections
4.6.3 and 4.6.4. A more extensive evaluation of the resumption model versus
the termination model can be found in [Liskov and Snyder, 1979].

Because of the simplicity and other advantages of the termination model, the
explanation of the exception handling mechanism will assume the termination
model unless explicitly stated otherwise.

70 Chapter 4

4.4.5 Handler responses

When an exception is signaled in a unit for which the unit has a handler,
control will pass to the handler. There are five principally different ways in
which a handler can end. They each have a different effect on the continuation
of the control flow. Four of them are associated with the exception caught.
These are referred to as the return, propagate, retry and resume response. The
fifth response would be to raise another exception. In the literature a sixth
response is often given, namely the transfer response which can continue with
any statement in the unit associated with the handler. The functionality is
similar to the goto statement. Since goto programming is generally
acknowledged to be bad programming practice, the transfer response will be
neglected as undesirable.

The functionality of all five responses will now be explamed Actual
implementations can be more complex, but will exhibit the same functionality.

The return response has a similar effect as the return statement, which can be
used to return from procedures or methods. The invocation of the unit to
which the handler is bound is terminated. The value retumed by the handler is
used as the returned value of the terminated unit. In most systems, this
response is the default way of returning from an exception handler if no
explicit response is programmed in the handler.

The propagate response from a handler causes propagation of the exception to
the invoker of the unit to which the handler is bound. For the invoker of the
unit it makes no difference whether an exception is propagated to it directly
by a unit which has no handlers for an exception, or whether the exception is
first handled by a handler and then propagated by means of the propagate
response from the handler. '

The retry response first terminates the invocation of the unit associated with
the handler. The unit is then reinitialized and execution continues at the start
of the unit.

The resume response can only be used in the resumption model. It causes
execution of the program to continue right after the point where the exception
was raised. The resumption response assumes that the exception handler has
corrected the error causing the exception in such a way that the program can
be continued right after the point where the exception was raised. The resume
response is not possible for all exceptions. Whether or not a handler should be

Basics of exception handling 71

able to issue a resume response is not only the responsibility of the handler,
but also of the part of the program where the signal was raised. For many
exception occurrences it is clear at the time of raising the exception that
continuation after the exception occurrence should never take place.
Therefore, most programming languages that allow the resume response have
two ways of raising an exception. When an exception is raised in the normal
way, the resume response from a handler is not allowed. It is only allowed
when an exception is raised using a special raise primitive.

The fifth way to continue after execution of a handler is to raise another
exception in the handler. This exception is then propagated to the invoker of
the unit associated with the handler, just as if the exception were propagated
directly from the unit.

“ModPas and Ada only support the return and propagate response. The
propagate response is invoked in ModPas by raising the predefined exception
xReraise. In Ada, this is done by calling the predefined raise operation with
no arguments.

In theory, the responses treated above could be defined differently. If the
handler of an exception is bound to a different unit than the unit in which the
exception was raised, then the retry response, for instance, could cause the
unit in which the exception was raised to be reinitialized and restarted, instead
of the unit associated with the handler. The other responses likewise have
different versions. All theoretically possible different versions of the above-
mentioned handler responses are treated in [Feder, 1990]. Feder, however,
does not indicate the necessity or value of the definitions other than the
generally used definitions mentioned above.

4.4.6 The functionality of exception handlers in control systems

Exception handlers are bound to program units such as blocks. An exception
handler is activated when the unit to which it is bound terminates with an
exception. This premature termination of the unit can cause invariants to be
invalidated. Some examples of the violation of invariants will be given in
Chapter 5 in Figures 5.3.3a-.

An important aim of the exception handler is to restore invariants. The actions
that are necessary in order to restore the invariants can also be referred to as
finalization obligations. In some languages, special constructs are available

72 Chapter 4

for dealing with finalization obligations, such as unwind blocks in
Smalitalk-80. Such constructs will not be treated, because their functionality
can be closely approached with exception handlers. Some invariants cannot be
restored by the exception handler alone, for example when the exception
causes the synchronization between processes to be incorrect. In this case, the
exception handler should signal the other processes, so that the processes can
be resynchronized and the invariant will be restored.

After restoring the invariants, the exception handler should try to realize the
(secondary) goal of the program unit to which it is bound. If this goal can be
realized, the exception handler will terminate with the return response. The
exception handler may also try to create a situation where the unit's goal may
be achieved by a renewed invocation of the unit; in this case the handler will
terminate with the retry response. If neither of these responses are possible,
the exception handler will terminate with an exception, under the assumption
that exception occurrences are always signaled by means of raising
exceptions, and not by returning error codes. This can be done by either
propagating the handled exception or by raising a new exception. The resume
response 1s not considered here, because it should not be used (see Sections
4.6.3,4.6.4,and 6.9). ,

4.5 The exception handling mechanism in Smalltalk-80

The exception handling mechanism used in Smalltalk-80 is somewhat
different from the mechanisms used in most imperative languages: This is
partly due to the fact that Smalltalk is a truly object-oriented language, and
also to the fact that the exception handling mechanism is not part of the
Smalltalk language definition but is rather an addition to the language, mainly
by the addition of the classes Signal and Exception. The mechanism is more
powerful and more complex than the mechanisms treated so far. ‘

4.5.1 Exceptions and signals

In many languages, exceptions are defined and at the same time statically
bound to an identifier in an exception declaration. In Smalltalk exceptions are
defined when a signal is created. Signals are instances of the class Signal.
Signals are usually created at the initialization of the class in which the signal
is created. The signals created are made available to other objects by means of

Basics of exception handling 73

messages that can be sent to the class in which the signal is defined. For
example:

Object errorSignal
ArithmeticValue divisionByZeroSignal

When a signal object is created, a new exception is defined which is denoted
by the signal. The exception can be raised by sending a raise message to the
corresponding signal. This will result in the creation of an instance of the
class Exception. Such an exception object, however, does not denote an
exception, since exceptions are denoied by signals. This fact can lead to
confusion because raising an exception in Smalltalk is done by sending a raise
message to a signal. In this thesis, the terminology of raising an exception
and raising a signal will be considered equivalent for Smalltalk systems. The
most important methods for raising a signal are raise and raiseErmrorString:.

Object errorSignal raise
Object errorSignal raiseErmrorString: 'an error has occurred’

Exception objects are used as arguments of exception handlers. They can be
used to retrieve the signal that was raised to create the exception object. They
are also used in the exception handler to retrieve any arguments supplied by
the raiser of the signal and to control the handler response.

The hierarchy of signals

Smalltalk signals are hierarchical. A new signal is created with another,
already existing, signal as its parent. The signal is said to be a child of its
parent. This hierarchy is used to catch related exceptions without the need to
bind each exception explicitly to a handler. A handler which is bound to a
certain signal will catch all exceptions represented by the signal's children. If
a handler is bound to ArithmeticValue errorSignal for instance, it will catch,
among others, the exceptions represented by the signals ArithmeticValue
overflowSignal, ArithmeticValue underflowSignal and ArithmeticValue
divisionByZeroSignal, since they are all (indirectly) children of ArithmeticValue
errorSignal.

A small part of the hierarchy of signals is given below.

74 Chapter 4

Signal genericSignal
Object informationSignal
Object userinterruptSignal
Object errorSignal
ArithmeticValue errorSignal
ArithmeticValue rangeErrorSignal
ArithmeticValue overflowSignal-
ArithmeticValue underflowSignal
ArithmeticValue domainErrorSignal
ArithmeticValue divisionByZeroSignal

This hierarchy is also used to specify ‘'any handlers’. All exceptions
representing error conditions are supposed to be created with Object
errorSignal as their parent. Therefore, a handler bound to Object errorSignal
should catch all such exceptions. Object errorSignal has Signal genericSignal as
its parent, which is the ancestor of all signals. Unfortunately this signal may
not be bound to handlers. The Smalltalk user guide states that this signal is
considered an abstract entity and should not be used to catch exceptions
directly. Therefore, specifying Object errorSignal to create an any handler is
only foolproof if all users conform to the convention of creating all new
signals with Object errorSignal as their parent. This implementation is not as
robust as the implementation of any handlers in ModPas and Ada. -

4.5.2 Exception handlers

An exception handler in Smalltalk is a block. A block in Smalltalk is quite
different from blocks in imperative languages. It has a greater resemblance to
a subprogram. A block consists of a sequence of statements, enclosed in []
brackets, which are executed or invoked when the message value is sent to the
block. Blocks can be conveniently used as arguments of methods. When,
during execution or invocation of the method, the message value is sent to a
method's argument which points to a block, the block is executed or invoked
in the environment of the block's definition.

In contrast to imperative languages, where handlers are statically (i.c. at
compile-time) bound to units and to exceptions, exception handlers in
Smalltalk are dynamically (i.e. at run-time) bound to blocks and exceptions.
The binding of an exception handler to a block and an exception is done by
means of the handle:do: method which can be sent to a signal. The handle:do:
method is invoked by evaluation of an expression such as:

Basics of exception handling 75

signal handle: handlerBlock do: doBlock

This produces a binding of the handlerBlock to the doBlock and to the
exception denoted by signal. The only purpose of the handle:do: method is to
produce handler bindings. It is also the only way of binding a handler.
Handlers cannot be bound to methods.

Invocation of the handle:do: method first results in the production of the
bindings between the handlerBlock and the doBlock. Immediately after that, the
doBlock is invoked by sending it the value message.

4.5.3 The handling of exceptions

When an exception is raised, the exception will be handled in the invocation of
the smallest enclosing unit of the exception raising statement. A unit in
Smalltalk is defined to be either a block or a method.

An exception is handled as follows in a unit's invocation, UL If the unit has a
handler for the exception, control will pass to the handler. If the unit has no
handlers for the exception, the exception will be propagated to Ul's invoker,
which means that the exception will be handled in Ul's invoker. Because
methods cannot have handlers, the handling of an exception in the invocation
of a method, MI, always implies the propagation of the exception to MI's
invoker.

The invoker of an invoked doBlock or handlerBlock which are bound by a
handle:do: method is the invocation of the smallest enclosing unit of the
handle:do: message expression. In all other cases, the invoker of a unit's
invocation, UI, is the invocation of the smallest enclosing unit of Ul's
activation point. The activation point of a method's invocation is the
expression which invoked the method. The activation point of a block's
invocation is the expression which invokes the block. So this is an expression
where value (or value:, or any other of the value messages) is sent to the block.

4.5.4 Handler responses

All the handler responses mentioned in Section 4.4.5 are implemented in
Smalltalk. The return, propagate, retry and resume responses are implemented
by the messages return, reject, restart and proceed respectively. In order to
effect these responses, the messages can be sent to the exception object which
acts as the argument of an exception handler.

76 Chapter 4

The resume response permits control to return from a handler to the statement
following the statement where the exception was originally raised. Therefore,
it is not possible to terminate an invocation when an exception is propagated.
The invocation which handles the exception, and all other invocations that
have issued a propagate response, are terminated only at the point that a
return or retry response is issued or another exception is raised. The problems
associated with the resume response in Smalltalk and in other languages will
be discussed in Section 4.6.3.

The example of exception handling shown in Figure 4.5.1 is taken from the
example presented in Section 2.3.3. It is rewritten to include exception
handling.

ErrorSignal is another way of representing Object errorSignal. It is a global
variable which is known throughout the system. When ErrorSignal is raised
from within the time-out block, the exception will be caught by the handler.
The run-time system will set the argument exc to the exception object. The
error string with which the signal was raised is retrieved from the exception
object by sending it the message errorString. The handler finishes with exc
reject, which is the propagate response. Consequently the invoker of the
forkUp invocation will handle the exception. In Figure 4.5.2 the method forkUp
is rewritten for the retry response.

SlaveForkLifter >> forkUp
ErrorSignal
handle:
[:exc |
self putOff: 'o-forkLifter-power’.
-self sendErrorMessageToOperator: exc errorString.
exc reject]
do:
[self putOn:-'o-forkLifter-up'.
self putOn: *o-forkLifter-power’.
self
receive: true
from: "iforkLifter-isUp’
within: 6 seconds
ifTimedOut:
[ErrorSignal raiseEmorString: 'time-out fork lifter going up’].
self putOff: "o-forkLifter-power’]

Figure 4.5.1 Exception handling with the propagate response.

Basics of exception handling 7

SlaveForkLifter >> forkUp
ErrorSignal
handle:
[:exc |
selff putOff: *o-forkLifter-power’.
self sendErrorMessageToOperator: exc efrorString.
self sendRestartMessage ToOperator; ‘fork lifter up’.
self receiveRestartResponseFromOperator.
exc restart]
do:
[self putOn: o-forkLifter-up’.
self putOn: 'o-forkLifter-power’.
self
receive: true
from: ’i-forkLifter-isUp’
within: 6 seconds
ifTimedOut:
[ErrorSignal raiseErrorString: time-out fork lifter going up’].
self putOff. "o-forkLifter-power’]

Figure 4.5.2 Exception handling with the retry response

4.6 Evaluation

4.6.1 A general evaluation of the advanced exception handling
mechanisms

The most important aspect of the use of the exception handling mechanism as
treated in the previous sections is that it facilitates the creation of robust
programs. The advantages of the mechanism are as follows:

The automatic propagation of unhandled exceptions prevents untreated

errors from causing system crashes. :

Exceptions make it possible to fulfil finalization obligations at each level

of abstraction. This is done by catching exceptions if necessary and

propagating the caught exception after execution of the finalization

obligations by the handler.

The exception handling mechanisms are based on only a small number of .
primitives which allow all exceptions, both those detected by the user and

by the system support, to be handled in a uniform way. A requirement for

this is that the system support declares all exceptions that it can raise.

78 Chapter 4

Also the any handler can be used to catch exceptions raised by the
system.

o The use of exceptions cnables the separation of concems in the
development of programs. The code for the normal processing of the
program can, to a great degree, be developed separately from the code for
the handling of exceptions. This leads to programs which are easier to
develop, read and maintain.

A disadvantage of the exception handling mechanism is its greater complexity
than the traditional ways of exception handling. The mechanism changes the
flow of control of a program in an entirely different way than is done by the
traditional programming methods.

Not all languages employ all five mentioned handler responses. The propagate
response, however, is fundamental to the exception handling mechanism and
is therefore available in all programming languages with advanced exception
handling mechanisms. The return response is available in most languages.
Raising an exception from within a handler should also be possible, since
precondition errors can occur anywhere, including handlers themselves.

The retry response is not absolutely necessary, since its functionality can be
approached using the return response together with programming constructs
for repetition. This, however, leads to inelegant code which is less clear. The
elegance of exception handling using the retry response will be shown in
Section 7.3.

4.6.2 The return response as an inadequate default responsé

The return response is usually the default response of an exception handler.
This is an inadequate choice because the accidental omission of a handler
response can have disastrous consequences.

Exception handlers facilitate the creation of robust programs. Programming
errors in complex systems cannot be completely avoided, however. An error
which is easily made, and which cannot be detected by a compiler in the case
that default responses are allowed, is the accidental omission of a response
such as a propagate response. If such a propagate response is accidentally
omitted, the program is allowed to continue in an incorrect state which can
lead to program crashes and, in the case of control systems, to catastrophic
reactions of the controlled system.

Basics of exception handling 79

If, on the other hand, the propagate response is chosen as the default response,

then accidental omission of a response will automatically lead to the
propagation of the exception to higher levels. In this way, all finalization

obligations of higher levels will be fulfilled and the system, or a part of it, will

terminate in a controlled way. Clearly it is much more likely that a response

from a handler will be forgotten than that an incorrect response will be used.

It would also be possible not to aliow a default response and to regard the
omission of a response as an error, leading to a run-time exception. This
exception would then discard the original exception, so the propagate
response is preferred as a default response.

4.6.3 The resume response as an inadequate respense in a
sequential process

The resume response can be convenient in a small number of cases where the
program can be continued right after the error, after correction of the error in
an exception handler. One of these cases is the resumption from a debugger.
This could, however, also be implemented without using the resume response,
and in itself it does not justify the resume response. There are, in fact, severe
drawbacks associated with the resume response. Consider the following part
of a Pascal program:

i=5;
b := ali];

The value of b would be expected to be the value of the fifth element of the
array a. If, however, array a were to have only 3 elements, then an exception
would occur. The value of i could be set to 1 in an exception handler, which
could be bound to the subprogram shown, whereafter a resume response could
be given. As a result b would be assigned the first value of a.

This kind of behaviour makes programs hard to understand, since the result of
an operation can be determined by an exception handler which is not bound to
the operation itself but to the invoker of the operation, or to any other invoker
in the call chain. This leads to similar problems as the use of the goto
statement. It is also inconsistent with the use of procedure or method
abstractions. These abstractions hide the implementation aspects of lower
layers in a system from the higher layers. When an exception is propagated to

80 Chapter 4

a higher level, the resume response enables correction at the higher level and
consequent resumption at the lower level. Thus, in order to understand and
develop programs with these kind of characteristics, it is necessary to study
the implementation aspects of both the higher layers and the lower layers at
the same time. And this is the very thing that the use of procedure and method
abstractions aims to avoid.

Therefore, it is concluded that it is better not to use the resume response at all.
In systems with parallel processes, there are additional problems with the
resume response. These problems are treated in the next section and in
Section 6.9.

4.6.4 Conflicts between the resume response and critical regions

A problem associated with the resume response is its use in a parallel system
that uses critical regions to prevent simultaneous access to shared resources.
A simple example of this is the use of a semaphore for mutual exclusion on
which a wait or p-operation [Dijkstra, 1965] is performed when entering the
critical region. When the region is left, the semaphore is signaled by executing
a v-operation on it. If an error occurs in a critical region, an exception will be
raised. If the exception cannot be handled within the critical region, it will be
propagated to the invoker. Since propagating the exception means that the
cnitical region is left, the semaphore should now normally be signaled in order
not to keep the critical region locked and inaccessible to others.

If the resumption model is used, however, and an exception causes the critical
region to be left and the semaphore to be signaled, then the exception can be
caught by a handler in which a resume response is issued. This will cause
continuation of the process within the critical region without, however, first
executing a wait operation on the semaphore. In this way an inconsistent state
is created such that two processes will always be allowed to enter the critical
region instead of one. Therefore, the existence of the resume response
prevents the semaphore from being signaled when the critical region is left by
means of exception propagation. It may only be signaled when resumption in
the critical region is no longer possible. Therefore, the critical region will
remain locked until that time. This can be intolerable. It can even lead to
deadlock if an exception handler, handling the exception from the critical
region, executes an operation which needs access to the critical region.

Chapter 5
The handling of constraint violations

Most exception handling mechanisms have been developed for the handling of
internal exceptions in stand-alone sequential processes and have no special
provisions for dealing with external exceptions in control systems. These
mechanisms are meant to be used for exception occurrences in operations that
are determined by the internal state of the operation itself. Exception
occurrences are detected by having each operation explicitly test its own
internal state.

In this chapter the concepts ‘constraint' and 'constraint violation' will be
defined. These concepts are essential in order to determine the requirements of
a mechanism for the handling of external exceptions in control systems. It-will
be shown that a mechanism is required for the specification of constraints and
the detection and handling of constraint violations. The known mechanisms
for the handling of constraint violations are treated and shown to be
inadequate. Finally, a new mechanism is presented. Although the matenal
presented in this chapter is developed in the context of control systems, it is
also of general relevance in multi-process environments.

5.1 Definition of terms
5.1.1 Constraints, constraint functions and constraint violations

The constraint of an operation is that part of its precondition which refers
exclusively to the state of the environment of the process executing the
operation and which is invariant over the operation: it has to be valid
throughout the execution of the operation.

A constraint can be compound, in which case it consists of (sub-)constraints.
A compound constraint is met if and only if all of its (sub-)constraints are
met. In most situations we will not explicitly distinguish compound and sub-
constraints, but simply use the term constraint. This makes it possible to refer

82 : Chapter §

to the constraints (plural) of an operation, which is meant to include all of the
sub-constraints of the operation's compound constraint.

Consider, for example, an operation that controls a cylinder which pushes a
product upwards. The goal of the operation could be to make the cylinder
extend to the upward position under the condition that the emergency button is
not pressed. The emergency button which has to stay inactive would be a
constraint of the operation. Another constraint could be that there must be
adequate air under pressure available for the cylinder. Other examples of
constraints are a temperature which has to stay within a certain range during
the execution of an operation, or the external state of a process with which the
operation wants to interact. To allow the interaction to take place, the
operation's constraint will require that the interacting process is in such a state
that it will eventually perform the desired interaction with the : (process
executing the) operation.

A constraint of an operation can be expressed by a boolean constraint
function which is defined only during the execution of the operation. The
constraint function returns true when the constraint is valid and false when the
constraint is not valid. :

A constraint violation is that part of the state of the environment of a process
executing an operation which does not satisfy the operation's constraint.

A constraint violation is a precondition error, and it causes an external
exception occurrence in the process executing the operation of which the
constraint is violated. ' ‘

The traditional exception handling mechanisms alone are not sufficient for the
handling of external exceptions, because these mechanisms were developed
for the handling of internal exceptions. Without additions to these
mechanisms, the handling of most external exceptions becomes awkward.

The time-out mechanism has been added to virtually every language for the
control of industrial systems in order to be able to handle external exceptions
that are related to exceeding a time limit. Mechanisms for the handling of
external exceptions due to constraint violations, however, are more complex
and therefore not so common. This is due to the fact that constraints need to
be valid during the complete execution of an operation. Constraint violations

The handling of constraint violations 83

can occur at any point during the execution of an operation, and they are
usually determined by the execution of other processes. '

5.1.2 The active constraints of a process

Many operation invocations can exist at the same time during the execution of
a sequential process. The active constraints of a process are the collection of
the constraints of all current operation invocations within the process. So,
when an operation is invoked in a process, the operation's constraints are
added to the active constraints of the process. When the operation is
terminated, its constraints are removed from the process's active constraints.

The constraints of an operation in a process will be illustrated using the
example of Figure 5.1.1. It is based on the transporter example of Section 2.3.
This example is somewhat simplified, so that the fork-lifter is controlled by
the CtriTruck processor instead of the SlaveForkLifter processor.

The constraints of CtriTruck >> body are that the emergency button is not
activated and the operator does not send a stop command.

When two processes are mutually interactive, they both make assumptions
about each other's external states. In the method CtiTruck >>
receiveStackFromTraverse, after returning from the statement self
receiveFrom: 'sync-traverseAtFork’, the CtriTruck processor assumes that the
CtriTraverse processor has moved the traverse to the position of the fork, that
the traverse will stay there, and that the CtriTraverse processor will be waiting
for CtriTruck to put the fork up. CtriTraverse expects to be informed of the
successful completion of this operation by means of the self sendTo: 'sync-
forkisUp’ statement in CiriTruck. These expectations about the external states
of interacting processes are constraints. Therefore, a constraint of CtriTruck >>
receiveStackFromTraverse in Figure 5.1.1 is that the extemnal state of the
CtriTraverse processor corresponds to the state expected by CtriTruck. The
unactivated emergency button and the absence of a stop command from the
operator are also constraints of this method.

Finally, the constraints of the method forkUp are that the emergency button is
unactivated, that the state of the environment of the fork is such that it is safe
for the fork to go up, and that the operating switch, used to switch off the fork
lifter temporanly, is on.

84 Chapter 5

CtriTruck >> body

“Constraints:
- Emergency bufton not activated
- No stop command from operator”

self receiveStackFromTraverse.
self transportStackToFurnace.
self giveStackToFurnace.

self goBackToTraverse

CtriTruck >> receiveStackFromTraverse

“Constraints:

- Emergency button not activated

- No stop command from operator

- The external state of CtriTraverse corresponds to the state expected
by CtiTruck®

self sendTo: 'sync-truckResetAtTraverse’.
self receiveFrom: 'sync-traverseAtFork’.
self forkUp.

self sendTo: 'sync-forkisUp’

CtriTruck >> forkUp

“Constraints:
- Emergency button not activated
- The fork can safely go up without causing damage
- Operating switch is on"
self putOn: ’'o-forkLifter-up’'.
self putOn: ’'o-forkLifter-power’.
seif
receive: true
from: 'i-forkLifter-isUp’
within: 6 seconds
ifTimedOut: [KillSignal raise].
self putOff: ‘o-forkLifter-power

Figure 5.1.1 Constraints of some methods.

The method forkUp is called from the method receiveStackFromTraverse which
is in turn called by the body. Therefore, when the method forkUp is active, the
other two methods will also be active, assuming that the forkUp method is not
called by other methods. So when the forkUp method is invoked, the active
constraints of the CtriTruck process consist of at least the constraints of all
three methods. This means that a violation of any of these constraints will
result in an exception occurrence in CtriTruck. If, on the other hand, CtriTruck
is waiting for an interaction to take place in the receiveStackFromTraverse

The handling of constraint violations 85

method, then the active constraints of CtriTruck are the constraints of the
methods receiveStackFromTraverse and body (plus the constraints of the
method that invoked body and of the other methods that were alread
invoked). ~

5.1.3 Different kinds of invariant

Invariants define relationships within a sequential process or between several
processes. We will define two special kinds of invariant: internal invariants
and external invariants. Their definitions will facilitate the discussion of the
handling of constraint violations in the following sections of this chapter.

An internal invariant is an invariant which is completely determined by the
state of a sequential process or operation.

An external invariant is an invariant which is determined by the states of two
OF MOTE Processes. '

Another important kind of invariant is the general control invariant, which
essentially determines all constraints in control systems. All control systems
are based on this invariant which specifies that the state of the controlling
system corresponds to the state of the controlled system and the operator.

The controlling system changes from one state to another and drives the
actuators in such a way that the state of the controlled system is made to
correspond with its own state. When the controlling system is waiting for a
change of state of the sensors, it is actually synchronizing its own state with
the state changes of the controlled system. The state of the sensors can be
tested from time to time to see whether the control invariant still holds, i.e. to
see whether the state of the controlled system is still such as is expected by the
controlling system. If this is not the case, the controlling system could request
operator help to change the state of the controlled system in such a way that
the control invanant holds again; or the controlling system can reset the
controlled system to bring it into a defined state again.

A man-machine interface is used to keep the control invariant valid between
the operator and the controlling system.

86 Chapter 5

5.2 Constraints
5.2.1 The local specification of the constraints of an operation

The constraints of an operation are specific for the operation itself. Therefore,
they should be specified locally, that is independently of the point in the
program at which the operation is invoked. This enables parts of a program to
be developed at different, largely independent, levels of abstraction. The local
specification of the constraints of an operation is thus an important
requirement for the creation of modular program units.

Referring to the example which has been presented in Figure 5.1.1, the
constraints of the method CtriTruck >> forkUp are that the emergency button is
unactivated, that the state of the environment of the fork is such that it is safe
for the fork to go up, and that the operating switch, used to switch off the fork
lifter temporarily, is on. The constraint of the method CtriTruck >> body which
specifies that the operator does not send a stop command is not a constraint of
forkUp, because forkUp could, for example, also be invoked in manual mode.
In manual mode, the operator can choose several low level commands from
the MMI (man-machine interface) to be executed, such as the command
forkUp or forkDown. In this situation, there is no need for the operator to stop
the production process, because control is automatically returned to the
operator after execution of the chosen forkUp or forkDown command.

The local specification of constraints can lead to duplication of constraints.
Consider, for example, the constraint that the emergency button is
unactivated. This constraint is specified in all three methods. If the method
forkUp would be a library routine, so that the callers (or senders) of forkUp
cannot be determined in advance, then the duplication of the emergency button
constraint is indeed necessary.

5.2.2 The specification of constraints common to many operations

Obviously the specification of the constraints of an operation should serve
more purposes than just as a comment to the program: it would be useful to
monitor the specified constraints during the execution of the operation and to
signal constraint violations. The constraints of an operation must be valid
throughout the execution of the operation, so that the operation's goal can be
achieved. Therefore, they must also be valid during the execution of other

The handling of constraint violations 87

operations invoked by the original operation. So, a mechanism for the
monitoring of the constraints of operations must work in such a way that all
of the active constraints of the process executing the operations are
monitored.

A consequence of such an approach is that unnecessary duplication of
equivalent constraints can be avoided. Suppose, for instance, that the method
forkUp of Figure 5.1.1 is only called by receiveStackFromTraverse and that the
latter method is always called by body, then the constraint specifying that the
emergency button is off can be removed from the methods forkUp and
receiveStackFromTraverse. In this case, modularity of the methods forkUp and
receiveStackFromTraverse is obviously not of primary concern, since it is
known that they are only (indirectly) called by the method body. Avoiding the
unnecessary duplication of constraints in such a way will lead to simpler and
better programs, as long as it is evident that the constraints left out are under
all circumstances already monitored when the operation is called.

In more general terms, it can be stated that the constraints which are common
to many different operations can, in certain cases, be specified in a single
operation. In certain control systems, for instance, all operations executing in
a certain process are known to be (indirectly) called from a main program
loop defining the process cycle. In such cases, constraints like the emergency
button being off, can be specified in the main process cycle, so that they are
guaranteed to be monitored for all operations executed in the main process
cycle. The constraints need not be duplicated in the called operations.

In such a case, it is a better option to specify the constraints which are
common to many operations in a single operation from which the other
operations are called, rather than to re-specify the constraint in all called
operations.

Note that in most imperative languages, such as Pascal, static scope rules can
guarantee that certain operations are only called from certain other operations.
In most object-oriented languages which use dynamic binding, such as
Smalltalk, it is often necessary to analize the run-time behaviour of the
program in order to determine such relationships.

88 Chapter 5

5.3 Constraint violations
5.3.1 A traditional way to detect constraint violations

An important aspect of constraints is that they must be valid throughout the
execution of an operation. Constraints may be violated while a process is
blocked in an interaction. It is therefore generally insufficient to check the
constraints at certain statements of the operation. The state of the environment
of a fork-lift, for example, could be checked before the fork goes up, but there
is no guarantee that the environment will remain in a safe state while the fork
is going up. 1

Another complicating aspect of constraints is that, during the execution of an
operation, many constraints must be checked which are not constraints of the
executing operation itself but of other active operations on the call chain.

A possible way of detecting constraint violations is to let each operation
explicitly detect all active constraints of the process in which it 1s executed.
Thus, the constraints that an operation would need to detect would be the
process's active constraints at the time of the call, plus the operation's own
constraints. ‘

In the example of Figure 5.1.1, the method forkUp could be extended 'to check
all the active constraints of the process. In this case, instead of simply waiting
for the fork to be up, the operation would have to wait for either the fork to be
up or for any of the constraints to be violated. If a constraint is violated, an
exception should be raised. This is illustrated in Figure 5.3.1 where every
method tries to monitor the process's active constraints. (Error messages and
exception handlers have been omitted for the sake of simplicity.) The reader
should also note that, for the sake of clarity, not all constraints are specified.

The detection of constraint violations has been realized with a mechanism that
enables a process to wait for one out of a set of interactions to occur. The way
the program will proceed depends on the interaction that has taken place. In
Process Calculus, this functionality is given by the possibility to receive an
object from any of a set of ports, for example with the method Bubble >>
receive:.fromOneOf.do..

The meaning of the message self receive: objectArray fromOneOf: portArray do:
doBlock 1s that a receive action is specified which tries to receive one of the
objects specified in objectArray from one of the ports specified in portArray.

The handling of constraint violations 89

CtriTruck >> receiveStackFromTraverse

self
receive:
#(nil nil true)
fromOneOf:
#('sync-traverseAtFork’ ‘'mmi-operatorReset’ 'i-emergencyStop’)
do:
[:port :item | (port = 'sync-traverseAtF ork’) ifFalse: [KilSignal raise]].
self forkUp. :
"etc ..."

CtriTruck >> forkUp
self putOn: 'o-forkLifter-up’.
self putOn: *o-forkLifter-power’.
self
receive:
#(true nil true false)
fromOneOf:
#(i-forkLifter-isUp’ 'mmi-operatorReset’ 'i-emergencyStop’
'i-operatingSwitch’)
do:
[:port ;item | (port = 'i-forkLifter-isUp’) ifF alse: [KillSignal raise]]
within: 6 seconds
ifTimedOut: [KillSignal raiseErrorString: 'time-out lift going up’].
self putOff; 'o-forkL ifter-power'

Figure 5.3.1 Detection of constraint violations in every operation.

The object to be received from a port in portArray is the object from
objectArray with the same index as the port in portArray. The first object that
can be received terminates the receive action and causes the doBlock to be
executed with two arguments: the received object, and the port from which it
was received. In Figure 5.3.1, the specification of the nil object in the object
array means that any object can be received from the corresponding port in
the port array.

This functionality is referred to as the select-interaction functionality. Such a
functionality is also offered by other programming languages, such as Ada by
means of the select statement (see the Ada Language Reference Manual
[Ichbiah, 1983]), and Sequential Program Charts [IEC, 1988].

The method forkUp is now no longer reusable and it is also difficult to read. If,
for example, the fork-lift were to be tested under direct control of the

90 Chapter 5

operator, without any synchronization with other processes, the constraints
would be entirely different, requiring a different forkUp method.

The conclusion is the same as stated i Section 5.2.1: namely, that each
operation should only specify its own constraints. The constraints of an
operation should not be unnecessarily duplicated in the operations called. It is
not possible to achieve this with conventional mechanisms. The way in which
constraints can be specified in operations such that they need not be repeated
in the called operations will be dealt with in Chapter 6, where a new
mechanism for the handling of constraint violations is introduced.

5.3.2 Constraint violations by controlling processes

In the examples given in Section 5.3.1, the active constraints of a controlling
process were violated by processes in the controlled system. These constraint
violations were detected by the controlling process itself. Constraints can also
be violated by other controlling processes, which will then need to inform the
controlling process of which an active constraint was violated. The action of
informing another process of a violation of one of its active constraints will be
referred to as signaling a constraint violation to a process.

- This will be illustrated by a further elaboration of the example of the transport
system from Section 2.3.

When the truck moves the stack to the furnace and reaches the point where it
can turn the fork to the fumace, three actions will be performed in parallel:
the fork will go down; it will turn 180 degrees towards the fumace; and, at the
same time, the truck will continue to move towards the fummace. The three
actions are controlled by the controllers SlaveForkLifter, SlaveForkTumer and
CtriTruck respectively. If the fork-lift is obstructed by another object while
going down, it will be necessary to stop the fork-lift, the fork-turner and the
truck in order to avoid damage. The SlaveForkLifter (and not the other two
processors) should detect the obstruction of the lift. This is because the lift
movement is initiated by SlaveForkLifter. When the error is detected by the
SlaveForkLifter processor, the constraint violation will have to be signaled to
the SlaveForkTurner and the CtriTruck processors so that they can stop the fork
turner and the truck. After correction of the error, by the operator for
example, all three interrupted movements can be continued.

The handling of constraint violations 91

Constraint violations can also take place between processes that do not
interact under normal processing circumstances. Consider a robot which
accidentally drops a product on an assembly line, but which does not interact
with the assembly line in any other way. The line will probably have to be
stopped. In this case, the error will be detected by the robot controller. The
process controlling the assembly line will have to be informed of this
constraint violation in such a way that it can immediately stop the line. Once
the dropped product is removed, the assembly line can continue normally.

The examples given above are examples of constraints which are imposed in
order to prevent damage. Apart from such constraints, there will also be
constraints imposed in order to maintain consistency in the synchronization
between two processes. When two processes are interacting, they maintain
certain assumptions about each other's external states. These assumptions
should be correct in order to achieve correct synchronization between the
processes and to prevent deadlock.

Consider the example given in Figures 5.3.2a-c, which is also based on the
example of Section 2.3. The example is slightly modified so that CtiTruck
directly controls the fork-lift. The example describes the transfer of a stack
from the traverse by the fork-lift truck. The methods invoked are indicated
with an arrow. In the example the fork does not go up in time. Here this
results in the immediate raising of the KiliSignal.

CtriTransporter model l

sync2-fruckResetA{Traverse
sync-fraverseAtFork

sync-truckResslAtTraverse
sync2-traverseAtFork

CtriTraverse |-~

sync2-forkisUp sync-forkisUp

Figure 5.3.2a Violation of a constraint in one process due to an exception
in another — A simplified model of CtrITransporter.

92 Chapter 5

CtriTraverse >> body
stackSize >= self maxStackSize ifTrue: [self stackToTruck]. «
self stackTray

CtriTraverse >> stackToTruck
self receive: 'belowMiddle’ from: 'sync1-pusherState’.
self receiveFrom: 'sync2-truckResetAtTraverse’.
self traverseToFork.
self sendTo: 'sync2-traverseAtFork’.
self receiveFrom: 'sync2-forkisUp’. «
self traverseToPusher

Figure 5.3.2b Violation of a constraint in one process due to an exception
in another — Process description of CtriTraverse.

CtriTruck >> body
self receiveStackFromTraverse. «
self transportStackToFumace.
self giveStackToFurnace.
self goBackToTraverse

CtriTruck >> receiveStackFromTraverse
self sendTo: 'sync-truckResetAtTraverse'.
self receiveFrom: 'sync-traverse AtFork’.
self forkUp. «
self sendTo: 'sync-forklsUp’

CtriTruck >> forkUp
self putOn: ’o-forkLifter-up’.
self putOn: 'o-forkLifter-power’.
self
receive: true
from: 'i-forkLifter-isUp’
within: 6 seconds
ifTimedOut:
[KillSignal raiseErrorString: 'time-out fork going up’. <«
"The raising of the KillSignal here implies a violation of one
of CtriTraverse's active constraints concerning the external
state of CtriTruck").

self putOff: 'o-forkLifter-power’

Figure 5.3.2c Violation of a constraint in one process due to an exception
in another — Process description of CtriTruck.

The handling of constraint violations 93

In reality, the operator or the system itself would first try to correct the error
and the KillSignal would only be raised if the error could not be corrected
locally. The example has, however, been kept simple to show only the
important aspects.

Due to the raising of the KilSignal, the methods forkUp,
receiveStackFromTraverse and body from CtriTruck will be terminated, leading
eventually to the resetting of the truck (not shown in the example). This is a
violation of a constraint of CtriTraverse, since CtriTraverse will now have an
incorrect assumption about the external state of CtriTruck. After correction of
the error, the CtriTruck processor will start the body again and become blocked
in the statement self sendTo: 'sync-truckResetAtTraverse’. The CtriTraverse
processor will still be blocked in the statement self receiveFrom: ’sync2-
forkisUp’. Thus deadlock will result. To avoid this an exception must be raised
in CtriTraverse when CtriTruck violates CtriTraverse's constraint by breaking
out of its synchronization with CtriTraverse due to the raising of the KillSignal.

5.3.3 Some relationships between constraint violations, exceptions
and the violation of invariants

In the preceding sections, it has been shown that a constraint violation causes
an exception occurrence in the process of which an active constraint is
violated. This exception occurrence should eventually result in the raising of
an exception in the process. In this section, some different possibilities will be
treated in order to answer the question of how constraint violations eventually
can or should result in the raising of an exception.

The different possibilities found will be used in following sections to
categorize and evaluate the known mechanisms for the handling of constraint
violations, eventually leading to a new mechanism.

Consider two processes: a violator and a victim. The violator violates one of
victim's active constraints, causing an (external) exception occurrence in the
victim. If the victim has an exception handling mechanism which supports the
raising of exceptions, then an exception needs to be raised in the victim.

There are three possible situations in regard to which process detects the
constraint violation by the violator and which one raises the (external)
exception in the victim:

94 ' Chapter 5

» If the victim is the detector it makes no sense for the violator. to be the
raiser, so if the victim is the detector of the constraint violation, the victim
will also be the raiser of the exception. An example of this is when the
victim is a controlling process and the violator is a physical process in the
controlled system. The victim detects a constraint violation in the
controlled system and consequently raises an exception.

« If the violator is the detector, the victim could be the raiser. This means
that the violator needs to inform the victim of the constraint violation by
means of an interaction. Consequently the victim could raise the
exception.

« In the third situation, the violator is the detector of the constraint violation
and consequently raises an exception in the victim. This means that the
violator raises an exception in another process.

The violator and the victim could also represent a set of processes, rather than
a single process.

» Ifthe victim is a set of processes, this leads to the raising of exceptions in
several processes.

« If the violator is a set of processes, this indicates the possibility of
concurrently occurring exceptions in the victim. Each exception
occurrence should lead to the raising of an exception in the victim. Since
it is not possible to raise exceptions concurrently in a single process, there
must be a mechanism to selectively and sequentially raise one or more
exceptions, and to buffer or discard any remaining exceptions.

Another point of interest is the point in the program at which the exception is
actually raised in the victim. The simplest possibility is to place no
restrictions on the point at which the exception is raised. Since the occurrence
of the constraint violation by the violator generally is not synchronized with
the process in which the exception should be raised, the exception can be
raised at any point in the process, which could lead to an inconsistent state of
the process such that its invariants no longer hold. This can be prevented by
deferring the actual raising of the exception until the process is in such a state
that its invariants are either valid or can be restored by an exception handler.
This could, for example, be a state in which the process is blocked, waiting
for a delay or for an interaction to take place. When the exception is. raised,

The handling of constraint violations 95

the process should be unblocked in a well-defined way, taking account of
other processes which possibly participate in the interaction.

The undesirability of allowing the raising of exceptions due to constraint
violations at any point in a process is illustrated in Figures 5.3.3a-c.

ForkLifterCtrl >> forkUp
AnySignal
handle:

[:exception |
*If an exception due to a constraint violation would be raised at this
point, then the power of the lift motor would not be switched off.
This would mean a violation of the invanant that specifies that the
lift motor is stopped when the forkUp method is terminated.”

self putOff: 'o-forkLifter-power’.
exception reject]
do:
[self putOn: *o-forkLifter-up’.
self putOn: 'o-forkLifter-power’.
self
receive: true
from: 'i-forkLifter-isUp’
within: 6 seconds
ifTimedOut: [KillSignal raise].
self putOff: 'o-forkLifter-power’]

Figure 5.3.3a Violating invariants by raising exceptions due to constraint
violations.

LinkedList >> addLast: aLink

“This example is taken from the Smalltalk-80 system.
alink is added to a linked list which is linked by pointers.
firstLink and lastLink point to the beginning and end of the list
respectively.”
self isEmpty

ifTrue: [firstLink ;= aLink]

ifFalse: [lastLink nextLink: aLink].
®If an exception due to a violation of one of the process’s active
constraints would be raised here, the internal structure of the linked list
would become incorrect.”

lastLink := aLink.
taLink

Figure 5.3.3b Violating invariants by raising exceptions due to constraint
violations.

96 Chapter 5

OrderController >> sendOrder

“The invanant in this case is that the contents of orderBuffer pius order
itself represent all orders which have not yet been sent.
order js a temporary variable only used in this method"”
| order |
AnySignal
handle:
[:exception |
"Put the order back into the order buffer when the send action of
the order has been terminated with an exception.”
order == pil ifFalse: [self putOrderBackin: orderBuffer].
exception reject]
do:
[order ;= self getOrderFrom: orderBuffer.
self send: order to: 'out’.

“If an exception due to a constraint violation would be raised at this
point (after a successful send), then the exception handler would
put the order back into the orderBuffer although the order had been
successfully sent.”

order := nil]

Figure 5.3.3c Violating invariants by raising exceptions due fo corisrrainr
violations.

In Figure 5.3.3a, the invariant specifying that the power of the lift motor is
switched off when the method forkUp is terminated cannot be guaranteed,
because all statements where the motor is switched off can be interrupted by
the raising of an exception due to a constraint violation. In Figures 5.3.3bc
the violated invariants cannot be restored, because the exceptions could have
been raised at any point in the program.

5.4 Requirements for a mechanism for the handling of
constraint violations

It appears from the previous sections that there is a need for a mechanism to
handle constraint violations. A constraint violation causes an exception
occurrence in the process of which an active constraint is violated. In some
cases, the process can detect the constraint violation itself and consequently
raise the corresponding exception. In other cases, the constraint violation is
detected by another process which must consequently inform the affected
process about the constraint violation. This can be done either by raising an

The handling of constraint violations 97

exception in the affected process or by means of another kind of interaction
which leads to the raising of an exception in the process.

The known mechanisms for the handling of constraint violations will be
treated in Section 5.5, and a new mechanism will be introduced in Chapter 6.
Before this, the requirements that should be fulfilled by any such mechanism
will be given. Only the most important requirements are given. The existing
and new mechanisms will be evaluated using these requirements, together with
the requirements presented in Section 4.2. The terminology of wviolator and
victim is taken from Section 5.3.3. The requirements are as follows:

1. The mechanism should be easy to use and to understand. Ideally, it should
introduce only a small number of new elements that are orthogonal to the
rest of the programming support. The mechanism should be compatible
with the extsting interaction and exception handling mechanisms.

2. The mechanism should make it possible to change the normal flow of
control of a process when its active constraints are violated. The
mechanism should enable the designer to specify this dependency between
constraint violations and change of control flow in a controlling process in
a precise, intuitive and natural way.

The above requirements are of a very general nature. The following
requirements are more specific:

3. The mechamsm should allow each operation to specify only its own
constraints: the constraints of operations which have already been invoked
should not need to be respecified.

4. The mechamsm should be sufficiently flexible and precise so that, in the
case of constraint violations, only those processes of which active
constraints are violated will be affected.

5. The mechanism should defer the actual raising of the exception until the
victim process is in such a state that its invariants are either valid or can

be restored by an exception handler.

The last two requirements need some further explanation.

98 Chapter 5

Requirement 4 calls for flexibility and precision of the mechanism. Many
existing mechanisms severely restrict the way that exceptions can be raised in
responsc to constraint violations. The mechanism may, for instance, be limited
to the raising of the same exceptions in the parallel sections of a programming
construct to express parallel actions. Or it may be limited to a static
relationship, such that the occurrence of an exception in a process will always
result in the raising of exceptions in a fixed group of other processcs,
independently of where in the original process the exception occurrence took
place.

In reality, the determination of which processes should be affected by an
exception occurrence in another process can very much depend on the point in
the program where the exception occurred. This has already been illustratcd
by numerous examples in previous sections. When the truck controller from
previous examples is synchronizing with the traverse controller, exceptions in
the truck controller are likely to affect the traverse controlier. If, on the other
hand, the truck controller is synchronizing with the furnace controller,
exceptions in the truck controller will affect the furnace controller.
The relationships can even extend beyond processes which interact. If a robot
accidentally drops a product on a transporting belt which it needs to cross, an
cception may need to bc raised in the belt controller. In this case, the
relationships could be due to the physical layout of the system. There need not
be any other relationship between both controlling processes.

The last requirement has already been treated in Section 5.3.3. Tt is clearly
undesirable to permit the raising of exceptions due to constraint violations at
all times: this would mean that invariants of the process could be corrupted in
such a way that they could not be restored by exception handlers. It is
especially important to restrict the raising of pending exceptions in such a
way that the internal invariants of a process are valid when pending
exceptions are raised, because it is practically impossible to deal with the
restoration of all internal invanants in exception handlers. To allow external
exceptions to be raised at any time during the execution of a process will lead
to time-dependent run-time errors. It is virtually impossible to detect such
crrors by program testing, and they constitute one of the most hazardous
aspects of concurrent programming.

The handling of constraint violations 99

5.5 Known mechanisms for the handling of constraint
violations

This section will discuss some known mechanisms for the handling of
constraint violations. It will be shown that these mechanisms do not allow the
general specification of constraints of operations and do not satisfy the
requirements of Section 5.4. Not all mechanisms are treated but a selection is
made of some representative mechanisms. Mechanisms that are only defined
for the handling of exceptions which occur during the execution of an
interaction, such as during a rendezvous, are language-specific and are
therefore not treated.

5.5.1 The select-interaction functionality

This functionality has been treated in Section 5.3.1. The use of this
functionality for the detection of constraint violations leads to unreliable and
inclegant programs, whether used in Process Calculus, Ada, Sequential
Function Charts, or any other language. This is because the interactions that
are used to detect constraint violations need to be respecified in many
operations. There is in fact a substantial analogy between this way of dealing
with constraint violations and the use of returned values as exception codes in
the handling of internal exceptions as treated in Section 4.3.1. In both cases,
the creation of robust programs becomes difficult. Using the select-interaction
functionality, the amount of code to check for constraint violations becomes
enormous, leading to a great deal of code pollution. The constraints of
operations which have already been invoked must be duplicated in all called
operations. A constraint violation, such as the activation of the emergency
button, should be catered for in every possibly blocking interaction. A single
element of an interaction with many constraints is easily forgotten. Also, the
process will not detect constraint violations between two blocking
interactions.

An important disadvantage of the use of the select-interaction functionality for
the detection of constraint violations is the fact that this way of programming
does not reflect the way a designer thinks about the system. A more natural,
but not yet precise, way to specify the relationship of the emergency button to
a specific controlling process would be something like: 'If the emergency
button is pressed while a certain unit is active, an exception should be raised

100 Chapter 5

in that unit'. Thus the specification is in terms of coupling the raising of an
exception to a certain unit and not to all individual interactions it contains.

5.5.2 Raising exceptions in other processes

The traditional ways of dealing with constraint violations are generally based
on the possibility of raising an exception in another process in one way or
another. This conforms to the situation described in Section 5.3.3, where the
violator is the detector of the exception and consequently raises an exception
in the victim. The terms violator and victim will also be used in this section.

The concept of raising exceptions in other processes can have a damaging
effect on program modularity. This is especially the case when the raising of
exceptions in other processes cannot be restricted.

In [Booch, 1991] modularity is defined as follows: 'Modularity is the property
of a system that has been decomposed into a set of cohesive and loosely
coupled modules'. Modules serve to make the complexity of large systems
manageable. The essence is that the complexity of a system can be made
manageable by dividing the system into modules that can be understood and
developed mainly independently, without the need to know the inner details of
the other modules. The modules should be loosely coupled. Loosely coupled
modules generally have relatively few interactions between them and they
should not have access to each other's local data, nor to shared global data.
The desirability of weak coupling and strong cohesion is described in many
books on software engineering. See for example [Fairley, 1985] for a more
detailed treatment.

The use of parallel processes to control inherently parallel physical systems is
a way of dividing the complex controlling system into a set of more easily
manageable modules. The desired loose coupling implies that each process
should need to know as little as possible about the inner details of the other
controlling processes. Therefore, if an exception occurs in a process (the
violator), and other processes (the victims) may need to be interrupted as a
result of this, the violator should convey the intent to raise an exception to the
victims. The violator generally does not know, and does not wish to know, the
exact state of the victims. The victims themselves should only raise the
exception if they are in a state to handle the consequent exception. This makes
the violator and the victims largely independent.

The handling of constraint violations 101

An example of the problematic consequences of permitting the unconditional
raising of exceptions in other processes is the following. Consider three
closely cooperating processes, for example the three processes involved in the
control of the fork-lift truck of Section 2.3. If an error is detected in one of the
three processes for which local error recovery is impossible, that process will
have to raise an exception to terminate its control cycle and reset itself. As a
result of the termination of its control cycle, the constraints of the other two
processes will be violated and so exceptions should be raised in the other two
processes to cause them to also terminate and reinitialize. Each of these two
processes, however, will, as a result of their termination, in turn raise
exceptions in the other two processes. This would mean that undesired
exceptions are raised in the violators which have already terminated. To
prevent this from occurring, the process that wants to raise the exception
should know the state of the victim processes, leading to greater coupling and
reduced modularity; or else provisions should be made in all processes to
catch all undesirable exceptions. If, on the other hand, the processes are
specified in such a way that a request for the raising of an exception is only
honoured when this is appropriate, coupling will be reduced and modularity
improved.

The mechanisms found in the literature will now be evaluated in relation to
the requirements specified in Sections 5.4 and 4.2,

Ada

The Ada programming language [Ichbiah et al., 1983] offers no facilities for
explicitly raising exceptions in other processes. The rendezvous mechanism is
the main mechanism for synchronization and communication between
processes. The use of global variables is also possible but is not advised.

The only occasion duning which exceptions will be raised in other tasks is a
rendezvous. If an exception is raised from within an accept statement, the
exception is also raised in the other task participating in the rendezvous. This
is done implicitly by the system. The programmer has no control over the
raising of the exception.

In the preliminary version of Ada as described in [Ichbiah et al., 1979], there
was the facility to raise a special FAILURE exception in another task.

102 Chapter 5

VAXELN

VAXELN is a programming environment from Digital Equipment
Corporation [Digital, 1986] which has provisions for parallel processing,
synchronization and communication between processes, as well as facilities
for the handling of internal and external exceptions. It is suitable for the
development of real-time applications. VAXELN language definitions are
provided in C and Pascal. Its exception handling facilities are based on user-
defined functions of the predefined type EXCEPTION-HANDLER. Within a
program, procedure, function or process block, only one function of this type
can be established at a time as the exception handler for that block. This is
done by calling the procedure 'establish’ with the exception handler function
as argument. An exception handler function established in this way is referred
to as the handler for the block. This handler is then called on the occurrence
of exceptions in that block's activation. The function receives the exception
which has occurred as an argument. If no handler is established for the block
in which the exception has occurred, then the stack of active blocks is
searched for a handler. When a handler is found, it is executed with the
exception as argument and, optionally, other arguments that were included
when the exception was raised. Only two responses are allowed from the
handler: the propagate and resume response. There is no return, or retry
response. The handler must return a boolean. If true is returned, the process is
resumed after the point where the exception was raised. This 1s the resume
response. If false is returned, the exception is raised again and the system
searches for a handler in an enclosing block. This is the propagate response.
The GOTO statement can be used to jump to a label in a higher level block
and in this way terminate active blocks. The stack can also be unwound
explicitly by means of an unwind procedure.

A process can also raise exceptions in other processes. Exceptions that are
raised in this way are termed asynchronous exceptions. They are the same as
the external exceptions defined in section 4.1.2. A process can disable and
enable asynchronous exceptions. When asynchronous exceptions are disabled,
the raising of an asynchronous exception in the process by another process
will have no effect.

The exception handling mechanism used in VAXELN has a number of
qualities that should be present in an advanced exception handling
mechanism, The mechanism is unstructured, however. The fact that the
language does not provide structured exception handler responses is

The handling of constraint violations 103

compensated by offering unstructured sequencing constructs like the GOTO
statement and the unwind procedure.

The mechanism for the handling of external exceptions offers only the bare
functionality of raising exceptions in other processes. Constraint violations
cannot be monitored by the process itself. The programming manual [Digital,
1986] does not specify that asynchronous exceptions are made pending, to be
raised at a later time. If this is indeed not done, then invariants of a process
can be corrupted in the case of asynchronous exceptions. This should be
prevented by temporarily disabling asynchronous exceptions in all appropriate
places of the user program and in all library routines that are called.
Accidentally forgetting to disable asynchronous exceptions can result in subtle
time-dependent run-time errors which are hard to detect, and occur only under
very specific circumstances.

ROSKIT

ROSKIT [Rossingh and Rooda, 1985] is a small, real-time multitasking
operating system designed especially for machine control. It is written in
Modular Pascal [Bron and Dijkstra, 1987]. Process synchronization is
achieved by means of semaphores. It includes the exception handling
mechanism of Modular Pascal, which has already been treated in Section 4.4.

Three external exceptions are defined: the xKil, xAbort and xTimeOut
exceptions. A process can raise these exceptions in another process. This is
known as forcing an exception in another process. The actual raising of
external exceptions is deferred until the process is blocked or when it may
become blocked. External exceptions cannot be disabled.

Alarms are introduced to monitor constraint violations specifically caused by
the state of the controlled system. For this purpose, an alarm can be bound to
a boolean variable which is bound to the physical state of a binary sensor in
the controlled system. Alarms are explicitly disabled and enabled: they cannot
be bound to blocks. When enabled, they will signal a violation of the specified
constraint when the actuator and the associated boolean variable take on the
specified value. The constraint violation is signaled by creating a pending
exception for the external exception xAbort. This pending exception will be
raised when the process executes a possibly blocking operation.

104 Chapter 5

The ROSKIT system has been successfully used for the control of complex
production systems. Its exception handling mechanism, however, cannot be
used for the specification of constraints of operations.

Szalas and Szczepanska's proposal

In [Szalas and Szczepanska, 1985] a proposal is given for the raising of
exceptions, which these authors call signals, in another process. Only the most
important issues in the proposal will be treated. Szalas and Szczepanska
specify that the mechanism should satisfy five postulates, two of which are as
follows:

o 'Signals can be received and handled if and only if the receiving process is
active'.

e 'Receiving a signal consists in the immediate interruption of the execution
of the receiving process and in a handler invocation (if a relevant handler
exists)'.

These postulates are precisely the opposite of the requirements given in
Section 5 .4.
In the case of a constraint violation, an inactive process should immediately
be activated to handle the constraint violation. If this were not necessary, then
the signal should not have been sent in the first place.
Szalas and Szczepanska claim that delays in the raising of signals are
unacceptable because 'the meaning carried by a given signal is strongly
connected with the actual state of the system and its environment'. However,
when the raising of a signal is delayed until the process executes an
- interaction (see the treatment of the new mechanism in Chapter 6), the delays
will be determined solely by the speed of the controlling system, which should
in any case be fast enough to meet the real-time requirements of the controlled
system.

Real-time Euclid

Real-time Euclid is described in [Kligerman and Stoyenko, 1986]. Its
exception handling mechanism is different from the usual mechanisms. The
way that processing is continued after execution of an exception handler is not
determined by the handler itself, but by the way the exception was raised. The

The handling of constraint violations 105

only way that a handler can affect the way processing is continued is by
raising an exception itself.

Exceptions can be raised in three ways: by means of the kil, deactivate and
except statement. All three statements take two arguments. The first argument
is the identifier of the process where the exception is to be raised. This
process can be the process which is currently executing. The second argument
is the exception number. Exceptions raised with a kill statement will terminate
the process after the execution of its handler. Exceptions raised with the
deactivate statement will terminate the process's current frame. Frames are
used to specify the period in which a process must complete its task. Periodic
processes will automatically start a new frame after their period has expired.
Exceptions raised with the except statement cause the handler of the process
to execute, whereafter the process continues afier the statement that raised the
exception.

The exact functionality of the mechanism is not made clear in the article. It
appears that the mechanism does not allow for handlers at different levels to
perform finalization obligations when an exception is raised. Exceptions that
are raised in other processes appear not to be made pending but are raised
immediately, so that internal invariants can be violated, The mechanism
essentially provides only the functionality of raising exceptions in arbitrary
processes, whereby the exception handler response is determuned by the type
of statement used to raise the exception.

5.5.3 Handling the exception of one process in another process

Some proposals suggest that a handler for an exception can reside in a
different process than the process in which the exception was raised. These
mechanisms are related to the mechanisms described in the previous section.
In the previous section, however, it was implicitly assumed that an exception
is only raised in another process in the case of an exception occurrence (due
to a constraint violation) in the other process. The proposals considered here
suggest that, in the case of an exception occurrence in a certain process, say
process A, the handler of that exception may be found in another process, say
process B. The handler responses of the handler in process B are related to the
continuation of process A after the handling of the exception by process B.
However, in such a case there is no exception occurrence in process B. So this
kind of communication between processes should be done by the normal
interaction mechanisms provided by the language used. Exceptions should
only be raised in a process if there is an exception occurrence in that process.

106 Chapter 5

Therefore, the use of these mechanisms is considered to be in conflict with the
definition and spint of exceptions. The mechanisms also introduce
unnecessary complexity.

These kinds of mechanism are found in [Levin , 1977; Antonelli, 1989;
Atkins, 1985].

5.5.4 Dealing with exceptions in parallel constructs

One kind of mechanism is not evaluated in detail. This concerns mechanisms
specifically designed to cope with the exception handling issues in languages
that make use of parallel constructs, such as the parallel command in CSP
[Hoare, 1978] as shown in Figure 5.5.1.

[(P1]IPZ||..]| Pn]
Figure 5.5.1 The parallel command in CSP.

A parallel command specifies concurrent execution of its constituent
processes (P1 .. Pn). They all start simultaneously and the parallel command
terminates successfully only if and when the constituent processes have all
successfully terminated. A similar construct exists in Sequential Function
Charts [IEC 848, 1988], for instance. Double lines are used in SFCs to
represent the beginning and end of simultaneous sequences.

The process that executes the parallel command is referred to as the father
process. The processes represented by P1 .. Pn are referred to as the children
processes. Difficulties arise when one or more of the children processes
terminate with an exception. The questions in such a case are whether and
how the other children should be automatically terminated and what exception
“should be raised in the father process. Problems like these occur in all systems
that allow the dynamic creation and termination of processes, such as Ada,
for example.

Industrial systems can easily be controlled with a fixed number of processes
that are created once and are never deleted, unless the whole program is
terminated. If provisions are desired in a language for the control of systems
to dynamically create and delete processes, then the exception handling
mechanism of such a language should fulfil all the requirements specified in
Section 5.4, plus the additional requirements to cope with a premature
termination of a child process due to an exception. Most languages with this
kind of parallelism include only mechanisms to fulfil the additional
requirements to cope with the exceptional termination of a child process.

The handling of constraint violations 107

Because such mechanisms are language specific and cannot be used in a
general way to specify the constraints of an operation, they will not be treated
in detail.

Some concrete limitations of these mechanisms, apart from the inability to
specify the constraints of operations, are as follows:

¢ The mechanisms provide only means for dealing with the termination of a
child process with an exception. In the treatment of the retry strategy in
Section 7.6, it is shown that exceptions in a child process which are
locally handled can also give rise to the necessity of raising exceptions in
other processes.

e There is no way of propagating exceptions to parallel processes that are
not included in the same parallel construct.

Examples of mechanisms that have been developed specifically to deal with
exceptions occurring in parallel constructs are found in [Adamo, 1989, 1991;
Lacoutre, 1991; Issarny, 1991].

5.5.5 Other mechanisms
Antonelli’s dissertation

In his dissertation 'Exception handling in a multi-context environment',
Antonelli (1989) proposes an enhancement to the Ada programming language.
Exceptions can be exported from modules and imported into other modules. In
this way, there is a static association between the violator where the exception
is raised and the victims that import the exception. The exception will be -
raised in all modules that import the exception.

In the modules that import the exception, the exception must be handled by a
special exception handler fask. Each such task contains an entry associated
with an imported exception. This proposed syntax is analogous to Ada
interrupt handler tasks. The task should be suspended on an accept statement
waiting for the imported exception to be raised by another task. When the
exception is raised, the 'rendezvous' takes place and the accept statement is
elaborated. The exception can only be caught in the other task when it is
suspended at the accept statement. Therefore, the exception handler task must
wait passively for the exception to occur and cannot do anything else.

108 Chapter 5

In order to raise an exception in a victim task, the victim task must define an
exception handler task to catch externally raised exceptions. But the problem
still remains that an exception should be raised in the victim task itself. To
effect this Antonelli uses global variables as a means of information transport
between the victim task and its exception handler task. When an exception is
caught in the exception handler task, a boolean is set. The victim task must
poll the boolean and if it is set it must raise the exception itself.

This proposal is unsatisfactory for two reasons:

e The victim cannot poll when it is suspended in an accept or delay
statement. So there is no means of interrupting the victim when it is
blocked.

e The need for the victim to continuously poll leads to inelegant and
unreliable code. A single poll is easily forgotten.)

Lieber's dissertation and similar proposals

Lieber's dissertation 'Erweitertes CSP-Modell zur programmierung paralleler
Prozesse' [Lieber, 1989] is an extension of Hoare's concept of Communicating
Sequential Processes [Hoare, 1978]. The CSP model is extended with ports as
a means of communication between processes.

Another of the proposed extensions deals with the addition of exception
handling facilities. The essence is that a running process can be interrupted
when a receive operation from a port can take place. This is realized by
means of except statements, which consist of a statement list associated with
an if-statement list by means of the interrupt or except operator. The if-
- statement list usually begins with a receive action from a port. See the part of
a program taken from [Lieber, 1989] in Figure 5.5.2.

i=1;
*[i < 1000 -> {skip}
except [keyboard?x -> a[i] ;= x; i:=i + 1;]]

Figure 5.5.2 An example of Lieber's except statement.

The semantics of such a construct are such that the statement list is executed
until the receive action from the if-statement list can take place. The statement
list is then interrupted and execution continues with the if-statement list.
When the if-statement list is finished, the continuation of execution depends

The handling of constraint violations 109

on the operator of the except statement. If the interrupt operator is used,
execution continues after the interrupted statement from the statement list,
This can be viewed as the resume response from a handler. In the case of the
except operator, execution continues with the statement following the except
statement, which resembles the return response. If the receive action from the
except statement does not succeed at all, the statement list will finish normally
and execution continues after the except statement.

Lieber considers send and receive actions to be atomic and does not allow the
interruption of send or receive actions in the statement list of an except
statement.

A positive aspect of this proposal is the fact that the mechanism uses the
normal interaction mechanism as a means for exception handling between
processes. Secondly, the effect that an exception in a process can have on
another process is limited to except statements.

The proposal, however, does not satisfy the desired functionality of an
exception handling mechanism for controlling systems for the following
reasons:

o There is no means of interrupting a victim when it is blocked.

o There are no provisions for the handling of internal exceptions: exceptions
cannot be declared, raised or propagated, for example.

o Finalization obligations cannot be locally specified nor be executed when
an operation is terminated: if the statement list from an except statement
is terminated because a receive action from the if-statement list receives
from the specified port, all (nested) operations which are invoked from the
statement list will simply be terminated.

e The process can be interrupted in the middle of executing statements. If
the return response is chosen, this may lead to the violation of the
program's internal invariants and to inconsistent data. The resume
response has all the disadvantages indicated in Sections 4.6.3 and 4.6.4.

The exception handling facilities described in [Gerber and Lee, 1992] bear a
great resemblance to Lieber's. Gerber and Lee describe their CSR
{(Communicating Shared Resources) Specification Language in their paper.
The scope statement allows the specification of triggers to be associated with
a statement S:

110 Chapter 5

scope do

S
interrupt recv(channell) -> S1
interrupt send(channel2) -> S2
od

Figure 5.5.3 An example of the scope statement.

There are four kinds of trigger guards: send, recv, exec and timeout. The send
and recv operators specify send and receive actions to or from communication
links. Parallel processes interact by means of communication links. If, during
execution of the statement S from a scope statement, the timeout expires, or
one of the 'interrupts' can be executed (for instance when a send or receive
action can take place), the S statement is terminated prematurely. Thus the
interrupt specifications in Gerber and Lee's CSR language are analogous to
the use of the except operator in the if-statement list of Lieber's except
statement. The evaluation of this mechanism is therefore analogous to the
evaluation of Lieber's mechanism. F

C for Unix

C [Kemighan and Richie, 1978] for Unix does not provide advanced
programming constructs for the handling of internal exceptions, apart from
the setimp and longjmp procedures. Setjmp saves the current context in a
variable. When this variable is used as argument for the longjmp procedure
the context is restored to the value at the time of the last call to setjmp,
causing the process to continue right after this statement. This is a kind of
goto-like mechanism. The main way to deal with internal exceptions is by
- using returned values as exception codes (see Section 4.3.1)..

Unix provides signals as a means of exception handling between processes,
see [Bell, 1983]. These signals are different from the raisable signals used in
the present dissertation. Signals are sent to a process. They are used both to
bring external exceptions and system detected internal exceptions to the
attention of a process. A process can specify what to do when it receives a
signal. It can choose to ignore the signal, terminate itself or to invoke a
handler. Handlers are ordinary procedures. Handler procedures can be bound
to signal occurrences by using the signal itself and the address of the signal
handling procedure as arguments to the signal procedure. If a handler has
been installed for a signal and the process receives a signal, the execution of

The handling of constraint violations 111

the process is interrupted. The handler is executed, and after that, execution of
the process is continued from the point at which it was interrupted. If other
responses are desired, these should be obtained by means of the setjmp,
longjmp procedures. ‘

Many other features of signals are described in [Sun, 1990]; they do not,
however, change the main functionality described above.

The main problem with this way of handling exceptions is that C lacks a
mechanism for the handling of internal exceptions, as described in Section
44,

Another problem is caused by the way signals are handled. The function of
signal handlers is very similar to interrupt handlers. This leads to a limitation
on the possible responses from such a handler: resumption or the drastic
termination of the process, without the possibility of fulfilling local
finalization obligations. If the resume response is chosen, the interrupted
program will need some sort of polling mechanism to detect whether or not a
signal interrupt has taken place.

Proposals by Issarny and Bandtre

These proposals are described in [Issarny, 1990; Issamy and Banitre, 1990,
Issarny, 1991]. The objective of the proposed mechanism in all three articles
is restricted to deadlock avoidance in the presence of processes which
terminate with an exception. In the context of these articles, the termination of
a process means the termination of the current iteration step when the body of
the process consists of a repetitive command.

Global exceptions are introduced in the first two articles. An exception is
global when a handler for that exception is found in the handler list attached
to a process body; otherwise the exception is local. If a process raises a global
exception, the exception will automatically be raised in all processes where a
handler for the exception is found in the handler list attached to the process
body. Raising a global exception in a process implies the termination of that
process.

The raising of exceptions in all processes that have a handler for the global
exception can be too unrestrictive. If, for example, such a process has already
finished its interactions with the process that originally raised the exception,
deadlock will not result.

112 Chapter 5

In the third article, the raising of global exceptions is restricted to processes
that actually want to interact with a process that terminates by signaling a
global exception. In this way, the mechanism bears a resemblance to the way
that the tasking-error exception is raised in Ada when a process wants to
execute a rendezvous with a terminated process. In this article, the mechanism
is also adapted to take account of exceptions occurring in parallel constructs,
as treated in Section 5.5 .4. ,

The restrictions of the mechanism, which only allows for the raising of
exceptions in other processes in the case of the termination of a process, make
it unsuitable as a general mechanism for dealing with constraint violations.

Chapter 6
A new mechanism for the handling of
constraint violations |

This chapter describes a new mechanism for the handling of constraint
violations. The new mechanism is first treated independently of any particular
implementation. The implementation of the mechanism in Process Calculus is
given in Section 6.10, which also includes some examples.

6.1 The specification of constraints with constraint monitors
6.1.1 Definition of terms

When an operation is executed, its constraints must be valid, since otherwise
its goal cannot be achieved. A violation of one of its constraints is an
exception occurrence which should eventually result in the raising of an
exception. Therefore, each constraint should be linked to an exception which
should be raised after a violation of the constraint. This results in the
following definition of constraint monitors.

A constraint monitor consists of a constraint and an (external) exception; it
is used to signal violations of the specified constraint.

The new mechanism for the handling of constraint violations is based on
constraint monitors, which are used to detect and signal violations of the
constraints of an operation. Since constraints are specified for operations, a
constraint monitor can be bound to an operation. An operation is a logically
related group of statements or expressions in a sequential process with a
single entry (see Section 4.1.1). In many programming languages, blocks are
available as programming construct. In these languages, the effect of binding
a constraint monitor to an operation can be achieved by enclosing the
operation in a block and subsequently binding a constraint monitor to the
block. A block to which a constraint monitor is bound is said to be protected
by the constraint monitor, and can be referred to as a protected block. The

114 Chapter 6

operation enclosed by the block is likewise known as a protected operation.
The constraint monitors bound to the protected block can be referred to as the
block's constraint monitors.

During the activation of a protected block, the constraint monitors bound to
the block will monitor the constraints specified in the constraint monitors,
which means that the constraints will be continuously checked to see if they
still hold. This monitoring takes place throughout the execution of the block,
including during the time that other operations are called from within the
block. When the monitor detects a constraint violation, monitoring is stopped,
independently of the future termination of the block. |

6.1.2 The binding of constraint monitors to blocks

The binding of a constraint monitor to a block can be done either statically or
dynamically, meaning that the binding takes place at compile-time or at run-
time.

In the case where a block has several (sub-)constraints, two approaches are
possible. If only one constraint monitor can be bound to a block, all
sub-constraints should be specified in this single constraint monitor using a
compound constraint. The other approach is to allow multiple constraint
monitors to be bound to a block. The last approach is chosen because in this
way a separation of concerns is made possible: independent constraint
monitors can be used for the specification of independent sub-constraints. It
also facilitates reuse of constraint monitors.

- A constraint monitor is enabled if and only if a protected block to which it is
bound is executing. This is an important aspect of the functionality of
constraint monitors, and one which fits in well with the concept of structured
programming. If constraint monitors were not bound to blocks and were
allowed to be explicitly enabled and disabled, then it would be more difficult
to understand the operation of a program: in order to determine at which parts
of the program a constraint monitor has an enabled or disabled status, it
would be necessary to locate the statement where the constraint monitor was
last enabled or disabled. This could be any statement executed by the
program. If, on the other hand, constraint monitors are bound to blocks, then
the status of a constraint monitor will only be enabled if it is bound to an
invoked block. So, in order to determine the enabled constraint monitors, only

A new mechanism for the handling of constraint violations 115

the active blocks — which are the blocks on the call chain of the process -
need to be examined.

To keep things simple initially, it is assumed that blocks with the same
constraints are not nested. The consequences of nesting blocks with the same
constraints are treated in Section 6.7.

6.1.3 The language dependency of constraint monitors

The actual specification of constraints depends very much on the
programming language used. Constraints always concern the environment of
the process executing an operation. The interactions of the process with its
environment are described by means of the interaction mechanism which is
available in the programming language used. This interaction mechanism
should be used as far as possible for the specification of constraints. This has
the advantage of remaining compatible with the existing interaction
mechanism, and at the same time being able to use its expressive power. Also,
in this way only a few new concepts are introduced, keeping the new
mechanism simple.

If, for instance, Sequential Function Charts [IEC, 1988] are used, constraints
could be specified with those expressions that may occur in the specification
of transition conditions. In message-based systems, on the other hand,
constraints could be specified by means of messages. Specific messages could
be defined to indicate constraint violations. The different possibilities for the
specification of constraints in the different languages will not be dealt with in
this thesis. The implementation chosen for Process Calculus will be treated in
Section 6.10.

6.1.4 The binding of constraint monitors to identifiers

In this section it is shown that it should be possible to bind constraint
monitors to identifiers.

If constraint monitors are integrated in a language in such a way that the
binding of a constraint monitor to a block implies the definition of a new
constraint monitor, then constraint monitors cannot be referred to in the
program. This means that, in order to specify equivalent constraint monitors
for different blocks, it would be necessary to create a new constraint monitor
for every block. This is obviously a disadvantage if equivalent constraint

116 Chapter 6

monitors are bound to many different blocks. In Chapter 7, this is shown to be
quite a common situation. Note that two constraint monitors are equivalent
when their constraints can be expressed with the same constraint function and
their exceptions are the same.

If a constraint monitor may be created first and bound to a block later, then
the mechanism should support the binding of a constraint monitor to an
identifier. After the binding of a constraint monitor to an identifier, the
identifier will denote the constraint monitor. The identifier can then be used
every time that the constraint monitor should be bound to a different block.
For an explanation of the concept binding, the reader is referred to [Tennent,
1981; Watt, 1990].

Note that some languages use assignment statements to 'bind' certain entities
to identifiers, where other languages can produce true bindings. In Ada, for
instance, there is a special exception declaration statement to ‘bind an
exception to an identifier. In Smalltalk, however, such 'bindings’ between
identifiers and signals can only be attained by means of assignment
statements. First, an identifier is bound to a variable. The identifier can then
be 'bound’ to a signal by means of an assignment statement. It is the
programmer's responsibility to initialize the variable with the required signal
value, and to make sure that this value is not altered during program
execution. In this way, the variable can be treated as a constant.

There is another reason why it is preferable to allow constraint monitors to be
bound to identifiers. If a block is terminated with an exception, it may not be
immediately obvious what caused its termination: it could have been the
violation of a constraint, but it could also have been an internal exception
~occurrence. Also, the discarding of pending exceptions can make it possible
for constraint violations to remain unnoticed. If the constraint monitor can be
referred to with an identifier, the status of the constraint monitor can be
examined to test whether its constraint has been violated. In this way
constraint violations can always be detected. '

6.2 Pending exceptions as a result of constraint violations
When a constraint monitor detects a constraint violation, the constraint

monitor's exception will be raised. As has already been explained in ‘Section
5.4, the exception generally cannot be raised immediately, since the constraint

A new mechanism for the handling of constraint violations 117

violation generally is not synchronized with the execution of the process of
which an active constraint is violated. Therefore, the raising of the constraint
monitor's exception is generally deferred to a later time. To achieve this, a
pending exception is created for the monitor's exception. A pending
exception is an exception which is about to be raised. The actual raising of
the exception is deferred until well-defined points in the program, so that the
internal invariants of the process will not be invalidated.

When a constraint monitor detects a violation of its constraint, it will signal
this constraint violation by creating a pending exception, after which it stops
monitoring its constraint. This is because the pending exception should lead to
the termination of the protected block with an exception. Leaving the
constraint monitor to monitor its constraint could only cause more pending
exceptions, equal to the already existing one, which would have no effect.
However, the constraint monitor remains enabled. It is disabled when the
executing protected block to which it is bound is terminated. A pending
exception can be created for a constraint monitor only while it is enabled.
When it is disabled, its pending exception (if present) is discarded (see Section
6.5).

The pending exception can be referred to as the constraint monitor's pending
exception and the monitor can be referred to as the pending exception's
constraint monitor. A pending exception is, in fact, an indication that the
exception of a constraint monitor is about to be raised.

If the programming language used supports the raising of exceptions with
arguments, these should also form part of the constraint monitor. In such a
case, the pending exception will be raised with the appropnate arguments.

6.3 Raising pending exceptions

6.3.1 Instant and delayed response controlling systems

Instant response controlling systems

In instant response controlling systems, the points in time at which the
external state of the controlled system — which is determined by the values of

the actuators and sensors - changes from one state into another is not
significantly affected by increasing the processing speed of the controlling

118 Chapter 6

system. Therefore, the abstraction can be made to consider the processing
speed of such controlling systems as infinite, which yields zero response
times.

An infinitely fast execution of the controlling processes should have no effect
on the comrectness of the system; a properly designed controlling system
should be independent of the relative and absolute execution speed of the
different controlling processes, under the condition that the execution speed is
above a certain minimum level in order to guarantee the real-time
characteristics of the system.

Examples of such systems can be found in sequence control systems based on
parallel processes. In these systems, several controlling processes are usually
executed on a single physical processor. Each controlling process spends most
of its time being blocked in an interaction, while waiting for a certain change
in the state of the processes in the controlled or controlling system. When the
extemal state of the controlled system changes, interactions will take place
and the state of the controlling processes will be updated according to the new
state of the controlled processes, whereafter the controlling processes will
again each be blocked in an interaction. For each process in the controlling
system, the time spent by computations between two subsequent suspended
states is negligibly small in comparison with the time spent in each suspended
state (blocked in an interaction).

There are also instant response controlling systems where the controlling
processes are not normally blocked in an interaction. If, for example, there is
only one controlling process executing on a dedicated physical processor, the
process could be continuously polling the state of the controlled system, so
that it can give a response when a change is detected.

Delayed response controlling systems

In delayed response controlling systems, the processing speed of the
controlling system plays an essential part in the operation of the controlled
system. Increasing the speed of the controlling system will significantly
change the points in time at which the external state of the controlled system
changes from one state into another. In these systems, there are processes that
spend a significant amount of their time on the computations that are
necessary in order to respond to changes in the state of the controlled system.
An example of such a controlling system is a scheduler. The response time of

A new mechanism for the handling of constraint violations 119

such a scheduler can be a significant factor in the progress of the controlled
system. '

6.3.2 A strategy for raising pending exceptions in instant response
controlling systems

In order to keep invariants — especially intemal invariants — intact, pending
exceptions should be raised at points where the invariants are either valid or
where invalid invariants can be easily restored in an exception handler which
can catch the pending exception that will be raised. Of these two options,
raising pending exceptions at points where the invariants are valid appears to
be preferable, because it avoids the detection and restoration of invalid
invariants in exception handlers. Another requirement, however, is that the
raising of pending exceptions should not be deferred for too long. It can
therefore be necessary to raise pending exceptions at points where invaniants
are invalid. The question that is answered in this section is: how are the points
determined where pending exceptions are raised?

One approach would be to have the programmer state, for every statement,
whether or not it may be interrupted by the raising of a pending exception.
This approach clearly places too great of a burden on the programmer and
leads to a great deal of code pollution. It would be desirable that the run-time
system or the compiler could determine where to raise pending exceptions,
without explicit indications from the programmer. Therefore, a strategy for
the raising of pending exceptions will be developed.

Raising pending exceptions at interaction points

First it is noted that, in instant response controlling systems, the raising of
pending exceptions can be deferred until interaction points, which are
statements that execute an interaction with another process. The argument for
this is as follows.

When a constraint violation is detected, there are three kinds of delay involved
in its handling. Firstly, there is the delay between the time of the actual
constraint violation and the time of the detection of this violation by the
controlling system. Secondly, there may be a delay between the time of the
detection and the time of the notification of the affected process, caused for
instance by the need to schedule concurrent processes on a single physical
processor. Lastly, there is the delay between the time that the exception could

120 Chapter 6

in principle be raised in the affected process and the time that the next
interaction point is reached. The first two delays are independent of the
strategy chosen for raising pending exceptions: the strategy to defer the
raising of pending exceptions until interaction points introduces only the third
delay. The maximum delay which can be introduced by this strategy is equal
to the maximum amount of time that is needed for the computations between
two interaction points. However, during the time that a process is performing
computations between two interaction points, it cannot respond to changes in
the controlled processes. Therefore this time must be limited in instant control
systems, in order to be able to realize the desired 'instant' response of those
systems, thereby yielding the same ‘instant' response for constraint violations.

An important advantage of the approach of raising pending exceptions at
interaction points is that interaction points are a natural place for internal
invariants to be valid. Undesirable interactions after constraint violations are
also prevented in this way, because interaction with other processes is only
possible by means of interaction points. If global variables are used for the
communication between processes, then the updating and reading of these
globals are also referred to as interaction points.

Pending exceptions generally cannot be deferred during the execution of delay
statements. Therefore, delay statements are also considered as interaction
points. They can be viewed as interacting with a timing process.

Pending exceptions will be raised at interaction points, including delay
statements, in the following way.

When there is already a pending exception prior to the execution of an
imteraction point, the pending exception will be raised, replacing the
* interaction point. ‘ '
When the process is blocked in an interaction point and a pending exception is
created, the process will be unblocked immediately and the pending exception
will be raised, replacing the interaction point, .

When a pending exception is created at the time the interaction actually takes
place (and the process is therefore not blocked), the interaction will be
allowed to terminate normally and the raising of the pending exception will be
deferred until the next interaction point. In this way, it is guaranteed' that an
interaction either takes place successfully, or that it does not take place but is
replaced by the raising of a pending exception. Raising a pending exception
directly after a successful termination of an interaction could in fact cause
internal invariants to be invalidated, for example when the statement

A new mechanism for the handling of constraint violations 121

following the interaction records the number of interactions that have taken
place.

Another possible strategy is to defer the raising of exceptions until the process
executes an interaction point that causes the process to be blocked. This
approach has the advantage of restricting the number of points in the program
where invariants can be violated due to the raising of pending exceptions. This
could make certain exception handlers simpler. The extra delay introduced in
this case can be ignored in instant response systems, because no blocking can
take place in the interaction points where the pending exceptions are not
raised. The disadvantage is that the execution of certain non-blocking
interactions in the presence of pending interactions could be undesirable.
Clearly, this approach is only possible when the controlling processes become
blocked when they wait for the controlled system to change state, and do not
continuously poll the state of the controlled system. In systems that use
polling processes, pending exceptions must be raised at all interaction points.
Please note that each poll is an interaction point.

The strategy of raising pending exceptions at all interaction points is preferred
to the strategy to raise pending exceptions at blocking interaction points only.
In this way, undesirable interactions after the creation of pending exceptions
are avoided. This strategy is also conceptually the simplest, and it can be used
for all instant response controlling processes. The disadvantage of this
strategy is that invariants can be invalidated more easily, because pending
exceptions are raised at all interaction points. This is not considered to be a
great problem, because the violated external invarnants can be restored in
exception handlers. If pending exceptions are raised at all interaction points, it
is preferable to ensure that intemmal invariants are valid at all interaction
points.

No raising of pending exceptions in exception handlers

The raising of pending exceptions is unacceptable in an exception handler.
This is due to the fact that an important aim of exception handlers is to restore
(external) invanants that have been invalidated by an exceptional termination
of a program unit. If one were allowed to raise pending exceptions in
exception handlers, then a handler could be terminated with an exception
before it had been able to restore the violated invariants. An example of such
a situation has already been given in Figure 5.3.3a. Therefore, pending
exceptions are not raised in exception handlers; they are kept pending. As a

122 Chapter 6

result, exception handlers should not contain delay statements or blocking
interaction points the blocking of which depends on the state of the controlled
system.

The monitoring of constraints

The monitoring of constraints can take place in two conceptually different
ways.

In the first way, constraints are monitored throughout the execution of a
protected block.

In the second way, monitoring of constraints is restricted to explicit points
during the execution of a protected block. If pending exceptions are, raised at
interaction points only, then monitoring of constraints can be restricted to
interaction points, so that the constraints are not monitored ' between
interaction points. In that case, there is no need for pending exceptions,
because the required external exception can be raised at the time' that the
constraint violation is detected. ‘

Note that, in both cases, the constraints of a protected operation are not only
monitored during the execution of the operation itself, but also during the
execution of all operations (or during the execution of interaction points in
these operations) which are called from the protected operation, and all
operations called by them etc. Monitoring will stop only when the protected
operation is terminated (apart from the temporary stopping of the monitoring
between interaction points in the second case).

The disadvantage of restricting the monitoring of constraint violations to
-interaction points is that the indication of constraint violations in message
based systems can, in this way, not be done by means of non-blocking
synchronous send primitives. This disadvantage is obviously not relevant for
systems in which such send primitives are not available.

When a non-blocking synchronous send primitive is executed, the transfer of
the message will only take place if a process exists which can immediately
receive the message. If there is no such process, the non-blocking send
primitive is terminated immediately, and the message will remain in the
sending process. An example of such a send primitive is the broadcast
primitive. This primitive sends copies of a message only to those processes
that are ready to receive the message. It does not block. |

A new mechanism for the handling of constraint violations 123

The non-blocking synchronous send primitives are very useful for the
indication of constraint violations (see Section 6.10.8). The use of these send
primitives, however, conflicts with the strategy to monitor constraints at
interaction points alone.

Such conflicts can occur when two (or more) processes are interacting with
cach other during the execution of a certain program region in each process.
Such program regions will be referred to as synchronization sections.
Examples of such situations are given in Figures 5.3.2a-c, and Figures 7.5.5
(CtriTraverse >> stackToTruck) and 75.6 (CtriTruck >>
receiveStackFromTraverse). If, in such a case, one of the two processes (the
violator) prematurely leaves its synchronization section due to an exception
occurrence, this will be a constraint violation which should be indicated to the
other process (the victim). This is best done by means of the non-blocking
synchronous send primitive. In each of the processes a constraint monitor,
which monitors the state of the synchronizing process, will be bound to the
synchronization section. The constraint monitor of the victim must receive the
message which indicates the constraint violation by the violator. If, however,
the victim monitors its constraint at interaction points only, then the non-
blocking synchronous send primitive could fail to actually send the message.
Thas will occur if the send primitive is executed at a point of time at which the
victim is not monitoring its constraint, which can be any point of time at
which it is proceeding from one interaction point onto the next. In such a case,
the constraint monitor will not detect the constraint violation, which will lead
to deadlock.

To prevent such errors in the case that constraints are monitored at interaction
points only, constraint violations could be indicated to all affected processes
by means of asynchronous or blocking synchronous send primitives. The
asynchronous interaction mechanism has an undesirable buffering function,
however, which could lead to the signaling of a constraint violation, due to a
buffered message, at a time that the constraint indicated by the buffered
message is no longer violated. The blocking synchronous interaction
mechanism is also unsuitable because it will cause the sender (violator) to be
blocked until the message, indicating the constraint violation, is received by
the constraint monitor of the victim. If, however, the operation of which a
constraint was assumed to be violated would also happen to terminate
prematurely due to an exception occurring at the same time as the exception
occurrence in the violator, then the constraint monitors bound to the operation
could already be disabled. In such a case, the message would not be received,

124 Chapter 6

causing the sender (violator) to remain blocked, which would lead to
deadlock.

The conclusion is that constraints should be monitored throughout the
execution of a protected block in systems in which the non-blocking send
primitive is available for the indication of constraint violations. This is the
approach taken in this chapter. In systems where such primitives are not
available, such as systems based on asynchronous interaction mechanisms,
constraint violations will not remain unnoticed between interaction points.
Therefore, the monitoring of constraint violations at interaction points alone is
a legitimate option for those systems. This strategy, however, will not be dealt
with in greater detail, because the behaviour of such systems regarding
constraint violations can be deduced relatively easily from the behaviour of
systems where constraints are monitored throughout the execution of a
protected block.

The exit point of a protected block

The fact that the exit point of a protected block is not an interaction point can
lead to the necessity to check the status of certain constraint monitors bound
to the protected block after normal termination of the block.

The exit point of a block is the point at which the block is terminated
normally, that is not with an exception. So the exit point of a block is the
point just before the block's end identifier (or other symbol or identifier which
closes the block), or the point where a return statement causes termination of
the block.

- Constraints concern the environment of the process executing an operation,
and interaction points are the only way to interact with the environment.
Therefore, constraints can only change after the execution of an interaction
point. So in theory, the exit point of a protected block should coincide with an
interaction point. This is not practical, however. One of the reasons for this is
that the exit point of a protected block can depend on the execution of
conditional programming constructs, such as if then else statements.

If constraints are monitored at interaction points only, they will no longer be
monitored after execution of the interaction point executed last in the
protected block. Therefore, in this case, the protected block can be consndered
to end at the interaction point executed last.

A new mechanism for the handling of constraint violations 125

If constraints are monitored throughout the execution of a protected block,
however, monitoring of constraints will not stop after execution of the
interaction point executed last in the protected block; it will stop exactly at the
exit point of the protected block. In the situation discussed below, this leads to
the necessity to check the status of a constraint monitor bound to a protected
block after normal termination of the block.

In message based systems, a constraint monitor could monitor its constraint
by trying to receive a specific message. This is elaborated on in greater detail
in Section 6.10, where the implementation of constraint monitors in Process
Calculus is treated. The receipt of such a message will indicate a constraint
violation, which will normally result in the raising of an exception. This could
either be the monitor's exception itself or, in the case of discarding (see
Section 6.5), some other exception. The received message which indicated the
constraint violation can normally be retrieved from the constraint monitor in
the exception handler used to catch the pending exception which was raised.
If, however, the constraint violation were to take place affer the last
interaction point in the protected block, but before the exit point of the
protected block, the receipt by the constraint monitor of the message which
indicated the constraint violation would not result in an exception being
raised. The reason for this is that an interaction point is no longer encountered
in the protected block, causing the constraint monitor's pending exception to
be discarded at the exit point of the protected block (see Section 6.5).

In the case that the contents of the message indicating the constraint violation
are needed, the constraint monitor must be checked both in the exception
handler used to catch the raised pending exception, and in the statements
dynamically following the exit point of the protected block. If the last test is
not programmed, then the message indicating the constraint violation can go
unnoticed in the special case of a constraint violation after the interaction
point executed last in the protected block.

A practical example of this situation is a constraint monitor monitoring
commands sent by the operator by means of the MMI (man-machine
interface). Suppose that the operator can send the commands manual and
reset to the controlling processes. The receipt of the command reset will cause
the controlling system to interrupt the current activities of the controlled
machines and return them to a predefined reset state (see Section 7.4). The
receipt of the command manual will also cause the controlling system to
interrupt the current activities of the controlled machines, after which the

126 Chapter 6

controlling system will await commands from the operator to sequentially
operate selected parts of the controlled machines.

When the controlling system is executing a reset command, it will be
continuously synchronizing with the controlled machines in order to bring
them into the reset position. A constraint for this reset operation is that the
operator does not send a manual command, because in that case resetting the
machine would have to be stopped and the controlling processes would have
to wait for new commands from the operator. Therefore, a constraint monitor
which monitors the operator to see whether a manual command can be
received is bound to the protected block enclosing the reset operation.

If the monitor receives a manual command, the monitor's pending exception
will be raised at the execution of the next interaction point, after which the
received manual command can be retrieved from the constraint monitor in the
exception handler which caught the raised exception.

If, however, the manual command were to be sent just affer the execution of
the last interaction point in the reset operation but before the exit point of the
protected block enclosing the reset operation, the manual command would be
received by the constraint monitor, but the pending exception thus created
would be discarded upon termination of the protected block; and so'the reset
operation would terminate normally. Therefore, it is necessary to check the
status of the constraint monitor after normal termination of the protected reset
operation, so that the manual command can be retrieved from the constraint
monitor. If the constraint monitor has not received a message, then the check
of the constraint monitor can be followed by a normal receive action in order
to wait for the (manual or other) command from the operator.

If pending exceptions would also be raised at the exit point of a protected
block, the block would always terminate with an exception if a: pending
-exception had been created due to a violation of a constraint of the block.

The problem with this approach, however, is that it may lead to the violation
of internal invariants. Consider the example given in Figure 6.3.1:

["Start of protected block"

self send: item to: 'out’

“End of protected block™.

numberOfltemsSent := numberOfitemsSent + 1.

Figure 6.3.1 Violation of an internal invariant when a pending exception is
raised at the exit point of a protected block

A new mechanism for the handling of constraint violations 127

If a pending exception is raised at the exit point of the protected block, the
variable numberOfitemsSent will not be incremented. This would be a
violation of the intemnal invariant specifying that numberOfitemsSent equals
the number of items that have been successfully sent. This invariant cannot be
restored in an exception handler, because the handler cannot determine
whether the exception has been raised before (replacing the interaction point)
or after (at the exit point of the protected block) the item has been sent.
Therefore pending exception are not raised at the exit point of a protected
block.

In conclusion, the status of a constraint monitor should be checked after
normal termination of the block to which it is bound if the contents of the
message received by the monitor are not only required after the exceptional
termination of the protected block, but also after its normal termination. This
observation is based on continuous monitoring of constraints. If constraints
are monitored at interaction points only, the status of constraint monitors need
only be checked in exception handlers.

Summary

In synchronous message based systems, the constraints of an operation are
monitored throughout the execution of the operation. The actual raising of a
pending exception in a process is deferred until no exception handler is
executing and the process starts the execution of an interaction point. The
pending exception is raised, replacing the interaction point. (Please note that
interaction points are defined to also include delay statements.)

The raising of a pending exception is not deferred when a pending exception is
created during the time that a process is blocked in an interaction point and no
exception handler is executing. The process will be unblocked immediately,
and the pending exception will be raised, replacing the interaction point.

6.3.3 Raising pending exceptions in delayed response controlling
systems

Deferring the raising of pending exceptions until interaction points can be
unacceptable in delayed response controlling systems, due to the fact that the
processing time between interaction points is not negligibly small in these
systems. An example of such a system is a scheduler which takes a relatively
long time to calculate a new schedule. During this calculation constraints

128 Chapter 6

could be violated, which should cause the scheduler to end its calculation.
Such a constraint violation could, for example, be the arrival of a new batch
(forcing recalculation of the schedule), or a command from the operator to
terminate the calculation of the schedule. A timely response to such a
constraint violation can be achieved in two ways.

First, extra interaction points can be introduced into the scheduler, thereby
reducing the time between interaction points. These interaction points can be
used to test the status of the environment to see whether constraints have been
violated. The drawback of this approach is that interaction points are used in
- this way to test constraints explicitly, which contradicts the idea'of using
constraint monitors. Alternatively, 'dummy' interaction points, of which the
sole purpose is to make the raising of pending exceptions possible, could be
introduced into the scheduler. '

Second, an extra primitive could be introduced which allows pending
exceptions, if any, to be raised at points in the program specified by the
programmer. When this routine is called, a pending exception, if available,
will be selected to be raised at the point of the call to the routine. If there is no
pending exception, the call to the routine has no effect. The routine could be
called raisePendingException. The use of this routine gives the programmer
maximum flexibility in his/her control of the raising of pending exceptions at
appropriate points, without the need to introduce dummy interactions. It is a
kind of polling, which is only necessary in the special case of delayed
response controlling systems. Note, however, that the monitoring of the
constraints by the enabled constraint monitors always takes place,
independently of the polling calls on raisePendingException.

" The first option keeps the mechanism conceptually simple, because. pending

exceptions are only raised at interaction points. The introduction of dummy
interaction points or interaction points to test the constraints explicitly is,
however, confusing. Therefore, it is preferred to add the
raisePendingException routine as a primitive to the mechanism for raising
pending exceptions, which has been treated in the previous section.

A new mechanism for the handling of constraint violations 129

6.3.4 Overriding the default strategy for raising pending
exceptions

The strategy for raising pending exceptions which has been treated in Sections
6.3.2 and 6.3.3 is not satisfactory in all cases. In some cases, it is desirable to
be able to override the default strategy in such a way that pending exceptions
are allowed to be raised at certain interaction points in exception handlers.

This is necessary when the retry strategy as treated in Sections 7.3 and 7.6 is
used. The retry strategy is only possible in languages that support the retry
response from an exception handler. It makes use of a blocking interaction in
an exception handler, which is used to wait for the response from the operator
indicating that the interrupted control action can be restarted. Such a blocking
interaction, however, should be interruptible when a constraint is violated and
a pending exception is created. Otherwise, the process would remain blocked
in the exception handler until the operator response was received. If pending
exceptions are never allowed to be raised in exception handlers, then the
interaction used to wait for the response from the operator to continue cannot
reside in the exception handler. In such a case, the retry response from an
exception handler cannot be used. The return response will need to be used
instead and the interaction used to wait for the response from the operator
must be part of a while do statement, which can cause the control action,
including the exception handler, to be re-executed. This will lead to less clear
and less elegant code which cannot take advantage of the retry response from
exception handlers, but it is not a problem for languages that do not support
the retry response anyway.

Two main approaches can be distinguished for the specification of constructs
that allow pending exceptions to be raised at certain interaction points in
exception handlers. Firstly, this overriding of the default strategy can be
explicitly specified for individual interaction points, because these are the only
relevant places where the default strategy needs to be overridden. Secondly, a
region of the program (a block, for instance), can be defined, where the
default strategy is overridden. Such a block will be referred to as an 'override
block' for easy reference.

The latter approach has two distinct disadvantages. Firstly, the designation of
a block where pending exceptions are allowed to be raised in exception
handlers does not make it clear that this is only relevant to interaction points
contained in the block. Secondly, and even more important, this approach

130 Chapter 6

makes it conceptually more difficult to determine whether pending exceptions
are allowed for a specific interaction point or not. This is due to the fact that
exception handlers and override blocks can be mutually nested. If, for
instance, an exception handler is nested in an 'override block', in which
pending exceptions are allowed to be raised, then the exception handler would
probably need to overnide the override block in such a way that pending
exceptions in the nested handler are not allowed to be raised.

An advantage of the latter approach is its syntactic simplicity. The conceptual
complexity is, however, considered to be more important. Therefore, it is
preferred that the default strategy can only be overridden for explicitly and
separately indicated interaction points.

The actual decision as to whether to allow the default strategy to be
overridden depends on a number of aspects. Added complexity due to the
added primitives should outweigh the increased programming power of the
language. The possible presence of a retry response in the language is another
aspect influencing this decision. In Process Calculus, special interaction
primitives are available for use in exception handlers, so that pending
exceptions can be raised during the execution of these primitives.

6.4 Handling exceptions resulting from constraint violations

When a constraint violation is signaled by a constraint monitor, the resulting
pending exception will be raised somewhere in the protected block of which
the constraint was violated. The handling of such exceptions is application-
dependent, but there is one important common aspect. A constraint violation
- will make it impossible for the protected block to achieve its goal. Therefore,
the exception that is signaled as a result of the constraint violation should
result in the termination of the block with an exception. A result of this
requirement is that handlers which are activated from within a protected
block, that is during the execution of the protected block, must always
propagate exceptions that indicate a violation of the protected. block's
constraints.

The observations discussed above can be summarized in the following
obligation for the programmer regarding exception handling in the presence of
exceptions from constraint monitors.

A new mechanism for the handling of constraint violations 131

An exception handler that catches a constraint monitor's exception while the
constraint monitor's block is not yet terminated must terminate by
propagating the exception.

Programs should be developed in such a way that they adhere to this principle
while at the same time making use of the concepts of abstraction and
modularity. The use of these concepts implies that subprograms of a low
hierarchical level need not know anything of the subprograms of a high
hierarchical level. Furthermore, subprograms should not need to know the
inner details of the subprograms that are called by them.

In order to enforce the constraint monitor's exception handling principle
(explained -above), while at the same time maintaining abstraction and
modularity, exceptions that are handled locally (and are thus not propagated)
should be defined locally. This should be done in such a way that handlers
bound to such locally-defined exceptions cannot catch exceptions from
constraint monitors that are defined at a higher level.

Unfortunately, the local definition of all locally handled exceptions in a
subprogram can be impractical: if many subprograms share the same
constraints, all locally-defined exceptions and constraint monitors will need to
be duplicated.

A lot of code duplication can be avoided by defining constraint monitors in
one place and using them in several subprograms. In this case, their
exceptions must be used in all of these subprograms, and must therefore be
defined globally for those subprograms. The designer of the program must
take care that the exceptions which are handled locally (and are not
propagated to higher levels) are not used as exceptions for constraint monitors
defined at higher levels.

6.5 Discarding pending exceptions

6.5.1 Dealing with multiple pending exceptions

When the state of a process is such that a pending exception can be raised,
there could be more than one pending exception. Such a situation can arise if

multiple constraint monitors are enabled simultaneously during the execution
of a process. There are two reasons for this. Firstly, more than one constraint

132 Chapter 6

monitor can be bound to a block, so that each constraint monitor monitors a
(sub-)constraint. Secondly, more than one block can be active at the same
time, because a block can invoke other routines and other blocks. Therefore,
when a process is not blocked and executing, several constraints can be
violated by other processes, possibly leading to the signaling of constraint
violations by more than one constraint monitor and therefore to multiple
pending exceptions in the process.

When the state of a process is such that a pending exception can be raised,
and there is just one pending exception, it will be raised. When there is more
than one pending exception, two problems have to be resolved: which one of
the pending exceptions will be raised, and what happens to the other pending
exceptions. The question of which one of the pending exceptions will be raised
will be treated in Section 6.6, Section 6.5 makes clear how the other pendmg
exceptions are dealt with. -

Upon termination of the protected block, the pending exceptions which belong
to the protected block's constraint monitors, and which are not selected for
raising, are discarded. The result of this is that, after termination of a
protected block, either normally or with an exception, there will be' no more
pending exceptions belonging to the protected block’s constraint monitors.

When a constraint monitor's pending exception is discarded due to the
disabling of the constraint monitor when a protected block is terminated with
an exception, the discarded pending exception is said to be discarded by the
other exception. The other exception is referred to as the discarding
exception.

6.5.2 The argument for discarding pending exceptions

The aim of the pending exception of a constraint monitor is to signal the
exception occurrence and to cause termination of the protected block with an
exception. If a pending exception is discarded by another exception, the
protected block is already terminated with an exception. Therefore, the
existence of the discarded exception is no longer needed to cause termination
of the block with an exception. If, on the other hand, the pending exception is
discarded while the protected block terminates normally, then the pending
exception must have been created after the last interaction point of the
protected block, otherwise it would already have been raised. The possibility

A new mechanism for the handling of constraint violations 133

of this situation is due to the fact that the exit point of a protected block does
not coincide with an interaction point. In this case, the pending exception can
be discarded after termination of the protected block, because the violation of
the constraints of a protected block after the last executed interaction point is
not relevant. From a conceptual point of view, the constraints of the protected
block are only valid until the block's last interaction point. This has been
explained in the subsection of Section 6.3.2: 'The exit point of a protected
block’.

The only problem that remains is that a single exception cannot convey the
information associated with two exceptions, and the handling of the discarding
exception can be different from the handling of the discarded exception. It is,
however, impossible to signal two exceptions at the same time, so a choice
must be made. It is up to the programmer to take account of the possibility of
discarding. This will usually imply that the handler actions for the discarding
exception include all of the handler actions for the discarded exception. This
is usually done by using 'any handlers' which catch all exceptions. The state
of the relevant constraint monitors can be checked in the handler in order to
determine if they have signaled a constraint violation. If the pending exception
of a constraint monitor is not allowed to be discarded, then that constraint
monitor should be placed in a separate process. »

The reason for discarding the pending exception is found if one analizes the
situation that could occur if the pending exception were not discarded, but
retained for signaling at a later time. The pending exception would thus be
signaled when the process encountered an interaction point, or in another state
where pending exceptions can be raised. Such a state could occur at a point
where the 'discarding’ exception would already have been handled. After
execution of the handler, the process could have been returned to a state
where the goals of all active operations could be achieved. This would lead to
a situation where there would be no exception occurrence, but there would
still be a pending exception. This is intolerable since exceptions may only be
raised in the case of an exception occurrence.

6.6 Selecting a pending exception for raising
When a pending exception can be raised and there is more than one pending

exception available then a choice has to be made. Several selection criteria
can be used:

134 Chapter 6

e Undefined
When the selection criterion is undeﬁned the user program may not rely
on a specific algonthm This is the simplest but also the least useful
option,

o User-assignable priorities
A selection based upon user-assignable priorities has the disadvantage of
greater complexity, because the user would have to specify the priorities.
Furthermore, if two constraint monitors are assigned the same priority, the
same problem remains as to which one of their pending exceptions should
be selected. ‘

¢ Constraint monitor's signaling time

Basing a sclection criterion on the constraint monitor's sngnaluig time is
usually not what is desired by the programmer. By the monitor's signaling
time, we mean the point of time at which the monitor signals the violation
of its constraint. This is also the point of time at which the pending
exception is created. The signaling time of a constraint monitor is
determined by the processes in the environment of the process using the
constraint monitor. So it is beyond the control of the programmer of the
process. Usually, however, the programmer desires some control over the
constraint monitor which will be sclected. Consider, for example, the
situation in a wafer processing unit where a real-time scheduler is used to
determine a schedule. If a new batch is introduced into the system during
the calculation of the schedule, then the calculation will need to be
interrupted to take the new batch into account. To achieve this, a
constraint monitor is used which monitors the arrival of new batches.
Suppose that, either after or before the arrival of a new batch, an order has
arrived to stop scheduling because the system needs to be reset. The
ammval of such an order is also monitored by a constraint monitor.
Therefore, this situation could lead to two pending exceptions. Clearly it is
useless to restart calculating the schedule, taking account of the new batch,
when the system has to be reset anyway. So the constraint monitor which
monitors the reset command in this case has a higher priority, which is
independent of the order of the signaling times of the two constraint
monitors. -

A new mechanism for the handling of constraint violations 135

e Constraint monitor's enabling time: last enabled or first enabled

If the first enabled option is chosen, then the constraint monitors that are
enabled at a high (or outermost) level, so that they will be active in all
operations called from that level, will have a high priority. This is due to
the fact that the lower (or innermost, or deeply nested) levels are called by
the higher levels, so that the constraint monitors enabled in the lower levels
will be enabled later. Therefore, pending exceptions from constraint
monitors which are enabled at a low level will be discarded by exceptions
from constraint monitors which are enabled at a higher level, which is the
desired behaviour.
In the previous example, for instance, the constraint monitor which
monitors the reset command will be bound to a block at a high level so that
the constraint monitor will be active in all operations called from that
level. The constraint monitor which monitors the arrival of a new batch
will be enabled at a lower level, when the scheduling is actually started.
This leads to the desired discarding of the 'new batch' constraint monitor's
exception by the 'reset' constraint monitor's exception when their
exceptions are both pending. If this kind of discarding needed to be

- detected, the constraint monitors bound to a block could be checked in the
handler bound to that block to se¢ if they had just signaled a constraint
violation. : :

If the last enabled option is chosen, fewer discards will occur, since the
pending exceptions of constraint monitors defined at a low level will be
given precedence over the pending exceptions of the constraint monitors
defined at a higher level. The exceptions from the constraint monitors from
the higher level will remain pending, however, and will be raised after the
handling of the exception from the lower level's constraint monitors, at a
time when the process enters a state where the pending exceptions are
checked again. The higher level constraint monitors would only be
disabled, causing their pending exceptions (if any) to be discarded, in the
case that the exception from the lower level's constraint monitor is
propagated up to the higher level.

The first enabled option is preferred because the constraint monitors
enabled at higher (or outermost) levels should have priority over the
constraint monitors enabled at lower (or innermost) levels. So this form of
discarding is actually desirable. This has been demonstrated by the
example of the scheduler.

136 Chapter 6

The choice of the first enabled selection cnterion has an effect on the
treatment of pending exceptions. It implies that it is no longer necessary to
retain all pending exceptions of a process. Instead, it is sufficient to retain
only one pending exception. Any time that a second pending exception is
created, the selection criterion is used to determine which of the two has
the highest prionity. This one is retained, and the other one can be
discarded immediately.

6.7 The nesting of blocks with the same constraints

Different operations can have the same constraints, as shown in Figure 5.1.1.
This can lead to a situation where two blocks that have the same constraints
are (dynamically) nested.

These constraints could be specified with separately defined constraint
monitors. If the constraint is violated in such a case, both constraint monitors
would signal this violation, creating two pending exceptions. In this case, the
pending exception from the constraint monitor that was enabled first, and thus
bound to the outermost block, will discard the other constraint 'monitor's
pending exception.

If the constraints are specified by binding the same constraint monitor to both
blocks, the desired effect of such a situation is not directly evident.
Firstly, the question anses if two pending exceptions should be created in the
case of a constraint violation, or just one. The simplest approach is to create
only one exception, belonging to the constraint monitor bound to the
outermost block. The pending exception from the other constraint monitor
-would be discarded anyway, so its creation would serve no purpose. Note that
if the pending exception would be handled by the handler bound to the
innermost block (the block with the deepest nesting), then the exception would
have to be propagated by the handler according to the programmers
obligation specified in Section 6.4.
Secondly, it can no longer be stated that the constraint monitor is disabled
after a protected block to which it is bound is terminated. Instead, the entenng
or exiting of a block to which a constraint monitor is bound which was
already enabled before the block was entered has no effect on the state of the
constraint monitor or it's pending exception.

A new mechanism for the handling of constraint violations 137

Therefore, binding a constraint monitor to a block which is invoked by
another block to which the same constraint monitor is bound is essentially a
non-operation.

An example of the nesting of blocks with the same constraints in Process
Calculus is shown in Section 6.10.7.

6.8 The evaluation of constraint functions

The monitoring of constraints can be regarded as a continuous evaluation of
the associated boolean constraint function. The constraint is violated when
this function returns false. The evaluation of the constraint function is not
necessarily done by the constraint monitor alone.

In the case of a violation of an active constraint of a controlling process by a
process in the controlled system, the constraints will refer to the state of the
controlled system. The controlled system itself does not know when a
constraint is violated, and therefore cannot evaluate constraint functions that
are associated with constraint monitors in the controlling system. All it can do
is to make its state available to the controlling processes. Constraint monitors
in the controlling processes will monitor the relevant parts of the state of the
controlled system. However, depending on how constraint monitors are
integrated in a language, additional processes can be necessary for the
monitoring of complex constraints, such as constraints which are defined with
a combination of logical operators.

In Process Calculus, for instance, a constraint monitor can be defined to
monitor a specific part of the state of the controlled system. It does this by
being ready to receive a message by means of an interaction, which message
is specific for the part of the controlled system's state which can be a
constraint violation. The boolean constraint function which is evaluated in this
way is a simple comparison of the relevant part of the state of the controlled
system with a constant value. An and-function of such constraints can be
realized by binding different constraint monitors to the same operation.

In the case of constraint violations between controlling processes, the
constraints usually refer to a correct synchromzation between the processes.
When two processes are correctly synchronized, any of the two processes can
break out of this synchronization, and by doing so will violate an active

138 | Chapter 6

constraint of the other process. The reason for breaking out of the
synchronization is usually an exception occurrence.

The two controlling processes will be called the violator and the victim,
according to the terminology of Section 5.3.3. The violator will be aware of
violating the constraint when it has to break out of the synchronization due to
an exception occurrence, and it can thus signal the constraint violation to the
victim. In this case, the violator has implicitly evaluated the constraint
function, and it will signal the true-to-false transition of the constraint
function. In this way, the constraint monitors of the victim can be kept simple,
because they need not monitor the different states of the violating processes. A
single constraint monitor is sufficient to register only the indication of the
true-to-false transition of the constraint function, which is signaled to it by the
violator process. In Process Calculus, this signaling can be done by means of
a broadcast send primitive (see Section 6.10.8). '

The violator need not be absolutely sure that it has actually violated one of
victim's constraints. Suppose, for instance, that an exception had already been
raised in the victim, independently of the constraint violation by the violator.
In that case, victim's constraint monitor which monitored the constraint would
already be disabled, and the appropnate constraint function would no longer
be defined. So, in order to achieve good modulanty and low coupling between
the processes, the violator signals an assumed constraint violation to the
victim. It is up to the victim's enabled constraint monitors to treat the assumed
constraint violation as an actual constraint violation.

6.9 Conflicts between the resume response and constrai:nt
monitors

" The conflicts between the resume response and constraint monitors are similar
to the conflicts between the resume response and critical sections, as
discussed in Section 4.6.4.

The conflicts arise when an exception occurrence is detected in a part of a
program protected by constraint monitors. When the corresponding exception
is raised and the protected block is terminated with an exception, the block's
constraint monitors could either be disabled or remain enabled. ‘

If the constraint monitors are disabled and if thereafter the resume response is
chosen in a handler, then execution will proceed from the point where the
exception was onginally raised, i.e. in the protected block. So execution is

A new mechanism for the handling of constraint violations 139

continued in the protected block, but all the protected block's constraint
monitors will still be disabled. Therefore, the constraint monitors should be
re-cnabled before the resume response is chosen. The exception handling
mechanism would become considerably more complicated if this were to be
done automatically. If it is not done automatically, it can only be done with
unstructured use of constraint monitors, because the constraint monitors will
have to be re-enabled in an exception handler before issuing a resume
response. This also implies precise knowledge of the state of all constraint
monitors that may have been disabled.

Note that, in the case of a resumption model, it is strictly speaking not correct
to use the phrase ‘termination of a block with an exception’, because the block
only terminates when either a return or a retry response is chosen, or another
exception is raised. Before this is done, execution of the block can still be
resumed by the resume response.

If the constraint monitors remain enabled, then the disabling of constraint
monitors is postponed until the exception (which caused the block to
terminate) is completely handled and the resume response can no longer cause
resumption of the block. In such a case, pending exceptions may never be
raised in exception handlers. If the raising of pending exceptions in handlers
were possible, then, prior to giving a resume or other response, a pending
exception could be raised which should have been discarded upon termination
of its associated protected block.

Therefore, in systems where pending exceptions can be raised in exception
handlers by overriding the default strategy treated in Section 6.3.2, constraint
monitors must be disabled immediately after termination of their protected
block with an exception.

Conflicts between the resume response and constraint monitors can only be
prevented in systems where pending exceptions cannot be raised in exception
handlers. In these systems, the disabling of constraint monitors of which a
protected block has 'terminated’ with an exception should be postponed until
the exception (which caused the block to terminate) is completely handled and
the resume response can no longer cause resumption of the block.

It is concluded that the conflicts between the resume response and constraint
monitors in systems where pending exceptions can be raised in exception
handlers are so severe that resume responses should not be used in such
systems. If pending exceptions can never be raised in exception handlers,

140 Chapter 6

there need not be any conflicts between the resume response and constraint
monitors.

6.10 The implementation of constraint monitors in Process
Calculus

6.10.1 Monitoring constraints by executing receive actions

When a constraint monitor is enabled, it will try to receive an object by
executing a receive action. This is the way that a constraint is monitored in
Process Calculus models. The constraint is assumed to be violated when the
constraint monitor receives the object. As long as the desired object is not
received, the process which enabled the constraint monitor is not blocked but
can continue normally. The constraint is constantly monitored, even though
the process is proceeding with other actions. The monitoring of the constraint
is stopped when either the constraint monitor's receive action succeeds or
when the block protected by the constraint monitor terminates.

©6.10.2 The definition of constraint monitors

A constraint monitor is defined separately and can consequently be bound to
different blocks. A constraint monitor is defined by sending it an initialization
message. Such a message could be ConstraintMonitor class >> for: aProcessor
receive: anObject from: portName thenRaise: anException. It is assumed that
the monitor's constraint is violated when the object anObject can be received
from the port named portName on the processor aProcessor. When the

- constraint monitor is enabled, it will try to receive anObject from the port
named portName on the processor aProcessor. When this succeeds, the
constraint monitor will signal the constraint violation by making anException
pending in aProcessor and stop monitoring its constraint.

In reality, a slightly different method is chosen: ConstraintMonitor class >> for:
aProcessor receive: anObject from: portName then: exceptionBlock. Hereby the
constraint monitor is initialized with the block exceptionBlock instead of
anException as in the previous method. In this case, the constraint monitor will
signal the violation of its constraint by making its exceptionBlock pending in
aProcessor, thereby creating a ‘pending exception block' instead of a pending
exception. When an interaction is executed in the protected block of which a

A new mechanism for the handling of constraint violations 141

constraint has been violated, the constraint monitor's pending exception block
is executed. The pending exception block must terminate with an exception
when it is executed. If it does not terminate with an exception, the supporting
system will raise an exception after the termination of exceptionBlock, which
exception is an indication of an illegal exception block. There are two reasons
for this slightly different method. Firstly, it is more in the style of the task
language of Process Calculus, where many methods follow the convention of
exccuting a specified thenBlock when a receive action succeeds, as for
example in receive: anObject from: portName within: interval then: thenBlock
ifTimedQut: timeQutBlock. Secondly, this single initialization method is
sufficient in all cases. Exceptions can be raised in many different ways in
Smalltalk, for example with or without error messages and other arguments.
All these different ways can be accommodated by using the exception block.
If the constraint monitor were initialized with the exception itself, different
initialization methods would be needed for the different ways of raising the
constraint monitor's exception.

The convention of only raising an exception in the exception block will be
followed in this thesis, so that the creation of a pending exception block and
the creation of a pending exception amount to the same thing. This is because
raising a pending exception and evaluating the exception block both result in
the raising of the constraint monitor's exception. To keep the explanation of
the concepts as simple as possible, we will choose the terminology of creating
and raising pending exceptions, rather than creating and evaluating pending
exception blocks.

An example of the definition of a constraint monitor is shown in Figure
6.10.1.

ForkLifterCtrl >> initializeTasks
emergencyMonitor ;= ConstraintMonitor
for: self
receive: true
from: 'i-emergency’
then: [KillSignal raise]

Figure 6.10.1 Definition of a constraint monitor in Process Calculus.
The KillSignal is a global signal known to all processors. It is raised in the case

of external exception occurrences which cannot be handled locally, for
example by locally restarting an action.

142 Chapter 6

6.10.3 Binding constraint monitors to blocks

A constraint monitor can be bound to a block by sending it the message
protect: with the block to be protected as argument. In Process Calculus,
binding is dynamic. It is effected when the protect: block message is sent to a
constraint monitor, This message will also cause the invocation of the
protected block. Figure 6.10.2 shows the method ForkLifterCtrl >> forkUp once
again. This time a constraint monitor is used to monitor the emergency button.

ForkLifterCtrl >> forkUp
emergencyMonitor protect:
[self putOn; "o-forklifter-up’.
self putOn: 'o-forklifter-power’.
self
receive: true
from: "i-forkLifter-isUp’
within: 6 seconds
ifTimedOut: [KillSignal raise].
self putOff: ‘o-forklifter-power’]

Figure 6.10.2 The use of a constraint monitor to protect a block.

If the emergency button is pressed while the process is executing the protected
block, the emergencyMonitor will signal this constraint violation; and the
exception KillSignal, which was used to initialize the constraint monitor, will
be raised, replacing the currently executing interaction.

6.10.4 The use of constraint monitors together with exceptién
handlers '

An exception will be raised when a constraint monitor detects a violation of a
constraint. Consequently, there must be a handler for that exception.
Finalization obligations can be performed in the handler in order to terminate
the operation to which the handler is bound in a safe and consistent state. If
necessary, the exception can then be propagated. In Figure 6.10.3, the method
forkUp is extended with an exception handler.

The signal AnySignal i1s a global signal collection that is used to catch all
exceptions. AnySignal contains the signal Object errorSignal amongst others.
The interested reader is referred to [ParcPlace, 1989] for more information on
signal collections.

A new mechanism for the handling of constraint violations 143

ForkLifterCtrl >> forkUp
AnySignal
handle:
[:exception |
self putOff: 'o-forklifter-power’.
exception reject]
do: ‘
[emergencyMonitor protect:
[self putOn: 'o-forklifter-up’.
self putOn: 'o-forklifter-power’.
self
receive: true
from: "i-forkLifter-isUp’
within: 6 seconds
ifTimedOut: [KillSignal raise].
self putOff; 'o-forklifter-power’]]

Figure 6.10.3 The use of a constraint monitor together with an exception
handler.

This use of a constraint monitor together with an exception handler is typical
of the use of constraint monitors, because the exception raised by the
constraint monitor is usually handled locally.

6.10.5 Specifying multiple constraint monitors

An operation can have several constraints. Often it is not possible to monitor
different constraints with a single constraint monitor. Therefore, it should also
be possible to bind several constraint monitors to the same block. This can be
done by nesting protected blocks in the way shown in Figure 6.10.4.

ForkLifterCtrl >> forkUp
emergencyMonitor protect:
[operatingSwitchMonitor protect:
[collisionMonitor protect:
[self putOn: o-forkLifter-up’.
self putOn; "o-forkLifter-power’.
self receive: true from: 'i-forkLifter-up’
self putOff: 'o-forkLifter-power’]]]

Figure 6.10.4 Binding multiple constraint monitors to a block using
nesting.

144 Chapter 6

The class ConstraintMonitorCollection is introduced in Process Calculus in
order to avoid the syntactic ugliness of nested constraint monitors. This is a
subclass of OrderedCollection so it inherits all OrderedCollection's messages
and also the messages from the class Collection. In the class
ConstraintMonitorCollection itself, only one method is defined namely protect:,
In order to bind multiple constraint monitors to a single block, the constraint
monitors can be added to a collection of constraint monitors which can then
be bound to the block using the method protect:, in the same way as this
method is used for a single constraint monitor. This construction is
semantically identical to the construction where the constraint monitors are
nested in the same order as they are added to the collection of constraint
monitors. ‘

In the method ForkLifterCtrl >> initializeTasks shown in Figure 6.10.5, a new
ConstraintMonitorCollection is made by means of the method Collection >>
with:with:with:. The collection is filled with the three constraint monitors that
are used as arguments to the method. The method forkUp is defined using the
collection of constraint monitors. The variable constraintMonitors is an
instance variable of ForkLifterCtrl. The methods forkUp shown in Figures
6.10.4 and 6.10.5 are semantically identical.

ForkLifterCtrl >> initializeTasks
constraintMonitors ;= ConstraintMonitorCollection
with: emergencyMonitor
with: operatingSwitchMonitor
with: collisionMonitor

ForkLifterCtrl >> forkUp
constraintMonitors protect:
[self putOn: 'o-forkLifter-up’.
self putOn: o-forkLifter-power’.
self receive: true from: ‘i-forkLifter-up’
self putOff: 'o-forkLifter-power’]

Figure 6.10.5 Binding multiple constraint monitors to a block using a
preinitialized collection of constraint monitors.

6.10.6 Some additional functionality of constraint monitors

It can be useful to be able to check what object has been received by a
constraint monitor, such as in the case that the pending exception from a
constraint monitor can be discarded by other exceptions. By checking whether

A new mechanism for the handling of constraint violations 145

an object has been received by the constraint monitor, one can determine
whether a constraint monitor has signaled a constraint violation, even if its
pending exception has been discarded. The object received can also be used
itself if, for example, the operator sends a command to stop processing, Such
a command could be received by a constraint monitor.

To make this possible, constraint monitors retain the object which they have
received, and which indicates a violation of the monitored constraint. The
object contained in the constraint monitor can be read at any time. It should
also be possible to clear the object after having read it. To realize this
functionality in Process Calculus, there are two messages that can be sent to
constraint monitors:

e The method ConstraintMonitor >> item returns the item received by the
constraint monitor. It returns nil if no message has been received since the
constraint monitor was last cleared.

¢ The method ConstraintMonitor >> clearitem returns the value of the item
received by the constraint monitor. It returns nil if no message has been
received since the constraint monitor was last cleared. It ends by clearing
the constraint monitor. The constraint monitor is also cleared when it is
enabled.

6.10.7 Binding the same constraint monitor to nested blocks

If the same constraint monitor is bound to (dynamically)-nested blocks, the
binding of the constraint monitor to the innermost or deepest nested block can
be regarded as a non-operation. This is illustrated in Figure 6.10.6 where the
methods method1 and method2 are functionally equivalent.

TestProcessor >> method1
consfraintMonitor protect:
[self someStartMethod.
consfraintMonitor protect: ["block2"].
self someEndMethod]

TestProcessor >> method2
“Is equivalent to method1”
constraintMonitor protect:

[self someStartMethod.
["block2"] value.
self someEndMethod]

Figure 6.10.6 Binding the same constraint monitor to nested blocks.

146 Chapter 6

6.10.8 The desired send primitives to signal constraint violations

The functionality of constraint monitors has been treated in previous sections.
The constraint monitor's constraint is monitored by the execution of a receive
action. When the receive action succeeds, the constraint monitor's constraint
is supposed to be violated. For an interaction to take place, both a send action
and a receive action are needed. This section will focus on the kind of send
actions needed to support the detection of constraint violations.

Strictly speaking, any send action can be used, because the receive action
executed by the constraint monitor neither assumes nor requires a specific
send action. In practice, however, only two different send primitives are
needed to support the detection of constraint violations.

The first send primitive needed is the method Bubble >> send:continuousTo:.
This method is used to indicate a state, such as an emergency button which is
pressed. It is used mainly for interfacing the sensors in the controlled system
to the controlling system by means of a driver processor as explained in
Section 2.2.3.

The second send primitive needed is the method Bubble >> broadcast: object
to: portName, which will be fully explained at the end of this section. In some
cases, the method Bubble >> send: object immediateTo: portName then:
thenBlock else: elseBlock is sufficient. This method tries to send object to the
port named portName. If this succeeds immediately then thenBlock is
executed; if not elseBlock, so the method never blocks. For the indication of
constraint violations the thenBlock and elseBlock are generally not needed,
because no feedback information about the success or failure of the send
“action is required. The only aim of the send action is to indicate a constraint
violation. It is up to the other processes to act on this if needed. This method
can be used to indicate that the normal sequence of synchronization actions
between two or more controlling processes is disrupted.

The synchronous send actions, which may be blocking, are not needed to
indicate constraint violations, because it is never necessary to wait for another
process to be able to receive the object indicating the constraint violation.
This i1s due to the nature of constraint monitors: once they are enabled, they
are always ready to receive, independently of the actions performed by the
process that enabled the constraint monitor.

A new mechanism for the handling of constraint violations 147

The asynchronous send actions are not needed, either. These interaction
mechanisms have an undesirable buffering function which could lead to the
signaling of a constraint violation, due to a buffered object, at a time that the
constraint indicated by the object is no longer violated.

In many cases, the number of processors that need to be informed of a
constraint violation exceeds one. If this is the case, and the method
send:immediateTo:then:else: were used, a separate object would need to be
sent to every processor concerned. This would be undesirable, since
specifically sending an object to every processor concerned would lead to bad
modularity. Therefore, the extra send primitive Bubble >> broadcast: object to:
portName is introduced for the notification of constraint violations. This
method tries to send copies of object to all the processors connected through
an interaction path to the port named portName. If a certain send action
cannot take place immediately, an attempt is made to send a copy of object to
the next processor, so this method cannot block. It is functionally equivalent
to separately trying to send the specified object to all processors concemned by
means of the method send:immediateTo:then:else:, using an empty thenBlock

“and an empty elseBlock. The presence of the method broadcast:to: implies that
the method send:immediateTo:then:else: is no longer needed for the indication
of constraint violations.

148 Chapter 6

Chapter 7
The specification of controlling systems
illustrated by a case

Some examples of the use of the newly developed mechanism have already
been given. This section gives some illustrative parts of a complete controlling
system, with an emphasis on the way constraint monitors are used to handle
exceptions. First, the desired functionality of the control system is explicitly
stated. The controlling system is then modeled according to those
requirements. A simple but effective strategy is developed for error recovery
with the aid of exceptions and constraint monitors. This strategy is referred to
as the retry strategy. It is demonstrated both in a single-process and in a
multi-process environment.

The reader is referred to the appendices for more information about Smalltalk
and the methods used in this chapter.

7.1 Requirements regarding the functionality of control
systems

This section discusses some important requirements of exception handling
regarding the interaction of the controlling and controlled system. Clearly
these requirements are not applicable to all kinds of system since the
requirements are usually a compromise between the functionality desired and
the cost of implementing them. The controlling system of the transporter, as
treated in this chapter, is modeled according to the requirements given in this
section.

1. Exceptions should be handled as locally and as efficiently as possible.
This means that as small as possible a part of the system should be
affected by an exception. Consider, for example, the assembly of several
parts. A failure in the assembly of a single part should not lead to the
rejection of the complete subassembly, but rather should be correctable
by the operator or automatically, whereafter assembly can continue.

150 Chapter 7

2. Proper damage confinement strategies require that the effect of an
exception should be minimized. This can mean that, as a result of an
exception in one machine part, many other parts must be put in a safe
state in order to prevent more errors from occurring.

3. If operator assistance is required, errors should be reported to the
operator. If the operator would enter the machine in order to correct the
error, the machine should be kept in a safe state and not suddenly start
moving. The interrupted part of the production process may only continue
when ordered to do so by the operator.

4. The controlling system should remain in a consistent state. Constraint
violations should result in the raising of exceptions. This is especially
important in parallel systems, where an exception in a process can cause
a process to break off its current activities. If it was synchronizing with
other processes, these processes could remain waiting for a
synchronization which will no longer take place.

5. The operator should in principle be able to interrupt the production
process at any time. For example to stop and reset the production process
due to an error which was not detected by the controlling system.

7.2 Additional exception handling methods for controlling
systems

The exception handling methods given in the previous chapter are of a general
" nature. The specific requirements for the programming of controlling systems

make it advantageous to develop additional exception handling methods.

The first additional method is the method Bubble >> handle:do: shown in

Figure 7.2.1. It is based on the method Signal >> handle:do:.

Due to the great variety of possible errors in the controlled system, the ways
of recovering from these errors can be very system specific. Yet the stage of
damage confinement can often be executed using the same concepts. Machine
parts that may be affected by the error must be brought to a safe state. This
should be done regardless of the type of exception. The machine should be
brought to a safe state, even when no errors have occurred, but the production
process is simply stopped by the operator. This can be done by using an

The specification of controlling systems illustrated by a case 151

Bubble >> handle: exceptionHandler do: doBlock

“The exceptionHandler will catch all exceptions from the doBlock.
Before execution of exceptionHandler, an error message will be issued for
the exception.
After execution of exceptionHandler, the handled exception will be
propagated (ex reject), unless another response is specified in
exceptionHandler.”
AnySignal
handle:
[:ex]
self errorMessageFor: ex.
handier value: ex.
ex reject]
do: doBlock

Figure 7.2.1 A new handle:do: method.

exception handler that will catch all exceptions. Therefore, the handler set up
by the method is a handler which catches all exceptions.

All errors should be presented to a man-machine interface (MMI) of the
controlling system. This is done in the exception handler by means of the
message self errorMessageFor: ex. The convention adopted in this thesis is that
all controlling processors have two ports for communication with the MMI:
the ports mmi-in and mmi-out. In the Smalltalk system, error messages reside
in exception objects which are made available to exception handlers as
argument. Therefore, the error message belonging to an exception object can
be extracted from that object by sending it the message errorString. This
feature enables error messages of exceptions raised by the user program code
itself and by the system code to be treated in the same way. The error message
is retracted from the exception object in the exception handler and sent to the
MMI, To prevent the same error message from being sent to the MMI in
different handlers that sequentially handle the same exception, the last
exception for which an error message has been sent to the MMI is recorded in
an instance variable which is available in every processor. An error message
is only sent to the MMI if the value recorded in this instance variable is not
equal to the exception which is being handled.

As has already been mentioned in Section 4.6.2, the default response of a
handler should be the propagate response, which is also the response which
occurs most frequently in controlling systems. The exception handler
elaborated in Figure 7.2.1 terminates with ex reject. In this way, the exception

152 Chapter 7

caught by exceptionHandler, which is set up with the method Bubble >>
handle:do:, is propagated when no response is issued in exceptionHandler. In
this way, the functionality of the default propagate response is created for this
handler.

The second additional method is Bubble >> handle:constraintMonitors:do:
shown in Figure 7.2.2. It is a combination of the method Bubble >> handle:do:
and the method protect: in the class ConstraintMonitor (and
ConstraintMonitorCollection). Its use leads to more easily readable code
because the number of nested blocks is reduced. The only difference from the
method Bubble >> handle:do: is that the doBlock is protected by the
constraintMonitor argument monitorOrMonitors.

Bubble >> handle: exceptionHahdIer constraintMonitors:
monitorOrMonitors do: doBlock

"The exceptionHandler will catch all exceptions from the doBlock.
Before execution of exceptionHandler, an error message will be issued for
the exception, '
After execution of exceptionHandler, the handled exception will be
propagated (ex reject), unless another response is specified in
exceptionHandler. ‘
During execution of the doBlock monitorOrMonitors will be enabled.”
AnySignal ‘
handle:

[:ex |

self emorMessageFor: ex.

handier value: ex.

ex reject]

- do: [monitorOrMonitors protect: doBlock]

- Fi, gure 7.2.2 A method which binds an exception handler and constraint .
monitors to a block.

External exceptions can be represented with the KillSignal and RetrySignal.
They are global signals which are known to all processors. By convention,
they are raised in a process in response to exception occurrences caused by
the environment of the process. These exception occurrences can either be
caused by the state of the controlled system, by other controlling processors,
or by the operators. The KillSignal should be raised when local error recovery
is not possible. The RetrySignal is raised when local error recovery using the
retry strategy is possible in principle. The retry strategy is treated in the next

The specification of controlling systems illustrated by a case 153

section, Exceptions due to programming errors should be signaled by raising
Object errorSignal or other specific signals.

7.3 The retry strategy in a sequential process

Many different strategies can be used in the recovery process. There is,
however, one simple strategy that can be used to recover from many errors in
a simple and efficient way.

This way of error recovery in a process is based on the observation that
components of a machine are often controlled in the following way: in order to
effect a change in the external state of the component, its actuators are made
to change state. The controller consequently waits for a change of state of its
sensors, indicating that the component has completed the desired external
state change. This activation of actuators and consequent waiting for the
desired state change of sensors will be referred to as a control action for the
component.

Consider a cylinder, for example. The control action to make a two valve
cylinder extend would be to open one valve and close the other one.
Consequently the controller will wait for the limit sensor to be activated. If an
error occurs in such a control action, the control action can often simply be
re-executed after correction of the error. This will be referred to as restarting
the control action. Restarting a control action can be elegantly implemented
by means of the retry response of exception handlers. The type of exception
caught will determine whether a retry response is given in the handler, or the
exception is propagated to the invoker. Both types of exception, however,
share the damage confinement and error reporting code in the handler.

This way of exception handling is illustrated in Figure 7.3.1 using the
example of the fork-lift truck. The method ControlBubble >> restartMessage:
sends the given restart message to the MMI and then remains blocked in a
receive action to receive the response from the MMI. In this case, a special
receive action is used, that can be interrupted by raising a pending exception,
even when an exception handler is executing (see Section 6.3.2). If the
operator can correct the error, he can continue by choosing the restart
response in the MMI panel. This will cause the MMI processor to send a
continue message to the processor from which the restart message was
received. When this continue message is received, the invoked method

154 Chapter 7

SlaveForkLifter >> forkUp
AnySignal
‘ -handle:
[:ex]
self errorMessageFor: ex.
self putOff, 'o-forkLifter-power’.
ex signal == RetrySignal
ifTrue:
[self restartMessage: 'fork lifter up’.
ex restart]
ifFalse: [ex reject]]
do:
[self putOn: 'o-forkLifter-up’.
self putOn: 'o-forkLifter-power’.
self
receive: true :
from: 'i-forkLifter-isUp’
within: 6 seconds
ifTimedOut:
[RetrySignal raiseErrorString: 'time-out on fork up’].
self putOff: *o-forkLifter-power’]

Figure 7.3.1 Exception handling with the retry strategy.

ControlBubble >> restartMessage: will return and the exception. will be
restarted causing the do block to be re-executed. :

Because this structure is often used, the method ControlBubble >>
handle:restart:do: shown in Figure 7.3.2 offers a compact way of expressing it:

ControlBubble >> handie: handler restart: restartBlock do: doBlock
AnySignal
handle:
[:ex|
self errorMessageFor: ex.
handler value: ex.
ex signal == RetrySignal
ifTrue:
[restariBlock value.
ex restart]
ifFalse: [ex reject]]
do: doBlock

Figure 7.3.2 A simple method which can be used to express the retry
strategy.

The specification of controlling systems illustrated by a case 155

The example of the fork-lift truck is thus reduced as follows:

SlaveForkLifter >> forkUp
self
handle: [:ex | self putOff: 'o-forkLifter-power’]
restart: [self restartMessage: 'fork lifter up’]
do:
[self putOn: 'o-forkLifter-up’.
"etc.”
self putOff. ’o-forklifter-power’)

Figure 7.3.3 Exception handling with the retry strategy.

The class ControlBubble is a subclass of the class Bubble. All processors used
for control should belong to subclasses of ControlBubble in order that they
inherit the functionality for the control of physical systems and so that they
can interact with the MMI. The two additional messages are defined in the
class ControlBubble instead of Bubble because they are less general. They use,
for instance, the specific ports mmi-in and mmi-out for communication with the
MMI.

In the case where a constraint monitor should be bound to the do block, one
can use the method ControlBubble >> handle:restart.constraintMonitors:do:. The
only difference from the method mentioned above is that, in the last method,
the doBlock is bound to the constraint monitors specified in the message, just
as it is done in the message Bubble >> handle:constraintMonitors:do:.

7.4 Different control modes

The control model of the transporter treated in Section 2.3 was based on an
error-free production system. All machines were initially in a defined reset
position.

Practical control systems must deal with machines that can be in an arbitrary
mitial position. For this purpose, many control programs are divided into at
least two parts. The first part can bring the controlled system into a well-
defined state. This is known as resetting the system. Resetting a system is not
only necessary initially, but can also occur during the production process in
order to recover from errors. When the controlled system is being reset by the
controlling system, the controlling system is said to operate in reset mode.

156 Chapter 7

The second part controls the production process, which is usually cyclic. In
this situation, the controlling system is operating in automatic mode.

It is desirable to recover from errors as efficiently as possible. The production
cycle can be temporarily suspended in order to correct the error, but after
correction of the error it is desirable to continue the production cycle from
where it was interrupted. To do this the retry strategy can be used, as treated
in the previous section. It is, however, not always possible to use the retry
strategy. For example, if the stack falls of the fork-lift and the products on the
trays are damaged, then it is useless to continue the transportation of the
damaged products to the furnace. In this case, the fork-lift truck should be
reset to its initial position, waiting at the traverse for a new stack. Resetting a
system can also be necessary if, for some reason, the controlling system is no
longer synchronized with the controlled system. This happens if the controlled
system is in a state which the controlling system does not expect. This kind of
error should also be handled as efficiently as possible. It is, for example, not
necessary to reset the processes that are stacking new trays onto the stack
when the fork-lift truck needs to be reset. So resetting should be done as
locally as possible.

Resetting a system could be implemented in such a way that the system
always returns to the same defined state. It is often more efficient to define
different reset positions for a given system. Consider the fork-lift truck, for
example. If an error occurs when the fork-lift truck is depositing the 'stack at
the furnace and a reset is necessary, it is a waste of time to make the fork-lift
truck go back to the traverse with a full stack. It makes sense in this situation
to define two reset positions: one with an empty fork at the traverse and a
second position, with a full stack on the fork, at the furnace.

Resetting a system is usually done under the control of an operator. The
operator may be necessary in order to remove damaged material from the
machine. He may also be the person to decide that resetting is the only way to
recover from an error.

The cyclic control of the production process is expressed in the simplest and
clearest way if the cycle always begins with the controlled system in a unique
initial state. Therefore, the automatic mode begins with an initialization stage
in which the system is brought from a number of defined reset states to a
unique, defined state. After this the main control loop can be entered.

The specification of controlling systems illustrated by a case 157

When the reset or automatic mode is terminated by an exception, the
controlling system enters the stand-by mode. In this mode, a command from
the operator is awaited to reset the system. After the system has been reset, an
operator command is awaited to enter automatic mode. In reality, the
switching from one mode to another is more complex with, for example, an
additional manual mode, but this does not lie within the scope of this thesis.

The methods required to implement the reset mode and automatic mode
include the following methods:

ControlBubble >> switchToResetMode
"Sent when going to reset mode."
killFromMMIMonitor protect: [self resetMode].

ControlBubble >> switchToAutomaticMode
“Sent when going to automatic mode."
killFromMMIMonitor protect: [self automaticMode}.

ControlBubble >> resetMode

“Sent when going to reset mode.

May be redefined by a subclass (copied to a subclass and then edited).
Any exception that is caught in the handler must be rejected. This is done
automatically so no response should be issued in the handier.”

self
handle: [:ex | "user defined exception handling"]
‘constraintMonitors: killMonitors
do: [self resetBody]

ControlBubble >> automaticMode

“Sent when going to automatic mode.
May be redefined by a subclass (copied to a subclass and then edited).
Any exception that is caught in the handler must be rejected. This js done
automatically so no response should be issued in the handler.”
self
handie: [:ex | "user defined exception handiing"]
constraintMonitors: killMonitors
do:
[self automaticinitialize.
[self automaticBody] forever “main control loop”]

The killFromMMIMonitor monitors whether a command is sent by the operator
by means of the MMI interface to bring the system into a different mode. If
such a command is received by the constraint monitor, it signals the constraint

158 Chapter 7

TransporterControlSystem model |

cti
Transporter

Transporter
Driver

Figure 7.5.1a Model of the controlling system of a transporter.

violation and the KillSignal is raised without an error message so that the reset
or automatic mode that was active is terminated.

The instance variable killMonitors is a constraintMonitorCollection. User
defined constraint monitors can be added to this collection to enable the reset
or automatic mode to be terminated and stand-by mode to be entered due to
constraint violations caused, for example, by the pressing of the emergency
button.

When a controlling processor is required to respond to commands from the
MMI to change its mode, its body should call the predefined method
modeBody as follows:

body
self modeBody

The specification of controlling systems illustrated by a case 159

The method medeBody takes care of the synchronization and communication
with the MMI and will eventually result in the methods resetMode or
automaticMode being sent to the controlling processor (self). The application
programmer only needs to define the methods resetBody, automaticinitialize
and automaticBody or to redefine the methods resetMode and automaticMode.

7.5 The control model

7.5.1 The structure of the model

The model is shown in Figures 7.5.1a to c¢. The controlled system is the
transport system treated in Section 2.3,
In Figure 7.5.1a the controlling system is shown. The CtriTransporter

CtriTransporter model |
i-sections-tray2 i-traverse- i-forkTurner-

i-emergency i-pusher- Femergency i-forkLifter- | i-emergency
i-holder- ruck- :

syncz syno—

sync1
. CtriEnd m
in CtrfT raverse
InllSngnaI- InllSlgnaI

klllSlgnaI- Idllsigna|

o-truck- .
mmi- o-pusher- o-holder- mmi- mmi-

o-forkLifter-

o-secti o-traverse-
lons-motor2 ravers o-forkTurner-

Emergency

mmi- Detector -emergency

Figure 7.5.1b Model of the CtriTransporter processor.

160 Chapter 7

processor is expanded. Its model is shown in Figure 7.5.1b. It consists of the
processors that control the transport machines by means of the actuators and
sensors. The other processors of Figure 7.5.1a are interface processors. The
MMI processor interfaces with the operator by means of the man-machine
interface. The TranporterDriver interfaces with the physical actuators and
sensors of the controlled machine and the Ctriinterface processor interfaces
with controlling processors of the system's environment.

CtriTruckExp model I
iHforkLifter- i-forkTumer- i-truckGlobal-
j-truck-
forkSafe i~emergency-' :
sync-
kiliSignal-in mmi-
killSignal-toTraverse o-truck-
‘ - killSignai- ,
IHorkTumer-

i-forkLifter-
i4truckGlobal- USignal- | i truckGlobal-

stopSignal-

"} SlaveFork
Turner

SlaveFork -
Lifter stopSignai.

mmi- mmi-
i-emergency- i-emergency-'
o-forkLifter- oforkTumer-

Figure 7.5.1c Model of the CtrlTruckExp processor.

The models shown in Figures 7.5.1b and 7.5.1c are similar to the models of
Figures 2.3.2b and 2.3.2¢c. The difference is that interactions are added for the
handling of constraint violations and for resetting the system.

The specification of controlling systems illustrated by a case 161

7.5.2 The definition of the constraint monitors

The classes of all controlling processors in the model inherit from the class
CtriTransporterAbstract. This means that they are a subclass of this class itself,
or of one of its subclasses. Therefore, all these processors share the same
initialization and they also inherit the instance variables killMonitor and
emergencyMonitor defined in the class CtriTranporterAbstract. The definition of
these constraint monitors is shown in Figure 7.5.2.

-~ CtriTransporterAbstract > initialization ----

initializeTasks
super initializeTasks. “initialize for superclasses”
killMonitor := ConstraintMonitor
for: self

receiveFrom: ’killSignal-in’

then: [:item | KillSignal raise].
emergencyMonitor ;= ConstraintMonitor

for: self

receive: true

from: 'i-emergency’

then: [:item | KillSignal raise].
killMonitors add: kililMonitor.
killMonitors add: emergencyMonitor

Figure 7.5.2 Definition of the constraint monitors shared by the controlling
processors.

The kilMonitor tries to receive the symbol #kill from the port killSignal-in. The
convention used is that a process which violates an active constraint of
another process sends the symbol #kill to the other process, which receives the
symbol through the port killSignal-in.

The emergencyMonitor monitors the pressing of the emergency button.

7.5.3 Constraint violations between CtriEndSection and
CtriTraverse

Figure 7.5.3 shows how the CtrIEndSection processor will receive a tray from
the previous section. When it has received the tray, it will be stacked at the
bottom of the stack. To control the stacking of the tray, CtrlEndSection
synchronizes with the processor CtriTraverse. This synchronization takes place
in the do block from lines 5 to 12 in the method CtrlEndSection >> stackTray.

162 Chapter 7

---——- ClrlEndSection > process control --------

body
self modeBody
automaticMode
1 self
2 handle:
3 [:ex|
4 self putOff: 'o-motor’.
5 self send: 'undefined’ continuousTo: 'sync-pusherState’]
6 constraintMonitors: killMonitors
7 do:
8 [self automaticinitialize.
9 [self automaticBody] forever]

automaticBody
1 self receiveTray.
2 self stackTray

automaticlnitialize
(self isOn: ‘i-tray’) ifTrue: [self stackTray]

stackTray
“State upon entry: pusher down"
1 self receiveFrom: 'sync-traverseAtPusher’.

2 self

3 handle: [:ex | self broadcast: #kill to: killSignal-toTraverse’']

4 do:

5 [self pusherUpAgainstStack.

6 self send: 'upAgainstStack’ continuousTo: 'sync-pusherState’.
7 self receiveFrom: 'sync-holderOpened’.

8 self pusherMaximalUp.

9 self send: 'maximalUp’ continuousTo: 'sync-pusherState’.
10 self receiveFrom: ’sync-holderClosed’.

11 self pusherDownStart.

12 self send: 'belowMiddle’ continuousTo: 'sync-pusherState’].

13 self pusherDownWait.
14 self send: 'down’ continuousTo: 'sync-pusherState’

Figure 7.5.3 Process description of CtrlEndSection.

This block could be prematurely terminated because of an exception
occurrence. Such a premature termination would be a violation of a constraint
of the synchronizing CtriTraverse processor. Therefore, the exception is
handled in line 3 and the #kill symbol is sent to the CtriTraverse processor,

The specification of controlling systems illustrated by a case 163

causing its killMonitor to signal, so that an exception will be raised in
CtriTraverse. If the cause of the exception occurrence in CtrlEndSection was,
for instance, an error occurring during execution of the method
pusherMaximalUp in line 8, then CtriTraverse would have been waiting for the
pusher to be maximally up in CtriTraverse >> stackTray line 8 (Figure 7.5.4).
At that point the exception due to the signaling of CtriTraverse's killMonitor
would be raised.

i CtriTraverse > process control ---------

body
self modeBody

automaticBody
"State upon entry: pusher down, traverse retracted”

(stackSize >= self maxStackSize) ifTrue: [self stackToTruck].
self stackTray

stackTray
"State upon entry: traverse at pusher”
1 self sendTo: 'synci-fraverseAtPusher’.

2 self

3 handie: [:ex | seif broadcast: #kill to: ’killSignal-toEndSection’]
4 do:

5 [self receive: ‘'upAgainstStack’ from: ’sync1-pusherState’.
6 self holderOpen.

7 self sendTo: 'sync1-holderOpened’.

8 self receive: ‘'maximalUp’ from: 'sync1-pusherState’.

9 self holderClose.

10 stackSize := stackSize + 1.

11 self sendTo: 'sync1-holderClosed'.

12 self receive: ‘belowMiddie’ from: *sync1-pusherState’]

Figure 7.5.4 Process description of CtriTraverse.

7.5.4 Interaction mechanisms used for the synchronization
between controlling processors

Two kinds of interaction mechanism are used for synchronization interactions
between controlling processors: the synchronous mechanism and the
continuous mechanism,

164 Chapter 7

An example of the synchronous interaction mechanism is the interaction
represented by self receiveFrom: 'sync-holderOpened’ in CtriEndSection >>
stackTray (Figure 7.5.3, line 7) and self sendTo: 'synci-holderOpened’ in
CtriTraverse >> stackTray (Figure 7.5.4, line 7). Both processors must execute
the send and receive actions for the interaction to take place.

An example of the continuous interaction mechanism is the interaction
represented by self send: 'upAgainstStack’ continuousTo: 'sync-pusherState’ in
CtrlEndSection >> stackTray (line 6) and self receive: 'upAgainstStack’ from:
'sync1-pusherState’ in CtriTraverse >> stackTray (line 5). A second example is
represented by self send: ’'down’ continuousTo: ’'sync-pusherState’ in
CtrlEndSection >> stackTray (Figure 7.5.3, line 14) and self receive: 'down’
from: ’sync1-pusherState’ in CtriTraverse >> stackToTruck (Figure 7.5.5, line
8). The traverse will only move back to the pusher when the pusher is
completely down. If the pusher has gone down without errors, the receive
action from CtriTraverse >> stackToTruck (line 8) will receive immediately. A
synchronous interaction mechanism is not appropriate in this case, because
the receive action in CtriTraverse could take place while a new tray is-entering
the end section (CtiEndSection >> automaticBody — Figure 7.5.3, line 1), and
so CtrlEndSection cannot execute a corresponding send action at that time.
Therefore, the continuous mechanism is used.

In CtrlEndSection >> automaticMode (Figure 7.5.3, line 5), the state of the
pusher is defined as 'undefined’ when the methods automatlclmtlallze or
automaticBody are terminated with an exception.

7.5.5 Synchronization between controlling processors without
using sensors

As was mentioned in Section 2.3.2, the synchronization between the
controlling processors is effected by means of interactions between them,
rather than by synchronizing directly on the state of the sensors. This last
option can lead to dangerous situations in the error recovery stage.

Consider, for example, the synchronization between CtrlEndSection >>
stackTray (line 7) and CtriTraverse >> stackTray (lines 6-7). The holder is
opened by CtriTraverse in line 6. In the following line, the processor
CtriTraverse is notified of the fully opened holder by means of an interaction.
Instead of waiting for this interaction to take place in CtriEndSection >>
stackTray (line 7), the CtrIEndSection processor could also have waited for the

The specification of controlling systems illustrated by a case 165

sensor, indicating a fully opened holder, to be activated. This can lead to
dangerous situations in the following way. Suppose that the pusher does not
open properly due to an error. In order to correct the error, it could be
necessary to open the pusher manually, thereby activating the sensor
indicating an open pusher. This sensor could also be accidentally activated
while trying to correct the error in another way. In both cases, the
CtrlEndSection processor would immediately continue after having detected
the activation of the sensor. This would cause the stack to be pushed upward
suddenly (line 8). This immediate activation of machine components during
the correction of errors in machine parts can lead to unexpected and
dangerous situations.

To prevent such situations, controlling processors synchronize directly with
each other by means of interactions. Each controlling processor controls the
sensors and actuators of certain machine components. These actuators and
sensors are not used by any other processor. If an error occurs during the
activation of a machine component, an error message is sent to the operator.
If the processor in which the error was detected cannot automatically correct
the error, it will wait for a signal from the operator, indicating that the
controlling processor may continue. Therefore, the activation of the sensors of
the machine part in question cannot cause a sudden activation of other
components.

Figure 7.5.1c appears to be inconsistent with the above-mentioned convention
of no more than one controlling processor for each component. For example,
the sensors from the forkLifter (i-forkLifter-) are connected to the processors
SlaveForkLifter and CtriTruck. This means that the status of the fork lifter
sensors is read by both processors. The sensors of the fork-lift truck,
however, are only used by the CtdTruck processor to determine the status of
the truck while resetting it, and not as a means of synchronization between
two controlling processors. The methods for resetting are not shown here
because they are too specific and do not serve to illustrate the use of
constraint monitors.

Checking the state of the controlled machines can also lead to situations where
the sensors of a machine component are used by several controlling
processors. This is done in order to check whether the state of the controlled
machines conforms to the state which is expected by the controlling system. If
the controlling system and the controlled machines would function correctly,
this would not be necessary. Errors, however, are always possible. So, in

166 Chapter 7

order to prevent errors from causing serious damage, the state of the
controlled machines can be checked.

7.5.6 Constraint violations between CtrlTraverse and CtriTruck

In the methods CtriTraverse >> stackToTruck and Ctrl'l'rhck >>
receiveStackFromTraverse (Figures 7.5.5 and 7.5.6), the stack is transported
from the traverse to the fork-lift,

--------- CttiTraverse > process control --—------

stackToTruck
"State upon entry: traverse at pusher”

1 self receiveFrom: 'sync2-truckResetAtTraverse’.

2 self ,

handle: [:ex | self broadcast: #kill to: 'killSignal-toTruck’]
4 do:

5 [self traverseToFork.

6 self sendTo: 'sync2-traverseAtFork’.

7

8

9

w

self receiveFrom; 'sync2-forkisUp’].
self receive: "down’ from: 'sync1-pusherState’.
self traverseToPusher

Figure 7.5.5 The method stackToTruck of the processor CtrlTraverse.

7.5.7 Constraint violations in the CtriTruckExp model

The processors of the CtriTruckExp model are hierarchically structured. The
processor CtriTruck receives the mode commands from the MMI. CtiTruck
coordinates the actions of the fork lifter, the fork tumer and the horizontal
movements of the truck itself. The two slave processors SlaveForkLifter and
SlaveForkTumer are used by the CtriTruck processor to realize parallelism in
the movements of the fork-lift truck. The slave processors receive a command
from their master CtriTruck, execute it, and send an acknowledge back to the
master when the command has been executed {see the method ControlBubble
>> slaveBody in Figure 7.5.7). The processors are termed slaves because the
master sends them commands which are exccuted by them. The slaves, in
turn, cannot order the master to do anything. They can only inform the master
of exception occurrences. The slaves SlaveForkTurner and SlaveForkLifter both
inherit the method slaveBody from the class ControlBubble. A simplified body

The specification of controlling systems illustrated by a case 167

emmmnnee CtriTruck > process control -----------

body
self modeBody

automaticMode
self
handle: [:ex | self broadcast: #kill to: ’killSignal-toSlaves’]
constraintMonitors: killMonitors
do:
[self automaticinitialize.
[self automaticBody] forever]

ADUp UN =

automaticBody

"State upon entry: truck at traverse, fork middle postion, turned to
traverse”

self receiveStackFromTraverse.
self transportStackToFurnace.
self giveStackToFumnace.

self goBackToTraverse

receiveStackFromTraverse
self sendTo: 'sync-truckResetAtTraverse'.
self
handle: [:ex | self broadcast: #kill to: ’kiliSignal-toTraverse’]
do:
[self receiveFrom: 'sync-traverseAtFork'.
self forkUp.
self sendTo: "sync-forkisUp’]

Figure 7.5.6 Process description of CtriTruck.

of slave processors has already been explained in Section 2.3.3. The complete
version is shown in Figure 7.5.7 in ControlBubble >> slaveBody.

If an exception occurs in the body of on¢ of the slaves (ControlBubble >>
slaveBody) in line 11 or 12, the do block (lines 11-12) will be terminated with
an exception and the master can no longer receive the awaited acknowledge.
This constraint violation should be signaled to the master. This is done by
sending a #kill symbol to the master in line 6 so that its killMonitor will signal
the constraint violation and an exception will be raised.

If an exception would cause the automaticBody (Figure 7.5.6 CtriTruck >>
automaticMode line 6) from the master to be terminated with an exception

168 Chapter 7

forkUp
1 self send: #forkUp to: 'forkLifter-command'.
2 self receiveFrom: ‘forkLifter-ack'

sesesuesee ControlBubble > process control -«-—ssmmm-

slaveBody
1 | command |
2 command := self receiveFrom: 'master-command'.

3 AnySignal

4 handle:

5 [ex]

6 self broadcast: #kill to: 'killSignal-toMaster',
7 self errorMessageFor; ex.

8 ex return]

9 do:

10 [killMonitors protect:

11 [self perform: command.

12 self sendTo: ‘'master-ack’]]

------ SlaveForkLifter > process control —-——--

body
self slaveBody

-—-—-— SlaveForkTurner > process contro/ ----—--—----

body
self slaveBody

Figure 7.5.7 The cooperation of the slaves with the master.

while the master was still waiting for an acknowledge from a slave (Figure
7.5.7 CtriTruck >> forkUp line 2, for example), the acknowledge from the slave
will no longer be received. The slave should be notified of this constraint
violation, otherwise it will remain blocked trying to send its acknowledge
This is done in CtriTruck >> automaticMode in line 2.

In CtiTruck >> forkUp, the CtiTruck processor starts waiting for the
acknowledge immediately after having sent the command. This need not
always be the case. In the case of more parallelism, the processor could also

The specification of controlling systems illustrated by a case 169

send a command to a slave and after that continue with other actions, finally
receiving the acknowledge at a completely different point in the program.

In CtrTruck >> automaticMode (line 2), the #kill symbol is sent to the port
killSignal-toSiaves. This port is connected with the ports killSignalin on all
slaves. Actually the master CtriTruck should only send a #kill symbol to a slave
of which a constraint has been violated. This would be a slave trying to send
an acknowledge to the master while the master will no longer receive it. In this
model the #kil symbol is sent to all the slaves, regardless of whether a
constraint has been violated or not. This approach leads to much simpler code
in the master because it need not know exactly which of the slave's
constraints, if any, have been violated. When a slave has finished a command
and is waiting for a new one, then its killMonitor will be disabled and it will
simply not receive the #kill symbol.

7.6 The retry strategy in a multi-process environment
7.6.1 Exceptions in a group with a master and slaves

In the retry strategy treated in Section 7.3, a sequential process detects errors
in the system components that it controls. An exception is raised if an error is
detected in such a component. If the RetrySignal is raised, the exception will
be handled by retrying the terminated control action. In a multi-process
environment, exception occurrences in a process need not only be a result of
errors in the system components controlled by the process itself. They can
also be a result of errors in other components.

Consider the fork-lift truck, for example. When it transports a stack from the
traverse to the furnace, three movements will take place in parallel when the
truck passes the sensor canTumToFumace (Figure 2.3.1). The truck rides to
the furnace, the fork-lift goes down and the fork turns to the furnace. Time-
outs are used in the control of all three movements. If a time-out should occur
in the control of any of these movements, the exact cause of the time-out
cannot be determined by the control system because not enough sensors are
available. Therefore, the control system should adopt a worst case scenario
and stop all three movements in the case of a single time-out. The truck is also
equipped with sensors to detect collisions. All three movements should also be
stopped if a collision is detected. Note that systems also exist in which an
error in a component controlled by a slave need not result in the stopping of
all components controlled by the other slaves and the master.

170 " Chapter 7

The requirements of Section 7.1 imply that it should be possible to restart all
interrupted control actions after correction of the error by the operator. The
fork-lift truck should only be reset in the case that the operator decides that it
is useless to restart the interrupted actions. v

It is evident that exceptions should only be raised in the processors that
control a component which is actually moving at the time of the error.
Suppose that the truck is moving and the fork is turning, but the fork-lift has
already reached the stable middle position and is no longer going down at the
time of the error. In this case, the exceptions need only be raised in the
SlaveForkTurner en CtriTruck processors in order to stop the movements of the
truck and fork.

It is concluded that a RetrySignal should be raised in a processor controlling
part of the fork-lift truck in any of the following three situations: first, when
an error occurs in the part of the fork-lift truck controlled by the processor
itself; second, when a collision is detected; and third, when an error occurs in
a part of the fork-lift truck controlled by another processor.

These three situations are taken care of in the following way. In the first case,
a time-out can be used to detect errors in the controlled component. The
sccond case is taken care of by the bumperMonitor which is a constraint
monitor present in all three processors. It monitors a collision of the truck.
The third case is taken care of by the stopMonitor. This is a constraint monitor
which is also used in all three processors. When enabled, it tries to receive the
symbol #stop from the port stopSignal-in (see Figure 7.5.1c). The réceipt of
that object indicates a constraint violation which causes the RetrySignal to be
raised. The #stop symbol is sent by any of the three processors in ‘which a
time-out is detected. It is sent to the other processors by means of a
" broadcaster processor which acts as an intermediate agent. ‘

7.6.2 The BroadCaster processor

The reason for using the broadcaster is that this makes the structure of the
model more elegant, especially when many slaves are involved. Without the
broadcaster, each processor from the collection represented by the master and
the slaves would have to be connected by means of interaction paths to all
other processors from the collection. With the broadcaster, the processors
from the collection need only be connected with the broadcaster. ‘

The specification of controlling systems illustrated by a case | 171

- BroadCaster > process confrol ---------mv

body
| item |
item ;= self receiveFrom: 'stopSignal-in’.
self send: item continuousTo: 'stopSignal-out’

Figure 7.6.1 Process description of BroadCaster.

The processor BroadCaster simply sends the received symbol to its port
stopSignal-out by means of a continuous interaction (see Figure 7.6.1). The
port stopSignal-out is connected to the ports stopSignalin on the three
controlling processors CtiTruck, SlaveForkLifter and SlaveForkTurner. The
processor BroadCaster is shown in Figure 7.5.1c as a small circle without
name and is connected with all three controlling processors in the same way.
After the broadcaster has sent the #stop symbol to its stopSignal-out port, any
enabled stopMonitors in the other two controlling processors will signal the
constraint violation by creating a pending exception. Note that the #stop
symbol will also be sent back to the controlling processor which originally
sent it. The stopMonitor will be disabled in this processor, so that the #stop
symbol will not be received and have no effect. The definition of the
stopMonitor is shown in Figure 7.6.2.

The #stop symbol is sent by means of a continuous interaction mecha.msm,
because a state is indicated to the other processors, and not an event: the
presence of the detected error must not only cause components to stop which
are actually moving, but must also prevent new movements from being started
before the error is corrected.

It should be noted that in this example the #stop symbol is sent to all other
controlling processors by means of the broadcaster. If the #stop symbol
- should not be sent to all other processors, this can of course be achieved by a
different structure of the interaction paths used to connect the controlling
processors and the broadcaster.

7.6.3 The definition of constraint monitors for the retry strategy
The definition of the constraint monitors used for the retry strategy in this

example is shown in Figure 7.6.2. The classes of the three processors
controlling the fork-lift truck all inhent from the class CtriTruckAbstract.

172 Chapter 7

e ClriTruckAbstract > initialization -----—

initializeTasks
super initialize Tasks.
retryMonitors := ConstraintMonitorCollection new.
stopMonitor := ConstraintMonitor

for: self

receive; #stop

from: 'stopSignal-in’

then: [:item | RetrySignal raise].
bumperMonitor ;= ConstraintMonitor

for: self

receive: true

from: ’iHruckGlobal-bumper’

then: [:item | RetrySignal raiseErrorString: 'activation of truck bumper’].
retryMonitors add: stopMonitor.
retryMonitors add: bumperMonitor

Figure 7.6.2 The definition of constraint monitors for the retry strategy.

7.6.4 An illustration of the retry strategy lised in SlaveForkLifter

The method SlaveForkLifter >> forkUp is shown in Figure 7.6.3. It has been
provided with additional monitors to implement the retry strategy in‘a multi-
process environment.

In the case of a time-out, the #stop symbol is sent by the invocation of the
method sendStop in line 15. After correction of the error, the operator will
give a command via the MMI to restart the interrupted methods. Before an
interrupted method can be restarted, the effect of the previously sent stop
“command must first be undone, otherwise the stopMonitor would immediately
signal again when it was enabled. The stop command is undone by means of
the invocation of the method clearStop in line 5. The definition of the methods
sendStop and clearStop is given in Figure 7.6.4. ‘

The stop command is cleared in the restart block in Figure 7.6.3, line 5.
Under certain circumstances, however, this line will not be executed. Suppose
that the operator does not want to restart the interrupted actions but instead
wants to bring the processes to the stand-by mode. In that case, the stand-by
command from the MMI will cause the kilFromMMIMonitor to signal by
creating a pending exception. This pending exception would be raised at the
place of the blocking statement of line 4. Therefore, the automatic mode
would be terminated before the stop command could be cleared. To make sure

The specification of controlling systems illustrated by a case 173

-------- SlaveForkLifter > machine i0 ~ww--—

forkUp

1 self

2 handle: [:ex | self putOff: 'o-forkLifter-power’]
3 restart; ’

4 [self restartMessage: fork lifter up’.

5 self clearStop]

] constraintMonitors: retryMonitors

7 do:

8 [self putOn: 'o-forkLifter-up’.

9 self putOn: 'o-forkLifter-power’.

10 self

11 receive: true

12 from: 'i-forkLifter-isUp’

13 within: 6 seconds

14 ifTimedOut:

15 [self sendStop.

16 RetrySignal raiseErrorString: ‘time-out on fork up’].
17 self putOff: 'o-forkLifter-power’]

Figure 7.6.3 The method forkUp with additional constraint monitors for
the retry strategy.

that the stop command is also cleared in such situations, the methods
ControlBubble >> slaveBody and CtriTruck >> automaticMode are changed in
such a way that the stop command is also cleared by the exception handlers of
these methods. Figure 7.6.5 shows the new method CtiTruck >>
automaticMode.

- CtriTruckAbstract > process control -------

sendStop
self send: #stop to: 'stopSignal-out’
clearStop
(self receiveFrom: 'stopSignal-in’) == #stop
ifTrue:

[self send: #ok to: 'stopSignal-out’.
self receive: #ok from: 'stopSignal-in’]

Figure 7.6.4 Methods for stopping other processes and enabling their
confinuation.

174 Chapter 7

weeeneree CtHiTrUCK > process control

automaticMode
self

handle:
[:ex |
self broadcast: #kill to: 'kiliSignal-toSlaves'.
self clearStop]

constraintMonitors: killMonitors

do:
[self automaticinitialize.
[self automaticBody] forever]

Figure 7.6.5 The clearing of the stop command when the automatic mode is
terminated.

7.6.5 An illustration of the retry strategy used in CtriTruck

The use of the retry strategy for the control of the truck itself is somewhat
more complicated than the retry strategy for the control of the fork-lift. This is
due to the fact that the control of the truck, while it is going from the traverse
to the furnace, is divided into two parts, as shown in Figure 7.6.6.
In the first part, the truck moves from the traverse to the turning point at the
traverse. At that point, the fork-lift should start going down to th¢ middle
position and the fork should start to turn to the furnace. The commands to
make the fork go down and tum are given in CtiTruck >>
transportStackToFumace, lines 2-3. The commands are given in a block
because they should be seen at the level of the method CtdTruck >>
transportStackToFumace. At this level the coordination of the different
“movements of the fork-lift truck is determined. The actions should, however,
be executed in the method CtriTruck >> toTurmnPointAtTraverseDo:, because

~----- CtrlTruck > process control --—-—-

transportStackToFumace

1 self toTumPointAtTraverseDo:

2 [self send: #forkDownToMiddle immediateTo: *forkLifter-command'.
3 self send: #flumToFumnace immediateTo: forkTurner-command’].
‘4 self continueToFurnace. '

5 self receiveFrom: 'forkLifter-ack’.

6 self receiveFrom: ‘forkTurner-ack’

Figure 7.6.6 Transportation of the stack from the traverse to the furnace.

The specification of controlling systems illustrated by a case 175

errors occurring in the two send actions should result in the stopping of the
truck and should therefore be caught by the handler specified in the method
CtriTruck >> toTurnPointAtTraverseDo:. The truck does not stop at the turning
point under normal operation.

In the second part, the truck continues to go to the furnace.

Figures 7.6.7a-b show the two methods for the control of the truck
movements. They make use of the monitorCollection retryMonitors specified in
Figure 7.6.2. This collection contains the stopMonitor and the bumperMonitor.
These two monitors will be referred to as the retry monitors.

Strictly speaking, the retry strategy should not be specified in the way shown
in Figures 7.6.7a-b. The reason for this is that the motor of the truck remains
switched on at the tuming point, so the retry monitors should also remain
enabled. In fact, the retry monitors should be enabled when the motor of the
truck is on and be disabled when the motor is off. By separately binding the
retry monitors in both methods, the retry monitors are temporarily disabled
when the first method is terminated.

wmmmwme CEHITIUCK > mMAching [0 «wemeem

toTumPointAtTraverseDo: endBlock
*motor remains on when the do block is terminated normaily”

self
handle: [:ex | self truckStop]
restart:
[self restartMessage: "truck to turning position at traverse’.
self clearStop]
constraintMonitors: retryMonitors
do:
[self putOn: ‘o-truck-toFumace’'.
self putOn: 'o-truck-power’,
self
receive: true
from: ’i-truck-canTurnToFurnace’
within: 10 seconds
ifTimedOut:
[self sendStop.
RetrySignal raiseEmrorString:
‘time-out moving to turning position at traverse’].
endBlock vaiue]

Figure 7.6.7a The control of the truck using the retry strategy with
constraint monitors.

176 Chapter 7

Nevertheless, the control of the truck is split into two methods, because in this
way exceptions can be elegantly and locally handled in each method. The
temporary disabling of the retry monitors has no undesirable effects.

weneeene CtATRUCK > machine i0 ~me—-—

continueToFurnace
"motor shoufd be on upon activation of this method”

self
handle: [:ex | self truckStop]
restart:
[self restartMessage: "truck to furnace’.
self clearStop.
self putOn: ’o-truck-power’]
constraintMonitors: retryMonitors
do:
[self
receive: true
- from: "i-truck-atFumace’
within: 20 seconds
ifTimedOut:
[self sendStop.
RetrySignal raiseEmorString:
"time-out on truck-at-furnace detector’].
self putOff: 'o-truck-power’]

Figure 7.6.7b The control of the truck using the retry strategy with
constraint monitors.

Chapter 8
Conclusions

8.1 Evaluation

Background and existing mechanisms

The handling of errors and exceptions is an important aspect in the
development of industrial control systems. The amount of code needed for
error handling is often several times greater than the amount needed for the
control under error-free circumstances. Considerable progress has been made
in the field of mechanisms for the handling of internal exceptions. We have
shown that these mechanisms are important for the creation of robust
programs. They are, however, not sufficient for controlling systems, because
these systems require an additional mechanism for the handling of constraint
violations. Several proposals and existing mechanisms for the handling of
constraint violations are known from the literature. These mechanisms have
been evaluated as either offering a functionality which is too restricted for
controlling systems, as offering an incorrect or undesirable functionality, or as
inadequate in other ways.

A clear definition of concepts

The inadequacy of the mechanisms which have been evaluated is ascribed to
the absence of clearly defined concepts and the absence of a sound theory
describing the essence of exception handling in controlling systems or, more
generally, in multi-process environments. Many definitions found in the
literature are imprecise or incorrect, or contain undesirable subjective
elements. In order to arrive at a new theory and new concepts, the most
important terms relating to errors and exceptions are accurately defined. The
relationship between exceptions and errors has also been clarified. The
definitions and relationships given here result in a better understanding of the
terminology of errors, exceptions and the relationships between them.

178 Chapter 8

New concepts to describe the essence of the handling of external
exceptions in controlling systems

An important contribution of this study is the introduction of the new. concepts
'constraint of an operation' and 'constraint violation', which are essential in
order to determine the requirements of a mechanism for the handling of
external exceptions in controlling systems. A constraint can be compound, in
which case it consists of (sub-)constraints. :

The constraints of an operation are specific for the operation itself and thus
independent of the point in the program at which the operation is invoked.
This point of view is essential for the development of modular subprograms.

The new concepts contribute to a better understanding of the way exceptions
should be handled in controlling systems or multi-process environments. One
of the aspects that is made clear is that there is a restriction for the handling
of external exceptions caused by the violation of the constraints of an
operation: a handler that catches such an exception, while the operation of
which a constraint was violated is not yet terminated, must terminate by
propagating the exception.

A new mechanism for the handling of constraint violations

The newly developed mechanism for the handling of constraint violations in
controlling systems makes it possible to specify and monitor the constraints of
each operation independently of other already invoked operations. This is a
quality seldom found in programming languages or systems. At the same time
-the mechanism is well integrated with the advanced mechanisms for the
handling of intemal exceptions. The integration is achieved with the addition
of only a single programming construct, namely a constraint monitor. This
makes the resultant mechanism easy to use and to understand. The required
binding of constraint monitors to operations or blocks enforces the use of
constraint monitors in a structured way. A constraint monitor bound to a
single operation can also be used to specify a constraint which is common to
several operations, which will, in many cases, simplify programs.

Constraint violations will cause pending exceptions to be created. These
pending exceptions will be raised at interaction points, where the!internal
invanants of the process can be expected to hold. The choice not 'to raise

Conclusions 179

pending exceptions in exception handlers makes it possible to safely restore
invariants in exception handlers. Proposals that suggest the immediate raising
of external exceptions will lead to time-dependent run-time errors due to
violations of the internal invariants of a process. These errors are very
dangerous because they are practically impossible to find by testing and can
occur completely unexpectedly.

Several constraints can be violated at the same time by concurrently executing
processes. This can result in more than one pending exception in a process.
Several criteria for the selection of a pending exception have been evaluated.
The choice is made to select the pending exception belonging to the constraint
monitor which was enabled first. The other pending exceptions are discarded.
This leads to the desirable discarding of an exception from a constraint
monitor activated at a low (or innermost) level, by an exception from a
constraint monitor activated at a high (or outermost) level. Constraint
monitors can always be checked to determine whether their pending exception
has been discarded. o

The binding of a constraint monitor to a block which is invoked by another
block bound to the same constraint monitor is essentially a non-operation.
This design choice is conceptually simple and retains the desired functionality
of constraint monitors.

Implementation of constraint monitors in Process Calculus

The implementation of the mechanism in Process Calculus is relatively
straightforward. An important aspect that facilitates the integration of the
mechanism is the powerful functionality of Smalltalk blocks.

A constraint monitor has been added to Process Calculus as a simple and
relatively orthogonal primitive. Constraint monitors will try to receive an
object from a port. This can be any port of a processor and there are no
restrictions about the way objects are sent to the port. Constraint monitors are
also well integrated with the existing Smalltalk exception handling
mechanism. Any exception can, in principle, be raised by a constraint
monitor. The mechanism is not orthogonal with respect to the fact that the
receive action executed by a constraint monitor is specified slightly differently
from the normal receive actions, because it is used to initialize the constraint
monitor.

180 Chapter 8

Although all send primitives can be used to indicate constraint violations, the
broadcast primitive has been added to Process Calculus for the signaling of
constraint violations to other processes. The use of this primitive is important
in order to keep different processes, which interact by means of constraint
violations, largely independent of each other and in order to achieve good
modularity.

The resume response as an inadequate response

It is recommended that the resume response is not used, since its use easily
leads to unstructured programs which are hard to understand. The use of the
resume response is even more problematic in a multi-process environment.
This is because the resume response can be used to enter critical regions
containing semaphores, or to enter blocks bound to constraint monitors,
without performing the necessary operations on the semaphores or constraint
monitors.

A case and the retry strategy

The treatment of a case concerning the control of a transport system has
shown the power and simplicity of constraint monitors for the handling of
exceptions in control systems. The retry strategy has been developed as a
simple strategy which can be used to deal locally with errors in an efficient
and safe way. It usually implies the help of an operator. After correction of
the error, the interrupted processes can continue by re-executing the
interrupted control actions. In the case of errors that cannot be corrected
locally, the use of constraint monitors makes it easy to keep communicating
processes in a consistent state.

8.2 Recommendations for future research

The newly-developed mechanism has only been implemented in - Process
Calculus. The implementation in other programming languages should be
studied. Also, more experience is needed with the mechanism and Process
Calculus in practical complex control systems.

Two other fields for further research follow from the restrictions on the scope
of this study as laid down in Section 1.2.

Conclusions v 181

First, the specific characteristics of other programming languages in relation
to the handling of exceptions in a multi-process environment should be
investigated. An important aspect in this context is the exceptional termination
of processes which are created dynamically in parallel constructs. Another
aspect to be studied is the way in which exceptions should be handled if they
occur during the execution of an interaction, such as during a rendezvous.
Second, the differences between continuous and discrete event systems in
respect of exception handling need to be investigated.

182 Chapter 8

References

Adamo, J.,

Exception handling in the C-NET parallel programming language,

Proc. North American Transputer Users Group, 1989, pp. 283-306, I10S,
Amsterdam,

Adamo,],

Exception handling for a communicating-sequential-process-based extension
of C++,

Concurrency, February 1991, pp. 15-41.

Antonelli, C.J,,
Exception handling in a multi-context environment,
Dissertation, University of Michigan, 1989.

Atkins, M.S
The role of exception mechanisms in software system design,
Dissertation, University of British Colombia, 1985.

Bell Telephone Laboratories,
Unix programmer's manual, second edition, volume 2,
Holt, Rinehart and Winston, New York, 1983, pp. 315-318.

Bendel, A. and Mellor, P., editors of
Software reliability: State of the art report,
Pergamon, Oxford, 1986.

Booch, G.,
Object oriented design,
Benjamin/Cummings, Redwood City, California, 1991.

Bron, C. and Dijkstra, E.J.,
Report on the programming language Modular Pascal,
Groningen University, Groningen, 1987a. ‘

184

Bron, C. and Dijkstra, E.J.,
On the handling of exceptional situations in a multi-process environment,
Private communication, 1987b.

Bron, C. and Fokkinga, M.M.,

A proposal for dealing with abnormal termination of programs,
Report 150,

Twente University of Technology, Dept. Inf., Enschede, 1976.

Brynjolfsson, S. and Amstrom, A,

Error detection and recovery in flexible assembly systems,

Int. Journal of Advanced Manufacturing Technology, No. 5, 1990, pp. 112-
125.

Christian, F.,
Exception handling and software fault tolerance,
IEEE Transactions on Computers, June 1982, pp. 531-539.

Christian, F.,
Correct and robust programs,
IEEE Transactions on Software Engineering, March 1984, pp. 163- 174

Cox, 1.]. and Gehani, NH.,
Exception handling in robotics,
Computer, March 1989, pp. 43-49.

Digital Equipment Corporation,
VAXELN Pascal language reference manual, part 2; programming,
- Digital Equipment Corporation, Massachusetts, 1986.

Dijkstra, EW |

Cooperating Sequential Processes,
Technical Report EWD - 123,

Eindhoven University of Technology, 1965.
Reprinted in Genuys F. (ed.),
Programming languages,

Academic Services, New York, 1968.

References 185

- Dony, C.,
Exception handling and object-oriented programming: towards a synthesis,
Proc. OOPSLA/ECOOP '90, pp. 322-330, ACM, New York.

Fairley, R.E,,
Software engineering concepts,
McGraw-Hill, New York, 1985.

Feder, C.,
Ausnahmebehandlung in objektorientierten Programmiersprachen,
Springer-Verlag, Berlin, 1990.

Gerber, R. and Lee, 1.,
A layered approach to automating the verification of real-time systenis,
IEEE Transactions on Software Engineering, September 1992, pp. 768-771.

Gini, M. and Smith, R.,

Reliable real-time robot operation employing intelligent forward recovery,
Technical Report TR 85-30,

University of Minnesota, 1985.

Goldberg, A. and Robson, D.,
Smalltalk-80, The language,
Addison Wesley, Reading MA, 1989,

Goodenough,] B.,
Exception handling: Issues and a proposed notation,
Communications of the ACM, December 1975, pp. 683-696.

Hoare, C. AR,
An axiomatic basis for computer programming,
Communications of the ACM, October 1969, pp. 576-583.

Hoare, C AR,
Communicating Sequential Processes,
Communications of the ACM, August 1978, pp. 666-677.

186

Homing, J.J. et al,,

A program structure for error detection and recovery,
Lecture Notes in Computer Science 16, pp 171-187,
Spninger Verlag, Berlin, 1974.

Horowitz, E.,
Fundamentals of programming languages,
Spninger-Verlag, Berlin-Heidelberg, 1983.

1EC 50.
Intemational Electrotechnical Vocabulary (IEV),
CEI IEC, 1975, Chapter 351.

IEC 848,

Intemnational Standard IEC 848: Preparation of function charts for control
systems,

CEI IEC, Geneva, 1988.

Ichbiah, J.D. et al,,
Preliminary Ada reference manual,
SIGPLAN Notices, June 1979.

Ichbiah, J.D. et al.,
Reference manual for the Ada programming language,
ANSI/MIL-STD-1815A, 1983.

Issamy, V.,

Design and implementation of an exception handling mechanism for
 communicating sequential processes,

Proc. CONPAR 90-VAPP IV, 1990, pp. 604-615.

Issarny, V. and Banitre, J.P.,

An exception handling mechamsm for communicating sequential processes
and its verification rules,

Proc. Computer Systems and Software Engineering (COMPEURO) 1990, pp.
550-551, IEEE, Los Alamitos.

References 187

Issarny, V.,

An exception handling model for parallel programming and its verification,
Sofware Engineering Notes, Proc. ACM SIGSOFT '91 Conference on
Software for Critical Systems, December 1991, pp. 92-100.

Kernighan, B.W. and Richie, D.M.,
The C programming language,
Prentice Hall, Englewood Cliffs, 1978,

Kilgerman, E. and Stoyenko, D.,
Real-time Euclid: A language for reliable real-time systems,
IEEE Transactions on Software Engineering, September 1986, pp. 941-949.

Knudsen, J.L.,
Better exception handling in block structured systems,
IEEE Software, May 1987, pp. 40-49,

Lapne, J.C.,

Dependability: a unifying concept for reliable computing and fault tolerance,
in Dependability of Resilient computers ed. T. Anderson,

BSP Professional Books, Oxford, 1989.

Lapnie, J.C. (ed),
Dependability: basic concepts and terminology,
Springer-Verlag, Vienna, 1992.

Lacoutre, S.,
Exceptions in Guide, an object oriented language for distnbuted applications,
Proc. ECOOP 1991, pp. 268-287, Springer-Verlag, Berlin.

Lee, P.A. and Anderson, T,
Fault tolerance: principles and practice,
Springer-Verlag, Vienna, 1990.

Levin, R,
Program structures for exceptional condition handling,
Ph.D. thesis, Camegie-Mellon University, June 1977.

188

Lieber, G.,

Erweitertes CSP-Modell zur Programmierung Paralleler Prozesse (in
German),

(Extended CSP-model for the programming of parallel processes),
Dissertation, Technische Universitat Wien, 1989,

Liskov, B.H. and Snyder, A.,
Exception handling in CLU,
IEEE Transactions on Software Engineering, November 1979, pp. 546-558.

Melliar-Smith, P.M. and Randell, B.,

Software reliability: the role of programmed exception handling,
Proc. ACM Conf. on Language Design for Reliable Software,
March 1977, pp. 95-100.

Meyer, B.,
Object oriented software construction,
Prentice Hall, New York, 1989a.

Meyer, G.R. and Hertzberger, L.O.,

Off-line programming of exception handling strategies, o
Proc. IFAC Robot Control '88 (SYROCO '88), pp. 431436, Pergamon Press
Oxford. '

Meyer, G.R. and Hertzberger, L.O.,
Exception handling system for autonomous robots based on PES,
Proc. Intelligent Autonomous Systems 2, 1989b, Vol. 1, pp. 65-77.

‘Overwater, R., ,
Processes and interactions, an approach to the modelling of industrial
systems, ’
Dissertation, Eindhoven University of Technology, 1987.

ParcPlace,
Objectworks, advanced user's guide, Smalltalk-80 Version 2.5,
ParcPlace Systems, Mountain View, California, 1990.

References 189

Randell, B.,

System structure for software fault tolerance,

Current Trends in Programming Methodology, pp. 195-219,
Prentice Hall, Englewood Cliffs, 1977.

Randell, B., Lee, P.A. and Treleaven, P.C.,
Reliability issues in computing system design, -
Computing Surveys, June 1978, pp. 123-165.

Redford, AH.,
Error recovery in assembly by robot,
Advanced Manufacturing Engineering, Vol. 1, January 1989, pp 109-112.

Rossingh, T.J. and Rooda, J.E.,
ROSKIT, a real-time operating system kit,
Research report, Technical University Twente, 1985.

Rooda, J.E., «
Discrete event simulation for the design and operation of logistics systems,
International Logistics Congress, San Fransisco, 1981,

Rooda, J.E.,
Procescalculus: systemen, modellen en formele talen (in Dutch),
12 Werktuigbouwkunde, August 1991, pp. 36-39.

Rooda, J.E.,
Procescalculus: definities en begrippen (in Dutch),
12 Werktuigbouwkunde, October 1991, pp. 35-40.

Srinivas, S.,
Error recovery in robots through failure reason analysis,
Proc. National Computer Conference, 1978, pp. 275-283.

Sun Microsystems,
Sun OS reference manual, Volume 2,
Sun Microsystems, Mountain View, 1990.

Szalas, A. and Szczepanska, D.,
Exception handling in parallel computations,
Sigplan Notices, October 1985, pp. 95-104.

190

Tennent, R.D.,

Principles of programming languages,
Prentice Hall International, Englewood Cliffs, 1981.

Watt, D.A.,
Programming language concepts and paradigms,
Prentice Hall, London, 1990.

Wirth, N.,
Programming in Modula-2,
3rd edition, Springer-Verlag, Berlin, 1985.

Wortmann, A M.,
Modelling and simulation of industrial systems,
Dissertation, Eindhoven University of Technology, 1991.

Young, S.J.,
Real time languages: design and development,
Ellis Horwood Ltd., Chichester, 1982.

Appendix A
An introduction to Smalltalk-80

This appendix gives an introduction to the aspects of the Smalltalk-80
programming environment used in the example programs in this thesis. The
text is not meant to be a general introduction to Smalltalk-80. For this the
reader is referred to one of the many textbooks on Smalltalk, such as
[Goldberg and Robson, 1989]. This introduction concentrates on the
Smalltalk programming language; the interactive programming environment is
not treated. ,

Classes and Instances

The Smalltalk-80 programming language is a true object-oriented
programming language. Every object is an instance of a certain class. A class
is comparable to a module implementing an abstract data type, as in Modula-
2 [Wirth, 1985] or other Pascal-like languages that support modules. A class
defines an abstract data type, together with some allowed operations on that
data type.

The instance variables of the class define the internal representation, or
private memory, of the data type. The definition of the instance variables of a
class is comparable with a record type definition of an abstract data type in a
module of Modula-2-like languages. All instances of a class have the same
instance variables. The values of the instance variables, however, are private
and usually differ between instances.

The operations that are defined in the class are called the methods of the class.
They can be performed on the instances of the class and are comparable to the
procedures implementing the functionality of an abstract data type of Modula-
2 like languages.

192 Appendix A

Messages and Methods

Each object can access only its own instance variables and the instance
variables of its superclasses: The object interfaces with the outside world by
means of messages that can be sent to the object. Messages are sent in
message expressions. A message expression consists of a receiver of the
message and the message itself.

An example is self receive: true from: ‘i-forkLifter-isUp’. In this expression, self
is the receiver. The receiver is the object to which the message receive: true
from: "i-forkLifter-isUp’ is sent. The message can have zero or more arguments.
Arguments in messages are placed immediately after a colon (:). In this case,
there are two actual arguments: the boolean object true and the string
"i-forkLifter-isUp’. The message selector is the message without the arguments.
In this case receive:from:. The message selector, together with the receiver of
the message, defines which method is invoked as a result of the evaluation of
the message expression. The method that will be invoked is the method in the
class of the receiver that has the same message selector. If, in the example, the
class of the receiver self is the class Bubble, then the method receive: object
from: portName as defined in the class Bubble would be invoked. The formal
arguments object and portName would be set to the value of the actual
arguments true and 'i-forkLifter-isUp’. ‘

Another example is the message expression KiliSignal raise. In this case the
receiver is KillSignal. The message is raise and the message selector is also
raise, because there are no arguments. KillSignal is a signal object. It is an
instance of class Signal. Therefore, the message expression will result in the
invocation of the method raise in the class Signal.

The variable self is a pseudo-variable. It can only be used in method
definitions. No values can be assigned to pseudo-variables in assignment
statements. When a certain method is executing, self refers to the receiver of
the message which resulted in the execution of the method. So, the message
expression KillSignal raise will cause the method raise in the class Signal to be
executed, while the value of the pseudo-variable self, which can be used in the
method raise, will refer to KillSignal.

An introduction to Smalltaltk-80 193

Inheritance

Every class (except Object) has one (direct) superclass. A class inherits the
instance variables and the methods from its superclasses. The superclasses of
a class are the class's direct superclass, together with the superclasses of the
superclass's direct superclass. A class can have several subclasses. In this
way, a tree-like class structure is created where the class Object is at the root
of the tree.

A superclass contains the instance variables and methods that are common to
all of its subclasses. This approach makes it easy to reuse code. Apart from
inheriting already defined methods from superclasses, methods can also be
redefined.

When a message is sent to an object, the search for the method to be invoked
starts in the object's class. If a corresponding method cannot be found there,
the search is continued in the class's superclass and recursively in all of the
other superclasses. If the method is not found in any of the superclasses an
error results. In this case, the object is said not to understand the message.

The pseudo-variable super in a method refers to the receiver of the message
which resulted in the invocation of the method. This is analogous to the
meaning of the pseudo-variable self. The difference is that, when the pseudo-
variable super is used as the receiver of a message, the search for the method
to be invoked starts in the superclass of the class of the receiver of the
message. An example of this is when the message expression super
initialize Tasks is found in a method initializeTasks. In this case, self cannot be
used because this would result in endless recursion.

Variables

Five kinds of variable have been used in this thesis: globals, class variables,
instance variables, arguments, and temporary variables.

Global variables are accessible throughout the system. They are written with
a capital initial letter. All classes can be referred to by means of global
variables.

194 Appendix A

Class variables are a kind of global variables, but they have a more restricted
scope. Class variables also have an initial capital letter. The signals KillSignat
and AnySignal that are used in this thesis are class variables.

There are two kinds of argument: method arguments and block arguments.
Method arguments have already been treated in this appendix. Block
arguments are treated in the next section.

Temporary variables are declared between bars, as in | temp1 temp2 |. They
are usually declared at the beginning of a method and exist only during the
invocation of the method.

Smalltalk is an untyped language. Therefore vanables are untyped all
variables can refer to objects of an arbitrary class.

Blocks

A block represents a deferred sequence of actions. A block expression
consists of a sequence of expressions separated by periods and delimited by
square brackets. Block expressions can be seen as in-line function definitions.
Blocks can be assigned to variables. Their expressions will only be executed
when the message value is sent to the block.

A block can have one or more arguments. The formal arguments of a block
are listed immediately after the opening bracket of the block and are prefixed
by a colon. The argument declaration is terminated with the symbol '|'. Actual
arguments are provided to a block by sending a block the message value:
- actualArgument or value: argument1 value: argument2 etc.

Consider the example given in Figure A.1. The time-out block acts as last
argument to the method receive:from:within:ifTimedOut:. If a time-out occurs,

then the time-out block will be executed by sending it the message value. This

is done by the implementation of the method receive:from:within:ifTimedOut:, so

it is not seen here. The exception handler is also a block. The exception

handler block will only be executed when an exception is caught. The

Smalltalk exception handling mechanism will set the formal argument exc of
the exception handler block to the exception object which was created when

the KillSignal was raised in the time-out block.

An introduction to Smalltalk-80 195

ForkLifterCtrl >> forkUp
AnySignal
handle:
[:exc |
self putOff: 'o-forkiifter-power'.
exc reject]
do:
[self putOn: 'o-forklifter-up’.
self putOn: *o-forklifter-power'.
self
receive; true
from: "i-forkLifter-isUp’
within: 6 seconds
ifTimedOut: [KillSignal raise].
self putOff; 'o-forkiifter-power’]

Figure A.1 An example of the use of blocks.

Control Structures

Control structures are not a part of the language definition in Smalltalk-80.
Selection and iteration are implemented using the classes Boolean with
subclasses True and False and a class the instances of which are blocks. The
predefined pseudo-variables true and false are the only instances of the
respective classes True and False. Boolean expressions yield either the true or
false object. Selection is achieved by means of the methods ifTrue:, ifFalse:,
and ifTrue:ifFalse:. The arguments of these methods are blocks that are only
executed in the case of the corresponding boolean receiver. For instance the
message

(3 > 2) ifFalse: [..]
is analogous to

true ifFaise: [...].
Therefore, the block will not be executed. The message

(1 == 2) ifTrue: ["block A" itFalse: ["block B"]

will result in the execution of block B.

196 A ppendix A

Some final syntactic issues

e Every Smalltalk method returns an object, even when no explicit return
statement is specified. In this case, the method returns the receiver (self)
of the message expression which resulted in the method invocation.
Frequently, the returned object is not used. An explicit return statement is
constructed by prefixing an expression with an up arrow: 't'. For
example, ’error’.

o The expression or statement separator in Smalltalk is the period.

. Strings are created by enclosing a sequence of characters by single quotes
as in: "an example string’ or 'i-forkLifter-isUp’.

. Symbols can be constructed by prefixing identifiers with the charactcr #
as in #forkUp. Symbols are umque objects in the systems, strings are not.

e The two most important parsing rules are the following;

Parsing is normally done from left to nght. For example self
maxStackSize negated evaluates as (self maxStackSize) negated.

Messages without arguments have precedence over messages with
arguments: For example self send: "ok’ to: self emorPort is evaluated as self
send: 'ok’ to: (self errorPort).

Appendix B
The semantics of the Smalltalk methods
used in the program examples

This appendix gives a description of the most important Smalltalk methods
that are used in the programs contained in this thesis. The methods from the
Smalltalk system itself are given in Section B.1. Additional methods that
support modeling using Process Calculus are given in Section B.2, and
additions for exception handling in a Process Calculus environment are given
in Section B.3. The methods that are used and explained in only one place in
this thesis are not given here. For the methods that have already been properly
defined in this thesis only a cross-reference to the section of the definition is
given.

B.1 Methods from the Smalltalk system

--eeee Signal > handling ~-----

handle: handlerBlock do: doBlock
“Establish handlerBlock as an exception handler for the doBlock which will
catch the exceptions represented by the signal (the receiver of the message).
Explained in Section 4.5.*

raise
"Raise the exception represented by the signal (the receiver). The result of
this is the creation of an exception object (an instance of class Exception). A
corresponding handler will be sought to catch the exception.”

raiseErrorString: errorString
"Raise the exception represented by the signal. The errorString will be
available in the created exception object (see Exception >> errorStnng).”

198 Appendix B

-—-— SignalCollection > handling -—------

handie: handlerBlock do: doBlock
*Establish handlerBlock as an exception handler for the doBlock which will
catch the exceptions represented by the signals in the signal collection (the
receiver).”

—-—- Exception > handler responses ——-

“The messages in this protocol are messages that can be sent to the
exception object which acts as argument of the handler block of a handle.do:
expression.”

reject
“The current exception is propagated to the invoker of the handle: do
expression.”

restart
*Restart the handle:do: expression.”

return
*This is the default response from an exception handler. The handle:do: is
terminated. Execution continues with the expression following the handle:do:
statement.”

errorString
“Return the error string that was given as argument to the signal which was
raised to create the exception object The signal could have been raised with
the raiseEmorString: message.”

- —ewene OrderedCollection > adding -——-
add: newObject

“Add newObject as the last element to the ordered collection represented by
the receiver.*

B.2 Methods for the modeling with Process Calculus

A number of the methods given here come from [Wortmann, 1991], these
methods are indicated with [W] in the comment.

The semantics of the Smalltalk methods used in the program examples 199

--—-— Bubble > process contro| -—-----

initializeTasks
“[W]. This method is called before any processor executes initialActions or
body. It should not contain any send or receive actions, as the processes are
not running yet. It is mainly intended to initialize instance variables.”

initialActions
“IW]. This method is called once before the first execution of body."

body
“IW]. This method is called repeatedly during the execution of the process
description of the model. It must be redefined by all subclasses."”

---— Bubble > receiving objects ----—

receiveFrom: portName
‘[W]. The most basic receive action. Receive from the specified port. Block
until some sender is available for communication. Return the item received.”

receive: object from: portName
“Receive from the specified port if the item to be received equals object
(using the = message). Block until object can be received.
If object is nil then any item will be received.
Return the item received.”

receive: object from: portName within: interval ifTimedOut: timeOutBlock
“Receive from the specified port if the item to be received equals object (see
receive:from:).
If an item is not received within interval, timeOQOutBlock is evaluated (no
arguments).”

----—- Bubble > sending objects ----—

send: object to: portName
“[W]. The most basic send action. Send object synchronously to the port
specified by portName. The process blocks until a matching receive is
performed by another processor.”

sendTo: portName
“Used for the purpose of synchronization only. Behaves just like send:to;,
only sends an arbitrary object to portName.”

200 Appendix B

send: object to: portName within: interval then: thenBlock else: elseBlock
*Try to send object to portName within interval. If that succeeds, evaluate the
thenBlock, if it does not succeed, evaluate elseBlock.”

send: object immediateTo: portName then: thenBlock else: elseBlock
*W]. Try to send object to portName at this moment. If this succeeds, ‘
evaluate the thenBlock, if it does not succeed, evaluate elseBlock. So this
send cannot block."”

send: object inmediateTo: portName
“fW]. Try to send object to portName at this moment. If this is not Immed:ately
possible, raise an exception. So this send cannot biock.”

broadcast: object to: portName
“Send copies of object to all receivers that are able to receive it at this
moment. No special action is taken for those receivers that are connected to
portName by means of an interaction path but could not receive the object
This method cannot block.”

send: object continuousTo: portName
fW]. Send object to portName. Copies of the object will be available for an
unlimited number of receivers until the object is replaced by a new call to this
method.
Never blocks."

----- Bubble > actuator interfacing -——

putOn: oActuatorPortName
"Activate the binary actuator represented by oActuatorPortName”
self send: true to: oActuatorPortName

putOff: oActuatorPortName
- "Deactivate the binary actuator represented by oActuatorPortName”
self send: false to: oActuatorPortName

B.3 Methods for exception handling in Process Calculus

There are two global signals available for all processors. These are the
KillSignal and the RetrySignal. They are explained in Section 7.2.

The class ControlBubble is a subclass of class Bubble. It contains the
functionality for the control of processes that interface with operators by
means of a specific Man Machine Interface (MMI).

The semantics of the Smalltalk methods used in the program examples 201

---—- ControlBubble > mmi interfacing ——--

errorMessageFor: exceptionObject
“Send the error message contained in the exceptionObject (exceptionObject
errorString) to the MM!.*

restartMessage: restartString
“Send the given restartString to the operator by means of the MMI. Then wait
for the command from the operator to continue.”

------ Bubble > exceptions handlers --—--

handle: exceptionHandler do: doBlock
*See Section 7.2. The exceptionHandler will catch all exceptions from the
doBlock. Before execution of exceptionHandler, an error message will be
issued for the exception. After execution of exceptionHandler, the handled
exception will be propagated (ex reject), unless another response is specified
in exceptionHandler."

handle: exceptionHandler constraintMonitors: monitorOrMonitors do:
doBlock
"See Section 7.2. Just like the above given method. The difference is that the
doBlock is protected by monitorOrMonitors.”

--——- ConirolBubble > exceptions handlers -------

handle: exceptionHandler restart: restartBlock do: doBlock
“See Section 7.3 (and 7.5). Used to implement the retry strategy.”

handle: exceptionHandler restart: restartBlock constraintMonitors:
monitorOrMonitors do: doBlock
"See Section 7.3 (and 7.5). Used to implement the retry strategy. The
doBlock is protected by monitorOrMonitors.*

ControlBubble > process control

modeBody
"See Section 7.4. Processors that want to use the mode control (automatic
mode, reset mode etc.) provided by the MM interface, should define the
method body in such a way that it only calls this method.”

202 Appendix B

slaveBody
"See Section 7.4. Processors that act like slaves should define the method
body in such a way that it only calls this method. A slave receives a
command from another processor (the master), executes it, and sends an
acknowledge back to the master.”

automaticMode
"See Section 7.4. This method is executed due to a command from the
operator causing the processor (the receiver of the automaticMode message)
to change to automatic mode.
May be redefined by a subclass {copied to a subclass and then edited).”

automaticBody
"See Section 7.4. Must be redefined by a subclass to define the cyclic control
sequence for the machine when in automatic mode.”

———-- ConstraintMonitor class > instance creation -—-----

for: processor receive: object from: portName then: thenBlock
"See Section 6.10.2. Define a constraint monitor. The constraint violation that
can be monitored by the constraint monitor is defined to be the receipt of
object from the port named portName on processor. The constraint violation
will be signaled by making the thenBlock pending in processor. This amounts
to creating a pending exception. The thenBlock must terminate by raising an
exception. A pending thenBlock will be selected for execution when the
processor executes an interaction or a delay, or when the method Bubble >>
raisePendingException is called.”

for; processor receiveFrom: aPortName then: thenBlock
*Similar to the previous method, only for this constraint monitor the constraint
violation is defined to be the receipt of any object.”

ConstraintMonitor > controlling -

protect: block
"See Section 6.10.3. The argument block is bound to the constraint monitor.
The monitor will be enabled during execution of the block.” ‘

The semantics of the Smalltalk methods used in the program examples 203

w—mnemm - CONStraintMonitor > accessing ~emwe--

item
“See Section 6.10.6. Return the item received by the constraint monitor (the
receiver). Return nil if no item has been received since the constraint monitor
was last enabled or cleared. A constraint monitor is cleared by the method
ConstraintMonitor >> clearitem.”

clearitem
*See Section 6.10.6. Similar to the previous method. Returns the item
received by the constraint monitor, but also clears the constraint monitor.”

ConstraintMonitorCollection > controlling ------

protect: block
"See Section 6.10.5. The argument block is bound to the collection of
constraint monitors included in the collection represented by the receiver.
The monitors will be enabled during execution of the block.”

204 Appendix B

Index

>> 22

Activation point of subprogram
68
Ada 65, 101, 107
AnySignal 142
Argument
block 194
method 192
Association
between handler and unit 66

Binding 116
handler to exception 66
handler to unit 66
Broadcast primitive 147, 200
Bubble 9

C 110
Class 191
Component 27
Constraint
active constraints of process
83
of operation 81
specification of
common constraints 86
local constraints 86
Constraint function 82
Constraint monitor 113
activated 114
binding to block 114
binding to identifier 115
disabled 114
enabled 114

implementation in Process
Calculus 140

Constraint violation 82

by controlled process 137

by controlling process 90, 137

detection 88

handling 130

mechanism for handling
known mechanisms 99
requirements 96

relationship with exception 93

signalling 90, 117

Control mode
automatic mode 155
reset mode 155

Correct
internal state 32

CSP 108

CSR 109

Damage confinement 45

Delayed response controlling

system 118

Design 32
correctness 32

Domain
defined 30
standard 29

Emergency stop 46

Erroneous
external state 34

internal state 32

Error

corrective action 33
detection 42

206

diagnosis 45
handling 41
in controlled system 40
in controlling system 38
in external state 34, 51
in hardware 38
in internal state 32, 51
cause 37
in software 38
precondition 35
propagation 38, 42
recovery 48
backward 48
forward 50
recovery block 49
state restoration 48
Euclid 104
Exception 57
asynchronous 58
code as returned value 63
condition 57
declaration 58
discarding 132
external 57
handler 58
internal 57
raising 58
signalling 58
synchronous 58
termination of unit with 59
Exception handling 58
any handler 67
mechanism
evaluation 77
in imperative languages 65
in Smalltalk 72
~ requirements 60
response from handler 70
propagate 70
resume 70 -

resume response inadequate
79, 80
retry 70
return 70
return response inadequate
as default 78
resumption model 69
retry strategy ‘
in multi-process
environment 169
in sequential process 153
termination model 69
Exception occurrence 55
external 57
intemal 57 .
Exceptional termination of unit 59
Exit point of a block 124
Expression see Message

Failure 30
Fault
in system 36
repair 50
Finalization obligation 62, 71

Goal 29
primary 29
secondary 30

Inheritance 193
Instance 191
Instance variable see Variable
Instant response controlling
system 118 '
Interaction 5
Interaction mechanism
synchronous 6
Interaction path 6
compound 10
simple 10

Index

Interaction point 120
Invariant 85

external 85, 121

internal 85, 98, 117, 120
Invocation of subprogram 68
Invoker 68, 75

KillSignal 152

Master processor 166
Message
expression 192
receiver 192
selector 192
Method 192
MMI 151
Mode see Control mode
Model 6
ModPas see Modular Pascal
Modular Pascal 65
Modularity 100
Monitoring 114

Object see Smalltalk
Object-oriented 191
Operation 53
goal 53
precondition 53

Pending exception 117
creating 117
discarding 132
raising 119
selecting 133

Port 5
compound 10
receive 5
send 5
simple 10

Precondition 29

207

weakest 31
Process Calculus 5-10
Processor 5

class 10

expanded 6

leaf 6

model 6
Protected block 113
Pseudo-variable 192

self 192

super 193

Receiver see Message

Resetting controlled systems 155

Response from exception handler
see Exception handling

Resumption model see Exception
handling

RetrySignal 152

Robustness 36

ROSKIT 103

Safe state 47
Selector see Message
Sensor 42
Signal in Smalltalk 72
Simulation 13
Slave processor 166
Smalltalk
object 196
string 196
symbol 196
Smalltalk-80 191
State (see System)
check 43
computational 55
String see Smalltalk
Subclass 193
Superclass 193
Symbol see Smalltalk

208

System 27
atomic 28
continuous 2
control 1
controlled 1
controlling 1
cortectness 31
design 28
discrete event 2
specification 29
state k
external 28, 51
internal 28

Task language 9
port names 9
Terminatiori model see Exception
handling
Time-out 42
Transport system example 16

Unix 110

Variable
class 194
global 193
instance 191, 193
temporary 194
- VAXELN 102
Victim 93
Violator 93

Curriculum Vitae

Bert van Beek was born in Eindhoven, The Netherlands on the 25th. March
1958. He attended the Protestant Lyceum in Eindhoven where he gained his
Atheneum-B certificate in 1976, In 1977, he was accepted into the Eindhoven
University of Technology to study Electronic Engineering. Following a
software project on the Graphical Kernel System, he graduated with
distinction as a Master of Science in 1985. Soon thereafter, he was appointed
as a Lecturer within the Faculty of Mechanical Engineering at the same
University. Current activities include teaching and post-graduate research in
languages, methods and techniques for the control of manufacturing systems.

STELLINGEN

behorende bij het proefschrift

Exception Handling in
Control Systems

van

D.A. van Beek

Het gebruik van mechanismen die het 'raisen' en afthan-
delen van excepties ondersteunen vereenvoudigt het
ontwikkelen van robuuste programma's, mits geen
gebruik wordt gemaakt van de 'resume' responsie vanuit
~ een exceptie-afhandelaar.

Dit proefschrift.

De relatie tussen excepties en fouten is essentieel voor het
begrip van exceptie- en foutathandeling.

Dit proefschrift.

De introductie van externe toestand-fouten maakt het
mogelijk om interne toestand-fouten te definiéren. zonder
dat subjectieve elementen nodig zijn.

Dit proefschrift.

Het feit dat exceptie-afhandelaren in Smalltalk - Signal
genericSignal niet direct mogen gebruiken om excepties te
vangen, doet ernstig afbreuk aan het exceptie-
afhandelingsmechanisme in deze taal.

Dit proefschrift.

Het interactiemechanisme in GRAFCET nodigt uit om de
synchronisatie tussen besturingsprocessen via sensoren op
de bestuurde machine te laten verlopen, hetgeen in veel
gevallen leidt tot onveilige besturingen.

10.

Een besturing kan ten aanzien van zijn foutafhandeling
sneller en veiliger worden getest met behulp van een
model van de te besturen machine en 'discrete event'
simulatie dan met behulp van de echte machine.

De gebruikersinterface van MS-Windows applicaties kan
aanzienlijk worden verbeterd door het gebruik van
context-afhankelijke pop-up menu's,

In zeilboten met goede planeereigenschappen draagt de
combinatie van spinaker en trapeze bij harde wind in 20%
van de tijd bij tot 80% van het plezier.

Aangezien velen voor de uitvoering van een alt-partij een
alt prefereren boven een counter-tenor, en vrijwel
niemand een counter-tenor prefereert boven een alt, zou
men bij uitvoeringen alt-partijen gewoon door alten
moeten laten uitvoeren.

Vereenvoudigingen van het. belastingstelsel zijn pas echt
succesvol wanneer de Elsevier Belastingaimanak niet
meer wordt verkocht.

