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Summary 

This thesis deals with the required concepts and mechanisms for exception 
handling in control systems. 

There is much confusion in the literature about the meaning of exceptions and 
the relationship of exceptions and errors. In this thesis, the most important 
terms relating to errors and exceptions are accurately defined, while retaining 
a high level of compatibility with the way these terms are used in the 
literature. 

A treatment is presented of the most important concepts relating to the three 
stages of error handling: error detection, error diagnosis and confinement, and 
error recovery and fault repair. Only forward error recovery is covered in this 
thesis. 

Several satisfactory and more or less similar exception handling mechanisms 
exist for the handling of internal exceptions. These mechanisms and a 
traditional mechanism are briefly evaluated. The resume response from an 
exception handter is rejected as being undesirable in both single and multi­
process environments. 

A literature search bas yielded several proposals and existing mechanisms for 
exception handling in controlling systems or, more generally, in a multi­
process environment. No publications, however, have been found which 
describe the essence of the required functionality of such mechanisms. 
Therefore, 'constraint of an operation' and 'constraint violation' have been 
introducedas new concepts. The constraint of an operation is that part of its 
precondition which is invariant over the operation: it bas to be valid 
throughout the execution of the operation. A violation of an operation's 
constraint causes an exception occurrence in the process executing the 
operation and should result in the raising of an exception. · 

The concepts constraint and constraint violation have been used to describe 
the required functionality of mechanisms for the handling of exceptions in 
controlling systems. Several existing and proposed mechanisms have been 



Vl 

evaluated using this functionality. The mechanisms have been evaluated as 
either offering a functionality which is too restricted for controlling systems, 
as offering an incorrect or undesirable functionality, or as inadequate in other 
ways. 

A new mechanism for the handling of constraint violations bas been 
introduced. The mechanism bas been realized by means of constraint monitors 
which are used to specify and monitor constraints of operations independently 
of other operations, which is an important requirement for the creation of 
modular subprograms. A constraint monitor bound to a single operation can 
also be used to specify a constraint which is common to several operations. 

A constraint monitor is bound to an operation, and consists of a constraint 
and an exception. The vialation of the constraint which is monitored by .a 
constraint monitor results in the creation of a pending exception. The 
exception is not immediately raised, since this can result in time-dependent 
run-time errors due to violations of the internat invariants of a process. 
Pending exceptions are raised at interaction points, which are natural places 
for internal invariants to hold, but they are not raised in exception handlers. 

Several constraints can be violated at the same time by concurrently executing 
processes. This can result in more than one pending exception in a process. 
Some criteria for the selection of a pending exception have been evaluated. 
The pending exception that should be selected is the one betonging to the 
constraint monitor which was enabled first, and thus at the outermost level. 
The other pending exceptions can be discarded. 

The only systems considered are systems that can be modeled as discrete 
event systems. 

The new mechanism is independent of a particular programming language. 
The functionality of the mechanism therefore deals with the common 
requirements of languages for the control of industrial systems. Language­
specific elements are not treated. 

Constraint monitors have been successfully implemented in Process Calculus, 
which is a language for the specification, simulation and control of industrial 
systems. The simplicity and power of the new mechanism is illustrated with a 
case concerning the control of a transport system. 



Samenvatting 

Dit proefschrift beschrijft een studie naar de vereiste concepten en 
mechanismen voor de afhandeling van excepties in besturingssystemen. 

Er bestaat veel verwarring in de literatuur ten aanzien van de betekenis van 
excepties en de relatie tussen excepties en fouten. In dit proefschrift zijn de 
belangrijkste termen betreffende fouten en excepties nauwkeurig gedefinieerd, 
waarbij een hoge mate van compatibiliteit is behouden met het gebruik van 
deze begrippen in de literatuur. 

De belangrijkste concepten betreffende de drie stadia van foutafhandeling 
namelijk foutdetectie, foutdiagnose en schadebeperking, en tenslotte 
foutherstel zijn behandeld. Dit proefschrift gaat uit van voorwaarts 
fouthersteL 

Er bestaan verschillende bevredigende en min of meer gelijkwaardige 
mechanismen voor de afhandeling van interne excepties. Deze mechanismen 
en een traditioneel mechanisme zijn kort geëvalueerd. De hervattingsresponsie 
vanuit een exceptie-afhandelaar (Eng. exception handler) is verworpen als 
zijnde ongewenst, zowel in een enkel sequentiëel proces als in een omgeving 
met parallelle processen. 

Een literatuuronderzoek heeft verschillende voorstellen en bestaande 
mechanismen opgeleverd voor het afhandelen van excepties in 
besturingssystemen of, meer in het algemeen, in een omgeving van parallelle 
processen. Er zijn echter geen publicaties gevonden waarin de essentie van de 
gewenste functionaliteit van zulke mechanismen is beschreven. Daarom zijn 
de 'constraint van een operatie' en 'constraint-schending' als nieuwe concepten 
geïntroduceerd. De constraint van een operatie is dat deel van haar preconditie 
dat invariant is over de operatie: hij moet gelden gedurende de uitvoering van 
de operatie. Een schending van een constraint van een operatie veroorzaakt 
een exceptiegeval (Eng. exception occurrence) in het proces dat de operatie 
uitvoert, hetgeen zou moeten leiden tot het activeren (Eng. to raise) van een 
exceptie. 
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De concepten constraint en constraint-schending zijn gebruikt om de gewenste 
functionaliteit van exceptie-afhandelingsmechanismen in besturingssystemen 
te beschrijven. Verschillende bestaande en voorgestelde mechanismen zijn aan 
de hand van deze functionaliteit geëvalueerd. De mechanismen blijken na 
evaluatie ofwel een functionaliteit te bieden die te beperkt is voor 
besturingssystemen, die foutief of ongewenst is, ofwel die in andere opzichten 
inadequaat is. 

Een nieuw mechanisme voor het afhandelen van schendingen van constraints 
is geïntroduceerd. Het mechanisme is gerealiseerd door middel van 'constraint 
monitors' die worden gebruikt om constraints van operaties onafhankelijk van 
andere operaties te specificeren en te bewaken, wat een belangrijk vereiste is 
voor de onwikkeling van modulaire subprogramma's. Een constraint monitor 
die gebonden is aan een enkele operatie kan ook worden gebruikt voor de 
specificatie van een constraint die gemeenschappelijk is voor verscheidene 
operaties. 

Een constraint monitor wordt gebonden aan een operatie, en bestaat uit een 
constraint en een exceptie. De schending van de constraint die wordt bewaakt 
door een constraint monitor resulteert in de creatie van een hangende 1 exceptie. 
De exceptie wordt niet onmiddellijk geactiveerd, aangezien dit aanleiding kan 
geven tot tijdsafhankelijke executie-fouten ten gevolge van schendingen van de 
interne invarianten van een proces. Hangende excepties worden geactiveerd op 
interactie-punten, wat natuurlijke plaatsen zijn waar interne varianten gelden, 
maar zij worden niet geactiveerd in exceptie-afhandelaars. 

Verschillende constraints kunnen op hetzelfde moment worden geschonden 
door gelijktijdig uitgevoerde processen. Dit kan resulteren in meer dan een 
hangende exceptie in een proces. Een aantal criteria voor de selectie van een 
hangende exceptie is geëvalueerd. De hangende exceptie die geselecteerd zou 
moeten worden, is degene die behoort bij de constraint monitor die als eerste, 
en dus op het buitenste niveau, is geactiveerd. De andere hangende excepties 
kunnen worden verwijderd. 

De enige systemen welke zijn beschouwd zijn systemen die kunnen worden 
gemodelleerd als 'discrete event' systeem. 

Het nieuwe mechanisme is onafhankelijk van een specifieke programmeertaal. 
De functionaliteit van het mechanisme betreft daarom de gemeenschappelijke 



IX 

vereisten van talen voor het besturen van industriële systemen. Taal-specifieke 
elementen zijn niet behandeld. 

Constraint monitors zijn met succes geïmplementeerd in Procescalculus, een 
taal voor het specificeren, simuleren en besturen van industriële systemen. De 
eenvoud en kracht van het nieuwe mechanisme is verduidelijkt aan de hand 
van een voorbeeld betreffende de besturing van een transportsysteem. 
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Chapter 1 
Introduction 

1.1 Background 

An important aspect in the design of industrial control systems is the handling 
of errors. The amount of code required for error recovery is usually many 
times greater than the amount needed to control the system under error-free 
circumstances. In [Gini, 1985] it is observed that the amount of code for error 
recovery in a robotic environment often amounts to 80% of the total amount 
of code. This enormous amount of code for error recovery is specific to 
industrial control systems. Controlled physical systems suffer from 
deterioration due to wear and ageing; they also exhibit a stochastic behaviour 
in certain respects. Components, for instance, have tolerances and robots 
suffer from imprecise positioning. Such characteristics will lead to errors. 

The terminology in regard to control systems, controlling systems and 
controlled systems is taken from [IEC 50, 1975]. According to this standard, 
a control system may be divided into two interdependent parts: the controlled 
system, which comprises the operative equipment executing the physical 
process; and the controlling system, which interacts with the supervisor, the 
process to be controlled and possibly other controlling systems in the control 
system's environment. The controlling system receives feedback information 
from the controlled system, and controls this system by means of output 
commands. 

An important concept which facilitates the handling of errors in a structured 
way is the concept of exception. Most research concerning exception handling 
has focused on the use of exceptions in sequential systems. This is reflected in 
the definition of programming languages that offer advanced exception 
handling mechanisms. These mechanisms are usually restricted to exceptions 
within a sequential process. 
Because of the inherent parallelism of controlled systems and their associated 
controlling systems, an exception handling mechanism is needed for the 
handling of exceptions in a multi-process environment. 
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1.2 Scope of the thesis 

There is much confusion in the literature about the meaning of exceptions and 
the relationship of exceptions and errors. Many definitions are imprecise or 
incorrect, or contain undesirable subjective elements. In Chapter 3 and 4, the 
most important terms relating to errors and exceptions are accurately defined. 
The important characteristics of the most frequently used exception handling 
mechanisms in sequential processes are evaluated. We concentrate on forward 
error recovery; backward error recovery and redundancy techniques that aim 
to provide fault tolerance in the presence of incorrect components in a 
controlling system are not covered. Apart from the new. definitions and the 
evaluation of exception handling mechanisms, Chapters 3 and 4 mainly give a 
general treatment of the state of the art concepts regarding error and exception 
handling. 

The exception handling mechanisms for sequential processes can also be used 
in control systems. Their usefulness, however, is restricted to exceptions 
related to a single process. A different or additional mechanism is needed in a 
multi-process environment. The development of such a mechanism is the 
objective of this thesis. The new mechanism is described in Chapter 6. 
The most important aspect in the development of an exception handling 
mechanism is a clear definition of the desired functionality. In order to be able 
to describe the essence of the desired functionality, 'constraint of an operation' 
and 'constraint violation' are introduced as new concepts in Chapter 5. The · 
desired characteristics of the new mechanism are defined using these 
concepts. Some important existing and proposed mechanisms are evaluated 
against this framework. 

The only systems considered in this thesis are systems that can be modeled as 
discrete event systems, such as robotic systems, manipulators, transporting 
systems, etc. Continuous systems, such as chemical reactions and the 
continuous flows of liquids, are not considered. Nevertheless, most of the 
theory developed in this thesis is independent of the kind of controlled system. 

The new mechanism is independent of a particular programming language. 
The functionality of the mechanism therefore deals with the common 
requirements of languages for the control of industrial systems. 
In this thesis, parallel controlling processes are considered to exist throughout 
the life of an executing control program. Some languages allow parallel 
constructs such that father processes create concurrently executing children 
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and wait for their possibly exceptional - termination. They require the same 
newly-developed mechanism if they are used for the control of systems. The 
additional features that are necessary to deal with the specific problems 
introduced by children terminating with an exception have been disregarded. 
Exceptions occurring during the execution of an interaction, such as during a 
rendezvous, are also language specific and are therefore also not covered. 

Process Calculus [Rooda, 1991 ], which is described in Chapter 2, has been 
complemented with the new mechanism. Process Calculus is a powerful 
language for the specification, simulation and control of industrial systems. 

Finally in Chapter 7, the mechanism developed is illustrated with reference to 
a case. 





Chapter 2 
Modeling control systems using Process 
Calculus 

The concepts, theories and mechanisms developed in this thesis are 
independent of a specific programming language. Only the implementation of 
the developed mechanism is realized in Process Calculus. Many examples are 
used throughout this thesis in order to illustrate the different concepts, 
theories and mechanisms. These examples are mainly implemented in Process 
Calculus. 

Process Calculus is treated in [Rooda, 1991a and 1991b]. More information 
can be found in [Rooda, 1981; Overwater, 1989; Wortmann, 1991] where the 
respective terms SOLE, Process Interaction Approach and ProcessTalk are 
used instead of Process Calculus. 

In this chapter, Process Calculus is treated in such a way that the examples 
using Process Calculus can be understood. It is also shown how Process 
Calculus can be used to specify controlling systems and test them by means of 
simulation, and how controlling systems are interfaced with the controlled 
system. Finally, a transport system is considered, together with the 
specification of its controlling system without error handling. The transport 
system will be used as the basis of many subsequent examples. 

2.1 Process Calculus 

2.1.1 Processors and interactions 

Using Process Calculus, an industrial system is specified or modeled as a 
collection of processors and interaction paths. Interaction paths are connected 
to processors by means of ports on the processor. A processor can have send 
ports and receive ports. Interaction paths establish a connection between a 
send port on a processor and a receive port on another processor. The 
interaction path is used to transfer an object from one processor to another 
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processor. An object leaves a processor through a send port and enters 
through a receive port. When an object is actually being transferred from one 
processor to another processor, an interaction is said to take place. Processors 
do not refer to surrounding processors; they only interact via their ports. 

The main interaction mechanism used is the synchronous interaction 
mechanism. This mechanism stipulates that an interaction can take place 
between two processors if they are both prepared to interact: i.e. one of them 
must be executing a send action to a send port and the other processor must 
be executing a receive action from a receive port. Naturally, there must exist 
an interaction path between the two ports. 

More than one interaction path may be connected to a single port. In this case, 
the interaction can take place between the single port and any one of the other 
ports that are connected to it by means of interaction paths. If a processor 
executes a send or receive action to a port, and no other processor connected 
to that port is executing a corresponding receive or send action, then the 
processor is blocked until the send or receive action can take place. 

There are two kinds of processors: leaf processors and expanded processors. 
The model of a leaf processor is a process description. Processes are only 
associated with leaf processors. Only leaf processors can execute send and 
receive actions. 
The model of an expanded processor is a collection of processors - known as · 
the child processors of the expanded processor and interactions. The 
expanded processor is known as the parent of its child processors. The ports 
of an expanded processor are connected through interaction paths with the 
ports of its child processors. Expanded processors do not execute a process, 
but merely act as an abstraction of a collection of processors and interactions. 

2.1.2 Graphical representation of models 

Processors are represented graphically by a circle. The name of the processor 
is presented within the circle. An interaction path is represented by an arrow, 
starting at a send port and ending at a receive port. The ports are situated on 
the edge of the circle. The name of the port to which an arrow is connected 
can be displayed near the end of the arrow, where it connects to the circle. A 
dotted line may be used to connect the name of the port to the port itself, at 
the end ofthe arrow (see Figure 2.1.1). 
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Figure 2.1.1 Model of a manufacturing cell without expanded processors. 

A model of an expanded processor is graphically depicted by means of a 
rectangle with a label bearing the name of the processor. The model of an 
expanded processor contains further processors and interactions. This model 
of an expanded processor can be referred to as its expansion. The ports of the 
expanded processor are depicted graphically in the expansion by their port 
names. If more than one arrow is connected to a port name in the expansion of 
a processor, the port name can be copied to different locations in the 
expansion: and other arrows can be connected to the copied port names in 
order to achieve a clearer layout. 

Figures 2.1.1 and 2.1.2 show examples of two functionally equivalent models 
of a manufacturing cell. The only difference is the hierarchical ordering of the 
processors. The manufacturing cell consists of a controller and two physical 
machines: a lifting machine and a picking machine. In this model of the 
manufacturing cell, the processor for the controller is connected with the 
processors for the controlled machines by means of interaction paths. The 
lifting machine has actuator oLifterUp and sensor iLifterlsUp, while the picking 
machine has actuator oPickerPickProduct and sensor iPickerHasProduct. The 
actuators and sensors are modeled by ports with corresponding names. 
The first model uses no expanded processors. In the second model, the 
expanded processor Machines is added. The processors Controller, 
LiftingMachine and PickingMachine in Figure 2.1.1 have the same model as the 
corresponding processors in Figure 2.1.2. 
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ManufacturingCeiiB model 

oliflerUp .. 

oliflerUp· 

Machines model 

oLifterUp 

\ ;un '''"' 

oPickerPickProduct 

Figure 2.1.2 Model of a manufacturing cell with an expanded processor. 



Modeling control systems using Process Calculus 9 

2.1.3 The use of classes for the specification of processor models 

The model of an expanded processor is specified graphically. which has been 
shown in the previous section. 

The model of a leaf processor is a process description. The language used for 
these process descriptions is the task language. which is based on the object­
oriented programming language Smalltalk-80. For a more detailed description 
of Smalltalk, see for example [Goldberg and Robson, 1989]. An introduction 
to Small talk is given in Appendix A. The most important elements of the task 
language are given in Appendix B. 

Ports are referred to by name in process descriptions. Names in Smalltalk are 
represented by strings (see Appendix A), such as 'oUfterUp'. An example of 
the repres(mtation of a send action by the processor Controller (from Figure 
2.1.1) which sends the object true to the port olifterUp is self send: true to: 
'olifterUp'. 

Some classes ofthe Smalltalk-80 system cannot be used in the task language, 
and new classes for the creation of Process Calculus models have been added. 
The most important class which has been added is the class Bubble. This 
class includes, amongst others, methods used to send objects to, and to receive 
objects from, ports. These methods are used by leaf processors. The class 
Bubble also includes methods which are used for the specification of the 
models of expanded processors. 

Bubble is an abstract class, which means that instances of Bubble are 
normally not created. Instead, additional subclasses of Bubble are created for 
all processors with a different functionality. Subclasses of Bubble can also be 
abstract classes. An example of a class hierarchy is shown below: 

Bubble 
Buffer 

Fifo 
Stack 

WaferProcessingModule 
Cleaner 
Furnace 
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The classes Bubble, Buffer and WaferProcessingModule are abstract classes. 
In these classes, the methods which are common to their subclasses are 
specified. So in the class Bubble, which is at the root of all processor classes, 
the methods are specified which are common to all processor classes. The 
classes Fifo, Stack, Cleaner and Furnace are not direct subclasses from 
Bubble, but they do inherit from Bubble. 

The model of a processor is determined by the class of the processor. A 
processor is an instance of a class which inherits from the class Bubble. A 
class can have several instances. Processors which are instance of the same 
class have the same model. Such processors can be used in different models, 
or several times in the same model. They have the same functionality, but they 
need not have the same internal state. Buffer processors of the same class, for 
instance, can be used at various places in the same model: they will all have 
the same functionality, but they can each cont;tin other buffered elements, 
depending on their environment. 

2.1.4 Compound ports and interaction paths 

An expanded processor serves as an abstraction of the detailed description of 
its model, which consists of other processors and interactions. This is an 
important concept which helps to make the complexity of systems manageable 
by showing only the relevant amount· of detail at each level of abstraction. 

Process Calculus does not provide a similar mechanism for ports and 
interaction paths. Ports and interaction paths cannot be 'expanded'. 
In many systems, especially in control systems, it is essential that irrelevant 
detail in the presentation of ports and interaction paths can be hidden by using 
abstraction. Consider, for example, the interactions between the controlling 
processor ControllerC and the model of the controlled machines Machin esC in 
Figure 2.1.3. In the model of ManufacturingCeiiC, we are not interested in the 
exact representation of all the sensors and actuators, since there could be 
hundreds ofthem. 

In order to make it possible to refer to a collection of ports or interaction 
paths with a single entity, we have introduced a new kind of port and 
interaction path: a compound port and a compound interaction path. The 'old' 
ports and interaction paths will be referred to as simple ports and simple 
interaction paths. When the type of a port or interaction path is not explicitly 
specified as simple or compound it can be either of the two. 
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Ports can be hierarchically ordered by means of compound ports. A 
compound port is a collection of other simple or compound ports. Objects can 
only be sent to and received from simple ports. 
Interaction paths can be hierarchically ordered by means of compound 
interaction paths. A compound interaction path is a collection of other 
compound or simple interaction paths. 

Compound ports on different processors can only be interconnected by means 
of compound interaction paths. Simple ports on different processors can only 
be connected with each other by means of simple interaction paths. 
Simple interaction paths are always unidirectional. A compound interaction 
path can bt~ unidirectional, bidirectional or nondirectional; the direction 
depends on the interaction paths which it contains. A compound interaction 
path is nondirectional if it either contains no interaction paths or only 
nondirectional interaction paths; it is unidirectional if it contains only 
unidirectional interaction paths with the same direction, and possibly some 
additional nondirectional interaction paths; and it is bidirectional if it contains 
bidirectional interaction paths or unidirectional interaction paths in opposite 
directions. 

Compound ports are represented graphically by their names with hyphens as 
suffixes. Compound interaction paths are represented by arrows which can be 
unidirectional, bidirectional or nondirectional. 

Figure 2.1.3 shows a model which is functionally equivalent with the models 
shown in .Figures 2.1.1 and 2.1.2. The only difference is that Figure 2.1.3 
uses compound ports and compound interaction paths. The sensors are 
modeled by the compound port i-. This port contains the compound ports 
i-lifter- and i-picker-. The port i-lifter- contains the simple port i-lifter-isUp and 
the port i-picker- contains the simple port i-picker-hasProduct. The actuators 
are likewise modeled by the compound porto-. 

In the expansion of MachinesC, the names of the ports i- and o- are shown in 
the right-hand part of the model. No interaction paths are connected to these 
compound ports. The ports i- and o- contain other compound ports. These can 
also be used in the model to connect interaction paths. In the example, the 
compound ports i-picker- and o-picker- are connected by means of compound 
interaction paths to the processor PickingMachineC. In this way, all the simple 
ports contained in i-picker- (in this case only one, viz. i-picker-hasProduct) and 
o-picker- are connected by means of simple interaction paths to 
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ManufacturingCeiiC model 

MachinesC model 

o-lift r-up 

i-lifter -isU p 

0-

i-

Chapter 2 

Figure 2.1.3 Model of a manufacturing cell with an expanded processor 
and compound ports and interaction paths. 

PickingMachineC. The processor UftingMachineC is directly connected by 
means of simple interaction paths to the ports o-lifter-up and i-lifter-isUp. These 
different possibilities show, by way of example, how compound and simple 
ports can be used in a modeL 
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Send and receive actions can only take place on simple ports such as in, out, 
o~lifter~up or i~lifter~isUp. An example of a representation of a send action by 
the processor ControllerC (from Figure 2.1.3) which sends the object true to 
the port o~lifter-up is self send: true to: 'o-lifter-up'. 

2.2 The realization of controlling systems 

2.2.1 Usiutg simulation to test controlling systems 

Controlling systems can be tested in two ways: they can be connected to the 
actual controlled system or they can be tested by means of simulation using a 
Process Calculus model of the controlled system. 
Testing by means of simulation can have significant advantages in the 
following situations: 
• Testing using the actual controlled system is hazardous because of the 

possibility of damage to the controlled system due to errors in the 
software of the controlling system. 

• The actual controlled system is already operative and has to be taken out 
of production to test the new controlling system. 

• The actual controlled system is not available. It may not yet have been 
built, or it may be at a remote location. 

• The actual controlled system has a long cycle time. In this case, using the 
actual system for testing will take a long time. The time to simulate a 
control system is unrelated to the real time in the actual system, and can 
therefore be done more efficiently. 

The main disadvantage of simulation-based testing is the time and effort 
needed to model the controlled system. The advantage gained by simulation­
based testing of the controlling system must outweigh the effort needed to 
model the controlled system. In order to successfully use a model of the 
system, it is necessary that the model is sufficiently accurate. 

2.2.2 The transition from simulation to the control of the actual 
system 

When the controlling system has been tested using a simulation model of the 
controlled system, the transition from simulation to actual control must be 
made. This can be done relatively simple using Process Calculus. Two models 
can be used: one for simulation-based testing and one for the control of the 
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actual controlled system. In both of these models the same controlling 
processor is used. 

This approach is demonstrated in Figure 2.2.1. The model SimulatedSystem 
contains the processors Controller, which is the controlling processor, and the 
processor Machines which is a model of the controlled system. After the 
SimulatedSystem model has been tested using simulation, the ActuaiControl 
model can be used for the control of the actual controlled system, which 
system is indicated by a dotted rectangle named Machines. The two processors 
Controller have the same model: they are both instance of the same class 
Controller. Therefore their functionality is identical. In the model of 
ActuaiControl, the processor Driver replaces the processor Machines from the 
SimulatedSystem model. The Driver converts the objects it receives from the 
Controller into controlling signals to the corresponding actuators on the actual 
controlled machines. The Driver likewise converts the signals from the sensors 
to objects which are sent to the Controller. 

SimulatedSystem model ActuaiControl model 

······~····· 

Machines 

Figure 2.2.1 Models for simulation and actual control. 
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2.2.3 TJIJ.e interaction mechanism between the controller and the 
driver 

15 

The interaction mechanism between the control processor and the driver will 
not always be the same: it is partly determined by the type of physical 
interface, and types of actuator and sensor used. A motor with an accurate 
positioning unit which is controlled through an RS232 interface is interfaced 
differently from binary actuators and sensors. 

The interfacing of most actuators can be done simply by sending an object to 
a specific port on the driver processor. The port name determines the actuator. 
The object received determines the desired new state of the actuator. For a 
binary actuator, the objects to be sent could be true and false, meaning that the 
actuator concerned should be turned on or off respectively. 

The sensors can be periodically polled by the driver. The polling period is 
contained in the driver. The sensors that need to be polled are determined by 
the send ports present on the driver. Every send port is associated with a 
sensor. After every poll, the driver should send the new values of the sensors 
whose values have changed to the corresponding ports on the driver 
processor. 

The controlling processors should be able to read the values of all sensors at 
any time, using a non-blocking receive operation. This means that the driver 
should at all times be ready to send the values of all sensors to all sensor 
ports. The easiest way to do this is to use the method Bubble » 
send:continuousTo: in the driver (see Appendix 8.2). In a controlling 
processor, a receive action from a port connected with a sensor port on the 
driver would then yield the value of the sensor. If a blocking receive action is 
desired, the required object to be received can be specified in the receive 
action. For example, the way to wait until the sensor connected to the port 
productPresent becomes active, would be to use the expression: 

self receive: true from: 'productPresent'. 

This receive action will remain blocked until the true object can be received 
from the port productPresent. The precise semantics of the method Bubble » 
receive:from is explained in appendix B2. 
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2.3 An example: The control of an error-free transport 
system 

2.3.1 Description of the system 

The concepts treated in the previous sections will now be illustrated with an 
example. The example is based on ail actual system for the movement of tyres 
around a bicycle tyre factory. The actual system, however, has been 
simplified and changed to yield a system which is easier to understand. 
Tyres are made of rubber. A part of the production process is the 
vulcanization of the newly-made rubber tyres in a furnace. Tyres are 
transported on trays, which each carry seven tyres. The furnace operates in 
batch mode, so the trays are stacked up approximately twenty high. 

A schematic diagram of the system is shown in Figure 2.3.1. Sensors are 
represented by the symbol: '>', '<', or 'A'. In the control program, the sensors 
will be represented by ports with the name of the sensor, prefixed by the 
machine part that the sensor belongs to, prefixed by an 'i' indicating input. The 
sensor opened in the figure, for example, is represented by the port 
i-holder -opened. 

The trays are transported on multiple-section conveyor belts. When the trays 
arrive at the traversing-shuttle they are stacked. The traversing-shuttle will be 
referred to as 'traverse' for ease of reference. Every time a new stack of, say, 
twenty trays is ready, the traverse moves the stack onto a fork-lift truck. The 
fork-lift truck then moves the stack to the furnace and deposits it there. 
The sections are meant to buffer the incoming trays when the stack is 
transported to the fork-lift truck. In reality, there are more sections than just 
the two drawn in the figure. Each section is equipped with a sensor to stop the 
section when the tray cannot be moved to the next section. 

The traverse is equipped with four holders which hold the stack. Two of these 
are shown in Figure 2.3 .I. The pusher consists of a plate which can move in a 
vertical direction to push a tray against the stack. The plate comes up between 
the two small side-belts of the last section. The pusher is driven by two 
cylinders. One of them has a large stroke to push the tray up against the stack. 
The stack holders will then be opened. Consequently the pusher cylinder with 
the small stroke will push the complete stack up, so that the stack holders can 
close under the new tray at the bottom of the stack. After this the pusher will 



Modeling control systems using Process Calculus 

1\ ... 
"0 .1} 
! li !..c 
0 

I 
V JGI.jSnd 

17 



18 Chapter 2 

go down. The three positions of the pusher plate are detected by the sensors 
pusher-isDown, pusher-isMiddle and pusher-isUp. 

When the pusher passes the sensor pusher-isMiddle while going down, and the 
stack bas reached its maximum size, the traverse will transport the stack to 
the fork-lift truck. The traverse is movable, because in the actual system there 
is also a sampling station. This station can remove a single tray from the 
stack at approximately midway between the sensors traverse-atPusher and 
traverse-atFork. This station is omitted in the simplified diagram of Figure 
2.3.1. 

When the traverse reaches the fork-lift truck, the fork will go up, lifting the 
trays above the traverse. After that, the truck will go bàckwards in the 
direction of the furnace. When it reaches the position indicated by the sensor 
truck-canTurnToFurnace, the fork will start rotating 180 degrees to the 
furnace, while at the same time going down to the middle position. The truck 
will stop when it bas reached the furnace, where it will deposit the stack. 
Finally, the truck will go back to the traverse. 

The movements of the traverse, fork lifter, fork turner and the truc~ are all 
implemented using bidirectional motors. Each motor is controlled using two 
binary actuators: one for the direction and one for the power (on/offfunction). 
Sensors are installed at the extremes of all trajectories. 

The part of the controlling system to be analized is restricted to the part which 
concerns the transfer of the stack from the traverse to the fork-lift truck and 
the transportation of the stack to the furnace. 

The model is shown in Figure 2.3.2a. The TransporterDriver interfaces the 
CtriTransporter with the sensors and actuators on the physical machine. The 
Ctrllnterface processor interfaces with the controlling processors ' of the 
previous machines. The control processors are shown in Figures 2.3.2b and 
2.3.2c. In order to keep the control simpte, the machines wiJl be initially 
treated as ideal: errors will thus not be taken into account. At the start of the 
production cycle, the machine is supposed to be in its reset position as shown 
in Figure 2.3.1. Chapter 7 will present a control system which takes full 
account of error handling. 
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TransporterControiSystemldeal model 

Figure 2.3.2a Model of the controlling system of an error-free transport er. 
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CtrtTransporter model 

i-sections-tray2 i-traverse- i-forkTumer-

in 

mmi-

a-traverse-
o-forkTurner-

Figure 2.3.2b Model of the Ctr/Transporter processor. 

CtriTruckExp model 

i-truck-

mmi-

i-torklifter- 1-forkTumer-

mml-

o-forklifter- o-truck- o-forkTurner-

Figure 2.3.2c Model ofthe Ctr/TruckExp processor. 
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2.3.2 Conventions used in the control model 

Synchronization between controlling processors without using sensors 

As is apparent from the figures, each machine part (such as the traverse, the 
bolders and the fork lifter) is directly controlled by only one processor. This is 
done in order to keep the control system clearly structured. Furthermore, this 
approach makes it easier to reset a system, a topic which will be retumed to in 
Chapter 7. 

The controlling system is interfaced with the control system through actuators 
and sensors. The machine is made to change state by driving the actuators. 
The controlling system can then wait for the desired state change of the 
machine by waiting for the desired state change ofthe sensors. 

In Process Calculus, the parallelism of control systems is modeled by separate 
processors. These controlling processors can have interactions amongst 
themselves, as well as with the actuators and sensors, by means of a driver 
processor (see Figure 2.2.1). Many controlling systems can be modeled using 
controlling processors that only interact with the sensors and actuators and 
not with each other. In Process Calculus models, controlling processors 
usually interact both with the controlled machine and amongst themselves. 
The reason for this is that each machine part is controlled by a single 
processor. It is possible that a processor controts several sequentially­
operating machine parts, but a machine part is normally oot controlJed by 
more than one processor. lf a processor has to wait for a machine part 
controlled by another processor to reach a certain state, this synchronization 
is achieved by means of an interaction with the processor controlling the 
machine part in question, rather than by synchronization with the machine 
part's sensors. This is done in order to achieve a safer system in the presence 
of errors. This will bedealt with in greater detailinSection 7.5.5. · 

The conneetion of compound ports with compound interaction paths 

Two compound ports are connected by means of a compound interaction path. 
The convention adopted in this case is that, unless apparent otherwise, both 
compound ports correspond and each of the ports of one compound port is 
connected through an interaction path with a corresponding port of the other 
compound port. Simpte ports correspond when they have the same name. 
Compound ports correspond when they consist of the same number of ports 
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and for each port there is a corresponding port in the other compound port. 
An exception to this rule is that a send port out can correspond with a receive 
port in. Consider Figure 2.3.2b, for example. In this figure, there is an 
interaction path connecting the ports sync2- on CtriTraverse and sync• on 
CtriTruckExp. The port sync2- has, amongst other ports, a send port 
traverseAtFork. This port is connected by means of an interaction path with a 
receive port traverseAtFork in the port sync- on CtriTruckExp. When these ports 
are used in send or receive actions they have to be referred to using their full 
name as, for example, in the message: self sendTo: 'sync2-traverseAtFork'. 

Ihe grouping of methods in protocols 

The methods of a processor class are grouped into protocols. The protocols 
used in this example are the protocols 'process control' and 'maçhine io'. 

Protocols are only used for grouping related methods. In this way methods 
can be more easily located during the development of programs. Protocols are 
notpart ofthe Smalltalk language. 
The methods in which synchronization is only achieved by interactions with 
the machine's sensors and actuators are grouped under the protocol .'machine 

io'. The protocol 'process control' contains methods that preferably only 
contain interactions with other control processors and no interactions with 
sensors and actuators. This separation introduces a fonn of structuring into 
the code. In cases where it is desirabie to mix interactions with the controlled 

I 

machine and other controlling processors in a single method, these methods 
are also grouped under the protocol 'process control'. 

Reference to methods 

A method methadName defined in a class ClassName can be referred to as 
follows: ClassName » methodName. Methods that beloog to t:Qe same 
protocol of a eertaio class can also be listed with a heading in italics, defining 
the class and the protocol, foliowed by a list of metbod definitio11S. Each 
method de:finition begins with the name of the method in bold type, foliowed 
on the next line by the indented code for the method. Comments in methods 
are typed in italics between quotes: "". 
For example: 
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---- ClassName protocol: 'protoco/Name' ----

methodName1 

"code for first method" 

methodName2 

"code for second method" 

2.3.3 The implementation of the model 

The send and receive actions in Ctr1Traverse » stackToTruck (shown below) 
are synchronization actions with the processors Ctr1EndSection and Ctr1Truck 
to achieve synchronization between the machine parts pusher, traverse and 
forkLifter that are controlled by the respective processors Ctr1EndSection, 
Ctr1Traverse and CtriTruck. The methods traverseToFork and traverseToPusher 
that are used in the metbod CtriTraverse » stackToTruck imptement a direct 
control of the traverse by means of the sensors and actuators, and are not 
shown bere. 

---- CtriTraverse protocol: 'process contra/' --

body 
stackSize >= self maxStackSize ifTrue: [self stackToTruck]. 
self stackTray •add a new tray to the stack" 

stackTo Truck 
self receive: 'belowMiddle' trom: 'sync1-pusherState'. 
self receiveFrom: 'sync2-truckResetAtTraverse'. 
self traverseToFork. 
self sendTo: 'sync2-traverseAtFork'. 
self receiveFrom: 'sync2-forklsUp'. 
self traverseT oPusher 

The following code is part of the code for the processor Ctr1Truck. This 
processor drives the truck directly by means of methods in the protocol 
'machine io'. Due to the parallelism, the fork lifter and the fork turner are 
controlled by separate processors: SlaveForklifter and SlaveForkTurner. The 
coordination of the movements of the truck, fork lifter and fork turner is 
determined by the Ctr1Truck processor. The processors SlaveForkTumer and 
SlaveForklifter receive their conunands from Ctr1Truck. The command is 



24 Chapter 2 

translated into an action perfonned by tbe machine part tbat tbey control and 
an acknowledgement is sent to CtriTruck when tbe action is finished. 

--- ctr/Truck protocol: 'process control' ----

body 
self receiveStackFrom Traverse. 
self transportStackToFurnace. 
self giveStackToFumace. 
self goBackT o Traverse 

receiveStackFromTraverse 
self sendTo: 'sync-truckResetAtTraverse'. 
self receiveFrom: 'sync-traverseAtFork'. 
self send: #forkUp to: 'forklifter-command'. 
self receiveFrom: 'forklifter-ack'. 
self sendTo: 'sync-forklsUp' 

transportStackToFumace 
self to TumPointAtTraverse. 
self send: #forkDownToMiddle to: 'forklifter-command'. 
self send: #lumToFurnace to: 'forkTurner-command'. 
self continueToFumace. 
self receiveFrom: 'forklifter-ack'. 
self receiveFrom: 'forkTurner-ack' 

---·- Ctr/Truck protocol: 'machine io' --------

toTumPointAtTraverse 
self putOn: 'o-truck-toFurnace'. 
self putOn: 'o-truck-power'. 
self receive: true from: 'i-truck-canTumToFumace' 

continueToF urnace 
self receive: true from: 'i-truck-atFumace'. 
self putOff: 'o-truck-power' 

In tbe metbod SlaveForklifter » body (shown below), tbe command is 
received from tbe CtrlTruck processor. The command is, for instance, tbe 
symbol #forkUp. The messageself perform: #forkUp will result in tbe metbod 
forkUp being executed by tbe SlaveForklifter processor. 
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---- SlaveForkUfter protocol: 'process contra/' ----

body 
I command I 
command := selfreceiveFrom: 'master-command'. 
self perform: command. 
self sendTo: 'master-ack' 

----- SlaveForkUfter protocol: 'machine io' ----

forkUp 
self putOn: 'o-forkUfter-up'. 
self putOn: 'o-forkUfter-power'. 
self receive: true from: 'i-forkUfter-isUp'. 
self putOff: 'o-forkLifter-power' 

25 
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Chapter 3 
Errors 

An ideal manufacturing system will generate no errors: machines never 
malfunction; operators do not come into dangerous zones near the machines; 
and once a machine bas started producing an order, it will continue without 
interruption until the order is finished. Unfortunately, real world systems are 
not ideal: errors in manufacturing processes are unavoidable. In order to 
eosure the safety of the operators and machines and to enable efficient 
continuation of the production process after an error, errors will have to he 
handled. In fact, error handling bas a major effect on the safety, reliability and 
efficiency of a manufacturing system. 

This chapter starts with a definition of errors and related terms. Thereafter, 
successive sections will deal with other aspects associated with errors. This 
will he done in an abstract way, independent of specific implementations. 

3.1 Definition of terms 

3.1.1 Systems and states 

In order to be able to define precisely terms like error and failure, 1t ts 
necessary to start with the definition of a system. Many different definitions of 
a system can be found in the literature. The definition given here is based on 
the definitions of [Melliar-Smith and Randell, 1977] and [Lee and Anderson, 
1990]. It is useful for an analysis of system correctness, errors, and faults. 
Since errors and faults are only relevant when the desired behaviour of a 
system is known, the definition is restricted to systems which have been 
designed to provide a specified service. The definition is as follows: 

A system has been designed to provide a specified service to its environment 
and is either atomie or consists of a set of cooperating components. 
Components themselves are systems, so the definition is recursive. 
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A system is considered to be atomie when its intemal structure cannot be 
discemed or is not of interest. Therefore, a system may be considered as 
atomie when only its specification is of interest; how its functiönality is 
implemented is not relevant. 

The behaviour of a system is determined by its design and its state. 

The design of a system consists ofthe selection ofthe components (ifpresent) 
and the interrelationships between the components themselves and between the 
components and the environment. The design of the system can be regarcled as 
the algorithm of the system. The initial internat state of the system, that is the 
state of the system prior to any inputs, is also considered to be part of the 
design. 

System designs are not restricted to software systems. The design of a 
machine without a cantrolling system, for example, is the mechanica] 
construction of the machine. 

There are two kinds of state: external and internat states. Extemal states are 
the states of the system which are relevant for the system's environment. 
Internat states are relevant for the internat operation of the system. The 
relationship between internatand externa] statesis as fo11ows: 

The intemaJ state of a system is defined as the aggregation of the external 
states of its components. The extemal state of a system is an abstraction of 
its internat state. ' 

It fo11ows directly from the definitions that the extemal state of a system is 
also an abstraction of the aggregation of external states of its components. 

When a system is active, it wil1 change from one internat state to another. As 
a result its extemal state will change, but it may take several transitions from 
one internat state to another in order to effect one external state transition. 
The extemal states are defined by an abstraction function which maps the 
internat states onto extemal states. The mapping is done in such a way that 
one or more internat states are mapped onto the same extemal state. 
External states are important if we are interested in what a system does, and 
intemal states are important if we are interested in how a system does what it 
does. The relationship between the internat states of a system and between the 
interna1 and extemal states is determined by the design. 
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The specification of a system concerns only the external behaviour of the 
system. As Randeli et al. ( 1978) put it: 'The specification only defines the 
extemal states of the system, the operations that can be applied to the system, 
the results of these operations, and the transitions between extemal states 
caused by these operations, the internat states being inaccessible from outside 
the system'. 

3.1.2 Specifications, goals, preconditions and failures 

The specification of a system is the agreed description of the service that the 
system is designed to provide to its environment. It detennines the required 
behaviour of the system in tenns of a relationship between the inputs or input 
sequences to the system and the associated responses. lt can be viewed as a 
contract between the designer and the user of the system. 
A system will be designed for a specific purpose. This purpose is specified by 
the goal of the system. The goal is specified as a relationship between the 
inputs to the system and the desired resulting responses of the system. The 
goal is also referred to as the primary goal of the system. 

Usually the specification will place eertaio restrictions on the system's inputs 
and on the behaviour of the system's environment, so that the system can 
realize its goal when those conditions are met. These restrictions are specified 
by the precondition of the system. The set of inputs or input sequences with 
the states of the system's environment that satisfy the precondition is tenned 
the standard domain. 

The precondition refers to the external state of the system if the system 
interacts withother systems. In such a case, the precondition specifies for all 
interactions the kind of behaviour that the system requires from the other 
systems, so that the system will be able to achieve its goal. The precondition 
requires more than just correct behaviour of the systems with which the 
system interacts. Consider, for example, a system which controts a cylinder. 
The precondition of the controlling system will specify that the air pressure 
supplied to the cylinder is sufficiently high. This requires more than just 
correct operation of the compressor, because correct operation of the 
compressor does not guarantee the delivery of air. The precondition of the 
compressor will require the availability of rnains voltage. If there is no rnains 
voltage, then the compressor will not be able to supply air. This is still correct 
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behaviour of the compressor, since the specification of the compressor does 
not require it to operate without rnains voltage. 

Note that the precondition is not necessarily the weakest precondition. This 
point is explained at the end of this section. 

A system often also has a secondary goal which should be achieved in the 
event ofthe precondition not being met. The (primary) goal of a manipulator, 
for example, might be to piek up a product and deposit it somewhere else. In 
the case of a power failure, the secondary goal could specify that the product 
must not be dropped and that the manipulator remaio in position. 

A system is said to operate in its standard domain if the inputs that are 
applied to the system and the state of the system's environment beloog to the 
system's standard domain. 

The specification of a system thus consists of a goal, together with the 
associated standard domain, possibly complemented by a specification with a 
secondary goal for operation outside the standard dom.aifi. This 
complementary specification need not he defined for the complete complement 
of the standard domain, but can he restricted to a subset. The complete 
domain for which the specification is defined is the defined domaio of the 
system. 

In this thesis, we will only consider specifications that specify a deterministic 
effect for the inputs. Therefore, reliability specifications, such as the 
specification that a testing unit will correctly identify faulty items in· 99% of 
the cases tested, are not considered. With such a specification it is impossible 
to determine whether the unit has functioned according to its specification if, 
for example, only one test is considered in which the unit mistakenly 
determines that a faulty item is satisfactory. 

The specification of a system permits a comparison to he made between the 
actual hehaviour and the required hehaviour of the system, and can thus he 
used to define system failure. The following definition is based on the one 
from [Lee and Anderson, 1990]. 

A failure of a system occurs when the hehaviour of the system deviates for 
the first time from that required by its specification. 



Errors 31 

Failure is defined only for inputs from the defined domain. If inputs from 
outside the defined domain are presented to a system, this is an erroneous 
action by the user or from the environment of the system, since the system is 
not being operated within its specification. Failure of the system itself is not 
defined for such cases: its response is undefined. The undefined system 
response could, however, easily result in a failure of the system which 
presented the erroneous inputs to the original system. 

In [Lee and Anderson, 1990] it is required that the behaviour of a system is 
specified for all inputs. For many systems, however, this requirement is too 
strong. It contradiets the 'programming by contract' principle [Meyer, 1988], 
which implies a clear agreement about the responsibilities of the user and the 
implementer of an operation. If, for example, the precondition of an operation 
is always explicitly tested by the invoker of the operation, it is not necessary 
to de:fine the operation's behaviour for invocations outside of its standard 
domain. Duplication of the precondition test in the operation itself would, in 
this case, serve no purpose and would, in fact, lead to a more· complex and 
therefore more error-prone program. 

It may, however, he interesting to abserve whether or not the goal can still be 
satisfied outside the standard domain. This depends on how the precondition 
is defined. If the precondition is the weakest precondition for the specified 
goal, the goal cannot be satisfied for any inputs outside the standard domain. 
This is a consequence of the definition of the weakest precondition, which 
determines all inputs for which the goal can be satisfied. If the precondition is 
stronger than the weakest precondition, then the goal could he satisfied for 
those inputs outside the standard domain that satisfy the weakest 
precondition. Such a situation can occur when the weakest preconditionis not 
exactly known. An example of this is the specification of a temperature range 
over which a component is guaranteed to achieve its goal. In this case, the 
goal may also he achievable for temperatures which are slightly outside the 
given range. 

3.1.3 Correctness and errors 

A system is correct if its behaviour confarms to its specification for all 
inputs that belang to its defined domain. Therefore, correctness of a system is 
only defined for the inputs betonging to its defined domain: it means that for 
those inputs it will never fail. 
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Note that this definition of correctness makes no assumption whatever about 
the correctness of the system's design or its components. The correctness of 
the system can be determined by the user of the system, using only the 
system's specification. The correctness of the system, its design and its 
components are linked in the following definition. 

The design of a system is correct if, under the assumption that the system's 
components are correct, the system is correct when started from its initial 
state. 

This means that an incorrect design can be corrected in three ways. First, the 
specification of the system can be changed. This is usually undesirable, unless 
the specification does not correctly express the expectations and idea;s of both 
user and designer. In that case, there is an error in the specification. Second, 
the design can be changed by exchanging one or more of the system's 
components for a component with a more appropriate specification. Third, the 
design can be changed by correcting the interrelationships. 
Now that the correctness of a system and design are defined, the definition of 
correct and erroneous internat states, and internal state errors can be given. 

The internat state of a system is correct if it cannot cause system failure. 
More specifically, there may not exist a sequence of inputs from the system's 
defined domaio that will lead to faiture of the system, assuming that the 
system's components and design are correct. 

The internal state of a system is erroneous if it can cause syste~ failure. 
More specifically, there must exist a sequence of inputs from the system's 
defined domaio that will lead to faiture of the system, assuming that the 
system's components and design are correct. 

An error in the internal state of a system (or an internal state error) is a part 
of an erroneous internal state which needs to be different in order to make the 
erroneous intemal state correct. 

The above given definition of intemal state errors is more restricted than the 
definitions usually found in the literature such as in [Laprie, 1992] and in 
[Lee and Anderson, 1990]. In [Laprie, 1992] an error is defined às being 
/iab/e to lead to a subsequent faiture even though, due to (for example) 
redundancy the error can in practice never lead to system failure. In the view 
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of Lee and Anderson ( 1990), an internat state is erroneous if it can lead to 
system faiture or if corrective action is needed to prevent system failure, even 
though faiture can no longer occur due to the corrective action. They consider 
corrective action to be an essentially subjeelive element in the definition of 
internal state errors. AJthough these definitions seem to reflect the way that 
the term error is used by many people in the field, they cannot be used 
objectively in order to determine whether the internal state of a given system 
with a given specification is erroneous. This is due to the use of the subjective 
elementsof being liab/e, redundancy and correcfive action in the definitions. 
Hence the restricted definition of internat state errors is used in this thesis. 

Two examples are given to illustrate the inadequacy of the unrestricted 
definitions of (internal state) errors. 

The fust example concerns an automatic insertion system which places 
components on a printed circuit board. Soppose that the components to be 
placed have pre-formed leads. If the leads are not pre-formed within certain 
tolerances, they cannot be directly inserted into the holes in the printed circuit 
board. Their leads must be correctly formed first. For this purpose, the system 
is equipped with a vision system to determine whether the leads are correctly 
formed. lf they are not, the component leads are reshaped. Whether or not 
incorrectly formed leads are considered to be an internat state error would 
depend on the view of corrective action. lf reshaping the leads is considered to 
he corrective action, then the incorrect leads would be an error. If, however, 
reshaping the leads is considered to be part of the nonnat processing, then 
leads tbat need to be resbaped would not be an error. 

The second example is the fragment of a Pascal program shown below. lt is 
used to get the name of a person. A person is asked to type his name. If the 
name is mistyped, for example because it contains a digit, the person is asked 
to type his name again. 

repeat 
name := getName() 

until namelsCorrect(name) 

If the name is mistyped and the second call to getName is considered to be 
either redundant or a corrective action necessary to prevent system failure, 
then the mistyped name would be an error. If it were to be considered as part 
ofthe normal processing, then the mistyped name would not be an error. 
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Using the restricted definition of internat state errors, the internat states in 
both examples are correct and therefore do not contain errors, because the 
internat states cannot lead to system failure. 

The faiture of a component of a system need not lead to errors in the system's 
internat state. In practice, however, the external state of such a failed 
component is often termed erroneous. Erroneous externat states and external 
state errors are therefore introduced as new terms. 

The external state of a system is erroneous if it deviates from the extemal 
state as required by the system's specification. 

An error in the external state of a system (or an extemal state error) is a part 
of the external state which deviates from the external state as requir~d by the 
system's specification. 

Therefore, faiture of a component will lead to errors in its external state. The 
internat state of a system is a collection of the external states of its 
components. Therefore, an error in the extemal state of one of a. system's 
components can he an intemal state error in the system itself, depending on 
whether or not it can lead to faiture of the system. 

An error in the internat state of a system does not necessarily lead to system 
failure. Certain internal state errors may go unnoticed for a long time and lead 
to failures only when certain input sequences are applied to the system. 
Consider, for example, a system with a buffer which buffers components of a 
certain type in a tirst-in last-out sequence. If an erroneous component is 
supplied to the buffer, foliowed by many correct components,· the incorrect 
component may never he retrieved from the buffer at all, in which case the 
system will not fail. 

In practice, it is not always possible to uniquely define intemal state errors. If 
the design of a system is not correct, the assumption that the system's design 
is correct will yield a design which is different from the original one. An 
incorrect design can often he correctedinmore than one way. These

1
different 

correct designs can lead to the determination of different sets of internat state 
errors. 

Another type of error is a precondition error, which is defined as follows: 
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A precondition error is that part of the input to a system or part of the state 
of the system's environment which does not satisfy the system's precondition. 

Precondition errors are not internal state errors, since they do not refer to a 
system's intemal state. 
The term precondition error is taken from [Srinivas, 1978]. The use of 
preconditions is especially associated with Hoare, who introduced pre- and 
postconditions in [Hoare, 1969] to specify the meaning and prove the 
correctness of programs. Note that a precondition error is nol an error in a 
precondition. lt is the input that is erroneous, and not the precondition itself. 

The specification of the goal of a system determines the precondition 
necessary to enable the goal to be achieved and thus directly affects the 
presence of precondition errors in inputs. Consider for example a robot that 
assembles two components. lf assembly is not possible because of 
inaccuracies in the oomponent's dimensions, the components could be placed 
in a separate container. lfthe goal ofthe assembly processis specified to be 
the assembly of the components, then inaccurate dimensions would be a 
precondition error. If the goal were to be specified as the assembly of the 
components when possible and the placement of those components with 
inaccurate dimensions in a separate container, then inaccurate dimensions 
would not be a precondition error. 

The concepts defined so far will be ciarifled using an example of a simple 
transport system consisting of a conveyor belt with controller. The belt carries 
similar products that are spaeed apart at a certain distance. When a product is 
detected near the end of the belt, the belt is stopped for a predefined period of 
time and a pneumatic cylinder will extend to push the product off the belt. 
The system consists of the following components: controller, cylinder, belt, 
component detector and the products. 

Soppose the air supply to the cylinder ceases. When the first product is 
detected near the end of the belt, the belt will be stopped. The controller will 
then drive the cylinder valves in order to make the cylinder push. Since there 
is no air pressure, the cylinder will not extend. The absence of pressure is a 
precondition error for the cylinder: it makes it impossible for the cylinder to 
satisfy its goal. The cylinder does not fail, however, because it is specified not 
to operatewhen the air pressure is too low. lfthe system is specified to push a 
product o:ff the belt within half a second after the belt has been stopped, the 
system will fai/ if the cylinder does not extend on time. The interna I state 
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error which caused system faiture is the absence of air pressure. The position 
of the cylinder shaft, which is retracted instead of extended, will he ao 
externa/state error ofthe system. 
The controller could detect that the cylinder does oot extend. For this purpose, 
the cylinder cao he supplied with a limit detector to indicate when it is fully 
extended. lf, after activation of the cylinder valves, the limit detector is oot 
activated within a predefined period of time, the controller cao detect this 
external state error of the transport system by means of a time-out. It cao then 
alert the operator. After restoration of the air supply by the operator, the 
controller cao retry activating the cylinder so that the system cao, continue 
successfully. If the transport system is considered to he a component in the 
encompassing production system which also includes the operator as a 
component, then faiture of the transport system need oot lead to internat state 
errors in the production system. This is the case when the operator cao 
reeover from the external state error of the transport system aod keep the 
production system operating within the specifications. 

3.1.4 Faolts 

There are some related definitions of faults in the literature. In [Lee aod 
Anderson, 1990] faults are considered to he errors at a eertaio hierarchical 
level. They state that afault in a system is ao error in the internal sm:te of one 
of its components - which is termed a component fau/t - or ao error in the 
design ofthe system- which is termed a design fault. In [Melliar-Smith et al., 
1976] aod [Randell et al., 1978] faults are defined to he the mechanica/ or 
algorithmic cause of an error, whereas errors are only defined in internal 
states. In [Laprie, 1989] faults are defined as the adjudged or hypothesized 
cause of an error. 

A fault in a system cao remaio undetected for a long time. A fault will only 
affect the operation of the system when the part of the system containing the 
fault is used. When a fault causes ao erroneous internat state or failure, this is 
known as the manifesta/ion of the fault. 

3.1.5 Robustness 

The robustness of a system concerns the correctness of the system aod the 
way in which the system responds to inputs that do oot beloog to its standard 
domain. A system is robust when it satisfies the following two requirements: 
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• All inputs that can possibly be offered to the system are in the defined 
domain, so that for all possible inputs to the system the system's response 
is defined. 

• The system is correct. 

This means that a robust system bas a defined response, which conforms to 
the specifications, for all possible inputs. 

Robustness and correctness can be achieved for small and simpte systems like 
known mathematical algorithms, which remain unchanged over a long time: 
correctness can even be proved. For complex, practical systems the 
realization of a robust system is a target which should be aimed at. It is, 
however, practically impossible to actually achleve such a target. Even 
acmeving correctness of complex systems is extremely difficult: in practice, 
all large and complex systems contain some residual errors. Achieving 
robustness is even more difficult, because large and complex systems can take 
an enormous number of undesirable inputs for which the system's response 
must nonetheless be defined. 

Current research thus does not only focus on achieving 100% error-free 
software. It is accepted that some errors wiJl inevitably remain undetected in 
complex systems. However, the employment of redundancy can lead to the 
achlevement of fault tolerance, so that higher levels of a system can correct 
failures at lower levels, making it possible for the top level of the system to 
continue to fitnetion (within reasonable limits). See for example [Bendell and 
Mellor, 1986]. Such techniques can help in creating robust systems. They are, 
however, not treated in this thesis. 

3.2 Some general concepts regarding errors 

3.2.1 The causes of precondition errors and internal state errors 

We first consider the behaviour of a correct system consisting of correct 
components and thus also of a correct design. Even if all inputs beloog to the 
defined domain of the system, inputs that do not satisfy the system's 
precondition can still cause precondition errors. It seems useless to offer such 
inputs to a system, since the system's goal cannot be satisfied in that case. It 
cannot, however, always be avoided. Firstly, when the same input to the 



38 Chapter 3 

system can be offered from several places in the system's environment, it can 
be more econornical to test the precondition in the system itself, where the test 
need only be perforrned at one place, rather than test the precondition at every 
place where the input is offered to the system. Secondly, it may be irnpossible 
(or highly irnpractical) to explicitly test the precondition. When a robot needs 
to assembie two components, it can be easier to just try to assembie the two 
components and see whether they fit, rather than to check the components in 
advance. Even if they are checked in advance - by (say) using vision 
techniques - the tester can fail by letting faulty components pass, which will 
leadtoa precondition error in the assembly process. 

Incorrect designs are an evident cause of intemal state errors. This can be 
illustrated by the following exarnple. Referring to the conveyor belt exarnple 
in Section 3 .1. 3, let us assurne that the cylinder is rnisaligned with the position 
ofthe product detector. This will cause the belttostop at the wrong moment, 
so the cylinder will miss the product when it extends. The extemal' states of 
the cylinder, the belt and the product are all correct when regarded 
individually; it is their incompatibility which causes the intemal state of the 
control system to be erroneous. 

A sirnple error can lead to rnany other errors; this is known ·as error 
propagation. The process of error propagation is a chain which starts with an 
error, which error leads to failures, which in turn lead to fiuther errors, and so 
on. 
The following situation is an exarnple of error propagation. lf the product 
detector fails due to a fault in the detector, the controlling system will not be 
able to detect an arriving product. The error in the external state of the 
product detector is an internal state error in the control system, causing its 
failure when the belt does not stop and the cylinder does not extend when the 
component is in front of the detector. This leads to errors in the internal and 
extemal states of the control system. Note that, as in the previous exarnple, 
the internal state of the control system is erroneous, but the extemal 1states of 
the belt, the cylinder and the product themselves are correct. 

3.2.2 Errors in the controlling and controlled system 

E"ors in the contro/ling system 

These errorscan be divided into hardware and software errors. 
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Hardware errors are errors in the computer hardware. They will normally he 
very rare. They are possible, however, and should he taken into account in 
order to avoid serious damage to the machine, should they occur. An example 
ofthis type of error is a bus error (a conflict on the internat computer bus) or 
a memory read error. Errors of this kind should he detected by the operating 
system of the computer and brought to the attention of the user control 
program. In this way, the control program can take the necessary actions to 
bring the machine to a safe position and report the error. Often specialized 
hardware, such as watchdog timers, is used in order to detect and handle fatal 
program failures or crashes. 

Software errors are errors in the control program. They can appear in many 
different fonns. Some examples of software errors are: 

• Parameters may be incorrectly adjusted. A product may he placed at an 
incorrect position. This may lead to faulty products or to actual errors that 
cause part of the production process to fail. 

• Synchronization of processes may be incorrect. Since control systems are 
inherently parallel, the state of the machine will be changed by a number 
of different processes. lf a process controls a machine part, it must be 
certain that the operations of that part do not conflict with operations of 
machine parts controlled by other processes. Incorrect synchronization 
may lead to collisions of machine parts. 

• Mathernatical algorithms may be incorrect. This may lead to precondition 
errors such as division by zero or reference to a non-existent element in an 
array. If incorrect algorithms lead to such precondit ion errors, they can he 
detected by the program and brought to the attention of the user by means 
of an error message. lf incorrect algorithms do not lead to detectable 
precondition errors or to a violation of invariants that are checked by the 
program, they willlead to faiture ofthe system without warning. 

Obviously, it is preferabie not to have errors resulting from incorrect designs, 
rather than to detect and correct them. Prevention of such errors can he 
achieved through the carefut analysis and specification of the system. This 
should he foliowed by carefut implementation of the control program, and 
possibly by simulation ofthe system. 
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Errors in the controlled system 

Errors in the controlled system can have many different causes. They can be a 
result of errors in the machine parts, errors in the materials used in the 
production process, or an incorrect design of the controlling or controlled 
system. 

Machine parts may fail in various ways. Detectors may not be correctly 
adjusted, causing them to detect at the wrong moment. A motor rnay not 
respond when power is applied, or it may suddenly cease to operate due to 
overheating. 
Failures may also be caused by wear, Jack of maintenance or incorrect 
adjustment. A cylinder may start to extend and retract more slowly over a 
period of time. This may be fatal in time-critical applications. 
Tolerances in the dimensions of matcrials can result in errors, for example 
resulting in impossible assembly operations. Tolerances in the positioning of 
products when handled by machines can result in errors. A robot may not be 
able to piek up a product if the gripper is not properly aligned with the 
product. 

Comparison of errors in the controlling and controlled system 

Errors in the controlling system are usually less frequent than errors in the 
controlled system. The computer hardware is usually much more reliable than 
the machines it controls. Many errors in the computer software can be found 
using simulation models and through reai-time testing. The problem with 
testing, be it with the aid of simulation models or in real-time, however, is that 
it can only be used to indicate the presence of errors and not their absence. 
Since computer software does not suffer from deterioration over time, 
software errors will not recur once they have been corrected. The only cause 
of new software errors over time is a changed demand, resulting in the rnaking 
of new specifications and changes to the software. 
Unfortunately, the controlled machines do suffer from deterioration over time 
due to wear and ageing, possibly introducing new errors. They also iexhibit a 
stochastic behaviour in . eertaio respects. Machines and robots inevitably 
suffer from imprecise positioning, and all components have tolerances in their 
dimensions. In the controlled systerns, faults can recur after they have been 
corrected. Machine errors are therefore more frequent than other kinds of 
errors. Fortunately, machine errorscan be handled more easily than software 
errors. This is because the designer of a system knows in advance that eertaio 



Errors 41 

machine errors can occur and can then take measures to handle the errors. It 
is also known that software errors may occur, but one does not know exactly 
what kinds of error will occur. lf one were to know this, immediate action 
would he taken to correct the errors. Therefore, in this work emphasis will be 
placed on the handling of errors in the controlled system. 

3.2.3 Tbe tbree stages of error handling 

The handling of errors can he divided into three consecutive stages: 

• error detection 
• error diagnosis and damage confinement 
• error recovel)' and fault repair. 

Error detection deals with the detection of errors, either by an opera,tor or, 
preferably, by the control program. Error diagnosis deals with the 
determination of all errors in the system which are related to the detected 
error. Damage confinement is used to prevent fluther propagation of errors. 
Error recovel)' is the part of the error handling process in which the system is 
transformed from an erroneous state to an error-free state, so that normal 
system operation can continue. 

Practical systems val)' greatly in respect of the complexity of the error 
handling techniques employed. The simplest systems may rely entirely on 
operators for the detection and recovel)' of errors. In these systems, the whole 
system often needs to he reset after an error. The most advanced systems use 
artificial intelligence techniques. These systems employ fully automatic error 
detection, diagnosis and recovel)' for most errors. Only the parts of the 
production system that cannot sensibly continue due to the error will he 
affected. 

In this thesis, attention will focus primarily on control systems that do not 
employ artificial intelligence techniques for recovel)' from errors. In the 
ensuing Sections 3.3, 3.4, and 3.5, the three stages in the handling of errors 
will he further elaborated on. 
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3.3 Error detection 

3.3.1 The importance of early error detection 

A fault or error in a component can lead to the faiture of that cómponent, 
teading to an error in its external state. If the component is a part of another 
component, then the error in the external state of the first component can he 
an error in (the internat state of) the second component. This error can, in 
turn, lead to failure. In such a way faults, failures and errors can spread 
throughout the components of a system. Clearly, errors should he detected as 
early as possible, in order to prevent their propagation through the system .. 
Even if there is no danger of errors spreading throughout the system, errors 
should he detected as early as possible for reasoos of damage confinement and 
efficiency. It may seem that eertaio control actions can he effected without 
error detection. A control program which is waiting for a detector to he 
activated will he blocked if the detector is not activated due to an error. This 
will eventually he noticed by the operator, who has to discover the cause of 
the error himself. This is, however, very inefficient in terms of the resultant 
throughput of the system. · 

3.3.2 The use of sensors 

In order to detect errors in the controlled system, its state must he known. The 
control program can determine this state by means of its sensors, or by 
enquiring about the status of intelligent machine parts with 1 built-in 
controllers. Apart from this latter case, the detection of errors in the 
production process will he accomplished by reading the sensors. If an error is 
detected, it can he very difficult for the control program to determine the 
cause of the error. This depends on the number of sensors used for error 
detection. 

Cantrolling systems use two main methods to detect errors in the cbntrolled 
system: time-outs and state checks. 

3.3.3 Time-outs 

It is relatively easy to detect errors using time-outs. This notion is inspired by 
the observation that most errors do not occur at random moments, but rather 
in response to stimuli from the cantrolling system. A cylinder, for example, 
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could be obstructed when extending, so that its end position detection switch 
would not be activated. Clearly, this error can only occur when the cylinder is 
first made to extend by the control program. The error can be detected by the 
control program by specifying a maximurn time to wait before the switch is 
activated. Sinee the program will need to wait for the switch in any case, the 
only extra thing to do is to specify a maximum time to wait. · This metbod of 
error detection is thus based on the assumption that eertaio operadons 
performed by the machine should be finished within a eertaio period of time. 
The controlling system will specify a maximum time to wait for all such · 
operations. When this period of time is exceeded, a time-out will occur, 
indicating an error. The time-out metbod can only be used in sensor-driven 
systems in which the computer uses sensors for every action it orders the 
machine to do. Using sensors is the only way to check the completion of the 
actions of the machine. If, for example, a robot is made to piek up a product, 
it could be made to close its fingers, wait a short time and then continue, but, 
without a sensor, there is no way of telling whether there is actually a product 
in the robot's hand. 

3.3.4 State checks 

Detecting errors using state checks is accomplished by testing the state of the 
controlled system by means of the sensors. If the established state is different 
from what is expected, an error is detected. The error can be due to an 
incorrect state of the controlled system, or to an error in the controlling 
system itself. 

The testing of the controlled system's state can take plaee at explicit points in 
the program. Consider, for exarnple, two machine parts that move through the 
same spaee. Before moving into the shared spaee, the controller of each part 
could check that the other part is not in the shared spaee. 

The testing could also be effected during an operation. Consider a robot 
moving a part to another place. During the movement, the detector which 
indicates the presence of the part in the robot's hand could be continuously 
tested. 

Some checks must be performed throughout the control program. This is 
necessary to detect errors that can take place in large parts of the production 
cycle. The emergency switch, for exarnple, can be pressed at any time and 
requires immediate action. Thus this event must be monitored at all times. 



44 Chapter 3 

Intervention of an operator can also take place at any point in the control 
cycle. Therefore, all actions of the control program that take more time than 
the operator is prepared to wait must be interruptible. 

3.3.5 Error detection by the supporting system 

Errors in the supporting hardware cannot be detected by user programs. 
Examples of this kind of error are memory faults. Other errors, such as 
precondition errors in the inputs of system eaUs, are more easily detected by 
the supporting system than by the user program. Examples of this kind of 
error are division by zero and indexinga non-existing element in an array. Not 
only should these errors be detected by the supporting system, but a 
mechanism must also exist to bring such errors to the attention of the user 
program so that it can take the necessary actions to handle the error.! 

3.4 Error diagnosis and damage confinement 

3.4.1 Definitions 

As shown in Section 3.3 .1, a detected error can be the result of other errors in 
the system. Errors propagate through the system, and only when1 they are 
detected can furtber error propagation be prevented. This is known as damage 
confine ment. 

In the context of error handling in manufacturing processes, damage can have 
two meanings. 
The first meaning of damage is the total of all errors in the system that are 
related to the detected error. As shown in Section 3.3.1, a single 

1
fault can 

cause many errors to spread through the system. Therefore, when one of these 
propagated. errors is detected, many more may exist due to the original fault. 
Determining all the related errors, and the fault which caused them, ,is known 
as error diagnosis. 
Damage can also mean physical damage, such as personal injury, damage to 
machines or to the products being processed. ' 
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3.4.2 Error diagnosis 

Error diagnosis need not he an explicit phase in the handling of errors: it can 
take place implicitly. The point in the cantrolling process at which a machine 
error is detected approximately determines the state of the machine. A direct 
approximation of the resultant danlage can be made from this approximated 
state of the machine, tagether with the detected error. Consider, for example, 
a robot holding a product in its hand. The robot takes the product to another 
station. lf the product-sensing detector were suddenly no langer to indicate the 
presence ofthe product, this would imply an error. lfthe error occurred while 
the robot's hand moved over a transporting belt, the robot hand controller 
would assume that the product was dropped onto the belt, possibly causing 
other errors. Without fluther testing, the controller would signal the error to 
the belt controller. Here the outcome of the error diagnosis stage was that the 
belt was also affected by the error. The only information used to come to this 
conclusion was the detected error itself and the implicitly available state of the 
error detecting process. If the damage cannot be assessed accurately enough 
because, for example, not enough detectors are available, then the human 
operator can be used to assess the damage. 

3.4.3 Damage confinement 

It is the task of the control program to detect errors as soon as possible in 
order to prevent further damage. The control program cannot usually 
determine the exact cause of a detected error. Therefore, it should immediately 
bring all parts of the machine that could lead to further danlage into a safe 
state. This should be done in response to all errors interrupting the normal 
flow of control in a process. 

Let us consider a simpte automatically guided vehicle which goes back and 
forth between two positions. Suppose that a cantrolling process switches the 
motor of this vehicle on. The motor must be switched off when the vehicle 
reaches its destination. If, however, the normal flow of control of the 
cantrolling process is interrupted due to an error shortly after the motor has 
been switched on, the vehicle would continue uncontrolled. To prevent this 
from happening, the cantrolling process should be designed in such a way that 
the vehicle is always stopped when the flow of control is interrupted due to an 
error. 
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Hardware measures for damage confinement are needed, in addition to the 
software measures. A frequently used device for this purpose is a watchdog 
timer that should be periodically reset by the software. If it is not reset in 
time, for example due to a software crash, the timer automatically disables the 
outputs ofthe computer system and sets them toa predefined state. 

In many cases, the damage cannot be exactly determined. In these cases, the 
control program should make a realistic worst-case assumption to prevent 
ftlTther damage. Consider, for example, a simpte fork-lift truck carrying a 
heavy load. Suppose that the truck moves a short distance toanother location 
and simultaneously the fork moves upwards. If the controller detects an error 
because the truck does not reach its destination in time, this could be due to 
failure of the truck detector. In this case, stopping the truck would suffi.ce. 
But the controlling system should stop both the truck and the fork mQvements, 
since a ooilision with another object is also possible. 

In most situations, the error should be reported to the operator. The operator 
can then check the system to see if the damage prevention actions of the 
controlling system have been sufficient. If the controlling system cannot 
automatically reeover from the error, the operator can assess the dalnage and 
decide how to reeover from the error. 

It is not always obvious how machine parts should be brought into a safe 
state. The control program usually does not know exactly what bas happened. 
In many cases, however, there is a rather straightforward solution to this 
problem, basedon the safety requirements regarding emergency stops by the 
operator. This is explained in the following two sections. 

3.4.4 Emergency stops 

Since the control system bas a limited number of detectors, it can only have a 
limited view of the production process and cannot detect all errors. 1lherefore, 
any production system must have emergency buttons which can be pressed by 
the operator in the case of a serious error which bas not been detect~d by the 
controlling system. The emergency button will be pressed, for example, when 
the operator sees that another person is in danger of being injured by the 
machine. 

The pressing of an emergency button must bring the machine or a part of it to 
an immediate stop. This ca'n be done in two ways: electromechanically, by 
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having the emergency switch directly switch off the power supply of all 
machine parts; or the control program can detect the activation of the 
emergency button and then bring the machine into a safe state by control 
commands. 
The safest way to deal with emergency stops is to use both ways. This bas 
two advantages. lf the control program were to fail because of a software 
error, the machine is switched off anyway by direct interruption of the power 
supply. On the other hand, a person could accidentally deactivate the 
emergency button prematurely. In this case, the machine will not suddenly 
become operational again, because it is also kept in a safe state by the control 
software. lt is not always possible to use this kind of error handling in the 
case of an emergency stop: in complex and critical systems such as nuclear 
power plants, it is not possible to simply switch off the power supply in the 
case of an emergency stop. In such systems, the control software should be 
reliable enough to handle emergency stops by itself. 

3.4.5 The safe state of machine parts 

Pressing the emergency button will often switch off all energy supplies to the 
controlled system. As a result of this, the machine parts should automatically 
go into a safe state. A safe state is a state from which no damage to machines 
or products and no hurnan injury will result and which will not lead to any 
additional errors. It follows that the machine parts should be constructed in 
such a way that they automatically go to a safe state when the power supply 
is disconnected. The safe state of a machine part depends on its function. 
Preferably the safe state of a moving machine part should be such that it can 
be freely moved by manual power. In this way, a person who is stuckin the 
machine can be released. 

In the case of a cylinder, for example, a type with two valves could be chosen. 
Under normal operating conditions, one of the two valves will be closed and 
the other one open. If power is removed from the valves they will either both 
open or both close. The cylinder shaft should then be freely movable. 
In some cases, a freely movable part is impractical. A machine part which 
lifts a heavy load, for example, should not be left to move freely after an 
emergency stop: rather, it should be blocked to prevent the heavy load from 
falling. In this case, a brake could be put on the cylinder shaft. The brake 
should be free when power is applied to it, and it should be on when the 
power is switched off. 
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The safe state that a machine part should be brought into in the case of an 
error can often be precisely the state it goes to after an emergency stop. This 
follows from the fact that both after an emergency stop and after another error 
during the production process the main goals are often the same: the 
prevention of possible personal injury and damage to the machine. There are 
also some differences. An emergency stop should only be used in emergencies. 
Therefore, it really does not matter if production time is lost due to an 
emergency stop. For less serious errors, however, it is important to handle 
errors as efficiently as possible. In many cases, bringing a machine part to the 
single safe state is a simpte and reliable concept. 

3.5 Error recovery and fault repair 

lf a system is in an erroneous state, there are two possibilities for returning 
the system to a correct state. 

Selective changes can be made to the state in order to remove the errors. This 
is known as forward error recovery, and it is suitable for control systems. It is 
mainly used to reeover from anticipated errors. 
The other possibility is to discard the current state completely and return to a 
previously recorded state of the system. This is termed restoring the state of 
the system. lf the errors which caused the state to be erroneous occurred after 
the recording of the state, then the restored state will be error-free. This is 
known as backward error recovery, and it can be used effectively to reeover 
from unanticipated damage. It is, however, difficult to use when · physical 
processes are controlled. 

The following sections will deal with state restoration and forward and 
backward error recovery. 

3.5.1 Backwant error recovery and state restoration 

The simplest form of state restoration uses fixed states to which a sy~tem can 
return. lf there is only one fixed initial state to which the system can return, 
this state is known as the reset state and state restoration will mean resetting 
the system. An example of this is found in personal computer systtïms: if a 
fatal error occurs, such that the system no Jonger responds to the user, then 
the user can reset the computer. 
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A more powerfut form of state restoration can restore the state of the system 
to eertaio states which have previousty occurred, taking into account all 
events that have happened in the system. The point in time at which the state 
of a system is recorded for a possibte subsequent restoration is a recovery 
point. Restoring the recorded state betonging to a recovery point is known as 
restoring the recovery point. 

Backward error recovery can be used effectivety to reeover from 
unanticipated errors. This is because no knowtedge is required about the 
erroneous state. The only thing that is important is that the state at the 
recovery point to be restored is error-free and consistent. 

The problem with backward error recovery is that it only works with 
recoverable components. This is not a problem in pure software systems, 
where values can be automatically restored independently of their current 
values. Physical systems, however, are usually not so easily recoverable: if a 
hole has been drilled, it cannot be undrilled. In order to make such a 
component recoverable, it coutd be replaced by another still intact component. 
The recovery of a robot to a previous state would imply moving the robot 
itself, and all its parts, back to their previous positions. 

Other problems arise when concurrent processes are used. These problems 
arise from the fact that processes interact for the purposes of synchronization 
and inforrnation exchange. lf a recovery point is restored in a process which 
has interacted with other processes after the recovery point, then these other 
processes wiJl atso need to be restored to previous recovery points. The 
recovery of these processes may again trigger recovery in other processes, 
including the original one. This effect is known as the domino effect [Randell, 
1977]. 

The technique of recovery blocks [Horning et al., 1974] uses a recovery point. 
This technique is based on supplying redundant algorithrns for the same task. 
A recovery point is established before entering the recovery block. The task is 
first executed by the primary atgorithrn. An acceptance test must be specified 
to delermine if the task has been successfully fulfilled. lf not, the recovery 
point is restored and another atgorithrn is tried. 
Because recovery blocks use a recovery point, they share the problems 
associated with recovery points discussed above. 
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3.5.2 Forward error recovery 

Forward error recovery methods make incremental changes in the current 
erroneous state in order to come to a correct state. In order to be able to make 
the right changes in the erroneous state, the state bas to be fairly accurately 
known. Therefore, forward error propagation is especially useful for 
recovering from anticipated errors. Consider, for example, an automatic part 
feeder. lf the feeder were regularly to suffer from jammed parts, it could be 
equipped with an air jet propulsion system. Upon detection of a jammed part, 
a forward error recovery mechanism could automatically blow the jammed 
part out of the way. 

As shown in the previous section, resetting a system to a predefined state is a 
form of state restoration. Resetting a system is also possible using forward 
error recovery. In fact, this is a more powerfut form of resetting. Resetting a 
system using state restoration completely discards all information relating to 
the previous state. In many cases, it is necessary or useful to take tlle present 
state into account when resetting a system. Consider, for example, a process 
which takes finished products from a transporting belt and puts them into a 
container at predefined places. lf an error occurs which forces the resetting of 
the system, the initial state of the process cannot be completely restored, since 
the system must remember the places in the container that are already 
occupied. 

Because of the simplicity of forward error recovery and the problems 
associated with backward error recovery, this thesis wilt be limited to a 
treatment of forward error recovery. 

3.5.3 Fault repair 

Error recovery and fault repair can be viewed as two distinct phases. Error 
recovery enables the process to reeover from the error, and fault repair will 
correct the fault which caused the error, thereby preventing recurrence of the 
same or a similar error. Fault repair is usually part of the error. recovery 
process. Consider, for example, a vehicle which is blocked by an obstacle. If 
the obstacle is removed so that the vehicle can continue, fault repair is part of 
the error recovery. If, however, the vehicle reeovers from the error by moving 
around the obstacle, fault repair could take place later by removing the 
obstacle. 
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3.6 Summary 

The definition of errors is based on the defmition of a system as either being 
atomie or consisting of a set of cooperating components. The behaviour of a 
system is determined by its design and its state. There are two kinds of state: 
external and internal states. External states are the states ofthe system which 
are relevant for the system's environment. Internal states are relevant for the 
internal operation of the system. The interna I state of a system is defined as 
the aggregation of the external states of its components. The external state of 
a system is an abstraction of its internat state. 
A system will be designed for a specific purpose. This purpose is specified by 
the goal ofthe system. Usually, the specification will place eertaio restrictions 
on the system's inputs and on the state ofthe system's environment, so that the 
system can realize its goal when those conditions are met. These restrictions 
are specified by the precondi/ion. of the system. The complete domaio for 
which the system's specification is defined is the dejined domain of the 
system. A fai/ure of a system occurs when the behaviour of the system 
deviates for the first time from that required by its specification. 

The definitions given above are used in the definition of errors. In order to 
avoid the ambiguity in many of the defmitions of errors in the literature, 
different kinds of error have been distinguished. The definitions are as 
follows. 

The internal state of a system is erroneous if it can cause system failure. 
More specifically, there must exist a sequence of inputs from the system's 
defined domaio that will lead to faiture of the system, assuming that the 
system's components and design are correct. 

An error in the internat state of a system (or an internal state error) is a part 
of an erroneous internat state which needs to be different in order to make the 
erroneous internat state correct. 

An error in the external state of a system (or an external state error) is a part 
of the external state which deviates from the external state as required by the 
system's specification. 

A precondition error is that part of the input to a system or part of the state 
of the system's environment which does not satisfy the system's precondition. 
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Some different causes of errors have been treated, and errors in the cantrolling 
and controlled system have been distinguished. Errors in the controlled system 
have been shown to be more frequent than errors in the cantrolling system, 
mainly because errors in the controlled system can recur once corrected, due 
to their stochastic nature. Software errors will not recur once they have been 
corrected. 

Finally, the three stages of error handling have been treated. These are error 
detection, error diagnosis and damage confinement, and finally error recovery 
and fault repair. 



Chapter 4 
Basics of exception handling 

An error is a common concept, although the exact meaning of errors is not as 
easily defined as might appear at first sight, as bas been sbown in the previous 
chapter. Exceptions are related to errors. The definition of exceptions is even 
more difficult than the definition of errors. It appears that many papers differ 
in their definitions of exceptions, sometimes exceptions are not defined at all. 
Some existing definitions of exceptions are evaluated in this chapter, resulting 
in a definition of exceptions and related terms. The relationship between 
errors and exceptions is also investigated. Finally, several mecbanisms are 
treated for the handling of exceptions in a sequential process. 

4.1 Definition of terms 

4.1.1 Operations 

An exception is always related to an operation in a sequentia) process. An 
operation is a special kind of system. The meaning of operation is not 
restricted to procedures or functions. An operation is a logically related 
group of statements or expressions in a sequential process with a single entry. 

The meaning of goal and precondition bas already been given in relation to 
systems in Section 3.1.2. They will be repeated briefly bere. 
An operation is designed for a specific purpose. This purpose is specified by 
the goal of the operation. The goal is a relation between the inputs to the 
operation and the resulting responses of the operation. 
The precondition of an operation specifies the restrictions on the operation's 
inputs and on the state of the operation's environment, so that the operation 
can realize its goal wben those conditions are met. The precondition refers to 
the extemal state of the operation if the operation interacts with operations in 
other processes. 
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4.1.2 Exceptions, exception occurrences and exception conditions 

Unfortunately, many different definitions of exceptions exist. Some of these 
definitions are cited in order to give the reader an impression of the different 
ideas about exceptions in the literature. 

In [Y oung, 1982] the tenn exception is used to denote the occurrence of an 
error. Horowitz (1983) explains that the tenn exception is chosen to 
emphasize that the condition which arises need not be an error, but merely 
some event whose possibility requires versatility of action. Dony (1990) 
defines an exception as a situation teading to the impossibility of fin.ishing a 
computation, whereas Cox and Gebani (1989) define an exception a8 an event 
that occurs infrequently, possibly indicating an error. A quite different 
definition is given by Szalas (1985): 'Exceptions are rare situations detected 
by a run-time system or by a user program.' Lee and Anderson (199P) use the 
component model of a system for the definition of exceptions. They do not 
give a fonnal definition of exceptions, but rather state that: 'The abnorrnal 
responses from a component are commonly referred to as exceptional 
responses or exceptions, particularly in software systems.' In (Knudsen, 
1987] the following definitions are given: 'An exception occurrence is a 
computational state that requires an extraordinary computation. Exceptions 
are associated with classes of exception occurrences. An exception is raised if 
the corresponding exception occurrence bas been reached.' 

Probably the most :frequently cited artiele about exceptions is [Goodenough, 
1975], which covers many exception handling concepts. Goodenough defines 
exception conditions as follows: 'Of the conditions detected while attempting 
to perfoon some operation, exception conditions are those brought to the 
attention ofthe operation's invoker.' Another :frequently cited artiele is [Liskov 
& Snyder, 1979]. Like Goodenough, these authors refer to exception 
conditions, which they also call exceptions. They do not give a fonnal 
definition, but state that: "The tenn 'exception' is chosen because, unlike the 
tenn 'error', it does not imply that anything is wrong." Christian, in bis articles 
[Christian, 1982, 1984], defines an exception occurrence as an invocation of 
an operation or program in its exceptional domain, where the exceptional 
domain contains all initial states for which the goal of the operation or 
program cannot be reached by its normal execution. 

A definition of exceptions should describe their most essential characteristics. 
lt should also he consistent with the use of exception in the te~inology 
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exception condition, exception occurrence, exception declaration, exception 
hand/er and signaling, raising, catching and handling an exception. 
The most essential characteristic of exceptions is also the common part of 
many different exception definitions. It is the fact that, when an exception 
occurs during the execution of an operation, the operation cannot achleve its 
goal, for example, due to division by zero or due to the pressing of the 
emergency button by the operator. 

Here exceptions are considered only in relation to programs, not in physical 
systems themselves. This is because the terminology of signaling and 
handling of exceptions is based on programs and is not relevant to physical 
systems. 

The term exception is used in many different ways, which makes it difficult to 
define exceptions accurately. They can he defined more easily if the term 
exception occurrence is defined first. lts definition is related to the definition 
given by Koudsen (1987) and Christian (1982, 1984): 

An exception occurrence is a computational state such that some invoked 
operation cannot realize its goal. 

Clearly, this definition implies that the determination of exception occurrences 
is dependent on what is regarded as the goal of an operation. The word 
computation is used to emphasize that exception occurrences are related to the 
execution of a program. They occur and must he handled at run-time. 
The computational state can he restricted to the state of the process executing 
the operation, but it can also include parts of the state of the process's 
environment. 

The invoked operation which cannot realize its goal can he any operation in 
the call chain ofthe process: it need not he the operadon called last. Consider, 
for example, the inversion of a singular matrix. If this operation is attempted, 
all states reached in this operation and in operations that are subsequently 
called will he exception occurrences. This is due tothefact that the inversion 
operation will not he able to reach its goal, even though operations called by 
the inversion operation to perform the desired calculations will he able to 
reach their goals. 

This definition comes close to the definitions in [Christian, 1982, 1984]. 
There are, however, some important differences: 
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First, in our definition, an exception occurrence is not exclusively related to 
initial states, as in Cbristian's definition. This is because exception 
occurrences can also be related to the state of the environment of the process 
executing the operation, sucb as the state of an emergency button. The cause 
of this difference is that Christian's definition is based on internat exceptions 
and disregards external exceptions. (lnternal and external exceptions will be 
defined later in this section.) 

Second, the use of the term normal execution is avoided in our definition, 
because 'normal' is essentially a subjeelive term and, even more importantly, 
because it suggests that the operation could realize its goal in an i abnormal 
way. The essence of an exception occurrence, bowever, is that some invoked 
operation cannot (in any way) realize its goal. It is important that the passive 
voice is not used in this statement, because it may be possible to realize the 
goal of the operation, but the particular operation itself cannot !realize it. 
Consider the example of the memory allocation problem in a multi-process 
environment (whicb is often cited as an illustration of the use of the resume 
response). Suppose that the allocate function is invoked wben all memory bas 
already been allocated. The allocate function will try to allocate memory from 
the memory pool directly, whicb will not be possible, and so an exception 
occurrence results. This exception could be handled by making other process 
release some memory. After that, the handler could issue a resume • response, 
and the allocate function could resume execution by allocating the desired 
memory from the pool. In this case, the goal of the allocate function is the 
direct allocation of the requested memory from the pool. An exception is 
raised only wben this is not possible. When the memory is finally! allocated 
after the resume response, tbe allocate function bas realized a secondary goal, 
namely the allocation of the requested memory after the deallocation of 
memory by other processes. If the allocate function were to be rewritten in 
sucb a way that it would itself request other processes to deallocale some 
memory in the case of insufficient memory in the pool, then this allocate 
function would have a different goal, namely the allocation of the request 
memory at the time wben enough memory is available. 

Christian's definition could be changed by taking account of external 
exceptions and teaving out the term 'normal execution'. This would lead to the 
following definition: an exception occurrence is an invocation of an bperation 
in its exceptional domain, wbere the exceptional domain contains all stales for 
whicb the operation cannot reacb its goal. In this thesis, bowever, tbe 



Basics of exception handling 57 

definition of an exception occurrence as a computational state will be used, 
which bas been defined earlier in this section. 

All attempts to defi.ne an exception simply as an error, event, condition or 
response are bound to be unsatisfactory because of the many different uses of 
exceptions. Errors, events and responses, for example, cannot be raised and 
do not have a condition. Therefore, we will not explicitly define what an 
exception is, but rather give its characteristics and, in the next section, explain 
its use. 

An exception is associated with a class of exception occurrences [Knudsen, 
1987]. 

The exception condition describes the common aspect of the exception 
occurrences associated with the exception. 

Exception occurrences and exceptions are either internat or external. The 
definitions are as follows. 

An internal exception occurrence is an exception occurrence of which the 
computational state is completely determined by the internal state of a 
sequentia) process. 

An external exception occurrence is an exception occurrence of which the 
computational state is determined by the internat state of a sequentia) process 
and the external statesof one or more other processes. 

An internal or external exception is an exception which is associated with a 
class of internator extemal exception occurrences respectively. 

Extemal exception occurrences can appear to be intemal. This is due to the 
fact that controlling systems must sample the state of the controlled system. 
The sampled values of the sensors constitute a part of the intemal state of the 
controlling system. An exception occurrence caused by the (sampled) value of 
the state of a sensor rnay therefore seem to be an internat exception 
occurrence. In reality, however, the sampled values are used onder the 
assumption that they are equivalent to the corresponding actual values of the 
physical sensors. So, the exception occurrences are, in fact, determined by the 
actual values of the sensors and are therefore extemal. 
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In other cases, the inputs supplied to a process will actually cause internat 
exception occurrences. This is the case, if the inputs need only be received 
once and can consequently be used throughout the process, eventually 
resulting in the production of outputs. If such inputs contain precondition 
errors, they willlead to internat exception occurrences in the process. 

In the literature, the tenns asynchronous and synchronous exceptions are 
sometimes used insteadof external and internat exceptions respectively. 

4.1.3 Signaling, handling, declaring and raising exceptions 

When an exception occurrence is detected in an operation, the corresponding 
exception or exception condition should be signaled. By signaling the 
exception, the specific infonnation about the exception occurrence is lost. 
How the signaling of an exception is actually implemented depends on the 
programming language used. When an exception is signaled, it must be 
handled. The handling of exceptions refers to the way a program reeovers 
from a situation in which some invoked operations cannot realize their goal, to 
a situation where all invoked operations can, in principle, realize their goal. 
There are several exception handling mechanisms in programming languages. 
In the simplest programming languages, signaling an exception is done by 
returning an error code. This is described in Section 4.3.1. Some 
programming languages offer a more sophisticated mechanism for exception 
handling. 

In some languages, exceptions can be declared in an exception declaration 
using the predefined exception type. In an exception declaration, a new 
exception is declared and an identifier is bound to this exception, so that the 
identifier denotes the exception. Other language constrocts offered by these 
languages to support the exception handling mechanism are constrocts for the 
raising of exceptions, which are comparable with predefined raise procedures, 
and the declamtion of exception handlers. An exception is signaled by 
raising the exception by means of the raise procedure. Raising an: exception 
will result in the activation of an exception handter which was bound to the 
exception. The functionality of the exception handling mechanism of these 
languages will be elaborated further inSection 4.4. 

In Smalltalk-80, instances of class Signal are used to denote exceptions. The 
raising of such a signal in the case of an exception occurrence leads to the 
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creation of exception objects, which are instances of the class Exception. The 
functionality of the exception handling mechanism in Smalltalk-80 wilt be 
elaborated fluther in Section 4.5. 

The detection of an exception occurrence should lead to the signaling of the 
corresponding exception. This can be done by raising the exception or, for 
example, by returning an error code. On the other hand, exceptions should 
only be raised in the case of an exception occurrence. In fact, we regard the 
raising of exceptions in other cases as bad programming practice. 

When the invocation of a program unit results in an exception occurrence 
which is either handled in a handter bound to the unit, or propagated to the 
unit's invoker, the unit is said to terminate with an exception. Such a 
termination of the unit can also be referred to as an exceptional termination. 
This definition assumes that exception handling follows the terminalion model 
or, in the case ofthe resumption model (see Section 4.4.4), that it does not use 
the resume response. The other possibility is normal terminalion of the unit, 
by executing the statement just before the block's end identifier (or other 
symbol or identifier which closes the block), or by executing a return 
statement. 

4.1.4 The relationship between exceptions and errors 

Exceptions are used in programs in order to facilitate the handling of 
precondition errors in a structured way, and in order to facilitate the creation 
of robust programs in the presence of precondition errors. Exceptions and 
exception occurrences are only defined in relation to the execution of 
programs. Errors, on the other hand, are not restricted to any particular kind 
ofsystem. 

Exceptions can, to some extent, also be used for the handling of errors in the 
design of a controlling or controlled system; but only if the incorrect design 
leads to precondition errors or to the violation of invariants (which can be 
detected by means of assertions). 

4.1.5 The relationship between exception occurrences and errors 

An exception occurrence will ultimately always be caused by an error. This. ~ 

error can either be an internat or extemal state error, or a precondition error, . 
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If a system is correct and (recursivety) all its components are correct, then all 
exception occurrences will be the resutt of precondition errors. lf the system 
and its components are atso operated in their standard domain, so that no 
precondition errors can occur, then the goals of all components can be 
realized and so no exception occurrences will take place. The relation between 
ex ception occurreóces and errors will be elaborated further below. 

If the weakest precondition of a system is not satisfied, then it will be 
impossible to realize the system's goal and so an exception occurrence will 
resutt. Therefore, precondition errors which violate the weakest precondition 
of a system atways lead to exception occurrences. Precondition errors which 
do not violate the weakest precondition of a system may lead to exception 
occurrences. 
Exception occurrences need not always be caused by precondition errors. 
They can also be caused by incorrect designs that lead to internal state errors. 

Internat state errors can lead to exception occurrences, dependip.g on the 
inputs to the system. As explained inSection 3.1.3, internat state errorsneed 
not always lead to faiture of a system. Certain internat state errors will only 
lead to faiture in the presence of certain inputs to the system. If the i inputs are 
such that faiture will result, it will obviously also be impossible for some 
operation to realize its goal, and so there will also be an exception occurrence. 
If the inputs are such that faiture does not result and the goal of the system 
can be realized, then the internal state error will not lead to an exception 
occurrence. 

External state errorscan lead to exception occurrences. However, this is not 
always the case, because the external state errors of a component can be 
corrected by the encompassing system, for example by using redundancy. 

Exception occurrences can coincide with internat or extemal state errors, but 
cannot cause them. 

4.2 Basic requirements for a mechanism for the handling of 
internal exceptions 

Some of the requirements for an exception handling mechanism are 
application independent, while others do depend on the kind of application. 
When developing and testing a program, for example, an appropriate response 
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to an error would be to stop execution of the program and enter a debugger._ 
In reai-time systems, this response would be unacceptable. The requirements 
that should be met by a general-purpose mechanism for the handling of 
internat exceptions are given below. These requirements should also be met by 
exception handling mechanisms used in languages for the eontrol of industrial 
systems, tagether with additional requirements concerning constraint 
violations. Constraint violations will he treated separately in Chapter 5. 

I. The mechanism should facilitate the creation of robust programs. 

2. All exception occurrences which are detected should allow for damage 
confinement and error recovery code to he executed. 

3. The mechanism should he easy to use and understand. lt should consist of 
a small number of orthogonal elements. This means that the elements can 
be used independently of other programming elements and do not overlap. 
This is a criterion which is often used in the design and analysis of 
programming languages. 

4. There should he a clear separation of the code for normal program 
operation and the code for exception handling. 

5. User programs should be able to handle exceptions detected in the user 
program itself and those detected in the routines ofthe supporting system 
in the same way. 

6. lf an exception occurrence results in the termmation of a call chain of 
several levels, each level should he allowed to futfit its own finalization 
obligations. 

A consequence of the second requirement is that the often encountered way of 
error handling which simply results in an error message and a user process 
being killed is unacceptabte. 
In addition to requirement number 3, it should be noted that is not necessary 
to strive for absolute orthogonality. 

Requirement number 6 is a result of the use of different levels of abstraction 
which makes complex programs manageable. These different levels of 
abstraction should he used both for the normal operation of a program and for 
the exception handling operation. 
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Finalization obligations are the actions that have to be taken in order to bring 
a component in which an exception has occurred to a safe and consistent state 
after the exception occurrence, so that the romponent's invariants that have 
been invalidaled due to the exception occurrence are restored. 

Consider the fork-lift truck example from Section 2.3. This example is 
slightly modified so that CtriTruck directly controts the fork-lift, see Figure 
4.2.1. Here there are three levels of abstraction. The first level is the global 
process cycle represented by the body. The second level consists of the taking 
of the stack with the necessary synchronization with the stack supplying 
process. The actual control ofthe actuators and detectors ofthe for~-lift takes 
place at the third level. 

ctriTruck » body 

"Finalization obligations: 
Return the fork-lift truck to the predefined reset position" 

self receiveStackFromTraverse. 
self transportStackToFumace. 
self giveStackToFumace. 
self goBackTo Traverse 

CtriTruck » receiveStackfromTraverse 

"Finalization obligations: 
Correct the synchronization with the Ctr/Traverse processor" 

self sendTo: 'sync-truckResetAtTraverse'. 
self receiveFrom: 'sync-traverseAtFork'. 
self forkUp. 
self sendTo: 'sync-forklsUp' 

ctriTruck » forkUp 

"Finalization ob/igations: 
Stop the motor of the fork lifter" 

self putOn: 'o-forklifter-up'. 
self putOn: 'o-forkLifter-power'. 
self 

receive: true 
trom: 'i-forkLifter-up' 
within: 6 seconds 
ifrimedOut: ["raise exception'l 

self putOff: 'o-forkLifter-power' 

Figure 4.2.1 Three levels of abstraction wilh difforent finalization 
ob/igations 
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Suppose tbat tbe end detector is oot activated in time while moving tbe fork 
up. possibly because of a defect in tbe detector. If tbe error cannot be 
corrected, it is not possible to continue tbe process cycle and all three levels 
should be terminated. At tbe third level tbe exception handling operation 
would consist of stopping tbe fork-Iift motor. At tbe second level tbe 
synchronization witb tbe CtriTraverse processor would need to be corrected. 
This is necessary to prevent tbe CtriTraverse processor from waiting for a 
signal tbat tbe fork is up. which signal will no Jonger arrive. Finally. in tbe 
body. tbe fork-lift truck could be returned toa predefined reset position. Each 
level executes only the finalization operations necessary due to its own 
premature termination. 

4.3 Traditional ways of exception handling 

4.3.1 Using returned values as exception codes 

The simplest way of exception handling is by passing special codes tbrough 
argurnents or returned values of procedures or metbods. This is tbe .way 
internat exceptions are handled in tbe Unix operating system written in tbe C 
programrning language. It is also tbe metbod that must be used in Sequential 
Function Charts [IEC 848, 1988] when goto-like jumps are to be avoided. 
Altbough the advantage of this metbod is tbat it is very simp Ie to understand 
and requires no special support, tbe drawbacks to tbis way of exception 
handling are so severe tbat this metbod is unsuitable for use in industrial 
control systems. In this section. it will be shown that this metbod cannot 
satis:ty tbe requirements defined in tbe previous section. 
Using returned values as exception codes means tbat tbe results of all 
operations must be checked for tbe occurrence of exceptions. This bas several 
severe consequences: 

1. The creation of robust programs becomes problematic. The amount of 
code needed just to check error return codes beoomes enormous. A single 
test can easily be forgotten. This will not hinder normal program 
operation and may tbus remain unnoticed for a long time. Only when an 
error occurs. will tbe failure to test for tbe error occurrence cause tbe 
program to continue in an erroneous state witb possibly disastrous 
consequences. Also, it can be very difficult to detect the cause of such 
errors. 
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2. Many system operations do not return any error values. Therefore, no 
error recovery code can he executed for these errors. Consider, for 
example, arithmetic operations sucb as division. A simpte division could 
result in a division by zero error. It is unacceptable that sucb an error 
simply prints an error message on tbe terminal and stops the system, 
because this makes it impossible for tbe user program to do any · damage 
confinement and error recovery. 
Error information could he supplied in global variables in an environment 
with a single user process. In a multi-process environment, this will lead 
to unpredictable and possibly erroneous program operation. In sucb a 
case, there sbould he a 'global' error variabie for every process. The 
problem whicb still remains is that sequential errors overwrite the global 
error variable: if an error is undetected due to omission to test the global 
error variable, another error may result, whicb overwrites tbe original 
error information. More important even than this is tbe fact that sucb 
scbemes are bighly impractical, and that it is undesirable to use a second 
mechanism for the handling of errors that cannot he handled by nbtuming 
error codes. 

3. The exception testing code will he intermingled with tbe code for normal 
program operation, teading to programs that are hard to read. 

Figure 4.3.1 gives an example of this way of exception handling. The send 
and receive operations are not cbecked for error return codes. If errors can 
occur during execution of these statements, then they sbould also he cbecked 
for error return codes. 

4.3.2 Other mechanisms 

There are several other traditional mecbanisms for the bandling of exceptions. 
The reader is referred to [Goodenough, 1975], whicb contains an ex;tensive 
treatment of these mecbanisms. They will not he dealt with fi.Jrther bere. The 
V AXELN system [Digital, 1986] bas some similarities with the exception 
bandling mecbanisms treated in Section 4.4. lt also bas special exception 
bandling capabilities for multi-process environments. lts treatment will 
therefore he deferred until Section 5.5 .2. 
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CtriTruck >> body 
{lelf receiveStackFromTraverse) ==#ok ifFalse: [t #error]. 
{self transportstackToFumace) ==#ok ifFalse: [t #error]. 
{self giveStackToFumace) ==#ok ifFalse: [t #error]. 
{self goBackToTraverse) ==#ok ifFalse: [t #error]. 
t#ok 

CtriTruck >> receiveStackFromTraverse 
self sendT o: 'sync-truckResetAtTraverse'. 
self receiveFrom: 'sync-traverseAtFork'. 
(self forkUp) ==#ok ifFalse: (t #error]. 
self sendT o: 'sync-forklsUp'. 
t#ok 

CtriTruck >> forkUp 
self putOn: 'o-forklifter-up'. 
self putOn: 'o-forklifter-power'. 
self 

receive: true 
from: 'i-forklifter-up' 
within: 6 seconds 
iffimedOut: 

[self putOff: 'o-forklifter-power'. 
t #error]. 

self putOff: 'o-forklifter-power'. 
t#ok 

Figure 4.3.1 Exception handling by returning error codes. 

4.4 Advanced exception handling mechanisms 

65 

Exceptions have been defined in Section 4 .1. In order to support the handling 
of exceptions, some progranuning languages have implemented advanced 
exception handling mechanisms. This section discusses these mechanisms, 
using the mechanisms of two imperative programming languages as an 
example. The advanced exception handling mechanisms of most programming 
languages differ only in minor aspects, the underlying concepts being the 
same. This section will focus on the common qualities of the mechanisms 
rather than on the differences. The examples given will use either the ModPas 
[Bron and Dijkstra, 1987a] or Ada programming language [Ichbiah, 1983]. 
Modular Pascal, or ModPas, is a Pascal based language which includes 
modules. It was one of the first languages to include an advanced exception 
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handling mechanism. The exception handling mechanisms of Modutar Pascal 
and Ada arebasedon [Bron and Fokkinga, 1976]. 

4.4.1 Exceptions 

Exceptions can be declared in exception dectarations. This is done as follows 
in ModPas and Ada respectively: 

EX.CEPTION xFataiError; {ModPas exception dec/aration} 

ILLEGALPARAMETER : exception; - Ada exception deelaratien 

Exceptions are signaled by raising them in a raise statement. In ModPas, the 
raising of an exception is syntactically equivalent to the invocation of a 
parameterless procedure. In Ada, this is done by means of the predefined raise 
operation. 

xFataiError; {raising a ModPas exception} 

raise ILLEGALPARAMETER; - raising an Ada exception 

4.4.2 Exception handlers 

An exception handter is bound to a syntacticat unit and to an exception. In 
this way associations or bindings between the handter and the unit, and 
between the handter and the exception are created. In some programming 
Janguages, a handter can he bound to multiple exceptions. Severat exception 
handters can he bound to the same unit. The kind of unit that exception 
handters can be bound to depends on the programming language used. 
Handiers can usually be bound to procedure and function bodies. Some 
Janguages also altow handters to he bound to btocks (other than ptocedure 
and function bodies) and to modules or packages. The binding of a handter to 
a unit and to an exception is usually statie, which means that the association 
between the handler and the unit and between the handter and the exception is 
determined at compile-time. In ModPas, procedure and function bodies rnay 
be prefixed by handlers, the form of which is: BUT FOR <exception identifier>: 
<handler body> DO. In Ada, handterscan he attached toa block, a body of a 
subprogram, a package or a task. They are specified by means of the reserved 
word exception foliowed by the declamtion of one or more handters at the end 
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of a unit. The form of a hamlier is: when <exception identifier> => <handler_ 
body>. 

BUT FOR xFataiError: write(" fatal error ! ") DO 
BEGIN 

calculate; 
{rest of ModPas program} 

END; 

begin 
CALCULATE; 
- rest of Ada program 

exception 
when ILLEGALPARAMETER => PUT(" illegal parameter ! "); 

end; 

A unit is said to have a hamlier for a specific exception if a handter which can 
catch the exception is bound to the unit. A handter can catch only those 
exceptions that are bound to it. In the previous example, the ModPas body 
has a handter for the xFataiError exception and the Ada block has a handler 
for the ILLEGALPARAMETER exception. Mostprogramming languages allow 
special handters to be defined that can catch any exception, or all exceptions 
for which no other handters are defined. This kind of handter will be referred 
to as an any hand/er or others hand/er. This is necessary for the handting of 
'out of scope exceptions' and to allow for finalization obligations. Out of 
scope exceptions are exceptions which are propagated out of the scope of 
their declaration. lf this occurs, the only way to catch them is with an 'any 
handler'. In ModPas, an any handter is specified by means of specifying xAny 
as the exception of a handter and in Ada others is used for this purpose: 

PROCEDURE readlnputsFromFile; 
BUT FOR xAny: {close file}; xReraise DO 

BEGIN 
{open file}; 
{process file} 

END 

begin 
-- Ada program 

exception 

{xReraise is explained in Section 4. 4. 5} 

when others => PUT(" error ! "); raise; 
- raise is explained in Section 4. 4. 5 

end; 
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4.4.3 The handling of exceptions 

In order to understand exception handling mechanisms, the concepts of 
invoker, invocation and activanon point should first be understood. 

A subprogram is defined only once in a program, but it can be called at many 
different points. Each call ofthe subprogram results in a different subprogram 
invocation. The invocation of a subprogram is the activation of the 
subprogram's body in the environment of the subprogram's textual definition. 
The activation point of a subprogram invocation is the point in a unit from 
where the subprogram is called or invoked. 

The invoker of a subprogram's invocation, SI, is the invocation of the 
smallest enclosing unit of SI's activation point. 
In contrast to subprograms, the other units (namely blocks, modules and 
packages) cannot be called from different points in the program. They are 
defined and activated at one and the same place. Therefore, the invoker of a 
block's, module's or package's invocation is simply the invocation of its 
smallest enclosing syntactical unit. 
We witl often simply refer to the invoker of a unit insteadof the more precise 
terminology invoker of a unit's invocation. 

When an exception is raised explicitly, the exception will be handled in the 
invocation ofthe smallest enclosing unit ofthe exception raising statement. 

An exception which bas been raised is handled as follows in a unit's 
invocation, UI. 
lf the unit bas a handter for the exception, control will pass to the handler. If 
the unit bas no handters for the exception, the exception will be propagated to 
Ul's invoker, which means that the exception wiJl be handled in Ul's invoker. 

Note that the definition of an invoker as the invocation of a smallest enclosing 
unit is, strictly speaking, not precise enough. Consider the following example: 

for I in 1 .. 10 loop 
begin 

PROCESSPRODUCT(I); 
ex ception 

when FAIL => PUT("Processing failed for product number "); PUT(I); 
end; 

end loop; 
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The procedure PROCESSPRODUCT is called for 10 products. lf the 
exception FAIL is signaled during the processing of one of these products, an 
error message including the product number is printed by the exception 
handter. When the loop is executed, each value of I wilt result in a different 
invocation of PROCESSPRODUCT. There is, however, only one activatien 
point: PROCESSPRoouc·r(l). The smallest enclosing bleek of the activatien 
point is the begin end bleek. Suppose the FAIL exception is signaled when the 
fifth product is processed. Then the invoker of the invocation of 
PROCESSPRODUCT(5) would he the invocation of the begin end bleek. But 
there have already been five subsequent invocations of the bleek. In this case, 
clearly the last invocation is meant, since the invocations of the hlock for the 
products I to 4 have already terminated. In the case of recursion, however, 
many nested invocations of a recursive procedure may exist. The invoker of 
suhprogram's invocation, SI, is then obviously meant to he the invocation of 
the smallest enclosing unit of SI*s activatien point, from which SI was 
actually invoked. 

4.4.4 The termination and resumption model 

When an exception in a unit is propagated to the unit's invoker, the question 
arises of what happens with the unit's invocation. There are two possihilities. 
The simplest possihility is to terminate the invocation of the unit. This 
strategy is adopted in, for example, ModPas, Ada and Clu [Liskov and 
Snyder, 1979]. It is known as the terminatien model. The other possihility is 
to keep the invocation intact, so that, after the exception bas been handled, the 
execution of the program can he resumed at the point where the exception was 
raised. This strategy is adopted in, for example, Smalltalk-80 and V AXELN. 
lt is known as the resumption model. Conceptually, and from the viewpoint of 
the implementation, the terminatien model is much simpler than the 
resumption model. Also, in most cases, it is preferabie in order to avoid goto­
like programming, which is allowed in the resumption model. The 
disadvantages of the resumption model will he further discussed in Sectiens 
4.6.3 and 4.6.4. A more extensive evaluation ofthe resumption model versus 
the terminatien model can he found in [Liskov and Snyder, 1979]. 
Because of the simplicity and other advantages of the terminatien model, the 
explanation of the exception handling mechanism will assume the terminatien 
model unless explicitly stated otherwise. 
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4.4.5 Handier responses 

When an exception is signaled in a unit for which the unit has a handler, 
control will pass to the handler. There are five principally different ways in 
which a handter can end. They each have a different effect on the continuation 
of the control flow. Four of them are associated with the exception caught. 
These are referred to as the return, propagate, retry and resume response. The 
fifth response would be to raise another exception. In the literature a sixth 
response is often given, namely the transfer response which can continue with 
any statement in the unit associated with the handter. The functionality is 
similar to the goto statement. Since goto programming is generally 
acknowledged to be bad programming practice, the transfer response will be 
neglected as undesirable. 
The functionality of all five responses will now be explained. Actual 
implementations can be more complex, but will exhibit the same functionality. 

The return response has a similar effect as the return statement, which can be 
used to return from procedures or methods. The invocation of the unit to 
which the handter is bound is terminated. The value returned by the handter is 
used as the returned value of the terminated unit. In most systems, this 
response is the default way of returning from an exception handter if no 
explicit response is programmed in the handter. 

The propagate response from a handter causes propagation of the exception to 
the invoker of the unit to which the handler is bound. For the invoker of the 
unit it makes no difference whether an exception is propagated to it directly 
by a unit which has no handters for an exception, or whether the exdeption is 
first handled by a handter and then propagated by means of the propagate 
response from the handler. 

The retry response first terminales the invocation of the unit associated with 
the handter. The unit is then reinitialized and execution continues at the start 
ofthe unit. 

The resume response can only be used in the resumption model. It causes 
execution of the program to continue right after the point where the exception 
was raised. The resumption response assumes that the exception handter bas 
corrected the error causing the exception in such a way that the program can 
be continued right after the point where the exception was raised. The resume 
response is not possible for all exceptions. Whether or not a handter should be 
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ab1e to issue a resume response is not only the responsibility of the handter,_ 
but also of the part of the program where the signal was raised. For many 
exception occurrences it is clear at the time of raising the exception that 
continuation after the exception occurrence should never take place. 
Therefore, most programming languages that allow the resume response have 
two ways of raising an exception. When an exception is raised in the normal 
way, the resume response from a handter is not allowed. lt is only allowed 
when an exception is raised using a special raise primitive. 

The fifth way to continue after execution of a handler is to raise another 
exception in the handter. This exception is then propagated to the invoker of 
the unit associated with the handter, just as if the exception were propagated 
directly from the unit. 

ModPas and Ada only support the return and propagate response. The 
propagate response is invoked in ModPas by raising the predefined exception 
xReraise. In Ada, this is done by calling the predefined raise operation with 
no arguments. 

In theory, the responses treated above could be defined differently. lf the 
handter of an exception is bound to a different unit than the unit in which the 
exception was raised, then the retry response, for instance, could cause the 
unit in which the exception was raised to be reinitialized and restarted, instead 
of the unit associated with the handter. The other responses likewise have 
different versions. All theoretically possible different versions of the above­
mentioned handter responses are treated in [Feder, 1990]. Feder, however, 
does not indicate the necessity or value of the definitions other than the 
generally used definitions mentioned above. 

4.4.6 The functionality of exception handlers in control systems 

Exception handters are bound to program units such as blocks. An exception 
handter is activated when the unit to which it is bound terminates with an 
exception. This premature termination of the unit can cause invariants to be 
invalidated. Some examples of the violation of invariants will be given in 
Chapter 5 in Figures 5.3.3a-c. 

An important aim ofthe exception handter is to restore invariants. The actions 
that are necessary in order to restore the invariants can also be referred to as 
jinalization obligations. In some languages, special constrocts are available 
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for dealing with finalization obligations, such as unwind blocks in 
Smalltalk-80. Such constrocts will not be treated, because their functionality 
can be closely approached with exception handlers. Some invariants cannot be 
restored by the exception handler alone, for example when the exception 
causes the synchronization between processes to be incorrect. In this case, the 
exception handter should signal the other processes, so that the processes can 
be resynchronized and the invariant will be restored. 

After restoring the invariants, the exception handler should try to realize the 
(secondary) goal of the program unit to which it is bound. If this goal can be 
realized, the exception handler will terminate with the return response. The 
exception handler may also try to create a situation where the unit's goal may 
be achieved by a renewed invocation of the unit; in this case the handter will 
terminate with the retry response. lf neither of these responses are possible, 
the exception handter will terminate with an exception, under the assumption 
that exception occurrences are always signaled by means of raising 
exceptions, and not by retuming error codes. This can be done by either 
propagating the handled exception or by raising a new exception. The resume 
response is not considered here, because it should not be used (see Sections 
4.6.3, 4.6.4, and 6.9). 

4.5 The exception handling mechanism in Smalltalk-80 

The exception handling mechanism used in Smalltalk:-80 is somewhat 
different from the mechanisms used in most imperative languages. This is 
partly due tothefact that Smalltalk is a truly object-oriented language, and 
also to the fact that the exception handling mechanism is not part of the 
Smalltalk language definition but is rather an addition to the language, mainly 
by the addition of the classes Signa) and Exception. The mechanism is more 
powerfut and more complex than the mechanisms treated so far. 

4.5.1 Exceptions and signals 

In many languages, exceptions are defined and at the same time statically 
bound to an identifier in an exception declaration. In Smalltalk exceptions are 
defined when a signa) is created. Signals are instances of the class Signal. 
Signals are usually created at the initialization of the class in which the signa) 
is created. The signals created are made available to other objects by means of 
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messages that can be sent to the class in which the signal is defined. For 
example: 

Object errorSignal 
ArithmeticValue divisionByZeroSignal 

When a signal object is created, a new exception is defined which is denoted 
by the signal. The exception can be raised by sending a raise message to the 
corresponding signal. This will result in the creation of an instanee of the 
class Exception. Such an exception object, however, does not denote an 
exception, since exceptions are denoted by signals. This fact can lead to 
confusion because raising an exception in Smalltalk is done by sending a raise 
message to a signal. In this thesis, the terminology of raising an exception 
and raising a signa/ will be considered equivalent for Smalltalk systems. The 
most important methods for raising a signal are raise and raiseErrorString:. 

Object errorSignal raise 
Object errorSignal raiseErrorString: 'an error has occurred' 

Exception objects are used as arguments of exception handlers. They can be 
used to retrieve the signal that was raised to create the exception object. They 
are also used in the exception handter to retrieve any arguments supplied by 
the raiser of the signal and to control the handter response. 

The hierarchy of signa/s 

Smalltalk signals are hierarchical. A new signal is created with another, 
already existing, signal as its parent The signal is said to be a child of its 
parent This hierarchy is used to catch related exceptions without the need to 
bind each exception explicitly to a handter. A handter which is bound to a 
certain signal will catch all exceptions represented by the signal's children. If 
a handter is bound to ArithmeticValue errorSignal for instance, it will catch, 
among others, the exceptions represented by the signals ArithmeticValue 
overflowSignal, ArithmeticValue underftowSignal and ArithmeticValue 

divisionByZeroSignal, since they are all (indirectly) children of ArithmeticValue 
errorSignal. 

A small part ofthe hierarchy ofsignals is given below. 
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Signal genericSignal 
Object informationSignal 

Object userlnterruptSignal 
Object errorSignal 

ArithmeticValue errorSignal 
ArithmeticValue rangeErrorSignal 

ArithmeticValue overflowSignal 
ArithmeticValue underflowSignal 

ArithmeticValue domainErrorSignal 
ArithmeticValue divisionByZeroSignal 

Chapter4 

This hierarchy is also used to specify 'any handters'. All exceptions 
representing error conditions are supposed to be created with Object 
errorSignal as their parent Therefore, a handter bound to Object errorSignal 
should catch all such exceptions. Object errorSignal bas Signal generioSignal as 
its parent, which is the ancestor of all signals. Unfortunately this sigrtal may 
not be bound to handlers. The Smalltalk user guide states that this .signal is 
considered an abstract entity and should not be used to catch exceptions 
directly. Therefore, specifying Object errorSignal to create an any handter is 
only foolproof if all users conform to the convention of creating . all new 
signals with Object errorSignal as their parent This implementation is not as 
robust as the implementation of any handters in MoeiPas and Ada. 

4.5.2 Exception handters 

An exception handter in Smalltalk is a block. A block in Smalltalk ·is quite 
different from blocks in imperative languages. lt bas a greater reseml)lance to 
a subprogram. A block consists of a sequence of statements, enclosed in [ ] 
brackets, which are executed or invoked when the message value is sent to the 
block. Blocks can be conveniently used as arguments of methods., When, 
during execution or invocation of the method, the message value is sent to a 
method's argument which points to a block, the block is executed or invoked 
in the environment ofthe block's definition. 

In contrast to imperative languages, where handters are statically (i.e. at 
compile-time) bound to units and to exceptions, exception handters in 
Smalltalk are dynamically (i.e. at run-time) bound to blocks and exceptions. 
The binding of an exception handter to a block and an exception is done by 
means of the handle:do: metbod which can be sent to a signa!. The handle:do: 
metbod is invoked by evaluation of an expression such as: 
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signal handle: handlerBiock do: doBiock 

This produces a binding of the handlerBiock to the doBiock and to the 
exception denoted by signal. The onJy purpose of the handle:do: metbod is to 
produce han<ller bindings. It is also the only way of binding a handler. 
Handiers cannot be bound to methods. 
Invocation of the handle:do: metbod first results in the production of the 
bindings between the handlerBiock and the doBiock. lmmediately after that, the 
doBiock is invoked by sending it the value message. 

4.5.3 The handling of exceptions 

When an exception is raised, the exception will be handled in the invocation of 
the smallest enclosing unit of the exception raising statement. A unit in 
Smalltalk is defined to be either a block or a metbod. 
An exception is handled as follows in a unit's invocation, UI. If the unit has a 
handter for the exception, control will pass to the handler. If the unit bas no 
handters for the exception, the exception will be propagated to UI's invoker, 
which means that the exception will be handled in UI's invoker. Becàuse 
methods cannot have handlers, the handling of an exception in the invocation 
of a method, MI, always implies the propagation of the exception to MI's 
invoker. 

The invoker of an invoked doBiock or handlerBiock which are bound by a 
handle:do: metbod is the invocation of the smallest enclosing unit of the 
handle:do: message expression. In all other cases, the invoker of a unit's 
invocation, UI, is the invocation of the smallest enclosing unit of UI's 
activation point. The activation point of a metbod's invocation is the 
expression which invoked the method. The activation point of a block's 
invocation is the expression which invokes the block. So this is an expression 
where value (or value:, or any other ofthe value messages) is sent to the block. 

4.5.4 Bandier responses 

All the handter responses mentioned in Section 4.4.5 are implemenled in 
Smalltalk. The return, propagate, retry and resume responses are implemenled 
by the messages return, reject, restart and proceed respectively. In order to 
effect these responses, the messages can be sent to the exception object which 
acts as the argument of an ex ception handler. 
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The resume response permits control to return from a handler to the statement 
following the statement where the exception was originally raised. Therefore, 
it is not possible to terminate an invocation when an exception is propagated. 
The invocation which handles the exception, and all other invocations that 
have issued a propagate response, are terminated only at the point that a 
return or retry response is issued or another exception is raised. The problems 
associated with the resume response in Smalltalk and in other languages will 
he discussed in Section 4 .6.3. 

The example of exception handling shown in Figure 4.5.1 is taken from the 
example presented in Section 2.3.3. It is rewritten to include exception 
handling. 
ErrorSignal is another way of representing Object errorSignal. It is a global 
variabie which is known tbraughout the system. When ErrorSignal ·is raised 
from within the time-out block, the exception will he caught by the handler. 
The run-time system will set the argument exc to the exception object. The 
error string with which the signal was raised is retrieved from the exception 
object by sending ît the message errorString. The handler finîshes with exc 
reject, which is the propagate response. Consequently the invoker of the 
forkUp invocation will handle the exception. In Figure 4.5.2 the methad forkUp 
is rewritten for the retry response. 

Slaveforklifter >> forkUp 
ErrorSigna I 

handle: 

do: 

[ :exc I 
self putOff: 'o-forkUfter-power'. 
self sendErrorMessageToOperator: exc errorString. 
exc reject] 

[self putOn: 'o-forkUfter-up'. 
self putOn: 'o-forklifter-power'. 
self 

receive: true 
trom: 'i-forkUfter-isUp' 
within: 6 seconds 
iffimedOut: 

[ErrorSignal raiseErrorString: 'time-out fork lifter going up']. 
self putOff: 'o-forklifter-power'] 

Figure 4.5.1 Exception handling with the propagate response. 
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SlaveForklifter >> forkUp 
ErrorSignal 

handle: 

do: 

[ :exc I 
self putOff: 'o-forklifter-power'. 
self sendErrorMessageToOperator: exc errorString. 
self sendRestartMessageToOperator: 'fork lifter up'. 
self receiveRestartResponseFromOperator. 
exc restart) 

[self putOn: 'o-forklifter-up'. 
self putOn: 'o-forklifter-power'. 
self 

receive: true 
trom: 'i-forklifter-isUp' 
within: 6 seconds 
ifTimedOut: 

[ErrorSignal raiseErrorString: 'time-out fork lifter going up']. 
self putOff: 'o-forklifter-power') 

Figure 4.5.2 Exception handling with the retry response 

4.6 Evaluation 

4.6.1 A general evaluation of the advanced exception handling 
mechanisms 
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The most important aspect of the use of the exception handling mechanism as 
treated in the previous sections is that it facilitates the creation of robust 
programs. The advantages of the mechanism are as follows: 

• The automatic propagation of unhandled exceptions prevents untreated 
errors from causing system crashes. 

• Exceptions make it possible to fulfil finalization obligations at each level 
of abstraction. This is done by catching exceptions if necessary and 
propagating the caught exception after execution of the finalization 
obligations by the handler. 

• The exception handling mechanisms are based on only a small number of. 
prirnitives which allow all exceptions, both those detected by the user and 
by the system support, to be handled in a uniform way. A requirement for 
this is that the system support declares all exceptions that it can raise. 
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Also the any handter can be used to catch exceptions raised by the 
system. 

• The use of exceptions enables the separation of concerns in the 
development of programs. The code for the normal processing of the 
program can, to a great degree, be developed separately from the code for 
the handling of exceptions. This leads to programs which are easier to 
develop, read and maintain. 

A disadvantage of the exception handling mechanism is its greater complexity 
than the traditional ways of exception handling. The mechanism changes the 
flow of control of a program in an entirely different way than is done by the 
traditional programming methods. 

Not alllanguages employ all five mentioned handler responses. The propagate 
response, however, is fundamentalto the exception handling mechanism and 
is therefore available in all programming languages with advanced ~xception 
handling mechanisms. The return response is available in most languages. 
Raising an exception from within a handler should also be possible, since 
precondition errorscan occur anywhere, including handlers themselves. 

The retry response is not absolutely necessary, since its functionality can be 
approached using the return response together with programming constrocts 
for repetition. This, however, leads to inelegant code which is less clear. The 
elegance of exception handling using the retry response will be shown in 
Section 7.3. 

4.6.2 The return response as an inadequate default response 

The return response is usually the default response of an exception handler. 
This is an inadequate choice because the accidental omission of a handler 
response can have disastrous consequences. 

Exception handlers facilitate the creation of robust programs. Programming 
errors in complex systems cannot be completely avoided, however. An error 
which is easily made, and which cannot be detected by a compiler in the case 
that default responses are allowed, is the accidental omission of a response 
such as a propagate response. If such a propagate response is accidentally 
omitted, the program is allowed to continue in an incorrect state which can 
lead to program crashes and, in the case of control systems, to catastrophic 
reactions of the controlled system. 
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If, on the other hand, the propagate response is chosen as the default response, 
then accidental omission of a response will automatically lead to the 
propagation of the exception to higher levels. In this way, all finalization 
obligations of higher levels will be fulfilled and the system, or a part of it, will 
terminate in a controlled way. Clearly it is much more likely that a response 
from a handter will be forgotten than that an incorrect response will be used. 

It would also be possible not to allow a default response and to regard the 
omission of a response as an error, teading to a run-time exception. This 
exception would then discard the original exception, so the propagate 
response is preferred as a default response. 

4.6.3 The resume response as an inadequate response in a 
sequentia( process 

The resume response can be convenient in a small number of cases where the 
program can be continued right after the error, after correction of the error in 
an exception handler. One of these cases is the resumption from a debugger. 
This could, however, also be implemented without using the resume response, 
and in itself it does not justify the resume response. There are, in fact, severe 
drawbacks associated with the resume response. Consider the following part 
of a Pascal program: 

i :=5; 
b := a[i]; 

The value of b would be expected to be the value of the fifth element of the 
array a. If, however, array a were to have only 3 elements, then an exception 
would occur. The value of i could be set to I in an exception handter, which 
could be bound to the subprogram shown, whereafter a resume response could 
be given. As a result b would be assigned the first value of a. 

This kind of behaviour makes programs hard to onderstand, since the result of 
an operation can be determined by an exception handter which is not bound to 
the operation itself but to the invoker of the operation, or to any other invoker 
in the call chain. This leads to similar problems as the use of the goto 
statement. lt is also inconsistent with the use of procedure or metbod 
abstractions. These abstractions hide the implementation aspects of lower 
layers in a system from the higher layers. When an exception is propagated to 
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a higher level, the resume response enables correction at the higher level and 
consequent resumption at the lower level. Thus, in order to understand and 
develop programs with these kind of characteristics, it is necessary to study 
the implementation aspects of both the higher layers and the lower layers at 
the same time. And this is the very thing that the use of procedure and metbod 
abstractions aims to avoid. 

Therefore, it is concluded that it is better oot to use the resume response at all. 
In systems with parallel processes, there are additional probieros. with the 
resume response. These probieros are treated in the next section and in 
Section 6. 9. 

4.6.4 Conllicts between the resume response and critical regions 

A problem associated with the resume response is its use in a parallel system 
that uses critical regions to prevent simultaneous access to shared rysources. 
A simpte example of this is the use of a semaphore for mutual exc~usion on 
which a wait or p-operation [Dijkstra, 1965] is performed when entering the 
critical region. When the region is left, the semaphore is signaled by executing 
a v-operation on it. If an error occurs in a critical region, an exception will be 
raised. If the exception caooot be handled within the critical region, it will be 
propagated to the invoker. Since propagating the exception means that the 
critical region is left, the semaphore should now normally be signaled, in order 
oot to keep the critical region locked and inaccessible to others. 

Ifthe resumption model is used, however, and an exception causes the critical 
region to be left and the semaphore to be signaled, then the exception cao be 
caught by a handter in which a resume response is issued. This will cause 
continuation of the process within the critical region without, however, first 
executing a wait operation on the semaphore. In this way an inconsistent state 
is created such that two processes will always be allowed to enter the critical 
region instead of one. Therefore, the existence of the resume response 
prevents the semaphore from being signaled when the critical region is left by 
means of exception propagation. lt may only be signaled when resumption in 
the critica) region is no Jonger possible. Therefore, the critica) region will 
remaio locked until that time. This cao be intolerable. lt cao even ·lead to 
deadlock if an exception handler, handling the exception from the critical 
region, executes an operation which needs access to the critica! region. · 
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The handling of constraint violations 

Most exception hamDing mechanisms have been developed for the handling of 
internal exceptions in stand-afone sequential processes and have no special 
provisions for dealing with external exceptions in control systems. These 
mechanisms are meant to be used for exception occurrences in operations that 
are determined by the internal state of the operation itself. Exception 
occurrences are detected by having each operation explicitly test its own 
internal state. 

In this chapter the concepts 'constraint' and 'constraint violation' will be 
defined. These concepts are essential in order to determine the requirements of 
a mechanism for the handling of external exceptions in control systems. Rwill 
be shown that a mechanism is required for the specification of constraints and 
the detection and handling of constraint violations. The known mechanisrns 
for the handling of constraint violations are treated and shown to be 
inadequate. Finally, a new mechanism is presented. Although the material 
presented in this chapter is developed in the context of control systerns, it is 
also of general relevanee in multi-process environments. 

5.1 Definition of terms 

5.1.1 Constraints, constraint functions and constraint violations 

The constraint of an operation is that part of its precondition which refers 
exclusively to the state of the environment of the process executing the 
operation and which is invariant over the operation: it bas to be valid 
throughout the execution of the operation. 

A constraint can be compound, in which case it consistsof (sub-)constraints. 
A compound constraint is met if and only if all of its (sub-)constraints are 
met. In most situations we will not explicitly distinguish compound and sub­
constraints, but simply use the term constraint. This makes it possible to refer 
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to the constraints (plural) of an operation, wbich is meant to include all of the 
sub-constraints ofthe operation's compound constraint. 

Consider, for example, an operation that controts a cylinder wbich pushes a 
product upwards. The goal of the operation could be to make the cylinder 
extend to the upward position under the condition that the emergency button is 
not pressed. The emergency button wbich bas to stay inactive would be a 
constraint of the operation. Another constraint could be that there must be 
adequate air under pressure available for the cylinder. Other examples of 
constraints are a temperature wbich bas to stay within a certain range during 
the execution of an operation, or the external state of a process with wbich the 
operation wants to interact To allow the interaction to take place, the 
operation's constraint will require that the interacting process is in such a state 
that it will eventually perform the desired interaction with the (process 
executing the) operation. 

A constraint of an operation can be expressed by a boolean constraint 
function wbich is defined only during the execution of the operation. The 
constraint function returns true when the constraint is valid and false when the 
constraint is not valid. 

A constraint violation is that part of the state of the environment of a process 
executing an operation which does not satisfy the operation's constrairlt. 

A constraint violation is a precondition error, and it causes an ,external 
exception occurrence in the process executing the operation of wbich the 
constraint is violated. 

The traditional exception handling mechanisms alone are not suffi.cient for the 
handling of external exceptions, because these mechanisms were developed 
for the handling of internat exceptions. Without additions tó these 
mechanisms, the handling of most external exceptions becomes awkward. 

The time-out mechanism bas been added to virtually every language for the 
control of industrial systems in order to be able to handle external exceptions 
that are related to exceeding a time limit. Mechanisms for the handling of 
external exceptions due to constraint violations, however, are more complex 
and therefore not so common. Tbis is due to the fact that constraints need to 
be valid during the complete execution of an operation. Constraint violations 
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can occur at any point during the execution of an operation, and they are 
usually detennined by the execution of other processes. 

5.1.2 The active constraints of a process 

Many operation invocations can exist at the sarne time during the execution of 
a sequential process. The active constraints of a process are the collection of 
the constraints of all cuerent operation invocations within the process. So, 
when an operation is invoked in a process, the operation's constraints are 
added to the active constraints of the process. Wben the operation is 
tenninated, its constraints are removed from the process's active constraints. 

The constraints of an operation in a process will be illustrated using the 
example ofFigure 5.1.1. It is basedon the transporter exarnple ofSection 2.3. 
This exarnple is somewhat simplified, so that the fork-lifter is controlled by 
the CtriTruck processor instead ofthe SlaveForklifter processor. 

The constraints of CtriTruck » body are that the emergency button is. not 
activated and the operator does not send a stop command. 

Wben two processes are mutually interactive, they both make assumptions 
about each other's extemal states. In the metbod CtriTruck » 
receiveStackFromTraverse, after returning from the statement self 
receiveFrom: 'sync-traverseAtFork', the CtriTruck processor assumes that the 
CtriTraverse processor has moved the traverse to the position of the fork, that 
the traverse will stay there, and that the CtriTraverse processor will be waiting 
for CtriTruck to put the fork up. CtriTraverse expects to be informed of the 
successful completion of this operation by means of the self sendTo: 'sync­
forklsUp' statement in CtriTruck. These expectations about the extemal states 
of interacting processes are constraints. Therefore, a constraint of CtriTruck » 
receiveStackFromTraverse in Figure 5 .1.1 is that the external state of the 
CtriTraverse processor corresponds to the state expected by CtriTruck. The 
unactivated emergency button and the absence of a stop oommand from the 
operator arealso constraints ofthis method. 

Finally, the constraints ofthe metbod forkUp are that the emergency button is 
unactivated, that the state of the environment of the fork is such that it is safe 
for the fork to go up, and that the operating switch, used to switch off the fork 
lifter temporarily, is on. 
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CtriTruck >> body 

"Constraints: 
- Emergency button not activated 
- No stop cammand from operator" 

self receiveStackFrom Traverse. 
self transportStackToFumace. 
self giveStackToFumace. 
self goBackToTraverse 

CtriTruck >> receiveStackFromTraverse 

"Constraints: 
- Emergency button notactivaled 
- No stop cammand from operator 
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- The extemal state of CtriTraverse co"esponds to the state expected 
by Ctr/Truck" 

self sendTo: 'sync-truckResetAtTraverse'. 
self receiveFrom: 'sync-traverseAtFork'. 
self forkUp. 
self sendTo: 'sync-forklsUp' 

CtriTruck >> forkUp 

"Constraints: 
- Emergency button not activated 
- The fork can safe/y go up without causing damage 
- Operating switch is on" 

self putOn: 'o-forklifter-up'. 
self putOn: 'o-forklifter-power'. 
self 

receive: true 
from: 'i-forkLifter-isUp' 
within: 6 seconds 
ifTimedOut: [KiiiSignal raise]. 

self putOff: 'o-forklifter-power' 

Figure 5.1.1 Constratnts ofsome methods. 

The metbod forkUp is called from the metbod receiveStackFromTraverse which 
is in turn called by the body. Therefore, when the metbod forkUp is active, the 
óther two methods will also be active, assuming that the forkUp metbod is oot 
called by other methods. So when the forkUp metbod is invoked, the active 
constraints of the Cb1Truck process consist of at least the constraints of all 
three methods. This means that a violation of any of these constraints will 
result in an exception occurrence in Cb1Truck. lf, on the other hand, CtrlTruck 
is waiting for an interaction to take place in the receiveStackFromTraverse 
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method, then the active constraints of CtrlTruck are the constraints of the 
methods receiveStackFrom Traverse and body (plus the constraints of the · 
metbod that invoked body and of the other methods that were already 
invoked). 

5.1.3 DitTerent kinds of invariant 

Invariants define relationships within a sequential process or between several 
processes. We will define two special kinds of invariant: internat invariants 
and external invariants. Their definitions will facilitate the discussion of the 
handling of constraint violations in the following sections ofthis chapter. 

An internal invariant is an invariant which is completely determined by the 
state of a sequential process or operation. 

An external invariant is an invariant which is determined by the states of two 
or more processes. 

Another important kind of invariant is the general control invariant, which 
essentially determines all constraints in control systems. All control systems 
are based on this invariant which specifies that the state of the controlling 
system corresponds to the state ofthe controlled system and the operator. 
The controlling system changes from one state to another and drives the 
actuators in such a way that the state of the controlled system is made to 
correspond with its own state. When the controlling system is waiting for a 
change of state of the sensors, it is actually synchronizing its own state with 
the state changes of the controlled system. The state of the sensors can be 
tested from time to time to see whether the control invariant still holds, i.e. to 
see whether the state of the controlled system is still such as is expected by the 
controlling system. lfthis is not the case,·the controlling system could request 
operator help to change the state of the controlled system in such a way that 
the control invariant holds again; or the controlling system can reset the 
controlled system to bring it into a defined state again. 
A man·machine interface is used to keep the control invariant valid between 
the operator and the controlling system. 
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5.2 Constraints 

5.2.1 The local specification of the constraints of an operation 

The constraints of an operation are specific for tbe operation itself. Therefore, 
tbey should be specified locally, that is independently of tbe point in the 
program at which tbe operation is invoked. This enables parts of a program to 
he developed at different, largely independent, levels of abstraction. The local 
specification of tbe constraints of an operation is tbus an important 
requirement for tbe creation of modular program units. 

Referring to tbe exarnple which bas been presented in Figure 5 .1.1, tbe 
constraints oftbe metbod CtriTruck » forkUp are that tbe emergency .button is 
unactivated, that tbe state of tbe environment of tbe fork is such that it is safe 
for tbe fork to go up, and tbat tbe operating switch, used to switch off tbe fork 
lifter temporarily, is on. The constraint of tbe metbod CtriTruck » body which 
specifies that tbe operator does not send a stop oommand is not a con5traint of 
forkUp, because forkUp could, for exarnple, also he invoked in manual mode. 
In manual mode, tbe operator can choose several low level commands from 
tbe MMI (man-machine interface) to he executed, such as tbe oommand 
forkUp or forkDown. In this situation, tbere is no need for tbe operator to stop 
tbe production process, because control is automatically retumed to tbe 
operator after execution of tbe chosen forkUp or forkDown command. · 

The local specification of constraints can lead to duplication of constraints. 
Consider, for exarnple, tbe constraint that tbe emergency button is 
unactivated. This constraint is specified in all three metbods. If tbe metbod 
forkUp would he a library routine, so that tbe eaUers (or senders) of forkUp 
cannot be detennined in advance, tben tbe duplication of tbe emergency button 
constraint is indeed necessary. 

5.2.2 The specification of constraints common to many operations 

Obviously tbe specification of tbe constraints of an operation should serve 
more purposes tban just as a oomment to tbe program: it would be useful to 
monitor tbe specified constraints during tbe execution of tbe operation and to 
signal constraint violations. The constraints of an operation must be valid 
throughout tbe execution of tbe operation, so tbat tbe operation's goal' can be 
achieved. Therefore, tbey must also be valid during tbe execution of other 
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operations invoked by the original operation. So, a mechanism for the 
monitoring of the constraints of operations must work in such a way that all 
of the active constraints of the process executing the operations are 
monitored. 

A consequence of such an approach is that unnecessary duplication of 
equivalent constraints can be avoided. Suppose, for instance, that the metbod 
forkUp ofFigure 5..1.1 is only called by receiveStackFromTraverse and that the 
latter metbod is always called by body, then the constraint specifying that the 
emergency button is off can be removed from the methods forkUp and 
receiveStackFromTraverse. In this case, modularity ofthe methods forkUp and 
receiveStackFromTraverse is obviously not of primary concern, since it is 
known that they are only (indirectly) called by the metbod body. Avoiding the 
unnecessary duplication of constraints in such a way will lead to simpter and 
better programs, as long as it is evident that the constraints left out are under 
all circumstances already monitored when the operation is called. 

In more general terms, it can be stated that the constraints which are common 
to many different operations can, in eertaio cases, be specified in a single 
operation. In eertaio control systems, for instance, all operations executing in 
a eertaio process are known to be (indirectly) called from a main program 
loop defining the process cycle. In such cases, constraints like the emergency 
button being off, can be specified in the main process cycle, so that they are 
guaranteed to be monitored for all operations executed in the main process 
cycle. The constraints need not be duplicated in the called operations. 
In such a case, it is a better option to specify the constraints which are 
common to many operations in a single operation from which the other 
operations are called, rather than to re-specify the constraint in all called 
operations. 
Note that in most imperative languages, such as Pascal, static scope rules can 
guarantee that eertaio operations are only called from eertaio other operations. 
In most object-oriented languages which use dynamic binding, such as 
Smalltalk, it is often necessary to analize the run-time behaviour of the 
program in order to determine such relationships. 
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5.3 Constraint violations 

5.3.1 A traditional way to detect constraint violations 

An important aspect of constraints is that they must be valid throughout the 
execution of an operation. Constraints may be violated while a process is 
blocked in an interaction. It is therefore generally insufficient to check the 
constraints at eertaio statements of the operation. The state of the environment 
of a fork-lift, for example, could be checked before the fork goes up, but there 
is no guarantee that the environment will remaio in a safe state while the fork 
is going up. 

Another complicating aspect of constraints is that, during the execution of an 
operation, many constraints must be checked which are not constraints of the 
executing operation itself but of other active operations on the call chain. 

A possible way of detecting constraint violations is to let each operation 
explicitly detect all active constraints of the process in which it is executed. 
Thus, the constraints that an operation would need to detect would he the 
process's active constraints at the time of the call, plus the operation's own 
constraints. 

In the example ofFigure 5.1.1, the metbod forkUp could be extended'to check 
all the active constraints of the process. In this case, instead of simply waiting 
for the fork to he up, the operation would have to wait for either the fork to be 
up or for any of the constraints to be violated. If a constraint is violated, an 
exception should he raised. This is illustrated in Figure 5.3 .1 where every 
metbod tries to monitor the process's active constraints. (Error messages and 
exception handters have been omitted for the sake of simplicity.) The reader 
should also note that, for the sake of clarity, notall constraints are specified. 

The detection of constraint violations has been realized with a mechanism that 
enables a process to wait for one out of a set of interactions to occur. The way 
the program will proceed depends on the interaction that has taken place. In 
Process Calculus, this functionality is given by the possibility to reèeive an 
object from any of a set of ports, for example with the metbod B1..1bble >> 
receive:fromOneOf:do:. 
The meaning oftl1e messageself receive: objectArray fromOneOf: portArray do: 
doSloek is that a receive action is specified which tries to receive one of the 
objects specified in objectArray from one of the ports specified in portArray. 
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CtriTruck » receiveStackFromTravèrse 
H 

seH 
receive: 

#(nil nit true) 
fromOneOf: 

#('sync-traverseAtFork' 'mmi-operatorReset' 'i-emergencyStop') 
do: 
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(:port :item 1 (port= 'sync-traverseAtFork') ifFalse: [KiiiSignal raise]]. 
self forkUp. 
"etc ... " 

CtriTruck >> forkUp 
seH putOn: 'o-forklifter-up'. 
seH putOn: 'o-forklifter-power'. 
seH 

receive: 
#(true nil true false) 

fromOneOf: 

do: 

#('i-forklifter-isUp' 'mmi-operatorReset' 'i-emergencyStop' 
'i-operatingSwitch') 

(:port :item I (port= 'i-forklîfter-îsUp') ifFalse: (KiiiSignal raise]) 
within: 6 seconds 
ifTimedOut: (KiiiSignal raiseErrorString: 'time-out lift going up']. 

self putOff: 'o-forklifter-power' 

Figure 5.3.1 Deleetion of constroint violations in every operation. 

The object to be received from a port in portArray is the object from 
objectArray with the sameindex as the port in portArray. The :first object that 
can be received terminates the receive action and causes the daBloek to be 
executed with two arguments: the received object, and the port from which it 
was received. In Figure 5.3.1, the speci:fication ofthe nil object in the object 
array means that any object can be received from the corresponding port in 
the port array. 
This functionality is referred to as the select-interaction functionality. Such a 
functionality is also offered by other programming languages, such as Ada by 
means of the select statement (see the Ada Language Reference Manual 
[Ichbiah, 1983]), and Sequentia) Program Charts [IEC, 1988]. 

The metbod forkUp is now no Jonger reusable and it is also difficult to read. If, 
for example, the fork-lift were to be tested under direct control of the 
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operator, without any synchronization with other processes, the constraints 
would be entirely different, requiring a different forkUp method. 

The conclusion is the same as stated in Section 5.2.1: namely, that each 
operation should only specify its own constraints. The constraints of an 
operation should not he unnecessarily duplicated in the operations called. It is 
not possible to achieve this with conventional mechanisrns. The way in which 
constraints can he specified in operations such that they need not be repeated 
in the called operations will he dealt with in Chapter 6, where a new 
mechanism for the handling of constraint violations is introduced. 

5.3.2 Constraint violations by controlling processes 

In the examples given inSection 5.3.1, the active constraints of a controlling 
process were violated by processes in the controlled system. These constraint 
violations were detected by the controlling process itself. Constraints can also 
be violated by other controlling processes, which will then need to inform the 
controlling process of which an active constraint was violated. The !lCtion of 
informing another process of a violation of one of its active constraints will be 
referred to as signaling a constraint violation toa process. 
This will he iUustrated by a finther elaboration of the example of the ~sport 
system from Section 2.3. 

When the truck moves the stack to the filfnace and reaches the point where it 
can turn the fork to the furnace, three actions will he performed in ~parallel: 
the fork will go down; it will turn 180 degrees towards the furnace; and, at the 
same time, the truck will continue to move towards the furnace. The three 
actions are controlled by the controllers SlaveForkUfter, SlaveForkTumer and 
CtriTruck respectively. If the fork-lift is obstructed by another object while 
going down, it will he necessary tostop the fork-lift, the fork-turner~and the 
truck in order to avoid damage. The SlaveForklifter (and not the other two 
processors) should detect the obstruction of the lift. This is because. the lift 
movement is initiated by SlaveForkUfter. When the error is detected by the 
SlaveForkUfter processor, the constraint violation will have to he signaled to 
the SlaveForkTurner and the CtriTruck processors so that they can stop l)le fork 
turner and the truck. After correction of the error, by the operator for 
example, all three interrupted movements can he continued. 
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Constraint violations can also take place between processes that do not 
interact under normal processing circumstances. Consider a robot which 
accidentally drops a product on an assembly line, but which does not interact 
with the assembly line in any other way. The line will probably have to he 
stopped. In this case, the error will he detected by the robot controller. The 
process controlling the assembly line will have to he informed of this 
constraint violation in such a way that it can immediately stop the line. Once 
the dropped product is removed, the assembly line can continue norrnally. 

The examples given above are examples of constraints which are imposed in 
order to prevent d.amage. Apart from such constraints, there will also he 
constraints imposed in order to rnaintaio consistency in the synchronization 
between two processes. When two processes are interacting, they rnaintaio 
certain assumptions about each other's extemal states. These assumptions 
should he correct in order to achleve correct synchronization between the 
processes and to prevent deadlock. 

Consider the example given in Figures 5.3.2a-c, which is also based on the 
example of Section 2.3. The example is slightly modified so that CtriTruck 
directly controts the fork-lift. The example describes the transfer of a stack 
from the traverse by the fork-lift truck. The methods invoked are indicated 
with an arrow. In the example the fork does not go up in time. Here this 
results in the immediate raising ofthe KiiiSignal. 

CtriTransporter model 

syno2-truokResetAITraverse syno-truokResetAITraverse 
syno-traverseAIFork 

sync2-I"!JIE!rseA!Fork \. 

syno2-forki$Up sync-forklsUp 

Figure 5.3.2a Violanon of a constraint in one process due to an exception 
in another - A simplijied model ofCtr/Transporter. 



92 

CtriTraverse » body 
stackSize >= self maxStackSize ifTrue: [self stackToTruck]. +-­
self stackTray 

CtriTraverse >> stackToTruck 
self receive: 'belowMiddle' trom: 'sync1-pusherState'. 
self receiveFrom: 'sync2-truckResetAtTraverse'. 
self traverseToFork. 
self sendTo: 'sync2-traverseAtFork'. 
self receiveFrom: 'sync2-forklsUp'. 
self traverseT oPusher 

Chapter 5 

Figure 5.3.2b Violation of a constroint in one process due to an exception 
in another - Process description ofCtr/Traverse. 

CtriTruck » body 
self receiveStackFromTraverse. 
self transportStackToFumace. 
self giveStackToFurnace. 
self goBackToTraverse 

CtriTruck >> receiveStackFromTraverse 
self sendTo: 'sync-truckResetAtTraverse'. 
self receiveFrom: 'sync-traverseAtFork'. 
self forkUp. 
self sendTo: 'sync-forklsUp' 

CtriTruck » forkUp 
self putOn: 'o-forklifter-up'. 
self putOn: 'o-forklifter-power'. 
self 

receive: true 
trom: 'i-forklifter-isUp' 
within: 6 seconds 
ifTimedOut: 

[KiiiSignal raiseErrorString: 'time-out fork going up'. +--

"The raising of the Kil/Signa/here implies a vialation of one 
of Ctr/Traverse's active constraints concerning the externa/ 
state of CtrfTruck'l 

self putOff: 'o-forklifter-power' 

Figure 5.3.2c Viola ti on of a constroint in one process due to an exception 
in another - Process description ofCtr/Truck. 
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In reality, the operator or the system itself would first try to correct the error 
and the KiiiSignal would only be raised if the error could not be corrected 
locally. The example bas, however, been kept simpte to show only the 
important aspects. 

Due to the raising of the KiiiSignal, the methods forkUp, 
receiveStackFromTraverse and body from CtriTruck will be terminated, teading 
eventually to the resetting of the truck (not shown in the example). This is a 
violation of a constraint of CtriTraverse, since CtriTraverse will now have an 
incorrect assumption about the extemal state of CtriTruck. After correction of 
the error, the CtriTruck processor wilt start the body again and become blocked 
in the statement self sendTo: 'sync-truckResetAtTraverse'. The CtriTraverse 
processor will still be blocked in the statement self receiveFrom: 'sync2-
forklsUp'. Thus deadlock will result. To avoid this an exception must be raised 
in CtrtTraverse when CtriTruck violates CtriTraverse's constraint by breaking 
out of its synchronization with CtriTraverse due to the raising ofthe KiiiSignal. 

5.3.3 Some relationsbips between constraint violations, e:x:cepti~ns 
and tbe violation of invariants 

In the preceding sections, it bas been shown that a constraint violation causes 
an exception occurrence in the process of which an active constraint is 
violated. This exception occurrence should eventuaiJy result in the raising of 
an exception in the process. In this section, some different possibilities will be 
treated in order to answer the question of how constraint violations eventually 
can or should result in the raising of an exception. 
The different possibilities found will be used in following sections to 
categorize and evaluate the known mechanisms for the handling of constraint 
violations, eventually teading to a new mechanism. 

Consider two processes: a violator and a victim. The violator violates one of 
victim's active constraints, causing an (extemal) exception occurrence in the 
victim. If the victim bas an exception handling mechanism which supports the 
raising of exceptions, then an exception needs to be raised in the victim. 

There are three possible situations in regard to which process detects the 
constraint violation by the violator and which one raises the ( external) 
exception in the victim: 
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• If the victim is the detector it makes no sense for the violator to he the 
raiser, so ifthe victim is the detector ofthe constraint violation, the victim 
will also he the raiser of the exception. An example of this is when the 
victim is a controlling process and the violator is a physical process in the 
controlled system. The victim detects a constraint violation in the 
controlled system and consequently raises an exception. 

• If the violator is the detector, the victim could be the raiser. This means 
that the violator needs to inform the victim of the constraint violation hy 
means of an interaction. Consequently the victim could raise the 
exception. 

• In the third situation, the violator is the detector of the constraint, violation 
and consequently raises an exception in the victim. This means that the 
violator raises an exception in another process. 

The violator and the victim could also represent a set of processes, rather than 
a single process. 

• If the victim is a set of processes, this leads to the raising of exceptions in 
several processes. 

• lf the violator is a set of processes, this indicates the possibility of 
concurrently occurring exceptions in the victim. Each e~ception 
occurrence should lead to the raising of an exception in the victim. Since 
it is not possihle to raise exceptions concurrently in a single process, there 
must be a mechanism to selectively and sequentially raise one 'or more 
exceptions, and to buffer or discard any remaining exceptions. 

Another point of interest is the point in the program at which the excèption is 
actually raised in the victim. The simplest possibility is to place no 
restrictions on the point at which the exception is raised. Since the occurrence 
of the constraint violation by the violator generally is not synchronized with 
the process in which the ex ception should he raised, the ex ception · can he 
raised at any point in the process, which could lead to an inconsistent state of 
the process such that its invariants no longer hold. This can he prevented hy 
deferring the actual raising of the exception until the process is in such a state 
that its invariants are either valid or can he restored by an exception handler. 
This could, for example, be a state in which the process is blocked, waiting 
for a delay or for an interaction to take place. When the exception is raised, 
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the process should be unblocked in a well-defined way, taking account of 
other processes which possibly participate in the interaction. 
The undesirability of al1owing the raising of exceptions due to constraint 
violations at any point in a processis i1lustrated in Figures 5.3.3a-c. 

ForklifterCtrl >> forkUp 
AnySignal 

handle: 
[:exception I 

do: 

"lf an ex ception due to a constraint vialation would be raised at this 
point, then the power of the lift motor would not be switched off. 
This would mean a vialation of the invariant that specifies that the 
lift motor is stopped when the forkUp methad is terminated." 

self putOff: 'o-forklifter-power'. 
exception reject] 

[self putOn: 'o-forklifter-up'. 
self putOn: 'o-forklifter-power'. 
self 

receive: true 
trom: 'i-forklifter-isUp' 
within: 6 seconds 
ifTimedOut: [KiiiSignal raise]. 

self putOff: 'o-forklifter-power'] 

Figure 5.3.3a Violating invariants by raising exceptions due to constraint 
violations. 

Linkedlist » addlast: alink 

"This example is taken from the Smal/talk-80 system. 
aLink is added to a linked list which is linked by pointers. 
firstLink and lastLink point to the beginning and end of the list 
respectively. • 

self isEmpty 
ifTrue: [firstlink := alink] 
ifFalse: [lastlink nextlink: alink]. 

"lf an exception due to a vialation of one of the process's active 
constraints would be raised here, the intemal structure of the linked list 
would become incorrect. • 

lastlink := alink. 
talink 

Figure 5.3.3b Violating invariants by raising exceptions due to constraint 
violations. 
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OrderController » sendOrder 

'7he invariant in this case is that the contents of orderBuffer plus order 
itself represent all orders which have not yet been sent. 
order is a temporary variabie only used in this method" 

I order I 
AnySignal 

handle: 
[:exception I 

do: 

"Put the order back info the order buffer when the send action of 
the order has been terminaled with an exception." 

order == nil ifFalse: [self putOrderBackln: orderBuffer]. 
exception reject] 

[order := self getOrderFrom: orderBuffer. 
self send: order to: 'out'. 
"lf an ex ception due to a constraint vialation would be raised at this 
point (after a successful send), then the exception hand/er wou/d 
put the order back info the orderBuffer although the order had been 
successfu/ly sent. • 

order := nil] 

Figure 5.3.3c Vlolating invariants by raising exceptions due to cofistraint 
violations. 

In Figure 5.3.3a, the invariant specifying that the power of the lift' motor is 
switched off when the metbod forkUp is terminated cannot be guaranteed, 
because all statements where the motor is switched off can be inten'upted by 
the raising of an exception due toa constraint violation. In Figures 5.3.3b-c 
the violated invariants cannot be restored, because the exceptions could have 
been raised at any point in the program. 

5.4 Requirements for a mechanism for the handling of . 
constraint violations 

It appears from the previous sections that there is a need for a mechanism to 
handle constraint violations. A constraint violation causes an exception 
occurrence in the process of which an active constraint is violated. In some 
cases, the process can deleet the constraint violation itself and consequently 
raise the corresponding exception. In other cases, the constraint violation is 
detected by another process which must consequently inform the affected 
process about the constraint violation. This can be done either by raising an 
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exception in the affected process or by means of another kind of interaction 
which leads to the raising of an exception in the process. 

The known mechanisms for the hand.ling of constraint violations wilt be 
treated in Section 5.5, and a new mechanism wilt be introduced in Chapter 6. 
Before dus, the requirements that should be futfitled by any such mechanism 
wilt be given. Only the most important requirements are given. The existing 
and new mechanisms wilt be evaluated using these requirements, together with 
the requirements presented in Section 4.2. The tenninology of violator and 
victim is taken from Section 5.3.3. The requirements are as follows : 

I . The mechanism should be easy to use and to understand. Ideally, it should 
introduce only a smalt number of new elements that are orthogonal to the 
rest of the programming support. The mechanism should be compatible 
with the existing interaction and exception handling mechanisms. 

2. The mechanism should make it possible to change the normal flow of 
control of a process when its active constraints are violated. The 
mechanism should enable the designer to specify this dependency between 
constraint violations and change of control flow in a cantrolling process in 
a precise, intuitive and natura! way. 

The above requirements are of a very general nature. The following 
requirements are more specific: 

3. The mechanism should allow each operation to specify only its own 
constraints: the constraints of operations which have already been invoked 
should not need to be respecified. 

4. The mechanism should be sufficiently flexible and precise so that, in the 
case of constraint violations, only those processes of which active 
constraints are violated will be affected. 

5. The mechanism should defer the actual raising of the exception until the 
victim process is in such a state that its invariants are either valid or can 
be restored by an exception handler. 

The last two requirements need some further explanation. 



98 Chapter 5 

Requirement 4 calls for tlexibility and precision of the mechanism. Many 
existing mechanisms severely restriet the way that exceptions can be raised in 
response to constraint violations. The mechanism may, for instance, be limited 
to the raising of the same exceptions in the parallel sections of a programming 
construct to express parallel actions. Or it may be limited to a static 
relationship, such tbat the occurrence of an exception in a process will always 
result in the raising of exceptions in a fixed group of other processes, 
independently of where in the original process the exception occurrence took 
place. 

In reality, the determination of which processes should be affected by an 
exception occurrence in another process can very much depend on the point in 
the program where the exception occurred. This has already been illustrated 
by numerous examples in previous sections. When the truck controller from 
previous examples is synchronizing with the traverse controller, exceptions in 
the truck controller are likely to affect the traverse controller. If, on the other 
hand, the truck controller is synchronizing with the fumace controller, 
exceptions in the truck controller wiJl affect the fumace controller. 
The relationships can even extend beyond processes which interact If a robot 
accidentally drops a product on a transporting belt which it needs to cross, an 
exception may need to be raised in the belt controller. In this case, the 
relationships could be due to the physicallayout of the system. There need not 
be any other relationship between both cantrolling processes. 

The last requirement has already been treated in Section 5.3.3. It is clearly 
undesirable to permit the raising of exceptions due to constraint violations at 
all times: this would mean that invariants of the process could be corrupted in 
such a way that they could not be restored by exception handlers. lt is 
especially important to restriet the raising of pending exceptions in such a 
way that the intemal invariants of a process are valid when pending 
exceptions are raised, because it is practically impossible to deal with the 
restoration of all intemal invariants in exception handlers. To allow extemal 
exceptions to be raised at any time during the execution of a process will lead 
to time-dependent run-time errors. It is virtually impossible to detect such 
errors by program testing, and they constitute one of the most hazardous 
aspects of concurrent programming. 
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This section will discuss some known mechanisms for the handling of 
constraint violations. It will be shown that these mechanisms do not allow the 
general specification of constraints of operations and do nat satisfy the 
requirements of Section 5.4. Nat all mechanisms are treated but a selection is 
made of some representative mechanisms. Mechanisms that are only defined 
for the handling of exceptions which occur during the execution of an 
interaction, such as during a rendezvous, are language-specific and are 
therefore nat treated. 

5.5.1 The select-interaction functionality 

This functionality has been treated in Section 5.3.1. The use of this 
functionality for the detection of constraint violations leads to unreliable and 
inelegant programs, whether used in Process Calculus, Ada, Sequentia! 
Function Charts, or any other language. This is because the interactions that 
are used to detect constraint violations need to be respecified in many 
operations. There is in fact a substantial analogy between this way of dealing 
with constraint violations and the use of returned values as exception codes in 
the handling of internat exceptions as treated in Section 4.3.1. In bath cases, 
the creation of robust programs becomes difficult. Using the select-interaction 
functionality, the amount of code to check for constraint violations becomes 
enorrnous, leading to a great deal of code pollution. The constraints of 
operations which have already been invoked must be duplicated in all called 
operations. A constraint violation, such as the activation of the emergency 
button, should be catered for in every possibly blocking interaction. A single 
element of an interaction with many constraints is easily forgotten. Also, the 
process will nat detect constraint violations between two blocking 
interactions. 

An important disadvantage of the use of the select-interaction functionality for 
the detection of constraint violations is the fact that this way of programming 
does nat reflect the way a designer thinks about the system. A more natura!, 
but not yet precise, way to specify the relationship of the emergency button to 
a specific cantrolling process would be sarnething like: 'lf the emergency 
button is pressed while a certain unit is active, an exception should be raised 
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in that unit' . Thus the specification is in tenns of coupling the raising of an 
exception toa certain unitand not to all individual interactions it contains . 

5.5.2 Raising exceptions in other processes 

The traditional ways of dealing with constraint violations are generally based 
on the possibility of raising an exception in another process in one way or 
another. This confonns to the situation described in Section 5.3 .3, where the 
violator is the detector of the exception and consequently raises an exception 
in the victim. The tenns violator and victim will also be used in this section. 

The concept of raising exceptions in other processes can have a darnaging 
effect on program modularity. This is especially the case when the raising of 
exceptions in other processes cannot be restricted. 

In [Booch, 1991] modularity is defined as follows: 'Modularity is the property 
of a system that bas been decomposed into a set of cohesive and loosely 
coupled modules' . Modules serve to make the complexity of large systems 
manageable. The essence is that the complexity of a system can be made 
manageable by dividing the system into modules that can be understood and 
developed mainly independently, without the need to know the ilrner details of 
the other modules. The modules should be loosely coupled. Loosely coupled 
modules generally have relatively few interactions between them and they 
should nat have access to each other's local data, nor to shared global data. 
The desirability of weak coupling and strong cohesion is described in many 
books on software engineering. See for example [Fairley, 1985] for a more 
detailed treatment. 

The u se of parallel processes to control inherently parallel physical systems is 
a way of dividing the complex cantrolling system into a set of more easily 
manageable modules . The desired loose coupling implies that each process 
should need to know as little as possible about the inner details of the other 
cantrolling processes. Therefore, if an exception occurs in a process (the 
violator), and other processes (the victims) may need to be interrupted as a 
result ofthis, the violator should convey the intent to raise an exception to the 
victims. The violator generally does nat know, and does not wish to know, the 
exact state of the victims. The victims themselves should only raise the 
exception ifthey are in a state to handle the consequent exception. This makes 
the violator and the victims largely independent. 
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An example of the probiernatie consequences of pennitting the unconditional 
raising of exceptions in other processes is the following. Consider three 
closely cooperating processes, for example the three processes involved in the 
control of the fork-lift truck of Section 2.3. If an error is detected in one of the 
three processes for which local error recovery is impossible, that process wil! 
have to raise an exception to terminate its control cycle and reset itself. As a 
result of the termmation of its control cycle, the constraints of the other two 
processes wil! be violated and so exceptions should be raised in the other two 
processes to cause them to also terminate and reinitialize. Each of these two 
processes, however, wil!, as a result of their termination, in turn raise 
exceptions in the other two processes. This would mean that undesired 
exceptions are raised in the violators which have already terminated. To 
prevent this from occurring, the process that wants to raise the exception 
should know the state of the victim processes, leading to greater coupling and 
reduced modularity; or else provisions should be made in all processes to 
catch all undesirable exceptions. If, on the other hand, the processes are 
specif'ied in such a way that a request for the raising of an exception is only 
honoured when this is appropriate, coupling will be reduced and modularity 
improved. 

The mechanisms found in the literature will now be evaluated in relation to 
the requirements specified in Sections 5.4 and 4.2. 

Ada 

The Ada programming language [Ichbiah et al., 1983] offers no facilities for 
explicitly raising exceptions in other processes . The rendezvous mechanism is 
the main mechanism for synchronization and conununication between 
processes. The u se of global variables is also possible but is not advised . 
The only occasion during which exceptions wil! be raised in other tasks is a 
rendezvous . If an exception is raised from within an accept statement, the 
exception is also raised in the other task participating in the rendezvous. Th.is 
is done implicitly by the system. The progranuner has no control over the 
raising ofthe exception. 
In the preliminary version of Ada as described in [lchbiah et al., 1979], there 
was the facility to raise a special FAILURE exception in another task. 
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VAXELN 

V AXELN is a progranuning environment from Digital Equipment 
Corporation [Digital, 1986] which has provisions for parallel processing, 
synchronization and communication between processes, as well as facilities 
for the handling of internat and extemal exceptions. It is suitable for the 
development of reai-time applications. V AXELN language definitions are 
provided in C and Pascal. lts exception handling facilities are based on user­
defined functions of the predefmed type EXCEPTION-HANDLER. Within a 
program, procedure, function or process block, only one function of this type 
can be established at a time as the exception handter for that block. This is 
done by calling the procedure 'establish' with the exception handter function 
as argument. An exception handler function established in this way is referred 
to as the handter for the block. This handler is then called on the occurrence 
of exceptions in that block's activation. The function receives the exception 
which has occurred as an argument. If no handter is established for the block 
in which the exception has occurred, then the stack of active blocks is 
searched for a handler. When a handler is found, it is executed with the 
exception as argument and, optionally, other arguments that were included 
when the exception was raised. Only two responses are allowed from the 
handler: the propagate and resume response. There is no return, or retry 
response. The handter must return a boolean. Iftrue is returned, the process is 
resumed after the point where the exception was raised. This is the resume 
response. lf false is returned, the exception is raised again and the system 
searches for a handter in an enclosing block. This is the propagate response. 
The GOTO statement can be used to jump to a label in a higher level block 
and in this way terminate active blocks. The stack can also be unwound 
explicitly by means of an unwind procedure. 

A process can also raise exceptions in other processes. Exceptions that are 
raised in this way are termed asynchronous exceptions. They are the same as 
the external exceptions defined in section 4.1.2. A process can disable and 
enable asynchronous exceptions. When asynchronous exceptions are disabled, 
the raising of an asynchronous exception in the process by another process 
will have no effect. 

The exception handling mechanism used in V AXELN has a number of 
qualities that should be present in an advanced exception handling 
mechanism. The mechanism is unstructured, however. The fact that the 
language does nat provide structured exception handter responses is 
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compensated by offering unstructured sequencing constructs like the GOTO 
statement and the unwind procedure. 

The mechanism for the handling of extemal exceptions offers only the bare 
functionality of raising exceptions in other processes. Constraint violations 
cannot be monitored by the process itself. The programming manual [Digital, 
1986] does nat specify that asynchronous exceptions are made pending, to be 
raised at a later time. lf dus is indeed nat done, then invariants of a process 
can be corrupted in the case of asynchronous exceptions. This should be 
prevented by temporarily disabling asynchronous exceptions in all appropriate 
places of the user program and in all library routines that are called. 
Accidentally forgetting to disable asynchronous exceptions can result in subtie 
time-dependent run-time errors which are hard to detect, and occur only under 
very specific circumstances. 

ROSKIT 

ROSKIT [Rossingh and Rooda, 1985] is a small, reai-time multitasking 
operating system designed especially for machine controL It is written in 
Modular Pascal [Bron and Dijkstra, 1987]. Process synchronization is 
achieved by means of semaphores. It includes the exception handling 
mechanism ofModular Pascal, which has already been treated inSection 4.4. 

Three extemal exceptions are defined: the xKill, xAbort and xTimeOut 
exceptions. A process can raise these exceptions in another process . This is 
known as forcing an exception in another process. The actual raising of 
extemal exceptions is deferred until the process is blocked or when it may 
become blocked. Extemal exceptions cannot be disabled. 

Alarms are introduced to monitor constraint violations specifically caused by 
the state of the controlled system. For this purpose, an alarm can be bound to 
a boolean variabie which is bound to the physical state of a binary sensor in 
the controlled system. Alarms are explicitly disabled and enabled: they cannot 
be bound to blocks . When enabled, they will signa! a vialation ofthe specified 
constraint when the actuator and the associated boolean variabie take on the 
specified value. The constraint vialation is signaled by creating a pending 
exception for the extemal exception xAbort. This pending exception will be 
raised when the process executes a possibly blocking operation. 
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The ROSKIT system has been successfully used for the control of complex 
production systems. lts exception handling mechanism, however, cannot be 
used for the specification of constraints of operations. 

Szalas and Szczepanska's proposal 

In [Szalas and Szczepanska, 1985] a proposal is given for the ra1smg of 
exceptions, which these authors call signals, in another process. Only the most 
important issues in the proposal wil! be treated. Szalas and Szczepanska 
specify that the mechanism should satisfy five postulates, two of which are as 
follows: 

• 'Signals can be received and handled if and only if the receiving process is 
active'. 

• 'Receiving a signa! consists in the immediate interruption of the execution 
of the receiving process and in a handler invocation (if a relevant handler 
exists)'. 

These postulates are precisely the opposite of the requirements g1ven m 
Section 5.4. 
In the case of a constraint violation, an inactive process should immediately 
be activated to handle the constraint violation. lf this we re not necessary, then 
the signa! should nothave been sent in the first place. 
Szalas and Szczepanska claim that delays in the raising of signals are 
unacceptable because 'the meaning carried by a given signa! is strongly 
connected with the actual state of the system and its environment'. However, 
when the raising of a signa! is delayed until the process executes an 
interaction (see the treatrnent of the new mechanism in Chapter 6), the delays 
wil! he determined solely by the speed of the cantrolling system, which should 
in any case he fast enough to meet the reai-time requirements of the controlled 
system. 

Reai-time Euclid 

Reai-time Euclid is described in [Kiigerman and Stoyenko, 1986]. lts 
exception handling mechanism is different from the usual mechanisms. The 
way that processing is continued after execution of an exception hand Ier is not 
determined by the handler itself, but by the way the exception was raised. The 
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only way that a handler can affect the way processing is continued is by 
raising an exception itself. 

Exceptions can be raised in three ways: by means of the kill, deactivate and 
except statement. All three statements take two arguments . The first argument 
is the identifier of the process where the exception is to be raise<l. This 
process can be the process which is currently executing. The second argument 
is the exception number. Exceptions raised with a kill statement wiJl terrninate 
the process after the execution of its handler. Exceptions raised with the 
deactivate statement will tenninate the process's current frame . Frames are 
used to specify the period in which a process must complete its task. Periadie 
processes will automatically start a new frame after their period has expired. 
Exceptions raised with the except statement cause the handler of the process 
to execute, whereafter the process continues after the statement that raised the 
exception. 
The exact functionality of the mechanism is nat made clear in the article. It 
appears that the mechanism does nat allow for handlers at different levels to 
perfarm finalization obligations when an exception is raised. Exceptions that 
are raised in other processes appear not to be made pending but are raised 
immediately, so that internal invariants can be violated. The mechanism 
essentially provides only the functionality of raising exceptions in arbitrary 
processes, whereby the exception handler response is detennined by the type 
of statement used to raise the exception. 

5.5.3 Handling the exception of one process in another process 

Same proposals suggest that a handler for an exception can reside in a 
different process than the process in which the exception was raised. These 
mechanisms are related to the mechanisms described in the previous section. 
In the previous section, however, it was implicitly assumed that an exception 
is only raised in another process in the case of an exception occurrence (due 
to a constraint violation) in the other process. The proposals considered here 
suggest that, in the case of an exception occurrence in a certain process, say 
process A, the hand] er of that exception may be found in another process, say 
process B. The handler responses ofthe handler in process Bare related to the 
continuation of process A after the handling of the exception by process B. 
However, in such a casethereis no exception occurrence in process B. So this 
kind of communication between processes should be done by the normal 
interaction mechanisms provided by the language used. Exceptions should 
only be raised in a process if there is an exception occurrence in that process. 
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Therefore, the u se of these mechanisms is considered to be in conflict with the 
definition and spirit of exceptions. The mechanisms also introduce 
unnecessary complexity. 
These kinds of mechanism are found in [Levin , 1977; Antonelli, 1989; 
Atkins, 1985]. 

5.5.4 Dealing with exceptions in parallel constructs 

One kind of mechanism is not evaluated in detail. This concerns mechanisms 
specifically designed to cope with the exception handling issues in languages 
that make use of parallel constructs, such as the parallel command in CSP 
[Hoare, 1978] as shown in Figure 5.5.1. 

[P1 11 P211 .. 11 Pn] 

Figure 5.5.1 The parallel cammand in CSP. 

A parallel command specifies concurrent execution of its constituent 
processes (P1 .. Pn). They all start simultaneously and the parallel command 
terrninates successfully only if and when the constituent processes have all 
successfully terminated. A sirnilar construct exists in Sequentia! Function 
Charts [IEC 848, 1988], for instance. Double lines are used in SFCs to 
represent the beginning and end of simultaneous sequences. 
The process that executes the parallel command is referred to as the father 
process. The processes represented by P1 .. Pn are referred to as the children 
processes. Difficulties arise when one or more of the children processes 
terminate with an exception. The questions in such a case are whether and 
how the other children should be automatically terminated and what exception 

· should be raised in the father process. Problems like these occur in all systems 
that allow the dynamic creation and termination of processes, such as Ada, 
for example. 
Industrial systems can easily be controlled with a fixed number of processes 
that are created once and are never deleted, unless the whole program is 
terminated. If provisions are desired in a language for the control of systems 
to dynamically create and delete processes, then the exception handling 
mechanism of such a language should fulfil all the requirements specified in 
Section 5.4, plus the additional requirements to cope with a premature 
terrnination of a child process due to an exception. Most languages with this 
kind of parallelism include only mechanisms to fulfil the additional 
requirements to cope with the exceptional termination of a child process . 
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Because such mechanisms are language specific and cannot be used in a 
general way to specify the constraints of an operation, they will not be treated 
in detail. 

Some concrete limitations of these mechanisms, apart from the inability to 
specify the constraints of operations, are as follows: 

• The mechanisms provide only means for dealing with the terminalion of a 
child process with an exception. In the treatment of the retry strategy in 
Section 7 .6, it is shown that exceptions in a child process which are 
locally handled can also give rise to the necessity of raising exceptions in 
other processes. 

• There is no way of propagating exceptions to parallel processes that are 
not included in the same parallel construct. 

Examples of mechanisms that have been developed specifically to deal with 
exceptions occurring in parallel constrocts are found in [Adamo, 1989, 1991; 
Lacoutre, 1991; Issamy, 1991 ]. 

5.5.5 Other mechanisms 

Anionelii's dissertation 

In his dissertation 'Exception handling in a multi-context environment', 
Antonelli ( 1989) proposes an enhancement to the Ada programming language. 
Exceptions can be exported from modules and imported intoother modules. In 
this way, there is a static association between the violator where the exception 
is raised and the victims that import the exception. The exception will be 
raised in all modules that import the exception. 

In the modules that import the exception, the exception must be handled by a 
special exception handter task. Each such task contains an entry associated 
with an imported exception. This proposed syntax is analogous to Ada 
interrupt handter tasks. The task should be suspendedon an accept statement 
waiting for the imported exception to be raised by another task. When the 
exception is raised, the 'rendezvous' takes place and the accept statement is 
elaborated. The exception can only be caught in the other task when it is 
suspended at the accept statement. Therefore, the exception handter task must 
wait passively for the exception to occur and cannot do anything else. 
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In order to raise an exception in a victim task, the victim task must define an 
exception handler task to catch externally raised exceptions. But the problem 
still remains that an exception should he raised in the victim task itself. To 
effect this Antonelli uses global variables as a means of information transport 
between the victim task and its exception handler task. When an exception is 
caught in the exception handler task, a boolean is set. The victim task must 
poll the boolean and if it is set it must raise the exception itself. 

This proposal is unsatisfactory for two reasons: 

• The victim cannot poll when it is suspended in an accept . or delay 
statement. So there is no means of interrupting the victim when it is 
blocked. 

• The need for the victim to continuously poll leads to inelegant and 
urneliabie code. A single poll is easily forgotten. 

Lieber's dissertation and simi/ar proposals 

Lieber's dissertation 'Erweitertes CSP-Modell zur programmierong paralleter 
Prozesse' [Lieber, 1989] is an extension ofHoare's concept ofComm~cating 
Sequentia) Processes [Hoare, 1978]. The CSP model is extended with ports as 
a means of communication between processes. 
Another of the proposed extensions deals with the addition of exception 
handling facilities. The essence is that a running process can he interrupted 
when a receive operation from a port can take place. This is realized by 
means of except statements, which consist of a statement list associated with 
an if-statement list by means of the interrupt or except operator. The if­
statement list usually begins with a receive action from a port. See the part of 
a program taken from [Lieber, 1989] in Figure 5.5.2. 

i:= 1; 
*[i < 1000 -> {skip} 

except [keyboard?x -> a[i] := x; i:= i + 1 ;]] 

Figure 5.5.2 An examp/e ofLieber's except statement. 

The semantics of such a construct are such that the statement list is executed 
until the receive action from the if-statement list can take place. The statement 
list is then interrupted and execution continues with the if-statemtmt list. 
When the if-statement list is finished, the continuation of execution depends 
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on the operator of the except statement. If the interrupt operator is used, 
execution continues after the interrupted statement from the statement list. 
This can be viewed as the resume response from a handler. In the case of the 
except operator, execution continues with the statement following the except 
statement, which resembles the return response. If the receive action from the 
except statement does not succeed at all, the statement list will finish normally 
and execution continues after the except statement. 
Lieber considers send and receive actions to be atomie and does not allow the 
interruption of send or receive actions in the statement list of an except 
statement. 

A positive aspect of this proposal is the fact that the mechanism uses the 
normal interaction mechanism as a means for exception handling between 
processes. Secondly, the effect that an exception in a process can have on 
another processis limited to except statements. 

The proposal, however, does not satisfY the desired functionality of an 
exception handling mechanism for controlling systems for the following 
reasons: 

• There is no means of interruptins a victim when it is blocked. 
• There are no provisions for the handling of internal exceptions: exceptions 

cannot be declared, raised or propagated, for example. 
• Finalization obligations cannot be locally specified nor be executed when 

an operation is terminated: if the statement list from an except statement 
is terminaled because a receive action from the if-statement list receives 
from the specified port, all (nested) operations which are invoked from the 
statement list will simply be terminated. 

• The process can be interrupted in the middle of executing statements. If 
the return response is chosen, this may lead to the violation of the 
program's internat invariants and to inconsistent data. The resume 
response has all the disadvantages indicated in Sections 4.6.3 and 4.6.4. 

The exception handling facilities described in [Gerber and Lee, 1992] bear a 
great resemblance to Lieber's. Gerber and Lee describe their CSR 
(Communicating Shared Resources) Specification Language in their paper. 
The scope statement allows the specification of triggers to be associated with 
a statementS: 
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scope do 
s 

interrupt recv( channel1 ) -> S 1 
interrupt send(channel2) -> S2 
od 

Figure 5.5.3 An example ofthe scope statement. 

Chapter5 

There are four kinds oftrigger guards: send, recv, exec and timeout The send 
and recv operators specify send and receive actions to or from communication 
links. Parallel processes interact by means of communication links. If, during 
execution of the statement S from a scope statement, the timeout expires, or 
one of the 'interrupts' can he executed (for instanee when a send or receive 
action can take place), the S statement is terminated prematurely. Thus the 
interrupt specifications in Gerber and Lee's CSR language are analogous to 
the use of the except operator in the if-statement list of Lieheli's except 
statement. The evaluation of this mechanism is therefore analogous to the 
evaluation of Lieber's mechanism. 

Cfor Unix 

C [Kemighan and Richie, 1978] for Unix does not provide advanced 
programming constrocts for the handling of internat exceptions, apart from 
the setjmp and longjmp procedures. Setjmp saves the current context in a 
variable. When this variabie is used as argument for the longjmp procedure 
the context is restored to the value at the time of the last call to setjmp, 
causing the process to continue right after this statement. This is a kind of 
goto-like mechanism. The main way to deal with internat exceptions is by 
using retumed values as exception codes (see Section 4.3.1). 

Unix provides signals as a means of exception handling between ptocesses, 
see [BeU, 1983]. These signals are different from the raisable signals used in 
the present dissertation. Signals are senttoa process. They are used both to 
bring external exceptions and system detected internal exceptions to the 
attention of a process. A process can specify what to do when it receives a 
signal. It can choose to ignore the signa!, terminate itself or to invoke a 
handler. Handiers are ordinary procedures. Handier procedures can he bound 
to signa) occurrences by using the signa! itself and the address of the signa) 
handiing procedure as arguments to the signa) procedure. If a handler bas 
been installed for a signa! and the process receives a signa!, the execution of 



The handling of constroint violations 111 

the process is interrupted. The handter is executed, and after that, execution of 
the process is continued from the point at which it was interrupted. If other 
responses are desired, these should be obtained by means of the setjmp, 
longjmp procedures. 
Many other features of signals are described in [Sun, 1990]; they do not, 
however, change the rnain functionality described above. 

The rnain problem with this way of handling exceptions is that C lades a 
mechanism for the handting of internat exceptions, as described in Section 
4.4. 
Another problem is caused by the way signals are handled. The function of 
signal handters is very similar to interrupt handlers. This leadstoa limitation 
on the possible responses from such a handter: resumption or the drastic 
termination of the process, without the possibility of fulfilling local 
finalization obligations. If the resume response is chosen, the interrupted 
program will need some sort of polling mechanism to detect whether or not a 
signal interrupt bas taken place. 

Proposals by Issamy and Banátre 

These proposals are described in [Issarny, 1990; Issarny and Banätre, 1990; 
Issarny, 1991]. The objective ofthe proposed mechanism in all three articles 
is restricted to deadlock avoidanee in the presence of processes which 
terminate with an exception. In the context of these articles, the termination of 
a process means the termination of the current iteration step when the body of 
the process consists of a repetitive comrnand. 

Global exceptions are introduced in the first two articles. An exception is 
globa1 when a handter for that exception is found in the handter list attached 
to a process body; otherwise the exception is local. If a process raises a global 
exception, the exception will autornatically be raised in all processes where a 
handter for the exception is found in the handter list attached to the proces~ 
body. Raising a global exception in a process implies the termination of that 
process. 

The raising of exceptions in all processes that have a handter for the global 
exception can be too unrestrictive. lf, for example, such a process bas already 
finished its interactions with the process that originally raised the exception, 
deadlock will not result. 



112 Chapter5 

In the third article, the raising of global exceptions is restricted to processes 
that . actually want to interact with a process that terminates by signaling a 
global exception. In this way, the mechanism bears a resemblance to the way 
that the tasking-error exception is raised in Ada when a process wants to 
execute a rendezvous with a terminated process. In this article, the mechanfsm 
is also adapted to take account of exceptions occurring in parallel constructs, 
as treated inSection 5.5.4. 
The restrictions of the mechanism, which only allows for the raising of 
exceptions in other processes in the case of the termination of a process, make 
it unsuitable as a general mechanism for dealing with constraint violations. 



Chapter 6 
A new mechanism for the handling of 
constraint violations 

This chapter describes a new mechanism for the handling of constraint 
violations. The new mechanism is fi.rst treated independently of any particular 
implementation. The implementation of the mechanism in Process Calculus is 
given in Section 6.1 0, which also includes some examples. 

6.1 The specification of constraints with constraint monitors 

6.1.1 Definition of terms 

When an operation is executed, its constraints must be valid, since otherwise 
its goal cannot be achieved. A violation of one of its constraints is an 
exception occurrence which should eventually result in the raising of an 
exception. Therefore, each constraint should be linked to an exception which 
should be raised after a violation of the constraint. This results in the 
following definition of constraint monitors. 

A constraint monitor consistsof a constraint and an (extemal) exception; it 
is used to signa) violations of the specified constraint. 

The new mechanism for the handling of constraint violations is based on 
constraint monitors, which are used to detect and signal violations of the 
constraints of an operation. Since constraints are specified for operations, a 
constraint monitor can be bound to an operation. An operation is a logically 
related group of statements or expressions in a sequentia) process with a 
single entry (see Section 4.1.1). In many programming languages, blocks are 
available as programming construct. In these languages, the effect of binding 
a constraint monitor to an operation can be achieved by enclosing the 
operation in a block and subsequently binding a constraint monitor to the 
block. A block to which a constraint monitor is bound is said to be protected 
by the constraint monitor, and can be referred to as a protected block. The 
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operation enclosed by the blockis likewise known as a protected operation. 
The constraint monitors bound to the protected block can be referred to as the 
block's constraint monitors. 

During the activation of a protected block, the constraint monitors bound to 
the block will monitor the constraints specified in the constraint monitors, 
which means that the constraints will be continuously checked to see if they 
still hold. This monitoring takes place throughout the execution of the block, 
including during the time that other operations are called from Within the 
block. When the monitor detects a constr'aint violation, monitoring is stopped, 
independently ofthe future termination ofthe block. 

6.1.2 The binding of constraint monitors to blocks 

The binding of a constraint monitor to a block can be done either statically or 
dynamically, meaning that the binding takes place at compile-time or at run­
time. 

In the case where a block bas several (sub-)constraints, two appr~hes are 
possible. If only one constraint monitor can be bound to a b'ock, all 
sub-constraints should be specified in this single constraint monitor, using a 
compound constraint. The other approach is to allow multiple constraint 
monitors to be bound to a block. The last approach is chosen because in this 
way a separation of concerns is made possible: independent constraint 
monitorscan be used for the specification of independent sub-constraints. lt 
also facilitates reuse of constraint monitors. 

· A constraint monitor is enabled if and only if a protected block to which it is 
bound is executing. This is an important aspect of the functionality of 
constraint monitors, and one which fits in well with the concept of structured 
programming. lf constraint monitors were not bound to blocks and were 
allowed to be explicitly enabled and disabled, then it would be more di:fficult 
to onderstand the operation of a program: in order to determine at which parts 
of the program a constraint monitor bas an enabled or disabled status, it 
would be necessary to locate the statement where the constraint monitor was 
last enabled or disabled. This could be any statement executed • by the 
program. lf, on the other hand, constraint monitors are bound to blocks, then 
the status of a constraint monitor wiH only be enabled if it is bound to an 
invoked block. So, in order to determine the enabled constraint monitors, only 
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the active blocks which are the blocks on the eaU chain of the process -
need to be examined. 
To keep things simpte initially, it is assumed that blocks with the sarne 
constraints are not nested. The consequences of nesting blocks with the sarne 
constraints are treated in Section 6. 7. 

6.1.3 The language dependency of constraint monitors 

The actual specification of constraints depends very much on the 
prograrnrning language used. Constraints always concern the environment of 
the process executing an operation. The interactions of the process with its 
environment are described by means of the interaction mechanism which is 
available in the prograrnrning language used. This interaction mechanism 
should be used as far as possible for the specification of constraints. This has 
the advantage of rernaining compatible with the existing interaction 
mechanism, and at the sarne time being able to use its expressive power. Also, 
in this way only a few new concepts are introduced, keeping the new 
mechanism simple. 

If, for instance, Sequential Function Charts [IEC, 1988] are used, constraints 
could be specified with those expressions that rnay occur in the specification 
of transition conditions. In message-based systerns, on the other hand, 
constraints could be specified by means of messages. Specific messages could 
be defined to indicate constraint violations. The different possibilities for the 
specification of constraints in the different languages will not be dealt with in 
this tl:iesis. The implementation chosen for Process Calculus will be treated in 
Section 6.10. 

6.1.4 The binding of constraint monitors to identifiers 

In this section it is shown that it should be possible to bind constraint 
monitors to identifiers. 

If constraint monitors are integrated in a language in such a way that the 
binding of a constraint monitor to a block implies the definition of a new 
constraint monitor, then constraint monitors cannot be referred to in the 
program. This means that, in order to specify equivalent constraint monitors 
for different blocks, it would be necessary to create a new constraint monitor 
for every block. This is obviously a disadvantage if equivalent constraint 
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monitors are bound to many different blocks. In Chapter 7, this is shown to be 
quite a common situation. Note that two constraint monitors are equivalent 
when their constraints can be expressed with the same constraint function and 
their exceptions are the same. 

lf a constraint monitor may be created fi.rst and bound toa block later, then 
the mechanism should support the binding of a constraint monitor to an 
identifier. After the binding of a constraint monitor to an identifier, the 
identifier will denote the constraint monitor. The identifier canthen be used 
every time that the constraint monitor should be bound to a different block. 
For an explanation ofthe concept binding, the reader is referred to [Tennent, 
1981; Watt, 1990], 

Note that some languages use assignment statements to 'bind' certain entities 
to identifiers, where other languages can produce true bindings. In Ada, for 
instance, there is a special exception declamtion statement to 'bind an 
exception to an identifier. In Smalltalk, however, such 'bindings' between 
identifiers and signals can only be attained by means of assignment 
statements. First, an identifier is bound toa variable. The identifier canthen 
be 'bound' to a signal by means of an assignment statement. It is the 
programmer's responsibility to initialize the variabie with the required signal 
value, and to make sure that this value is not altered during program 
execution. In this way, the variabie can be treated as a constant. 

There is another reason why it is preferabie to allow constraint monitors to be 
bound to identifiers. lf a block is terminated with an exception, it may not be 
immediately obvious what caused its termination: it could have l;>een the 
violation of a constraint, but it could also have been an internat exception 
occurrence. Also, the discarding of pending exceptions can make it possible 
for constraint violations to remain unnoticed. If the constraint monitor can be 
referred to with an identifier, the status of the constraint monitor can be 
examined to test whether its constraint has been violated. In this way 
constraint violations can always be detected. 

6.2 Pending exceptions as a result of constraint violations 

When a constraint monitor detects a constraint violation, the constraint 
monitor's exception will be raised. As has already been explained in Section 
5.4, the exception generally cannot be raised immediately, since the constraint 
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violation generally is not synchronized with the execution of the process of 
which an active constraint is violated. Therefore, the raising of the constraint 
monitor's exception is generally deferred to a later time. To achleve this, a 
pending exception is created for the monitor's exception. A pending 
exception is an exception which is ahout to he raised. The actual raising of 
the exception is deferred until well-de:fined points in the program, so that the 
internat invariants of the process will not he invalidated. 

When a constraint monitor detects a violation of its constraint, it will signal 
this constraint violation hy creating a pending exception, after which it stops 
monitoring its constraint. This is hecause the pending exception should lead to 
the termination of the protected hlock with an exception. Leaving the 
constraint monitor to monitor its constraint could only cause more pending 
exceptions, equal to the already existing one, which would have no effect. 
However, the constraint monitor remains enahled. lt is disahled when the 
executing protected hlock to which it is hound is terminated. A pending 
exception can he created for a roostraint monitor only while it is enahled. 
When it is disahled, its pending exception {ifpresent) is discarded {see Section 
6.5). 

The pending exception can he referred to as the constraint monitor's pending 
exception and the monitor can he referred to as the pending exception's 
constraint monitor. A pending ex ception is, in fact, an indication that the 
exception of a constraint monitor is ahout to he raised. 

If the programming language used supports the raising of exceptions with 
arguments, these should also form part of the constraint monitor. In such a 
case, the pending exception will he raised with the appropriate arguments. 

6.3 Raising pending exceptions 

6.3.1 Instant and delayed response controlling systems 

Instant response cantrolling systems 

In instant response controlling systems, the points in time at which the 
external state of the controlled system - which is determined hy the values of 
the actuators and sensors - changes from one state into another is not 
significantly affected hy increasing the processing speed of the controlling 
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system. Therefore, the abstraction can be made to consider the processing 
speed of such controlling systems as infinite, which yields zero response 
times. 
An infinitely fast execution of the controlling processes should have no effect 
on the correctness of the system; a properly designed controlling system 
should be independent of the relative and absolute execution speed of the 
different controlling processes, under the condition that the execution speed is 
above a eertaio minimum level in order to guarantee the reai-time 
charaderistics of the system. 

Examples of such systems can be found in sequence control systems. based on 
parallel processes. , In these systems, several controlling processes are usually 
executed on a single physical processor. Each controlling process spends most 
of its time being blockeel in an interaction, while waiting for a eertaio change 
in the state of the processes in the controlled or controlling system. When the 
external state of the controlled system changes, interactions will take place 
and the state of the controlling processes will be updated according to the new 
state of the controlled processes, whereafter the controlling proce~ses will 
again each be blockeel in an interaction. For each process in the controlling 
system, the time spent by computations between two subsequent suspended 
states is negligibly small in comparison with the time spent in each suspended 
state (blocked in an interaction). 

There are also instant response controlling systems where the controlling 
processes are not normally blockeel in an interaction. lf, for example, there is 
only one controlling process executing on a dedicated physical processor, the 
process could be continuously polling the state of the controlled system, so 
that it can give a response when a change is detected. 

Delayed response controlling systems 

In delayed response controlling systems, the processing speed of the 
controlling system plays an essential part in the operation of the controlled 
system. Increasing the speed of the controlling system will significantly 
change the points in time at which the external state of the controlled system 
changes from one state into another. In these systems, there are processes that 
spend a significant amount of their time on the computations that are 
necessary in order to respond to changes in the state of the controlled system. 
An example of such a controlling system is a scheduler. The response time of 
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such a scheduler can be a significant factor in the progress of the controlled 
system. 

6.3.2 A strategy for raising pending exceptions in instant response 
controlling systems 

In order to keep invariants - especially internal invariants - intact, pending 
exceptions should be raised at points where the invariants are either valid or 
where invalid invariants can be easily restored in an exception handter which 
can catch the pending exception that will be raised. Of these two options, 
raising pending exceptions at points where the invariants are valid appears to 
be preferable, because it avoids the deleetion and restoration of invalid 
invariants in exception handlers. Another requirement, however, is that the 
raising of pending exceptions should not be deferred for too long. It can 
therefore be necessary to raise pending exceptions at points where invariants 
are invalid. The question that is answered in this section is: how are the points 
determined where pending exceptions are raised? 

One approach would be to have the programmer state, for every statement, 
whether or not it may be interrupted by the raising of a pending exception. 
This approach clearly places too great of a burden on the programmer and 
leads to a great deal of code pollution. It would be desirabie that the run-time 
system or the compiler could determine where to raise pending exceptions, 
without explicit indications from the programmer. Therefore, a strategy for 
the raising of pending exceptions will be developed. 

Raising pending exceptions at interaction points 

First it is noted that, in instant response cantrolling systerns, the raising of 
pending exceptions can be deferred until interaction points, which are 
statements that execute an interaction with another process. The argument for 
this is as follows. 
When a constraint violation is detected, there are three kinds of delay involved 
in its handling. Firstly, there is the delay between the time of the actual 
constraint violation and the time of the deleetion of this violation by the 
cantrolling system. Secondly, there may be a delay between the time of the 
detection and the time of the notification of the affected process, caused for 
instanee by the need to schedule concurrent processes on a single physical 
processor. Lastly, there is the delay between the time that the exception could 
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in principle be raised in the affected process and the time that the nex.t 
interaction point is reached. The first two delays are independent of the 
strategy chosen for raising pending exceptions: the strategy to defer the 
raising of pending exceptions until interaction points introduces only the third 
delay. The maximum delay which can he introduced by this strategy is equal 
to the maximum amount of time that is needed for the computations between 
two interaction points. However, during the time that a process is performing 
computations between two interaction points, it cannot respond to changes in 
the controlled processes. Therefore this time must be limited in instant control 
systems, in order to be able to realize the desired 'instant' response of those 
systems, thereby yielding the same 'instant' response for constraint violations. 

An important advantage of the approach of raising pending exceptions at 
interaction points is that interaction points are a natural place for intemal 
invariants to be valid. Undesirable interactions after roostraint violations are 
also prevented in this way, because interaction with other processes is only 
possible by means of interaction points. If global variables are used for the 
communication between processes, then the updating and reading of these 
globals are also referred to as interaction points. 

Pending exceptions generally cannot be deferred during the execution of delay 
statements. Therefore, delay statements are also considered as interaction 
points. They can he viewed as interacting with a timing process. 

Pending exceptions will be raised at interaction points, includiqg delay 
statements, in the following way. 
When there is already a pending exception prior to the execution of an 
interaction point, the pending exception will he raised, replacing the 
interaction point. 
When the process is blocked in an interaction point and a pending exception is 
created, the process will be unblocked immediately and the pending exception 
will be raised, replacing the interaction point. 
When a pending exception is created at the time the interaction actually takes 
place (and the process is therefore oot blocked), the interaction will be 
allowed to terminate normally and the raising of the pending exception will he 
deferred until the next interaction point. In this way, it is guaranteed' that an 
interaction either takes place successfully, or that it does oot take place but is 
replaced by the raising of a pending exception. Raising a pending exception 
directly after a successful terrnination of an interaction could in fact cause 
internat invariants to be invalidated, for example when the statement 
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following the interaction records the number of interactions that have taken 
place. 

Another possible strategy is to defer the raising of exceptions until the process 
executes an interaction point that causes the process to be blocked. This 
approach has the advantage of restricting the number of points in the program 
where invariantscan be violated due to the raising of pending exceptions. This 
could make eertaio exception handlers simpler. The extra delay introduced in 
this case can be ignored in instant response systems, because no blocking can 
take plaee in the interaction points where the pending exceptions are not 
raised. The disadvantage is that the execution of eertaio non·blocking 
interactions in the presence of pending interactions could be undesirable. 
Clearly, this approach is only possible when the controlling processes beoome 
blocked when they wait for the controlled system to change state, and do not 
continuously poll the state of the controlled system. In systems that use 
polling processes, pending exceptions must be raised at all interaction points. 
Please note that each poll is an interaction point. 

The strategy of raising pending exceptions at all interaction points is preferred 
to the strategy to raise pending exceptions at blocking interaction points only. 
In this way, undesirable interactions after the creation of pending exeeptions 
are avoided. This strategy is also conceptually the simplest, and it can be used 
for all instant response controlling processes. The disadvantage of this 
strategy is that invariants can be invalidated more easily, because pending 
exeeptions are raised at all interaction points. This is not considered to be a 
great problem, because the violated external invariants can be restored in 
exeeption handlers. If pending exeeptions are raised at all interaction points, it 
is preferabie to ensure that internat invariants are valid at all interaction 
points. 

No raising of pending exceptions in exception hand/ers 

The raising of pending exceptions is unacceptable in an exception handler. 
This is due to the fact that an important aim of exeeption handters is to restore 
(extemal) invariants that have been invalidated by an exeeptional termination 
of a program unit. lf one were allowed to raise pending exceptions in 
exeeption handlers, then a handler could be terminated with an exception 
before it had been able to restore the violated invariants. An example of such 
a situation has already been given in Figure 5.3.3a. Therefore, pending 
exceptions are not raised in exeeption handlers; they are kept pending. As a 
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result, exception hamilers should not contain delay statements or blocking 
interaction points the blocking of which depends on the state of the controlled 
system. 

The monitoring of constraints 

The monitoring of constraints can take place in two conceptually different 
ways. 
In the first way, constraints are monitored tbrooghout the execution of a 
protected block. 
In the second way, monitoring of constraints is restricted to explicit points 
during the execution of a protected block. lf pending exceptions are. raised at 
interaction points only, then monitoring of constraints can be restricted to 
interaction points, so that the constraints are not monitored ' between 
interaction points. In that case, there is no need for pending exceptions, 
because the required external exception can be raised at the time that the 
constraint violation is detected. 

Note that, in both cases, the constraints of a protected operation are,not only 
monitored during the execution of the operation itself, but also during the 
execution of all operations (or during the execution of interaction points in 
these operations) which are called from the protected operation, and all 
operations called by them etc. Monitoring will stop only when the protected 
operation is terminated (apart from the temporary stopping of the monitoring 
between interaction points in the second case). 

The disadvantage of restricting the monitoring of constraint violations to 
· interaction points is that the indication of constraint violations in message 
based systems can, in this way, not be done by means of non-blocking 
synchronous send primitives. This disadvantage is obviously not relevant for 
systems in which such send primitives are not available. 

When a non-blocking synchronous send primitive is executed, the transfer of 
the message will only take place if a process exists which can immediately 
receive the message. lf there is no such process, the non-blocking send 
primitive is tenninated immediately, and the message will remaio in the 
sending process. An example of such a send primitive is the broadcast 
primitive. This primitive sends copies of a message only to those processes 
that are ready to receive the message. It does not block. 
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The non-blocking synchronous send prurut1ves are very useful for the 
indication of constraint violations (see Section 6.10.8). The use of these send 
primitives, however, contlicts with the strategy to monitor constraints at 
interaction points alone. 
Such contlicts can occur when two (or more) processes are interacting with 
each other during the execution of a certain program region in each process. 
Such program regions will be referred to as synchronization sections. 
Examples of such situations are given in Figures 5.3 .2a-c, and Figures 7.5 .5 
(CtriTraverse » stackToTruck) and 7.5.6 (CtrlTruck » 
receiveStackFromTraverse). lf, in such a case, one of the two processes (the 
violator) prematurely leaves its synchronization section due to an exception 
occurrence, this will be a constraint vialation which should be indicated to the 
other process (the victim). This is best done by means of the non-blocking 
synchronous send primitive. In each of the processes a constraint monitor, 
which monitors the state of the synchronizing process, will be bound to the 
synchronization section. The constraint monitor ofthe victim must receive the 
message which indicates the constraint vialation by the violator. lf, however, 
the victim monitors its constraint at interaction points only, then the non­
blocking synchronous send primitive could fait to actually send the message. 
This will occur if the send primitive is executed at a point of time at which the 
victim is not monitoring its constraint, which can be any point of time at 
which it is proceeding from one interaction point onto the next. In such a case, 
the constraint monitor will not detect the constraint violation, which will lead 
to deadlock. 

To prevent such errors in the case that constraints are monitored at interaction 
points only, constraint violations could be indicated to all affected processes 
by means of asynchronous or blocking synchronous send primitives. The 
asynchronous interaction mechanism bas an undesirable buffering function, 
however, which could lead to the signaling of a constraint violation, due to a 
buffered message, at a time that the constraint indicated by the buffered 
message is no Jonger violated. The blocking synchronous interaction 
mechanism is also unsuitable because it will cause thesender (violator) to be 
blocked until the message, indicating the constraint violation, is received by 
the constraint monitor of the victim. If, however, the operation of which a 
constraint was assumed to be violated would also happen to terminate 
prematurely due to an exception occurring at the same time as the exception 
occurrence in the violator, then the constraint monitors bound to the operation 
could already be disabled. In such a case, the message would not be received, 
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causing the sender (violator) to remaio blocked, which would lead to 
deadlock. 

The condusion is that constraints should be monitored tbraughout the 
execution of a proteQled block in systems in which the non-blocicing send 
primitive is available for the indication of constraint violations. This is the 
approach taken in this chapter. In systems where such primitives are not 
available, such as systems based on asynchronous interaction mechanisms, 
constraint violations will not remaio unnoticed between interaction points. 
Therefore, the monitoring of constraint violations at interaction points alone is 
a legitimate option for those systems. This strategy, however, will notbedealt 
with in greater detail, because the behaviour of such systems regarding 
constraint violations can be deduced relatively easily from the be~viour of 
systems where constraints are monitored tbraughout the execution of a 
proteeled block. 

The exit point of a protected block 

The fact that the exit point of a proteeled block is not an interaction point can 
lead to the necessity to check the status of eertaio constraint monit~rs bound 
to the proteeled blockafter normal terminalion ofthe block. 
The exit point of a block is the point at which the block is terminaled 
normally, that is not with an exception. So the exit point of a blobk is the 
point just before the block's end identifier (or other symbol or identifier which 
doses the block), or the point where a return statement causes terminalion of 
the block. 

Constraints concern the environment of the process executing an operation, 
and interaction points are the only way to interact with the environment. 
Therefore, constraints can only change after the execution of an interaction 
point. So in theory, the exit point of a protected block should coincide with an 
interaction point. This is not practical, however. One ofthe reasoos for this is 
that the exit point of a protected block can depend on the execution of 
conditionat programming constructs, such as if then else statements. 

If constraints are monitored at interaction points only, they will no long er be 
monitpred after execution of the interaction point execuled last in the 
proteeled block. Therefore, in this case, the proteeled block can be considered 
to end at the interaction point exeeuted last. 
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lf constraints are monitored throughout the execution of a protected block, 
however, monitoring of constraints will not stop after execution of the 
interaction point executed last in the protected block; it will stop exactly at the 
exit point ofthe protected block. In the situation discussed below, this leads to 
the necessity to check the status of a constraint monitor bound to a protected 
blockafter normal termination ofthe block. 

In message based systems, a constraint monitor could monitor its constraint 
by trying to receive a specific message. This is elaborated on in greater detail 
in Section 6.10, where the implementation of constraint monitors in Process 
Calculus is treated. The receipt of such a message wiJl indicate a constraint 
violation, which will normally result in the raising of an exception. This could 
either be the monitors exception itself or, in the case of discarding (see 
Section 6.5), some other exception. The received message which indicated the 
constraint violation can normally be retrieved from the constraint monitor in 
the exception handter used to catch the pending exception which was raised. 
If, however, the constraint violation were to take place after the last 
interaction point in the protected block, but before the exit point of the 
protected block, the receipt by the constraint monitor of the message which 
indicated the constraint violation would not result in an exception being 
raised. The reason for this is that an interaction point is no longer encountered 
in the protected block, causing the constraint monitor's pending exception to 
be discarded at the exit point ofthe protected block (see Section 6.5). 
In the case that the contents of the message indicating the constraint violation 
are needed, the constraint monitor must be checked both in the exception 
handter used to catch the raised pending exception, and in the statements 
dynamically following the exit point of the protected block. lf the last test is 
not programmed, then the message indicating the constraint violation can go 
unnoticed in the special case of a constraint violation after the interaction 
point executed last in the protected block. 

A practical example of this situation is a constraint monitor monitoring 
commands sent by the operator by means of the MMI (man-machine 
interface). Suppose that the operator can send the commands manua/ and 
reset to the cantrolling processes. The receipt ofthe command reset will cause 
the cantrolling system to interrupt the current activities of the controlled 
machines and return them to a predefined reset state (see Section 7.4). The 
receipt of the command manual will also cause the controlling system to 
interrupt the current activities of the controlled machines, after which the 
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controlling system will await commands from the operator to sequentially 
operate selected parts ofthe controlled machines. 
When the cantrolling system is executing a reset command, it will be 
continuously synchronizing with the controlled machines in order to bring 
them into the reset pqsition. A constraint for this reset operation is that the 
operator does not send a manual command, because in that case resetting the 
machine would have to be stopped and the cantrolling processes would have 
to wait for new commands from the operator. Therefore, a constraint monitor 
which monitors the operator to see whether a manual oommand can be 
received is bound to the protected block enclosing the reset operation. 
If the monitor receives a manual command, the monitor's pending exception 
will be raised at the execution of the next interaction point, after which the 
received manual oommand can be retrieved from the constraint monitor in the 
exception handler which caught the raised exception. 
lf, however, the manual cernmand were to be sent just aft er the execution of 
the last interaction point in the reset operation but before the exit point of the 
protected block enclosing the reset operation, the manual oommand would be 
received by the eenstraint monitor, but the pending exception thus created 
would he discarded upon termination ofthe protected block; and so'the reset 
operatien would terminate normally. Therefore, it is necessary to check the 
status of the constraint monitor after normal termination of the protected reset 
operation, so that the manual oommand can be retrieved from the constraint 
monitor. lf the constraint monitor has not received a message, then the check 
of the constraint monitor can be foliowed by a normal receive action in order 
to wait for the (manual or other) oommand from the operator. 

If pending exceptions would also be raised at the exit point of a protected 
block, the block would always terminate with an exception if a pending 

· exception had been created due to a violatien of a constraint of the block. 
The problem with this approach, however, is that it rnay lead to the violatien 
ofintemal invariants. Consider the example given in Figure 6.3.1: 

r'Start of protected block" 
self send: item to: 'out' 
"End of protected blockl 
numberOfltemsSent := numberOfltemsSent + 1. 

Figure 6.3.1 Vlolation of an tnternal invariant when a pending exception is 
raised at the exit point of a protected b/ock 
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lf a pending exception is raised at the exit point of the protected block, the 
variabie numberOfltemsSent will not be incremented. This would be a 
violation of the internat invariant specifying that numberOfltemsSent equals 
the number of items that have been successfully sent. This invariant cannot be 
restored in an exception handler, because the handler cannot determine 
whether the exception has been raised before (replacing the interaction point) 
or after (at the exit point of the protected block) the item has been sent. 
Therefore pending exception are not raised at the exit point of a protected 
block. 

In conclusion, the status of a constraint monitor should be checked after 
normal termination of the block to which it is bound if the contents of the 
message received by the monitor are not only required after the exceptional 
termination of the protected block, but also after its normal termination. This 
observation is based on continuous monitoring of constraints. If constraints 
are monitored at interaction points only, the status of constraint monitorsneed 
only be checked in exception handlers. 

Summary 

In synchronous message based systems, the constraints of an operation are 
monitored throughout the execution of the operation. The actual raising of a 
pending exception in a process is deferred until no exception handter is 
executing and the process starts the execution of an interaction point. The 
pending exception is raised, replacing the interaction point. (Piease note that 
interaction points are defined toalso include delay statements.) 
The raising of a pending exception is not deferred when a pending exception is 
created during the time that a process is blocked in an interaction point and no 
exception handler is executing. The process will be unblocked immediately, 
and the pending exception will be raised, replacing the interaction point. 

6.3.3 Raising pending exceptions in delayed response controlling 
systems 

Deferring the raising of pending exceptions until interaction points can be 
unacceptable in delayed response controlling systems, due to the fact that the 
processing time between interaction points is not negligibly small in these 
systems. An example of such a system is a scheduler which takes a relatively 
long time to calculate a new schedule. During this calculation constraints 
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could he violated, which should cause the scheduler to end its calculation. 
Such a constraint vialation could, for example, he the arrival of a new batch 
(forcing recalculation of the schedule), or a cammand from the operator to 
terminate the calculation of the schedule. A timely response to such a 
constraint vialation cao he achieved in two ways. 

First, extra interaction points cao he introduced into the scheduler, thereby 
reducing the time between interaction points. These interaction points cao he 
used to test the status of the environment to see whether constraints have been 
violated. The drawback of this approach is that interaction points are used in 
this way to test constraints explicitly, which contradiets the idea of using 
constraint monitors. Altematively, 'dummy' interaction points, of which the 
sole purpose is to make the raising of pending exceptions possible, could he 
introduced into the scheduler. · 

Second, ao extra primitive could he introduced which allows pending 
exceptions, if aoy, to he raised at points in the program specified by the 
programmer. When this routine is called, a pending exception, if available, 
will he selected to he raised at the point ofthe call to the routine. Ifthere is no 
pending exception, the call to the routine bas no effect. The routine .could he 
called raisePendingException. The use of this routine gives the programmer 
maximum flexibility in bis/her control of the raising of pending exceptions at 
appropriate points, without the need to introduce dummy interactions. It is a 
kind of polling, which is only necessary in the special case of delayed 
response cantrolling systems. Note, however, that the monitoring of the 
constraints by the enahled constraint monitors always takes place, 
independently ofthe polling calls on raisePendingException. 

· The first option keeps the mechanism conceptually simple, because pending 
exceptions are only raised at interaction points. The introduetion of dummy 
interaction points or interaction points to test the constraints explicitly is, 
however, confusing. Therefore, it is preferred to add the 
raisePendingException routine as a primitive to the mechanism fot raising 
pending exceptions, which bas been treated in the previous section. 
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6.3.4 Overriding the default strategy for raising pending 
exceptions 

129 

The strategy for raising pending exceptions which bas been treated in Sections 
6.3.2 and 6.3.3 is not satisfactory in all cases. Insome cases, it is desirabie to 
he able to override the default strategy in such a way that pending exceptions 
are allowed to he raised at certain interaction points in exception handters. 

This is necessary when the retry strategy as treated in Sections 7.3 and 7.6 is 
used. The retry strategy is only possible in languages that support the retry 
response from an exception handter. lt makes use of a blocking interaction in 
an exception handter, which is used to wait for the response from the operator 
indicating that the interrupted control action can he restarted. Such a blocking 
interaction, however, should he interruptible when a constraint is violated and 
a pending exception is created. Otherwise, the process would remain blocked 
in the exception handter until the operator response was received. lf pending 
exceptions are never allowed to he raised in exception handlers, then the 
interaction used to wait for the response from the operator to continue cannot 
reside in the exception handler. In such a case, the retry response from an 
exception handter cannot he used. The return response will need to he used 
instead and the interaction used to wait for the response from the operator 
must he part of a while do statement, which can cause the control action, 
including the exception handler, to he re-executed. This will lead to less clear 
and less elegant code which cannot take advantage of the retry response from 
exception handlers, but it is not a problem for languages that do not support 
the retry response anyway. 

Two main approaches can he distinguished for the specification of constrocts 
that allow pending exceptions to he raised at certain interaction points in 
exception handters. Firstly, this overriding of the default strategy can he 
explicitly specified for individual interaction points, because these are the only 
relevant places where the default strategy needs to he overridden. Secondty, a 
region of the program (a block, for instance), can he defined, where the 
default strategy is overridden. Such a block will he referred to as an 'override 
block' for easy reference. 

The latter approach has two distinct disadvantages. Firstly, the designation of 
a block where pending exceptions are allowed to he raised in exception 
handters does not make it clear that this is only relevant to interaction points 
contained in the block. Secondly, and even more important, this approach 
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makes it conceptually more diffi.cult to detennine whether pending exceptions 
are ;:ülowed for a specific interaction point or not. This is due to the fact that 
exception handlers and override blocks can be mutually nested. lf, for 
instance, an exception handler is nested in an 'override block', in which 
pending exceptions are allowed to he raised, then the exception handler would 
probably need to override the override block in such a way that pending 
exceptions in the nested handler are not allowed to he raised. 

An advantage ofthe Jatter approach is its syntactic simplicity. The conceptual 
complexity is, however, considered to be more important. Therefore, it is 
preferred that the default strategy can only he overridden for explicitly and 
separately indicated interaction points. 

The actual decision as to whether to allow the default strategy to be 
overridden depends on a number of aspects. Added complexity due to the 
added primitives should outweigh the increased programming power of the 
language. The possible presence of a retry response in the language is another 
aspect influencing this decision. In Process Calculus, special interaction 
primitives are available for use in exception handlers, so that' pending 
exceptions can he raised during the execution of these primitives. 

6.4 Handling exceptions resulting from constraint violations 

When a constraint vialation is signaled by a constraint monitor, the resulting 
pending exception will he raised someWhere in the proteeled block of which 
the constraint was violated. The handling of such exceptions is application­
dependent, but there is one important common aspect. A constraint vialation 
will make it impossible for the proteeled block to achieve its goal. Therefore, 
the exception that is signaled as a result of the constraint vialation should 
result in the terminalion of the block with an exception. A result of this 
requirement is that handters which are activated from within a proteeled 
block, that is during the execution of the proteeled block, must always 
propagate exceptions that indicate a vialation of the protected, block's 
constraints. 

The observations discussed above can be summarized in the following 
obligation for the programroer regarding exception handling in the presence of 
exceptions from constraint monitors. ' 
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An exception hand/er that catches a constraint monitor's exception while the 
constraint monitor's block is not yet terminaled must terminale by 
propagating the exception. 

Programs should he developed in such a way that they adhere to this principle 
while at the same time making use of the concepts of abstraction and 
modularity. The use of these concepts implies that subprograms of a low 
hierarchical level need oot know anything of the subprograms of a high 
hierarchical level. Furthennore, subprograms should oot need to know the 
inner details of the subprograms that are called by them. 

In order to enforce the constraint monitor's exception handling principle 
(explained above), while at the same time maintaining abstraction and 
modularity, exceptions that are handled locally (and are thus not propagated) 
should he defined locally. This should he done in such a way that handters 
bound to such locally-defined exceptions caooot catch exceptions from 
constraint monitors that are defined at a higher level. 

Unfortunately, the local definition of all locally handled exceptions in a 
subprogram cao he impractical: if many subprograms share the same 
constraints, all locally-defined exceptions and constraint monitors will need to 
he duplicated. 

A lot of code duplication cao he avoided by defining constraint monitors in 
one place and using them in several subprograms. In this case, their 
exceptions must he used in all of these subprograms, and must therefore he 
defined globally for those subprograms. The designer of the program must 
take care that the exceptions which are handled locally (and are oot 
propagated to higher levels) are oot used as exceptions for constraint monitors 
defined at higher levels. 

6.5 Discarding pending exceptions 

6.5.1 Dealing with multiple pending exceptions 

When the state of a process is such that a pending exception cao he raised, 
there could he more than one pending exception. Such a situation cao arise if 
multiple constraint monitors are enabled simultaneously during the execution 
of a process. There are two reasoos for this. Firstly, more than one constraint 
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monitor can be bound to a block, so that each constraint monitor monitors a 
(sub·)constraint. Secondly, more thao one block can be active at the sarne 
time, because a block cao invoke other routines and other blocks. Therefore, 
when a process is oot blocked and executiog. several constraints cao be 
violated by other processes, possibly leadiog to the signaling of coostraint 
violations by more thao one constraiot monitor and therefore to multiple 
pending exceptions in the process. 

When the state of a process is such that a pending exception cao be raised, 
and there is just one pending exception. it will be raised. When there is more 
than one pending exception, two problems have to be resolved: which one of 
the pending exceptions will be raised, and What happens to the other pending 
exceptions. The question ofwhich one ofthe pending exceptions will<be raised 
will be treated inSection 6.6. Section 6.5 makes clear how the other pending 
exceptions are dealt with. 

Upoo terminatien of the protected block. the pending exceptions which beloog 
to the protected block's eenstraint monitors, and which are oot selected for 
raising, are discatded. The result of this is that, after terminatien of a 
protected block, either normally or with an exception. there will be .no more 
pending exceptions betonging to the protected block's eenstraint monitors. . 

When a roostraint monitor's pending exception is discarded due to the 
disabling of the constraint monitor when a protected block is termioated with 
an exception. the discarded pending exception is said to be discarded by the 
other exception. The other exception is referred to as the discarding 
exception. 

6.5.2 The argument for discarding pending exceptions 

The aim of the pending exception of a eenstraint monitor is to signal the 
exception occurrence and to cause terminatien of the protected block with an 
exception. If a pending exception is discarded by another exception, the 
protected block is already terminated with an exception. Therefore, the 
existence of the discarded exception is no Jonger needed to cause terminatien 
of the block with an exception. If, on the other hand, the pending exception is 
discarded while the protected block termioates normally, then the pending 
exception must have been created after the last interaction point of the 
protected block. otherwise it would already have been raised. The possibility 
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of this situation is due to the fact that the exit point of a protected block does 
not coincide with an interaction point. In this case, the pending exception can 
be discarded after tennination of the protected block, because the vialation of 
the constraints of a protected block after the last executed interaction point is 
not relevant. From a conceptual point of view, the constraints of the protected 
block are only valid until the block's last interaction point. This has been 
explained in the subsection of Section 6.3.2: 'The exit point of a protected 
block'. 

The only problem that remains is that a single exception cannot convey the 
information associated with two exceptions, and the handling of the discarding 
exception can be different from the handling of the discarded exception. It is, 
however, impossible to signal two exceptions at the same time, so a choice 
must be made. It is up to the programmer to take account of the possibility of 
discarding. This will usually imply that the handler actions for the discarding 
exception include all of the handler actions for the discarded exception. This 
is usually done by using 'any handlers' which catch all exceptions. The state 
of the relevant constraint monitors can be checked in the handter in order to 
determine if they have signaled a constraint violation. If the pending exception 
of a constraint monitor is not allowed to be discarded, then that constraint 
monitor should be placed in a separate process. 

The reason for discarding the pending exception is found if one analizes the 
situation that could occur if the pending exception were not discarded, but 
retained for signaling at a later time. The pending exception would thus be 
signaled when the process encountered an interaction point, or in another state 
where pending exceptions can be raised. Such a state could occur at a point 
where the 'discarding' exception would already have been handled. After 
execution of the handler, the process could have been retumed to a state 
where the goals of all active operations could be achieved. This would lead to 
a situation where there would be no exception occurrence, but there would 
still be a pending exception. This is intolerable since exceptions may only be 
raised in the case of an exception occurrence. 

6.6 Selecting a pending exception for raising 

When a pending exception can be raised and there is more than one pending 
exception available then a choice has to be made. Several selection criteria 
can be used: 
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• Undefined 
When the selection criterion is undefined, the user program may not rely 
on a specific algorithm. This is the simplest but also the least useful 
option. 

• User-assignable priorities 
A selection based upon user-assignable priorities bas the disad~antage of 
greater complexity, because the user would have to specify the priorities. 
Furthermore, iftwo constraint monitors are assigned the same priority, the 
same problem remains as to which one of their pending exceptiollS should 
he selected. 

• Constraint monitor's signaling time 
Basing a selection criterion on the constraint monitor's signalmg time is 
usually not what is desired by the programmer. By the monitor's signaling 
time, we mean the point of time at which the monitor signals the, violation 
of its constraint. This is also the point of time at which the pending 
exception is created. The signaling time of a constraint monitor is 
determined by the processes in the environment of the process using the 
constraint monitor. So it is beyond the control of the programJ'fler of the 
process. Usually, however, the programmer desires some control over the 
constraint monitor which will be selected. Consider, for example, the 
situation in a wafer processing unit where a reai-time scheduler is used to 
determine a schedule. lf a new batch is introduced into the system during 
the calculation of the schedule, then the calculation will need to be 
interrupted to take the new batch into account. To achieve this, a 
constraint monitor is used which monitors the arrival of new batches. 
Suppose that, either after or before the arrival of a new batch, an order bas 
arrived to stop scheduling because the system needs to he reset. The 
arrival of such an order is also monitored by a constraint ·monitor. 
Therefore, this situation could lead to two pending exceptions. Clearly it is 
useless to restart calculating the schedule, taking account of the new batch, 
when the system bas to he reset anyway. So the constraint monitor which 
monitors the reset oommand in this case bas a higher priority, which is 
independent of the order of the signaling times of the two constraint 
monitors. 
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• Constraint monitor's enabling time: last enabled or first enabled 
If the first enabled option is chosen, then the constraint monitors that are 
enabled at a high (or outermost) level, so that they will be active in all 
operations called from that level, will have a high priority. This is due to 
the fact that the lower (or innermost, or deeply nested) levels are called by 
the higher levels, so that the constraint monitors enabled in the lower levels 
will be enabled later. Therefore, pending exceptions from constraint 
monitors which are enabled at a low level will be discarded by exceptions 
from constraint monitors which are enabled at a higher level, which is the 
desired behaviour. 
In the previous example, for instance, the constraint monitor which 
monitors the reset command will be bound to a block at a high level so that 
the constraint monitor will be active in all operations "called from that 
level. The constraint monitor which monitors the arrival of a new batch 
will be enabled at a lower level, when the scheduling is actually started. 
This leads to the desired discarding of the 'new batch' constraint monitor's 
exception by the 'reset' constraint monitor's exception when their 
exceptions are both pending. lf this kind of discarding needed to be 
detected, the constraint monitors bound toa block could be checked in the 
handler bound to that block to see if they had just signaled a constraint 
violation. 

lf the last enabled option is chosen, fewer discards will occur, since the 
pending exceptions of constraint monitors defined at a low level will be 
given preeedenee over the pending exceptions of the constraint monitors 
defined at a higher level. The exceptions from the constraint monitors from 
the higher level will remain pending, however, and will be raised after the 
handling of the exception from the lower level's constraint monitors, at a 
time when the process enters a state where the pending exceptions are 
checked again. The higher level constraint monitors would only be 
disabled, causing their pending exceptions (if any) to be discarded, in the 
case that the exception from the lower level's constraint monitor is 
propagated up to the higher level. 

The first enabled option is preferred because the constraint monitors 
enabled at higher (or outermost) levels should have priority over the 
constraint monitors enabled at lower (or innermost) levels. So this form of 
discarding is actually desirable. This has been demonstraled by the 
example of the scheduler. 
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The choice of the first enabled selection criterion bas an effect on the 
treatrnent of pending exceptions. It implies that it is no Jonger necessary to 
retain all pending exceptions of a process. Instead, it is sufficient to retain 
only one pending exception. Any time that a second pending exception is 
created, the selection criterion is used to determine which of the two bas 
the highest priority. This one is retained, and the other one can be 
discarded irnmediately. 

6. 7 The nesting of blocks with the same constraints 

Different operations can have the sarne coristraints, as shown in FigUre 5 .l.I. 
This can lead to a situation where two blocks that have the sarne constraints 
are (dynamically) nested. 

These constraints could be specified with separately de:fined constraint 
monitors. If the constraint is violated in such a case, both constraint monitors 
would signa) this violation, creating two pending exceptions. In this case, the 
pending exception from the constraint monitor that was enabled first, and thus 
bound to the outermost block, will discard the other constraint : monitor's 
pending exception. 

If the constraints are specified by binding the sarne constraint monitor to both 
blocks, the desired effect of such a situation is not directly evident. 
Firstly, the question arises iftwo pending exceptions should be created in the 
case of a constraint violation, or just one. The simplest approach is to create 
only one exception, betonging to the constraint monitor bound to the 
outermost block. The pending exception from the other constraint monitor 

· would be discarded anyway, so its creation would serve no purpose. Note that 
if the pending exception would be handled by the handter bound to the 
innermost block (the block with the decpest nesting), then the exception would 
have to be propagated by the handter according to the programmer's 
obligation specified inSection 6.4. 
Secondly, it can no Jonger be stated that the constraint monitor is disabled 
after a protected block to which it is bound is terminated. Instead, th~; entering 
or exiting of a block to which a constraint monitor is bound which was 
already enabled before the block was entered has no effect on the state of the 
constraint monitor or it's pending exception. 
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Therefore, binding a constraint monitor to a block which is invoked by 
another block to which the same constraint monitor is bound is essentially a 
non-operation. 

An example of the nesting of blocks with the same constraints in Process 
Calculus is shown inSection 6.10.7. 

6.8 The evaluation of constraint functions 

The monitoring of constraints can be regarded as a continuous evaluation of 
the associated boolean constraint function. The constraint is violated when 
this function returns false. The evaluation of the constraint function is not 
necessarily done by the constraint monitor afone. 

In the case of a violation of an active constraint of a controlling process by a 
process in the controlled system, the constraints wiJl refer to the state of the 
controlled system. The controlled system itself does not know when a 
constraint is violated, and therefore cannot evaluate constraint functions that 
are associated with constraint monitors in the controlling system. All it can do 
is to make its state available to the controlling processes. Constraint monitors 
in the controlling processes wiJl monitor the relevant parts of the state of the 
controlled system. However, depending on how constraint monitors are 
integrated in a language, additional processes can be necessary for the 
monitoring of complex constraints, such as constraints which are defined with 
a combination oflogical operators. 
In Process Calculus, for instance, a constraint monitor can be defined to 
monitor a speciiic part of the state of the controlled system. It does this by 
being ready to receive a message by means of an interaction, which message 
is specific for the part of the controlled system's state which can be a 
constraint violation. The boolean constraint function which is evaluated in this 
way is a simp ie comparison of the relevant part of the state of the controlled 
system with a constant value. An and-function of such constraints can be 
realized by binding different constraint monitors to the same operation. 

In the case of constraint violations between controlling processes, the 
constraints usually refer toa correct synchronization between the processes. 
When two processes are correctly synchronized, any of the two processes can 
break out of this synchronization, and by doing so will violate an active 
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constraint of the other process. The reason for breaking out of the 
syncbronization is usually an exception occurrence. 
The two controlling processes will be called the violator and the victim, 
according to the tenninology of Section 5.3.3. The violator will be aware of 
violating the constraint when it has to break out of the synchronization due to 
an exception occurrence, and it can thus signal the constraint violation to the 
victim. In this case, the violator bas implicitly evaluated the constraint 
function, and it will signal the true-to-false transition of the constraint 
function. In this way, the constraint monitors ofthe victim can be kept simple, 
because they need not monitor the different states of the violating processes. A 
single constraint monitor is sufficient to register only the indication of the 
true-to-false transition of the constraint function, which is signaled to it by the 
violator process. In Process Calculus, this signaling can be done by means of 
a broadcast send primitive (see Seetion 6.10.8). 
The violator need not be absolutely sure that it has actually violated one of 
victirn's constraints. Suppose, for instance, that an exception had already been 
raised in the victim, independently of the constraint violation by the violator. 
In that case, victim's constraint monitor which monitored the constraint would 
already be disabled, and the appropriate constraint function would no longer 
be defined. So, in order to achleve good modularity and low coupling between 
the processes, the violator signals an assumed constraint violatÎOI;i to the 
victim. It is up to the victim's enabled constraint monitors to treat the assumed 
constraint violation as an actual constraint violation. 

6.9 Contlicts between the resume response and constraint 
monitors 

The conflicts between the resume response and constraint monitors are similar 
to the conflicts between the resurne response and critica( sections, as 
discussed in Seetion 4. 6 .4. 

The conflicts arise when an exception occurrence is detected in a part of a 
program proteeled by constraint monitors. When the corresponding exception 
is raised and the proteeted blockis terminated with an exception, the block's 
constraint monitors could either be disabled or remaio enabled. 

If the constraint monitors are disabled and if thereafter the resume response is 
chosen in a handler, then exeeution will proceed from the point where the 
exception was originally raised, i.e. in the protected block. So execution is 
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continued in the protected block, but all the protected block's constraint 
monitors will still be disabled. Therefore, the constraint monitors should be 
re-enabled before the resume response is chosen. The exception handling 
mechanism would become considerabty more complicated if this were to be 
done automatically. lf it is not done automatically, it can onJy be done with 
unstructured use of constraint monitors, because the constraint monitors will 
have to be re-enabted in an exception handter before issuing a resume 
response. This also implies precise knowledge of the state of all constraint 
monitors that may have been disabled. 

Note that, in the case of a resumption model, it is strictly speaking not correct 
to use the phrase 'termination of a block with an exception', because the block 
only terminates when either a return or a retry response is chosen, or another 
exception is raised. Before this is done, execution of the btock can still be 
resumed by the resume response. 

If the constraint monitors remaio enabled, then the disabling of constraint 
monitors is postponed untit the exception (which caused the btock to 
terminale) is completely handled and the resume response can no longer cause 
resumption of the block. In such a case, pending exceptions rnay never be 
raised in exception handlers. If the raising of pending exceptions in handters 
were possible, then, prior to giving a resume or other response, a pending 
exception could be raised which should have been discarded upon terminalion 
of its associated protected block. 
Therefore, in systems where pending exceptions can be raised in exception 
handters by overriding the default strategy treated inSection 6.3.2, constraint 
monitors must be disabled immediatety after termination of their protected 
block with an exception. 

Con:flicts between the resume response and constraint monitors can onJy be 
prevented in systems where pending exceptions cannot be raised in exception 
handlers. In these systems, the disabling of constraint monitors of which a 
protected block has 'terminated' with an exception should be postponed until 
the exception (which caused the block to terminate) is completely handled and 
the resume response can no longer cause resumption of the block. 

It is concluded that the con:flicts between the resume response and constraint 
monitors in systems where pending exceptions can be raised in exception 
handters are so severe that resume responses should not be used in such 
systems. If pending exceptions can never be raised in exception handlers, 
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there need not be any conflicts between the resume response and constraint 
monitors. 

6.10 The implementation of constraint monitors in Process 
Calculus 

6.10.1 Monitoring constraints by executing receive actions 

When a constraint monitor is enabled, it will try to receive an object by 
executing a receive action. This is the way that a constraint is monitored in 
Process Calculus models. The constraint is assumed to be violated when the 
constraint monitor receives the object. As long as the desired object is not 
received, the process which enabled the constraint monitor is not blocked but 
can continue normally. The constraint is constantly monitored, even though 
the process is proceeding with other actions. The monitoring of the eenstraint 
is stopped when either the constraint monitor's receive action succeeds or 
when the block proteeled by the coostraint monitor terminates. 

6.10.2 The definition of constraint monitors 

A constraint monitor is defined separately and can consequently be bound to 
different blocks. A constraint monitor is defined by sendingit an initialization 
message. Such a message could be ConstraintMonitor class » for: aProcessor 
receive: anObject from: portName thenRaise: anException. It is assumed that 
the monitor's constraint is violated when the object anObject can be received 
from the port named portName on the processor aProcessor. When the 
constraint monitor is enabled, it will try to receive anObject from the port 
named portName on the processor aProcessor. When this succeeds, the 
constraint monitor will signal the constraint violation by making anException 
pending in aProcessor and stop monitoring its constraint. 

In reality, a slightly different metbod is chosen: ConstraintMonitor class » for: 
aProcessor receive: anObject from: portName then: exceptionBiock. Hereby the 
constraint monitor is initialized with the block exceptionBiock instead of 
anException as in the previous method. In this case, the constraint monitor will 
signal the violatioo of its constraint by making its exceptionBiock pending in 
aProcessor, thereby creating a 'pending exception block' insteadof a pending 
exception. When an interaction is executed in the proteeled block of which a 
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constraint bas been violated, the constraint monitor's pending exception block 
is executed. The pending exception block must terminale with an exception 
when it is executed. lf it does not terminale with an exception, the supporting 
system will raise an exception after the terminalion of exceptionBiock, which 
exception is an indication of an illegal exception block. There are two reasoos 
for this slightly different method. Firstly, it is more in the style of the task 
language of Process Calculus, where many methods follow the convention of 
executing a specified thenBiock when a receive action succeeds, as for 
example in receive: anObject trom: portName within: interval then: thenBiock 
ifTimedOut: timeOutBiock. Secondly, this single initialization metbod is 
su:fficient in all cases. Exceptions can be raised in many different ways in 
Smalltalk, for example with or without error messages and other arguments. 
All these different ways can be accommodated by using the exception block. 
lf the constraint monitor were initialized with the exception itself, different 
initialization methods would be needed for the different ways of raising the 
constraint monitor's exception. 

The convention of only raising an exception in the exception block will be 
foliowed in this thesis, so that the creation of a pending exception block and 
the creation of a pending exception amount to the same thing. This is because 
raising a pending exception and evaluating the exception block both result in 
the raising of the constraint monitor's exception. To keep the explanation of 
the concepts as simpte as possible, we will choose the terminology of creating 
and raising pending exceptions, rather than creating and evaluating pending 
exception blocks. 

An example of the definition of a constraint monitor is shown in Figure 
6.10.1. 

ForklifterCtrl >> initializeTasks 
emergencyMonitor := ConstraintMonitor 

for: self 
receive: true 
from: 'i-emergency' 
then: [KiiiSignal raise] 

Figure 6.10.1 Definition of a constraint monitor in Process Calculus. 

The KiiiSignal is a global signal known to all processors. lt is raised in the case 
of external exception occurrences which cannot be handled locally, for 
example by locally cestarting an action. 
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6.10.3 Binding constraint monitors to blocks 

A constraint monitor can he bound to a block by sending it the message 
proteet with the block to he protected as argument. In Process Calculus, 
binding is dynamic. lt is effected when the proteet block message is senttoa 
constraint monitor. This message will also cause the invocation of the 
protected block. Figure 6.10.2 shows the metbod ForkLifterCtrl >> forkUp once 
again. This time a constraint monitor is used to monitor the emergency button. 

ForklifterCtrl » forkUp 
emergencyMonitor protect: 

[self putOn: 'o-forklifter -up'. 
self putOn: 'o-forklifter-power'. 
self 

receive: true 
from: 'i-forkLifter-isUp' 
within: 6 seconds 
iffimedOut: [KiiiSignal raise). 

self putOff: 'o-for~lifter-power'] 

Figure 6.10.2 The use of a constraint monitor toproteet a block. 

lf the emergency button is pressed while the process is executing the protected 
block, the emergencyMonitor wiJl signal this constraint violation; 'and the 
exception KiiiSignal, which was used to initialize the constraint monitor, will 
he raised, repJacing the currentJy executing interaction. 

6.10.4 The use of constraint monitors together with exception 
handlers 

An exception wiJl he raised when a constraint monitor detects a violadon of a 
constraint. Consequently, there must he a handter for that exception. 
Finalization obligations can he performed in the handter in order to terminate 
the operation to which the handter is bound in a safe and consistent state. If 
necessary, the exception canthen he propagated. In Figure 6.10.3, the metbod 
forkUp is extended with an exception handler. 

The signa] AnySignal is a global signal collection that is used to catch all 
exceptions. AnySignal contains the signal Object errorSignal amongst others. 
The interested reader is referred to [ParcPiace, 1989] for more information on 
signal collections. 
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ForkLifterCtrl >> forkUp 
AnySignal 

handle: 
[:exception I 

do: 

self putOff: 'o-forklifter-power'. 
exception reject) 

[ emergencyMonitor proteet 
[self putOn: 'o-forklifter-up'. 
self putOn: 'o-forklifter-power'. 
self 

receive: true 
from: 'i-forklifter-isUp' 
within: 6 seconds 
itTimedOut: [KiiiSignal raise]. 

self putOff: 'o-forklifter-power']] 
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Figure 6.1 0.3 The use of a constraint monitor logether with an exception 
hand/er. 

This use of a constraint monitor together with an exception hamlier is typical 
of the use of constraint monitors, because the exception raised by the 
constraint monitor is usually handled locally. 

6.10.5 Specifying multiple constraint monitors 

An operation can have several constraints. Often it is not possible to monitor 
different constraints with a single constraint monitor. Therefore, it should also 
be possible to bind several constraint monitors to the same block. This can be 
done by nesting protected b1ocks in the way shown in Figure 6.10.4. 

ForkLifterCtrl >> forkUp 
emergencyMonitor proteet 

[operatingSwitchMonitor proteet 
[ collisionMonitor proteet 

[self putOn: 'o-forklifter-up'. 
self putOn: 'o-forklifter-power'. 
self receive: true from: 'i-forklifter-up' 
self putOff: 'o-forklifter-power']]] 

Figure 6.10.4 Binding multiple constraint monitorstoa block using 
nesting. 
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The class ConstraintMonitorCollection is introduced in Process Calculus in 
order to avoid tbe syntactic ugliness of nested constraint monitors. This is a 
subclass of OrderedCollection so it inherits alJ OrderedCollection's messages 
aod also tbe messages from tbe class Collection. In tbe class 
ConstraintMonitorCollection itself, only one metbod is defined namely protect:. 

In order to bind multiple constraint monitors to a single block, tbe constraint 
monitors cao be added to a collection of constraint monitors which . cao tben 
be bound to tbe block using tbe metbod protect:, in tbe same way as this 
metbod is used for a single constraint monitor. This construction is 
semantically identical to tbe construction where tbe constraint monitors are 
nested in tbe same order as tbey are added to tbe collection of constraint 
monitors. 
In tbe metbod ForklifterCtrl » initializeTasks shown in Figure 6.10.5, a new 
ConstraintMonitorCollection is made by means of tbe metbod Colledion » 
with:with:with:. The collootion is filled witb tbe three constraint monitors that 
are used as arguments to tbe metbod. The metbod forkUp is defined using tbe 
collection of constraint monitors. The variabie constraintMonitors is ao 
instanee variabie of ForklifterCtrl. The metbods forkUp shown in Figures 
6.10.4 and 6.10.5 are semantically identical. 

ForklifterCtrl >> initializeTasks 
constraintMonitors := ConstraintMonitorCollection 

with: emergencyMonitor 
with: operatingSwitchMonitor 
with: collisionMonitor 

ForklifterCtrl >> forkUp 
constraintMonitors proteet 

[self putOn: 'o-forklifter-up'. 
self putOn: 'o-forklifter-power'. 
self receive: true trom: 'i-forklifter-up' 
self putOff: 'o-forklifter-power') 

Figure 6.10.5 Binding multiple constraint monitorstoa blockusinga 
preinitialized colleefion of constraint monitors. 

6.10.6 Some additional functionality of constraint monitors 

It cao be useful to be able to check what object has been received by a 
constraint monitor, such as in tbe case that tbe pending exception from a 
constraint monitor cao be discarded by otber exceptions. By checking whetber 
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an object bas been received by tbe constraint monitor, one can delermine 
whetber a constraint monitor bas signaled a constraint violation, even if its 
pending exception bas been discarded. The object received can also be used 
itself if, for example, tbe operator sends a oommand to stop processing. Such 
a command could be received by a constraint monitor. 

To make this possible, constraint monitors retain tbe object which tbey have 
received, and which indicates a violation of tbe monitored constraint. The 
object contained in tbe constraint monitor can be read at any time. It should 
also be possible to clear tbe object after having read it. To realize this 
functionality in Process Calculus, tbere are two messages that can be sent to 
constraint monitors: 
• The metbod ConstraintMonitor » item returns tbe item received by tbe 

constraint monitor. lt returns nil if no message bas been received since tbe 
constraint monitor was last cleared. 

• The metbod ConstraintMonitor » clearltem returns tbe value of tbe item 
received by tbe constraint monitor. lt returns nil if no message bas been 
received since tbe constraint monitor was last cleared. It ends by clearing 
tbe constraint monitor. The constraint monitor is also cleared when it is 
enabled. 

6.10.7 Binding the same constraint monitor to nested blocks 

If tbe same constraint monitor is bound to (dynamically)·nested blocks, tbe 
binding of tbe constraint monitor to tbe innermost or deepest nesled block can 
beregardedas a non-operation. This is illustrated in Figure 6.10.6 where tbe 
metbods method1 and method2 are functionally equivalent. 

TestProcessor >> method1 
consb"aintMonitor proleet: 

[self someStartMethod. 
consb"aintMonitor proleet: ("b/ock2'1-
self someEndMethod] 

TestProcessor >> method2 
"/s equivalent to methocJ1• 
consb"ainlMonitor proleet: 

[self someStartMethod. 
["b/ock2'1 value. 
self someEndMethod] 

Figure 6.10.6 Binding the same constraint monitor to nested bloc/es. 
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6.10.8 The desired send primitives to signal constraint violations 

The functionality of constraint monitors bas been treated in previous sections. 
The constraint monitor's constraint is monitored by tbe execution of a· receive 
action. When tbe receive action succeeds, tbe constraint monitor's constraint 
is supposed to be violated. For an interaction to take place, botb a semi action 
and a receive action are needed. This section will focus on tbe kind of send 
actions needed to support tbe detection of constraint violations. 

Strictly speaking, any send action can be used, because tbe receive action 
executed by tbe constraint monitor neitber assumes nor requires a specific 
send action. In practice, however, only two different send primitives are 
needed to support tbe detection of constraint violations. 

The first send primitive needed is tbe metbod Bubble >> send:continuousTo:. 
This metbod is used to indicate a state, such as an emergency button which is 
pressed. It is used mainly for interfacing tbe sensors in tbe controlled system 
to tbe controlling system · by means of a driver processor as explained in 
Section 2.2.3. 

The second send primitive needed is tbe metbod Bubble » broadcast: object 
to: portName, which will be fully explained at tbe end ofthis section. Insome 
cases, tbe metbod Bubble » send: object immediateTo: portName then: 
thenBiock else: elseBiock is sufficient. This metbod tries to send object to tbe 
port named portName. lf this succeeds immediately tben thenBiock is 
executed; if not elseBiock, so tbe metbod never blocks. For tbe indication of 
constraint violations tbe thenBiock and elseBiock are generally not needed, 
because no feedback information about tbe success or faiture of tbe send 
action is required. The only aim of tbe send action is to indicate a constraint 
violation. It is up to tbe otber processes to act on tbis if needed. This metbod 
can be used to indicate tbat tbe normal sequence of synchronization actions 
between two or more cantrolling processes is disrupted. 

The synchronous send actions, which may be blocking, are not needed to 
indicate constraint violations, because it is never necessary to wait for anotber 
process to be able to receive tbe object indicating tbe constraint violation. 
This is due to tbe nature of constraint monitors: once tbey are enabled, they 
are always ready to receive, independently of tbe actioris performed by tbe 
process that enabled tbe constraint monitor. 
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The asynchronous send actions are not needed, eitber. These interaction 
mechanisms have an undesirable buffering function which could lead to tbe 
signaling of a constraint violation, due to a buffered object, at a time that tbe 
constraint indicated by tbe object is no longer violated. 

In many cases, tbe number of processors that need to be informed of a 
constraint violation exceeds one. lf this is tbe case, and tbe metbod 
send:immediateTo:then:else: were used, a separate object would need to be 
sent to every processor concemed. This would be undesirable, since 
specifically sending an object to every processor concemed would lead to bad 
modularity. Therefore, tbe extra send primitive Bubble » broadcast: object to: 
portName is introduced for tbe notification of constraint violations. This 
metbod tries to send copies of object to all tbe processors conneeled through 
an interaction patb to tbe port named portName. lf a eertaio send action 
caooot take place immediately, an attempt is made to send a copy of object to 
tbe next processor, so this metbod caooot block. lt is functionally equivalent 
to separately trying to send tbe specified object to all processors concerned by 
means of tbe metbod send:immediateTo:then:else:, using an empty thenBiock 
and an empty elseBiock. The presence of the metbod broadcast:to: implies that 
tbe metbod send:immediateTo:then:else: is no longer needed for tbe indication 
of constraint violations. 
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Chapter 7 
The specification of controlling systems 
illustrated by a case 

Some examples of the use of the newly developed mechanism have already 
been given. This section gives some illustrative parts of a complete controlling 
system, with an emphasis on the way constraint monitors are used to handle 
exceptions. First, the desired functionality of the control system is explicitly 
stated. The controlling system is then modeled according to those 
requirements. A simpte but effective strategy is developed for error recovery 
with the aid of exceptions and constraint monitors. This strategy is referred to 
as the retry strategy. lt is demonstrated both in a single-process and in a 
multi-process environment. 
The reader is referred to the appendices for more information about Smalltalk 
and the methods used in this chapter. 

7.1 Requirements regarding the functionality of control 
systems 

This section discusses some important requirements of exception handling 
regarding the interaction of the controlling and controlled system. Clearly 
these requirements are oot applicable to all kinds of system since the 
requirements are usually a compromise between the functionality desired and 
the cost of imptementing them. The controlling system of the transporter, as 
treated in this chapter, is modeled according to the requirements given in this 
section. 

1. Exceptions should be handled as locally and as efficiently as possible. 
This means that as small as possible a part of the system should be 
affected by an exception. Consider, for example, the assembly of several 
parts. A faiture in the assembly of a single part should oot lead to the 
rejection of the complete subassembly, but rather should be correctable 
by the operator or automatically, whereafter assembly cao continue. 
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2. Proper damage confinement strategies require that the effect of an 
exception should be minimized. This can mean that, as a result of an 
exception in one machine part, many other parts must be put in a safe 
state in order to prevent more errors from occurring. 

3. lf operator assistance is required, errors should be reported to the 
operator. If the operator would enter the machine in order to correct the 
error, the machine should be kept in a safe state and not suddenly start 
moving. The interropled part of the production process may only continue 
when ordered to do so by the operator. 

4. The controlling system should remain in a consistent state. Constraint 
violations should result in the raising of exceptions. This is especially 
important in parallel systems, where an exception in a process can cause 
a process to break off its current activities. If it was synchronizing with 
other processes, these processes could remain waiting for a 
synchronization which will no longer take place. 

5. The operator should in principle be able to interrupt the production 
process at any time. For exarnple to stop and reset the production process 
due to an error which was not detected by the controlling system. 

7.2 Additional exception handling methods for controlli:ng 
systems 

The exception handling methods given in the previous chapter are of a general 
· nature. The specific requirements for the programming of controlling systems 
make it advantageous to develop additional exception handling methods. 
The first additional method is the metbod Subbie >> handle:do: shown in 
Figure 7.2.1. lt is basedon the metbod Signal » hande:do:. 

Due to the great variety of possible errors in the controlled system, the ways 
of recovering from these errors can be very system specific. Y et the stage of 
darnage confinement can often be executed using the sarne concepts. Machine 
parts that may be affected by the error must be brought toa safe state. This 
should be done regardless of the type of exception. Thé machine should be 
brought to a safe state, even when no errors have occurred, but the production 
process is simply stopped by the operator. This can be done by using an 
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Bubble >> handle: exceptionHandler do: doBiock 

"The exceptionHandler will catch all exceptions from the doBiock. 
Before execution of ex ception Hand/er, an error message wil/ be issued for 
the exception. 
After execution of ex ception Hand/er, the handled exception will be 
propagated (ex reject), un/ess another response is specified in 
exceptionHandler." 

AnySignal 
handle: 

[:ex I 
self errorMessageFor: ex. 
handler value: ex. 
ex reject] 

do: doSloek 

Figure 7.2.1 A new handle:do: method. 

exception handler that will catch all exceptions. Therefore, the handler set up 
by the metbod is a handler which catches all exceptions. 

All errors should be presented to a man-machine interface (MMI) of the 
controlling system. This is done in the exception handler by means of the 
message self errorMessageFor: ex. The convention adopted in this thesis is that 
all controlling processors have two ports for communication with the MMI: 
the ports mmi-in and mmi-out. In the Smalltalk system, error messages reside 
in exception objects which are made available to exception handlers as 
argument. Therefore, the error message betonging to an exception object can 
be extracted from that object by sending it the message errorstring. This 
feature enables error messages of exceptions raised by the user program code 
itself and by the system code to be treated in the same way. The error message 
is retracted from the exception object in the exception handler and sent to the 
MMI. To prevent the same error message from being sent to the MMI in 
different handters that sequentially handle the same exception, the last 
exception for which an error message bas been sent to the MMI is recorded in 
an instanee variabie which is available in every processor. An error message 
is only sent to the MMI if the value recorded in this instanee variabie is not 
equal to the exception which is being handled. 

As bas already been mentioned in Section 4.6.2, the default response of a 
handter should be the propagate response, which is also the response which 
occurs most frequently in controlling systems. The exception handler 
elaborated in Figure 7.2.1 tenninates with ex reject In this way, the exception 



152 Chapter 7 

caught by exeeptionHandler, which is set up witb tbe metbod Bubble » 
handle:do:, is propagated when no response is issued in exeeptionHandler. In 
this way, tbe functionality oftbe default propagate response is created for this 
handler. 

The second additional metbod is Bubble » handle:eonstraintMonitors:do: 
shown in Figure 7.2.2. It is a combination oftbe metbod Bubble » handle:do: 
and tbe metbod proteet in tbe class ConstraintMonitor (and 
ConstraintMonitorCollection). lts use leads to more easily readable code 
because tbe number of nested blocks is reduced. The only difference, from tbe 
metbod Bubble » handle:do: is that tbe doSloek is proteeled by tbe 
constraintMonitor argument monitorOrMonitors. 

Bubble >> handle: exceptionHandler constraintMonitors: 
monitorOrMonitors do: doBiock 

"The exceptionHandler wil/ catch all exceptions from the doB/ock. 
Befare execution of ex ception Hand/er, an error message wil/ be i~sued for 
the exception. · 
After execution of exceptionHandler, the handled ex ception wil/ be 
propagated (ex reject), unless another response is specified in · 
exceptionHandler. 
During execution of the daBloek monitorOrMonitors wil/ be en ab/ed." 

AnySignal 
handle: 

(:ex 1 
self errorMessageFor: ex. 
handler value: ex. 
ex rejeet) 

do: [monitorOrMonitors protect: doBioek] 

· Figure 7.2.2 A method which binds an exception hand/er and constroint 
monitors to a block. 

External exceptions can he represented witb tbe KiiiSignal and RetrySignal. 
They are global signals which are known to all processors. By convention, 
tbey are raised in a process in response to exception occurrences ca~sed by 
tbe environment of tbe process. These exception occurrences can eitber he 
caused by tbe state of tbe controlled system, by otber controlling processors, 
or by tbe operators. The KiiiSignal should he raised when local error recovery 
is not possible. The RetrySignal is raised when local error recovery u~ing the 
retry strategy is possible in principle. The retry strategy is treated in tbe next 
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section. Exceptions due to programming errors should be signaled by raising 
Object errorSignalor otber specific signals. 

7.3 The retry strategy in a sequential process 

Many different strategies can be used in tbe recovery process. There is, 
however, one simple strategy that can be used to reeover from many errors in 
a simpte and e:fficient way. 
This way of error recovery in a process is based on tbe observation that 
components of a machine are often controlled in tbe following way: in order to 
effect a change in tbe external state of tbe component, its actuators are made 
to change state. The controller consequently waits for a change of state of its 
sensors, indicating tbat tbe component bas completed tbe desired external 
state change. This activation of actuators and consequent waiting for tbe 
desired state change of sensors will be referred to as a control action for tbe 
component. 

Consider a cylinder, for example. The control action to make a two valve 
cylinder extend would be to open one valve and close tbe otber one. 
Consequently the controller will wait for tbe limit sensor to be activated. lf an 
error occurs in such a control action, tbe control action can often simply be 
re-executed after correction of tbe error. This will be referred to as restarting 
the control action. Restarting a control action can be elegantly implemenled 
by means of the retry response of exception handlers. The type of exception 
caught wiJl de termine whetber a retry response is given in tbe handter, or tbe 
exception is propagated to tbe invoker. Botb types of exception, however, 
share tbe damage confinement and error reporting code in tbe handler. 

This way of exception handling is illustrated in Figure 7.3 .1 using tbe 
example of tbe fork-Iift truck. The metbod ControiBubble » restartMessage: 
sends tbe given restart message to tbe MMI and tben remains blocked in a 
receive action to receive tbe response from tbe MML In tbis case, a special 
receive action is used, tbat can be interrupted by raising a pending exception, 
even when an exception handler is executing (see Section 6.3.2). If tbe 
operator can correct tbe error, he can continue by choosing tbe restart 
response in tbe MMI panel. This will cause tbe MMI processor to send a 
continue message to tbe processor from which tbe restart message was 
received. When tbis continue message is received, tbe invoked metbod 
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SlaveForkLifter » forkUp 
AnySignal 

handle: 
[:ex 1 

do: 

self errorMessageFor: ex. 
self putOff: 'o-forklifter-power'. 
ex signal == RetrySignal 

ifTrue: 
[self restartMessage: 'fork lifter up'. 
ex restart) 

ifFalse: [ex reject)J 

[self putOn: 'o-forkUfter-up'. 
self putOn: 'o-forklifter-power'. 
self 

receive: true 
from: '1-forkLifter-isUp' 
within: 6 seconds 
iffimedOut: 

[RetrySignal raiseErrorstring: 'time-out on fork up'). 
self putOff: 'o-forklifter-power') 

Figure 7.3.1 Exception handling with the retry strategy. 
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ControiBubble » restartMessage: will return and the exception will be 
restarted causing the do block to be re-executed. 

Because this structure is often used, the metbod ControiBubble >> 
handle:restart:do: shown in Figure 7.3 .2 offers a compact way of expressing it: 

ControiBubble » handle: handler restart: restartBiock do: doBiock 
AnySignal 

handle: 
{:ex I 
self errorMessageFor: ex. 
handler value: ex. 
ex signal == RetrySignal 

ifTrue: 
{restartBiock value. 
ex restart) 

ifFalse: {ex rejectD 
do: doSloek 

Figure 7.3.2 A simp/e methad which can be used to express the re try 
strategy. 
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The example of tbe fork-lift truck is tbus reduced as follows: 

SlaveForklifter >> forkUp 
self 

handle: [:ex 1 self putOff: 'o-forklifter-power'] 
restart [self restartMessage: 'fork lifter up'] 
do: 

[self putOn: 'o-forklifter-up'. 
"etc." 
self putOff: 'o-forklifter-power'] 

Figure 7.3.3 Exception handling with the retry strategy. 
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The class ControiSubble is a subclass of tbe class Bubble. All processors used 
for control should belong to subclasses of ControiBubble in order that tbey 
inherit tbe :functionality for tbe control of physical systems and so that tbey 
can interact witb tbe MMI. The two additional messages are defined in tbe 
class ControiBubble instead of Subbie because tbey are less general. They use, 
for instance, tbe specific ports mmi-in and mmi-out for communication witb tbe 
MMI. 

In tbe case where a constraint monitor should be bound to tbe do block,. one 
can use tbe metbod ControiBubble » handle:restart:constraintMonitors:do:. The 
only difference from tbe metbod mentioned above is that, in tbe last metbod, 
tbe doBlock is bound to tbe constraint monitors specified in tbe message, just 
as it is done in tbe message Subbie » handle:constraintMonitors:do:. 

7.4 Different control modes 

The control model of tbe transporter treated in Section 2.3 was basedon an 
error-free production system. All machines were initially in a defined reset 
position. 

Practical control systems must deal witb machines that can be in an arbitrary 
initial position. For this purpose, many control programs are divided into at 
least two parts. The first part can bring tbe controlled system into a well­
defined state. This is known as resetting tbe system. Resetting a system is not 
only necessary initially, but can also occur during the production process in 
order to reeover from errors. When tbe controlled system is being reset by tbe 
controlling system, the controlling system is said to operate in reset mode. 
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The seeond part controls the production process, which is usually cyclic. In 
this situation, the cantrolling system is operatingin automatic mode. 

lt is desirabie to reeover from errors as efficiently as possible. The production 
cycle can he temporarily suspended in order to correct the error, but after 
correction of the error it is desirabie to continue the production cycle from 
where it was interrupted. To do this the retry strategy can he used, as treated 
in the previous section. It is, however, not always possible to use the retry 
strategy. For example, ifthe stack falls ofthe fork-lift and the produçts on the 
trays are damaged, then it is useless to continue the transportatiQn of the 
damaged products to the fumace. In this case, the fork-lift truck should he 
reset to its initial position, waiting at the traverse for a new stack. Resetting a 
system can also he necessary if, for some reason, the cantrolling system is no 
longer synchronized with the controlled system. This happens if the controlled 
system is in a state which the cantrolling system does not expect. This kind of 
error should also he handled as efficiently as possible. It is, for example, not 
necessary to reset the processes that are stacking new trays onto the stack 
when the fork·lift truck needs to he reset. So resetting should he · done as 
locally as possible. 

Resetting a system could he implemented in such a way that the system 
always returns to the same defined state. lt is often more efficient to de:fine 
different reset positions for a given system. Consider the fork-lift truck, for 
example. lf an error occurs when the fork-lift truck is depositing the stack at 
the fumace and a reset is necessary, it is a waste of time to make the fork-lift 
truck go back to the traverse with a full stack. It makes sense in this situation 
to define two reset positions: one with an empty fork at the traverse and a 
second position, with a full stack on the fork, at the furnace. 

Resetting a system is usually done under the control of an operator. The 
operator may he necessary in order to remove damaged material from the 
machine. He may also he the person to decide that resetting is the only way to 
reeover from an error. 

The cyclic control of the production process is expressed in the simplest and 
clearest way if the cycle always begins with the controlled system in a unique 
initial state. Therefore, the automatic mode begins with an initializatiQn stage 
in which the system is brought from a number of defined reset sta~es to a 
unique, defined state. After this the main controlloop can he entered. 
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When the reset or automatic mode is terminated by an exception, the 
cantrolling system enters the stand-by mode. In this mode, a oommand from 
the operator is awaited to reset the system. After the system bas been reset, an 
operator command is awaited to enter automatic mode. In reality, the 
switching from one mode to another is more complex with, for example, an 
additional manual mode, but this does not lie within the scope ofthis thesis. 

The methods required to imptement the reset mode and automatic mode 
include the following methods: 

ControiBubble >> switchToResetMode 

"Sent when going to reset mode." 

kiiiFromMMIMonitor proteet [self resetMode). 

ControiBubble » switchToAutomaticMode 

"Sent when going to automatic mode. " 

kiiiFromMMIMonitor protect: [self automaticMode). 

ControiBubble >> resetMode 

"Sent when going to reset mode. 
May be redefined by a subc/ass (copied to a subc/ass and then edited). 
Any exception that is caught in the hand/er must be rejected. This is done 
automatica//y so no response should be issued in the hand/er." 

self 
handle: [:ex 1 "user defined exception handlingj 
constraintMonitors: kUlMonitors 
do: [self resetBody) 

ControiBubble >> automaticMode 

"Sent when going to automatic mode. 
May be redefined by a subclass (copied to a subc/ass and then edited). 
Any exception that is caught in the hand/er must be rejected. This is done 
automatica//y so no response should be issued in the hand/er." 

self 
handle: [:ex 1 "user defined exception handlingj 
constraintMonitors: kiiiMonitors 
do: 

[self automaticlnitialize. 
[self automaticBody] forever "main controlloop1 

The kiiiFromMMIMonitor monitors whether a rommand is sent by the operator 
by means of the MMI interface to bring the system into a different mode. If 
such a command is received by the constraint monitor, it signals the constraint 
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TransporterControiSystem model 

Figure 7. 5.1 a Model of the controlling system of a transporter. 

vialation and the KiiiSignal is raised without an error message so that the reset 
or automatic mode that was active is terminated. 

The instanee variabie kiiiMonitors is a constraintMonitorCollection. User 
defined constraint monitorscan be added to this collection to enable the reset 
or automatic mode to be terminated and stand-by mode to be entered due to 
constraint violations caused, for example, by the pressing of the emergency 
button. 

When a cantrolling processor is required to respond to commands from the 
MMI to change its mode, its body should eaU the predefined method 
modeBody as follows: 

body 
self modeBody 
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The metbod modeBody takes care of the synchronization and communication 
with the · MMI and will eventually result in the methods resetMode or 
automaticMode being sent to the controlling processor (self), The application 
programmer only needs to define the methods resetBody, automaticlnitialize 
and automaticBody or to redefine the methods resetMode and automaticMode. 

7.5 The control model 

7.5.1 The structure ofthe model 

The model is shown in Figures 7.5.la to c. The controlled system is the 
transport system treated inSection 2.3. 
In Figure 7.5.la the controlling system is shown. The Ctr1Transporter 

CtriTransporter model 

i-traverse-

in 

mmi- o-holder-

o-sections-motor2 o-traverse-
o-fori<Tumer-

Figure 7.5.Jb Model ofthe Ctr/Transporter processor. 
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processor is expanded. lts model is shown in Figure 7.5.lb. lt consists ofthe 
processors that control the transport machines by means of the actuators and 
sensors. The other processors of Figure 7.5.la are interface processors. The 
MMI processor interfaces with the operator by means of the man-machine 
interface. The TranporterDriver interfaces with the physical actuators and 
sensors of the controlled machine and the Ctrllnterface processor interfaces 
with controlling processors of the system's environment. 

CtriTruckExp model 

i-truckGiobal-

kiiiSignal-toTraverse 

1-forkTumer-

i-forklifter-

>bu<k\' i-truckGiobal-

i-emergency-• i-emergency-• 

o-f arklifter- o-forkTumer-

Figure 7.5.Jc Model ofthe CtrlTrockExp processor. 

The models shown in Figures 7.5.lb and 7.5.lc are similar to the modelsof 
Figures 2.3.2b and 2.3.2c. The difference is that interactions are added for the 
handling of constraint violations and for resetting the system. 
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7 .5.2 Tbe definition of tbe constraint monitors 

The classes of all cantrolling processors in the model inherit from the class 
CtriTransporterAbstract. This means that they are a subclass of thls class itself, 
or of one of its subclasses. Therefore, all these processors share the same 
initialization and they also inherit the instanee variables kiltMonitor and 
emergencyMonitor defined in the class CtriTranporterAbstract. The definition of 
these eenstraint monitors is shown in Figure 7.5.2. 

--- Ctr/TransporterAbstract > initialization ---

initializeTasks 
super initializeTasks. "initialize for superclasses" 
kUlMonitor := ConstraintMonitor 

for: self 
receiveFrom: 'kiiiSignal-in' 
then: [ :item I KiiiSignal raise]. 

emergencyMonitor := ConstraintMonitor 
for: self 
receive: true 
from: 'i-emergency' 
then: [ :item I KiiiSignal raise). 

kiiiMonitors add: kiiiMonitor. 
kiiiMonitors add: emergencyMonitor 

Figure 7.5.2 Definition ofthe constraint monitors shared by the controlling 
processors. 

The kUlMonitor tries to receive the symbol #kill from the port kiiiSignal-in. The 
convention used is that a process which violates an active eenstraint of 
another process sends the symbol #kill to the other process, which receives the 
symbol through the port kiiiSignal-in. 
The emergencyMonitor monitors the pressing ofthe emergency button. 

7 .5.3 Constraint violations between CtriEndSection and 
CtriTraverse 

Figure 7.5.3 showshow the Ctr1EndSection processor will receive a tray from 
the previous section. When it has received the tray, it will be stacked at the 
bottorn of the stack. To control the stacking of the tray, CtriEndSection 
synchronizes with the processor CtriTraverse. This synchronization takes place 
in the do block from lines 5 to 12 in the metbod CtriEndSection » stackTray. 



162 

Ctr/EndSection > process control --------

body 
self modeBody 

automaticMode 
1 self 
2 handle: 
3 [:ex I 
4 self putOff: 'o-motor'. 
5 self send: 'undefined' continuousTo: 'sync-pusherState'] 
6 constraintMonitors: kiiiMonitors 
7 do: 
8 [self automaticlnitialize. 
9 [self automaticBody] forever] 

automaticBody 
1 self receiveTray. 
2 self stackTray 

automaticlnitialize 
(self isOn: 'i-tray') ifTrue: [self stackTray] 

stackTray 

"State upon entry: pusher down" 

1 self receiveFrom: 'sync-traverseAtPusher'. 
2 self 
3 handle: [:ex 1 self broadcast: #kill to: 'kiiiSignal-toTraverse'] 
4 do: 
5 [self pusherUpAgainstStack. 
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6 self send: 'upAgainstStack' continuousTo: 'sync-pusherState'. 
7 self receiveFrom: 'sync-holderOpened'. 
8 self pusherMaximaiUp. 
9 self send: 'maximaiUp' continuousTo: 'sync-pusherState'. 
1 0 self receiveFrom: 'sync-holderCiosed'. 
11 self pusherDownStart 
12 self send: 'belowMiddle' continuousTo: 'sync-pusherState']. 
13 self pusherDownWait. 
14 self send: 'down' continuousTo: 'sync-pusherState' 

Figure 7.5.3 Process description ofCtr/EndSection. 

This block could be prematurely terminated because of an exception 
occurrence. Such a premature termination would be a vialation of a constraint 
of the synchronizing CtriTraverse processor. Therefore, the exception is 
handled in line 3 and the #kill symbol is sent to the CtriTraverse processor, 



The speciflcatian af cantrolling systems illustrated by a case 163 

causing its kiiiMonitor to signal, so that an exception will be raised in 
CtriTraverse. If the cause of the exception occurrence in CtriEndSection was, 
for instance, an error occurring during execution of the metbod 
pusherMaximaiUp in line 8, then CtriTraverse would have been waiting for the 
pusher to be maximallyup in CtriTraverse » stackTray line 8 (Figure 7.5.4). 
At that point the exception due to the signaling of CtriTraverse's kiiiMonitor 
would be raised. 

------- Ctr!Traverse > process control -------

body 
self modeBody 

automaticBody 

"State upon entry: pusher down, traverse retracted" 

(stackSize >= self maxStackSize) ifTrue: [self stackToTruck]. 
self stackTray 

stackTray 

"State upon entry: traverse at pusher" 

1 self sendTo: 'sync1-traverseAtPusher'. 
2 self 
3 handle: [:ex 1 self broadcast: #kill to: 'kiiiSignal-toEndSection'] 
4 do: 
5 [self receive: 'upAgainstStack' from: 'sync1-pusherState'. 
6 self holderOpen. 
7 self sendT o: 'sync1-holder0pened'. 
8 self receive: 'maximaiUp' from: 'sync1-pusherState'. 
9 self holderCiose. 
10 stackSize := stackSize + 1. 
11 self sendT o: 'sync1-holderCiosed'. 
12 self receive: 'belowMiddle' from: 'sync1-pusherState'] 

Figure 7.5.4 Process description ofCtr/Traverse. 

7.5.4 Interaction mechanisms used for the synchronization 
between controlling processors 

Two kinds of interaction mechanism are used for synchronization interactions 
between cantrolling processors: the synchronous mechanism and the 
continuous mechanism. 
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An example of the synchronous interaction mechanism is the interaction 
represented by self receiveFrom: 'sync-holderOpened' in CtriEndSection » 
stackTray (Figure 7.5.3, line 7) and self sendTo: 'sync1-holder0pened' in 
Cb1Traverse >> stackTray (Figure 7.5.4, line 7). Both processors must execute 
the send and receive actions for the interaction to take place. 

An example of the continuous interaction mechanism is the interaction 
represented by self send: 'upAgainstStack' continuousTo: 'sync-pusherState' in 
CtriEndSection » stackTray (line 6) and self receive: 'upAgainstStack' trom: 
'sync1-pusherState' in CtriTraverse » stackTray (line 5). A secoud example is 
represented by self send: 'down' continuousTo: 'sync-pusherState' in 
Cb1EndSection » stackTray (Figure 7.5.3, line 14) and self receive: 'down' 
trom: 'sync1-pusherState' in CtrtTraverse » stackToTruck (Figure 7.5.5, line 
8). The traverse will only move back to the pusher when the pusher is 
éompletely down. lf the pusher has gone down without errors, the receive 
action from Cb1Traverse » stackToTruck (line 8) will receive immediately. A 
synchronous interaction mechanism is not appropriate in this case, · because 
the receive action in CtriTraverse could take place while a new tray is • entering 
the end section (CtrtEndSection » automaticBody- Figure 7.5.3, line 1), and 
so CtrtEndSection cannot execute a corresponding send action at that time. 
Therefore, the continuous mechanism is used. 
In Cb1EndSection » automaticMode (Figure 7.5.3, line 5), the state of the 
pusher is defined as 'undefined' when the methods automaticlnitialize or 
automaticBody are terminaled with an exception. 

7.5.5 Synchronization between controlling processors without 
using sensors 

As was mentioned in Section 2.3.2, the synchronization between the 
controlling processors is effected by means of interactions between them, 
rather than by synchronizing directly on the state of the sensors. This last 
option can lead to dangerous situations in thè error recovery stage. 

Consider, for example, the synchronization between CtriEndSection » 
stackTray (line 7) and CtrtTraverse » stackTray (lines 6-7). The holder is 
opened by Cb1Traverse in line 6. In the following line, the processor 
CtriTraverse is notified of the fully opened holder by means of an interaction. 
Instead of waiting for this interaction to take place in CtriEndSection » 
stackTray (line 7), the CtriEndSection processor could also have waited for the 
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sensor, indicating a fully opened bolder, to be activated. This can lead to 
dangerous situations in the following way. Soppose that the pusher does not 
open properly due to an error. In order to correct the error, it could be 
necessary to open the pusher manually, thereby activating the sensor 
indicating an open pusher. This sensor could also be accidentally activated 
while trying to correct the error in another way. In both cases, the 
CtriEndSection processor would irnmediately continue after having detected 
the activation of the sensor. This would cause the stack to be pusbed upward 
suddenly (line 8). This irnmediate activation of machine components during 
the correction of errors in machine parts can lead to unexpected and 
dangerous situations. 

To prevent such situations, controlling processors synchronize directly with 
each other by means of interactions. Each controlling processor controts the 
sensors and actuators of certain machine components. These actuators and 
sensors are not used by any other processor. If an error occurs during the 
activation of a machine component, an error message is sent to the operator. 
lf the processor in which the error was detected cannot automatically correct 
the error, it will wait for a signal from the operator, indicating that the 
controlling processor may continue. Therefore, the activation of the sensors of 
the machine part in question cannot cause a sudden activation of other 
components. 

Figure 7.5.lc appears to be inconsistent with the above-mentioned convention 
of no more than one controlling processor for each component. For example, 
the sensors from the forkLifter (i-forklifter-) are connected to the processors 
SlaveForklifter and CtriTruck. This means that the status of the fork lifter 
sensors is read by both processors. The sensors of the fork-lift truck, 
however, are only used by the CtriTruck processor todetermine the status of 
the truck while resetting it, and not as a means of synchronization between 
two controlling processors. The methods for resetting are not shown bere 
because they are too specific and do not serve to illustrate the use of 
constraint monitors. 

Checking the state of the controlled machines can also lead to situations where 
the sensors of a machine component are used by several controlling 
processors. This is done in order to check whether the state of the controlled 
machines conforms to the state which is expected by the controlling system. If 
the controlling system and the controlled machines would function correctly, 
this would not be necessary. Errors, however, are always possible. So, in 
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order to prevent errors from causing serious damage, tbe state of tbe 
controlled machines can be checked. 

7.5.6 Constraint violations between CtriTravene and CtriTruck 

In tbe metbods CtriTraverse » stackToTruck and CtriTruck » 
receiveStackFromTraverse (Figures 7.5.5 and 7.5.6), tbe stack is transported 
from tbe traverse to tbe fork-lift. 

--- Ctr/Traverse > process control ---

stackToTruck 
"State upon entry: traverse at pusher" 

1 self receivefrom: 'sync2-truckResetAtTraverse'. 
2 self 
3 handle: [:ex 1 self broadcast: #kill to: 'kiiiSignal-toTruck'] 
4 do: 
5 [self traverseToFork. 
6 self sendTo: 'sync2-traverseAtFork'. 
7 self receiveFrom: 'sync2-forklsUp']. 
8 self receive: 'down' trom: 'sync1-pusherState'. 
9 selftraverseToPusher 

Figure 7.5.5 The method stackToTruckofthe processor Ctr/Traverse. 

7 .5. 7 Constraint violations in the CtriTruck.Exp model 

The processors of the CtriTruckExp model are hierarchically structured. The 
·processor CtriTruck receives tbe mode commands from tbe MMI. CtriTruck 
coordinates tbe actions of tbe fork lifter, tbe fork turner and tbe hopzontal 
movements of tbe truck itself. The two slave processors Slaveforklifter and 
SlaveForkTumer are used by tbe CtriTruck processor to realize parallelism in 
tbe movements oftbe fork-lift truck. The slave processors receive a command 
from tbeir master CtriTruck, execute it, and send an acknowledge back to tbe 
master when tbe oommand has been executed (see tbe metbod ControiBubble 
» slaveBody in Figure 7.5.7). The processors are termed slaves because tbe 
master sends tbem commands which are executed by tbem. The slaves, in 
turn, cannot order tbe master to do anything. They can only inform tbe. master 
of exception occurrences. The slaves SlaveForkTurner and SlaveForkLifter both 
inherit tbe metbod slaveBody from the class ControiBubble. A simplified body 
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------- Ctr/Truck > process control -----------

body 
self modeBody 

automaticMode 
1 self 
2 handle: [:ex I self broadcast: #kill to: 'kiiiSignal-toSiaves'] 
3 constraintiVIonitors: kiiiiVIonitors 
4 do: 
5 [self automaticlnitialize. 
6 [self automaticBody] forever] 

automaticBody 

"State upon entry: truck at traverse, fork middle postion, tumed to 
traverse" 

self receiveStackFromTraverse. 
self transportStackToFumace. 
self giveStackToFumace. 
self goBackToTraverse 

receiveStackFromTraverse 
self sendT o: 'sync-truckResetAtTraverse'. 
self 

handle: [:ex 1 self broadcast: #kill to: 'kiiiSignal-toTraverse'] 
do: 

[self receiveFrom: 'sync-traverseAtFork'. 
self forkUp. 
self sendTo: 'sync-forklsUp'] 

Figure 7.5.6 Process description ofCtr/Truck. 
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ofslave processors has already been explained inSection 2.3.3. The complete 
version is shown in Figure 7.5.7 in ControiBubble » slaveBody. 

lf an exception occurs in the body of one of the slaves (ControiBubble » 
slaveBody) in line 11 or 12, the do block (lines 11-12) will be terminated with 
an exception and the master can no longer receive the awaited acknowledge. 
This constraint vialation should be signaled to the master. This is done by 
sending a #kill symbol to the master in line 6 so that its kiiiiVIonitor will signal 
the constraint vialation and an exception will be raised. 

lf an exception would cause the automaticBody (Figure 7.5.6 CtriTruck » 
automaticlVIode line 6) from the master to be terminated with an exception 
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forkUp 
1 self send: #forkUp to: 'forklifter-command'. 
2 self receiveFrom: 'forklifter-ack' 

------ ControiBubble > process control --------

slaveBody 
1 I command I 
2 command := self receiveFrom: 'master-command'. 
3 AnySignal 
4 handle: 
5 [:ex I 
6 self broadcast: #kill to: 'kiiiSignal-toMaster'. 
7 self errorMessageFor: ex. 
8 ex return] 
9 do: 
10 [kiiiMonitors proteet 
11 [self perform: command. 
12 selfsendTo: 'master-ack']] 

------ SlaveForkLifter > process control ----

body 
self slaveBody 

------- SlaveForkTurner > process control ---

body 
self slaveBody 

Figure 7.5. 7 The cooperation ofthe slaves with the master. 
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while the master was still waiting for an acknowledge from a slave · (Figure 
7.5.7 CtriTruck » forkUp line 2, for example), the acknowledge from the slave 
will no Jonger be received. The slave should be notified of this constraint 
violation, otherwise it will remain blocked trying to send its acknowledge. 
This is done in CtriTruck » automaticMode in line 2. 

In CtrlTruck » forkUp, the Cb1Truck processor starts wa1tmg for the 
acknowledge immediately after having sent the command. This need not 
always be the case. In the case of more parallelism, the processor could also 
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send a command to a slave and after that continue with other actions, finally 
receiving the acknowledge at a completely different point in the program. 

In CtriTruck » automaticMode (line 2), the #kill symbol is sent to the port 
kiiiSignal-toSiaves. This port is connected with the ports kiiiSignal-in on all 
slaves. Actually the master CtriTruck should only send a #kill symbol to a slave 
of wlllch a constraint has been violated. This would be a slave trying to send 
an acknowledge to the master while the master will no longer receive it. In tllls 
model the #kill symbol is sent to all the slaves, regardless of whether a 
constraint has been violated or not. This approach leads to much simpter code 
in the master because it need not know exactly which of the slave's 
constraints, if any, have been violated. When a slave has finished a oommand 
and is waiting fora new one, then its kiiiMonitor will be disabled and it will 
simply not receive the #kill symbol. 

7.6 The retry strategy in a multi-process environment 

7 .6.1 Exceptions in a group with a master and slaves 

In the retry strategy treated in Section 7.3, a sequentia( process detects errors 
in the system components that it controls. An exception is raised if an error is 
detected in such a component If the RetrySignal is raised, the exception wiJl 
be handled by retrying the terminated control action. In a multi-process 
environment, exception occurrences in a process need not only be a result of 
errors in the system components controlled by the process itself. They can 
also be a result of errors in other components. 
Consider the fork-lift truck, for example. When it transports a stack from the 
traverse to the fumace, three movements will take place in parallel when the 
truck passes the sensor canTumToFumace (Figure 2.3.1). The truck rides to 
the fumace, the fork-lift goesdown and the fork tums to the fumace. Time­
outs are used in the control of all three movements. If a time-out should occur 
in the control of any of these movements, the exact cause of the time-out 
cannot be determined by the control system because not enough sensors are 
available. Therefore, the control system should adopt a worst case scenario 
and stop all three movements in the case of a single time-out. The truck is also 
equipped with sensors to detect collisions. All three movements should also be 
stopped if a ooilision is detected. Note that systems also exist in wlllch an 
error in a component controlled by a slave need not result in the stopping of 
all components controlled by the other slaves and the master. 
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The. requirements of Section 7 .I imply that it should be possible to restart all 
interrupted control actions after correction of the error by the operator. The 
fork-lift truck should only bereset in the case that the operator decides that it 
is useless torestart the interrupted actions. 
lt is evident that exceptions should only be raised in the processors that 
control a component which is actually moving at the time of the error. 
Suppose that the truck is moving and the fork is turning, but the fork-lift has 
already reached the stabie middle position and is no Jonger going do~ at the 
time of the error. In this case, the exceptions need only be rais€;:d in the 
SlaveForkTurner en CtriTruck processors in order to stop the movements of the 
truck and fork. 

It is concluded that a RetrySignal should be raised in a processor controlling 
part of the fork-lift truck in any of the following three situations: first, when 
an error occurs in the part of the fork-lift truck controlled by the processor 
itself; second, when a colfision is detected; and third, when an error occurs in 
a part ofthe fork-lift truck controlled by another processor. 
These three situations are taken care of in the following way. In the first case, 
a time-out can be used to detect errors in the controlled component. The 
second case is taken care of by the bumperMonitor which is a constraint 
monitor present in all three processors. It monitors a collision of the truck. 
The third case is taken care of by the stop Monitor. This is a constraint monitor 
which is also used in all three processors. When enabled, it tries to receive the 
symbol #stop from the port stopSignai-in (see Figure 7.5.1c). The receipt of 
that object indicates a constraint violation which causes the RetrySignal to be 
raised. The #stop symbol is sent by any of the three processors in which a 
time-out is detected. lt is sent to the other processors by means of a 

· braadcaster processor which acts as an intermediate agent. 

7.6.2 Tbe BroadCaster processor 

The reason for using the braadcaster is that this makes the structure of the 
model more el~ant, especially when many slaves are involved. Without the 
broadcaster, each processor from the collection represented by the rnaster and 
the slaves would have to be connected by means of interaction paths to all 
other processors from the collection. With the broadcaster, the processors 
from the collection need only be connected with the braadcaster. 
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------- BrosdCaster > process control ----------

body 
I item I 
item := self receiveFrom: 'stopSignal-in'. 
self send: item continuousTo: 'stopSignal-out' 

Figure 7.6.1 Process description ofBroadCaster. 

The processor BraadCaster simply sends the received symbol to its port 
stopSignai-out by means of a continuous interaction (see Figure 7.6.1). The 
port stopSignai-out is connected to the ports stopSignai-in on the three 
controlling processors Cb1Truck, SlaveForkUfter and SlaveForkTumer. The 
processor BraadCaster is shown in Figure 7.5.lc as a small circle without 
name and is connected withall three controlling processors in the same way. 
After the broadcaster bas sent the #stop symbol to its stopSignai-out port, any 
enabled stopMonitors in the other two controlling processors will signal the 
constraint violation by creating a pending exception. Note that the #stop 
symbol will also be sent back to the controlling processor which originally 
sent it. The stopMonitor will be disabled in this processor, so that the #stop 
symbol will not be received and have no effect. The definition of the 
stopMonitor is shown in Figure 7.6.2. 
The. #stop symbol is sent by means of a continuous interaction rnechanism, 
because a state is indicated to the other processors, and not an event: the 
presence of the detected error must not only cause components to stop which 
are actually moving, but must also prevent new movements from being started 
before the error is corrected. 
It should be noted that in this example the #stop symbol is sent to all other 
controlling processors by means of the broadcaster. If the #stop symbol 

· should not be sent to all other processors, this can of course be achieved by a 
different structure of the interaction paths used to conneet the controlling 
processors and the broadcaster. 

7 .6.3 The definition of constraint monitors for the retry strategy 

The definition of the constraint monitors used for the retry strategy in this 
example is shown in Figure 7.6.2. The classes of the three processors 
controlling the fork-lift truck all inherit from the class CbtTruckAbstract. 
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--- Ctr/TruckAbstract > initialization ---

initializeTasks 
super initializeTasks. 
retryMonitors := ConstraintMonitorCollection new. 
stopMonitor := ConstraintMonitor 

for: self 
receive: #stop 
trom: 'stopSignal-in' 
then: [ :item 1 RetrySignal raise]. 

bumperMonitor := ConstraintMonitor 
for: self 
receive: true 
trom: 'i-truckGiobal-bumper' 
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then: [ :item 1 RetrySignal raiseErrorString: 'activation of truck bumper']. 
retryMonitors add: stopMonitor. 
retryMonitors add: bumperMonitor 

Figure 7. 6.2 The definition of constraint monitors for the re try strategy. 

7.6.4 An mustration ofthe retry strategy used in SlaveForkLifter 

The metbod SlaveForkUfter » forkUp is shown in Figure 7.6.3. lt has been 
provided with additional monitors to imptement the retry strategy in a multi­
process environment. 
In the case of a time-out, the #stop symbol is sent by the invocation of the 
metbod sendStop in line 15. After correction of the error, the operator will 
give a oommand via the MMI to restart the interrupted methods. Before an 
interrupted metbod can be restarted, the effect of the previously sent stop 
oommand must first be undone, otherwise the stopMonitor would immediately 
signal again when it was enabled. The stop command is undone by means of 
the invocation of the metbod clearStop in line 5. The definition of the methods 
sendStop and clearStop is given in Figure 7.6.4. 
The stop oommand is cleared in the restart block in Figure 7.6.3, line 5. 
Under certain circumstances, however, this line will not be executed. Suppose 
that the operator does not want to restart the interrupted actions but instead 
wants to bring the processes to the stand-by mode. In that case, the stand-by 
command from the MMI will cause the kiiiFromMMIMonitor to signal by 
creating a pending exception. This pending exception would be raised at the 
place of the blocking statement of line 4. Therefore, the automatic mode 
would beterminaled before the stop command could be cleared. To ml;lke sure 
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-------- SlaveFori<Lifter > machine io ----

forkUp 
1 self 
2 handle: [:ex 1 self putOff: 'o-forkutter-power'] 
3 restart 
4 (self restartMessage: 'fork lifter up'. 
5 self clearStop J 
6 constraintMonitors: rebyMonitors 
7 do: 
8 [self putOn: 'o-forklifter-up'. 
9 self putOn: 'o-forklifter-power'. 
10 self 
11 recewe:true 
12 trom: 'i-forklifter-isUp' 
13 within: 6 seconds 
14 iffimedOut: 
15 (self sendStop. 
16 RetrySignal raiseErrorString: 'time-out on fork up'). 
17 self putOff: 'o-forklifter-power'J 

Figure 7.6.3 The methodforkUp with additional constraint monitorsjor 
the retry strategy. 
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that the stop command is also cleared in such situations, the methods 
ControiBubble » slaveBody and Ctr1Truck » automaticMode are changed in 
such a way that the stop command is also cleared by the exception handlers of 
these methods. Figure 7.6.5 shows the new metbod Ctr1Truck » 
automaticMode. 

-- CtriTruckAbstract > process control ------

sendStop 
self send: #stop to: 'stopSignal-ouf 

clearStop 
(self receiveFrom: 'stopSignal-in') ==#stop 

ifTrue: 
(self send: #ok to: 'stopSignal-ouf. 
self recewe: #ok trom: 'stopSignal-in'] 

Figure 7.6.4 Methods forstopping other processes and enabling their 
continuation. 
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--- Ctr/Truck > process control ---

automaticMode 
self 

handle: 
[:ex I 
self broadcast: #kill to: 'kiiiSignal-toSiaves'. 
self clearStop] 

constraintMonitors: kUlMonitors 
do: 

[self automaticlnitialize. 
[self automaticBody] forever] 

Chapter 7 

Figure 7.6.5 The clearing ofthe stop commandwhen the automatic mode is 
terminated. 

7.6.5 An illustration ofthe retry strategy used in CtriTruck 

The use of the retry strategy for the control of the truck itself is s9mewhat 
more complicated than the retry strategy for the control ofthe fork-lift. This is 
due to the fact that the control of the truck, while it is going from the; traverse 
to the furnace, is divided into two parts, as shown in Figure 7.6.6. 
In the first part, the truck moves from the traverse to the turning point at the 
traverse. At that point, the fork-lift should start going down to thè middle 
position and the fork should start to turn to the furnace. The conunands to 
make the fork go down and turn are given in Cb1Truck » 
transportStackToFumace, lines 2-3. 1be commands are given in ;a block 
because they should be seen at the level of the metbod CtriTruck » 
transportStackToFumace. At this level the coordination of the different 

· movements of the fork-lift truck is determined. The actions should, however, 
be executed in the metbod Cb1Truck » toTumPointAtTraverseDo:, because 

--- CtriTruck > process control --

transportStackToFumace 
1 self to TumPointAtTraverseDo: 
2 [self send: #forkDownToMiddle immediateTo: 'forklifter-command'. 
3 self send: #turn ToFurnace immediateTo: 'forkTurner-command'] . 

. 4 self continueToFurnace. · 
5 self receiveFrom: 'forklifter-ack'. 
6 self receiveFrom: 'forkTurner-ack' 

Figure 7. 6. 6 Transpor/ation of the stack from the traverse to the furnace. 
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errors occurring in tbe two send actions should result in tbe stopping of tbe 
truck and should tberefore be caught by tbe handter specified in tbe metbod 
CtriTruck >> to TumPointAtTraverseDo:. The truck does not stop at tbe tuming 
point under normal operation. 
In tbe second part, tbe truck continoes to go to tbe :furnace. 

Figures 7.6.7a-b show tbe two methods for tbe control of tbe truck 
movements. They make use oftbe monitorCollection retryMonitors specified in 
Figure 7.6.2. This collection contains tbe stopMonitor and tbe bumperMonitor. 
These two monitors will be referred to as tbe retry monitors. 
Strictly speaking, tbe retry strategy should not he specified in tbe way shown 
in Figures 7.6.7a-b. The reason for this is tbat tbe motor oftbe truck remains 
switched on at tbe tuming point, so tbe retry monitors should also remaio 
enabled. In fact, tbe retry monitors should be enabled when tbe motor of tbe 
truck is on and he disabled when tbe motor is off. By separately binding tbe 
retry monitors in botb methods, tbe retry monitors are temporarily disabled 
when tbe first metbod is terminated. 

-- ctr/Truck >machine io ----

toTumPointAtTraverseDo: endBiock 

"motor remains on when the do block is terminated normally" 

self 
handle: [:ex I self truckStop] 
restart 

[self restartMessage: 'truck to tuming position at traverse'. 
self clearStop) 

constraintMonitors: retryMonitors 
do: 

[self putOn: 'o-truck-toFurnace'. 
self putOn: 'o-truck-power'. 
self 

receive: true 
trom: 'i-truck-canTurnToFurnace' 
within: 10 seconds 
ifTimedOut: 

[self sendStop. 
RetrySignal raiseErrorString: 

'time-out moving to turning position at traverse']. 
endBiock value) 

Figure 7.6. 7a The control of the truck using the re try strategy with 
constraint monitors. 
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Nevertheless, the control ofthe truck is split into two methods, because in this 
way exceptions can he elegantly and locally handled in each method. The 
temporary disabling ofthe retry monitors bas no undesirable effects. 

--- CtrlTruck >machine io --

continue ToFurnace 
"motor shou/d be on u pon activation of this method" 

self 
handle: [:ex 1 self truckStop] 
restart 

[self restartMessage: 'truck to fumace'. 
self clearStop. 
self putOn: 'o-truck-power'] 

constraintMonitors: retryMonitors 
do: 

[self 
receive: true 
from: 'i-truck-atFumace' 
within: 20 seoonds 
ifTimedOut: 

[self sendStop. 
RetrySignal raiseErrorString: 

'time-out on truck-at-fumace detector']. 
self putOff: 'o-truck-power'] 

Figure 7. 6. 7b The control of the truck using the re try strategy wi th 
constraint monitors. 
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Conclusions 

8.1 Evaluation 

Background and existing mechanisms 

The handling of errors and exceptions is an important aspect in the 
development of industrial control systems. The amount of code needed for 
error handling is often several times greater than the amount needed for the 
control under error-free circumstances. Considerable progress has been made 
in the field of mechanisms for the handling of internal exceptions. We have 
shown that these mechanisms are important for the creation of robust 
programs. They are, however, not sufficient for controlling systems, because 
these systems require an additional mechanism for the handling of constraint 
violations. Several proposals and existing mechanisms for the handling of 
constraint violations are known from the literature. These mechanisms have 
been evaluated as either offering a functionality which is too restricted for 
controlling systems, as offering an incorrect or undesirable functionality, or as 
inadequate in other ways. 

A clear definition of concepts 

The inadequacy of the mechanisms which have been evaluated is ascribed to 
the absence of clearly defined concepts and the absence of a sound theory 
descrihing the essence of exception handling in controlling systems or, more 
generally, in multi-process environments. Many definitions found in the 
literature are imprecise or incorrect, or contain undesirable subjective 
elements. In order to arrive at a new theory and new concepts, the most 
important terms relating to errors and exceptions are accurately defined. The 
relationship between exceptions and errors has also been clarified. The 
definitions and relationships given bere result in a better onderstanding of the 
terminology of errors, exceptions and the relationships between them. 
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New concepts to describe the essence of the handling of external 
exceptions in controlling systems 

An important contri bution of this study is the introduetion of the new concepts 
'constraint of an operation' and 'constraint violation', which are es$ential in 
order to detennine the requirements of a mechanism for the handling of 
external exceptions in controlling systems. A constraint can he compound, in 
which case it consists of(sub-)constraints. 

The constraints of an operation are specific for the operation itself and thus 
independent of the point in the program at which the operation is · invoked. 
This point of view is essential for the development of modular subprograms. 

The new concepts contribute to a better onderstanding of the way exceptions 
should he handled in controlling systems or multi-process environments. One 
of the aspects that is made clear is that there is a restrietion for the 'handling 
of extemal exceptions caused by the violation of the constraints of an 
operation: a handler that catches such an exception, while the operation of 
which a constraint was violated is not yet terminated, must tenninate by 
propagating the exception. 

A new mechanism for the handling of constraint violations 

The newly developed mechanism for the handling of constraint violations in 
controlling systems makes it possible to specify and monitor the constraints of 
each operation independently of other already invoked operations. This is a 
quality seldom found in programming languages or systems. At the sametime 
the mechanism is well integrated with the advanced mechanisms for the 
handling of intemal exceptions. The integration is achieved with the addition 
of only a single programming construct, namely a constraint monitor. This 
makes the resultant mechanism easy to use and to onderstand. The ·required 
binding of constraint monitors to operations or blocks enforces the use of 
constraint monitors in a structured way. A constraint monitor bound to a 
single operation can also he used to specify a constraint which is com.mon to 
several operations, which will, in many cases, simplify programs. 

Constraint violations will cause pending exceptions to he created. These 
pending exceptions will he raised at interaction points, where the i internat 
invariants of the process can he expected to hold. The choice not to raise 
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pending exceptions in exception handlers makes it possibte to safety restore 
invariants in exception handlers. Proposals that suggest the immediate raising 
of external exceptions will lead to time-dependent run-time errors due to 
violations of the internat invariants of a process. These errors are very 
dangerous because they are practically impossible to find by testing and can 
occur completely unexpectedly. 

Several constraints can he violated at the same time by concurrently executing 
processes. This can result in more than one pending exception in a process. 
Several criteria for the selection of a pending exception have been evaluated. 
The choice is made to select the pending exception betonging to the constraint 
monitor which was enabled first. The other pending exceptions are discarded. 
This leads to the desirabie discarding of an exception ftom a constraint 
monitor activated at a low (or innermost) level, by an exception ftom a 
constraint monitor activated at a high (or outermost) level. Constraint 
monitors can always he checked to determine whether their pending exception 
has been discarded. 

The binding of a constraint monitor to a block which is invoked by another 
block bound to the same constraint monitor is essentially a non-operation. 
This design choice is conceptualty simpte and retains the desired functionality 
of constraint monitors. 

lmplementation of construint monitors in Process Calculus 

The implementation of the mechanism in Process Calculus is retativety 
straightforward. An important aspect that facilitates the integration of the 
mechanism is the powerfut functionality of Smalltalk blocks. 
A constraint monitor has been added to Process Calculus as a simpte and 
relatively orthogonal primitive. Constraint monitors will try to receive an 
object ftom a port. This can he any port of a processor and there are no 
restrictions about the way objects are sent to the port. Constraint monitors are 
also well integrated with the existing Smalltalk exception handling 
mechanism. Any exception can, in principle, he raised by a constraint 
monitor. The mechanism is not orthogonal with respect to the fact that the 
receive action executed by a constraint monitor is specified slightly differently 
ftom the normal receive actions, because it is used to initialize the constraint 
monitor. 
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Although all send primitives can be used to indicate constraint violations, the 
broadcast primitive bas been added to Process Calculus for the signaling of 
constraint violations to other processes. The use of this primitive is important 
in order to keep different processes, which interact by means of constraint 
violations, largely independent of each other and in order to achieve good 
modularity. 

The resume response as an inadequate response 

It is recommended that the resume response is not used, since its use easily 
leads to unstructured programs which are hard to understand. The use of the 
resume response is even more probiernatie in a multi-process environment. 
This is because the resurne response can be used to enter critical regions 
containing semaphores, or to enter blocks bound to constraint monitors, 
without performing the necessary operations on the semaphores or constraint 
monitors. 

A case and the retry strategy 

The treatment of a case concerning the control of a transport system bas 
shown the power and simplicity of constraint monitors for the handling of 
exceptions in control systems. The retry strategy bas been developed as a 
simpte strategy which can be used to deal locally with errors in an e:fficient 
and safe way. It usually implies the help of an operator. After correction of 
the error, the interrupted processes can continue by re-executing the 
interrupted control actions. In the case of errors that cannot be corrected 
locally, the use of constraint monitors makes it easy to keep communicating 
processes in a consistent state. 

8.2 Recommendations for future research 

The newly-developed mechanism bas only been implemented in· Process 
Calculus. The implementation in other programming languages should be 
studied. Also, more experience is needed with the mechanism and Process 
Calculus in practical complex control systems. 

Two other fields for further research follow from the restrictions on the scope 
ofthis study as laid downinSection 1.2. 
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First, the specific characteristics of other programming languages in relation 
to the handling of exceptions in a multi-process environment should be 
investigated. An important aspect in this context is the exceptional termination 
of processes which are created dynamically in parallel constructs. Another 
aspect to be studied is the way in which exceptions should be handled if they 
occur during the execution of an interaction, such as during a rendezvous. 
Second, the differences between continuons and discrete event systems in 
respect of exception handling need to be investigated. 
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Appendix A 
An introduetion to Smalltalk-80 

This appendix gives an introduetion to the aspects of the Smalltalk-80 
programmingenvironment used in the example programs in this thesis. The 
text is not meant to be a general introduetion to Smalltalk-80. For this the 
reader is referred to one of the many textbooks on Smalltalk, such as 
[Goldberg and Robson, 1989]. This introduetion concentrates on the 
Smalltalk programming language; the interactive programming environment is 
not treated. 

Classes and /nstances 

The Srnalltalk-80 programming language is a true object-oriented 
programming language. Every object is an instanee of a certain class. A ~:<lass 
is comparable to a module implementing an abstract data type, as in Modula-
2 [Wirth, 1985] or other Pascal-like languages that support modules. A class 
defines an abstract data type, together with some allowed operations on that 
data type. 

The instanee variables of the class defme the internal representation, or 
private memory, ofthe data type. The definition ofthe instanee variables of a 
class is comparable with a record type definition of an abstract data type in a 
module of Modula-2-like Janguages. All instanees of a class have the same 
instanee variables. The values of the instanee variables, however, are private 
and usually differ between instanees. 

The operations that are defined in the class are called the methods ofthe class. 
They can be perfonned on the instances ofthe class and are comparable to the 
procedures implementing the functionality of an abstract data type of Modula-
2 Jike languages. 
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Messages and Methoeis 

Each object can access only its own instanee variables and the instanee 
variables of its superclasses, The object interfaces with the outside world by 
means of messages that can he sent to the object. Messages are sent in 
message expressions. A message expression consists of a receiver of the 
message and the message itself. 

An example is self receive: true from: 'i-forkUfter-isUp'. In this expression, self 
is the receiver. The receiver is the object to wbich the message receive: true 
from: 'i-forkUfter-isUp' is sent. The message can have zero or more arguments. 
Argumentsin messages are placed immediately aftera colon(:). In this case, 
there are two actual arguments: the boolean object true and the string 
'i-forkUfter-isUp'. The message selector is the message without the arguments. 
In this case receive:from:. The message selector, togetber with the receiver of 
the message, defines wbich metbod is invoked as a result of the evaluation of 
the message expression. The metbod that will he invoked is the metbod in the 
class ofthe receiver that has the samemessage selector. lf, in the example, the 
class of the receiver self is the class Bubble, then the metbod receive: object 

from: portName as defined in the class Subbie would he invoked. The formal 
arguments object and portName would he set to the value of the actual 
arguments true and 'i-forkUfter-isUp'. 

Another example is the message expression KiiiSignal raise. In this case the 
receiver is KiiiSignal. The message is raise and the message selector is also 
raise, because there are no arguments. KiUSignal is a signal object. lt is an 
instanee of class Signal. Therefore, the message expression will result in the 
invocation of the metbod raise in the class Signal. 

The variabie self is a pseudo-variable. lt can only ·he used in metbod 
definitions. No values can he assigned to pseudo-variables in assignment 
statements. When a certain metbod is executing, self refers to the receiver of 
the message wbich resulted in the execution of the method. So, the message 
expression KiiiSignal raise will cause the metbod raise in the class Signal to he 
executed, wbile the value ofthe pseudo-variabie self, wbich can he used in the 
metbod raise, will refer to KiiiSignal. 
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lnheritance 

Every class (exeept Object) has one (direct) superclass. A class inherits the 
instanee variables and the methods from its superclasses. The superclasses of 
a class are the class's direct superclass, tagether with the superclasses of the 
superclass's direct superclass. A class can have several subclasses. In this 
way, a tree-like class structure is created where the class Object is at the root 
ofthe tree. 

A superclass contains the instanee variables and methods that are common to 
all of its subclasses. This approach makes it easy to reuse code. Apart from 
inheriting already defined methods from superclasses, methods can also be 
redefined. 

When a message is sent to an object, the search for the metbod to be invoked 
starts in the object's class. If a corresponding metbod cannot be found there, 
the search is continued in the class's superclass and recursively in all of the 
other superclasses. If the metbod is not found in any of the superclasses an 
error results. In this case, the object is said not to understand the message. 

The pseudo-variabie super in a metbod refers to the receiver of the message 
which resulted in the invocation of the method. This is analogous to the 
meaning of the pseudo-variabie self. The ditterenee is that, when the pseudo­
variabie super is used as the receiver of a message, the search for the metbod 
to be invoked starts in the superclass of the class of the receiver of the 
message. An example of this is when the message expression super 
initializeTasks is found in a metbod initializeTasks. In this case, self cannot be 
used because this would result in endless recursion. 

Variables 

Five kinds of variabie have been used in this thesis: globals, class variables, 
instanee variables, arguments, and temporary variables. 

Global variables are accessible tbraughout the system. They are written with 
a capital initial letter. All classes can be referred to by means of global 
variables. 
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Class variables are a kind of global variables, but they have a more restricted 
scope. Class variables also have an initial capitalletter. The signals KiiiSignal 
and AnySignal that are used in this thesis are class variables. 

There are two kinds of argument metbod arguments and block arguments. 
Metbod arguments have already been treated in this appendix. Block 
arguments are treated in the next section. 

Temporary variables are declared between bars, as in 1 temp1 temp2 1. They 
are usually declared at the beginning of a metbod and exist only during the 
invocation of the method. 

Smalltalk is an untyped language. Therefore variables are untyped: all 
variables can refer to objects of an arbitrary class. 

Blocles 

A block represents a deferred sequence of actions. A block expression 
consists of a sequence of expresslons separated by periods and delitnited by 
square brackets. Block expresslons can be seen as ln-line function definitions. 
Blocks can be assigned to variables. Their expresslons wiJl only be executed 
when the message value is sent to the block. 

A block can have one or more arguments. The format arguments of a block 
are listed immediately after the opening bracket of the block and are prefixed 
by a colon. The argument declaration is terminated with the symbol '1'. Actual 
arguments are provided to a block by sending a block the message value: 
actuaiArgument or value: argument1 value: argument2 etc. 

Consider the example given in Figure A.l. The time-out block acts as last 
argument to the metbod receive:from:within:iffimedOut:. If a time-out. occurs, 
then the time-out block will be executed by sendingit the message value. This 
is done by the implementation ofthe metbod receive:from:within:ifTimedOut:, so 
it is not seen here. The exception handter is also a block. The exception 
handter block will only be executed when an exception is caught. The 
Smalltalk exception handling mechanism will set the format argument exc of 
the exception handter block to the exception object which was created when 
the KiiiSignal was raised in the time-out block. 
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ForkLifterCtrl >> forkUp 
AnySignal 

handle: 
[:exc I 

do: 

self putOff: 'o-forklifter-power'. 
exc reject] 

[self putOn: 'o-forklifter-up'. 
self putOn: 'o-forklifter-power'. 
self 

receive: true 
from: 'i-forkLifter-isUp' 
within: 6 seconds 
iffimedOut: [KiiJSignal raise]. 

self putOff: 'o-forklifter-power') 

Figure A.l An example of the use of blocks. 

Control Structures 

195 

Control structures are nota part of the language definition in Smalltalk-80. 
Selection and iteration are implemented using the classes Boolean with 
subclasses True and False and a class the instances of which are blocks. The 
predefined pseudo-variables true and false are the only instances of the 
respective classes True and False. Boolean expressions yield either the true or 
false object. Selection is achieved by means of the methods ifTrue:, ifFalse:, 
and ifTrue:ifFalse:. The arguments of these methods are blocks that are only 
executed in the case of the corresponding boolean receiver. For instanee the 
message 

(3 > 2) ifFalse: [ ... ] 

is analogous to 

true ifFalse: [ ... ]. 

Therefore, the block will not be executed. The message 

(1 == 2) ifTrue: f'block A'1 ifFalse: ["b/ock 8'1 

will result in the execution of block B. 
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Some final syntactic issues 

• Every Smalltalk metbod returns an object, even when no explicit return 
statement is specified. Intbis case, tbe metbod returns tbe receiver (self) 
of tbe message expression which resulted in tbe metbod invocation. 
Frequently, tbe returned object is not used. An explicit return statement is 
constructed by prefixing an expression witb an up arrow: 't'. For 
example, t'error'. 

• The expression or statement separator in Smalltalk is tbe period. 
• Strings are created by enclosing a sequence of characters by single quotes 

as in: 'an example sbing' or 'i-forklifter-isUp'. 
• Symbols can he constructed by prefixing identifiers witb tbe character # 

as in #forkUp. Symbols are unique objects in the systems, strings are not. 
• The two most important parsing rules are the following: 

Parsing is nonnally done from left to right. For example self 
maxStackSize negated evaluates as (self maxStackSize) negated. 
Messages without arguments have preeedenee over messages with 
arguments; For example self send: 'ok' to: self errorPort is evaluated as self 
send: 'ok' to: (self errorPort). 
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The semantics of the Smalltalk methods 
used in the program examples 

This appendix gives a description of the most important Smalltalk methods 
that are used in the programs contained in this thesis. The methods from the 
Smalltalk system itself are given in Section B.l. Additional methods that 
support modeling using Process Calculus are given in Section B.2, and . 
additions for exception handling in a Process Calculus environment are given 
in Section B.3. The methods that are used and explained in only one place in 
this thesis are not given here. For the methods that have already been properly 
de:fined in this thesis on1y a cross-reference to the section of the de:finition is 
given. 

B.l Methods from the Smalltalk system 

----- Signa/ > handling --

handle: handierSloek do: doBiock 
"Establish handferB/ock as an exception handter tor the doSloek which wil/ 
catch the exceptions represented by the signa/ (the receiver of the message). 
Explained in Section 4. 5." 

raise 
"Raise the exception represented by the signa/ (the receiver). The result of 
this is the creation of an ex ception object (an instanee of class Exception). A 
co"esponding hand/er wil/ be sought to catch the exception." 

raiseErrorString: errorString 
"Raise the ex ception represented by the signa/. The e"orString wil/ be 
avai/ab/e in the created exception object (see Exception » e"orString)." 
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-- Signa/Col/eetion > handling ---

handle: handierSloek do: doSloek 
"Establish handlerB/ock as an exception hand/er for the daBloek which wil/ 
catch the exceptions represented by the signals in the signa/ col/eetion (the 
receiver). " 

--- Ex ception > hand/er responses --

"The messages in this protocol are messages that can be sent to the 
ex ception object which acts as argument of the hand/er block of a handle:do: 
expression." · 

reject 
"The current exception is propagated to the invoker of the handle:do: 
expression." 

restart 
"Restart the handle:do: expression." 

return 
"This is the default response from an exception hand/er. The handle:do: is 
terminated. Execution continues with the expression following the handle:do: 
statement. • 

errorString 
"Return the error string that was given as argument to the signa/ which was 
raised to create the exception object. The signa/ could have been raised with 
the raiseErrorString: message. • 

· ----- OrderedCol/ection > adding --

add: newObject 
"Add neWObject as the last element to the ordered col/eetion represented by 
the receiver. • 

B.2 Methods for the modeling with Process Calculus 

A number of the methods given bere come from [Worbnann, 1991], these 
methods are indicated with [W] in the comment. 
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-- Bubble > process control ---

initialize Tasks 
"[W]. This method is called before any processor executes initia/Actions or 
body. lt should not contain any sendor receive actions, as the processas are 
not running yet. ft is mainly intended to initialize instanee variables. " 

initiaiActions 
"[W]. This method is called once before the first execution of body." 

body 
"[W]. This method is called repeatedly during the execution of the process 
description of the model. lt must be redefined by all subc/asses. 11 

--- Bubble > receiving objects -----

receiveFrom: portName 
"[W]. The most basic receive action. Receive from the specified port. Block 
until some sender is available for communication. Retum the item received. 11 

receive: object trom: portName 
"Receive from the specified port if the item to be received equals object 
(using the =massage). Blockuntil object can be received. 
lf object is nil then any item wi/1 be received. 
Retum the item received." 

receive: object from: portName within: interval ifTimedOut: timeOutSloek 
"Receive from the specified port if the item to be received equals object (see 
receive:from:). 
lf an item is not received within interval, timeOutB/ock is eva/ualed (no 
arguments)." 

--- Bubb/e > sending objects ---

send: object to: portName 
"[W]. The most basic send action. Send object synchronously to the port 
specified by portName. The process blocks until a matching receive is 
perforrned by another processor." 

sendTo: portName 
"Used for the purpose of synchronization only. Behaves just like send:to:, 
only sends an arbitrary object to portName." 
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send: object to: portName within: interval then: thenBiock else: elseBiock 
"Try to send object to portName within interval. lf that succeeds, eva/uate the 
thenB/ock, if it does not succeed, eva/uate elseB/ock." 

send: object immediateTo: portName then: thenBiock else: elseBiock 
"[W]. Try to send object to portName at this moment. lf this succeeds, 
evaluate the thenBiock, if it does not succeed, eva/uate e/seB/ock. So this 
send cannot b/ock." 

send: object immediateTo: portName 
"{W]. Try to send object to portName at this moment. lf this is not immediately 
possib/e, raise an exception. So this send cannot block." 

broadcast: object to: portName 
"Send copies of object to all receivers that are able to receive it at this 
moment. No special action is taken for those receivers that are connected to 
portName by means of an interaction path but could not receive the object. 
This method cannot block." 

send: object continuousTo: portName 
"[W]. Send object to portName. Copies of the object wil/ be available for an 
unlimited number of receivers until the object is rep/aced by a new call to this 
method. 
Never blocks." 

----- Bubble > actuator interfacing --

putOn: oActuatorPortName 
"Activate the binary actuator represented by oActuatorPortName" 

self send: true to: oActuatorPortName 

putOff: oActuatorPortName 
"Deactivate the binary actuator represented by oActuatorPortName" 

self send: false to: oActuatorPortName 

B.J Methods for exception handling in Process Calculus 

There are two global signals available for all processors. These are the 
KiiiSignal and the RetrySignal. They are explained in Section 7 .2. 
The class ControiBubble is a subclass of class Bubble. lt contains the 
functionality for the control of processes that interface with operators by 
means of a specific Man Machine Interface (MMI). 
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-- Contro/Bubble > mmi interfacing ---

errorMessageFor: exceptionObject 
"Send the error message contained in the exceptionObject (exceptionObject 
errorString) to the MM/." 

restartMessage: restartString 
"Send the given restartString to the operator by means of the MMI. Then wait 
for the command trom the operator to continue." 

------ Bubble > exceptions hand/ers ----

handle: exceptionHandler do: doBiock 
"See Section 7. 2. The exceptionHandler wil/ catch all exceptions trom the 
doBiock. Before execution of exceptionHandler, an error message wil/ be 
issued for the exception. After execution of exceptionHand/er, the handled 
exception wilt be propagated (ex reject), unless another response is specified 
in exceptionHandler." 

handle: exceptionHandler constraintMonitors: monitorOrMonitors do: 
doBiock 

"See Section 7. 2. Ju st like the above given method. The difference is that the 
doBiock is protected by monitorOrMonitors." 

--- ControiBubb/e > exceptions hand/ers ------

handle: exceptionHandler restart: restartBiock do: doBiock 
"See Section 7.3 (and 7.5). Used to imptement the retry strategy. 11 

handle: exceptionHandler restart: restartBiock constraintMonitors: 
monitorOrMonitors do: doBiock 

"See Section 7.3 (and 7.5). Used to implement the retry strategy. The 
doBiock is proteeled by monitorOrMonitors. 11 

-- Contro/Bubble > process control --

modeBody 
"See Section 7.4. Processors that want to use the mode control (automatic 
mode, reset mode etc.) provided by the MMt interface, shoutd define the 
method body in such a way that it onty ca/Is this method." 
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slaveBody 
"See Section 7. 4. Processors that act like slaves should define the methad 
body in such a way that it only ca/Is this method. A slave receives a 
cammand trom another processor (the master), ex ecufes it, and sends an 
acknowledge back to the master." 

automaticMode 
"See Section 7.4. This methad is executed due to a cammand trom the 
operator causing the processor (the receiver of the automaticMode• message) 
to change to automatic mode. 
May be redefined by a subclass (copied to a subclass and then edited)." 

automaticBody 
•see Section 7.4. Must be redefined by a subclass to define the cyc/ic control 
sequence for the machine when in automatic mode." 

-- ConstraintMonitor class > instanee creation --

for: processor receive: object from: portName then: thenBiock 
"See Section 6. 10.2. Define a constraint monitor. The constraint vialation that 
can be monitored by the constraint monitor is defined to be the receipt of 
object trom the port named portName on processor. The constraint vialation 
wil/ be signaled by making the thenB/ock pending in processor. This amounts 
to creating a pending exception. The thenB/ock must terminale by taising an 
exception. A pending thenB/ock wil/ be selected for execution when the 
processor executes an interaction or a delay, or when the methad Bubble » 
raisePendingException is cal/ed." 

for: processor receiveFrom: aPortName then: thenBiock 
"Similar to the previous method, on/y for this constraint monitor the constraint 
vialation is defined to be the receipt of any object." 

-- ConstraintMonitor > cantrolling ---

proleet: block 
"See Section 6.10.3. The argument b/ock is bound to the constraint monitor. 
The monitor wil/ be enab/ed during execution of the block." 
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GonstraintMonitor > accassing ----

item 
"See Saction 6.10.6. Raturn thaitem racaivad by tha constraint monitor (tha 
receiver). Raturn nil if no item has baan recaived sinca tha constraint monitor 
was last anablad or claared. A constraint monitor is eisared by tha mathod 
GonstraintMonitor >> c/aarltam." 

clearltem 
"See Section 6. 10. 6. Simi/ar to the previous mathod. Returns tha item 
racaivad by tha constraint monitor, but also ciaars tha constraint monitor." 

-- GonstraintMonitorGol/action > cantrolling -----

protect: block 
"See Section 6. 10. 5. Th a argument b/ock is bound to tha col/action of 
constraint monitors includad in tha col/eetion representad by tha receiver. 
The monitors wil/ ba anablad during execution of tha b/ock. • 
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STELLINGEN 

behorende bij het proefschrift 

Exception Handling in 

Control Systems 

van 
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1. Het gebruik van mechanismen die het 'raisen' en athan­
delen van excepties ondersteunen vereenvoudigt het 
ontwikkelen van robuuste programma's, mits geen 
gebruik wordt gemaakt van de 'resume' responsie vanuit 
een exceptie-afhandelaar. 

Dit proefschrift. 

2. De relatie tussen excepties en fouten is essentieel voor het 
begrip van exceptie- en foutafhandeling. 

Dit proefschrift. 

3. De introductie van externe toestand-fouten maakt het 
mogelijk om interne toestand-fouten te definiëren zonder 
dat subjectieve elementen nodig zijn. 

Dit proefschrift. 

4. Het feit dat exceptie-athandelaren in Smalltalk Signal 

genericSignal niet direct mogen gebruiken om excepties te 
vangen, doet emstig afbreuk aan het exceptie­
athandelingsmechanisme in deze taal. 

Dit proefschrift. 

5. Het interactiemechanisme in GRAFCET nodigt uit om de 
synchronisatie tussen besturingsprotessen via sensoren op 
de bestuurde machine te laten verlopen, hetgeen in veel 
gevallen leidt tot onveilige besturingen. 



6. Een besturing kan ten aanzien van zijn foutafhandeling 
sneller en veiliger worden getest met behulp van een 
model van de te besturen machine en 'discrete event' 
simulatie dan met behulp van de echte machine. 

7. De gebruikersinterface van MS-Windows applicaties kan 
aanzienlijk worden verbeterd door het gebruik van 
context-afhankelijke pop-up menu's. 

8. In zeilboten met goede planeereigenschappen draagt de 
combinatie van spinaker en trapeze bij harde wind in 20% 
van de tijd bij tot 80% van het plezier. 

9. Aangezien velen voor de uitvoering van een alt-partij een 
alt prefereren boven een counter-tenor, en vrijwel 
niemand een counter-tenor prefereert boven een alt, zou 
men bij uitvoeringen alt-partijen gewoon door alten 
moeten laten uitvoeren. 

10. Vereenvoudigingen van het. belastingstelsel zijn pas echt 
succesvol wanneer de Elsevier Belastingalmanak niet 
meer wordt verkocht. 


