

Exception handling in control systems

Citation for published version (APA):
Beek, van, D. A. (1993). Exception handling in control systems. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR398543

DOI:
10.6100/IR398543

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR398543
https://doi.org/10.6100/IR398543
https://research.tue.nl/en/publications/0d237de0-9895-4ebd-91f3-70e214bf9d3c

Exception handling
in control systems

O.A.van Bee

Exception Handling in
Control Systems

Print: Wibro, Helmond.

Cover design: D. van der Pol.

CJP-DATA KONINKLUKE BIBLIOTIIEEK, DEN HAAG

Beek, Dirk Albert van

Exception handling in control systerns I Dirk Albert van
Beek.- Eindhoven: Eindhoven University ofTechnology
Thesis Eindhoven. - With index, ref. - With summary in
Dutch.
ISBN 90-386-0262-6
Subject heading: control systerns ; exceptions.

Exception Handling in Control Systen1s

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus, prof. dr. J.H. van Lint,
voor een commissie aangewezen door het College van

Dekanen in het openbaar te verdedigen op
donderdag 1 juli 1993 om 16.00 uur

door

DIRK ALBERTV AN BEEK

geboren te Eindhoven

Dit proefschrift is goedgekeurd door de promotoren

prof. dr. ir. J.E. Rooda

en

prof. drs. C. Bron

Admowledgement

The research that I have done in the Vredestem factones in Doetinchem,
where the ROSKIT kemel [Rossingh and Rooda, 1985] is used for machine
control, has been of great importallee for the development of the concepts
presented in this dissertation. I would like to thank: dr.ir. J .H.A. Arentsen who
made my stay there possible, and ing. G. Huizing, ir. T.J. Rossingh and
ing. M.F.M. Seinhorst forthe stimulating discussions with them.

Summary

This thesis deals with the required concepts and mechanisms for exception
handling in control systems.

There is much confusion in the literature about the meaning of exceptions and
the relationship of exceptions and errors. In this thesis, the most important
terms relating to errors and exceptions are accurately defined, while retaining
a high level of compatibility with the way these terms are used in the
literature.

A treatment is presented of the most important concepts relating to the three
stages of error handling: error detection, error diagnosis and confinement, and
error recovery and fault repair. Only forward error recovery is covered in this
thesis.

Several satisfactory and more or less similar exception handling mechanisms
exist for the handling of internal exceptions. These mechanisms and a
traditional mechanism are briefly evaluated. The resume response from an
exception handter is rejected as being undesirable in both single and multi­
process environments.

A literature search bas yielded several proposals and existing mechanisms for
exception handling in controlling systems or, more generally, in a multi­
process environment. No publications, however, have been found which
describe the essence of the required functionality of such mechanisms.
Therefore, 'constraint of an operation' and 'constraint violation' have been
introducedas new concepts. The constraint of an operation is that part of its
precondition which is invariant over the operation: it bas to be valid
throughout the execution of the operation. A violation of an operation's
constraint causes an exception occurrence in the process executing the
operation and should result in the raising of an exception. ·

The concepts constraint and constraint violation have been used to describe
the required functionality of mechanisms for the handling of exceptions in
controlling systems. Several existing and proposed mechanisms have been

Vl

evaluated using this functionality. The mechanisms have been evaluated as
either offering a functionality which is too restricted for controlling systems,
as offering an incorrect or undesirable functionality, or as inadequate in other
ways.

A new mechanism for the handling of constraint violations bas been
introduced. The mechanism bas been realized by means of constraint monitors
which are used to specify and monitor constraints of operations independently
of other operations, which is an important requirement for the creation of
modular subprograms. A constraint monitor bound to a single operation can
also be used to specify a constraint which is common to several operations.

A constraint monitor is bound to an operation, and consists of a constraint
and an exception. The vialation of the constraint which is monitored by .a
constraint monitor results in the creation of a pending exception. The
exception is not immediately raised, since this can result in time-dependent
run-time errors due to violations of the internat invariants of a process.
Pending exceptions are raised at interaction points, which are natural places
for internal invariants to hold, but they are not raised in exception handlers.

Several constraints can be violated at the same time by concurrently executing
processes. This can result in more than one pending exception in a process.
Some criteria for the selection of a pending exception have been evaluated.
The pending exception that should be selected is the one betonging to the
constraint monitor which was enabled first, and thus at the outermost level.
The other pending exceptions can be discarded.

The only systems considered are systems that can be modeled as discrete
event systems.

The new mechanism is independent of a particular programming language.
The functionality of the mechanism therefore deals with the common
requirements of languages for the control of industrial systems. Language­
specific elements are not treated.

Constraint monitors have been successfully implemented in Process Calculus,
which is a language for the specification, simulation and control of industrial
systems. The simplicity and power of the new mechanism is illustrated with a
case concerning the control of a transport system.

Samenvatting

Dit proefschrift beschrijft een studie naar de vereiste concepten en
mechanismen voor de afhandeling van excepties in besturingssystemen.

Er bestaat veel verwarring in de literatuur ten aanzien van de betekenis van
excepties en de relatie tussen excepties en fouten. In dit proefschrift zijn de
belangrijkste termen betreffende fouten en excepties nauwkeurig gedefinieerd,
waarbij een hoge mate van compatibiliteit is behouden met het gebruik van
deze begrippen in de literatuur.

De belangrijkste concepten betreffende de drie stadia van foutafhandeling
namelijk foutdetectie, foutdiagnose en schadebeperking, en tenslotte
foutherstel zijn behandeld. Dit proefschrift gaat uit van voorwaarts
fouthersteL

Er bestaan verschillende bevredigende en min of meer gelijkwaardige
mechanismen voor de afhandeling van interne excepties. Deze mechanismen
en een traditioneel mechanisme zijn kort geëvalueerd. De hervattingsresponsie
vanuit een exceptie-afhandelaar (Eng. exception handler) is verworpen als
zijnde ongewenst, zowel in een enkel sequentiëel proces als in een omgeving
met parallelle processen.

Een literatuuronderzoek heeft verschillende voorstellen en bestaande
mechanismen opgeleverd voor het afhandelen van excepties in
besturingssystemen of, meer in het algemeen, in een omgeving van parallelle
processen. Er zijn echter geen publicaties gevonden waarin de essentie van de
gewenste functionaliteit van zulke mechanismen is beschreven. Daarom zijn
de 'constraint van een operatie' en 'constraint-schending' als nieuwe concepten
geïntroduceerd. De constraint van een operatie is dat deel van haar preconditie
dat invariant is over de operatie: hij moet gelden gedurende de uitvoering van
de operatie. Een schending van een constraint van een operatie veroorzaakt
een exceptiegeval (Eng. exception occurrence) in het proces dat de operatie
uitvoert, hetgeen zou moeten leiden tot het activeren (Eng. to raise) van een
exceptie.

viii

De concepten constraint en constraint-schending zijn gebruikt om de gewenste
functionaliteit van exceptie-afhandelingsmechanismen in besturingssystemen
te beschrijven. Verschillende bestaande en voorgestelde mechanismen zijn aan
de hand van deze functionaliteit geëvalueerd. De mechanismen blijken na
evaluatie ofwel een functionaliteit te bieden die te beperkt is voor
besturingssystemen, die foutief of ongewenst is, ofwel die in andere opzichten
inadequaat is.

Een nieuw mechanisme voor het afhandelen van schendingen van constraints
is geïntroduceerd. Het mechanisme is gerealiseerd door middel van 'constraint
monitors' die worden gebruikt om constraints van operaties onafhankelijk van
andere operaties te specificeren en te bewaken, wat een belangrijk vereiste is
voor de onwikkeling van modulaire subprogramma's. Een constraint monitor
die gebonden is aan een enkele operatie kan ook worden gebruikt voor de
specificatie van een constraint die gemeenschappelijk is voor verscheidene
operaties.

Een constraint monitor wordt gebonden aan een operatie, en bestaat uit een
constraint en een exceptie. De schending van de constraint die wordt bewaakt
door een constraint monitor resulteert in de creatie van een hangende 1 exceptie.
De exceptie wordt niet onmiddellijk geactiveerd, aangezien dit aanleiding kan
geven tot tijdsafhankelijke executie-fouten ten gevolge van schendingen van de
interne invarianten van een proces. Hangende excepties worden geactiveerd op
interactie-punten, wat natuurlijke plaatsen zijn waar interne varianten gelden,
maar zij worden niet geactiveerd in exceptie-afhandelaars.

Verschillende constraints kunnen op hetzelfde moment worden geschonden
door gelijktijdig uitgevoerde processen. Dit kan resulteren in meer dan een
hangende exceptie in een proces. Een aantal criteria voor de selectie van een
hangende exceptie is geëvalueerd. De hangende exceptie die geselecteerd zou
moeten worden, is degene die behoort bij de constraint monitor die als eerste,
en dus op het buitenste niveau, is geactiveerd. De andere hangende excepties
kunnen worden verwijderd.

De enige systemen welke zijn beschouwd zijn systemen die kunnen worden
gemodelleerd als 'discrete event' systeem.

Het nieuwe mechanisme is onafhankelijk van een specifieke programmeertaal.
De functionaliteit van het mechanisme betreft daarom de gemeenschappelijke

IX

vereisten van talen voor het besturen van industriële systemen. Taal-specifieke
elementen zijn niet behandeld.

Constraint monitors zijn met succes geïmplementeerd in Procescalculus, een
taal voor het specificeren, simuleren en besturen van industriële systemen. De
eenvoud en kracht van het nieuwe mechanisme is verduidelijkt aan de hand
van een voorbeeld betreffende de besturing van een transportsysteem.

x

Ta bie of contents

Summary v

Samenvatting vii

Chapter 1
Introduetion 1
1.1 Background I
1.2 Scope ofthe thesis 2

Chapterl
Modeling control systems using Process Calculus 5
2.1 Process Calculus 5

2 .1.1 Processors and interactions 5
2.1.2 Graphical representation ofmodels 6
2.1.3 The use of classes for the specification of processor models 9
2.1.4 Compound ports and interaction paths 10

2.2 The realization of controlling systems 13
2.2.1 Using simulation totest controlling systems 13
2.2.2 The transition from simulation to the control ofthe actual system

13
2.2.3 The interaction mechanism between the controller and the driver

15
2.3 An example: The control of an error-free transport system 16

2.3.1 Description ofthe system 16
2.3.2 Conventions used in the control model 21

• Synchronization between controlling processors without using
sensors 21

• The conneetion of compound ports with compound interaction
paths 21

• The grouping of methods in protocols 22
• Reference to methods 22

2.3.3 The implementation ofthe model 23

xii

Chapter3
Errors 27
3.1 Definition of terms 27

3 .1.1 Systems and states 27
3.1.2 Specifications, goals, preconditions and failures 29
3 .1.3 Correctness and errors 31
3.1.4 Faults 36
3 .1.5 Robustness 36

3.2 Some general concepts regarding errors 3 7
3.2.1 The causes ofprecondition errors and internal state errors· 37
3.2.2 Errors in the controlling and controlled system 38

• Errors in the controlling system 38
• Errors in the controlled system 40 .
• Comparison of errors in the controlling and controlled ~ystem .

40
3 .2.3 The three stages of error handling 41

3.3 Error detection 42
3 .3 .1 The importance of early error detection 42
3.3 .2 The use of sensors 42
3.3.3 Time-outs 42
3 .3 .4 State checks 43
3.3.5 Error detection by the supporting system 44

3. 4 Error diagnosis and damage confinement 44
3. 4.1 Definitions 44
3.4.2 Error diagnosis 45
3.4.3 Damage confinement 45
3 .4 .4 Emergency stops 46
3. 4.5 The safe state of machine parts 47

3.5 Error recovery and fault repair 48
3 .5 .I Backward error recovery and state restoration 48
3.5.2 Forward error recovery 50
3.5.3 Fault repair 50

3.6 Summary 51

Chapter4
Basics of exception handling 53
4.1 Definition ofterms 53

4.1.1 Operations 53
4.1.2 Exceptions, exception occurrences and exception conditions 54
4.1.3 Signaling, handling, declaring and raising exceptions 58

Tab ie of conlenis

4.1.4 The relationship between exceptions and errors 59
4 .1.5 The relationship between ex ception occurrences and errors 59

4.2 Basic requirements fora mechanism for the handling ofinternal
exceptions 60

4.3 Traditional ways of exception handling 63
4.3 .1 Using retumed values as exception codes 63
4.3.2 Other mechanisms 64

4.4 Advanced exception handling mechanisms 65
4.4 .1 Exceptions 66
4.4 .2 Ex ception handlers 66
4.4.3 The handling of exceptions 68
4.4.4 The termination and resumption model 69
4.4.5 Handier responses 70
4 .4. 6 The functionality of exception handlers in control systems 71

4.5 The exception handling mechanism in Smalltalk-80 72
4.5 .1 Exceptions and signals 72

• The hierarchy of signals 73
4.5.2 Exception handlers 74
4.5.3 The handling of exceptions 75
4.5.4 Handier responses 75

4.6 Evaluation 77
4.6.1 A general evaluation ofthe advanced exception handling

mechanisms 77
4.6.2 The return response as an inadequate default response 78
4.6.3 The resume response as an inadequate response in a sequential

process 79
4.6.4 Contiiets between the resume response and critical regions 80

Chapter5
The handling of constraint violations 81
5.1 Definition of terms 81

5.1.1 Constraints, constraint functions and constraint violations 81
5.1.2 The active constraints of a process 83
5 .1.3 Different kinds of invariant 85

5.2 Constraints 86
5 .2.1 The local specification of the constraints of an operation 86

Xlll

5 .2.2 The specification of constraints common to many operations 86
5.3 Constraint violations 88

5.3.1 A traditional way to detect constraint violations 88
5.3.2 Constraint violations by controlling processes 90

XIV

5.3 .3 Some relationsbips between constraint violations, exceptions and
the violation of invariants 93

5.4 Requirements for a mechanism for the handling of constraint violations
96

5.5 Known mechanisms for the handling of constraint violations 99
5.5.1 The select-interaction functionality 99
5.5.2 Raising exceptions in other processes 100

• Ada 101
• VAXELN 102
• ROSKIT 103
• Szalas and Szczepanska's proposal 104
• Reai-time Euclid 104

5.5 .3 Handling the exception of one process in another process 105
5.5.4 Dealing with exceptions in parallel constrocts 106
5.5.5 Other mechanisms 107

• Autonelli's dissertation 107
• Lieber's dissertation and similar proposals 1 08
• C for Unix 110
• Proposals by Issamy and Banätre 111

Cbapter6
A new mecbanism for tbe bandling of constraint violations 113
6.1 The specification of constraints with constraint monitors 113

6 .1.1 Definition of terms 113
6.1.2 The binding of constraint monitors to blocks 114
6.1.3 The language dependency of constraint monitors 115
6.1.4 The binding of constraint monitors to identifiers 115

6.2 Pending exceptions as a result of constraint violations 116
6.3 Raising pending exceptions 117

6.3 .1 Instant and delayed response controlling systems 117
• Instant response controlling systems 118
• Delayed response controlling systems 118

6.3.2 A strategy for raising pending exceptions in instant response
controlling systems 119
• Raising pending exceptions at interaction points 119
• No raising of pending exceptions in exception handters 121
• The monitoring of constraints 122
• The exit point of a protected block 124
• Summary 127

Table of contents XV

6.3.3 Raising pending exceptions in delayed response cantrolling
systems 127

6.3.4 Overriding the default strategy for raising pending exceptions
129

6.4 Handling exceptions resulting from constraint violations 130
6.5 Discarding pending exceptions 131

6.5.1 Dealing with multiple pending exceptions 131
6.5.2 The argument for discarding pending exceptions 132

6.6 Selectinga pending exception for raising 133
6.7 The nesting of blocles with the same constraints 136
6.8 The evaluation of constraint functions 137
6. 9 Conflicts between the resume response and constraint monitors 138
6.10The implementation of constraint monitors in Process Calculus 140

6.10.1 Monitoring constraints by executing receive actions 140
6.10 .2 The definition of constraint monitors 140
6.10.3 Binding constraint monitors to blocks 142
6.10. 4 The u se of constraint monitors tagether with exception handters

142
6.10.5 Specifying multiple constraint monitors 143
6.10.6 Some additional functionality of constraint monitors 144
6.10.7 Binding the same constraint monitor to nested blocles 145
6.10.8 The desired send primitives to signal constraint violations 146

Chapter7
The specification of coatrolling systems illustrated by a case 149
7.1 Requirements regarding the functionality of control systems 149
7.2 Additional exception handling methods for controlling systems 150
7.3 The retry strategy in a sequentia! process 153
7.4 Different control modes 155
7.5 The control model 159

7.5.1 The structure ofthe model 159
7.5.2 The definition ofthe constraint monitors 161
7.5.3 Constraint violations between CtrlEndSection and CtrlTraverse

161
7.5. 4 Interaction mechanisms used for the synchronization between

cantrolling processors 163
7.5.5 Synchronization between cantrolling processors without using

sensors 164
7.5.6 Constraint violations between CtrlTraverse and CtriTruck 166
7.5.7 Constraint violations in the CtriTruckExp model 166

XVI

7.6 The retry strategy in a multi-process environment 169
7.6.1 Exceptions in a group with a master and slaves 169
7.6.2 The BroadCaster processor 170
7. 6. 3 The definition of constraint monitors for the retry strategy 171
7.6.4 An illustration of the retry strategy used in SlaveForkLifter 172
7.6.5 An illustration of the retry strategy used in CtrlTruck 174

Chapter 8
Conclusions 177
8.1 Evaluation 177
8.2 Recommendations for future research 180

References 183

Appendix A
An introduction to Smalltalk-80 191
• Classes and Instances 191
• Messages and Methods 192
• Inheritance 193
• Variables 193
• Blocks 194
• Control Structures 195
• Some final syntactic issues 196

Appendix B
The semantics of the Smalltalk methods used in the program
examples 197
B. I Methods from the Smalltalk system 197
B.2 Methods for the modeling with Process Calculus 198
B.3 Methods for exception handling in Process Calculus 200

Index 205

Curriculum Vitae 209

Chapter 1
Introduction

1.1 Background

An important aspect in the design of industrial control systems is the handling
of errors. The amount of code required for error recovery is usually many
times greater than the amount needed to control the system under error-free
circumstances. In [Gini, 1985] it is observed that the amount of code for error
recovery in a robotic environment often amounts to 80% of the total amount
of code. This enormous amount of code for error recovery is specific to
industrial control systems. Controlled physical systems suffer from
deterioration due to wear and ageing; they also exhibit a stochastic behaviour
in certain respects. Components, for instance, have tolerances and robots
suffer from imprecise positioning. Such characteristics will lead to errors.

The terminology in regard to control systems, controlling systems and
controlled systems is taken from [IEC 50, 1975]. According to this standard,
a control system may be divided into two interdependent parts: the controlled
system, which comprises the operative equipment executing the physical
process; and the controlling system, which interacts with the supervisor, the
process to be controlled and possibly other controlling systems in the control
system's environment. The controlling system receives feedback information
from the controlled system, and controls this system by means of output
commands.

An important concept which facilitates the handling of errors in a structured
way is the concept of exception. Most research concerning exception handling
has focused on the use of exceptions in sequential systems. This is reflected in
the definition of programming languages that offer advanced exception
handling mechanisms. These mechanisms are usually restricted to exceptions
within a sequential process.
Because of the inherent parallelism of controlled systems and their associated
controlling systems, an exception handling mechanism is needed for the
handling of exceptions in a multi-process environment.

2 Chapter 1

1.2 Scope of the thesis

There is much confusion in the literature about the meaning of exceptions and
the relationship of exceptions and errors. Many definitions are imprecise or
incorrect, or contain undesirable subjective elements. In Chapter 3 and 4, the
most important terms relating to errors and exceptions are accurately defined.
The important characteristics of the most frequently used exception handling
mechanisms in sequential processes are evaluated. We concentrate on forward
error recovery; backward error recovery and redundancy techniques that aim
to provide fault tolerance in the presence of incorrect components in a
controlling system are not covered. Apart from the new. definitions and the
evaluation of exception handling mechanisms, Chapters 3 and 4 mainly give a
general treatment of the state of the art concepts regarding error and exception
handling.

The exception handling mechanisms for sequential processes can also be used
in control systems. Their usefulness, however, is restricted to exceptions
related to a single process. A different or additional mechanism is needed in a
multi-process environment. The development of such a mechanism is the
objective of this thesis. The new mechanism is described in Chapter 6.
The most important aspect in the development of an exception handling
mechanism is a clear definition of the desired functionality. In order to be able
to describe the essence of the desired functionality, 'constraint of an operation'
and 'constraint violation' are introduced as new concepts in Chapter 5. The ·
desired characteristics of the new mechanism are defined using these
concepts. Some important existing and proposed mechanisms are evaluated
against this framework.

The only systems considered in this thesis are systems that can be modeled as
discrete event systems, such as robotic systems, manipulators, transporting
systems, etc. Continuous systems, such as chemical reactions and the
continuous flows of liquids, are not considered. Nevertheless, most of the
theory developed in this thesis is independent of the kind of controlled system.

The new mechanism is independent of a particular programming language.
The functionality of the mechanism therefore deals with the common
requirements of languages for the control of industrial systems.
In this thesis, parallel controlling processes are considered to exist throughout
the life of an executing control program. Some languages allow parallel
constructs such that father processes create concurrently executing children

Introduction 3

and wait for their possibly exceptional - termination. They require the same
newly-developed mechanism if they are used for the control of systems. The
additional features that are necessary to deal with the specific problems
introduced by children terminating with an exception have been disregarded.
Exceptions occurring during the execution of an interaction, such as during a
rendezvous, are also language specific and are therefore also not covered.

Process Calculus [Rooda, 1991], which is described in Chapter 2, has been
complemented with the new mechanism. Process Calculus is a powerful
language for the specification, simulation and control of industrial systems.

Finally in Chapter 7, the mechanism developed is illustrated with reference to
a case.

Chapter 2
Modeling control systems using Process
Calculus

The concepts, theories and mechanisms developed in this thesis are
independent of a specific programming language. Only the implementation of
the developed mechanism is realized in Process Calculus. Many examples are
used throughout this thesis in order to illustrate the different concepts,
theories and mechanisms. These examples are mainly implemented in Process
Calculus.

Process Calculus is treated in [Rooda, 1991a and 1991b]. More information
can be found in [Rooda, 1981; Overwater, 1989; Wortmann, 1991] where the
respective terms SOLE, Process Interaction Approach and ProcessTalk are
used instead of Process Calculus.

In this chapter, Process Calculus is treated in such a way that the examples
using Process Calculus can be understood. It is also shown how Process
Calculus can be used to specify controlling systems and test them by means of
simulation, and how controlling systems are interfaced with the controlled
system. Finally, a transport system is considered, together with the
specification of its controlling system without error handling. The transport
system will be used as the basis of many subsequent examples.

2.1 Process Calculus

2.1.1 Processors and interactions

Using Process Calculus, an industrial system is specified or modeled as a
collection of processors and interaction paths. Interaction paths are connected
to processors by means of ports on the processor. A processor can have send
ports and receive ports. Interaction paths establish a connection between a
send port on a processor and a receive port on another processor. The
interaction path is used to transfer an object from one processor to another

6 Chapter 2

processor. An object leaves a processor through a send port and enters
through a receive port. When an object is actually being transferred from one
processor to another processor, an interaction is said to take place. Processors
do not refer to surrounding processors; they only interact via their ports.

The main interaction mechanism used is the synchronous interaction
mechanism. This mechanism stipulates that an interaction can take place
between two processors if they are both prepared to interact: i.e. one of them
must be executing a send action to a send port and the other processor must
be executing a receive action from a receive port. Naturally, there must exist
an interaction path between the two ports.

More than one interaction path may be connected to a single port. In this case,
the interaction can take place between the single port and any one of the other
ports that are connected to it by means of interaction paths. If a processor
executes a send or receive action to a port, and no other processor connected
to that port is executing a corresponding receive or send action, then the
processor is blocked until the send or receive action can take place.

There are two kinds of processors: leaf processors and expanded processors.
The model of a leaf processor is a process description. Processes are only
associated with leaf processors. Only leaf processors can execute send and
receive actions.
The model of an expanded processor is a collection of processors - known as ·
the child processors of the expanded processor and interactions. The
expanded processor is known as the parent of its child processors. The ports
of an expanded processor are connected through interaction paths with the
ports of its child processors. Expanded processors do not execute a process,
but merely act as an abstraction of a collection of processors and interactions.

2.1.2 Graphical representation of models

Processors are represented graphically by a circle. The name of the processor
is presented within the circle. An interaction path is represented by an arrow,
starting at a send port and ending at a receive port. The ports are situated on
the edge of the circle. The name of the port to which an arrow is connected
can be displayed near the end of the arrow, where it connects to the circle. A
dotted line may be used to connect the name of the port to the port itself, at
the end ofthe arrow (see Figure 2.1.1).

Modeling control systems using Process Calculus 7

ManufacturingCeiiA model

ilifterlsUp iPickerHasProduct

ilifterlsUp iPickerHasProduct

olifterUp

····.olifterUp

Figure 2.1.1 Model of a manufacturing cell without expanded processors.

A model of an expanded processor is graphically depicted by means of a
rectangle with a label bearing the name of the processor. The model of an
expanded processor contains further processors and interactions. This model
of an expanded processor can be referred to as its expansion. The ports of the
expanded processor are depicted graphically in the expansion by their port
names. If more than one arrow is connected to a port name in the expansion of
a processor, the port name can be copied to different locations in the
expansion: and other arrows can be connected to the copied port names in
order to achieve a clearer layout.

Figures 2.1.1 and 2.1.2 show examples of two functionally equivalent models
of a manufacturing cell. The only difference is the hierarchical ordering of the
processors. The manufacturing cell consists of a controller and two physical
machines: a lifting machine and a picking machine. In this model of the
manufacturing cell, the processor for the controller is connected with the
processors for the controlled machines by means of interaction paths. The
lifting machine has actuator oLifterUp and sensor iLifterlsUp, while the picking
machine has actuator oPickerPickProduct and sensor iPickerHasProduct. The
actuators and sensors are modeled by ports with corresponding names.
The first model uses no expanded processors. In the second model, the
expanded processor Machines is added. The processors Controller,
LiftingMachine and PickingMachine in Figure 2.1.1 have the same model as the
corresponding processors in Figure 2.1.2.

8 Chapter 2

ManufacturingCeiiB model

oliflerUp ..

oliflerUp·

Machines model

oLifterUp

\ ;un '''"'

oPickerPickProduct

Figure 2.1.2 Model of a manufacturing cell with an expanded processor.

Modeling control systems using Process Calculus 9

2.1.3 The use of classes for the specification of processor models

The model of an expanded processor is specified graphically. which has been
shown in the previous section.

The model of a leaf processor is a process description. The language used for
these process descriptions is the task language. which is based on the object­
oriented programming language Smalltalk-80. For a more detailed description
of Smalltalk, see for example [Goldberg and Robson, 1989]. An introduction
to Small talk is given in Appendix A. The most important elements of the task
language are given in Appendix B.

Ports are referred to by name in process descriptions. Names in Smalltalk are
represented by strings (see Appendix A), such as 'oUfterUp'. An example of
the repres(mtation of a send action by the processor Controller (from Figure
2.1.1) which sends the object true to the port olifterUp is self send: true to:
'olifterUp'.

Some classes ofthe Smalltalk-80 system cannot be used in the task language,
and new classes for the creation of Process Calculus models have been added.
The most important class which has been added is the class Bubble. This
class includes, amongst others, methods used to send objects to, and to receive
objects from, ports. These methods are used by leaf processors. The class
Bubble also includes methods which are used for the specification of the
models of expanded processors.

Bubble is an abstract class, which means that instances of Bubble are
normally not created. Instead, additional subclasses of Bubble are created for
all processors with a different functionality. Subclasses of Bubble can also be
abstract classes. An example of a class hierarchy is shown below:

Bubble
Buffer

Fifo
Stack

WaferProcessingModule
Cleaner
Furnace

10 Chapter 2

The classes Bubble, Buffer and WaferProcessingModule are abstract classes.
In these classes, the methods which are common to their subclasses are
specified. So in the class Bubble, which is at the root of all processor classes,
the methods are specified which are common to all processor classes. The
classes Fifo, Stack, Cleaner and Furnace are not direct subclasses from
Bubble, but they do inherit from Bubble.

The model of a processor is determined by the class of the processor. A
processor is an instance of a class which inherits from the class Bubble. A
class can have several instances. Processors which are instance of the same
class have the same model. Such processors can be used in different models,
or several times in the same model. They have the same functionality, but they
need not have the same internal state. Buffer processors of the same class, for
instance, can be used at various places in the same model: they will all have
the same functionality, but they can each cont;tin other buffered elements,
depending on their environment.

2.1.4 Compound ports and interaction paths

An expanded processor serves as an abstraction of the detailed description of
its model, which consists of other processors and interactions. This is an
important concept which helps to make the complexity of systems manageable
by showing only the relevant amount· of detail at each level of abstraction.

Process Calculus does not provide a similar mechanism for ports and
interaction paths. Ports and interaction paths cannot be 'expanded'.
In many systems, especially in control systems, it is essential that irrelevant
detail in the presentation of ports and interaction paths can be hidden by using
abstraction. Consider, for example, the interactions between the controlling
processor ControllerC and the model of the controlled machines Machin esC in
Figure 2.1.3. In the model of ManufacturingCeiiC, we are not interested in the
exact representation of all the sensors and actuators, since there could be
hundreds ofthem.

In order to make it possible to refer to a collection of ports or interaction
paths with a single entity, we have introduced a new kind of port and
interaction path: a compound port and a compound interaction path. The 'old'
ports and interaction paths will be referred to as simple ports and simple
interaction paths. When the type of a port or interaction path is not explicitly
specified as simple or compound it can be either of the two.

Modeling control systems using Process Calculus ll

Ports can be hierarchically ordered by means of compound ports. A
compound port is a collection of other simple or compound ports. Objects can
only be sent to and received from simple ports.
Interaction paths can be hierarchically ordered by means of compound
interaction paths. A compound interaction path is a collection of other
compound or simple interaction paths.

Compound ports on different processors can only be interconnected by means
of compound interaction paths. Simple ports on different processors can only
be connected with each other by means of simple interaction paths.
Simple interaction paths are always unidirectional. A compound interaction
path can bt~ unidirectional, bidirectional or nondirectional; the direction
depends on the interaction paths which it contains. A compound interaction
path is nondirectional if it either contains no interaction paths or only
nondirectional interaction paths; it is unidirectional if it contains only
unidirectional interaction paths with the same direction, and possibly some
additional nondirectional interaction paths; and it is bidirectional if it contains
bidirectional interaction paths or unidirectional interaction paths in opposite
directions.

Compound ports are represented graphically by their names with hyphens as
suffixes. Compound interaction paths are represented by arrows which can be
unidirectional, bidirectional or nondirectional.

Figure 2.1.3 shows a model which is functionally equivalent with the models
shown in .Figures 2.1.1 and 2.1.2. The only difference is that Figure 2.1.3
uses compound ports and compound interaction paths. The sensors are
modeled by the compound port i-. This port contains the compound ports
i-lifter- and i-picker-. The port i-lifter- contains the simple port i-lifter-isUp and
the port i-picker- contains the simple port i-picker-hasProduct. The actuators
are likewise modeled by the compound porto-.

In the expansion of MachinesC, the names of the ports i- and o- are shown in
the right-hand part of the model. No interaction paths are connected to these
compound ports. The ports i- and o- contain other compound ports. These can
also be used in the model to connect interaction paths. In the example, the
compound ports i-picker- and o-picker- are connected by means of compound
interaction paths to the processor PickingMachineC. In this way, all the simple
ports contained in i-picker- (in this case only one, viz. i-picker-hasProduct) and
o-picker- are connected by means of simple interaction paths to

12

ManufacturingCeiiC model

MachinesC model

o-lift r-up

i-lifter -isU p

0-

i-

Chapter 2

Figure 2.1.3 Model of a manufacturing cell with an expanded processor
and compound ports and interaction paths.

PickingMachineC. The processor UftingMachineC is directly connected by
means of simple interaction paths to the ports o-lifter-up and i-lifter-isUp. These
different possibilities show, by way of example, how compound and simple
ports can be used in a modeL

Modeling control systems using Process Calculus 13

Send and receive actions can only take place on simple ports such as in, out,
o~lifter~up or i~lifter~isUp. An example of a representation of a send action by
the processor ControllerC (from Figure 2.1.3) which sends the object true to
the port o~lifter-up is self send: true to: 'o-lifter-up'.

2.2 The realization of controlling systems

2.2.1 Usiutg simulation to test controlling systems

Controlling systems can be tested in two ways: they can be connected to the
actual controlled system or they can be tested by means of simulation using a
Process Calculus model of the controlled system.
Testing by means of simulation can have significant advantages in the
following situations:
• Testing using the actual controlled system is hazardous because of the

possibility of damage to the controlled system due to errors in the
software of the controlling system.

• The actual controlled system is already operative and has to be taken out
of production to test the new controlling system.

• The actual controlled system is not available. It may not yet have been
built, or it may be at a remote location.

• The actual controlled system has a long cycle time. In this case, using the
actual system for testing will take a long time. The time to simulate a
control system is unrelated to the real time in the actual system, and can
therefore be done more efficiently.

The main disadvantage of simulation-based testing is the time and effort
needed to model the controlled system. The advantage gained by simulation­
based testing of the controlling system must outweigh the effort needed to
model the controlled system. In order to successfully use a model of the
system, it is necessary that the model is sufficiently accurate.

2.2.2 The transition from simulation to the control of the actual
system

When the controlling system has been tested using a simulation model of the
controlled system, the transition from simulation to actual control must be
made. This can be done relatively simple using Process Calculus. Two models
can be used: one for simulation-based testing and one for the control of the

14 Chapter 2

actual controlled system. In both of these models the same controlling
processor is used.

This approach is demonstrated in Figure 2.2.1. The model SimulatedSystem
contains the processors Controller, which is the controlling processor, and the
processor Machines which is a model of the controlled system. After the
SimulatedSystem model has been tested using simulation, the ActuaiControl
model can be used for the control of the actual controlled system, which
system is indicated by a dotted rectangle named Machines. The two processors
Controller have the same model: they are both instance of the same class
Controller. Therefore their functionality is identical. In the model of
ActuaiControl, the processor Driver replaces the processor Machines from the
SimulatedSystem model. The Driver converts the objects it receives from the
Controller into controlling signals to the corresponding actuators on the actual
controlled machines. The Driver likewise converts the signals from the sensors
to objects which are sent to the Controller.

SimulatedSystem model ActuaiControl model

······~·····

Machines

Figure 2.2.1 Models for simulation and actual control.

Modeling control systems using Process Calculus

2.2.3 TJIJ.e interaction mechanism between the controller and the
driver

15

The interaction mechanism between the control processor and the driver will
not always be the same: it is partly determined by the type of physical
interface, and types of actuator and sensor used. A motor with an accurate
positioning unit which is controlled through an RS232 interface is interfaced
differently from binary actuators and sensors.

The interfacing of most actuators can be done simply by sending an object to
a specific port on the driver processor. The port name determines the actuator.
The object received determines the desired new state of the actuator. For a
binary actuator, the objects to be sent could be true and false, meaning that the
actuator concerned should be turned on or off respectively.

The sensors can be periodically polled by the driver. The polling period is
contained in the driver. The sensors that need to be polled are determined by
the send ports present on the driver. Every send port is associated with a
sensor. After every poll, the driver should send the new values of the sensors
whose values have changed to the corresponding ports on the driver
processor.

The controlling processors should be able to read the values of all sensors at
any time, using a non-blocking receive operation. This means that the driver
should at all times be ready to send the values of all sensors to all sensor
ports. The easiest way to do this is to use the method Bubble »
send:continuousTo: in the driver (see Appendix 8.2). In a controlling
processor, a receive action from a port connected with a sensor port on the
driver would then yield the value of the sensor. If a blocking receive action is
desired, the required object to be received can be specified in the receive
action. For example, the way to wait until the sensor connected to the port
productPresent becomes active, would be to use the expression:

self receive: true from: 'productPresent'.

This receive action will remain blocked until the true object can be received
from the port productPresent. The precise semantics of the method Bubble »
receive:from is explained in appendix B2.

16 Chapter 2

2.3 An example: The control of an error-free transport
system

2.3.1 Description of the system

The concepts treated in the previous sections will now be illustrated with an
example. The example is based on ail actual system for the movement of tyres
around a bicycle tyre factory. The actual system, however, has been
simplified and changed to yield a system which is easier to understand.
Tyres are made of rubber. A part of the production process is the
vulcanization of the newly-made rubber tyres in a furnace. Tyres are
transported on trays, which each carry seven tyres. The furnace operates in
batch mode, so the trays are stacked up approximately twenty high.

A schematic diagram of the system is shown in Figure 2.3.1. Sensors are
represented by the symbol: '>', '<', or 'A'. In the control program, the sensors
will be represented by ports with the name of the sensor, prefixed by the
machine part that the sensor belongs to, prefixed by an 'i' indicating input. The
sensor opened in the figure, for example, is represented by the port
i-holder -opened.

The trays are transported on multiple-section conveyor belts. When the trays
arrive at the traversing-shuttle they are stacked. The traversing-shuttle will be
referred to as 'traverse' for ease of reference. Every time a new stack of, say,
twenty trays is ready, the traverse moves the stack onto a fork-lift truck. The
fork-lift truck then moves the stack to the furnace and deposits it there.
The sections are meant to buffer the incoming trays when the stack is
transported to the fork-lift truck. In reality, there are more sections than just
the two drawn in the figure. Each section is equipped with a sensor to stop the
section when the tray cannot be moved to the next section.

The traverse is equipped with four holders which hold the stack. Two of these
are shown in Figure 2.3 .I. The pusher consists of a plate which can move in a
vertical direction to push a tray against the stack. The plate comes up between
the two small side-belts of the last section. The pusher is driven by two
cylinders. One of them has a large stroke to push the tray up against the stack.
The stack holders will then be opened. Consequently the pusher cylinder with
the small stroke will push the complete stack up, so that the stack holders can
close under the new tray at the bottom of the stack. After this the pusher will

Modeling control systems using Process Calculus

1\ ...
"0 .1}
! li !..c
0

I
V JGI.jSnd

17

18 Chapter 2

go down. The three positions of the pusher plate are detected by the sensors
pusher-isDown, pusher-isMiddle and pusher-isUp.

When the pusher passes the sensor pusher-isMiddle while going down, and the
stack bas reached its maximum size, the traverse will transport the stack to
the fork-lift truck. The traverse is movable, because in the actual system there
is also a sampling station. This station can remove a single tray from the
stack at approximately midway between the sensors traverse-atPusher and
traverse-atFork. This station is omitted in the simplified diagram of Figure
2.3.1.

When the traverse reaches the fork-lift truck, the fork will go up, lifting the
trays above the traverse. After that, the truck will go bàckwards in the
direction of the furnace. When it reaches the position indicated by the sensor
truck-canTurnToFurnace, the fork will start rotating 180 degrees to the
furnace, while at the same time going down to the middle position. The truck
will stop when it bas reached the furnace, where it will deposit the stack.
Finally, the truck will go back to the traverse.

The movements of the traverse, fork lifter, fork turner and the truc~ are all
implemented using bidirectional motors. Each motor is controlled using two
binary actuators: one for the direction and one for the power (on/offfunction).
Sensors are installed at the extremes of all trajectories.

The part of the controlling system to be analized is restricted to the part which
concerns the transfer of the stack from the traverse to the fork-lift truck and
the transportation of the stack to the furnace.

The model is shown in Figure 2.3.2a. The TransporterDriver interfaces the
CtriTransporter with the sensors and actuators on the physical machine. The
Ctrllnterface processor interfaces with the controlling processors ' of the
previous machines. The control processors are shown in Figures 2.3.2b and
2.3.2c. In order to keep the control simpte, the machines wiJl be initially
treated as ideal: errors will thus not be taken into account. At the start of the
production cycle, the machine is supposed to be in its reset position as shown
in Figure 2.3.1. Chapter 7 will present a control system which takes full
account of error handling.

Modeling control systems using Process Calculus 19

TransporterControiSystemldeal model

Figure 2.3.2a Model of the controlling system of an error-free transport er.

20 Chapter 2

CtrtTransporter model

i-sections-tray2 i-traverse- i-forkTumer-

in

mmi-

a-traverse-
o-forkTurner-

Figure 2.3.2b Model of the Ctr/Transporter processor.

CtriTruckExp model

i-truck-

mmi-

i-torklifter- 1-forkTumer-

mml-

o-forklifter- o-truck- o-forkTurner-

Figure 2.3.2c Model ofthe Ctr/TruckExp processor.

Modeling control systems using Process Calculus 21

2.3.2 Conventions used in the control model

Synchronization between controlling processors without using sensors

As is apparent from the figures, each machine part (such as the traverse, the
bolders and the fork lifter) is directly controlled by only one processor. This is
done in order to keep the control system clearly structured. Furthermore, this
approach makes it easier to reset a system, a topic which will be retumed to in
Chapter 7.

The controlling system is interfaced with the control system through actuators
and sensors. The machine is made to change state by driving the actuators.
The controlling system can then wait for the desired state change of the
machine by waiting for the desired state change ofthe sensors.

In Process Calculus, the parallelism of control systems is modeled by separate
processors. These controlling processors can have interactions amongst
themselves, as well as with the actuators and sensors, by means of a driver
processor (see Figure 2.2.1). Many controlling systems can be modeled using
controlling processors that only interact with the sensors and actuators and
not with each other. In Process Calculus models, controlling processors
usually interact both with the controlled machine and amongst themselves.
The reason for this is that each machine part is controlled by a single
processor. It is possible that a processor controts several sequentially­
operating machine parts, but a machine part is normally oot controlJed by
more than one processor. lf a processor has to wait for a machine part
controlled by another processor to reach a certain state, this synchronization
is achieved by means of an interaction with the processor controlling the
machine part in question, rather than by synchronization with the machine
part's sensors. This is done in order to achieve a safer system in the presence
of errors. This will bedealt with in greater detailinSection 7.5.5. ·

The conneetion of compound ports with compound interaction paths

Two compound ports are connected by means of a compound interaction path.
The convention adopted in this case is that, unless apparent otherwise, both
compound ports correspond and each of the ports of one compound port is
connected through an interaction path with a corresponding port of the other
compound port. Simpte ports correspond when they have the same name.
Compound ports correspond when they consist of the same number of ports

22 Chopter 2

and for each port there is a corresponding port in the other compound port.
An exception to this rule is that a send port out can correspond with a receive
port in. Consider Figure 2.3.2b, for example. In this figure, there is an
interaction path connecting the ports sync2- on CtriTraverse and sync• on
CtriTruckExp. The port sync2- has, amongst other ports, a send port
traverseAtFork. This port is connected by means of an interaction path with a
receive port traverseAtFork in the port sync- on CtriTruckExp. When these ports
are used in send or receive actions they have to be referred to using their full
name as, for example, in the message: self sendTo: 'sync2-traverseAtFork'.

Ihe grouping of methods in protocols

The methods of a processor class are grouped into protocols. The protocols
used in this example are the protocols 'process control' and 'maçhine io'.

Protocols are only used for grouping related methods. In this way methods
can be more easily located during the development of programs. Protocols are
notpart ofthe Smalltalk language.
The methods in which synchronization is only achieved by interactions with
the machine's sensors and actuators are grouped under the protocol .'machine

io'. The protocol 'process control' contains methods that preferably only
contain interactions with other control processors and no interactions with
sensors and actuators. This separation introduces a fonn of structuring into
the code. In cases where it is desirabie to mix interactions with the controlled

I

machine and other controlling processors in a single method, these methods
are also grouped under the protocol 'process control'.

Reference to methods

A method methadName defined in a class ClassName can be referred to as
follows: ClassName » methodName. Methods that beloog to t:Qe same
protocol of a eertaio class can also be listed with a heading in italics, defining
the class and the protocol, foliowed by a list of metbod definitio11S. Each
method de:finition begins with the name of the method in bold type, foliowed
on the next line by the indented code for the method. Comments in methods
are typed in italics between quotes: "".
For example:

Modeling control systems using Process Calculus 23

---- ClassName protocol: 'protoco/Name' ----

methodName1

"code for first method"

methodName2

"code for second method"

2.3.3 The implementation of the model

The send and receive actions in Ctr1Traverse » stackToTruck (shown below)
are synchronization actions with the processors Ctr1EndSection and Ctr1Truck
to achieve synchronization between the machine parts pusher, traverse and
forkLifter that are controlled by the respective processors Ctr1EndSection,
Ctr1Traverse and CtriTruck. The methods traverseToFork and traverseToPusher
that are used in the metbod CtriTraverse » stackToTruck imptement a direct
control of the traverse by means of the sensors and actuators, and are not
shown bere.

---- CtriTraverse protocol: 'process contra/' --

body
stackSize >= self maxStackSize ifTrue: [self stackToTruck].
self stackTray •add a new tray to the stack"

stackTo Truck
self receive: 'belowMiddle' trom: 'sync1-pusherState'.
self receiveFrom: 'sync2-truckResetAtTraverse'.
self traverseToFork.
self sendTo: 'sync2-traverseAtFork'.
self receiveFrom: 'sync2-forklsUp'.
self traverseT oPusher

The following code is part of the code for the processor Ctr1Truck. This
processor drives the truck directly by means of methods in the protocol
'machine io'. Due to the parallelism, the fork lifter and the fork turner are
controlled by separate processors: SlaveForklifter and SlaveForkTurner. The
coordination of the movements of the truck, fork lifter and fork turner is
determined by the Ctr1Truck processor. The processors SlaveForkTumer and
SlaveForklifter receive their conunands from Ctr1Truck. The command is

24 Chapter 2

translated into an action perfonned by tbe machine part tbat tbey control and
an acknowledgement is sent to CtriTruck when tbe action is finished.

--- ctr/Truck protocol: 'process control' ----

body
self receiveStackFrom Traverse.
self transportStackToFurnace.
self giveStackToFumace.
self goBackT o Traverse

receiveStackFromTraverse
self sendTo: 'sync-truckResetAtTraverse'.
self receiveFrom: 'sync-traverseAtFork'.
self send: #forkUp to: 'forklifter-command'.
self receiveFrom: 'forklifter-ack'.
self sendTo: 'sync-forklsUp'

transportStackToFumace
self to TumPointAtTraverse.
self send: #forkDownToMiddle to: 'forklifter-command'.
self send: #lumToFurnace to: 'forkTurner-command'.
self continueToFumace.
self receiveFrom: 'forklifter-ack'.
self receiveFrom: 'forkTurner-ack'

---·- Ctr/Truck protocol: 'machine io' --------

toTumPointAtTraverse
self putOn: 'o-truck-toFurnace'.
self putOn: 'o-truck-power'.
self receive: true from: 'i-truck-canTumToFumace'

continueToF urnace
self receive: true from: 'i-truck-atFumace'.
self putOff: 'o-truck-power'

In tbe metbod SlaveForklifter » body (shown below), tbe command is
received from tbe CtrlTruck processor. The command is, for instance, tbe
symbol #forkUp. The messageself perform: #forkUp will result in tbe metbod
forkUp being executed by tbe SlaveForklifter processor.

Modeling control systems using Process Calculus

---- SlaveForkUfter protocol: 'process contra/' ----

body
I command I
command := selfreceiveFrom: 'master-command'.
self perform: command.
self sendTo: 'master-ack'

----- SlaveForkUfter protocol: 'machine io' ----

forkUp
self putOn: 'o-forkUfter-up'.
self putOn: 'o-forkUfter-power'.
self receive: true from: 'i-forkUfter-isUp'.
self putOff: 'o-forkLifter-power'

25

26 Chapter 2

Chapter 3
Errors

An ideal manufacturing system will generate no errors: machines never
malfunction; operators do not come into dangerous zones near the machines;
and once a machine bas started producing an order, it will continue without
interruption until the order is finished. Unfortunately, real world systems are
not ideal: errors in manufacturing processes are unavoidable. In order to
eosure the safety of the operators and machines and to enable efficient
continuation of the production process after an error, errors will have to he
handled. In fact, error handling bas a major effect on the safety, reliability and
efficiency of a manufacturing system.

This chapter starts with a definition of errors and related terms. Thereafter,
successive sections will deal with other aspects associated with errors. This
will he done in an abstract way, independent of specific implementations.

3.1 Definition of terms

3.1.1 Systems and states

In order to be able to define precisely terms like error and failure, 1t ts
necessary to start with the definition of a system. Many different definitions of
a system can be found in the literature. The definition given here is based on
the definitions of [Melliar-Smith and Randell, 1977] and [Lee and Anderson,
1990]. It is useful for an analysis of system correctness, errors, and faults.
Since errors and faults are only relevant when the desired behaviour of a
system is known, the definition is restricted to systems which have been
designed to provide a specified service. The definition is as follows:

A system has been designed to provide a specified service to its environment
and is either atomie or consists of a set of cooperating components.
Components themselves are systems, so the definition is recursive.

28 Chapter 3

A system is considered to be atomie when its intemal structure cannot be
discemed or is not of interest. Therefore, a system may be considered as
atomie when only its specification is of interest; how its functiönality is
implemented is not relevant.

The behaviour of a system is determined by its design and its state.

The design of a system consists ofthe selection ofthe components (ifpresent)
and the interrelationships between the components themselves and between the
components and the environment. The design of the system can be regarcled as
the algorithm of the system. The initial internat state of the system, that is the
state of the system prior to any inputs, is also considered to be part of the
design.

System designs are not restricted to software systems. The design of a
machine without a cantrolling system, for example, is the mechanica]
construction of the machine.

There are two kinds of state: external and internat states. Extemal states are
the states of the system which are relevant for the system's environment.
Internat states are relevant for the internat operation of the system. The
relationship between internatand externa] statesis as fo11ows:

The intemaJ state of a system is defined as the aggregation of the external
states of its components. The extemal state of a system is an abstraction of
its internat state. '

It fo11ows directly from the definitions that the extemal state of a system is
also an abstraction of the aggregation of external states of its components.

When a system is active, it wil1 change from one internat state to another. As
a result its extemal state will change, but it may take several transitions from
one internat state to another in order to effect one external state transition.
The extemal states are defined by an abstraction function which maps the
internat states onto extemal states. The mapping is done in such a way that
one or more internat states are mapped onto the same extemal state.
External states are important if we are interested in what a system does, and
intemal states are important if we are interested in how a system does what it
does. The relationship between the internat states of a system and between the
interna1 and extemal states is determined by the design.

Errors 29

The specification of a system concerns only the external behaviour of the
system. As Randeli et al. (1978) put it: 'The specification only defines the
extemal states of the system, the operations that can be applied to the system,
the results of these operations, and the transitions between extemal states
caused by these operations, the internat states being inaccessible from outside
the system'.

3.1.2 Specifications, goals, preconditions and failures

The specification of a system is the agreed description of the service that the
system is designed to provide to its environment. It detennines the required
behaviour of the system in tenns of a relationship between the inputs or input
sequences to the system and the associated responses. lt can be viewed as a
contract between the designer and the user of the system.
A system will be designed for a specific purpose. This purpose is specified by
the goal of the system. The goal is specified as a relationship between the
inputs to the system and the desired resulting responses of the system. The
goal is also referred to as the primary goal of the system.

Usually the specification will place eertaio restrictions on the system's inputs
and on the behaviour of the system's environment, so that the system can
realize its goal when those conditions are met. These restrictions are specified
by the precondition of the system. The set of inputs or input sequences with
the states of the system's environment that satisfy the precondition is tenned
the standard domain.

The precondition refers to the external state of the system if the system
interacts withother systems. In such a case, the precondition specifies for all
interactions the kind of behaviour that the system requires from the other
systems, so that the system will be able to achieve its goal. The precondition
requires more than just correct behaviour of the systems with which the
system interacts. Consider, for example, a system which controts a cylinder.
The precondition of the controlling system will specify that the air pressure
supplied to the cylinder is sufficiently high. This requires more than just
correct operation of the compressor, because correct operation of the
compressor does not guarantee the delivery of air. The precondition of the
compressor will require the availability of rnains voltage. If there is no rnains
voltage, then the compressor will not be able to supply air. This is still correct

30 Chapter 3

behaviour of the compressor, since the specification of the compressor does
not require it to operate without rnains voltage.

Note that the precondition is not necessarily the weakest precondition. This
point is explained at the end of this section.

A system often also has a secondary goal which should be achieved in the
event ofthe precondition not being met. The (primary) goal of a manipulator,
for example, might be to piek up a product and deposit it somewhere else. In
the case of a power failure, the secondary goal could specify that the product
must not be dropped and that the manipulator remaio in position.

A system is said to operate in its standard domain if the inputs that are
applied to the system and the state of the system's environment beloog to the
system's standard domain.

The specification of a system thus consists of a goal, together with the
associated standard domain, possibly complemented by a specification with a
secondary goal for operation outside the standard dom.aifi. This
complementary specification need not he defined for the complete complement
of the standard domain, but can he restricted to a subset. The complete
domain for which the specification is defined is the defined domaio of the
system.

In this thesis, we will only consider specifications that specify a deterministic
effect for the inputs. Therefore, reliability specifications, such as the
specification that a testing unit will correctly identify faulty items in· 99% of
the cases tested, are not considered. With such a specification it is impossible
to determine whether the unit has functioned according to its specification if,
for example, only one test is considered in which the unit mistakenly
determines that a faulty item is satisfactory.

The specification of a system permits a comparison to he made between the
actual hehaviour and the required hehaviour of the system, and can thus he
used to define system failure. The following definition is based on the one
from [Lee and Anderson, 1990].

A failure of a system occurs when the hehaviour of the system deviates for
the first time from that required by its specification.

Errors 31

Failure is defined only for inputs from the defined domain. If inputs from
outside the defined domain are presented to a system, this is an erroneous
action by the user or from the environment of the system, since the system is
not being operated within its specification. Failure of the system itself is not
defined for such cases: its response is undefined. The undefined system
response could, however, easily result in a failure of the system which
presented the erroneous inputs to the original system.

In [Lee and Anderson, 1990] it is required that the behaviour of a system is
specified for all inputs. For many systems, however, this requirement is too
strong. It contradiets the 'programming by contract' principle [Meyer, 1988],
which implies a clear agreement about the responsibilities of the user and the
implementer of an operation. If, for example, the precondition of an operation
is always explicitly tested by the invoker of the operation, it is not necessary
to de:fine the operation's behaviour for invocations outside of its standard
domain. Duplication of the precondition test in the operation itself would, in
this case, serve no purpose and would, in fact, lead to a more· complex and
therefore more error-prone program.

It may, however, he interesting to abserve whether or not the goal can still be
satisfied outside the standard domain. This depends on how the precondition
is defined. If the precondition is the weakest precondition for the specified
goal, the goal cannot be satisfied for any inputs outside the standard domain.
This is a consequence of the definition of the weakest precondition, which
determines all inputs for which the goal can be satisfied. If the precondition is
stronger than the weakest precondition, then the goal could he satisfied for
those inputs outside the standard domain that satisfy the weakest
precondition. Such a situation can occur when the weakest preconditionis not
exactly known. An example of this is the specification of a temperature range
over which a component is guaranteed to achieve its goal. In this case, the
goal may also he achievable for temperatures which are slightly outside the
given range.

3.1.3 Correctness and errors

A system is correct if its behaviour confarms to its specification for all
inputs that belang to its defined domain. Therefore, correctness of a system is
only defined for the inputs betonging to its defined domain: it means that for
those inputs it will never fail.

32 Chopter 3

Note that this definition of correctness makes no assumption whatever about
the correctness of the system's design or its components. The correctness of
the system can be determined by the user of the system, using only the
system's specification. The correctness of the system, its design and its
components are linked in the following definition.

The design of a system is correct if, under the assumption that the system's
components are correct, the system is correct when started from its initial
state.

This means that an incorrect design can be corrected in three ways. First, the
specification of the system can be changed. This is usually undesirable, unless
the specification does not correctly express the expectations and idea;s of both
user and designer. In that case, there is an error in the specification. Second,
the design can be changed by exchanging one or more of the system's
components for a component with a more appropriate specification. Third, the
design can be changed by correcting the interrelationships.
Now that the correctness of a system and design are defined, the definition of
correct and erroneous internat states, and internal state errors can be given.

The internat state of a system is correct if it cannot cause system failure.
More specifically, there may not exist a sequence of inputs from the system's
defined domaio that will lead to faiture of the system, assuming that the
system's components and design are correct.

The internal state of a system is erroneous if it can cause syste~ failure.
More specifically, there must exist a sequence of inputs from the system's
defined domaio that will lead to faiture of the system, assuming that the
system's components and design are correct.

An error in the internal state of a system (or an internal state error) is a part
of an erroneous internal state which needs to be different in order to make the
erroneous intemal state correct.

The above given definition of intemal state errors is more restricted than the
definitions usually found in the literature such as in [Laprie, 1992] and in
[Lee and Anderson, 1990]. In [Laprie, 1992] an error is defined às being
/iab/e to lead to a subsequent faiture even though, due to (for example)
redundancy the error can in practice never lead to system failure. In the view

Errors 33

of Lee and Anderson (1990), an internat state is erroneous if it can lead to
system faiture or if corrective action is needed to prevent system failure, even
though faiture can no longer occur due to the corrective action. They consider
corrective action to be an essentially subjeelive element in the definition of
internal state errors. AJthough these definitions seem to reflect the way that
the term error is used by many people in the field, they cannot be used
objectively in order to determine whether the internal state of a given system
with a given specification is erroneous. This is due to the use of the subjective
elementsof being liab/e, redundancy and correcfive action in the definitions.
Hence the restricted definition of internat state errors is used in this thesis.

Two examples are given to illustrate the inadequacy of the unrestricted
definitions of (internal state) errors.

The fust example concerns an automatic insertion system which places
components on a printed circuit board. Soppose that the components to be
placed have pre-formed leads. If the leads are not pre-formed within certain
tolerances, they cannot be directly inserted into the holes in the printed circuit
board. Their leads must be correctly formed first. For this purpose, the system
is equipped with a vision system to determine whether the leads are correctly
formed. lf they are not, the component leads are reshaped. Whether or not
incorrectly formed leads are considered to be an internat state error would
depend on the view of corrective action. lf reshaping the leads is considered to
he corrective action, then the incorrect leads would be an error. If, however,
reshaping the leads is considered to be part of the nonnat processing, then
leads tbat need to be resbaped would not be an error.

The second example is the fragment of a Pascal program shown below. lt is
used to get the name of a person. A person is asked to type his name. If the
name is mistyped, for example because it contains a digit, the person is asked
to type his name again.

repeat
name := getName()

until namelsCorrect(name)

If the name is mistyped and the second call to getName is considered to be
either redundant or a corrective action necessary to prevent system failure,
then the mistyped name would be an error. If it were to be considered as part
ofthe normal processing, then the mistyped name would not be an error.

34 Chapter 3

Using the restricted definition of internat state errors, the internat states in
both examples are correct and therefore do not contain errors, because the
internat states cannot lead to system failure.

The faiture of a component of a system need not lead to errors in the system's
internat state. In practice, however, the external state of such a failed
component is often termed erroneous. Erroneous externat states and external
state errors are therefore introduced as new terms.

The external state of a system is erroneous if it deviates from the extemal
state as required by the system's specification.

An error in the external state of a system (or an extemal state error) is a part
of the external state which deviates from the external state as requir~d by the
system's specification.

Therefore, faiture of a component will lead to errors in its external state. The
internat state of a system is a collection of the external states of its
components. Therefore, an error in the extemal state of one of a. system's
components can he an intemal state error in the system itself, depending on
whether or not it can lead to faiture of the system.

An error in the internat state of a system does not necessarily lead to system
failure. Certain internal state errors may go unnoticed for a long time and lead
to failures only when certain input sequences are applied to the system.
Consider, for example, a system with a buffer which buffers components of a
certain type in a tirst-in last-out sequence. If an erroneous component is
supplied to the buffer, foliowed by many correct components,· the incorrect
component may never he retrieved from the buffer at all, in which case the
system will not fail.

In practice, it is not always possible to uniquely define intemal state errors. If
the design of a system is not correct, the assumption that the system's design
is correct will yield a design which is different from the original one. An
incorrect design can often he correctedinmore than one way. These

1
different

correct designs can lead to the determination of different sets of internat state
errors.

Another type of error is a precondition error, which is defined as follows:

Errors 35

A precondition error is that part of the input to a system or part of the state
of the system's environment which does not satisfy the system's precondition.

Precondition errors are not internal state errors, since they do not refer to a
system's intemal state.
The term precondition error is taken from [Srinivas, 1978]. The use of
preconditions is especially associated with Hoare, who introduced pre- and
postconditions in [Hoare, 1969] to specify the meaning and prove the
correctness of programs. Note that a precondition error is nol an error in a
precondition. lt is the input that is erroneous, and not the precondition itself.

The specification of the goal of a system determines the precondition
necessary to enable the goal to be achieved and thus directly affects the
presence of precondition errors in inputs. Consider for example a robot that
assembles two components. lf assembly is not possible because of
inaccuracies in the oomponent's dimensions, the components could be placed
in a separate container. lfthe goal ofthe assembly processis specified to be
the assembly of the components, then inaccurate dimensions would be a
precondition error. If the goal were to be specified as the assembly of the
components when possible and the placement of those components with
inaccurate dimensions in a separate container, then inaccurate dimensions
would not be a precondition error.

The concepts defined so far will be ciarifled using an example of a simple
transport system consisting of a conveyor belt with controller. The belt carries
similar products that are spaeed apart at a certain distance. When a product is
detected near the end of the belt, the belt is stopped for a predefined period of
time and a pneumatic cylinder will extend to push the product off the belt.
The system consists of the following components: controller, cylinder, belt,
component detector and the products.

Soppose the air supply to the cylinder ceases. When the first product is
detected near the end of the belt, the belt will be stopped. The controller will
then drive the cylinder valves in order to make the cylinder push. Since there
is no air pressure, the cylinder will not extend. The absence of pressure is a
precondition error for the cylinder: it makes it impossible for the cylinder to
satisfy its goal. The cylinder does not fail, however, because it is specified not
to operatewhen the air pressure is too low. lfthe system is specified to push a
product o:ff the belt within half a second after the belt has been stopped, the
system will fai/ if the cylinder does not extend on time. The interna I state

36 Chopter 3

error which caused system faiture is the absence of air pressure. The position
of the cylinder shaft, which is retracted instead of extended, will he ao
externa/state error ofthe system.
The controller could detect that the cylinder does oot extend. For this purpose,
the cylinder cao he supplied with a limit detector to indicate when it is fully
extended. lf, after activation of the cylinder valves, the limit detector is oot
activated within a predefined period of time, the controller cao detect this
external state error of the transport system by means of a time-out. It cao then
alert the operator. After restoration of the air supply by the operator, the
controller cao retry activating the cylinder so that the system cao, continue
successfully. If the transport system is considered to he a component in the
encompassing production system which also includes the operator as a
component, then faiture of the transport system need oot lead to internat state
errors in the production system. This is the case when the operator cao
reeover from the external state error of the transport system aod keep the
production system operating within the specifications.

3.1.4 Faolts

There are some related definitions of faults in the literature. In [Lee aod
Anderson, 1990] faults are considered to he errors at a eertaio hierarchical
level. They state that afault in a system is ao error in the internal sm:te of one
of its components - which is termed a component fau/t - or ao error in the
design ofthe system- which is termed a design fault. In [Melliar-Smith et al.,
1976] aod [Randell et al., 1978] faults are defined to he the mechanica/ or
algorithmic cause of an error, whereas errors are only defined in internal
states. In [Laprie, 1989] faults are defined as the adjudged or hypothesized
cause of an error.

A fault in a system cao remaio undetected for a long time. A fault will only
affect the operation of the system when the part of the system containing the
fault is used. When a fault causes ao erroneous internat state or failure, this is
known as the manifesta/ion of the fault.

3.1.5 Robustness

The robustness of a system concerns the correctness of the system aod the
way in which the system responds to inputs that do oot beloog to its standard
domain. A system is robust when it satisfies the following two requirements:

Errors 37

• All inputs that can possibly be offered to the system are in the defined
domain, so that for all possible inputs to the system the system's response
is defined.

• The system is correct.

This means that a robust system bas a defined response, which conforms to
the specifications, for all possible inputs.

Robustness and correctness can be achieved for small and simpte systems like
known mathematical algorithms, which remain unchanged over a long time:
correctness can even be proved. For complex, practical systems the
realization of a robust system is a target which should be aimed at. It is,
however, practically impossible to actually achleve such a target. Even
acmeving correctness of complex systems is extremely difficult: in practice,
all large and complex systems contain some residual errors. Achieving
robustness is even more difficult, because large and complex systems can take
an enormous number of undesirable inputs for which the system's response
must nonetheless be defined.

Current research thus does not only focus on achieving 100% error-free
software. It is accepted that some errors wiJl inevitably remain undetected in
complex systems. However, the employment of redundancy can lead to the
achlevement of fault tolerance, so that higher levels of a system can correct
failures at lower levels, making it possible for the top level of the system to
continue to fitnetion (within reasonable limits). See for example [Bendell and
Mellor, 1986]. Such techniques can help in creating robust systems. They are,
however, not treated in this thesis.

3.2 Some general concepts regarding errors

3.2.1 The causes of precondition errors and internal state errors

We first consider the behaviour of a correct system consisting of correct
components and thus also of a correct design. Even if all inputs beloog to the
defined domain of the system, inputs that do not satisfy the system's
precondition can still cause precondition errors. It seems useless to offer such
inputs to a system, since the system's goal cannot be satisfied in that case. It
cannot, however, always be avoided. Firstly, when the same input to the

38 Chapter 3

system can be offered from several places in the system's environment, it can
be more econornical to test the precondition in the system itself, where the test
need only be perforrned at one place, rather than test the precondition at every
place where the input is offered to the system. Secondly, it may be irnpossible
(or highly irnpractical) to explicitly test the precondition. When a robot needs
to assembie two components, it can be easier to just try to assembie the two
components and see whether they fit, rather than to check the components in
advance. Even if they are checked in advance - by (say) using vision
techniques - the tester can fail by letting faulty components pass, which will
leadtoa precondition error in the assembly process.

Incorrect designs are an evident cause of intemal state errors. This can be
illustrated by the following exarnple. Referring to the conveyor belt exarnple
in Section 3 .1. 3, let us assurne that the cylinder is rnisaligned with the position
ofthe product detector. This will cause the belttostop at the wrong moment,
so the cylinder will miss the product when it extends. The extemal' states of
the cylinder, the belt and the product are all correct when regarded
individually; it is their incompatibility which causes the intemal state of the
control system to be erroneous.

A sirnple error can lead to rnany other errors; this is known ·as error
propagation. The process of error propagation is a chain which starts with an
error, which error leads to failures, which in turn lead to fiuther errors, and so
on.
The following situation is an exarnple of error propagation. lf the product
detector fails due to a fault in the detector, the controlling system will not be
able to detect an arriving product. The error in the external state of the
product detector is an internal state error in the control system, causing its
failure when the belt does not stop and the cylinder does not extend when the
component is in front of the detector. This leads to errors in the internal and
extemal states of the control system. Note that, as in the previous exarnple,
the internal state of the control system is erroneous, but the extemal 1states of
the belt, the cylinder and the product themselves are correct.

3.2.2 Errors in the controlling and controlled system

E"ors in the contro/ling system

These errorscan be divided into hardware and software errors.

Errors 39

Hardware errors are errors in the computer hardware. They will normally he
very rare. They are possible, however, and should he taken into account in
order to avoid serious damage to the machine, should they occur. An example
ofthis type of error is a bus error (a conflict on the internat computer bus) or
a memory read error. Errors of this kind should he detected by the operating
system of the computer and brought to the attention of the user control
program. In this way, the control program can take the necessary actions to
bring the machine to a safe position and report the error. Often specialized
hardware, such as watchdog timers, is used in order to detect and handle fatal
program failures or crashes.

Software errors are errors in the control program. They can appear in many
different fonns. Some examples of software errors are:

• Parameters may be incorrectly adjusted. A product may he placed at an
incorrect position. This may lead to faulty products or to actual errors that
cause part of the production process to fail.

• Synchronization of processes may be incorrect. Since control systems are
inherently parallel, the state of the machine will be changed by a number
of different processes. lf a process controls a machine part, it must be
certain that the operations of that part do not conflict with operations of
machine parts controlled by other processes. Incorrect synchronization
may lead to collisions of machine parts.

• Mathernatical algorithms may be incorrect. This may lead to precondition
errors such as division by zero or reference to a non-existent element in an
array. If incorrect algorithms lead to such precondit ion errors, they can he
detected by the program and brought to the attention of the user by means
of an error message. lf incorrect algorithms do not lead to detectable
precondition errors or to a violation of invariants that are checked by the
program, they willlead to faiture ofthe system without warning.

Obviously, it is preferabie not to have errors resulting from incorrect designs,
rather than to detect and correct them. Prevention of such errors can he
achieved through the carefut analysis and specification of the system. This
should he foliowed by carefut implementation of the control program, and
possibly by simulation ofthe system.

40 Chapter 3

Errors in the controlled system

Errors in the controlled system can have many different causes. They can be a
result of errors in the machine parts, errors in the materials used in the
production process, or an incorrect design of the controlling or controlled
system.

Machine parts may fail in various ways. Detectors may not be correctly
adjusted, causing them to detect at the wrong moment. A motor rnay not
respond when power is applied, or it may suddenly cease to operate due to
overheating.
Failures may also be caused by wear, Jack of maintenance or incorrect
adjustment. A cylinder may start to extend and retract more slowly over a
period of time. This may be fatal in time-critical applications.
Tolerances in the dimensions of matcrials can result in errors, for example
resulting in impossible assembly operations. Tolerances in the positioning of
products when handled by machines can result in errors. A robot may not be
able to piek up a product if the gripper is not properly aligned with the
product.

Comparison of errors in the controlling and controlled system

Errors in the controlling system are usually less frequent than errors in the
controlled system. The computer hardware is usually much more reliable than
the machines it controls. Many errors in the computer software can be found
using simulation models and through reai-time testing. The problem with
testing, be it with the aid of simulation models or in real-time, however, is that
it can only be used to indicate the presence of errors and not their absence.
Since computer software does not suffer from deterioration over time,
software errors will not recur once they have been corrected. The only cause
of new software errors over time is a changed demand, resulting in the rnaking
of new specifications and changes to the software.
Unfortunately, the controlled machines do suffer from deterioration over time
due to wear and ageing, possibly introducing new errors. They also iexhibit a
stochastic behaviour in . eertaio respects. Machines and robots inevitably
suffer from imprecise positioning, and all components have tolerances in their
dimensions. In the controlled systerns, faults can recur after they have been
corrected. Machine errors are therefore more frequent than other kinds of
errors. Fortunately, machine errorscan be handled more easily than software
errors. This is because the designer of a system knows in advance that eertaio

Errors 41

machine errors can occur and can then take measures to handle the errors. It
is also known that software errors may occur, but one does not know exactly
what kinds of error will occur. lf one were to know this, immediate action
would he taken to correct the errors. Therefore, in this work emphasis will be
placed on the handling of errors in the controlled system.

3.2.3 Tbe tbree stages of error handling

The handling of errors can he divided into three consecutive stages:

• error detection
• error diagnosis and damage confinement
• error recovel)' and fault repair.

Error detection deals with the detection of errors, either by an opera,tor or,
preferably, by the control program. Error diagnosis deals with the
determination of all errors in the system which are related to the detected
error. Damage confinement is used to prevent fluther propagation of errors.
Error recovel)' is the part of the error handling process in which the system is
transformed from an erroneous state to an error-free state, so that normal
system operation can continue.

Practical systems val)' greatly in respect of the complexity of the error
handling techniques employed. The simplest systems may rely entirely on
operators for the detection and recovel)' of errors. In these systems, the whole
system often needs to he reset after an error. The most advanced systems use
artificial intelligence techniques. These systems employ fully automatic error
detection, diagnosis and recovel)' for most errors. Only the parts of the
production system that cannot sensibly continue due to the error will he
affected.

In this thesis, attention will focus primarily on control systems that do not
employ artificial intelligence techniques for recovel)' from errors. In the
ensuing Sections 3.3, 3.4, and 3.5, the three stages in the handling of errors
will he further elaborated on.

42 Chapter 3

3.3 Error detection

3.3.1 The importance of early error detection

A fault or error in a component can lead to the faiture of that cómponent,
teading to an error in its external state. If the component is a part of another
component, then the error in the external state of the first component can he
an error in (the internat state of) the second component. This error can, in
turn, lead to failure. In such a way faults, failures and errors can spread
throughout the components of a system. Clearly, errors should he detected as
early as possible, in order to prevent their propagation through the system ..
Even if there is no danger of errors spreading throughout the system, errors
should he detected as early as possible for reasoos of damage confinement and
efficiency. It may seem that eertaio control actions can he effected without
error detection. A control program which is waiting for a detector to he
activated will he blocked if the detector is not activated due to an error. This
will eventually he noticed by the operator, who has to discover the cause of
the error himself. This is, however, very inefficient in terms of the resultant
throughput of the system. ·

3.3.2 The use of sensors

In order to detect errors in the controlled system, its state must he known. The
control program can determine this state by means of its sensors, or by
enquiring about the status of intelligent machine parts with 1 built-in
controllers. Apart from this latter case, the detection of errors in the
production process will he accomplished by reading the sensors. If an error is
detected, it can he very difficult for the control program to determine the
cause of the error. This depends on the number of sensors used for error
detection.

Cantrolling systems use two main methods to detect errors in the cbntrolled
system: time-outs and state checks.

3.3.3 Time-outs

It is relatively easy to detect errors using time-outs. This notion is inspired by
the observation that most errors do not occur at random moments, but rather
in response to stimuli from the cantrolling system. A cylinder, for example,

Errors 43

could be obstructed when extending, so that its end position detection switch
would not be activated. Clearly, this error can only occur when the cylinder is
first made to extend by the control program. The error can be detected by the
control program by specifying a maximurn time to wait before the switch is
activated. Sinee the program will need to wait for the switch in any case, the
only extra thing to do is to specify a maximum time to wait. · This metbod of
error detection is thus based on the assumption that eertaio operadons
performed by the machine should be finished within a eertaio period of time.
The controlling system will specify a maximum time to wait for all such ·
operations. When this period of time is exceeded, a time-out will occur,
indicating an error. The time-out metbod can only be used in sensor-driven
systems in which the computer uses sensors for every action it orders the
machine to do. Using sensors is the only way to check the completion of the
actions of the machine. If, for example, a robot is made to piek up a product,
it could be made to close its fingers, wait a short time and then continue, but,
without a sensor, there is no way of telling whether there is actually a product
in the robot's hand.

3.3.4 State checks

Detecting errors using state checks is accomplished by testing the state of the
controlled system by means of the sensors. If the established state is different
from what is expected, an error is detected. The error can be due to an
incorrect state of the controlled system, or to an error in the controlling
system itself.

The testing of the controlled system's state can take plaee at explicit points in
the program. Consider, for exarnple, two machine parts that move through the
same spaee. Before moving into the shared spaee, the controller of each part
could check that the other part is not in the shared spaee.

The testing could also be effected during an operation. Consider a robot
moving a part to another place. During the movement, the detector which
indicates the presence of the part in the robot's hand could be continuously
tested.

Some checks must be performed throughout the control program. This is
necessary to detect errors that can take place in large parts of the production
cycle. The emergency switch, for exarnple, can be pressed at any time and
requires immediate action. Thus this event must be monitored at all times.

44 Chapter 3

Intervention of an operator can also take place at any point in the control
cycle. Therefore, all actions of the control program that take more time than
the operator is prepared to wait must be interruptible.

3.3.5 Error detection by the supporting system

Errors in the supporting hardware cannot be detected by user programs.
Examples of this kind of error are memory faults. Other errors, such as
precondition errors in the inputs of system eaUs, are more easily detected by
the supporting system than by the user program. Examples of this kind of
error are division by zero and indexinga non-existing element in an array. Not
only should these errors be detected by the supporting system, but a
mechanism must also exist to bring such errors to the attention of the user
program so that it can take the necessary actions to handle the error.!

3.4 Error diagnosis and damage confinement

3.4.1 Definitions

As shown in Section 3.3 .1, a detected error can be the result of other errors in
the system. Errors propagate through the system, and only when1 they are
detected can furtber error propagation be prevented. This is known as damage
confine ment.

In the context of error handling in manufacturing processes, damage can have
two meanings.
The first meaning of damage is the total of all errors in the system that are
related to the detected error. As shown in Section 3.3.1, a single

1
fault can

cause many errors to spread through the system. Therefore, when one of these
propagated. errors is detected, many more may exist due to the original fault.
Determining all the related errors, and the fault which caused them, ,is known
as error diagnosis.
Damage can also mean physical damage, such as personal injury, damage to
machines or to the products being processed. '

Errors 45

3.4.2 Error diagnosis

Error diagnosis need not he an explicit phase in the handling of errors: it can
take place implicitly. The point in the cantrolling process at which a machine
error is detected approximately determines the state of the machine. A direct
approximation of the resultant danlage can be made from this approximated
state of the machine, tagether with the detected error. Consider, for example,
a robot holding a product in its hand. The robot takes the product to another
station. lf the product-sensing detector were suddenly no langer to indicate the
presence ofthe product, this would imply an error. lfthe error occurred while
the robot's hand moved over a transporting belt, the robot hand controller
would assume that the product was dropped onto the belt, possibly causing
other errors. Without fluther testing, the controller would signal the error to
the belt controller. Here the outcome of the error diagnosis stage was that the
belt was also affected by the error. The only information used to come to this
conclusion was the detected error itself and the implicitly available state of the
error detecting process. If the damage cannot be assessed accurately enough
because, for example, not enough detectors are available, then the human
operator can be used to assess the damage.

3.4.3 Damage confinement

It is the task of the control program to detect errors as soon as possible in
order to prevent further damage. The control program cannot usually
determine the exact cause of a detected error. Therefore, it should immediately
bring all parts of the machine that could lead to further danlage into a safe
state. This should be done in response to all errors interrupting the normal
flow of control in a process.

Let us consider a simpte automatically guided vehicle which goes back and
forth between two positions. Suppose that a cantrolling process switches the
motor of this vehicle on. The motor must be switched off when the vehicle
reaches its destination. If, however, the normal flow of control of the
cantrolling process is interrupted due to an error shortly after the motor has
been switched on, the vehicle would continue uncontrolled. To prevent this
from happening, the cantrolling process should be designed in such a way that
the vehicle is always stopped when the flow of control is interrupted due to an
error.

46 Chapter3

Hardware measures for damage confinement are needed, in addition to the
software measures. A frequently used device for this purpose is a watchdog
timer that should be periodically reset by the software. If it is not reset in
time, for example due to a software crash, the timer automatically disables the
outputs ofthe computer system and sets them toa predefined state.

In many cases, the damage cannot be exactly determined. In these cases, the
control program should make a realistic worst-case assumption to prevent
ftlTther damage. Consider, for example, a simpte fork-lift truck carrying a
heavy load. Suppose that the truck moves a short distance toanother location
and simultaneously the fork moves upwards. If the controller detects an error
because the truck does not reach its destination in time, this could be due to
failure of the truck detector. In this case, stopping the truck would suffi.ce.
But the controlling system should stop both the truck and the fork mQvements,
since a ooilision with another object is also possible.

In most situations, the error should be reported to the operator. The operator
can then check the system to see if the damage prevention actions of the
controlling system have been sufficient. If the controlling system cannot
automatically reeover from the error, the operator can assess the dalnage and
decide how to reeover from the error.

It is not always obvious how machine parts should be brought into a safe
state. The control program usually does not know exactly what bas happened.
In many cases, however, there is a rather straightforward solution to this
problem, basedon the safety requirements regarding emergency stops by the
operator. This is explained in the following two sections.

3.4.4 Emergency stops

Since the control system bas a limited number of detectors, it can only have a
limited view of the production process and cannot detect all errors. 1lherefore,
any production system must have emergency buttons which can be pressed by
the operator in the case of a serious error which bas not been detect~d by the
controlling system. The emergency button will be pressed, for example, when
the operator sees that another person is in danger of being injured by the
machine.

The pressing of an emergency button must bring the machine or a part of it to
an immediate stop. This ca'n be done in two ways: electromechanically, by

47

having the emergency switch directly switch off the power supply of all
machine parts; or the control program can detect the activation of the
emergency button and then bring the machine into a safe state by control
commands.
The safest way to deal with emergency stops is to use both ways. This bas
two advantages. lf the control program were to fail because of a software
error, the machine is switched off anyway by direct interruption of the power
supply. On the other hand, a person could accidentally deactivate the
emergency button prematurely. In this case, the machine will not suddenly
become operational again, because it is also kept in a safe state by the control
software. lt is not always possible to use this kind of error handling in the
case of an emergency stop: in complex and critical systems such as nuclear
power plants, it is not possible to simply switch off the power supply in the
case of an emergency stop. In such systems, the control software should be
reliable enough to handle emergency stops by itself.

3.4.5 The safe state of machine parts

Pressing the emergency button will often switch off all energy supplies to the
controlled system. As a result of this, the machine parts should automatically
go into a safe state. A safe state is a state from which no damage to machines
or products and no hurnan injury will result and which will not lead to any
additional errors. It follows that the machine parts should be constructed in
such a way that they automatically go to a safe state when the power supply
is disconnected. The safe state of a machine part depends on its function.
Preferably the safe state of a moving machine part should be such that it can
be freely moved by manual power. In this way, a person who is stuckin the
machine can be released.

In the case of a cylinder, for example, a type with two valves could be chosen.
Under normal operating conditions, one of the two valves will be closed and
the other one open. If power is removed from the valves they will either both
open or both close. The cylinder shaft should then be freely movable.
In some cases, a freely movable part is impractical. A machine part which
lifts a heavy load, for example, should not be left to move freely after an
emergency stop: rather, it should be blocked to prevent the heavy load from
falling. In this case, a brake could be put on the cylinder shaft. The brake
should be free when power is applied to it, and it should be on when the
power is switched off.

48 Chapter 3

The safe state that a machine part should be brought into in the case of an
error can often be precisely the state it goes to after an emergency stop. This
follows from the fact that both after an emergency stop and after another error
during the production process the main goals are often the same: the
prevention of possible personal injury and damage to the machine. There are
also some differences. An emergency stop should only be used in emergencies.
Therefore, it really does not matter if production time is lost due to an
emergency stop. For less serious errors, however, it is important to handle
errors as efficiently as possible. In many cases, bringing a machine part to the
single safe state is a simpte and reliable concept.

3.5 Error recovery and fault repair

lf a system is in an erroneous state, there are two possibilities for returning
the system to a correct state.

Selective changes can be made to the state in order to remove the errors. This
is known as forward error recovery, and it is suitable for control systems. It is
mainly used to reeover from anticipated errors.
The other possibility is to discard the current state completely and return to a
previously recorded state of the system. This is termed restoring the state of
the system. lf the errors which caused the state to be erroneous occurred after
the recording of the state, then the restored state will be error-free. This is
known as backward error recovery, and it can be used effectively to reeover
from unanticipated damage. It is, however, difficult to use when · physical
processes are controlled.

The following sections will deal with state restoration and forward and
backward error recovery.

3.5.1 Backwant error recovery and state restoration

The simplest form of state restoration uses fixed states to which a sy~tem can
return. lf there is only one fixed initial state to which the system can return,
this state is known as the reset state and state restoration will mean resetting
the system. An example of this is found in personal computer systtïms: if a
fatal error occurs, such that the system no Jonger responds to the user, then
the user can reset the computer.

Errors 49

A more powerfut form of state restoration can restore the state of the system
to eertaio states which have previousty occurred, taking into account all
events that have happened in the system. The point in time at which the state
of a system is recorded for a possibte subsequent restoration is a recovery
point. Restoring the recorded state betonging to a recovery point is known as
restoring the recovery point.

Backward error recovery can be used effectivety to reeover from
unanticipated errors. This is because no knowtedge is required about the
erroneous state. The only thing that is important is that the state at the
recovery point to be restored is error-free and consistent.

The problem with backward error recovery is that it only works with
recoverable components. This is not a problem in pure software systems,
where values can be automatically restored independently of their current
values. Physical systems, however, are usually not so easily recoverable: if a
hole has been drilled, it cannot be undrilled. In order to make such a
component recoverable, it coutd be replaced by another still intact component.
The recovery of a robot to a previous state would imply moving the robot
itself, and all its parts, back to their previous positions.

Other problems arise when concurrent processes are used. These problems
arise from the fact that processes interact for the purposes of synchronization
and inforrnation exchange. lf a recovery point is restored in a process which
has interacted with other processes after the recovery point, then these other
processes wiJl atso need to be restored to previous recovery points. The
recovery of these processes may again trigger recovery in other processes,
including the original one. This effect is known as the domino effect [Randell,
1977].

The technique of recovery blocks [Horning et al., 1974] uses a recovery point.
This technique is based on supplying redundant algorithrns for the same task.
A recovery point is established before entering the recovery block. The task is
first executed by the primary atgorithrn. An acceptance test must be specified
to delermine if the task has been successfully fulfilled. lf not, the recovery
point is restored and another atgorithrn is tried.
Because recovery blocks use a recovery point, they share the problems
associated with recovery points discussed above.

50 Chapter 3

3.5.2 Forward error recovery

Forward error recovery methods make incremental changes in the current
erroneous state in order to come to a correct state. In order to be able to make
the right changes in the erroneous state, the state bas to be fairly accurately
known. Therefore, forward error propagation is especially useful for
recovering from anticipated errors. Consider, for example, an automatic part
feeder. lf the feeder were regularly to suffer from jammed parts, it could be
equipped with an air jet propulsion system. Upon detection of a jammed part,
a forward error recovery mechanism could automatically blow the jammed
part out of the way.

As shown in the previous section, resetting a system to a predefined state is a
form of state restoration. Resetting a system is also possible using forward
error recovery. In fact, this is a more powerfut form of resetting. Resetting a
system using state restoration completely discards all information relating to
the previous state. In many cases, it is necessary or useful to take tlle present
state into account when resetting a system. Consider, for example, a process
which takes finished products from a transporting belt and puts them into a
container at predefined places. lf an error occurs which forces the resetting of
the system, the initial state of the process cannot be completely restored, since
the system must remember the places in the container that are already
occupied.

Because of the simplicity of forward error recovery and the problems
associated with backward error recovery, this thesis wilt be limited to a
treatment of forward error recovery.

3.5.3 Fault repair

Error recovery and fault repair can be viewed as two distinct phases. Error
recovery enables the process to reeover from the error, and fault repair will
correct the fault which caused the error, thereby preventing recurrence of the
same or a similar error. Fault repair is usually part of the error. recovery
process. Consider, for example, a vehicle which is blocked by an obstacle. If
the obstacle is removed so that the vehicle can continue, fault repair is part of
the error recovery. If, however, the vehicle reeovers from the error by moving
around the obstacle, fault repair could take place later by removing the
obstacle.

Errors 51

3.6 Summary

The definition of errors is based on the defmition of a system as either being
atomie or consisting of a set of cooperating components. The behaviour of a
system is determined by its design and its state. There are two kinds of state:
external and internal states. External states are the states ofthe system which
are relevant for the system's environment. Internal states are relevant for the
internal operation of the system. The interna I state of a system is defined as
the aggregation of the external states of its components. The external state of
a system is an abstraction of its internat state.
A system will be designed for a specific purpose. This purpose is specified by
the goal ofthe system. Usually, the specification will place eertaio restrictions
on the system's inputs and on the state ofthe system's environment, so that the
system can realize its goal when those conditions are met. These restrictions
are specified by the precondi/ion. of the system. The complete domaio for
which the system's specification is defined is the dejined domain of the
system. A fai/ure of a system occurs when the behaviour of the system
deviates for the first time from that required by its specification.

The definitions given above are used in the definition of errors. In order to
avoid the ambiguity in many of the defmitions of errors in the literature,
different kinds of error have been distinguished. The definitions are as
follows.

The internal state of a system is erroneous if it can cause system failure.
More specifically, there must exist a sequence of inputs from the system's
defined domaio that will lead to faiture of the system, assuming that the
system's components and design are correct.

An error in the internat state of a system (or an internal state error) is a part
of an erroneous internat state which needs to be different in order to make the
erroneous internat state correct.

An error in the external state of a system (or an external state error) is a part
of the external state which deviates from the external state as required by the
system's specification.

A precondition error is that part of the input to a system or part of the state
of the system's environment which does not satisfy the system's precondition.

52 Chapter 3

Some different causes of errors have been treated, and errors in the cantrolling
and controlled system have been distinguished. Errors in the controlled system
have been shown to be more frequent than errors in the cantrolling system,
mainly because errors in the controlled system can recur once corrected, due
to their stochastic nature. Software errors will not recur once they have been
corrected.

Finally, the three stages of error handling have been treated. These are error
detection, error diagnosis and damage confinement, and finally error recovery
and fault repair.

Chapter 4
Basics of exception handling

An error is a common concept, although the exact meaning of errors is not as
easily defined as might appear at first sight, as bas been sbown in the previous
chapter. Exceptions are related to errors. The definition of exceptions is even
more difficult than the definition of errors. It appears that many papers differ
in their definitions of exceptions, sometimes exceptions are not defined at all.
Some existing definitions of exceptions are evaluated in this chapter, resulting
in a definition of exceptions and related terms. The relationship between
errors and exceptions is also investigated. Finally, several mecbanisms are
treated for the handling of exceptions in a sequential process.

4.1 Definition of terms

4.1.1 Operations

An exception is always related to an operation in a sequentia) process. An
operation is a special kind of system. The meaning of operation is not
restricted to procedures or functions. An operation is a logically related
group of statements or expressions in a sequential process with a single entry.

The meaning of goal and precondition bas already been given in relation to
systems in Section 3.1.2. They will be repeated briefly bere.
An operation is designed for a specific purpose. This purpose is specified by
the goal of the operation. The goal is a relation between the inputs to the
operation and the resulting responses of the operation.
The precondition of an operation specifies the restrictions on the operation's
inputs and on the state of the operation's environment, so that the operation
can realize its goal wben those conditions are met. The precondition refers to
the extemal state of the operation if the operation interacts with operations in
other processes.

54 Chapter4

4.1.2 Exceptions, exception occurrences and exception conditions

Unfortunately, many different definitions of exceptions exist. Some of these
definitions are cited in order to give the reader an impression of the different
ideas about exceptions in the literature.

In [Y oung, 1982] the tenn exception is used to denote the occurrence of an
error. Horowitz (1983) explains that the tenn exception is chosen to
emphasize that the condition which arises need not be an error, but merely
some event whose possibility requires versatility of action. Dony (1990)
defines an exception as a situation teading to the impossibility of fin.ishing a
computation, whereas Cox and Gebani (1989) define an exception a8 an event
that occurs infrequently, possibly indicating an error. A quite different
definition is given by Szalas (1985): 'Exceptions are rare situations detected
by a run-time system or by a user program.' Lee and Anderson (199P) use the
component model of a system for the definition of exceptions. They do not
give a fonnal definition of exceptions, but rather state that: 'The abnorrnal
responses from a component are commonly referred to as exceptional
responses or exceptions, particularly in software systems.' In (Knudsen,
1987] the following definitions are given: 'An exception occurrence is a
computational state that requires an extraordinary computation. Exceptions
are associated with classes of exception occurrences. An exception is raised if
the corresponding exception occurrence bas been reached.'

Probably the most :frequently cited artiele about exceptions is [Goodenough,
1975], which covers many exception handling concepts. Goodenough defines
exception conditions as follows: 'Of the conditions detected while attempting
to perfoon some operation, exception conditions are those brought to the
attention ofthe operation's invoker.' Another :frequently cited artiele is [Liskov
& Snyder, 1979]. Like Goodenough, these authors refer to exception
conditions, which they also call exceptions. They do not give a fonnal
definition, but state that: "The tenn 'exception' is chosen because, unlike the
tenn 'error', it does not imply that anything is wrong." Christian, in bis articles
[Christian, 1982, 1984], defines an exception occurrence as an invocation of
an operation or program in its exceptional domain, where the exceptional
domain contains all initial states for which the goal of the operation or
program cannot be reached by its normal execution.

A definition of exceptions should describe their most essential characteristics.
lt should also he consistent with the use of exception in the te~inology

Basics of exception handling 55

exception condition, exception occurrence, exception declaration, exception
hand/er and signaling, raising, catching and handling an exception.
The most essential characteristic of exceptions is also the common part of
many different exception definitions. It is the fact that, when an exception
occurs during the execution of an operation, the operation cannot achleve its
goal, for example, due to division by zero or due to the pressing of the
emergency button by the operator.

Here exceptions are considered only in relation to programs, not in physical
systems themselves. This is because the terminology of signaling and
handling of exceptions is based on programs and is not relevant to physical
systems.

The term exception is used in many different ways, which makes it difficult to
define exceptions accurately. They can he defined more easily if the term
exception occurrence is defined first. lts definition is related to the definition
given by Koudsen (1987) and Christian (1982, 1984):

An exception occurrence is a computational state such that some invoked
operation cannot realize its goal.

Clearly, this definition implies that the determination of exception occurrences
is dependent on what is regarded as the goal of an operation. The word
computation is used to emphasize that exception occurrences are related to the
execution of a program. They occur and must he handled at run-time.
The computational state can he restricted to the state of the process executing
the operation, but it can also include parts of the state of the process's
environment.

The invoked operation which cannot realize its goal can he any operation in
the call chain ofthe process: it need not he the operadon called last. Consider,
for example, the inversion of a singular matrix. If this operation is attempted,
all states reached in this operation and in operations that are subsequently
called will he exception occurrences. This is due tothefact that the inversion
operation will not he able to reach its goal, even though operations called by
the inversion operation to perform the desired calculations will he able to
reach their goals.

This definition comes close to the definitions in [Christian, 1982, 1984].
There are, however, some important differences:

56 Chapter4

First, in our definition, an exception occurrence is not exclusively related to
initial states, as in Cbristian's definition. This is because exception
occurrences can also be related to the state of the environment of the process
executing the operation, sucb as the state of an emergency button. The cause
of this difference is that Christian's definition is based on internat exceptions
and disregards external exceptions. (lnternal and external exceptions will be
defined later in this section.)

Second, the use of the term normal execution is avoided in our definition,
because 'normal' is essentially a subjeelive term and, even more importantly,
because it suggests that the operation could realize its goal in an i abnormal
way. The essence of an exception occurrence, bowever, is that some invoked
operation cannot (in any way) realize its goal. It is important that the passive
voice is not used in this statement, because it may be possible to realize the
goal of the operation, but the particular operation itself cannot !realize it.
Consider the example of the memory allocation problem in a multi-process
environment (whicb is often cited as an illustration of the use of the resume
response). Suppose that the allocate function is invoked wben all memory bas
already been allocated. The allocate function will try to allocate memory from
the memory pool directly, whicb will not be possible, and so an exception
occurrence results. This exception could be handled by making other process
release some memory. After that, the handler could issue a resume • response,
and the allocate function could resume execution by allocating the desired
memory from the pool. In this case, the goal of the allocate function is the
direct allocation of the requested memory from the pool. An exception is
raised only wben this is not possible. When the memory is finally! allocated
after the resume response, tbe allocate function bas realized a secondary goal,
namely the allocation of the requested memory after the deallocation of
memory by other processes. If the allocate function were to be rewritten in
sucb a way that it would itself request other processes to deallocale some
memory in the case of insufficient memory in the pool, then this allocate
function would have a different goal, namely the allocation of the request
memory at the time wben enough memory is available.

Christian's definition could be changed by taking account of external
exceptions and teaving out the term 'normal execution'. This would lead to the
following definition: an exception occurrence is an invocation of an bperation
in its exceptional domain, wbere the exceptional domain contains all stales for
whicb the operation cannot reacb its goal. In this thesis, bowever, tbe

Basics of exception handling 57

definition of an exception occurrence as a computational state will be used,
which bas been defined earlier in this section.

All attempts to defi.ne an exception simply as an error, event, condition or
response are bound to be unsatisfactory because of the many different uses of
exceptions. Errors, events and responses, for example, cannot be raised and
do not have a condition. Therefore, we will not explicitly define what an
exception is, but rather give its characteristics and, in the next section, explain
its use.

An exception is associated with a class of exception occurrences [Knudsen,
1987].

The exception condition describes the common aspect of the exception
occurrences associated with the exception.

Exception occurrences and exceptions are either internat or external. The
definitions are as follows.

An internal exception occurrence is an exception occurrence of which the
computational state is completely determined by the internal state of a
sequentia) process.

An external exception occurrence is an exception occurrence of which the
computational state is determined by the internat state of a sequentia) process
and the external statesof one or more other processes.

An internal or external exception is an exception which is associated with a
class of internator extemal exception occurrences respectively.

Extemal exception occurrences can appear to be intemal. This is due to the
fact that controlling systems must sample the state of the controlled system.
The sampled values of the sensors constitute a part of the intemal state of the
controlling system. An exception occurrence caused by the (sampled) value of
the state of a sensor rnay therefore seem to be an internat exception
occurrence. In reality, however, the sampled values are used onder the
assumption that they are equivalent to the corresponding actual values of the
physical sensors. So, the exception occurrences are, in fact, determined by the
actual values of the sensors and are therefore extemal.

58 Chapter 4

In other cases, the inputs supplied to a process will actually cause internat
exception occurrences. This is the case, if the inputs need only be received
once and can consequently be used throughout the process, eventually
resulting in the production of outputs. If such inputs contain precondition
errors, they willlead to internat exception occurrences in the process.

In the literature, the tenns asynchronous and synchronous exceptions are
sometimes used insteadof external and internat exceptions respectively.

4.1.3 Signaling, handling, declaring and raising exceptions

When an exception occurrence is detected in an operation, the corresponding
exception or exception condition should be signaled. By signaling the
exception, the specific infonnation about the exception occurrence is lost.
How the signaling of an exception is actually implemented depends on the
programming language used. When an exception is signaled, it must be
handled. The handling of exceptions refers to the way a program reeovers
from a situation in which some invoked operations cannot realize their goal, to
a situation where all invoked operations can, in principle, realize their goal.
There are several exception handling mechanisms in programming languages.
In the simplest programming languages, signaling an exception is done by
returning an error code. This is described in Section 4.3.1. Some
programming languages offer a more sophisticated mechanism for exception
handling.

In some languages, exceptions can be declared in an exception declaration
using the predefined exception type. In an exception declaration, a new
exception is declared and an identifier is bound to this exception, so that the
identifier denotes the exception. Other language constrocts offered by these
languages to support the exception handling mechanism are constrocts for the
raising of exceptions, which are comparable with predefined raise procedures,
and the declamtion of exception handlers. An exception is signaled by
raising the exception by means of the raise procedure. Raising an: exception
will result in the activation of an exception handter which was bound to the
exception. The functionality of the exception handling mechanism of these
languages will be elaborated further inSection 4.4.

In Smalltalk-80, instances of class Signal are used to denote exceptions. The
raising of such a signal in the case of an exception occurrence leads to the

Basics of exception handling 59

creation of exception objects, which are instances of the class Exception. The
functionality of the exception handling mechanism in Smalltalk-80 wilt be
elaborated fluther in Section 4.5.

The detection of an exception occurrence should lead to the signaling of the
corresponding exception. This can be done by raising the exception or, for
example, by returning an error code. On the other hand, exceptions should
only be raised in the case of an exception occurrence. In fact, we regard the
raising of exceptions in other cases as bad programming practice.

When the invocation of a program unit results in an exception occurrence
which is either handled in a handter bound to the unit, or propagated to the
unit's invoker, the unit is said to terminate with an exception. Such a
termination of the unit can also be referred to as an exceptional termination.
This definition assumes that exception handling follows the terminalion model
or, in the case ofthe resumption model (see Section 4.4.4), that it does not use
the resume response. The other possibility is normal terminalion of the unit,
by executing the statement just before the block's end identifier (or other
symbol or identifier which closes the block), or by executing a return
statement.

4.1.4 The relationship between exceptions and errors

Exceptions are used in programs in order to facilitate the handling of
precondition errors in a structured way, and in order to facilitate the creation
of robust programs in the presence of precondition errors. Exceptions and
exception occurrences are only defined in relation to the execution of
programs. Errors, on the other hand, are not restricted to any particular kind
ofsystem.

Exceptions can, to some extent, also be used for the handling of errors in the
design of a controlling or controlled system; but only if the incorrect design
leads to precondition errors or to the violation of invariants (which can be
detected by means of assertions).

4.1.5 The relationship between exception occurrences and errors

An exception occurrence will ultimately always be caused by an error. This. ~

error can either be an internat or extemal state error, or a precondition error, .

60 Chapter4

If a system is correct and (recursivety) all its components are correct, then all
exception occurrences will be the resutt of precondition errors. lf the system
and its components are atso operated in their standard domain, so that no
precondition errors can occur, then the goals of all components can be
realized and so no exception occurrences will take place. The relation between
ex ception occurreóces and errors will be elaborated further below.

If the weakest precondition of a system is not satisfied, then it will be
impossible to realize the system's goal and so an exception occurrence will
resutt. Therefore, precondition errors which violate the weakest precondition
of a system atways lead to exception occurrences. Precondition errors which
do not violate the weakest precondition of a system may lead to exception
occurrences.
Exception occurrences need not always be caused by precondition errors.
They can also be caused by incorrect designs that lead to internal state errors.

Internat state errors can lead to exception occurrences, dependip.g on the
inputs to the system. As explained inSection 3.1.3, internat state errorsneed
not always lead to faiture of a system. Certain internat state errors will only
lead to faiture in the presence of certain inputs to the system. If the i inputs are
such that faiture will result, it will obviously also be impossible for some
operation to realize its goal, and so there will also be an exception occurrence.
If the inputs are such that faiture does not result and the goal of the system
can be realized, then the internal state error will not lead to an exception
occurrence.

External state errorscan lead to exception occurrences. However, this is not
always the case, because the external state errors of a component can be
corrected by the encompassing system, for example by using redundancy.

Exception occurrences can coincide with internat or extemal state errors, but
cannot cause them.

4.2 Basic requirements for a mechanism for the handling of
internal exceptions

Some of the requirements for an exception handling mechanism are
application independent, while others do depend on the kind of application.
When developing and testing a program, for example, an appropriate response

Basics of exception handling 61

to an error would be to stop execution of the program and enter a debugger._
In reai-time systems, this response would be unacceptable. The requirements
that should be met by a general-purpose mechanism for the handling of
internat exceptions are given below. These requirements should also be met by
exception handling mechanisms used in languages for the eontrol of industrial
systems, tagether with additional requirements concerning constraint
violations. Constraint violations will he treated separately in Chapter 5.

I. The mechanism should facilitate the creation of robust programs.

2. All exception occurrences which are detected should allow for damage
confinement and error recovery code to he executed.

3. The mechanism should he easy to use and understand. lt should consist of
a small number of orthogonal elements. This means that the elements can
be used independently of other programming elements and do not overlap.
This is a criterion which is often used in the design and analysis of
programming languages.

4. There should he a clear separation of the code for normal program
operation and the code for exception handling.

5. User programs should be able to handle exceptions detected in the user
program itself and those detected in the routines ofthe supporting system
in the same way.

6. lf an exception occurrence results in the termmation of a call chain of
several levels, each level should he allowed to futfit its own finalization
obligations.

A consequence of the second requirement is that the often encountered way of
error handling which simply results in an error message and a user process
being killed is unacceptabte.
In addition to requirement number 3, it should be noted that is not necessary
to strive for absolute orthogonality.

Requirement number 6 is a result of the use of different levels of abstraction
which makes complex programs manageable. These different levels of
abstraction should he used both for the normal operation of a program and for
the exception handling operation.

62 Chapter4

Finalization obligations are the actions that have to be taken in order to bring
a component in which an exception has occurred to a safe and consistent state
after the exception occurrence, so that the romponent's invariants that have
been invalidaled due to the exception occurrence are restored.

Consider the fork-lift truck example from Section 2.3. This example is
slightly modified so that CtriTruck directly controts the fork-lift, see Figure
4.2.1. Here there are three levels of abstraction. The first level is the global
process cycle represented by the body. The second level consists of the taking
of the stack with the necessary synchronization with the stack supplying
process. The actual control ofthe actuators and detectors ofthe for~-lift takes
place at the third level.

ctriTruck » body

"Finalization obligations:
Return the fork-lift truck to the predefined reset position"

self receiveStackFromTraverse.
self transportStackToFumace.
self giveStackToFumace.
self goBackTo Traverse

CtriTruck » receiveStackfromTraverse

"Finalization obligations:
Correct the synchronization with the Ctr/Traverse processor"

self sendTo: 'sync-truckResetAtTraverse'.
self receiveFrom: 'sync-traverseAtFork'.
self forkUp.
self sendTo: 'sync-forklsUp'

ctriTruck » forkUp

"Finalization ob/igations:
Stop the motor of the fork lifter"

self putOn: 'o-forklifter-up'.
self putOn: 'o-forkLifter-power'.
self

receive: true
trom: 'i-forkLifter-up'
within: 6 seconds
ifrimedOut: ["raise exception'l

self putOff: 'o-forkLifter-power'

Figure 4.2.1 Three levels of abstraction wilh difforent finalization
ob/igations

Basics of exception handling 63

Suppose tbat tbe end detector is oot activated in time while moving tbe fork
up. possibly because of a defect in tbe detector. If tbe error cannot be
corrected, it is not possible to continue tbe process cycle and all three levels
should be terminated. At tbe third level tbe exception handling operation
would consist of stopping tbe fork-Iift motor. At tbe second level tbe
synchronization witb tbe CtriTraverse processor would need to be corrected.
This is necessary to prevent tbe CtriTraverse processor from waiting for a
signal tbat tbe fork is up. which signal will no Jonger arrive. Finally. in tbe
body. tbe fork-lift truck could be returned toa predefined reset position. Each
level executes only the finalization operations necessary due to its own
premature termination.

4.3 Traditional ways of exception handling

4.3.1 Using returned values as exception codes

The simplest way of exception handling is by passing special codes tbrough
argurnents or returned values of procedures or metbods. This is tbe .way
internat exceptions are handled in tbe Unix operating system written in tbe C
programrning language. It is also tbe metbod that must be used in Sequential
Function Charts [IEC 848, 1988] when goto-like jumps are to be avoided.
Altbough the advantage of this metbod is tbat it is very simp Ie to understand
and requires no special support, tbe drawbacks to tbis way of exception
handling are so severe tbat this metbod is unsuitable for use in industrial
control systems. In this section. it will be shown that this metbod cannot
satis:ty tbe requirements defined in tbe previous section.
Using returned values as exception codes means tbat tbe results of all
operations must be checked for tbe occurrence of exceptions. This bas several
severe consequences:

1. The creation of robust programs becomes problematic. The amount of
code needed just to check error return codes beoomes enormous. A single
test can easily be forgotten. This will not hinder normal program
operation and may tbus remain unnoticed for a long time. Only when an
error occurs. will tbe failure to test for tbe error occurrence cause tbe
program to continue in an erroneous state witb possibly disastrous
consequences. Also, it can be very difficult to detect the cause of such
errors.

64 Chapter4

2. Many system operations do not return any error values. Therefore, no
error recovery code can he executed for these errors. Consider, for
example, arithmetic operations sucb as division. A simpte division could
result in a division by zero error. It is unacceptable that sucb an error
simply prints an error message on tbe terminal and stops the system,
because this makes it impossible for tbe user program to do any · damage
confinement and error recovery.
Error information could he supplied in global variables in an environment
with a single user process. In a multi-process environment, this will lead
to unpredictable and possibly erroneous program operation. In sucb a
case, there sbould he a 'global' error variabie for every process. The
problem whicb still remains is that sequential errors overwrite the global
error variable: if an error is undetected due to omission to test the global
error variable, another error may result, whicb overwrites tbe original
error information. More important even than this is tbe fact that sucb
scbemes are bighly impractical, and that it is undesirable to use a second
mechanism for the handling of errors that cannot he handled by nbtuming
error codes.

3. The exception testing code will he intermingled with tbe code for normal
program operation, teading to programs that are hard to read.

Figure 4.3.1 gives an example of this way of exception handling. The send
and receive operations are not cbecked for error return codes. If errors can
occur during execution of these statements, then they sbould also he cbecked
for error return codes.

4.3.2 Other mechanisms

There are several other traditional mecbanisms for the bandling of exceptions.
The reader is referred to [Goodenough, 1975], whicb contains an ex;tensive
treatment of these mecbanisms. They will not he dealt with fi.Jrther bere. The
V AXELN system [Digital, 1986] bas some similarities with the exception
bandling mecbanisms treated in Section 4.4. lt also bas special exception
bandling capabilities for multi-process environments. lts treatment will
therefore he deferred until Section 5.5 .2.

Basics of exception handling

CtriTruck >> body
{lelf receiveStackFromTraverse) ==#ok ifFalse: [t #error].
{self transportstackToFumace) ==#ok ifFalse: [t #error].
{self giveStackToFumace) ==#ok ifFalse: [t #error].
{self goBackToTraverse) ==#ok ifFalse: [t #error].
t#ok

CtriTruck >> receiveStackFromTraverse
self sendT o: 'sync-truckResetAtTraverse'.
self receiveFrom: 'sync-traverseAtFork'.
(self forkUp) ==#ok ifFalse: (t #error].
self sendT o: 'sync-forklsUp'.
t#ok

CtriTruck >> forkUp
self putOn: 'o-forklifter-up'.
self putOn: 'o-forklifter-power'.
self

receive: true
from: 'i-forklifter-up'
within: 6 seconds
iffimedOut:

[self putOff: 'o-forklifter-power'.
t #error].

self putOff: 'o-forklifter-power'.
t#ok

Figure 4.3.1 Exception handling by returning error codes.

4.4 Advanced exception handling mechanisms

65

Exceptions have been defined in Section 4 .1. In order to support the handling
of exceptions, some progranuning languages have implemented advanced
exception handling mechanisms. This section discusses these mechanisms,
using the mechanisms of two imperative programming languages as an
example. The advanced exception handling mechanisms of most programming
languages differ only in minor aspects, the underlying concepts being the
same. This section will focus on the common qualities of the mechanisms
rather than on the differences. The examples given will use either the ModPas
[Bron and Dijkstra, 1987a] or Ada programming language [Ichbiah, 1983].
Modular Pascal, or ModPas, is a Pascal based language which includes
modules. It was one of the first languages to include an advanced exception

66 Chapter4

handling mechanism. The exception handling mechanisms of Modutar Pascal
and Ada arebasedon [Bron and Fokkinga, 1976].

4.4.1 Exceptions

Exceptions can be declared in exception dectarations. This is done as follows
in ModPas and Ada respectively:

EX.CEPTION xFataiError; {ModPas exception dec/aration}

ILLEGALPARAMETER : exception; - Ada exception deelaratien

Exceptions are signaled by raising them in a raise statement. In ModPas, the
raising of an exception is syntactically equivalent to the invocation of a
parameterless procedure. In Ada, this is done by means of the predefined raise
operation.

xFataiError; {raising a ModPas exception}

raise ILLEGALPARAMETER; - raising an Ada exception

4.4.2 Exception handlers

An exception handter is bound to a syntacticat unit and to an exception. In
this way associations or bindings between the handter and the unit, and
between the handter and the exception are created. In some programming
Janguages, a handter can he bound to multiple exceptions. Severat exception
handters can he bound to the same unit. The kind of unit that exception
handters can be bound to depends on the programming language used.
Handiers can usually be bound to procedure and function bodies. Some
Janguages also altow handters to he bound to btocks (other than ptocedure
and function bodies) and to modules or packages. The binding of a handter to
a unit and to an exception is usually statie, which means that the association
between the handler and the unit and between the handter and the exception is
determined at compile-time. In ModPas, procedure and function bodies rnay
be prefixed by handlers, the form of which is: BUT FOR <exception identifier>:
<handler body> DO. In Ada, handterscan he attached toa block, a body of a
subprogram, a package or a task. They are specified by means of the reserved
word exception foliowed by the declamtion of one or more handters at the end

Basics of exception handling 67

of a unit. The form of a hamlier is: when <exception identifier> => <handler_
body>.

BUT FOR xFataiError: write(" fatal error ! ") DO
BEGIN

calculate;
{rest of ModPas program}

END;

begin
CALCULATE;
- rest of Ada program

exception
when ILLEGALPARAMETER => PUT(" illegal parameter ! ");

end;

A unit is said to have a hamlier for a specific exception if a handter which can
catch the exception is bound to the unit. A handter can catch only those
exceptions that are bound to it. In the previous example, the ModPas body
has a handter for the xFataiError exception and the Ada block has a handler
for the ILLEGALPARAMETER exception. Mostprogramming languages allow
special handters to be defined that can catch any exception, or all exceptions
for which no other handters are defined. This kind of handter will be referred
to as an any hand/er or others hand/er. This is necessary for the handting of
'out of scope exceptions' and to allow for finalization obligations. Out of
scope exceptions are exceptions which are propagated out of the scope of
their declaration. lf this occurs, the only way to catch them is with an 'any
handler'. In ModPas, an any handter is specified by means of specifying xAny
as the exception of a handter and in Ada others is used for this purpose:

PROCEDURE readlnputsFromFile;
BUT FOR xAny: {close file}; xReraise DO

BEGIN
{open file};
{process file}

END

begin
-- Ada program

exception

{xReraise is explained in Section 4. 4. 5}

when others => PUT(" error ! "); raise;
- raise is explained in Section 4. 4. 5

end;

68 Chapter4

4.4.3 The handling of exceptions

In order to understand exception handling mechanisms, the concepts of
invoker, invocation and activanon point should first be understood.

A subprogram is defined only once in a program, but it can be called at many
different points. Each call ofthe subprogram results in a different subprogram
invocation. The invocation of a subprogram is the activation of the
subprogram's body in the environment of the subprogram's textual definition.
The activation point of a subprogram invocation is the point in a unit from
where the subprogram is called or invoked.

The invoker of a subprogram's invocation, SI, is the invocation of the
smallest enclosing unit of SI's activation point.
In contrast to subprograms, the other units (namely blocks, modules and
packages) cannot be called from different points in the program. They are
defined and activated at one and the same place. Therefore, the invoker of a
block's, module's or package's invocation is simply the invocation of its
smallest enclosing syntactical unit.
We witl often simply refer to the invoker of a unit insteadof the more precise
terminology invoker of a unit's invocation.

When an exception is raised explicitly, the exception will be handled in the
invocation ofthe smallest enclosing unit ofthe exception raising statement.

An exception which bas been raised is handled as follows in a unit's
invocation, UI.
lf the unit bas a handter for the exception, control will pass to the handler. If
the unit bas no handters for the exception, the exception will be propagated to
Ul's invoker, which means that the exception wiJl be handled in Ul's invoker.

Note that the definition of an invoker as the invocation of a smallest enclosing
unit is, strictly speaking, not precise enough. Consider the following example:

for I in 1 .. 10 loop
begin

PROCESSPRODUCT(I);
ex ception

when FAIL => PUT("Processing failed for product number "); PUT(I);
end;

end loop;

Basics of exception handling 69

The procedure PROCESSPRODUCT is called for 10 products. lf the
exception FAIL is signaled during the processing of one of these products, an
error message including the product number is printed by the exception
handter. When the loop is executed, each value of I wilt result in a different
invocation of PROCESSPRODUCT. There is, however, only one activatien
point: PROCESSPRoouc·r(l). The smallest enclosing bleek of the activatien
point is the begin end bleek. Suppose the FAIL exception is signaled when the
fifth product is processed. Then the invoker of the invocation of
PROCESSPRODUCT(5) would he the invocation of the begin end bleek. But
there have already been five subsequent invocations of the bleek. In this case,
clearly the last invocation is meant, since the invocations of the hlock for the
products I to 4 have already terminated. In the case of recursion, however,
many nested invocations of a recursive procedure may exist. The invoker of
suhprogram's invocation, SI, is then obviously meant to he the invocation of
the smallest enclosing unit of SI*s activatien point, from which SI was
actually invoked.

4.4.4 The termination and resumption model

When an exception in a unit is propagated to the unit's invoker, the question
arises of what happens with the unit's invocation. There are two possihilities.
The simplest possihility is to terminate the invocation of the unit. This
strategy is adopted in, for example, ModPas, Ada and Clu [Liskov and
Snyder, 1979]. It is known as the terminatien model. The other possihility is
to keep the invocation intact, so that, after the exception bas been handled, the
execution of the program can he resumed at the point where the exception was
raised. This strategy is adopted in, for example, Smalltalk-80 and V AXELN.
lt is known as the resumption model. Conceptually, and from the viewpoint of
the implementation, the terminatien model is much simpler than the
resumption model. Also, in most cases, it is preferabie in order to avoid goto­
like programming, which is allowed in the resumption model. The
disadvantages of the resumption model will he further discussed in Sectiens
4.6.3 and 4.6.4. A more extensive evaluation ofthe resumption model versus
the terminatien model can he found in [Liskov and Snyder, 1979].
Because of the simplicity and other advantages of the terminatien model, the
explanation of the exception handling mechanism will assume the terminatien
model unless explicitly stated otherwise.

70 Chapter 4

4.4.5 Handier responses

When an exception is signaled in a unit for which the unit has a handler,
control will pass to the handler. There are five principally different ways in
which a handter can end. They each have a different effect on the continuation
of the control flow. Four of them are associated with the exception caught.
These are referred to as the return, propagate, retry and resume response. The
fifth response would be to raise another exception. In the literature a sixth
response is often given, namely the transfer response which can continue with
any statement in the unit associated with the handter. The functionality is
similar to the goto statement. Since goto programming is generally
acknowledged to be bad programming practice, the transfer response will be
neglected as undesirable.
The functionality of all five responses will now be explained. Actual
implementations can be more complex, but will exhibit the same functionality.

The return response has a similar effect as the return statement, which can be
used to return from procedures or methods. The invocation of the unit to
which the handter is bound is terminated. The value returned by the handter is
used as the returned value of the terminated unit. In most systems, this
response is the default way of returning from an exception handter if no
explicit response is programmed in the handter.

The propagate response from a handter causes propagation of the exception to
the invoker of the unit to which the handler is bound. For the invoker of the
unit it makes no difference whether an exception is propagated to it directly
by a unit which has no handters for an exception, or whether the exdeption is
first handled by a handter and then propagated by means of the propagate
response from the handler.

The retry response first terminales the invocation of the unit associated with
the handter. The unit is then reinitialized and execution continues at the start
ofthe unit.

The resume response can only be used in the resumption model. It causes
execution of the program to continue right after the point where the exception
was raised. The resumption response assumes that the exception handter bas
corrected the error causing the exception in such a way that the program can
be continued right after the point where the exception was raised. The resume
response is not possible for all exceptions. Whether or not a handter should be

Basics of exception handling 71

ab1e to issue a resume response is not only the responsibility of the handter,_
but also of the part of the program where the signal was raised. For many
exception occurrences it is clear at the time of raising the exception that
continuation after the exception occurrence should never take place.
Therefore, most programming languages that allow the resume response have
two ways of raising an exception. When an exception is raised in the normal
way, the resume response from a handter is not allowed. lt is only allowed
when an exception is raised using a special raise primitive.

The fifth way to continue after execution of a handler is to raise another
exception in the handter. This exception is then propagated to the invoker of
the unit associated with the handter, just as if the exception were propagated
directly from the unit.

ModPas and Ada only support the return and propagate response. The
propagate response is invoked in ModPas by raising the predefined exception
xReraise. In Ada, this is done by calling the predefined raise operation with
no arguments.

In theory, the responses treated above could be defined differently. lf the
handter of an exception is bound to a different unit than the unit in which the
exception was raised, then the retry response, for instance, could cause the
unit in which the exception was raised to be reinitialized and restarted, instead
of the unit associated with the handter. The other responses likewise have
different versions. All theoretically possible different versions of the above­
mentioned handter responses are treated in [Feder, 1990]. Feder, however,
does not indicate the necessity or value of the definitions other than the
generally used definitions mentioned above.

4.4.6 The functionality of exception handlers in control systems

Exception handters are bound to program units such as blocks. An exception
handter is activated when the unit to which it is bound terminates with an
exception. This premature termination of the unit can cause invariants to be
invalidated. Some examples of the violation of invariants will be given in
Chapter 5 in Figures 5.3.3a-c.

An important aim ofthe exception handter is to restore invariants. The actions
that are necessary in order to restore the invariants can also be referred to as
jinalization obligations. In some languages, special constrocts are available

72 Chapter4

for dealing with finalization obligations, such as unwind blocks in
Smalltalk-80. Such constrocts will not be treated, because their functionality
can be closely approached with exception handlers. Some invariants cannot be
restored by the exception handler alone, for example when the exception
causes the synchronization between processes to be incorrect. In this case, the
exception handter should signal the other processes, so that the processes can
be resynchronized and the invariant will be restored.

After restoring the invariants, the exception handler should try to realize the
(secondary) goal of the program unit to which it is bound. If this goal can be
realized, the exception handler will terminate with the return response. The
exception handler may also try to create a situation where the unit's goal may
be achieved by a renewed invocation of the unit; in this case the handter will
terminate with the retry response. lf neither of these responses are possible,
the exception handter will terminate with an exception, under the assumption
that exception occurrences are always signaled by means of raising
exceptions, and not by retuming error codes. This can be done by either
propagating the handled exception or by raising a new exception. The resume
response is not considered here, because it should not be used (see Sections
4.6.3, 4.6.4, and 6.9).

4.5 The exception handling mechanism in Smalltalk-80

The exception handling mechanism used in Smalltalk:-80 is somewhat
different from the mechanisms used in most imperative languages. This is
partly due tothefact that Smalltalk is a truly object-oriented language, and
also to the fact that the exception handling mechanism is not part of the
Smalltalk language definition but is rather an addition to the language, mainly
by the addition of the classes Signa) and Exception. The mechanism is more
powerfut and more complex than the mechanisms treated so far.

4.5.1 Exceptions and signals

In many languages, exceptions are defined and at the same time statically
bound to an identifier in an exception declaration. In Smalltalk exceptions are
defined when a signa) is created. Signals are instances of the class Signal.
Signals are usually created at the initialization of the class in which the signa)
is created. The signals created are made available to other objects by means of

Basics of exception handling 73

messages that can be sent to the class in which the signal is defined. For
example:

Object errorSignal
ArithmeticValue divisionByZeroSignal

When a signal object is created, a new exception is defined which is denoted
by the signal. The exception can be raised by sending a raise message to the
corresponding signal. This will result in the creation of an instanee of the
class Exception. Such an exception object, however, does not denote an
exception, since exceptions are denoted by signals. This fact can lead to
confusion because raising an exception in Smalltalk is done by sending a raise
message to a signal. In this thesis, the terminology of raising an exception
and raising a signa/ will be considered equivalent for Smalltalk systems. The
most important methods for raising a signal are raise and raiseErrorString:.

Object errorSignal raise
Object errorSignal raiseErrorString: 'an error has occurred'

Exception objects are used as arguments of exception handlers. They can be
used to retrieve the signal that was raised to create the exception object. They
are also used in the exception handter to retrieve any arguments supplied by
the raiser of the signal and to control the handter response.

The hierarchy of signa/s

Smalltalk signals are hierarchical. A new signal is created with another,
already existing, signal as its parent The signal is said to be a child of its
parent This hierarchy is used to catch related exceptions without the need to
bind each exception explicitly to a handter. A handter which is bound to a
certain signal will catch all exceptions represented by the signal's children. If
a handter is bound to ArithmeticValue errorSignal for instance, it will catch,
among others, the exceptions represented by the signals ArithmeticValue
overflowSignal, ArithmeticValue underftowSignal and ArithmeticValue

divisionByZeroSignal, since they are all (indirectly) children of ArithmeticValue
errorSignal.

A small part ofthe hierarchy ofsignals is given below.

74

Signal genericSignal
Object informationSignal

Object userlnterruptSignal
Object errorSignal

ArithmeticValue errorSignal
ArithmeticValue rangeErrorSignal

ArithmeticValue overflowSignal
ArithmeticValue underflowSignal

ArithmeticValue domainErrorSignal
ArithmeticValue divisionByZeroSignal

Chapter4

This hierarchy is also used to specify 'any handters'. All exceptions
representing error conditions are supposed to be created with Object
errorSignal as their parent Therefore, a handter bound to Object errorSignal
should catch all such exceptions. Object errorSignal bas Signal generioSignal as
its parent, which is the ancestor of all signals. Unfortunately this sigrtal may
not be bound to handlers. The Smalltalk user guide states that this .signal is
considered an abstract entity and should not be used to catch exceptions
directly. Therefore, specifying Object errorSignal to create an any handter is
only foolproof if all users conform to the convention of creating . all new
signals with Object errorSignal as their parent This implementation is not as
robust as the implementation of any handters in MoeiPas and Ada.

4.5.2 Exception handters

An exception handter in Smalltalk is a block. A block in Smalltalk ·is quite
different from blocks in imperative languages. lt bas a greater reseml)lance to
a subprogram. A block consists of a sequence of statements, enclosed in []
brackets, which are executed or invoked when the message value is sent to the
block. Blocks can be conveniently used as arguments of methods., When,
during execution or invocation of the method, the message value is sent to a
method's argument which points to a block, the block is executed or invoked
in the environment ofthe block's definition.

In contrast to imperative languages, where handters are statically (i.e. at
compile-time) bound to units and to exceptions, exception handters in
Smalltalk are dynamically (i.e. at run-time) bound to blocks and exceptions.
The binding of an exception handter to a block and an exception is done by
means of the handle:do: metbod which can be sent to a signa!. The handle:do:
metbod is invoked by evaluation of an expression such as:

Basics of exception handling 75

signal handle: handlerBiock do: doBiock

This produces a binding of the handlerBiock to the doBiock and to the
exception denoted by signal. The onJy purpose of the handle:do: metbod is to
produce han<ller bindings. It is also the only way of binding a handler.
Handiers cannot be bound to methods.
Invocation of the handle:do: metbod first results in the production of the
bindings between the handlerBiock and the doBiock. lmmediately after that, the
doBiock is invoked by sending it the value message.

4.5.3 The handling of exceptions

When an exception is raised, the exception will be handled in the invocation of
the smallest enclosing unit of the exception raising statement. A unit in
Smalltalk is defined to be either a block or a metbod.
An exception is handled as follows in a unit's invocation, UI. If the unit has a
handter for the exception, control will pass to the handler. If the unit bas no
handters for the exception, the exception will be propagated to UI's invoker,
which means that the exception will be handled in UI's invoker. Becàuse
methods cannot have handlers, the handling of an exception in the invocation
of a method, MI, always implies the propagation of the exception to MI's
invoker.

The invoker of an invoked doBiock or handlerBiock which are bound by a
handle:do: metbod is the invocation of the smallest enclosing unit of the
handle:do: message expression. In all other cases, the invoker of a unit's
invocation, UI, is the invocation of the smallest enclosing unit of UI's
activation point. The activation point of a metbod's invocation is the
expression which invoked the method. The activation point of a block's
invocation is the expression which invokes the block. So this is an expression
where value (or value:, or any other ofthe value messages) is sent to the block.

4.5.4 Bandier responses

All the handter responses mentioned in Section 4.4.5 are implemenled in
Smalltalk. The return, propagate, retry and resume responses are implemenled
by the messages return, reject, restart and proceed respectively. In order to
effect these responses, the messages can be sent to the exception object which
acts as the argument of an ex ception handler.

76 Chapter4

The resume response permits control to return from a handler to the statement
following the statement where the exception was originally raised. Therefore,
it is not possible to terminate an invocation when an exception is propagated.
The invocation which handles the exception, and all other invocations that
have issued a propagate response, are terminated only at the point that a
return or retry response is issued or another exception is raised. The problems
associated with the resume response in Smalltalk and in other languages will
he discussed in Section 4 .6.3.

The example of exception handling shown in Figure 4.5.1 is taken from the
example presented in Section 2.3.3. It is rewritten to include exception
handling.
ErrorSignal is another way of representing Object errorSignal. It is a global
variabie which is known tbraughout the system. When ErrorSignal ·is raised
from within the time-out block, the exception will he caught by the handler.
The run-time system will set the argument exc to the exception object. The
error string with which the signal was raised is retrieved from the exception
object by sending ît the message errorString. The handler finîshes with exc
reject, which is the propagate response. Consequently the invoker of the
forkUp invocation will handle the exception. In Figure 4.5.2 the methad forkUp
is rewritten for the retry response.

Slaveforklifter >> forkUp
ErrorSigna I

handle:

do:

[:exc I
self putOff: 'o-forkUfter-power'.
self sendErrorMessageToOperator: exc errorString.
exc reject]

[self putOn: 'o-forkUfter-up'.
self putOn: 'o-forklifter-power'.
self

receive: true
trom: 'i-forkUfter-isUp'
within: 6 seconds
iffimedOut:

[ErrorSignal raiseErrorString: 'time-out fork lifter going up'].
self putOff: 'o-forklifter-power']

Figure 4.5.1 Exception handling with the propagate response.

Basics of exception handling

SlaveForklifter >> forkUp
ErrorSignal

handle:

do:

[:exc I
self putOff: 'o-forklifter-power'.
self sendErrorMessageToOperator: exc errorString.
self sendRestartMessageToOperator: 'fork lifter up'.
self receiveRestartResponseFromOperator.
exc restart)

[self putOn: 'o-forklifter-up'.
self putOn: 'o-forklifter-power'.
self

receive: true
trom: 'i-forklifter-isUp'
within: 6 seconds
ifTimedOut:

[ErrorSignal raiseErrorString: 'time-out fork lifter going up'].
self putOff: 'o-forklifter-power')

Figure 4.5.2 Exception handling with the retry response

4.6 Evaluation

4.6.1 A general evaluation of the advanced exception handling
mechanisms

77

The most important aspect of the use of the exception handling mechanism as
treated in the previous sections is that it facilitates the creation of robust
programs. The advantages of the mechanism are as follows:

• The automatic propagation of unhandled exceptions prevents untreated
errors from causing system crashes.

• Exceptions make it possible to fulfil finalization obligations at each level
of abstraction. This is done by catching exceptions if necessary and
propagating the caught exception after execution of the finalization
obligations by the handler.

• The exception handling mechanisms are based on only a small number of.
prirnitives which allow all exceptions, both those detected by the user and
by the system support, to be handled in a uniform way. A requirement for
this is that the system support declares all exceptions that it can raise.

78 Chapter4

Also the any handter can be used to catch exceptions raised by the
system.

• The use of exceptions enables the separation of concerns in the
development of programs. The code for the normal processing of the
program can, to a great degree, be developed separately from the code for
the handling of exceptions. This leads to programs which are easier to
develop, read and maintain.

A disadvantage of the exception handling mechanism is its greater complexity
than the traditional ways of exception handling. The mechanism changes the
flow of control of a program in an entirely different way than is done by the
traditional programming methods.

Not alllanguages employ all five mentioned handler responses. The propagate
response, however, is fundamentalto the exception handling mechanism and
is therefore available in all programming languages with advanced ~xception
handling mechanisms. The return response is available in most languages.
Raising an exception from within a handler should also be possible, since
precondition errorscan occur anywhere, including handlers themselves.

The retry response is not absolutely necessary, since its functionality can be
approached using the return response together with programming constrocts
for repetition. This, however, leads to inelegant code which is less clear. The
elegance of exception handling using the retry response will be shown in
Section 7.3.

4.6.2 The return response as an inadequate default response

The return response is usually the default response of an exception handler.
This is an inadequate choice because the accidental omission of a handler
response can have disastrous consequences.

Exception handlers facilitate the creation of robust programs. Programming
errors in complex systems cannot be completely avoided, however. An error
which is easily made, and which cannot be detected by a compiler in the case
that default responses are allowed, is the accidental omission of a response
such as a propagate response. If such a propagate response is accidentally
omitted, the program is allowed to continue in an incorrect state which can
lead to program crashes and, in the case of control systems, to catastrophic
reactions of the controlled system.

Basics of exception handling 79

If, on the other hand, the propagate response is chosen as the default response,
then accidental omission of a response will automatically lead to the
propagation of the exception to higher levels. In this way, all finalization
obligations of higher levels will be fulfilled and the system, or a part of it, will
terminate in a controlled way. Clearly it is much more likely that a response
from a handter will be forgotten than that an incorrect response will be used.

It would also be possible not to allow a default response and to regard the
omission of a response as an error, teading to a run-time exception. This
exception would then discard the original exception, so the propagate
response is preferred as a default response.

4.6.3 The resume response as an inadequate response in a
sequentia(process

The resume response can be convenient in a small number of cases where the
program can be continued right after the error, after correction of the error in
an exception handler. One of these cases is the resumption from a debugger.
This could, however, also be implemented without using the resume response,
and in itself it does not justify the resume response. There are, in fact, severe
drawbacks associated with the resume response. Consider the following part
of a Pascal program:

i :=5;
b := a[i];

The value of b would be expected to be the value of the fifth element of the
array a. If, however, array a were to have only 3 elements, then an exception
would occur. The value of i could be set to I in an exception handter, which
could be bound to the subprogram shown, whereafter a resume response could
be given. As a result b would be assigned the first value of a.

This kind of behaviour makes programs hard to onderstand, since the result of
an operation can be determined by an exception handter which is not bound to
the operation itself but to the invoker of the operation, or to any other invoker
in the call chain. This leads to similar problems as the use of the goto
statement. lt is also inconsistent with the use of procedure or metbod
abstractions. These abstractions hide the implementation aspects of lower
layers in a system from the higher layers. When an exception is propagated to

80 Chapter4

a higher level, the resume response enables correction at the higher level and
consequent resumption at the lower level. Thus, in order to understand and
develop programs with these kind of characteristics, it is necessary to study
the implementation aspects of both the higher layers and the lower layers at
the same time. And this is the very thing that the use of procedure and metbod
abstractions aims to avoid.

Therefore, it is concluded that it is better oot to use the resume response at all.
In systems with parallel processes, there are additional probieros. with the
resume response. These probieros are treated in the next section and in
Section 6. 9.

4.6.4 Conllicts between the resume response and critical regions

A problem associated with the resume response is its use in a parallel system
that uses critical regions to prevent simultaneous access to shared rysources.
A simpte example of this is the use of a semaphore for mutual exc~usion on
which a wait or p-operation [Dijkstra, 1965] is performed when entering the
critical region. When the region is left, the semaphore is signaled by executing
a v-operation on it. If an error occurs in a critical region, an exception will be
raised. If the exception caooot be handled within the critical region, it will be
propagated to the invoker. Since propagating the exception means that the
critical region is left, the semaphore should now normally be signaled, in order
oot to keep the critical region locked and inaccessible to others.

Ifthe resumption model is used, however, and an exception causes the critical
region to be left and the semaphore to be signaled, then the exception cao be
caught by a handter in which a resume response is issued. This will cause
continuation of the process within the critical region without, however, first
executing a wait operation on the semaphore. In this way an inconsistent state
is created such that two processes will always be allowed to enter the critical
region instead of one. Therefore, the existence of the resume response
prevents the semaphore from being signaled when the critical region is left by
means of exception propagation. lt may only be signaled when resumption in
the critica) region is no Jonger possible. Therefore, the critica) region will
remaio locked until that time. This cao be intolerable. lt cao even ·lead to
deadlock if an exception handler, handling the exception from the critical
region, executes an operation which needs access to the critica! region. ·

Chapter 5
The handling of constraint violations

Most exception hamDing mechanisms have been developed for the handling of
internal exceptions in stand-afone sequential processes and have no special
provisions for dealing with external exceptions in control systems. These
mechanisms are meant to be used for exception occurrences in operations that
are determined by the internal state of the operation itself. Exception
occurrences are detected by having each operation explicitly test its own
internal state.

In this chapter the concepts 'constraint' and 'constraint violation' will be
defined. These concepts are essential in order to determine the requirements of
a mechanism for the handling of external exceptions in control systems. Rwill
be shown that a mechanism is required for the specification of constraints and
the detection and handling of constraint violations. The known mechanisrns
for the handling of constraint violations are treated and shown to be
inadequate. Finally, a new mechanism is presented. Although the material
presented in this chapter is developed in the context of control systerns, it is
also of general relevanee in multi-process environments.

5.1 Definition of terms

5.1.1 Constraints, constraint functions and constraint violations

The constraint of an operation is that part of its precondition which refers
exclusively to the state of the environment of the process executing the
operation and which is invariant over the operation: it bas to be valid
throughout the execution of the operation.

A constraint can be compound, in which case it consistsof (sub-)constraints.
A compound constraint is met if and only if all of its (sub-)constraints are
met. In most situations we will not explicitly distinguish compound and sub­
constraints, but simply use the term constraint. This makes it possible to refer

82 Chopter 5

to the constraints (plural) of an operation, wbich is meant to include all of the
sub-constraints ofthe operation's compound constraint.

Consider, for example, an operation that controts a cylinder wbich pushes a
product upwards. The goal of the operation could be to make the cylinder
extend to the upward position under the condition that the emergency button is
not pressed. The emergency button wbich bas to stay inactive would be a
constraint of the operation. Another constraint could be that there must be
adequate air under pressure available for the cylinder. Other examples of
constraints are a temperature wbich bas to stay within a certain range during
the execution of an operation, or the external state of a process with wbich the
operation wants to interact To allow the interaction to take place, the
operation's constraint will require that the interacting process is in such a state
that it will eventually perform the desired interaction with the (process
executing the) operation.

A constraint of an operation can be expressed by a boolean constraint
function wbich is defined only during the execution of the operation. The
constraint function returns true when the constraint is valid and false when the
constraint is not valid.

A constraint violation is that part of the state of the environment of a process
executing an operation which does not satisfy the operation's constrairlt.

A constraint violation is a precondition error, and it causes an ,external
exception occurrence in the process executing the operation of wbich the
constraint is violated.

The traditional exception handling mechanisms alone are not suffi.cient for the
handling of external exceptions, because these mechanisms were developed
for the handling of internat exceptions. Without additions tó these
mechanisms, the handling of most external exceptions becomes awkward.

The time-out mechanism bas been added to virtually every language for the
control of industrial systems in order to be able to handle external exceptions
that are related to exceeding a time limit. Mechanisms for the handling of
external exceptions due to constraint violations, however, are more complex
and therefore not so common. Tbis is due to the fact that constraints need to
be valid during the complete execution of an operation. Constraint violations

The handling of constroint violations 83

can occur at any point during the execution of an operation, and they are
usually detennined by the execution of other processes.

5.1.2 The active constraints of a process

Many operation invocations can exist at the sarne time during the execution of
a sequential process. The active constraints of a process are the collection of
the constraints of all cuerent operation invocations within the process. So,
when an operation is invoked in a process, the operation's constraints are
added to the active constraints of the process. Wben the operation is
tenninated, its constraints are removed from the process's active constraints.

The constraints of an operation in a process will be illustrated using the
example ofFigure 5.1.1. It is basedon the transporter exarnple ofSection 2.3.
This exarnple is somewhat simplified, so that the fork-lifter is controlled by
the CtriTruck processor instead ofthe SlaveForklifter processor.

The constraints of CtriTruck » body are that the emergency button is. not
activated and the operator does not send a stop command.

Wben two processes are mutually interactive, they both make assumptions
about each other's extemal states. In the metbod CtriTruck »
receiveStackFromTraverse, after returning from the statement self
receiveFrom: 'sync-traverseAtFork', the CtriTruck processor assumes that the
CtriTraverse processor has moved the traverse to the position of the fork, that
the traverse will stay there, and that the CtriTraverse processor will be waiting
for CtriTruck to put the fork up. CtriTraverse expects to be informed of the
successful completion of this operation by means of the self sendTo: 'sync­
forklsUp' statement in CtriTruck. These expectations about the extemal states
of interacting processes are constraints. Therefore, a constraint of CtriTruck »
receiveStackFromTraverse in Figure 5 .1.1 is that the external state of the
CtriTraverse processor corresponds to the state expected by CtriTruck. The
unactivated emergency button and the absence of a stop oommand from the
operator arealso constraints ofthis method.

Finally, the constraints ofthe metbod forkUp are that the emergency button is
unactivated, that the state of the environment of the fork is such that it is safe
for the fork to go up, and that the operating switch, used to switch off the fork
lifter temporarily, is on.

84

CtriTruck >> body

"Constraints:
- Emergency button not activated
- No stop cammand from operator"

self receiveStackFrom Traverse.
self transportStackToFumace.
self giveStackToFumace.
self goBackToTraverse

CtriTruck >> receiveStackFromTraverse

"Constraints:
- Emergency button notactivaled
- No stop cammand from operator

Chapter5

- The extemal state of CtriTraverse co"esponds to the state expected
by Ctr/Truck"

self sendTo: 'sync-truckResetAtTraverse'.
self receiveFrom: 'sync-traverseAtFork'.
self forkUp.
self sendTo: 'sync-forklsUp'

CtriTruck >> forkUp

"Constraints:
- Emergency button not activated
- The fork can safe/y go up without causing damage
- Operating switch is on"

self putOn: 'o-forklifter-up'.
self putOn: 'o-forklifter-power'.
self

receive: true
from: 'i-forkLifter-isUp'
within: 6 seconds
ifTimedOut: [KiiiSignal raise].

self putOff: 'o-forklifter-power'

Figure 5.1.1 Constratnts ofsome methods.

The metbod forkUp is called from the metbod receiveStackFromTraverse which
is in turn called by the body. Therefore, when the metbod forkUp is active, the
óther two methods will also be active, assuming that the forkUp metbod is oot
called by other methods. So when the forkUp metbod is invoked, the active
constraints of the Cb1Truck process consist of at least the constraints of all
three methods. This means that a violation of any of these constraints will
result in an exception occurrence in Cb1Truck. lf, on the other hand, CtrlTruck
is waiting for an interaction to take place in the receiveStackFromTraverse

The handling of constraint violations 85

method, then the active constraints of CtrlTruck are the constraints of the
methods receiveStackFrom Traverse and body (plus the constraints of the ·
metbod that invoked body and of the other methods that were already
invoked).

5.1.3 DitTerent kinds of invariant

Invariants define relationships within a sequential process or between several
processes. We will define two special kinds of invariant: internat invariants
and external invariants. Their definitions will facilitate the discussion of the
handling of constraint violations in the following sections ofthis chapter.

An internal invariant is an invariant which is completely determined by the
state of a sequential process or operation.

An external invariant is an invariant which is determined by the states of two
or more processes.

Another important kind of invariant is the general control invariant, which
essentially determines all constraints in control systems. All control systems
are based on this invariant which specifies that the state of the controlling
system corresponds to the state ofthe controlled system and the operator.
The controlling system changes from one state to another and drives the
actuators in such a way that the state of the controlled system is made to
correspond with its own state. When the controlling system is waiting for a
change of state of the sensors, it is actually synchronizing its own state with
the state changes of the controlled system. The state of the sensors can be
tested from time to time to see whether the control invariant still holds, i.e. to
see whether the state of the controlled system is still such as is expected by the
controlling system. lfthis is not the case,·the controlling system could request
operator help to change the state of the controlled system in such a way that
the control invariant holds again; or the controlling system can reset the
controlled system to bring it into a defined state again.
A man·machine interface is used to keep the control invariant valid between
the operator and the controlling system.

86 Chapter5

5.2 Constraints

5.2.1 The local specification of the constraints of an operation

The constraints of an operation are specific for tbe operation itself. Therefore,
tbey should be specified locally, that is independently of tbe point in the
program at which tbe operation is invoked. This enables parts of a program to
he developed at different, largely independent, levels of abstraction. The local
specification of tbe constraints of an operation is tbus an important
requirement for tbe creation of modular program units.

Referring to tbe exarnple which bas been presented in Figure 5 .1.1, tbe
constraints oftbe metbod CtriTruck » forkUp are that tbe emergency .button is
unactivated, that tbe state of tbe environment of tbe fork is such that it is safe
for tbe fork to go up, and tbat tbe operating switch, used to switch off tbe fork
lifter temporarily, is on. The constraint of tbe metbod CtriTruck » body which
specifies that tbe operator does not send a stop oommand is not a con5traint of
forkUp, because forkUp could, for exarnple, also he invoked in manual mode.
In manual mode, tbe operator can choose several low level commands from
tbe MMI (man-machine interface) to he executed, such as tbe oommand
forkUp or forkDown. In this situation, tbere is no need for tbe operator to stop
tbe production process, because control is automatically retumed to tbe
operator after execution of tbe chosen forkUp or forkDown command. ·

The local specification of constraints can lead to duplication of constraints.
Consider, for exarnple, tbe constraint that tbe emergency button is
unactivated. This constraint is specified in all three metbods. If tbe metbod
forkUp would he a library routine, so that tbe eaUers (or senders) of forkUp
cannot be detennined in advance, tben tbe duplication of tbe emergency button
constraint is indeed necessary.

5.2.2 The specification of constraints common to many operations

Obviously tbe specification of tbe constraints of an operation should serve
more purposes tban just as a oomment to tbe program: it would be useful to
monitor tbe specified constraints during tbe execution of tbe operation and to
signal constraint violations. The constraints of an operation must be valid
throughout tbe execution of tbe operation, so tbat tbe operation's goal' can be
achieved. Therefore, tbey must also be valid during tbe execution of other

The handling of constroint vio/ations 87

operations invoked by the original operation. So, a mechanism for the
monitoring of the constraints of operations must work in such a way that all
of the active constraints of the process executing the operations are
monitored.

A consequence of such an approach is that unnecessary duplication of
equivalent constraints can be avoided. Suppose, for instance, that the metbod
forkUp ofFigure 5..1.1 is only called by receiveStackFromTraverse and that the
latter metbod is always called by body, then the constraint specifying that the
emergency button is off can be removed from the methods forkUp and
receiveStackFromTraverse. In this case, modularity ofthe methods forkUp and
receiveStackFromTraverse is obviously not of primary concern, since it is
known that they are only (indirectly) called by the metbod body. Avoiding the
unnecessary duplication of constraints in such a way will lead to simpter and
better programs, as long as it is evident that the constraints left out are under
all circumstances already monitored when the operation is called.

In more general terms, it can be stated that the constraints which are common
to many different operations can, in eertaio cases, be specified in a single
operation. In eertaio control systems, for instance, all operations executing in
a eertaio process are known to be (indirectly) called from a main program
loop defining the process cycle. In such cases, constraints like the emergency
button being off, can be specified in the main process cycle, so that they are
guaranteed to be monitored for all operations executed in the main process
cycle. The constraints need not be duplicated in the called operations.
In such a case, it is a better option to specify the constraints which are
common to many operations in a single operation from which the other
operations are called, rather than to re-specify the constraint in all called
operations.
Note that in most imperative languages, such as Pascal, static scope rules can
guarantee that eertaio operations are only called from eertaio other operations.
In most object-oriented languages which use dynamic binding, such as
Smalltalk, it is often necessary to analize the run-time behaviour of the
program in order to determine such relationships.

88 Chopter 5

5.3 Constraint violations

5.3.1 A traditional way to detect constraint violations

An important aspect of constraints is that they must be valid throughout the
execution of an operation. Constraints may be violated while a process is
blocked in an interaction. It is therefore generally insufficient to check the
constraints at eertaio statements of the operation. The state of the environment
of a fork-lift, for example, could be checked before the fork goes up, but there
is no guarantee that the environment will remaio in a safe state while the fork
is going up.

Another complicating aspect of constraints is that, during the execution of an
operation, many constraints must be checked which are not constraints of the
executing operation itself but of other active operations on the call chain.

A possible way of detecting constraint violations is to let each operation
explicitly detect all active constraints of the process in which it is executed.
Thus, the constraints that an operation would need to detect would he the
process's active constraints at the time of the call, plus the operation's own
constraints.

In the example ofFigure 5.1.1, the metbod forkUp could be extended'to check
all the active constraints of the process. In this case, instead of simply waiting
for the fork to he up, the operation would have to wait for either the fork to be
up or for any of the constraints to be violated. If a constraint is violated, an
exception should he raised. This is illustrated in Figure 5.3 .1 where every
metbod tries to monitor the process's active constraints. (Error messages and
exception handters have been omitted for the sake of simplicity.) The reader
should also note that, for the sake of clarity, notall constraints are specified.

The detection of constraint violations has been realized with a mechanism that
enables a process to wait for one out of a set of interactions to occur. The way
the program will proceed depends on the interaction that has taken place. In
Process Calculus, this functionality is given by the possibility to reèeive an
object from any of a set of ports, for example with the metbod B1..1bble >>
receive:fromOneOf:do:.
The meaning oftl1e messageself receive: objectArray fromOneOf: portArray do:
doSloek is that a receive action is specified which tries to receive one of the
objects specified in objectArray from one of the ports specified in portArray.

The handling of constraint vio/ations

CtriTruck » receiveStackFromTravèrse
H

seH
receive:

#(nil nit true)
fromOneOf:

#('sync-traverseAtFork' 'mmi-operatorReset' 'i-emergencyStop')
do:

89

(:port :item 1 (port= 'sync-traverseAtFork') ifFalse: [KiiiSignal raise]].
self forkUp.
"etc ... "

CtriTruck >> forkUp
seH putOn: 'o-forklifter-up'.
seH putOn: 'o-forklifter-power'.
seH

receive:
#(true nil true false)

fromOneOf:

do:

#('i-forklifter-isUp' 'mmi-operatorReset' 'i-emergencyStop'
'i-operatingSwitch')

(:port :item I (port= 'i-forklîfter-îsUp') ifFalse: (KiiiSignal raise])
within: 6 seconds
ifTimedOut: (KiiiSignal raiseErrorString: 'time-out lift going up'].

self putOff: 'o-forklifter-power'

Figure 5.3.1 Deleetion of constroint violations in every operation.

The object to be received from a port in portArray is the object from
objectArray with the sameindex as the port in portArray. The :first object that
can be received terminates the receive action and causes the daBloek to be
executed with two arguments: the received object, and the port from which it
was received. In Figure 5.3.1, the speci:fication ofthe nil object in the object
array means that any object can be received from the corresponding port in
the port array.
This functionality is referred to as the select-interaction functionality. Such a
functionality is also offered by other programming languages, such as Ada by
means of the select statement (see the Ada Language Reference Manual
[Ichbiah, 1983]), and Sequentia) Program Charts [IEC, 1988].

The metbod forkUp is now no Jonger reusable and it is also difficult to read. If,
for example, the fork-lift were to be tested under direct control of the

90 Chapter 5

operator, without any synchronization with other processes, the constraints
would be entirely different, requiring a different forkUp method.

The conclusion is the same as stated in Section 5.2.1: namely, that each
operation should only specify its own constraints. The constraints of an
operation should not he unnecessarily duplicated in the operations called. It is
not possible to achieve this with conventional mechanisrns. The way in which
constraints can he specified in operations such that they need not be repeated
in the called operations will he dealt with in Chapter 6, where a new
mechanism for the handling of constraint violations is introduced.

5.3.2 Constraint violations by controlling processes

In the examples given inSection 5.3.1, the active constraints of a controlling
process were violated by processes in the controlled system. These constraint
violations were detected by the controlling process itself. Constraints can also
be violated by other controlling processes, which will then need to inform the
controlling process of which an active constraint was violated. The !lCtion of
informing another process of a violation of one of its active constraints will be
referred to as signaling a constraint violation toa process.
This will he iUustrated by a finther elaboration of the example of the ~sport
system from Section 2.3.

When the truck moves the stack to the filfnace and reaches the point where it
can turn the fork to the furnace, three actions will he performed in ~parallel:
the fork will go down; it will turn 180 degrees towards the furnace; and, at the
same time, the truck will continue to move towards the furnace. The three
actions are controlled by the controllers SlaveForkUfter, SlaveForkTumer and
CtriTruck respectively. If the fork-lift is obstructed by another object while
going down, it will he necessary tostop the fork-lift, the fork-turner~and the
truck in order to avoid damage. The SlaveForklifter (and not the other two
processors) should detect the obstruction of the lift. This is because. the lift
movement is initiated by SlaveForkUfter. When the error is detected by the
SlaveForkUfter processor, the constraint violation will have to he signaled to
the SlaveForkTurner and the CtriTruck processors so that they can stop l)le fork
turner and the truck. After correction of the error, by the operator for
example, all three interrupted movements can he continued.

The handling of constroint violations 91

Constraint violations can also take place between processes that do not
interact under normal processing circumstances. Consider a robot which
accidentally drops a product on an assembly line, but which does not interact
with the assembly line in any other way. The line will probably have to he
stopped. In this case, the error will he detected by the robot controller. The
process controlling the assembly line will have to he informed of this
constraint violation in such a way that it can immediately stop the line. Once
the dropped product is removed, the assembly line can continue norrnally.

The examples given above are examples of constraints which are imposed in
order to prevent d.amage. Apart from such constraints, there will also he
constraints imposed in order to rnaintaio consistency in the synchronization
between two processes. When two processes are interacting, they rnaintaio
certain assumptions about each other's extemal states. These assumptions
should he correct in order to achleve correct synchronization between the
processes and to prevent deadlock.

Consider the example given in Figures 5.3.2a-c, which is also based on the
example of Section 2.3. The example is slightly modified so that CtriTruck
directly controts the fork-lift. The example describes the transfer of a stack
from the traverse by the fork-lift truck. The methods invoked are indicated
with an arrow. In the example the fork does not go up in time. Here this
results in the immediate raising ofthe KiiiSignal.

CtriTransporter model

syno2-truokResetAITraverse syno-truokResetAITraverse
syno-traverseAIFork

sync2-I"!JIE!rseA!Fork \.

syno2-forki$Up sync-forklsUp

Figure 5.3.2a Violanon of a constraint in one process due to an exception
in another - A simplijied model ofCtr/Transporter.

92

CtriTraverse » body
stackSize >= self maxStackSize ifTrue: [self stackToTruck]. +-­
self stackTray

CtriTraverse >> stackToTruck
self receive: 'belowMiddle' trom: 'sync1-pusherState'.
self receiveFrom: 'sync2-truckResetAtTraverse'.
self traverseToFork.
self sendTo: 'sync2-traverseAtFork'.
self receiveFrom: 'sync2-forklsUp'.
self traverseT oPusher

Chapter 5

Figure 5.3.2b Violation of a constroint in one process due to an exception
in another - Process description ofCtr/Traverse.

CtriTruck » body
self receiveStackFromTraverse.
self transportStackToFumace.
self giveStackToFurnace.
self goBackToTraverse

CtriTruck >> receiveStackFromTraverse
self sendTo: 'sync-truckResetAtTraverse'.
self receiveFrom: 'sync-traverseAtFork'.
self forkUp.
self sendTo: 'sync-forklsUp'

CtriTruck » forkUp
self putOn: 'o-forklifter-up'.
self putOn: 'o-forklifter-power'.
self

receive: true
trom: 'i-forklifter-isUp'
within: 6 seconds
ifTimedOut:

[KiiiSignal raiseErrorString: 'time-out fork going up'. +--

"The raising of the Kil/Signa/here implies a vialation of one
of Ctr/Traverse's active constraints concerning the externa/
state of CtrfTruck'l

self putOff: 'o-forklifter-power'

Figure 5.3.2c Viola ti on of a constroint in one process due to an exception
in another - Process description ofCtr/Truck.

The handling of constroint violations 93

In reality, the operator or the system itself would first try to correct the error
and the KiiiSignal would only be raised if the error could not be corrected
locally. The example bas, however, been kept simpte to show only the
important aspects.

Due to the raising of the KiiiSignal, the methods forkUp,
receiveStackFromTraverse and body from CtriTruck will be terminated, teading
eventually to the resetting of the truck (not shown in the example). This is a
violation of a constraint of CtriTraverse, since CtriTraverse will now have an
incorrect assumption about the extemal state of CtriTruck. After correction of
the error, the CtriTruck processor wilt start the body again and become blocked
in the statement self sendTo: 'sync-truckResetAtTraverse'. The CtriTraverse
processor will still be blocked in the statement self receiveFrom: 'sync2-
forklsUp'. Thus deadlock will result. To avoid this an exception must be raised
in CtrtTraverse when CtriTruck violates CtriTraverse's constraint by breaking
out of its synchronization with CtriTraverse due to the raising ofthe KiiiSignal.

5.3.3 Some relationsbips between constraint violations, e:x:cepti~ns
and tbe violation of invariants

In the preceding sections, it bas been shown that a constraint violation causes
an exception occurrence in the process of which an active constraint is
violated. This exception occurrence should eventuaiJy result in the raising of
an exception in the process. In this section, some different possibilities will be
treated in order to answer the question of how constraint violations eventually
can or should result in the raising of an exception.
The different possibilities found will be used in following sections to
categorize and evaluate the known mechanisms for the handling of constraint
violations, eventually teading to a new mechanism.

Consider two processes: a violator and a victim. The violator violates one of
victim's active constraints, causing an (extemal) exception occurrence in the
victim. If the victim bas an exception handling mechanism which supports the
raising of exceptions, then an exception needs to be raised in the victim.

There are three possible situations in regard to which process detects the
constraint violation by the violator and which one raises the (external)
exception in the victim:

94. Chapter 5

• If the victim is the detector it makes no sense for the violator to he the
raiser, so ifthe victim is the detector ofthe constraint violation, the victim
will also he the raiser of the exception. An example of this is when the
victim is a controlling process and the violator is a physical process in the
controlled system. The victim detects a constraint violation in the
controlled system and consequently raises an exception.

• If the violator is the detector, the victim could be the raiser. This means
that the violator needs to inform the victim of the constraint violation hy
means of an interaction. Consequently the victim could raise the
exception.

• In the third situation, the violator is the detector of the constraint, violation
and consequently raises an exception in the victim. This means that the
violator raises an exception in another process.

The violator and the victim could also represent a set of processes, rather than
a single process.

• If the victim is a set of processes, this leads to the raising of exceptions in
several processes.

• lf the violator is a set of processes, this indicates the possibility of
concurrently occurring exceptions in the victim. Each e~ception
occurrence should lead to the raising of an exception in the victim. Since
it is not possihle to raise exceptions concurrently in a single process, there
must be a mechanism to selectively and sequentially raise one 'or more
exceptions, and to buffer or discard any remaining exceptions.

Another point of interest is the point in the program at which the excèption is
actually raised in the victim. The simplest possibility is to place no
restrictions on the point at which the exception is raised. Since the occurrence
of the constraint violation by the violator generally is not synchronized with
the process in which the ex ception should he raised, the ex ception · can he
raised at any point in the process, which could lead to an inconsistent state of
the process such that its invariants no longer hold. This can he prevented hy
deferring the actual raising of the exception until the process is in such a state
that its invariants are either valid or can he restored by an exception handler.
This could, for example, be a state in which the process is blocked, waiting
for a delay or for an interaction to take place. When the exception is raised,

The handling of constroint vio/ations 95

the process should be unblocked in a well-defined way, taking account of
other processes which possibly participate in the interaction.
The undesirability of al1owing the raising of exceptions due to constraint
violations at any point in a processis i1lustrated in Figures 5.3.3a-c.

ForklifterCtrl >> forkUp
AnySignal

handle:
[:exception I

do:

"lf an ex ception due to a constraint vialation would be raised at this
point, then the power of the lift motor would not be switched off.
This would mean a vialation of the invariant that specifies that the
lift motor is stopped when the forkUp methad is terminated."

self putOff: 'o-forklifter-power'.
exception reject]

[self putOn: 'o-forklifter-up'.
self putOn: 'o-forklifter-power'.
self

receive: true
trom: 'i-forklifter-isUp'
within: 6 seconds
ifTimedOut: [KiiiSignal raise].

self putOff: 'o-forklifter-power']

Figure 5.3.3a Violating invariants by raising exceptions due to constraint
violations.

Linkedlist » addlast: alink

"This example is taken from the Smal/talk-80 system.
aLink is added to a linked list which is linked by pointers.
firstLink and lastLink point to the beginning and end of the list
respectively. •

self isEmpty
ifTrue: [firstlink := alink]
ifFalse: [lastlink nextlink: alink].

"lf an exception due to a vialation of one of the process's active
constraints would be raised here, the intemal structure of the linked list
would become incorrect. •

lastlink := alink.
talink

Figure 5.3.3b Violating invariants by raising exceptions due to constraint
violations.

96 Chapter 5

OrderController » sendOrder

'7he invariant in this case is that the contents of orderBuffer plus order
itself represent all orders which have not yet been sent.
order is a temporary variabie only used in this method"

I order I
AnySignal

handle:
[:exception I

do:

"Put the order back info the order buffer when the send action of
the order has been terminaled with an exception."

order == nil ifFalse: [self putOrderBackln: orderBuffer].
exception reject]

[order := self getOrderFrom: orderBuffer.
self send: order to: 'out'.
"lf an ex ception due to a constraint vialation would be raised at this
point (after a successful send), then the exception hand/er wou/d
put the order back info the orderBuffer although the order had been
successfu/ly sent. •

order := nil]

Figure 5.3.3c Vlolating invariants by raising exceptions due to cofistraint
violations.

In Figure 5.3.3a, the invariant specifying that the power of the lift' motor is
switched off when the metbod forkUp is terminated cannot be guaranteed,
because all statements where the motor is switched off can be inten'upted by
the raising of an exception due toa constraint violation. In Figures 5.3.3b-c
the violated invariants cannot be restored, because the exceptions could have
been raised at any point in the program.

5.4 Requirements for a mechanism for the handling of .
constraint violations

It appears from the previous sections that there is a need for a mechanism to
handle constraint violations. A constraint violation causes an exception
occurrence in the process of which an active constraint is violated. In some
cases, the process can deleet the constraint violation itself and consequently
raise the corresponding exception. In other cases, the constraint violation is
detected by another process which must consequently inform the affected
process about the constraint violation. This can be done either by raising an

The handling of constrain/ violations 97

exception in the affected process or by means of another kind of interaction
which leads to the raising of an exception in the process.

The known mechanisms for the hand.ling of constraint violations wilt be
treated in Section 5.5, and a new mechanism wilt be introduced in Chapter 6.
Before dus, the requirements that should be futfitled by any such mechanism
wilt be given. Only the most important requirements are given. The existing
and new mechanisms wilt be evaluated using these requirements, together with
the requirements presented in Section 4.2. The tenninology of violator and
victim is taken from Section 5.3.3. The requirements are as follows :

I . The mechanism should be easy to use and to understand. Ideally, it should
introduce only a smalt number of new elements that are orthogonal to the
rest of the programming support. The mechanism should be compatible
with the existing interaction and exception handling mechanisms.

2. The mechanism should make it possible to change the normal flow of
control of a process when its active constraints are violated. The
mechanism should enable the designer to specify this dependency between
constraint violations and change of control flow in a cantrolling process in
a precise, intuitive and natura! way.

The above requirements are of a very general nature. The following
requirements are more specific:

3. The mechanism should allow each operation to specify only its own
constraints: the constraints of operations which have already been invoked
should not need to be respecified.

4. The mechanism should be sufficiently flexible and precise so that, in the
case of constraint violations, only those processes of which active
constraints are violated will be affected.

5. The mechanism should defer the actual raising of the exception until the
victim process is in such a state that its invariants are either valid or can
be restored by an exception handler.

The last two requirements need some further explanation.

98 Chapter 5

Requirement 4 calls for tlexibility and precision of the mechanism. Many
existing mechanisms severely restriet the way that exceptions can be raised in
response to constraint violations. The mechanism may, for instance, be limited
to the raising of the same exceptions in the parallel sections of a programming
construct to express parallel actions. Or it may be limited to a static
relationship, such tbat the occurrence of an exception in a process will always
result in the raising of exceptions in a fixed group of other processes,
independently of where in the original process the exception occurrence took
place.

In reality, the determination of which processes should be affected by an
exception occurrence in another process can very much depend on the point in
the program where the exception occurred. This has already been illustrated
by numerous examples in previous sections. When the truck controller from
previous examples is synchronizing with the traverse controller, exceptions in
the truck controller are likely to affect the traverse controller. If, on the other
hand, the truck controller is synchronizing with the fumace controller,
exceptions in the truck controller wiJl affect the fumace controller.
The relationships can even extend beyond processes which interact If a robot
accidentally drops a product on a transporting belt which it needs to cross, an
exception may need to be raised in the belt controller. In this case, the
relationships could be due to the physicallayout of the system. There need not
be any other relationship between both cantrolling processes.

The last requirement has already been treated in Section 5.3.3. It is clearly
undesirable to permit the raising of exceptions due to constraint violations at
all times: this would mean that invariants of the process could be corrupted in
such a way that they could not be restored by exception handlers. lt is
especially important to restriet the raising of pending exceptions in such a
way that the intemal invariants of a process are valid when pending
exceptions are raised, because it is practically impossible to deal with the
restoration of all intemal invariants in exception handlers. To allow extemal
exceptions to be raised at any time during the execution of a process will lead
to time-dependent run-time errors. It is virtually impossible to detect such
errors by program testing, and they constitute one of the most hazardous
aspects of concurrent programming.

The handling of constroint violations

5.5 Known mechanisms for the handling of constraint
vioJations

99

This section will discuss some known mechanisms for the handling of
constraint violations. It will be shown that these mechanisms do not allow the
general specification of constraints of operations and do nat satisfy the
requirements of Section 5.4. Nat all mechanisms are treated but a selection is
made of some representative mechanisms. Mechanisms that are only defined
for the handling of exceptions which occur during the execution of an
interaction, such as during a rendezvous, are language-specific and are
therefore nat treated.

5.5.1 The select-interaction functionality

This functionality has been treated in Section 5.3.1. The use of this
functionality for the detection of constraint violations leads to unreliable and
inelegant programs, whether used in Process Calculus, Ada, Sequentia!
Function Charts, or any other language. This is because the interactions that
are used to detect constraint violations need to be respecified in many
operations. There is in fact a substantial analogy between this way of dealing
with constraint violations and the use of returned values as exception codes in
the handling of internat exceptions as treated in Section 4.3.1. In bath cases,
the creation of robust programs becomes difficult. Using the select-interaction
functionality, the amount of code to check for constraint violations becomes
enorrnous, leading to a great deal of code pollution. The constraints of
operations which have already been invoked must be duplicated in all called
operations. A constraint violation, such as the activation of the emergency
button, should be catered for in every possibly blocking interaction. A single
element of an interaction with many constraints is easily forgotten. Also, the
process will nat detect constraint violations between two blocking
interactions.

An important disadvantage of the use of the select-interaction functionality for
the detection of constraint violations is the fact that this way of programming
does nat reflect the way a designer thinks about the system. A more natura!,
but not yet precise, way to specify the relationship of the emergency button to
a specific cantrolling process would be sarnething like: 'lf the emergency
button is pressed while a certain unit is active, an exception should be raised

100 Chapter 5

in that unit' . Thus the specification is in tenns of coupling the raising of an
exception toa certain unitand not to all individual interactions it contains .

5.5.2 Raising exceptions in other processes

The traditional ways of dealing with constraint violations are generally based
on the possibility of raising an exception in another process in one way or
another. This confonns to the situation described in Section 5.3 .3, where the
violator is the detector of the exception and consequently raises an exception
in the victim. The tenns violator and victim will also be used in this section.

The concept of raising exceptions in other processes can have a darnaging
effect on program modularity. This is especially the case when the raising of
exceptions in other processes cannot be restricted.

In [Booch, 1991] modularity is defined as follows: 'Modularity is the property
of a system that bas been decomposed into a set of cohesive and loosely
coupled modules' . Modules serve to make the complexity of large systems
manageable. The essence is that the complexity of a system can be made
manageable by dividing the system into modules that can be understood and
developed mainly independently, without the need to know the ilrner details of
the other modules. The modules should be loosely coupled. Loosely coupled
modules generally have relatively few interactions between them and they
should nat have access to each other's local data, nor to shared global data.
The desirability of weak coupling and strong cohesion is described in many
books on software engineering. See for example [Fairley, 1985] for a more
detailed treatment.

The u se of parallel processes to control inherently parallel physical systems is
a way of dividing the complex cantrolling system into a set of more easily
manageable modules . The desired loose coupling implies that each process
should need to know as little as possible about the inner details of the other
cantrolling processes. Therefore, if an exception occurs in a process (the
violator), and other processes (the victims) may need to be interrupted as a
result ofthis, the violator should convey the intent to raise an exception to the
victims. The violator generally does nat know, and does not wish to know, the
exact state of the victims. The victims themselves should only raise the
exception ifthey are in a state to handle the consequent exception. This makes
the violator and the victims largely independent.

The handling of conslrainl violalions lOl

An example of the probiernatie consequences of pennitting the unconditional
raising of exceptions in other processes is the following. Consider three
closely cooperating processes, for example the three processes involved in the
control of the fork-lift truck of Section 2.3. If an error is detected in one of the
three processes for which local error recovery is impossible, that process wil!
have to raise an exception to terminate its control cycle and reset itself. As a
result of the termmation of its control cycle, the constraints of the other two
processes wil! be violated and so exceptions should be raised in the other two
processes to cause them to also terminate and reinitialize. Each of these two
processes, however, wil!, as a result of their termination, in turn raise
exceptions in the other two processes. This would mean that undesired
exceptions are raised in the violators which have already terminated. To
prevent this from occurring, the process that wants to raise the exception
should know the state of the victim processes, leading to greater coupling and
reduced modularity; or else provisions should be made in all processes to
catch all undesirable exceptions. If, on the other hand, the processes are
specif'ied in such a way that a request for the raising of an exception is only
honoured when this is appropriate, coupling will be reduced and modularity
improved.

The mechanisms found in the literature will now be evaluated in relation to
the requirements specified in Sections 5.4 and 4.2.

Ada

The Ada programming language [Ichbiah et al., 1983] offers no facilities for
explicitly raising exceptions in other processes . The rendezvous mechanism is
the main mechanism for synchronization and conununication between
processes. The u se of global variables is also possible but is not advised .
The only occasion during which exceptions wil! be raised in other tasks is a
rendezvous . If an exception is raised from within an accept statement, the
exception is also raised in the other task participating in the rendezvous. Th.is
is done implicitly by the system. The progranuner has no control over the
raising ofthe exception.
In the preliminary version of Ada as described in [lchbiah et al., 1979], there
was the facility to raise a special FAILURE exception in another task.

102 Chapter 5

VAXELN

V AXELN is a progranuning environment from Digital Equipment
Corporation [Digital, 1986] which has provisions for parallel processing,
synchronization and communication between processes, as well as facilities
for the handling of internat and extemal exceptions. It is suitable for the
development of reai-time applications. V AXELN language definitions are
provided in C and Pascal. lts exception handling facilities are based on user­
defined functions of the predefmed type EXCEPTION-HANDLER. Within a
program, procedure, function or process block, only one function of this type
can be established at a time as the exception handter for that block. This is
done by calling the procedure 'establish' with the exception handter function
as argument. An exception handler function established in this way is referred
to as the handter for the block. This handler is then called on the occurrence
of exceptions in that block's activation. The function receives the exception
which has occurred as an argument. If no handter is established for the block
in which the exception has occurred, then the stack of active blocks is
searched for a handler. When a handler is found, it is executed with the
exception as argument and, optionally, other arguments that were included
when the exception was raised. Only two responses are allowed from the
handler: the propagate and resume response. There is no return, or retry
response. The handter must return a boolean. Iftrue is returned, the process is
resumed after the point where the exception was raised. This is the resume
response. lf false is returned, the exception is raised again and the system
searches for a handter in an enclosing block. This is the propagate response.
The GOTO statement can be used to jump to a label in a higher level block
and in this way terminate active blocks. The stack can also be unwound
explicitly by means of an unwind procedure.

A process can also raise exceptions in other processes. Exceptions that are
raised in this way are termed asynchronous exceptions. They are the same as
the external exceptions defined in section 4.1.2. A process can disable and
enable asynchronous exceptions. When asynchronous exceptions are disabled,
the raising of an asynchronous exception in the process by another process
will have no effect.

The exception handling mechanism used in V AXELN has a number of
qualities that should be present in an advanced exception handling
mechanism. The mechanism is unstructured, however. The fact that the
language does nat provide structured exception handter responses is

The handling of constroint vio/ations 103

compensated by offering unstructured sequencing constructs like the GOTO
statement and the unwind procedure.

The mechanism for the handling of extemal exceptions offers only the bare
functionality of raising exceptions in other processes. Constraint violations
cannot be monitored by the process itself. The programming manual [Digital,
1986] does nat specify that asynchronous exceptions are made pending, to be
raised at a later time. lf dus is indeed nat done, then invariants of a process
can be corrupted in the case of asynchronous exceptions. This should be
prevented by temporarily disabling asynchronous exceptions in all appropriate
places of the user program and in all library routines that are called.
Accidentally forgetting to disable asynchronous exceptions can result in subtie
time-dependent run-time errors which are hard to detect, and occur only under
very specific circumstances.

ROSKIT

ROSKIT [Rossingh and Rooda, 1985] is a small, reai-time multitasking
operating system designed especially for machine controL It is written in
Modular Pascal [Bron and Dijkstra, 1987]. Process synchronization is
achieved by means of semaphores. It includes the exception handling
mechanism ofModular Pascal, which has already been treated inSection 4.4.

Three extemal exceptions are defined: the xKill, xAbort and xTimeOut
exceptions. A process can raise these exceptions in another process . This is
known as forcing an exception in another process. The actual raising of
extemal exceptions is deferred until the process is blocked or when it may
become blocked. Extemal exceptions cannot be disabled.

Alarms are introduced to monitor constraint violations specifically caused by
the state of the controlled system. For this purpose, an alarm can be bound to
a boolean variabie which is bound to the physical state of a binary sensor in
the controlled system. Alarms are explicitly disabled and enabled: they cannot
be bound to blocks . When enabled, they will signa! a vialation ofthe specified
constraint when the actuator and the associated boolean variabie take on the
specified value. The constraint vialation is signaled by creating a pending
exception for the extemal exception xAbort. This pending exception will be
raised when the process executes a possibly blocking operation.

104 Chapler 5

The ROSKIT system has been successfully used for the control of complex
production systems. lts exception handling mechanism, however, cannot be
used for the specification of constraints of operations.

Szalas and Szczepanska's proposal

In [Szalas and Szczepanska, 1985] a proposal is given for the ra1smg of
exceptions, which these authors call signals, in another process. Only the most
important issues in the proposal wil! be treated. Szalas and Szczepanska
specify that the mechanism should satisfy five postulates, two of which are as
follows:

• 'Signals can be received and handled if and only if the receiving process is
active'.

• 'Receiving a signa! consists in the immediate interruption of the execution
of the receiving process and in a handler invocation (if a relevant handler
exists)'.

These postulates are precisely the opposite of the requirements g1ven m
Section 5.4.
In the case of a constraint violation, an inactive process should immediately
be activated to handle the constraint violation. lf this we re not necessary, then
the signa! should nothave been sent in the first place.
Szalas and Szczepanska claim that delays in the raising of signals are
unacceptable because 'the meaning carried by a given signa! is strongly
connected with the actual state of the system and its environment'. However,
when the raising of a signa! is delayed until the process executes an
interaction (see the treatrnent of the new mechanism in Chapter 6), the delays
wil! he determined solely by the speed of the cantrolling system, which should
in any case he fast enough to meet the reai-time requirements of the controlled
system.

Reai-time Euclid

Reai-time Euclid is described in [Kiigerman and Stoyenko, 1986]. lts
exception handling mechanism is different from the usual mechanisms. The
way that processing is continued after execution of an exception hand Ier is not
determined by the handler itself, but by the way the exception was raised. The

The handling of constroint violations 105

only way that a handler can affect the way processing is continued is by
raising an exception itself.

Exceptions can be raised in three ways: by means of the kill, deactivate and
except statement. All three statements take two arguments . The first argument
is the identifier of the process where the exception is to be raise<l. This
process can be the process which is currently executing. The second argument
is the exception number. Exceptions raised with a kill statement wiJl terrninate
the process after the execution of its handler. Exceptions raised with the
deactivate statement will tenninate the process's current frame . Frames are
used to specify the period in which a process must complete its task. Periadie
processes will automatically start a new frame after their period has expired.
Exceptions raised with the except statement cause the handler of the process
to execute, whereafter the process continues after the statement that raised the
exception.
The exact functionality of the mechanism is nat made clear in the article. It
appears that the mechanism does nat allow for handlers at different levels to
perfarm finalization obligations when an exception is raised. Exceptions that
are raised in other processes appear not to be made pending but are raised
immediately, so that internal invariants can be violated. The mechanism
essentially provides only the functionality of raising exceptions in arbitrary
processes, whereby the exception handler response is detennined by the type
of statement used to raise the exception.

5.5.3 Handling the exception of one process in another process

Same proposals suggest that a handler for an exception can reside in a
different process than the process in which the exception was raised. These
mechanisms are related to the mechanisms described in the previous section.
In the previous section, however, it was implicitly assumed that an exception
is only raised in another process in the case of an exception occurrence (due
to a constraint violation) in the other process. The proposals considered here
suggest that, in the case of an exception occurrence in a certain process, say
process A, the hand] er of that exception may be found in another process, say
process B. The handler responses ofthe handler in process Bare related to the
continuation of process A after the handling of the exception by process B.
However, in such a casethereis no exception occurrence in process B. So this
kind of communication between processes should be done by the normal
interaction mechanisms provided by the language used. Exceptions should
only be raised in a process if there is an exception occurrence in that process.

106 Chapter 5

Therefore, the u se of these mechanisms is considered to be in conflict with the
definition and spirit of exceptions. The mechanisms also introduce
unnecessary complexity.
These kinds of mechanism are found in [Levin , 1977; Antonelli, 1989;
Atkins, 1985].

5.5.4 Dealing with exceptions in parallel constructs

One kind of mechanism is not evaluated in detail. This concerns mechanisms
specifically designed to cope with the exception handling issues in languages
that make use of parallel constructs, such as the parallel command in CSP
[Hoare, 1978] as shown in Figure 5.5.1.

[P1 11 P211 .. 11 Pn]

Figure 5.5.1 The parallel cammand in CSP.

A parallel command specifies concurrent execution of its constituent
processes (P1 .. Pn). They all start simultaneously and the parallel command
terrninates successfully only if and when the constituent processes have all
successfully terminated. A sirnilar construct exists in Sequentia! Function
Charts [IEC 848, 1988], for instance. Double lines are used in SFCs to
represent the beginning and end of simultaneous sequences.
The process that executes the parallel command is referred to as the father
process. The processes represented by P1 .. Pn are referred to as the children
processes. Difficulties arise when one or more of the children processes
terminate with an exception. The questions in such a case are whether and
how the other children should be automatically terminated and what exception

· should be raised in the father process. Problems like these occur in all systems
that allow the dynamic creation and termination of processes, such as Ada,
for example.
Industrial systems can easily be controlled with a fixed number of processes
that are created once and are never deleted, unless the whole program is
terminated. If provisions are desired in a language for the control of systems
to dynamically create and delete processes, then the exception handling
mechanism of such a language should fulfil all the requirements specified in
Section 5.4, plus the additional requirements to cope with a premature
terrnination of a child process due to an exception. Most languages with this
kind of parallelism include only mechanisms to fulfil the additional
requirements to cope with the exceptional termination of a child process .

The handling of constroint violations 107

Because such mechanisms are language specific and cannot be used in a
general way to specify the constraints of an operation, they will not be treated
in detail.

Some concrete limitations of these mechanisms, apart from the inability to
specify the constraints of operations, are as follows:

• The mechanisms provide only means for dealing with the terminalion of a
child process with an exception. In the treatment of the retry strategy in
Section 7 .6, it is shown that exceptions in a child process which are
locally handled can also give rise to the necessity of raising exceptions in
other processes.

• There is no way of propagating exceptions to parallel processes that are
not included in the same parallel construct.

Examples of mechanisms that have been developed specifically to deal with
exceptions occurring in parallel constrocts are found in [Adamo, 1989, 1991;
Lacoutre, 1991; Issamy, 1991].

5.5.5 Other mechanisms

Anionelii's dissertation

In his dissertation 'Exception handling in a multi-context environment',
Antonelli (1989) proposes an enhancement to the Ada programming language.
Exceptions can be exported from modules and imported intoother modules. In
this way, there is a static association between the violator where the exception
is raised and the victims that import the exception. The exception will be
raised in all modules that import the exception.

In the modules that import the exception, the exception must be handled by a
special exception handter task. Each such task contains an entry associated
with an imported exception. This proposed syntax is analogous to Ada
interrupt handter tasks. The task should be suspendedon an accept statement
waiting for the imported exception to be raised by another task. When the
exception is raised, the 'rendezvous' takes place and the accept statement is
elaborated. The exception can only be caught in the other task when it is
suspended at the accept statement. Therefore, the exception handter task must
wait passively for the exception to occur and cannot do anything else.

108 Chapter 5

In order to raise an exception in a victim task, the victim task must define an
exception handler task to catch externally raised exceptions. But the problem
still remains that an exception should he raised in the victim task itself. To
effect this Antonelli uses global variables as a means of information transport
between the victim task and its exception handler task. When an exception is
caught in the exception handler task, a boolean is set. The victim task must
poll the boolean and if it is set it must raise the exception itself.

This proposal is unsatisfactory for two reasons:

• The victim cannot poll when it is suspended in an accept . or delay
statement. So there is no means of interrupting the victim when it is
blocked.

• The need for the victim to continuously poll leads to inelegant and
urneliabie code. A single poll is easily forgotten.

Lieber's dissertation and simi/ar proposals

Lieber's dissertation 'Erweitertes CSP-Modell zur programmierong paralleter
Prozesse' [Lieber, 1989] is an extension ofHoare's concept ofComm~cating
Sequentia) Processes [Hoare, 1978]. The CSP model is extended with ports as
a means of communication between processes.
Another of the proposed extensions deals with the addition of exception
handling facilities. The essence is that a running process can he interrupted
when a receive operation from a port can take place. This is realized by
means of except statements, which consist of a statement list associated with
an if-statement list by means of the interrupt or except operator. The if­
statement list usually begins with a receive action from a port. See the part of
a program taken from [Lieber, 1989] in Figure 5.5.2.

i:= 1;
*[i < 1000 -> {skip}

except [keyboard?x -> a[i] := x; i:= i + 1 ;]]

Figure 5.5.2 An examp/e ofLieber's except statement.

The semantics of such a construct are such that the statement list is executed
until the receive action from the if-statement list can take place. The statement
list is then interrupted and execution continues with the if-statemtmt list.
When the if-statement list is finished, the continuation of execution depends

The handling of constroint violations 109

on the operator of the except statement. If the interrupt operator is used,
execution continues after the interrupted statement from the statement list.
This can be viewed as the resume response from a handler. In the case of the
except operator, execution continues with the statement following the except
statement, which resembles the return response. If the receive action from the
except statement does not succeed at all, the statement list will finish normally
and execution continues after the except statement.
Lieber considers send and receive actions to be atomie and does not allow the
interruption of send or receive actions in the statement list of an except
statement.

A positive aspect of this proposal is the fact that the mechanism uses the
normal interaction mechanism as a means for exception handling between
processes. Secondly, the effect that an exception in a process can have on
another processis limited to except statements.

The proposal, however, does not satisfY the desired functionality of an
exception handling mechanism for controlling systems for the following
reasons:

• There is no means of interruptins a victim when it is blocked.
• There are no provisions for the handling of internal exceptions: exceptions

cannot be declared, raised or propagated, for example.
• Finalization obligations cannot be locally specified nor be executed when

an operation is terminated: if the statement list from an except statement
is terminaled because a receive action from the if-statement list receives
from the specified port, all (nested) operations which are invoked from the
statement list will simply be terminated.

• The process can be interrupted in the middle of executing statements. If
the return response is chosen, this may lead to the violation of the
program's internat invariants and to inconsistent data. The resume
response has all the disadvantages indicated in Sections 4.6.3 and 4.6.4.

The exception handling facilities described in [Gerber and Lee, 1992] bear a
great resemblance to Lieber's. Gerber and Lee describe their CSR
(Communicating Shared Resources) Specification Language in their paper.
The scope statement allows the specification of triggers to be associated with
a statementS:

110

scope do
s

interrupt recv(channel1) -> S 1
interrupt send(channel2) -> S2
od

Figure 5.5.3 An example ofthe scope statement.

Chapter5

There are four kinds oftrigger guards: send, recv, exec and timeout The send
and recv operators specify send and receive actions to or from communication
links. Parallel processes interact by means of communication links. If, during
execution of the statement S from a scope statement, the timeout expires, or
one of the 'interrupts' can he executed (for instanee when a send or receive
action can take place), the S statement is terminated prematurely. Thus the
interrupt specifications in Gerber and Lee's CSR language are analogous to
the use of the except operator in the if-statement list of Lieheli's except
statement. The evaluation of this mechanism is therefore analogous to the
evaluation of Lieber's mechanism.

Cfor Unix

C [Kemighan and Richie, 1978] for Unix does not provide advanced
programming constrocts for the handling of internat exceptions, apart from
the setjmp and longjmp procedures. Setjmp saves the current context in a
variable. When this variabie is used as argument for the longjmp procedure
the context is restored to the value at the time of the last call to setjmp,
causing the process to continue right after this statement. This is a kind of
goto-like mechanism. The main way to deal with internat exceptions is by
using retumed values as exception codes (see Section 4.3.1).

Unix provides signals as a means of exception handling between ptocesses,
see [BeU, 1983]. These signals are different from the raisable signals used in
the present dissertation. Signals are senttoa process. They are used both to
bring external exceptions and system detected internal exceptions to the
attention of a process. A process can specify what to do when it receives a
signal. It can choose to ignore the signa!, terminate itself or to invoke a
handler. Handiers are ordinary procedures. Handier procedures can he bound
to signa) occurrences by using the signa! itself and the address of the signa)
handiing procedure as arguments to the signa) procedure. If a handler bas
been installed for a signa! and the process receives a signa!, the execution of

The handling of constroint violations 111

the process is interrupted. The handter is executed, and after that, execution of
the process is continued from the point at which it was interrupted. If other
responses are desired, these should be obtained by means of the setjmp,
longjmp procedures.
Many other features of signals are described in [Sun, 1990]; they do not,
however, change the rnain functionality described above.

The rnain problem with this way of handling exceptions is that C lades a
mechanism for the handting of internat exceptions, as described in Section
4.4.
Another problem is caused by the way signals are handled. The function of
signal handters is very similar to interrupt handlers. This leadstoa limitation
on the possible responses from such a handter: resumption or the drastic
termination of the process, without the possibility of fulfilling local
finalization obligations. If the resume response is chosen, the interrupted
program will need some sort of polling mechanism to detect whether or not a
signal interrupt bas taken place.

Proposals by Issamy and Banátre

These proposals are described in [Issarny, 1990; Issarny and Banätre, 1990;
Issarny, 1991]. The objective ofthe proposed mechanism in all three articles
is restricted to deadlock avoidanee in the presence of processes which
terminate with an exception. In the context of these articles, the termination of
a process means the termination of the current iteration step when the body of
the process consists of a repetitive comrnand.

Global exceptions are introduced in the first two articles. An exception is
globa1 when a handter for that exception is found in the handter list attached
to a process body; otherwise the exception is local. If a process raises a global
exception, the exception will autornatically be raised in all processes where a
handter for the exception is found in the handter list attached to the proces~
body. Raising a global exception in a process implies the termination of that
process.

The raising of exceptions in all processes that have a handter for the global
exception can be too unrestrictive. lf, for example, such a process bas already
finished its interactions with the process that originally raised the exception,
deadlock will not result.

112 Chapter5

In the third article, the raising of global exceptions is restricted to processes
that . actually want to interact with a process that terminates by signaling a
global exception. In this way, the mechanism bears a resemblance to the way
that the tasking-error exception is raised in Ada when a process wants to
execute a rendezvous with a terminated process. In this article, the mechanfsm
is also adapted to take account of exceptions occurring in parallel constructs,
as treated inSection 5.5.4.
The restrictions of the mechanism, which only allows for the raising of
exceptions in other processes in the case of the termination of a process, make
it unsuitable as a general mechanism for dealing with constraint violations.

Chapter 6
A new mechanism for the handling of
constraint violations

This chapter describes a new mechanism for the handling of constraint
violations. The new mechanism is fi.rst treated independently of any particular
implementation. The implementation of the mechanism in Process Calculus is
given in Section 6.1 0, which also includes some examples.

6.1 The specification of constraints with constraint monitors

6.1.1 Definition of terms

When an operation is executed, its constraints must be valid, since otherwise
its goal cannot be achieved. A violation of one of its constraints is an
exception occurrence which should eventually result in the raising of an
exception. Therefore, each constraint should be linked to an exception which
should be raised after a violation of the constraint. This results in the
following definition of constraint monitors.

A constraint monitor consistsof a constraint and an (extemal) exception; it
is used to signa) violations of the specified constraint.

The new mechanism for the handling of constraint violations is based on
constraint monitors, which are used to detect and signal violations of the
constraints of an operation. Since constraints are specified for operations, a
constraint monitor can be bound to an operation. An operation is a logically
related group of statements or expressions in a sequentia) process with a
single entry (see Section 4.1.1). In many programming languages, blocks are
available as programming construct. In these languages, the effect of binding
a constraint monitor to an operation can be achieved by enclosing the
operation in a block and subsequently binding a constraint monitor to the
block. A block to which a constraint monitor is bound is said to be protected
by the constraint monitor, and can be referred to as a protected block. The

114 Chapter6

operation enclosed by the blockis likewise known as a protected operation.
The constraint monitors bound to the protected block can be referred to as the
block's constraint monitors.

During the activation of a protected block, the constraint monitors bound to
the block will monitor the constraints specified in the constraint monitors,
which means that the constraints will be continuously checked to see if they
still hold. This monitoring takes place throughout the execution of the block,
including during the time that other operations are called from Within the
block. When the monitor detects a constr'aint violation, monitoring is stopped,
independently ofthe future termination ofthe block.

6.1.2 The binding of constraint monitors to blocks

The binding of a constraint monitor to a block can be done either statically or
dynamically, meaning that the binding takes place at compile-time or at run­
time.

In the case where a block bas several (sub-)constraints, two appr~hes are
possible. If only one constraint monitor can be bound to a b'ock, all
sub-constraints should be specified in this single constraint monitor, using a
compound constraint. The other approach is to allow multiple constraint
monitors to be bound to a block. The last approach is chosen because in this
way a separation of concerns is made possible: independent constraint
monitorscan be used for the specification of independent sub-constraints. lt
also facilitates reuse of constraint monitors.

· A constraint monitor is enabled if and only if a protected block to which it is
bound is executing. This is an important aspect of the functionality of
constraint monitors, and one which fits in well with the concept of structured
programming. lf constraint monitors were not bound to blocks and were
allowed to be explicitly enabled and disabled, then it would be more di:fficult
to onderstand the operation of a program: in order to determine at which parts
of the program a constraint monitor bas an enabled or disabled status, it
would be necessary to locate the statement where the constraint monitor was
last enabled or disabled. This could be any statement executed • by the
program. lf, on the other hand, constraint monitors are bound to blocks, then
the status of a constraint monitor wiH only be enabled if it is bound to an
invoked block. So, in order to determine the enabled constraint monitors, only

A new mechanism for the handling of constroint violations 115

the active blocks which are the blocks on the eaU chain of the process -
need to be examined.
To keep things simpte initially, it is assumed that blocks with the sarne
constraints are not nested. The consequences of nesting blocks with the sarne
constraints are treated in Section 6. 7.

6.1.3 The language dependency of constraint monitors

The actual specification of constraints depends very much on the
prograrnrning language used. Constraints always concern the environment of
the process executing an operation. The interactions of the process with its
environment are described by means of the interaction mechanism which is
available in the prograrnrning language used. This interaction mechanism
should be used as far as possible for the specification of constraints. This has
the advantage of rernaining compatible with the existing interaction
mechanism, and at the sarne time being able to use its expressive power. Also,
in this way only a few new concepts are introduced, keeping the new
mechanism simple.

If, for instance, Sequential Function Charts [IEC, 1988] are used, constraints
could be specified with those expressions that rnay occur in the specification
of transition conditions. In message-based systerns, on the other hand,
constraints could be specified by means of messages. Specific messages could
be defined to indicate constraint violations. The different possibilities for the
specification of constraints in the different languages will not be dealt with in
this tl:iesis. The implementation chosen for Process Calculus will be treated in
Section 6.10.

6.1.4 The binding of constraint monitors to identifiers

In this section it is shown that it should be possible to bind constraint
monitors to identifiers.

If constraint monitors are integrated in a language in such a way that the
binding of a constraint monitor to a block implies the definition of a new
constraint monitor, then constraint monitors cannot be referred to in the
program. This means that, in order to specify equivalent constraint monitors
for different blocks, it would be necessary to create a new constraint monitor
for every block. This is obviously a disadvantage if equivalent constraint

116 Chapter6

monitors are bound to many different blocks. In Chapter 7, this is shown to be
quite a common situation. Note that two constraint monitors are equivalent
when their constraints can be expressed with the same constraint function and
their exceptions are the same.

lf a constraint monitor may be created fi.rst and bound toa block later, then
the mechanism should support the binding of a constraint monitor to an
identifier. After the binding of a constraint monitor to an identifier, the
identifier will denote the constraint monitor. The identifier canthen be used
every time that the constraint monitor should be bound to a different block.
For an explanation ofthe concept binding, the reader is referred to [Tennent,
1981; Watt, 1990],

Note that some languages use assignment statements to 'bind' certain entities
to identifiers, where other languages can produce true bindings. In Ada, for
instance, there is a special exception declamtion statement to 'bind an
exception to an identifier. In Smalltalk, however, such 'bindings' between
identifiers and signals can only be attained by means of assignment
statements. First, an identifier is bound toa variable. The identifier canthen
be 'bound' to a signal by means of an assignment statement. It is the
programmer's responsibility to initialize the variabie with the required signal
value, and to make sure that this value is not altered during program
execution. In this way, the variabie can be treated as a constant.

There is another reason why it is preferabie to allow constraint monitors to be
bound to identifiers. lf a block is terminated with an exception, it may not be
immediately obvious what caused its termination: it could have l;>een the
violation of a constraint, but it could also have been an internat exception
occurrence. Also, the discarding of pending exceptions can make it possible
for constraint violations to remain unnoticed. If the constraint monitor can be
referred to with an identifier, the status of the constraint monitor can be
examined to test whether its constraint has been violated. In this way
constraint violations can always be detected.

6.2 Pending exceptions as a result of constraint violations

When a constraint monitor detects a constraint violation, the constraint
monitor's exception will be raised. As has already been explained in Section
5.4, the exception generally cannot be raised immediately, since the constraint

A new mechanism for the handling of constroint vio/ations 117

violation generally is not synchronized with the execution of the process of
which an active constraint is violated. Therefore, the raising of the constraint
monitor's exception is generally deferred to a later time. To achleve this, a
pending exception is created for the monitor's exception. A pending
exception is an exception which is ahout to he raised. The actual raising of
the exception is deferred until well-de:fined points in the program, so that the
internat invariants of the process will not he invalidated.

When a constraint monitor detects a violation of its constraint, it will signal
this constraint violation hy creating a pending exception, after which it stops
monitoring its constraint. This is hecause the pending exception should lead to
the termination of the protected hlock with an exception. Leaving the
constraint monitor to monitor its constraint could only cause more pending
exceptions, equal to the already existing one, which would have no effect.
However, the constraint monitor remains enahled. lt is disahled when the
executing protected hlock to which it is hound is terminated. A pending
exception can he created for a roostraint monitor only while it is enahled.
When it is disahled, its pending exception {ifpresent) is discarded {see Section
6.5).

The pending exception can he referred to as the constraint monitor's pending
exception and the monitor can he referred to as the pending exception's
constraint monitor. A pending ex ception is, in fact, an indication that the
exception of a constraint monitor is ahout to he raised.

If the programming language used supports the raising of exceptions with
arguments, these should also form part of the constraint monitor. In such a
case, the pending exception will he raised with the appropriate arguments.

6.3 Raising pending exceptions

6.3.1 Instant and delayed response controlling systems

Instant response cantrolling systems

In instant response controlling systems, the points in time at which the
external state of the controlled system - which is determined hy the values of
the actuators and sensors - changes from one state into another is not
significantly affected hy increasing the processing speed of the controlling

118 Chapter6

system. Therefore, the abstraction can be made to consider the processing
speed of such controlling systems as infinite, which yields zero response
times.
An infinitely fast execution of the controlling processes should have no effect
on the correctness of the system; a properly designed controlling system
should be independent of the relative and absolute execution speed of the
different controlling processes, under the condition that the execution speed is
above a eertaio minimum level in order to guarantee the reai-time
charaderistics of the system.

Examples of such systems can be found in sequence control systems. based on
parallel processes. , In these systems, several controlling processes are usually
executed on a single physical processor. Each controlling process spends most
of its time being blockeel in an interaction, while waiting for a eertaio change
in the state of the processes in the controlled or controlling system. When the
external state of the controlled system changes, interactions will take place
and the state of the controlling processes will be updated according to the new
state of the controlled processes, whereafter the controlling proce~ses will
again each be blockeel in an interaction. For each process in the controlling
system, the time spent by computations between two subsequent suspended
states is negligibly small in comparison with the time spent in each suspended
state (blocked in an interaction).

There are also instant response controlling systems where the controlling
processes are not normally blockeel in an interaction. lf, for example, there is
only one controlling process executing on a dedicated physical processor, the
process could be continuously polling the state of the controlled system, so
that it can give a response when a change is detected.

Delayed response controlling systems

In delayed response controlling systems, the processing speed of the
controlling system plays an essential part in the operation of the controlled
system. Increasing the speed of the controlling system will significantly
change the points in time at which the external state of the controlled system
changes from one state into another. In these systems, there are processes that
spend a significant amount of their time on the computations that are
necessary in order to respond to changes in the state of the controlled system.
An example of such a controlling system is a scheduler. The response time of

A new mechanism for the handling of constraint violations 119

such a scheduler can be a significant factor in the progress of the controlled
system.

6.3.2 A strategy for raising pending exceptions in instant response
controlling systems

In order to keep invariants - especially internal invariants - intact, pending
exceptions should be raised at points where the invariants are either valid or
where invalid invariants can be easily restored in an exception handter which
can catch the pending exception that will be raised. Of these two options,
raising pending exceptions at points where the invariants are valid appears to
be preferable, because it avoids the deleetion and restoration of invalid
invariants in exception handlers. Another requirement, however, is that the
raising of pending exceptions should not be deferred for too long. It can
therefore be necessary to raise pending exceptions at points where invariants
are invalid. The question that is answered in this section is: how are the points
determined where pending exceptions are raised?

One approach would be to have the programmer state, for every statement,
whether or not it may be interrupted by the raising of a pending exception.
This approach clearly places too great of a burden on the programmer and
leads to a great deal of code pollution. It would be desirabie that the run-time
system or the compiler could determine where to raise pending exceptions,
without explicit indications from the programmer. Therefore, a strategy for
the raising of pending exceptions will be developed.

Raising pending exceptions at interaction points

First it is noted that, in instant response cantrolling systerns, the raising of
pending exceptions can be deferred until interaction points, which are
statements that execute an interaction with another process. The argument for
this is as follows.
When a constraint violation is detected, there are three kinds of delay involved
in its handling. Firstly, there is the delay between the time of the actual
constraint violation and the time of the deleetion of this violation by the
cantrolling system. Secondly, there may be a delay between the time of the
detection and the time of the notification of the affected process, caused for
instanee by the need to schedule concurrent processes on a single physical
processor. Lastly, there is the delay between the time that the exception could

120 Chapter6

in principle be raised in the affected process and the time that the nex.t
interaction point is reached. The first two delays are independent of the
strategy chosen for raising pending exceptions: the strategy to defer the
raising of pending exceptions until interaction points introduces only the third
delay. The maximum delay which can he introduced by this strategy is equal
to the maximum amount of time that is needed for the computations between
two interaction points. However, during the time that a process is performing
computations between two interaction points, it cannot respond to changes in
the controlled processes. Therefore this time must be limited in instant control
systems, in order to be able to realize the desired 'instant' response of those
systems, thereby yielding the same 'instant' response for constraint violations.

An important advantage of the approach of raising pending exceptions at
interaction points is that interaction points are a natural place for intemal
invariants to be valid. Undesirable interactions after roostraint violations are
also prevented in this way, because interaction with other processes is only
possible by means of interaction points. If global variables are used for the
communication between processes, then the updating and reading of these
globals are also referred to as interaction points.

Pending exceptions generally cannot be deferred during the execution of delay
statements. Therefore, delay statements are also considered as interaction
points. They can he viewed as interacting with a timing process.

Pending exceptions will be raised at interaction points, includiqg delay
statements, in the following way.
When there is already a pending exception prior to the execution of an
interaction point, the pending exception will he raised, replacing the
interaction point.
When the process is blocked in an interaction point and a pending exception is
created, the process will be unblocked immediately and the pending exception
will be raised, replacing the interaction point.
When a pending exception is created at the time the interaction actually takes
place (and the process is therefore oot blocked), the interaction will be
allowed to terminate normally and the raising of the pending exception will he
deferred until the next interaction point. In this way, it is guaranteed' that an
interaction either takes place successfully, or that it does oot take place but is
replaced by the raising of a pending exception. Raising a pending exception
directly after a successful terrnination of an interaction could in fact cause
internat invariants to be invalidated, for example when the statement

A new mechanism for the handling of constraint violations 121

following the interaction records the number of interactions that have taken
place.

Another possible strategy is to defer the raising of exceptions until the process
executes an interaction point that causes the process to be blocked. This
approach has the advantage of restricting the number of points in the program
where invariantscan be violated due to the raising of pending exceptions. This
could make eertaio exception handlers simpler. The extra delay introduced in
this case can be ignored in instant response systems, because no blocking can
take plaee in the interaction points where the pending exceptions are not
raised. The disadvantage is that the execution of eertaio non·blocking
interactions in the presence of pending interactions could be undesirable.
Clearly, this approach is only possible when the controlling processes beoome
blocked when they wait for the controlled system to change state, and do not
continuously poll the state of the controlled system. In systems that use
polling processes, pending exceptions must be raised at all interaction points.
Please note that each poll is an interaction point.

The strategy of raising pending exceptions at all interaction points is preferred
to the strategy to raise pending exceptions at blocking interaction points only.
In this way, undesirable interactions after the creation of pending exeeptions
are avoided. This strategy is also conceptually the simplest, and it can be used
for all instant response controlling processes. The disadvantage of this
strategy is that invariants can be invalidated more easily, because pending
exeeptions are raised at all interaction points. This is not considered to be a
great problem, because the violated external invariants can be restored in
exeeption handlers. If pending exeeptions are raised at all interaction points, it
is preferabie to ensure that internat invariants are valid at all interaction
points.

No raising of pending exceptions in exception hand/ers

The raising of pending exceptions is unacceptable in an exception handler.
This is due to the fact that an important aim of exeeption handters is to restore
(extemal) invariants that have been invalidated by an exeeptional termination
of a program unit. lf one were allowed to raise pending exceptions in
exeeption handlers, then a handler could be terminated with an exception
before it had been able to restore the violated invariants. An example of such
a situation has already been given in Figure 5.3.3a. Therefore, pending
exceptions are not raised in exeeption handlers; they are kept pending. As a

122 Chapter6

result, exception hamilers should not contain delay statements or blocking
interaction points the blocking of which depends on the state of the controlled
system.

The monitoring of constraints

The monitoring of constraints can take place in two conceptually different
ways.
In the first way, constraints are monitored tbrooghout the execution of a
protected block.
In the second way, monitoring of constraints is restricted to explicit points
during the execution of a protected block. lf pending exceptions are. raised at
interaction points only, then monitoring of constraints can be restricted to
interaction points, so that the constraints are not monitored ' between
interaction points. In that case, there is no need for pending exceptions,
because the required external exception can be raised at the time that the
constraint violation is detected.

Note that, in both cases, the constraints of a protected operation are,not only
monitored during the execution of the operation itself, but also during the
execution of all operations (or during the execution of interaction points in
these operations) which are called from the protected operation, and all
operations called by them etc. Monitoring will stop only when the protected
operation is terminated (apart from the temporary stopping of the monitoring
between interaction points in the second case).

The disadvantage of restricting the monitoring of constraint violations to
· interaction points is that the indication of constraint violations in message
based systems can, in this way, not be done by means of non-blocking
synchronous send primitives. This disadvantage is obviously not relevant for
systems in which such send primitives are not available.

When a non-blocking synchronous send primitive is executed, the transfer of
the message will only take place if a process exists which can immediately
receive the message. lf there is no such process, the non-blocking send
primitive is tenninated immediately, and the message will remaio in the
sending process. An example of such a send primitive is the broadcast
primitive. This primitive sends copies of a message only to those processes
that are ready to receive the message. It does not block.

A new mechanism for the handling of constroint viola ti ons 123

The non-blocking synchronous send prurut1ves are very useful for the
indication of constraint violations (see Section 6.10.8). The use of these send
primitives, however, contlicts with the strategy to monitor constraints at
interaction points alone.
Such contlicts can occur when two (or more) processes are interacting with
each other during the execution of a certain program region in each process.
Such program regions will be referred to as synchronization sections.
Examples of such situations are given in Figures 5.3 .2a-c, and Figures 7.5 .5
(CtriTraverse » stackToTruck) and 7.5.6 (CtrlTruck »
receiveStackFromTraverse). lf, in such a case, one of the two processes (the
violator) prematurely leaves its synchronization section due to an exception
occurrence, this will be a constraint vialation which should be indicated to the
other process (the victim). This is best done by means of the non-blocking
synchronous send primitive. In each of the processes a constraint monitor,
which monitors the state of the synchronizing process, will be bound to the
synchronization section. The constraint monitor ofthe victim must receive the
message which indicates the constraint vialation by the violator. lf, however,
the victim monitors its constraint at interaction points only, then the non­
blocking synchronous send primitive could fait to actually send the message.
This will occur if the send primitive is executed at a point of time at which the
victim is not monitoring its constraint, which can be any point of time at
which it is proceeding from one interaction point onto the next. In such a case,
the constraint monitor will not detect the constraint violation, which will lead
to deadlock.

To prevent such errors in the case that constraints are monitored at interaction
points only, constraint violations could be indicated to all affected processes
by means of asynchronous or blocking synchronous send primitives. The
asynchronous interaction mechanism bas an undesirable buffering function,
however, which could lead to the signaling of a constraint violation, due to a
buffered message, at a time that the constraint indicated by the buffered
message is no Jonger violated. The blocking synchronous interaction
mechanism is also unsuitable because it will cause thesender (violator) to be
blocked until the message, indicating the constraint violation, is received by
the constraint monitor of the victim. If, however, the operation of which a
constraint was assumed to be violated would also happen to terminate
prematurely due to an exception occurring at the same time as the exception
occurrence in the violator, then the constraint monitors bound to the operation
could already be disabled. In such a case, the message would not be received,

124 Chapter6

causing the sender (violator) to remaio blocked, which would lead to
deadlock.

The condusion is that constraints should be monitored tbraughout the
execution of a proteQled block in systems in which the non-blocicing send
primitive is available for the indication of constraint violations. This is the
approach taken in this chapter. In systems where such primitives are not
available, such as systems based on asynchronous interaction mechanisms,
constraint violations will not remaio unnoticed between interaction points.
Therefore, the monitoring of constraint violations at interaction points alone is
a legitimate option for those systems. This strategy, however, will notbedealt
with in greater detail, because the behaviour of such systems regarding
constraint violations can be deduced relatively easily from the be~viour of
systems where constraints are monitored tbraughout the execution of a
proteeled block.

The exit point of a protected block

The fact that the exit point of a proteeled block is not an interaction point can
lead to the necessity to check the status of eertaio constraint monit~rs bound
to the proteeled blockafter normal terminalion ofthe block.
The exit point of a block is the point at which the block is terminaled
normally, that is not with an exception. So the exit point of a blobk is the
point just before the block's end identifier (or other symbol or identifier which
doses the block), or the point where a return statement causes terminalion of
the block.

Constraints concern the environment of the process executing an operation,
and interaction points are the only way to interact with the environment.
Therefore, constraints can only change after the execution of an interaction
point. So in theory, the exit point of a protected block should coincide with an
interaction point. This is not practical, however. One ofthe reasoos for this is
that the exit point of a protected block can depend on the execution of
conditionat programming constructs, such as if then else statements.

If constraints are monitored at interaction points only, they will no long er be
monitpred after execution of the interaction point execuled last in the
proteeled block. Therefore, in this case, the proteeled block can be considered
to end at the interaction point exeeuted last.

A new mechanism for the hand/ing of constroint vio/ations 125

lf constraints are monitored throughout the execution of a protected block,
however, monitoring of constraints will not stop after execution of the
interaction point executed last in the protected block; it will stop exactly at the
exit point ofthe protected block. In the situation discussed below, this leads to
the necessity to check the status of a constraint monitor bound to a protected
blockafter normal termination ofthe block.

In message based systems, a constraint monitor could monitor its constraint
by trying to receive a specific message. This is elaborated on in greater detail
in Section 6.10, where the implementation of constraint monitors in Process
Calculus is treated. The receipt of such a message wiJl indicate a constraint
violation, which will normally result in the raising of an exception. This could
either be the monitors exception itself or, in the case of discarding (see
Section 6.5), some other exception. The received message which indicated the
constraint violation can normally be retrieved from the constraint monitor in
the exception handter used to catch the pending exception which was raised.
If, however, the constraint violation were to take place after the last
interaction point in the protected block, but before the exit point of the
protected block, the receipt by the constraint monitor of the message which
indicated the constraint violation would not result in an exception being
raised. The reason for this is that an interaction point is no longer encountered
in the protected block, causing the constraint monitor's pending exception to
be discarded at the exit point ofthe protected block (see Section 6.5).
In the case that the contents of the message indicating the constraint violation
are needed, the constraint monitor must be checked both in the exception
handter used to catch the raised pending exception, and in the statements
dynamically following the exit point of the protected block. lf the last test is
not programmed, then the message indicating the constraint violation can go
unnoticed in the special case of a constraint violation after the interaction
point executed last in the protected block.

A practical example of this situation is a constraint monitor monitoring
commands sent by the operator by means of the MMI (man-machine
interface). Suppose that the operator can send the commands manua/ and
reset to the cantrolling processes. The receipt ofthe command reset will cause
the cantrolling system to interrupt the current activities of the controlled
machines and return them to a predefined reset state (see Section 7.4). The
receipt of the command manual will also cause the controlling system to
interrupt the current activities of the controlled machines, after which the

126 Chopter 6

controlling system will await commands from the operator to sequentially
operate selected parts ofthe controlled machines.
When the cantrolling system is executing a reset command, it will be
continuously synchronizing with the controlled machines in order to bring
them into the reset pqsition. A constraint for this reset operation is that the
operator does not send a manual command, because in that case resetting the
machine would have to be stopped and the cantrolling processes would have
to wait for new commands from the operator. Therefore, a constraint monitor
which monitors the operator to see whether a manual oommand can be
received is bound to the protected block enclosing the reset operation.
If the monitor receives a manual command, the monitor's pending exception
will be raised at the execution of the next interaction point, after which the
received manual oommand can be retrieved from the constraint monitor in the
exception handler which caught the raised exception.
lf, however, the manual cernmand were to be sent just aft er the execution of
the last interaction point in the reset operation but before the exit point of the
protected block enclosing the reset operation, the manual oommand would be
received by the eenstraint monitor, but the pending exception thus created
would he discarded upon termination ofthe protected block; and so'the reset
operatien would terminate normally. Therefore, it is necessary to check the
status of the constraint monitor after normal termination of the protected reset
operation, so that the manual oommand can be retrieved from the constraint
monitor. lf the constraint monitor has not received a message, then the check
of the constraint monitor can be foliowed by a normal receive action in order
to wait for the (manual or other) oommand from the operator.

If pending exceptions would also be raised at the exit point of a protected
block, the block would always terminate with an exception if a pending

· exception had been created due to a violatien of a constraint of the block.
The problem with this approach, however, is that it rnay lead to the violatien
ofintemal invariants. Consider the example given in Figure 6.3.1:

r'Start of protected block"
self send: item to: 'out'
"End of protected blockl
numberOfltemsSent := numberOfltemsSent + 1.

Figure 6.3.1 Vlolation of an tnternal invariant when a pending exception is
raised at the exit point of a protected b/ock

A new mechanism for the handling of constroint violations 127

lf a pending exception is raised at the exit point of the protected block, the
variabie numberOfltemsSent will not be incremented. This would be a
violation of the internat invariant specifying that numberOfltemsSent equals
the number of items that have been successfully sent. This invariant cannot be
restored in an exception handler, because the handler cannot determine
whether the exception has been raised before (replacing the interaction point)
or after (at the exit point of the protected block) the item has been sent.
Therefore pending exception are not raised at the exit point of a protected
block.

In conclusion, the status of a constraint monitor should be checked after
normal termination of the block to which it is bound if the contents of the
message received by the monitor are not only required after the exceptional
termination of the protected block, but also after its normal termination. This
observation is based on continuous monitoring of constraints. If constraints
are monitored at interaction points only, the status of constraint monitorsneed
only be checked in exception handlers.

Summary

In synchronous message based systems, the constraints of an operation are
monitored throughout the execution of the operation. The actual raising of a
pending exception in a process is deferred until no exception handter is
executing and the process starts the execution of an interaction point. The
pending exception is raised, replacing the interaction point. (Piease note that
interaction points are defined toalso include delay statements.)
The raising of a pending exception is not deferred when a pending exception is
created during the time that a process is blocked in an interaction point and no
exception handler is executing. The process will be unblocked immediately,
and the pending exception will be raised, replacing the interaction point.

6.3.3 Raising pending exceptions in delayed response controlling
systems

Deferring the raising of pending exceptions until interaction points can be
unacceptable in delayed response controlling systems, due to the fact that the
processing time between interaction points is not negligibly small in these
systems. An example of such a system is a scheduler which takes a relatively
long time to calculate a new schedule. During this calculation constraints

128 Chapter 6

could he violated, which should cause the scheduler to end its calculation.
Such a constraint vialation could, for example, he the arrival of a new batch
(forcing recalculation of the schedule), or a cammand from the operator to
terminate the calculation of the schedule. A timely response to such a
constraint vialation cao he achieved in two ways.

First, extra interaction points cao he introduced into the scheduler, thereby
reducing the time between interaction points. These interaction points cao he
used to test the status of the environment to see whether constraints have been
violated. The drawback of this approach is that interaction points are used in
this way to test constraints explicitly, which contradiets the idea of using
constraint monitors. Altematively, 'dummy' interaction points, of which the
sole purpose is to make the raising of pending exceptions possible, could he
introduced into the scheduler. ·

Second, ao extra primitive could he introduced which allows pending
exceptions, if aoy, to he raised at points in the program specified by the
programmer. When this routine is called, a pending exception, if available,
will he selected to he raised at the point ofthe call to the routine. Ifthere is no
pending exception, the call to the routine bas no effect. The routine .could he
called raisePendingException. The use of this routine gives the programmer
maximum flexibility in bis/her control of the raising of pending exceptions at
appropriate points, without the need to introduce dummy interactions. It is a
kind of polling, which is only necessary in the special case of delayed
response cantrolling systems. Note, however, that the monitoring of the
constraints by the enahled constraint monitors always takes place,
independently ofthe polling calls on raisePendingException.

· The first option keeps the mechanism conceptually simple, because pending
exceptions are only raised at interaction points. The introduetion of dummy
interaction points or interaction points to test the constraints explicitly is,
however, confusing. Therefore, it is preferred to add the
raisePendingException routine as a primitive to the mechanism fot raising
pending exceptions, which bas been treated in the previous section.

A new mechanism for the handling of constraint viola ti ons

6.3.4 Overriding the default strategy for raising pending
exceptions

129

The strategy for raising pending exceptions which bas been treated in Sections
6.3.2 and 6.3.3 is not satisfactory in all cases. Insome cases, it is desirabie to
he able to override the default strategy in such a way that pending exceptions
are allowed to he raised at certain interaction points in exception handters.

This is necessary when the retry strategy as treated in Sections 7.3 and 7.6 is
used. The retry strategy is only possible in languages that support the retry
response from an exception handter. lt makes use of a blocking interaction in
an exception handter, which is used to wait for the response from the operator
indicating that the interrupted control action can he restarted. Such a blocking
interaction, however, should he interruptible when a constraint is violated and
a pending exception is created. Otherwise, the process would remain blocked
in the exception handter until the operator response was received. lf pending
exceptions are never allowed to he raised in exception handlers, then the
interaction used to wait for the response from the operator to continue cannot
reside in the exception handler. In such a case, the retry response from an
exception handter cannot he used. The return response will need to he used
instead and the interaction used to wait for the response from the operator
must he part of a while do statement, which can cause the control action,
including the exception handler, to he re-executed. This will lead to less clear
and less elegant code which cannot take advantage of the retry response from
exception handlers, but it is not a problem for languages that do not support
the retry response anyway.

Two main approaches can he distinguished for the specification of constrocts
that allow pending exceptions to he raised at certain interaction points in
exception handters. Firstly, this overriding of the default strategy can he
explicitly specified for individual interaction points, because these are the only
relevant places where the default strategy needs to he overridden. Secondty, a
region of the program (a block, for instance), can he defined, where the
default strategy is overridden. Such a block will he referred to as an 'override
block' for easy reference.

The latter approach has two distinct disadvantages. Firstly, the designation of
a block where pending exceptions are allowed to he raised in exception
handters does not make it clear that this is only relevant to interaction points
contained in the block. Secondly, and even more important, this approach

130 Chapter6

makes it conceptually more diffi.cult to detennine whether pending exceptions
are ;:ülowed for a specific interaction point or not. This is due to the fact that
exception handlers and override blocks can be mutually nested. lf, for
instance, an exception handler is nested in an 'override block', in which
pending exceptions are allowed to he raised, then the exception handler would
probably need to override the override block in such a way that pending
exceptions in the nested handler are not allowed to he raised.

An advantage ofthe Jatter approach is its syntactic simplicity. The conceptual
complexity is, however, considered to be more important. Therefore, it is
preferred that the default strategy can only he overridden for explicitly and
separately indicated interaction points.

The actual decision as to whether to allow the default strategy to be
overridden depends on a number of aspects. Added complexity due to the
added primitives should outweigh the increased programming power of the
language. The possible presence of a retry response in the language is another
aspect influencing this decision. In Process Calculus, special interaction
primitives are available for use in exception handlers, so that' pending
exceptions can he raised during the execution of these primitives.

6.4 Handling exceptions resulting from constraint violations

When a constraint vialation is signaled by a constraint monitor, the resulting
pending exception will he raised someWhere in the proteeled block of which
the constraint was violated. The handling of such exceptions is application­
dependent, but there is one important common aspect. A constraint vialation
will make it impossible for the proteeled block to achieve its goal. Therefore,
the exception that is signaled as a result of the constraint vialation should
result in the terminalion of the block with an exception. A result of this
requirement is that handters which are activated from within a proteeled
block, that is during the execution of the proteeled block, must always
propagate exceptions that indicate a vialation of the protected, block's
constraints.

The observations discussed above can be summarized in the following
obligation for the programroer regarding exception handling in the presence of
exceptions from constraint monitors. '

A new mechanism for the handling of constraint violations 131

An exception hand/er that catches a constraint monitor's exception while the
constraint monitor's block is not yet terminaled must terminale by
propagating the exception.

Programs should he developed in such a way that they adhere to this principle
while at the same time making use of the concepts of abstraction and
modularity. The use of these concepts implies that subprograms of a low
hierarchical level need oot know anything of the subprograms of a high
hierarchical level. Furthennore, subprograms should oot need to know the
inner details of the subprograms that are called by them.

In order to enforce the constraint monitor's exception handling principle
(explained above), while at the same time maintaining abstraction and
modularity, exceptions that are handled locally (and are thus not propagated)
should he defined locally. This should he done in such a way that handters
bound to such locally-defined exceptions caooot catch exceptions from
constraint monitors that are defined at a higher level.

Unfortunately, the local definition of all locally handled exceptions in a
subprogram cao he impractical: if many subprograms share the same
constraints, all locally-defined exceptions and constraint monitors will need to
he duplicated.

A lot of code duplication cao he avoided by defining constraint monitors in
one place and using them in several subprograms. In this case, their
exceptions must he used in all of these subprograms, and must therefore he
defined globally for those subprograms. The designer of the program must
take care that the exceptions which are handled locally (and are oot
propagated to higher levels) are oot used as exceptions for constraint monitors
defined at higher levels.

6.5 Discarding pending exceptions

6.5.1 Dealing with multiple pending exceptions

When the state of a process is such that a pending exception cao he raised,
there could he more than one pending exception. Such a situation cao arise if
multiple constraint monitors are enabled simultaneously during the execution
of a process. There are two reasoos for this. Firstly, more than one constraint

132 Chapter6

monitor can be bound to a block, so that each constraint monitor monitors a
(sub·)constraint. Secondly, more thao one block can be active at the sarne
time, because a block cao invoke other routines and other blocks. Therefore,
when a process is oot blocked and executiog. several constraints cao be
violated by other processes, possibly leadiog to the signaling of coostraint
violations by more thao one constraiot monitor and therefore to multiple
pending exceptions in the process.

When the state of a process is such that a pending exception cao be raised,
and there is just one pending exception. it will be raised. When there is more
than one pending exception, two problems have to be resolved: which one of
the pending exceptions will be raised, and What happens to the other pending
exceptions. The question ofwhich one ofthe pending exceptions will<be raised
will be treated inSection 6.6. Section 6.5 makes clear how the other pending
exceptions are dealt with.

Upoo terminatien of the protected block. the pending exceptions which beloog
to the protected block's eenstraint monitors, and which are oot selected for
raising, are discatded. The result of this is that, after terminatien of a
protected block, either normally or with an exception. there will be .no more
pending exceptions betonging to the protected block's eenstraint monitors. .

When a roostraint monitor's pending exception is discarded due to the
disabling of the constraint monitor when a protected block is termioated with
an exception. the discarded pending exception is said to be discarded by the
other exception. The other exception is referred to as the discarding
exception.

6.5.2 The argument for discarding pending exceptions

The aim of the pending exception of a eenstraint monitor is to signal the
exception occurrence and to cause terminatien of the protected block with an
exception. If a pending exception is discarded by another exception, the
protected block is already terminated with an exception. Therefore, the
existence of the discarded exception is no Jonger needed to cause terminatien
of the block with an exception. If, on the other hand, the pending exception is
discarded while the protected block termioates normally, then the pending
exception must have been created after the last interaction point of the
protected block. otherwise it would already have been raised. The possibility

A new mechanism for the handling of constrainl viola ti ons 133

of this situation is due to the fact that the exit point of a protected block does
not coincide with an interaction point. In this case, the pending exception can
be discarded after tennination of the protected block, because the vialation of
the constraints of a protected block after the last executed interaction point is
not relevant. From a conceptual point of view, the constraints of the protected
block are only valid until the block's last interaction point. This has been
explained in the subsection of Section 6.3.2: 'The exit point of a protected
block'.

The only problem that remains is that a single exception cannot convey the
information associated with two exceptions, and the handling of the discarding
exception can be different from the handling of the discarded exception. It is,
however, impossible to signal two exceptions at the same time, so a choice
must be made. It is up to the programmer to take account of the possibility of
discarding. This will usually imply that the handler actions for the discarding
exception include all of the handler actions for the discarded exception. This
is usually done by using 'any handlers' which catch all exceptions. The state
of the relevant constraint monitors can be checked in the handter in order to
determine if they have signaled a constraint violation. If the pending exception
of a constraint monitor is not allowed to be discarded, then that constraint
monitor should be placed in a separate process.

The reason for discarding the pending exception is found if one analizes the
situation that could occur if the pending exception were not discarded, but
retained for signaling at a later time. The pending exception would thus be
signaled when the process encountered an interaction point, or in another state
where pending exceptions can be raised. Such a state could occur at a point
where the 'discarding' exception would already have been handled. After
execution of the handler, the process could have been retumed to a state
where the goals of all active operations could be achieved. This would lead to
a situation where there would be no exception occurrence, but there would
still be a pending exception. This is intolerable since exceptions may only be
raised in the case of an exception occurrence.

6.6 Selecting a pending exception for raising

When a pending exception can be raised and there is more than one pending
exception available then a choice has to be made. Several selection criteria
can be used:

134 Chapter6

• Undefined
When the selection criterion is undefined, the user program may not rely
on a specific algorithm. This is the simplest but also the least useful
option.

• User-assignable priorities
A selection based upon user-assignable priorities bas the disad~antage of
greater complexity, because the user would have to specify the priorities.
Furthermore, iftwo constraint monitors are assigned the same priority, the
same problem remains as to which one of their pending exceptiollS should
he selected.

• Constraint monitor's signaling time
Basing a selection criterion on the constraint monitor's signalmg time is
usually not what is desired by the programmer. By the monitor's signaling
time, we mean the point of time at which the monitor signals the, violation
of its constraint. This is also the point of time at which the pending
exception is created. The signaling time of a constraint monitor is
determined by the processes in the environment of the process using the
constraint monitor. So it is beyond the control of the programJ'fler of the
process. Usually, however, the programmer desires some control over the
constraint monitor which will be selected. Consider, for example, the
situation in a wafer processing unit where a reai-time scheduler is used to
determine a schedule. lf a new batch is introduced into the system during
the calculation of the schedule, then the calculation will need to be
interrupted to take the new batch into account. To achieve this, a
constraint monitor is used which monitors the arrival of new batches.
Suppose that, either after or before the arrival of a new batch, an order bas
arrived to stop scheduling because the system needs to he reset. The
arrival of such an order is also monitored by a constraint ·monitor.
Therefore, this situation could lead to two pending exceptions. Clearly it is
useless to restart calculating the schedule, taking account of the new batch,
when the system bas to he reset anyway. So the constraint monitor which
monitors the reset oommand in this case bas a higher priority, which is
independent of the order of the signaling times of the two constraint
monitors.

A new mechanism for the handling of constraint violations 135

• Constraint monitor's enabling time: last enabled or first enabled
If the first enabled option is chosen, then the constraint monitors that are
enabled at a high (or outermost) level, so that they will be active in all
operations called from that level, will have a high priority. This is due to
the fact that the lower (or innermost, or deeply nested) levels are called by
the higher levels, so that the constraint monitors enabled in the lower levels
will be enabled later. Therefore, pending exceptions from constraint
monitors which are enabled at a low level will be discarded by exceptions
from constraint monitors which are enabled at a higher level, which is the
desired behaviour.
In the previous example, for instance, the constraint monitor which
monitors the reset command will be bound to a block at a high level so that
the constraint monitor will be active in all operations "called from that
level. The constraint monitor which monitors the arrival of a new batch
will be enabled at a lower level, when the scheduling is actually started.
This leads to the desired discarding of the 'new batch' constraint monitor's
exception by the 'reset' constraint monitor's exception when their
exceptions are both pending. lf this kind of discarding needed to be
detected, the constraint monitors bound toa block could be checked in the
handler bound to that block to see if they had just signaled a constraint
violation.

lf the last enabled option is chosen, fewer discards will occur, since the
pending exceptions of constraint monitors defined at a low level will be
given preeedenee over the pending exceptions of the constraint monitors
defined at a higher level. The exceptions from the constraint monitors from
the higher level will remain pending, however, and will be raised after the
handling of the exception from the lower level's constraint monitors, at a
time when the process enters a state where the pending exceptions are
checked again. The higher level constraint monitors would only be
disabled, causing their pending exceptions (if any) to be discarded, in the
case that the exception from the lower level's constraint monitor is
propagated up to the higher level.

The first enabled option is preferred because the constraint monitors
enabled at higher (or outermost) levels should have priority over the
constraint monitors enabled at lower (or innermost) levels. So this form of
discarding is actually desirable. This has been demonstraled by the
example of the scheduler.

136 Chapter6

The choice of the first enabled selection criterion bas an effect on the
treatrnent of pending exceptions. It implies that it is no Jonger necessary to
retain all pending exceptions of a process. Instead, it is sufficient to retain
only one pending exception. Any time that a second pending exception is
created, the selection criterion is used to determine which of the two bas
the highest priority. This one is retained, and the other one can be
discarded irnmediately.

6. 7 The nesting of blocks with the same constraints

Different operations can have the sarne coristraints, as shown in FigUre 5 .l.I.
This can lead to a situation where two blocks that have the sarne constraints
are (dynamically) nested.

These constraints could be specified with separately de:fined constraint
monitors. If the constraint is violated in such a case, both constraint monitors
would signa) this violation, creating two pending exceptions. In this case, the
pending exception from the constraint monitor that was enabled first, and thus
bound to the outermost block, will discard the other constraint : monitor's
pending exception.

If the constraints are specified by binding the sarne constraint monitor to both
blocks, the desired effect of such a situation is not directly evident.
Firstly, the question arises iftwo pending exceptions should be created in the
case of a constraint violation, or just one. The simplest approach is to create
only one exception, betonging to the constraint monitor bound to the
outermost block. The pending exception from the other constraint monitor

· would be discarded anyway, so its creation would serve no purpose. Note that
if the pending exception would be handled by the handter bound to the
innermost block (the block with the decpest nesting), then the exception would
have to be propagated by the handter according to the programmer's
obligation specified inSection 6.4.
Secondly, it can no Jonger be stated that the constraint monitor is disabled
after a protected block to which it is bound is terminated. Instead, th~; entering
or exiting of a block to which a constraint monitor is bound which was
already enabled before the block was entered has no effect on the state of the
constraint monitor or it's pending exception.

A new mechanism for the handling of constroint vlolotions 137

Therefore, binding a constraint monitor to a block which is invoked by
another block to which the same constraint monitor is bound is essentially a
non-operation.

An example of the nesting of blocks with the same constraints in Process
Calculus is shown inSection 6.10.7.

6.8 The evaluation of constraint functions

The monitoring of constraints can be regarded as a continuous evaluation of
the associated boolean constraint function. The constraint is violated when
this function returns false. The evaluation of the constraint function is not
necessarily done by the constraint monitor afone.

In the case of a violation of an active constraint of a controlling process by a
process in the controlled system, the constraints wiJl refer to the state of the
controlled system. The controlled system itself does not know when a
constraint is violated, and therefore cannot evaluate constraint functions that
are associated with constraint monitors in the controlling system. All it can do
is to make its state available to the controlling processes. Constraint monitors
in the controlling processes wiJl monitor the relevant parts of the state of the
controlled system. However, depending on how constraint monitors are
integrated in a language, additional processes can be necessary for the
monitoring of complex constraints, such as constraints which are defined with
a combination oflogical operators.
In Process Calculus, for instance, a constraint monitor can be defined to
monitor a speciiic part of the state of the controlled system. It does this by
being ready to receive a message by means of an interaction, which message
is specific for the part of the controlled system's state which can be a
constraint violation. The boolean constraint function which is evaluated in this
way is a simp ie comparison of the relevant part of the state of the controlled
system with a constant value. An and-function of such constraints can be
realized by binding different constraint monitors to the same operation.

In the case of constraint violations between controlling processes, the
constraints usually refer toa correct synchronization between the processes.
When two processes are correctly synchronized, any of the two processes can
break out of this synchronization, and by doing so will violate an active

138 Chapter6

constraint of the other process. The reason for breaking out of the
syncbronization is usually an exception occurrence.
The two controlling processes will be called the violator and the victim,
according to the tenninology of Section 5.3.3. The violator will be aware of
violating the constraint when it has to break out of the synchronization due to
an exception occurrence, and it can thus signal the constraint violation to the
victim. In this case, the violator bas implicitly evaluated the constraint
function, and it will signal the true-to-false transition of the constraint
function. In this way, the constraint monitors ofthe victim can be kept simple,
because they need not monitor the different states of the violating processes. A
single constraint monitor is sufficient to register only the indication of the
true-to-false transition of the constraint function, which is signaled to it by the
violator process. In Process Calculus, this signaling can be done by means of
a broadcast send primitive (see Seetion 6.10.8).
The violator need not be absolutely sure that it has actually violated one of
victirn's constraints. Suppose, for instance, that an exception had already been
raised in the victim, independently of the constraint violation by the violator.
In that case, victim's constraint monitor which monitored the constraint would
already be disabled, and the appropriate constraint function would no longer
be defined. So, in order to achleve good modularity and low coupling between
the processes, the violator signals an assumed constraint violatÎOI;i to the
victim. It is up to the victim's enabled constraint monitors to treat the assumed
constraint violation as an actual constraint violation.

6.9 Contlicts between the resume response and constraint
monitors

The conflicts between the resume response and constraint monitors are similar
to the conflicts between the resurne response and critica(sections, as
discussed in Seetion 4. 6 .4.

The conflicts arise when an exception occurrence is detected in a part of a
program proteeled by constraint monitors. When the corresponding exception
is raised and the proteeted blockis terminated with an exception, the block's
constraint monitors could either be disabled or remaio enabled.

If the constraint monitors are disabled and if thereafter the resume response is
chosen in a handler, then exeeution will proceed from the point where the
exception was originally raised, i.e. in the protected block. So execution is

A new mechanism for the handling of constraint vio/ations 139

continued in the protected block, but all the protected block's constraint
monitors will still be disabled. Therefore, the constraint monitors should be
re-enabled before the resume response is chosen. The exception handling
mechanism would become considerabty more complicated if this were to be
done automatically. lf it is not done automatically, it can onJy be done with
unstructured use of constraint monitors, because the constraint monitors will
have to be re-enabted in an exception handter before issuing a resume
response. This also implies precise knowledge of the state of all constraint
monitors that may have been disabled.

Note that, in the case of a resumption model, it is strictly speaking not correct
to use the phrase 'termination of a block with an exception', because the block
only terminates when either a return or a retry response is chosen, or another
exception is raised. Before this is done, execution of the btock can still be
resumed by the resume response.

If the constraint monitors remaio enabled, then the disabling of constraint
monitors is postponed untit the exception (which caused the btock to
terminale) is completely handled and the resume response can no longer cause
resumption of the block. In such a case, pending exceptions rnay never be
raised in exception handlers. If the raising of pending exceptions in handters
were possible, then, prior to giving a resume or other response, a pending
exception could be raised which should have been discarded upon terminalion
of its associated protected block.
Therefore, in systems where pending exceptions can be raised in exception
handters by overriding the default strategy treated inSection 6.3.2, constraint
monitors must be disabled immediatety after termination of their protected
block with an exception.

Con:flicts between the resume response and constraint monitors can onJy be
prevented in systems where pending exceptions cannot be raised in exception
handlers. In these systems, the disabling of constraint monitors of which a
protected block has 'terminated' with an exception should be postponed until
the exception (which caused the block to terminate) is completely handled and
the resume response can no longer cause resumption of the block.

It is concluded that the con:flicts between the resume response and constraint
monitors in systems where pending exceptions can be raised in exception
handters are so severe that resume responses should not be used in such
systems. If pending exceptions can never be raised in exception handlers,

140 Chapter6

there need not be any conflicts between the resume response and constraint
monitors.

6.10 The implementation of constraint monitors in Process
Calculus

6.10.1 Monitoring constraints by executing receive actions

When a constraint monitor is enabled, it will try to receive an object by
executing a receive action. This is the way that a constraint is monitored in
Process Calculus models. The constraint is assumed to be violated when the
constraint monitor receives the object. As long as the desired object is not
received, the process which enabled the constraint monitor is not blocked but
can continue normally. The constraint is constantly monitored, even though
the process is proceeding with other actions. The monitoring of the eenstraint
is stopped when either the constraint monitor's receive action succeeds or
when the block proteeled by the coostraint monitor terminates.

6.10.2 The definition of constraint monitors

A constraint monitor is defined separately and can consequently be bound to
different blocks. A constraint monitor is defined by sendingit an initialization
message. Such a message could be ConstraintMonitor class » for: aProcessor
receive: anObject from: portName thenRaise: anException. It is assumed that
the monitor's constraint is violated when the object anObject can be received
from the port named portName on the processor aProcessor. When the
constraint monitor is enabled, it will try to receive anObject from the port
named portName on the processor aProcessor. When this succeeds, the
constraint monitor will signal the constraint violation by making anException
pending in aProcessor and stop monitoring its constraint.

In reality, a slightly different metbod is chosen: ConstraintMonitor class » for:
aProcessor receive: anObject from: portName then: exceptionBiock. Hereby the
constraint monitor is initialized with the block exceptionBiock instead of
anException as in the previous method. In this case, the constraint monitor will
signal the violatioo of its constraint by making its exceptionBiock pending in
aProcessor, thereby creating a 'pending exception block' insteadof a pending
exception. When an interaction is executed in the proteeled block of which a

A new mechanism for the handling of constraint viola ti ons 141

constraint bas been violated, the constraint monitor's pending exception block
is executed. The pending exception block must terminale with an exception
when it is executed. lf it does not terminale with an exception, the supporting
system will raise an exception after the terminalion of exceptionBiock, which
exception is an indication of an illegal exception block. There are two reasoos
for this slightly different method. Firstly, it is more in the style of the task
language of Process Calculus, where many methods follow the convention of
executing a specified thenBiock when a receive action succeeds, as for
example in receive: anObject trom: portName within: interval then: thenBiock
ifTimedOut: timeOutBiock. Secondly, this single initialization metbod is
su:fficient in all cases. Exceptions can be raised in many different ways in
Smalltalk, for example with or without error messages and other arguments.
All these different ways can be accommodated by using the exception block.
lf the constraint monitor were initialized with the exception itself, different
initialization methods would be needed for the different ways of raising the
constraint monitor's exception.

The convention of only raising an exception in the exception block will be
foliowed in this thesis, so that the creation of a pending exception block and
the creation of a pending exception amount to the same thing. This is because
raising a pending exception and evaluating the exception block both result in
the raising of the constraint monitor's exception. To keep the explanation of
the concepts as simpte as possible, we will choose the terminology of creating
and raising pending exceptions, rather than creating and evaluating pending
exception blocks.

An example of the definition of a constraint monitor is shown in Figure
6.10.1.

ForklifterCtrl >> initializeTasks
emergencyMonitor := ConstraintMonitor

for: self
receive: true
from: 'i-emergency'
then: [KiiiSignal raise]

Figure 6.10.1 Definition of a constraint monitor in Process Calculus.

The KiiiSignal is a global signal known to all processors. lt is raised in the case
of external exception occurrences which cannot be handled locally, for
example by locally cestarting an action.

142 Chapter6

6.10.3 Binding constraint monitors to blocks

A constraint monitor can he bound to a block by sending it the message
proteet with the block to he protected as argument. In Process Calculus,
binding is dynamic. lt is effected when the proteet block message is senttoa
constraint monitor. This message will also cause the invocation of the
protected block. Figure 6.10.2 shows the metbod ForkLifterCtrl >> forkUp once
again. This time a constraint monitor is used to monitor the emergency button.

ForklifterCtrl » forkUp
emergencyMonitor protect:

[self putOn: 'o-forklifter -up'.
self putOn: 'o-forklifter-power'.
self

receive: true
from: 'i-forkLifter-isUp'
within: 6 seconds
iffimedOut: [KiiiSignal raise).

self putOff: 'o-for~lifter-power']

Figure 6.10.2 The use of a constraint monitor toproteet a block.

lf the emergency button is pressed while the process is executing the protected
block, the emergencyMonitor wiJl signal this constraint violation; 'and the
exception KiiiSignal, which was used to initialize the constraint monitor, will
he raised, repJacing the currentJy executing interaction.

6.10.4 The use of constraint monitors together with exception
handlers

An exception wiJl he raised when a constraint monitor detects a violadon of a
constraint. Consequently, there must he a handter for that exception.
Finalization obligations can he performed in the handter in order to terminate
the operation to which the handter is bound in a safe and consistent state. If
necessary, the exception canthen he propagated. In Figure 6.10.3, the metbod
forkUp is extended with an exception handler.

The signa] AnySignal is a global signal collection that is used to catch all
exceptions. AnySignal contains the signal Object errorSignal amongst others.
The interested reader is referred to [ParcPiace, 1989] for more information on
signal collections.

A new mechanism for the handling of constraint violations

ForkLifterCtrl >> forkUp
AnySignal

handle:
[:exception I

do:

self putOff: 'o-forklifter-power'.
exception reject)

[emergencyMonitor proteet
[self putOn: 'o-forklifter-up'.
self putOn: 'o-forklifter-power'.
self

receive: true
from: 'i-forklifter-isUp'
within: 6 seconds
itTimedOut: [KiiiSignal raise].

self putOff: 'o-forklifter-power']]

143

Figure 6.1 0.3 The use of a constraint monitor logether with an exception
hand/er.

This use of a constraint monitor together with an exception hamlier is typical
of the use of constraint monitors, because the exception raised by the
constraint monitor is usually handled locally.

6.10.5 Specifying multiple constraint monitors

An operation can have several constraints. Often it is not possible to monitor
different constraints with a single constraint monitor. Therefore, it should also
be possible to bind several constraint monitors to the same block. This can be
done by nesting protected b1ocks in the way shown in Figure 6.10.4.

ForkLifterCtrl >> forkUp
emergencyMonitor proteet

[operatingSwitchMonitor proteet
[collisionMonitor proteet

[self putOn: 'o-forklifter-up'.
self putOn: 'o-forklifter-power'.
self receive: true from: 'i-forklifter-up'
self putOff: 'o-forklifter-power']]]

Figure 6.10.4 Binding multiple constraint monitorstoa block using
nesting.

144 Chapter 6

The class ConstraintMonitorCollection is introduced in Process Calculus in
order to avoid tbe syntactic ugliness of nested constraint monitors. This is a
subclass of OrderedCollection so it inherits alJ OrderedCollection's messages
aod also tbe messages from tbe class Collection. In tbe class
ConstraintMonitorCollection itself, only one metbod is defined namely protect:.

In order to bind multiple constraint monitors to a single block, tbe constraint
monitors cao be added to a collection of constraint monitors which . cao tben
be bound to tbe block using tbe metbod protect:, in tbe same way as this
metbod is used for a single constraint monitor. This construction is
semantically identical to tbe construction where tbe constraint monitors are
nested in tbe same order as tbey are added to tbe collection of constraint
monitors.
In tbe metbod ForklifterCtrl » initializeTasks shown in Figure 6.10.5, a new
ConstraintMonitorCollection is made by means of tbe metbod Colledion »
with:with:with:. The collootion is filled witb tbe three constraint monitors that
are used as arguments to tbe metbod. The metbod forkUp is defined using tbe
collection of constraint monitors. The variabie constraintMonitors is ao
instanee variabie of ForklifterCtrl. The metbods forkUp shown in Figures
6.10.4 and 6.10.5 are semantically identical.

ForklifterCtrl >> initializeTasks
constraintMonitors := ConstraintMonitorCollection

with: emergencyMonitor
with: operatingSwitchMonitor
with: collisionMonitor

ForklifterCtrl >> forkUp
constraintMonitors proteet

[self putOn: 'o-forklifter-up'.
self putOn: 'o-forklifter-power'.
self receive: true trom: 'i-forklifter-up'
self putOff: 'o-forklifter-power')

Figure 6.10.5 Binding multiple constraint monitorstoa blockusinga
preinitialized colleefion of constraint monitors.

6.10.6 Some additional functionality of constraint monitors

It cao be useful to be able to check what object has been received by a
constraint monitor, such as in tbe case that tbe pending exception from a
constraint monitor cao be discarded by otber exceptions. By checking whetber

A new mechanism for the handling of constraint violations 145

an object bas been received by tbe constraint monitor, one can delermine
whetber a constraint monitor bas signaled a constraint violation, even if its
pending exception bas been discarded. The object received can also be used
itself if, for example, tbe operator sends a oommand to stop processing. Such
a command could be received by a constraint monitor.

To make this possible, constraint monitors retain tbe object which tbey have
received, and which indicates a violation of tbe monitored constraint. The
object contained in tbe constraint monitor can be read at any time. It should
also be possible to clear tbe object after having read it. To realize this
functionality in Process Calculus, tbere are two messages that can be sent to
constraint monitors:
• The metbod ConstraintMonitor » item returns tbe item received by tbe

constraint monitor. lt returns nil if no message bas been received since tbe
constraint monitor was last cleared.

• The metbod ConstraintMonitor » clearltem returns tbe value of tbe item
received by tbe constraint monitor. lt returns nil if no message bas been
received since tbe constraint monitor was last cleared. It ends by clearing
tbe constraint monitor. The constraint monitor is also cleared when it is
enabled.

6.10.7 Binding the same constraint monitor to nested blocks

If tbe same constraint monitor is bound to (dynamically)·nested blocks, tbe
binding of tbe constraint monitor to tbe innermost or deepest nesled block can
beregardedas a non-operation. This is illustrated in Figure 6.10.6 where tbe
metbods method1 and method2 are functionally equivalent.

TestProcessor >> method1
consb"aintMonitor proleet:

[self someStartMethod.
consb"aintMonitor proleet: ("b/ock2'1-
self someEndMethod]

TestProcessor >> method2
"/s equivalent to methocJ1•
consb"ainlMonitor proleet:

[self someStartMethod.
["b/ock2'1 value.
self someEndMethod]

Figure 6.10.6 Binding the same constraint monitor to nested bloc/es.

146 Chapter 6

6.10.8 The desired send primitives to signal constraint violations

The functionality of constraint monitors bas been treated in previous sections.
The constraint monitor's constraint is monitored by tbe execution of a· receive
action. When tbe receive action succeeds, tbe constraint monitor's constraint
is supposed to be violated. For an interaction to take place, botb a semi action
and a receive action are needed. This section will focus on tbe kind of send
actions needed to support tbe detection of constraint violations.

Strictly speaking, any send action can be used, because tbe receive action
executed by tbe constraint monitor neitber assumes nor requires a specific
send action. In practice, however, only two different send primitives are
needed to support tbe detection of constraint violations.

The first send primitive needed is tbe metbod Bubble >> send:continuousTo:.
This metbod is used to indicate a state, such as an emergency button which is
pressed. It is used mainly for interfacing tbe sensors in tbe controlled system
to tbe controlling system · by means of a driver processor as explained in
Section 2.2.3.

The second send primitive needed is tbe metbod Bubble » broadcast: object
to: portName, which will be fully explained at tbe end ofthis section. Insome
cases, tbe metbod Bubble » send: object immediateTo: portName then:
thenBiock else: elseBiock is sufficient. This metbod tries to send object to tbe
port named portName. lf this succeeds immediately tben thenBiock is
executed; if not elseBiock, so tbe metbod never blocks. For tbe indication of
constraint violations tbe thenBiock and elseBiock are generally not needed,
because no feedback information about tbe success or faiture of tbe send
action is required. The only aim of tbe send action is to indicate a constraint
violation. It is up to tbe otber processes to act on tbis if needed. This metbod
can be used to indicate tbat tbe normal sequence of synchronization actions
between two or more cantrolling processes is disrupted.

The synchronous send actions, which may be blocking, are not needed to
indicate constraint violations, because it is never necessary to wait for anotber
process to be able to receive tbe object indicating tbe constraint violation.
This is due to tbe nature of constraint monitors: once tbey are enabled, they
are always ready to receive, independently of tbe actioris performed by tbe
process that enabled tbe constraint monitor.

A new mechanism for the handling of constraint viola ti ons 147

The asynchronous send actions are not needed, eitber. These interaction
mechanisms have an undesirable buffering function which could lead to tbe
signaling of a constraint violation, due to a buffered object, at a time that tbe
constraint indicated by tbe object is no longer violated.

In many cases, tbe number of processors that need to be informed of a
constraint violation exceeds one. lf this is tbe case, and tbe metbod
send:immediateTo:then:else: were used, a separate object would need to be
sent to every processor concemed. This would be undesirable, since
specifically sending an object to every processor concemed would lead to bad
modularity. Therefore, tbe extra send primitive Bubble » broadcast: object to:
portName is introduced for tbe notification of constraint violations. This
metbod tries to send copies of object to all tbe processors conneeled through
an interaction patb to tbe port named portName. lf a eertaio send action
caooot take place immediately, an attempt is made to send a copy of object to
tbe next processor, so this metbod caooot block. lt is functionally equivalent
to separately trying to send tbe specified object to all processors concerned by
means of tbe metbod send:immediateTo:then:else:, using an empty thenBiock
and an empty elseBiock. The presence of the metbod broadcast:to: implies that
tbe metbod send:immediateTo:then:else: is no longer needed for tbe indication
of constraint violations.

148 Chopter 6

Chapter 7
The specification of controlling systems
illustrated by a case

Some examples of the use of the newly developed mechanism have already
been given. This section gives some illustrative parts of a complete controlling
system, with an emphasis on the way constraint monitors are used to handle
exceptions. First, the desired functionality of the control system is explicitly
stated. The controlling system is then modeled according to those
requirements. A simpte but effective strategy is developed for error recovery
with the aid of exceptions and constraint monitors. This strategy is referred to
as the retry strategy. lt is demonstrated both in a single-process and in a
multi-process environment.
The reader is referred to the appendices for more information about Smalltalk
and the methods used in this chapter.

7.1 Requirements regarding the functionality of control
systems

This section discusses some important requirements of exception handling
regarding the interaction of the controlling and controlled system. Clearly
these requirements are oot applicable to all kinds of system since the
requirements are usually a compromise between the functionality desired and
the cost of imptementing them. The controlling system of the transporter, as
treated in this chapter, is modeled according to the requirements given in this
section.

1. Exceptions should be handled as locally and as efficiently as possible.
This means that as small as possible a part of the system should be
affected by an exception. Consider, for example, the assembly of several
parts. A faiture in the assembly of a single part should oot lead to the
rejection of the complete subassembly, but rather should be correctable
by the operator or automatically, whereafter assembly cao continue.

150 Chopter 7

2. Proper damage confinement strategies require that the effect of an
exception should be minimized. This can mean that, as a result of an
exception in one machine part, many other parts must be put in a safe
state in order to prevent more errors from occurring.

3. lf operator assistance is required, errors should be reported to the
operator. If the operator would enter the machine in order to correct the
error, the machine should be kept in a safe state and not suddenly start
moving. The interropled part of the production process may only continue
when ordered to do so by the operator.

4. The controlling system should remain in a consistent state. Constraint
violations should result in the raising of exceptions. This is especially
important in parallel systems, where an exception in a process can cause
a process to break off its current activities. If it was synchronizing with
other processes, these processes could remain waiting for a
synchronization which will no longer take place.

5. The operator should in principle be able to interrupt the production
process at any time. For exarnple to stop and reset the production process
due to an error which was not detected by the controlling system.

7.2 Additional exception handling methods for controlli:ng
systems

The exception handling methods given in the previous chapter are of a general
· nature. The specific requirements for the programming of controlling systems
make it advantageous to develop additional exception handling methods.
The first additional method is the metbod Subbie >> handle:do: shown in
Figure 7.2.1. lt is basedon the metbod Signal » hande:do:.

Due to the great variety of possible errors in the controlled system, the ways
of recovering from these errors can be very system specific. Y et the stage of
darnage confinement can often be executed using the sarne concepts. Machine
parts that may be affected by the error must be brought toa safe state. This
should be done regardless of the type of exception. Thé machine should be
brought to a safe state, even when no errors have occurred, but the production
process is simply stopped by the operator. This can be done by using an

The specijication of controlling systems illustrated by a case 151

Bubble >> handle: exceptionHandler do: doBiock

"The exceptionHandler will catch all exceptions from the doBiock.
Before execution of ex ception Hand/er, an error message wil/ be issued for
the exception.
After execution of ex ception Hand/er, the handled exception will be
propagated (ex reject), un/ess another response is specified in
exceptionHandler."

AnySignal
handle:

[:ex I
self errorMessageFor: ex.
handler value: ex.
ex reject]

do: doSloek

Figure 7.2.1 A new handle:do: method.

exception handler that will catch all exceptions. Therefore, the handler set up
by the metbod is a handler which catches all exceptions.

All errors should be presented to a man-machine interface (MMI) of the
controlling system. This is done in the exception handler by means of the
message self errorMessageFor: ex. The convention adopted in this thesis is that
all controlling processors have two ports for communication with the MMI:
the ports mmi-in and mmi-out. In the Smalltalk system, error messages reside
in exception objects which are made available to exception handlers as
argument. Therefore, the error message betonging to an exception object can
be extracted from that object by sending it the message errorstring. This
feature enables error messages of exceptions raised by the user program code
itself and by the system code to be treated in the same way. The error message
is retracted from the exception object in the exception handler and sent to the
MMI. To prevent the same error message from being sent to the MMI in
different handters that sequentially handle the same exception, the last
exception for which an error message bas been sent to the MMI is recorded in
an instanee variabie which is available in every processor. An error message
is only sent to the MMI if the value recorded in this instanee variabie is not
equal to the exception which is being handled.

As bas already been mentioned in Section 4.6.2, the default response of a
handter should be the propagate response, which is also the response which
occurs most frequently in controlling systems. The exception handler
elaborated in Figure 7.2.1 tenninates with ex reject In this way, the exception

152 Chapter 7

caught by exeeptionHandler, which is set up witb tbe metbod Bubble »
handle:do:, is propagated when no response is issued in exeeptionHandler. In
this way, tbe functionality oftbe default propagate response is created for this
handler.

The second additional metbod is Bubble » handle:eonstraintMonitors:do:
shown in Figure 7.2.2. It is a combination oftbe metbod Bubble » handle:do:
and tbe metbod proteet in tbe class ConstraintMonitor (and
ConstraintMonitorCollection). lts use leads to more easily readable code
because tbe number of nested blocks is reduced. The only difference, from tbe
metbod Bubble » handle:do: is that tbe doSloek is proteeled by tbe
constraintMonitor argument monitorOrMonitors.

Bubble >> handle: exceptionHandler constraintMonitors:
monitorOrMonitors do: doBiock

"The exceptionHandler wil/ catch all exceptions from the doB/ock.
Befare execution of ex ception Hand/er, an error message wil/ be i~sued for
the exception. ·
After execution of exceptionHandler, the handled ex ception wil/ be
propagated (ex reject), unless another response is specified in ·
exceptionHandler.
During execution of the daBloek monitorOrMonitors wil/ be en ab/ed."

AnySignal
handle:

(:ex 1
self errorMessageFor: ex.
handler value: ex.
ex rejeet)

do: [monitorOrMonitors protect: doBioek]

· Figure 7.2.2 A method which binds an exception hand/er and constroint
monitors to a block.

External exceptions can he represented witb tbe KiiiSignal and RetrySignal.
They are global signals which are known to all processors. By convention,
tbey are raised in a process in response to exception occurrences ca~sed by
tbe environment of tbe process. These exception occurrences can eitber he
caused by tbe state of tbe controlled system, by otber controlling processors,
or by tbe operators. The KiiiSignal should he raised when local error recovery
is not possible. The RetrySignal is raised when local error recovery u~ing the
retry strategy is possible in principle. The retry strategy is treated in tbe next

The speciflcation of controlling systems illustrated by a case 153

section. Exceptions due to programming errors should be signaled by raising
Object errorSignalor otber specific signals.

7.3 The retry strategy in a sequential process

Many different strategies can be used in tbe recovery process. There is,
however, one simple strategy that can be used to reeover from many errors in
a simpte and e:fficient way.
This way of error recovery in a process is based on tbe observation that
components of a machine are often controlled in tbe following way: in order to
effect a change in tbe external state of tbe component, its actuators are made
to change state. The controller consequently waits for a change of state of its
sensors, indicating tbat tbe component bas completed tbe desired external
state change. This activation of actuators and consequent waiting for tbe
desired state change of sensors will be referred to as a control action for tbe
component.

Consider a cylinder, for example. The control action to make a two valve
cylinder extend would be to open one valve and close tbe otber one.
Consequently the controller will wait for tbe limit sensor to be activated. lf an
error occurs in such a control action, tbe control action can often simply be
re-executed after correction of tbe error. This will be referred to as restarting
the control action. Restarting a control action can be elegantly implemenled
by means of the retry response of exception handlers. The type of exception
caught wiJl de termine whetber a retry response is given in tbe handter, or tbe
exception is propagated to tbe invoker. Botb types of exception, however,
share tbe damage confinement and error reporting code in tbe handler.

This way of exception handling is illustrated in Figure 7.3 .1 using tbe
example of tbe fork-Iift truck. The metbod ControiBubble » restartMessage:
sends tbe given restart message to tbe MMI and tben remains blocked in a
receive action to receive tbe response from tbe MML In tbis case, a special
receive action is used, tbat can be interrupted by raising a pending exception,
even when an exception handler is executing (see Section 6.3.2). If tbe
operator can correct tbe error, he can continue by choosing tbe restart
response in tbe MMI panel. This will cause tbe MMI processor to send a
continue message to tbe processor from which tbe restart message was
received. When tbis continue message is received, tbe invoked metbod

154

SlaveForkLifter » forkUp
AnySignal

handle:
[:ex 1

do:

self errorMessageFor: ex.
self putOff: 'o-forklifter-power'.
ex signal == RetrySignal

ifTrue:
[self restartMessage: 'fork lifter up'.
ex restart)

ifFalse: [ex reject)J

[self putOn: 'o-forkUfter-up'.
self putOn: 'o-forklifter-power'.
self

receive: true
from: '1-forkLifter-isUp'
within: 6 seconds
iffimedOut:

[RetrySignal raiseErrorstring: 'time-out on fork up').
self putOff: 'o-forklifter-power')

Figure 7.3.1 Exception handling with the retry strategy.

Chapter 7

ControiBubble » restartMessage: will return and the exception will be
restarted causing the do block to be re-executed.

Because this structure is often used, the metbod ControiBubble >>
handle:restart:do: shown in Figure 7.3 .2 offers a compact way of expressing it:

ControiBubble » handle: handler restart: restartBiock do: doBiock
AnySignal

handle:
{:ex I
self errorMessageFor: ex.
handler value: ex.
ex signal == RetrySignal

ifTrue:
{restartBiock value.
ex restart)

ifFalse: {ex rejectD
do: doSloek

Figure 7.3.2 A simp/e methad which can be used to express the re try
strategy.

The specifica ti on of cantrolling systems illustrated by a case

The example of tbe fork-lift truck is tbus reduced as follows:

SlaveForklifter >> forkUp
self

handle: [:ex 1 self putOff: 'o-forklifter-power']
restart [self restartMessage: 'fork lifter up']
do:

[self putOn: 'o-forklifter-up'.
"etc."
self putOff: 'o-forklifter-power']

Figure 7.3.3 Exception handling with the retry strategy.

155

The class ControiSubble is a subclass of tbe class Bubble. All processors used
for control should belong to subclasses of ControiBubble in order that tbey
inherit tbe :functionality for tbe control of physical systems and so that tbey
can interact witb tbe MMI. The two additional messages are defined in tbe
class ControiBubble instead of Subbie because tbey are less general. They use,
for instance, tbe specific ports mmi-in and mmi-out for communication witb tbe
MMI.

In tbe case where a constraint monitor should be bound to tbe do block,. one
can use tbe metbod ControiBubble » handle:restart:constraintMonitors:do:. The
only difference from tbe metbod mentioned above is that, in tbe last metbod,
tbe doBlock is bound to tbe constraint monitors specified in tbe message, just
as it is done in tbe message Subbie » handle:constraintMonitors:do:.

7.4 Different control modes

The control model of tbe transporter treated in Section 2.3 was basedon an
error-free production system. All machines were initially in a defined reset
position.

Practical control systems must deal witb machines that can be in an arbitrary
initial position. For this purpose, many control programs are divided into at
least two parts. The first part can bring tbe controlled system into a well­
defined state. This is known as resetting tbe system. Resetting a system is not
only necessary initially, but can also occur during the production process in
order to reeover from errors. When tbe controlled system is being reset by tbe
controlling system, the controlling system is said to operate in reset mode.

156 Chapter 7

The seeond part controls the production process, which is usually cyclic. In
this situation, the cantrolling system is operatingin automatic mode.

lt is desirabie to reeover from errors as efficiently as possible. The production
cycle can he temporarily suspended in order to correct the error, but after
correction of the error it is desirabie to continue the production cycle from
where it was interrupted. To do this the retry strategy can he used, as treated
in the previous section. It is, however, not always possible to use the retry
strategy. For example, ifthe stack falls ofthe fork-lift and the produçts on the
trays are damaged, then it is useless to continue the transportatiQn of the
damaged products to the fumace. In this case, the fork-lift truck should he
reset to its initial position, waiting at the traverse for a new stack. Resetting a
system can also he necessary if, for some reason, the cantrolling system is no
longer synchronized with the controlled system. This happens if the controlled
system is in a state which the cantrolling system does not expect. This kind of
error should also he handled as efficiently as possible. It is, for example, not
necessary to reset the processes that are stacking new trays onto the stack
when the fork·lift truck needs to he reset. So resetting should he · done as
locally as possible.

Resetting a system could he implemented in such a way that the system
always returns to the same defined state. lt is often more efficient to de:fine
different reset positions for a given system. Consider the fork-lift truck, for
example. lf an error occurs when the fork-lift truck is depositing the stack at
the fumace and a reset is necessary, it is a waste of time to make the fork-lift
truck go back to the traverse with a full stack. It makes sense in this situation
to define two reset positions: one with an empty fork at the traverse and a
second position, with a full stack on the fork, at the furnace.

Resetting a system is usually done under the control of an operator. The
operator may he necessary in order to remove damaged material from the
machine. He may also he the person to decide that resetting is the only way to
reeover from an error.

The cyclic control of the production process is expressed in the simplest and
clearest way if the cycle always begins with the controlled system in a unique
initial state. Therefore, the automatic mode begins with an initializatiQn stage
in which the system is brought from a number of defined reset sta~es to a
unique, defined state. After this the main controlloop can he entered.

The speciflcation of controlling systems illustrated by a case 157

When the reset or automatic mode is terminated by an exception, the
cantrolling system enters the stand-by mode. In this mode, a oommand from
the operator is awaited to reset the system. After the system bas been reset, an
operator command is awaited to enter automatic mode. In reality, the
switching from one mode to another is more complex with, for example, an
additional manual mode, but this does not lie within the scope ofthis thesis.

The methods required to imptement the reset mode and automatic mode
include the following methods:

ControiBubble >> switchToResetMode

"Sent when going to reset mode."

kiiiFromMMIMonitor proteet [self resetMode).

ControiBubble » switchToAutomaticMode

"Sent when going to automatic mode. "

kiiiFromMMIMonitor protect: [self automaticMode).

ControiBubble >> resetMode

"Sent when going to reset mode.
May be redefined by a subc/ass (copied to a subc/ass and then edited).
Any exception that is caught in the hand/er must be rejected. This is done
automatica//y so no response should be issued in the hand/er."

self
handle: [:ex 1 "user defined exception handlingj
constraintMonitors: kUlMonitors
do: [self resetBody)

ControiBubble >> automaticMode

"Sent when going to automatic mode.
May be redefined by a subclass (copied to a subc/ass and then edited).
Any exception that is caught in the hand/er must be rejected. This is done
automatica//y so no response should be issued in the hand/er."

self
handle: [:ex 1 "user defined exception handlingj
constraintMonitors: kiiiMonitors
do:

[self automaticlnitialize.
[self automaticBody] forever "main controlloop1

The kiiiFromMMIMonitor monitors whether a rommand is sent by the operator
by means of the MMI interface to bring the system into a different mode. If
such a command is received by the constraint monitor, it signals the constraint

158 Chapter 7

TransporterControiSystem model

Figure 7. 5.1 a Model of the controlling system of a transporter.

vialation and the KiiiSignal is raised without an error message so that the reset
or automatic mode that was active is terminated.

The instanee variabie kiiiMonitors is a constraintMonitorCollection. User
defined constraint monitorscan be added to this collection to enable the reset
or automatic mode to be terminated and stand-by mode to be entered due to
constraint violations caused, for example, by the pressing of the emergency
button.

When a cantrolling processor is required to respond to commands from the
MMI to change its mode, its body should eaU the predefined method
modeBody as follows:

body
self modeBody

The speciflcation of con/rolling systems illustrated by a case 159

The metbod modeBody takes care of the synchronization and communication
with the · MMI and will eventually result in the methods resetMode or
automaticMode being sent to the controlling processor (self), The application
programmer only needs to define the methods resetBody, automaticlnitialize
and automaticBody or to redefine the methods resetMode and automaticMode.

7.5 The control model

7.5.1 The structure ofthe model

The model is shown in Figures 7.5.la to c. The controlled system is the
transport system treated inSection 2.3.
In Figure 7.5.la the controlling system is shown. The Ctr1Transporter

CtriTransporter model

i-traverse-

in

mmi- o-holder-

o-sections-motor2 o-traverse-
o-fori<Tumer-

Figure 7.5.Jb Model ofthe Ctr/Transporter processor.

160 Chapter 7

processor is expanded. lts model is shown in Figure 7.5.lb. lt consists ofthe
processors that control the transport machines by means of the actuators and
sensors. The other processors of Figure 7.5.la are interface processors. The
MMI processor interfaces with the operator by means of the man-machine
interface. The TranporterDriver interfaces with the physical actuators and
sensors of the controlled machine and the Ctrllnterface processor interfaces
with controlling processors of the system's environment.

CtriTruckExp model

i-truckGiobal-

kiiiSignal-toTraverse

1-forkTumer-

i-forklifter-

>bu<k\' i-truckGiobal-

i-emergency-• i-emergency-•

o-f arklifter- o-forkTumer-

Figure 7.5.Jc Model ofthe CtrlTrockExp processor.

The models shown in Figures 7.5.lb and 7.5.lc are similar to the modelsof
Figures 2.3.2b and 2.3.2c. The difference is that interactions are added for the
handling of constraint violations and for resetting the system.

The speciflcation of controlling systems illustrated by a case 161

7 .5.2 Tbe definition of tbe constraint monitors

The classes of all cantrolling processors in the model inherit from the class
CtriTransporterAbstract. This means that they are a subclass of thls class itself,
or of one of its subclasses. Therefore, all these processors share the same
initialization and they also inherit the instanee variables kiltMonitor and
emergencyMonitor defined in the class CtriTranporterAbstract. The definition of
these eenstraint monitors is shown in Figure 7.5.2.

--- Ctr/TransporterAbstract > initialization ---

initializeTasks
super initializeTasks. "initialize for superclasses"
kUlMonitor := ConstraintMonitor

for: self
receiveFrom: 'kiiiSignal-in'
then: [:item I KiiiSignal raise].

emergencyMonitor := ConstraintMonitor
for: self
receive: true
from: 'i-emergency'
then: [:item I KiiiSignal raise).

kiiiMonitors add: kiiiMonitor.
kiiiMonitors add: emergencyMonitor

Figure 7.5.2 Definition ofthe constraint monitors shared by the controlling
processors.

The kUlMonitor tries to receive the symbol #kill from the port kiiiSignal-in. The
convention used is that a process which violates an active eenstraint of
another process sends the symbol #kill to the other process, which receives the
symbol through the port kiiiSignal-in.
The emergencyMonitor monitors the pressing ofthe emergency button.

7 .5.3 Constraint violations between CtriEndSection and
CtriTraverse

Figure 7.5.3 showshow the Ctr1EndSection processor will receive a tray from
the previous section. When it has received the tray, it will be stacked at the
bottorn of the stack. To control the stacking of the tray, CtriEndSection
synchronizes with the processor CtriTraverse. This synchronization takes place
in the do block from lines 5 to 12 in the metbod CtriEndSection » stackTray.

162

Ctr/EndSection > process control --------

body
self modeBody

automaticMode
1 self
2 handle:
3 [:ex I
4 self putOff: 'o-motor'.
5 self send: 'undefined' continuousTo: 'sync-pusherState']
6 constraintMonitors: kiiiMonitors
7 do:
8 [self automaticlnitialize.
9 [self automaticBody] forever]

automaticBody
1 self receiveTray.
2 self stackTray

automaticlnitialize
(self isOn: 'i-tray') ifTrue: [self stackTray]

stackTray

"State upon entry: pusher down"

1 self receiveFrom: 'sync-traverseAtPusher'.
2 self
3 handle: [:ex 1 self broadcast: #kill to: 'kiiiSignal-toTraverse']
4 do:
5 [self pusherUpAgainstStack.

Chapter 7

6 self send: 'upAgainstStack' continuousTo: 'sync-pusherState'.
7 self receiveFrom: 'sync-holderOpened'.
8 self pusherMaximaiUp.
9 self send: 'maximaiUp' continuousTo: 'sync-pusherState'.
1 0 self receiveFrom: 'sync-holderCiosed'.
11 self pusherDownStart
12 self send: 'belowMiddle' continuousTo: 'sync-pusherState'].
13 self pusherDownWait.
14 self send: 'down' continuousTo: 'sync-pusherState'

Figure 7.5.3 Process description ofCtr/EndSection.

This block could be prematurely terminated because of an exception
occurrence. Such a premature termination would be a vialation of a constraint
of the synchronizing CtriTraverse processor. Therefore, the exception is
handled in line 3 and the #kill symbol is sent to the CtriTraverse processor,

The speciflcatian af cantrolling systems illustrated by a case 163

causing its kiiiMonitor to signal, so that an exception will be raised in
CtriTraverse. If the cause of the exception occurrence in CtriEndSection was,
for instance, an error occurring during execution of the metbod
pusherMaximaiUp in line 8, then CtriTraverse would have been waiting for the
pusher to be maximallyup in CtriTraverse » stackTray line 8 (Figure 7.5.4).
At that point the exception due to the signaling of CtriTraverse's kiiiMonitor
would be raised.

------- Ctr!Traverse > process control -------

body
self modeBody

automaticBody

"State upon entry: pusher down, traverse retracted"

(stackSize >= self maxStackSize) ifTrue: [self stackToTruck].
self stackTray

stackTray

"State upon entry: traverse at pusher"

1 self sendTo: 'sync1-traverseAtPusher'.
2 self
3 handle: [:ex 1 self broadcast: #kill to: 'kiiiSignal-toEndSection']
4 do:
5 [self receive: 'upAgainstStack' from: 'sync1-pusherState'.
6 self holderOpen.
7 self sendT o: 'sync1-holder0pened'.
8 self receive: 'maximaiUp' from: 'sync1-pusherState'.
9 self holderCiose.
10 stackSize := stackSize + 1.
11 self sendT o: 'sync1-holderCiosed'.
12 self receive: 'belowMiddle' from: 'sync1-pusherState']

Figure 7.5.4 Process description ofCtr/Traverse.

7.5.4 Interaction mechanisms used for the synchronization
between controlling processors

Two kinds of interaction mechanism are used for synchronization interactions
between cantrolling processors: the synchronous mechanism and the
continuous mechanism.

164 Chopter 7

An example of the synchronous interaction mechanism is the interaction
represented by self receiveFrom: 'sync-holderOpened' in CtriEndSection »
stackTray (Figure 7.5.3, line 7) and self sendTo: 'sync1-holder0pened' in
Cb1Traverse >> stackTray (Figure 7.5.4, line 7). Both processors must execute
the send and receive actions for the interaction to take place.

An example of the continuous interaction mechanism is the interaction
represented by self send: 'upAgainstStack' continuousTo: 'sync-pusherState' in
CtriEndSection » stackTray (line 6) and self receive: 'upAgainstStack' trom:
'sync1-pusherState' in CtriTraverse » stackTray (line 5). A secoud example is
represented by self send: 'down' continuousTo: 'sync-pusherState' in
Cb1EndSection » stackTray (Figure 7.5.3, line 14) and self receive: 'down'
trom: 'sync1-pusherState' in CtrtTraverse » stackToTruck (Figure 7.5.5, line
8). The traverse will only move back to the pusher when the pusher is
éompletely down. lf the pusher has gone down without errors, the receive
action from Cb1Traverse » stackToTruck (line 8) will receive immediately. A
synchronous interaction mechanism is not appropriate in this case, · because
the receive action in CtriTraverse could take place while a new tray is • entering
the end section (CtrtEndSection » automaticBody- Figure 7.5.3, line 1), and
so CtrtEndSection cannot execute a corresponding send action at that time.
Therefore, the continuous mechanism is used.
In Cb1EndSection » automaticMode (Figure 7.5.3, line 5), the state of the
pusher is defined as 'undefined' when the methods automaticlnitialize or
automaticBody are terminaled with an exception.

7.5.5 Synchronization between controlling processors without
using sensors

As was mentioned in Section 2.3.2, the synchronization between the
controlling processors is effected by means of interactions between them,
rather than by synchronizing directly on the state of the sensors. This last
option can lead to dangerous situations in thè error recovery stage.

Consider, for example, the synchronization between CtriEndSection »
stackTray (line 7) and CtrtTraverse » stackTray (lines 6-7). The holder is
opened by Cb1Traverse in line 6. In the following line, the processor
CtriTraverse is notified of the fully opened holder by means of an interaction.
Instead of waiting for this interaction to take place in CtriEndSection »
stackTray (line 7), the CtriEndSection processor could also have waited for the

The specijication of cantrolling systems illustrated by a case 165

sensor, indicating a fully opened bolder, to be activated. This can lead to
dangerous situations in the following way. Soppose that the pusher does not
open properly due to an error. In order to correct the error, it could be
necessary to open the pusher manually, thereby activating the sensor
indicating an open pusher. This sensor could also be accidentally activated
while trying to correct the error in another way. In both cases, the
CtriEndSection processor would irnmediately continue after having detected
the activation of the sensor. This would cause the stack to be pusbed upward
suddenly (line 8). This irnmediate activation of machine components during
the correction of errors in machine parts can lead to unexpected and
dangerous situations.

To prevent such situations, controlling processors synchronize directly with
each other by means of interactions. Each controlling processor controts the
sensors and actuators of certain machine components. These actuators and
sensors are not used by any other processor. If an error occurs during the
activation of a machine component, an error message is sent to the operator.
lf the processor in which the error was detected cannot automatically correct
the error, it will wait for a signal from the operator, indicating that the
controlling processor may continue. Therefore, the activation of the sensors of
the machine part in question cannot cause a sudden activation of other
components.

Figure 7.5.lc appears to be inconsistent with the above-mentioned convention
of no more than one controlling processor for each component. For example,
the sensors from the forkLifter (i-forklifter-) are connected to the processors
SlaveForklifter and CtriTruck. This means that the status of the fork lifter
sensors is read by both processors. The sensors of the fork-lift truck,
however, are only used by the CtriTruck processor todetermine the status of
the truck while resetting it, and not as a means of synchronization between
two controlling processors. The methods for resetting are not shown bere
because they are too specific and do not serve to illustrate the use of
constraint monitors.

Checking the state of the controlled machines can also lead to situations where
the sensors of a machine component are used by several controlling
processors. This is done in order to check whether the state of the controlled
machines conforms to the state which is expected by the controlling system. If
the controlling system and the controlled machines would function correctly,
this would not be necessary. Errors, however, are always possible. So, in

166 Chapter 7

order to prevent errors from causing serious damage, tbe state of tbe
controlled machines can be checked.

7.5.6 Constraint violations between CtriTravene and CtriTruck

In tbe metbods CtriTraverse » stackToTruck and CtriTruck »
receiveStackFromTraverse (Figures 7.5.5 and 7.5.6), tbe stack is transported
from tbe traverse to tbe fork-lift.

--- Ctr/Traverse > process control ---

stackToTruck
"State upon entry: traverse at pusher"

1 self receivefrom: 'sync2-truckResetAtTraverse'.
2 self
3 handle: [:ex 1 self broadcast: #kill to: 'kiiiSignal-toTruck']
4 do:
5 [self traverseToFork.
6 self sendTo: 'sync2-traverseAtFork'.
7 self receiveFrom: 'sync2-forklsUp'].
8 self receive: 'down' trom: 'sync1-pusherState'.
9 selftraverseToPusher

Figure 7.5.5 The method stackToTruckofthe processor Ctr/Traverse.

7 .5. 7 Constraint violations in the CtriTruck.Exp model

The processors of the CtriTruckExp model are hierarchically structured. The
·processor CtriTruck receives tbe mode commands from tbe MMI. CtriTruck
coordinates tbe actions of tbe fork lifter, tbe fork turner and tbe hopzontal
movements of tbe truck itself. The two slave processors Slaveforklifter and
SlaveForkTumer are used by tbe CtriTruck processor to realize parallelism in
tbe movements oftbe fork-lift truck. The slave processors receive a command
from tbeir master CtriTruck, execute it, and send an acknowledge back to tbe
master when tbe oommand has been executed (see tbe metbod ControiBubble
» slaveBody in Figure 7.5.7). The processors are termed slaves because tbe
master sends tbem commands which are executed by tbem. The slaves, in
turn, cannot order tbe master to do anything. They can only inform tbe. master
of exception occurrences. The slaves SlaveForkTurner and SlaveForkLifter both
inherit tbe metbod slaveBody from the class ControiBubble. A simplified body

The speciflcation of contro/ling systems i//ustrated by a case

------- Ctr/Truck > process control -----------

body
self modeBody

automaticMode
1 self
2 handle: [:ex I self broadcast: #kill to: 'kiiiSignal-toSiaves']
3 constraintiVIonitors: kiiiiVIonitors
4 do:
5 [self automaticlnitialize.
6 [self automaticBody] forever]

automaticBody

"State upon entry: truck at traverse, fork middle postion, tumed to
traverse"

self receiveStackFromTraverse.
self transportStackToFumace.
self giveStackToFumace.
self goBackToTraverse

receiveStackFromTraverse
self sendT o: 'sync-truckResetAtTraverse'.
self

handle: [:ex 1 self broadcast: #kill to: 'kiiiSignal-toTraverse']
do:

[self receiveFrom: 'sync-traverseAtFork'.
self forkUp.
self sendTo: 'sync-forklsUp']

Figure 7.5.6 Process description ofCtr/Truck.

167

ofslave processors has already been explained inSection 2.3.3. The complete
version is shown in Figure 7.5.7 in ControiBubble » slaveBody.

lf an exception occurs in the body of one of the slaves (ControiBubble »
slaveBody) in line 11 or 12, the do block (lines 11-12) will be terminated with
an exception and the master can no longer receive the awaited acknowledge.
This constraint vialation should be signaled to the master. This is done by
sending a #kill symbol to the master in line 6 so that its kiiiiVIonitor will signal
the constraint vialation and an exception will be raised.

lf an exception would cause the automaticBody (Figure 7.5.6 CtriTruck »
automaticlVIode line 6) from the master to be terminated with an exception

168

forkUp
1 self send: #forkUp to: 'forklifter-command'.
2 self receiveFrom: 'forklifter-ack'

------ ControiBubble > process control --------

slaveBody
1 I command I
2 command := self receiveFrom: 'master-command'.
3 AnySignal
4 handle:
5 [:ex I
6 self broadcast: #kill to: 'kiiiSignal-toMaster'.
7 self errorMessageFor: ex.
8 ex return]
9 do:
10 [kiiiMonitors proteet
11 [self perform: command.
12 selfsendTo: 'master-ack']]

------ SlaveForkLifter > process control ----

body
self slaveBody

------- SlaveForkTurner > process control ---

body
self slaveBody

Figure 7.5. 7 The cooperation ofthe slaves with the master.

Chapter 7

while the master was still waiting for an acknowledge from a slave · (Figure
7.5.7 CtriTruck » forkUp line 2, for example), the acknowledge from the slave
will no Jonger be received. The slave should be notified of this constraint
violation, otherwise it will remain blocked trying to send its acknowledge.
This is done in CtriTruck » automaticMode in line 2.

In CtrlTruck » forkUp, the Cb1Truck processor starts wa1tmg for the
acknowledge immediately after having sent the command. This need not
always be the case. In the case of more parallelism, the processor could also

The specifica/ion of cantrolling systems illustrated by a case 169

send a command to a slave and after that continue with other actions, finally
receiving the acknowledge at a completely different point in the program.

In CtriTruck » automaticMode (line 2), the #kill symbol is sent to the port
kiiiSignal-toSiaves. This port is connected with the ports kiiiSignal-in on all
slaves. Actually the master CtriTruck should only send a #kill symbol to a slave
of wlllch a constraint has been violated. This would be a slave trying to send
an acknowledge to the master while the master will no longer receive it. In tllls
model the #kill symbol is sent to all the slaves, regardless of whether a
constraint has been violated or not. This approach leads to much simpter code
in the master because it need not know exactly which of the slave's
constraints, if any, have been violated. When a slave has finished a oommand
and is waiting fora new one, then its kiiiMonitor will be disabled and it will
simply not receive the #kill symbol.

7.6 The retry strategy in a multi-process environment

7 .6.1 Exceptions in a group with a master and slaves

In the retry strategy treated in Section 7.3, a sequentia(process detects errors
in the system components that it controls. An exception is raised if an error is
detected in such a component If the RetrySignal is raised, the exception wiJl
be handled by retrying the terminated control action. In a multi-process
environment, exception occurrences in a process need not only be a result of
errors in the system components controlled by the process itself. They can
also be a result of errors in other components.
Consider the fork-lift truck, for example. When it transports a stack from the
traverse to the fumace, three movements will take place in parallel when the
truck passes the sensor canTumToFumace (Figure 2.3.1). The truck rides to
the fumace, the fork-lift goesdown and the fork tums to the fumace. Time­
outs are used in the control of all three movements. If a time-out should occur
in the control of any of these movements, the exact cause of the time-out
cannot be determined by the control system because not enough sensors are
available. Therefore, the control system should adopt a worst case scenario
and stop all three movements in the case of a single time-out. The truck is also
equipped with sensors to detect collisions. All three movements should also be
stopped if a ooilision is detected. Note that systems also exist in wlllch an
error in a component controlled by a slave need not result in the stopping of
all components controlled by the other slaves and the master.

170 Chapter 7

The. requirements of Section 7 .I imply that it should be possible to restart all
interrupted control actions after correction of the error by the operator. The
fork-lift truck should only bereset in the case that the operator decides that it
is useless torestart the interrupted actions.
lt is evident that exceptions should only be raised in the processors that
control a component which is actually moving at the time of the error.
Suppose that the truck is moving and the fork is turning, but the fork-lift has
already reached the stabie middle position and is no Jonger going do~ at the
time of the error. In this case, the exceptions need only be rais€;:d in the
SlaveForkTurner en CtriTruck processors in order to stop the movements of the
truck and fork.

It is concluded that a RetrySignal should be raised in a processor controlling
part of the fork-lift truck in any of the following three situations: first, when
an error occurs in the part of the fork-lift truck controlled by the processor
itself; second, when a colfision is detected; and third, when an error occurs in
a part ofthe fork-lift truck controlled by another processor.
These three situations are taken care of in the following way. In the first case,
a time-out can be used to detect errors in the controlled component. The
second case is taken care of by the bumperMonitor which is a constraint
monitor present in all three processors. It monitors a collision of the truck.
The third case is taken care of by the stop Monitor. This is a constraint monitor
which is also used in all three processors. When enabled, it tries to receive the
symbol #stop from the port stopSignai-in (see Figure 7.5.1c). The receipt of
that object indicates a constraint violation which causes the RetrySignal to be
raised. The #stop symbol is sent by any of the three processors in which a
time-out is detected. lt is sent to the other processors by means of a

· braadcaster processor which acts as an intermediate agent.

7.6.2 Tbe BroadCaster processor

The reason for using the braadcaster is that this makes the structure of the
model more el~ant, especially when many slaves are involved. Without the
broadcaster, each processor from the collection represented by the rnaster and
the slaves would have to be connected by means of interaction paths to all
other processors from the collection. With the broadcaster, the processors
from the collection need only be connected with the braadcaster.

The specification of controlling systems il/ustrated by a case 171

------- BrosdCaster > process control ----------

body
I item I
item := self receiveFrom: 'stopSignal-in'.
self send: item continuousTo: 'stopSignal-out'

Figure 7.6.1 Process description ofBroadCaster.

The processor BraadCaster simply sends the received symbol to its port
stopSignai-out by means of a continuous interaction (see Figure 7.6.1). The
port stopSignai-out is connected to the ports stopSignai-in on the three
controlling processors Cb1Truck, SlaveForkUfter and SlaveForkTumer. The
processor BraadCaster is shown in Figure 7.5.lc as a small circle without
name and is connected withall three controlling processors in the same way.
After the broadcaster bas sent the #stop symbol to its stopSignai-out port, any
enabled stopMonitors in the other two controlling processors will signal the
constraint violation by creating a pending exception. Note that the #stop
symbol will also be sent back to the controlling processor which originally
sent it. The stopMonitor will be disabled in this processor, so that the #stop
symbol will not be received and have no effect. The definition of the
stopMonitor is shown in Figure 7.6.2.
The. #stop symbol is sent by means of a continuous interaction rnechanism,
because a state is indicated to the other processors, and not an event: the
presence of the detected error must not only cause components to stop which
are actually moving, but must also prevent new movements from being started
before the error is corrected.
It should be noted that in this example the #stop symbol is sent to all other
controlling processors by means of the broadcaster. If the #stop symbol

· should not be sent to all other processors, this can of course be achieved by a
different structure of the interaction paths used to conneet the controlling
processors and the broadcaster.

7 .6.3 The definition of constraint monitors for the retry strategy

The definition of the constraint monitors used for the retry strategy in this
example is shown in Figure 7.6.2. The classes of the three processors
controlling the fork-lift truck all inherit from the class CbtTruckAbstract.

172

--- Ctr/TruckAbstract > initialization ---

initializeTasks
super initializeTasks.
retryMonitors := ConstraintMonitorCollection new.
stopMonitor := ConstraintMonitor

for: self
receive: #stop
trom: 'stopSignal-in'
then: [:item 1 RetrySignal raise].

bumperMonitor := ConstraintMonitor
for: self
receive: true
trom: 'i-truckGiobal-bumper'

Chapter 7

then: [:item 1 RetrySignal raiseErrorString: 'activation of truck bumper'].
retryMonitors add: stopMonitor.
retryMonitors add: bumperMonitor

Figure 7. 6.2 The definition of constraint monitors for the re try strategy.

7.6.4 An mustration ofthe retry strategy used in SlaveForkLifter

The metbod SlaveForkUfter » forkUp is shown in Figure 7.6.3. lt has been
provided with additional monitors to imptement the retry strategy in a multi­
process environment.
In the case of a time-out, the #stop symbol is sent by the invocation of the
metbod sendStop in line 15. After correction of the error, the operator will
give a oommand via the MMI to restart the interrupted methods. Before an
interrupted metbod can be restarted, the effect of the previously sent stop
oommand must first be undone, otherwise the stopMonitor would immediately
signal again when it was enabled. The stop command is undone by means of
the invocation of the metbod clearStop in line 5. The definition of the methods
sendStop and clearStop is given in Figure 7.6.4.
The stop oommand is cleared in the restart block in Figure 7.6.3, line 5.
Under certain circumstances, however, this line will not be executed. Suppose
that the operator does not want to restart the interrupted actions but instead
wants to bring the processes to the stand-by mode. In that case, the stand-by
command from the MMI will cause the kiiiFromMMIMonitor to signal by
creating a pending exception. This pending exception would be raised at the
place of the blocking statement of line 4. Therefore, the automatic mode
would beterminaled before the stop command could be cleared. To ml;lke sure

The specijication of cantrolling systems il/ustrated by a case

-------- SlaveFori<Lifter > machine io ----

forkUp
1 self
2 handle: [:ex 1 self putOff: 'o-forkutter-power']
3 restart
4 (self restartMessage: 'fork lifter up'.
5 self clearStop J
6 constraintMonitors: rebyMonitors
7 do:
8 [self putOn: 'o-forklifter-up'.
9 self putOn: 'o-forklifter-power'.
10 self
11 recewe:true
12 trom: 'i-forklifter-isUp'
13 within: 6 seconds
14 iffimedOut:
15 (self sendStop.
16 RetrySignal raiseErrorString: 'time-out on fork up').
17 self putOff: 'o-forklifter-power'J

Figure 7.6.3 The methodforkUp with additional constraint monitorsjor
the retry strategy.

173

that the stop command is also cleared in such situations, the methods
ControiBubble » slaveBody and Ctr1Truck » automaticMode are changed in
such a way that the stop command is also cleared by the exception handlers of
these methods. Figure 7.6.5 shows the new metbod Ctr1Truck »
automaticMode.

-- CtriTruckAbstract > process control ------

sendStop
self send: #stop to: 'stopSignal-ouf

clearStop
(self receiveFrom: 'stopSignal-in') ==#stop

ifTrue:
(self send: #ok to: 'stopSignal-ouf.
self recewe: #ok trom: 'stopSignal-in']

Figure 7.6.4 Methods forstopping other processes and enabling their
continuation.

174

--- Ctr/Truck > process control ---

automaticMode
self

handle:
[:ex I
self broadcast: #kill to: 'kiiiSignal-toSiaves'.
self clearStop]

constraintMonitors: kUlMonitors
do:

[self automaticlnitialize.
[self automaticBody] forever]

Chapter 7

Figure 7.6.5 The clearing ofthe stop commandwhen the automatic mode is
terminated.

7.6.5 An illustration ofthe retry strategy used in CtriTruck

The use of the retry strategy for the control of the truck itself is s9mewhat
more complicated than the retry strategy for the control ofthe fork-lift. This is
due to the fact that the control of the truck, while it is going from the; traverse
to the furnace, is divided into two parts, as shown in Figure 7.6.6.
In the first part, the truck moves from the traverse to the turning point at the
traverse. At that point, the fork-lift should start going down to thè middle
position and the fork should start to turn to the furnace. The conunands to
make the fork go down and turn are given in Cb1Truck »
transportStackToFumace, lines 2-3. 1be commands are given in ;a block
because they should be seen at the level of the metbod CtriTruck »
transportStackToFumace. At this level the coordination of the different

· movements of the fork-lift truck is determined. The actions should, however,
be executed in the metbod Cb1Truck » toTumPointAtTraverseDo:, because

--- CtriTruck > process control --

transportStackToFumace
1 self to TumPointAtTraverseDo:
2 [self send: #forkDownToMiddle immediateTo: 'forklifter-command'.
3 self send: #turn ToFurnace immediateTo: 'forkTurner-command'] .

. 4 self continueToFurnace. ·
5 self receiveFrom: 'forklifter-ack'.
6 self receiveFrom: 'forkTurner-ack'

Figure 7. 6. 6 Transpor/ation of the stack from the traverse to the furnace.

The speciflcation of controlling systems illustrated by a case 175

errors occurring in tbe two send actions should result in tbe stopping of tbe
truck and should tberefore be caught by tbe handter specified in tbe metbod
CtriTruck >> to TumPointAtTraverseDo:. The truck does not stop at tbe tuming
point under normal operation.
In tbe second part, tbe truck continoes to go to tbe :furnace.

Figures 7.6.7a-b show tbe two methods for tbe control of tbe truck
movements. They make use oftbe monitorCollection retryMonitors specified in
Figure 7.6.2. This collection contains tbe stopMonitor and tbe bumperMonitor.
These two monitors will be referred to as tbe retry monitors.
Strictly speaking, tbe retry strategy should not he specified in tbe way shown
in Figures 7.6.7a-b. The reason for this is tbat tbe motor oftbe truck remains
switched on at tbe tuming point, so tbe retry monitors should also remaio
enabled. In fact, tbe retry monitors should be enabled when tbe motor of tbe
truck is on and he disabled when tbe motor is off. By separately binding tbe
retry monitors in botb methods, tbe retry monitors are temporarily disabled
when tbe first metbod is terminated.

-- ctr/Truck >machine io ----

toTumPointAtTraverseDo: endBiock

"motor remains on when the do block is terminated normally"

self
handle: [:ex I self truckStop]
restart

[self restartMessage: 'truck to tuming position at traverse'.
self clearStop)

constraintMonitors: retryMonitors
do:

[self putOn: 'o-truck-toFurnace'.
self putOn: 'o-truck-power'.
self

receive: true
trom: 'i-truck-canTurnToFurnace'
within: 10 seconds
ifTimedOut:

[self sendStop.
RetrySignal raiseErrorString:

'time-out moving to turning position at traverse'].
endBiock value)

Figure 7.6. 7a The control of the truck using the re try strategy with
constraint monitors.

176 Chapter 7

Nevertheless, the control ofthe truck is split into two methods, because in this
way exceptions can he elegantly and locally handled in each method. The
temporary disabling ofthe retry monitors bas no undesirable effects.

--- CtrlTruck >machine io --

continue ToFurnace
"motor shou/d be on u pon activation of this method"

self
handle: [:ex 1 self truckStop]
restart

[self restartMessage: 'truck to fumace'.
self clearStop.
self putOn: 'o-truck-power']

constraintMonitors: retryMonitors
do:

[self
receive: true
from: 'i-truck-atFumace'
within: 20 seoonds
ifTimedOut:

[self sendStop.
RetrySignal raiseErrorString:

'time-out on truck-at-fumace detector'].
self putOff: 'o-truck-power']

Figure 7. 6. 7b The control of the truck using the re try strategy wi th
constraint monitors.

Chapter 8
Conclusions

8.1 Evaluation

Background and existing mechanisms

The handling of errors and exceptions is an important aspect in the
development of industrial control systems. The amount of code needed for
error handling is often several times greater than the amount needed for the
control under error-free circumstances. Considerable progress has been made
in the field of mechanisms for the handling of internal exceptions. We have
shown that these mechanisms are important for the creation of robust
programs. They are, however, not sufficient for controlling systems, because
these systems require an additional mechanism for the handling of constraint
violations. Several proposals and existing mechanisms for the handling of
constraint violations are known from the literature. These mechanisms have
been evaluated as either offering a functionality which is too restricted for
controlling systems, as offering an incorrect or undesirable functionality, or as
inadequate in other ways.

A clear definition of concepts

The inadequacy of the mechanisms which have been evaluated is ascribed to
the absence of clearly defined concepts and the absence of a sound theory
descrihing the essence of exception handling in controlling systems or, more
generally, in multi-process environments. Many definitions found in the
literature are imprecise or incorrect, or contain undesirable subjective
elements. In order to arrive at a new theory and new concepts, the most
important terms relating to errors and exceptions are accurately defined. The
relationship between exceptions and errors has also been clarified. The
definitions and relationships given bere result in a better onderstanding of the
terminology of errors, exceptions and the relationships between them.

178 Chapler8

New concepts to describe the essence of the handling of external
exceptions in controlling systems

An important contri bution of this study is the introduetion of the new concepts
'constraint of an operation' and 'constraint violation', which are es$ential in
order to detennine the requirements of a mechanism for the handling of
external exceptions in controlling systems. A constraint can he compound, in
which case it consists of(sub-)constraints.

The constraints of an operation are specific for the operation itself and thus
independent of the point in the program at which the operation is · invoked.
This point of view is essential for the development of modular subprograms.

The new concepts contribute to a better onderstanding of the way exceptions
should he handled in controlling systems or multi-process environments. One
of the aspects that is made clear is that there is a restrietion for the 'handling
of extemal exceptions caused by the violation of the constraints of an
operation: a handler that catches such an exception, while the operation of
which a constraint was violated is not yet terminated, must tenninate by
propagating the exception.

A new mechanism for the handling of constraint violations

The newly developed mechanism for the handling of constraint violations in
controlling systems makes it possible to specify and monitor the constraints of
each operation independently of other already invoked operations. This is a
quality seldom found in programming languages or systems. At the sametime
the mechanism is well integrated with the advanced mechanisms for the
handling of intemal exceptions. The integration is achieved with the addition
of only a single programming construct, namely a constraint monitor. This
makes the resultant mechanism easy to use and to onderstand. The ·required
binding of constraint monitors to operations or blocks enforces the use of
constraint monitors in a structured way. A constraint monitor bound to a
single operation can also he used to specify a constraint which is com.mon to
several operations, which will, in many cases, simplify programs.

Constraint violations will cause pending exceptions to he created. These
pending exceptions will he raised at interaction points, where the i internat
invariants of the process can he expected to hold. The choice not to raise

Conclusions 179

pending exceptions in exception handlers makes it possibte to safety restore
invariants in exception handlers. Proposals that suggest the immediate raising
of external exceptions will lead to time-dependent run-time errors due to
violations of the internat invariants of a process. These errors are very
dangerous because they are practically impossible to find by testing and can
occur completely unexpectedly.

Several constraints can he violated at the same time by concurrently executing
processes. This can result in more than one pending exception in a process.
Several criteria for the selection of a pending exception have been evaluated.
The choice is made to select the pending exception betonging to the constraint
monitor which was enabled first. The other pending exceptions are discarded.
This leads to the desirabie discarding of an exception ftom a constraint
monitor activated at a low (or innermost) level, by an exception ftom a
constraint monitor activated at a high (or outermost) level. Constraint
monitors can always he checked to determine whether their pending exception
has been discarded.

The binding of a constraint monitor to a block which is invoked by another
block bound to the same constraint monitor is essentially a non-operation.
This design choice is conceptualty simpte and retains the desired functionality
of constraint monitors.

lmplementation of construint monitors in Process Calculus

The implementation of the mechanism in Process Calculus is retativety
straightforward. An important aspect that facilitates the integration of the
mechanism is the powerfut functionality of Smalltalk blocks.
A constraint monitor has been added to Process Calculus as a simpte and
relatively orthogonal primitive. Constraint monitors will try to receive an
object ftom a port. This can he any port of a processor and there are no
restrictions about the way objects are sent to the port. Constraint monitors are
also well integrated with the existing Smalltalk exception handling
mechanism. Any exception can, in principle, he raised by a constraint
monitor. The mechanism is not orthogonal with respect to the fact that the
receive action executed by a constraint monitor is specified slightly differently
ftom the normal receive actions, because it is used to initialize the constraint
monitor.

180 Chapter8

Although all send primitives can be used to indicate constraint violations, the
broadcast primitive bas been added to Process Calculus for the signaling of
constraint violations to other processes. The use of this primitive is important
in order to keep different processes, which interact by means of constraint
violations, largely independent of each other and in order to achieve good
modularity.

The resume response as an inadequate response

It is recommended that the resume response is not used, since its use easily
leads to unstructured programs which are hard to understand. The use of the
resume response is even more probiernatie in a multi-process environment.
This is because the resurne response can be used to enter critical regions
containing semaphores, or to enter blocks bound to constraint monitors,
without performing the necessary operations on the semaphores or constraint
monitors.

A case and the retry strategy

The treatment of a case concerning the control of a transport system bas
shown the power and simplicity of constraint monitors for the handling of
exceptions in control systems. The retry strategy bas been developed as a
simpte strategy which can be used to deal locally with errors in an e:fficient
and safe way. It usually implies the help of an operator. After correction of
the error, the interrupted processes can continue by re-executing the
interrupted control actions. In the case of errors that cannot be corrected
locally, the use of constraint monitors makes it easy to keep communicating
processes in a consistent state.

8.2 Recommendations for future research

The newly-developed mechanism bas only been implemented in· Process
Calculus. The implementation in other programming languages should be
studied. Also, more experience is needed with the mechanism and Process
Calculus in practical complex control systems.

Two other fields for further research follow from the restrictions on the scope
ofthis study as laid downinSection 1.2.

Conclusions 181

First, the specific characteristics of other programming languages in relation
to the handling of exceptions in a multi-process environment should be
investigated. An important aspect in this context is the exceptional termination
of processes which are created dynamically in parallel constructs. Another
aspect to be studied is the way in which exceptions should be handled if they
occur during the execution of an interaction, such as during a rendezvous.
Second, the differences between continuons and discrete event systems in
respect of exception handling need to be investigated.

182 Chapter8

References

Adamo, J.,
Exception hamUing in the C-NET parallel programming language,
Proc. North American Transputer Users Group, 1989, pp. 283-306, lOS,
Amsterdam.

Adamo, J.,
Exception handling for a communicating-sequential-process-based extension
ofC++,
Concurrency, February 1991, pp. 15-41.

Antonelli, C.I.,
Exception handling in a multi-context environment,
Dissertation, University ofMichigan, 1989.

Atkins, M.S.,
The role of exception mechanisms in software system design,
Dissertation, University of British Colombia, 1985.

Bell Telephone Laboratories,
Unix programmer's manual, second edition, volume 2,
Holt, Rinehartand Winston, NewYork, 1983, pp. 315-318.

Bendel, A. and Mellor, P., editors of
Software reliability: State of the art report,
Pergamon, Oxford, 1986.

Booch, G.,
Object oriented design,
Benjamin/Cummings, Redwood City, Califomia, 1991.

Bron, C. and Dijkstra, E.J.,
Report on the programming language Modular Pascal,
Groningen University, Groningen, l987a.

184

Bron, C. and Dijkstra, E.J.,
On the handling of exceptional situations in a multi-process environment,
Private communication, 1987b.

Bron, C. and Fokkinga, M.M.,
A proposal for dealing with abnormal termination of programs,
Report 150,
Twente University ofTechnology, Dept. Inf., Enschede, 1976.

Brynjolfsson, S. and Arnstrom, A.,
Error detection andrecoveryin flexible assembly systems,
Int. Joumal of Advanced Manufacturing Technology, No. 5, 1990, pp. 112-
125.

Christian, F.,
Exception handling and software fault tolerance,
IEEE Transactions on Computers, June 1982, pp. 531-539.

Christian, F .,
Correct and robust programs,
IEEE Transactions on Software Engineering, March 1984, pp. 163-174.

Cox, IJ. and Gehani, N.H.,
Exception handling in robotics,
Computer, March 1989, pp. 43-49.

Digital Equipment Corporation,
V AXELN Pascallanguage reference manual, part 2: programming,
Digital Equipment Corporation, Massachusetts, 1986.

Dijkstra, E.W.,
Cooperating Sequentia! Processes,
Teehoical Report EWD- 123,
Eindhoven University ofTechnology, 1965.
Reprinted in Genuys F. (ed.),
Programming languages,
Academie Services, New York, 1968.

References

Dony, C.,
Exception handling and object-oriented progranuning: towards a synthesis,
Proc. OOPSLAJECOOP '90, pp. 322-330, ACM, New Vork.

Fairley, R.E.,
Software engineering concepts,
McGraw-Hill, New Y ork, 1985.

Feder, C.,
Ausnahmebehandlung in objektorientierten Progranuniersprachen,
Springer-Verlag, Berlin, 1990.

Gerber, R. and Lee, 1.,

185

A layered approach to automating the verification of reai-time systetl1S,
IEEE Transactions on Software Engineering, September 1992, pp. 768-771.

Gini, M. and Smith, R.,
Reliab1e reai-time robot operation employing intelligent forward recovery,
Teehoical Report TR 85-30,
University of Minnesota, 1985.

Goldberg, A. and Robson, D.,
Smalltalk-80, The language,
Addison Wesley, Reading MA, 1989.

Goodenough, J.B.,
Exception handling: Issues and a proposed notation,
Communications ofthe ACM, December 1975, pp. 683-696.

Hoare, C.A.R.,
An axiomatic basis for computer progranuning,
Communications ofthe ACM, October 1969, pp. 576-583.

Hoare, C.A.R.,
Communicating Sequentia! Processes,
Communications ofthe ACM, August 1978, pp. 666-677.

186

Horning, J.J. et al.,
A program structure for error deleetion and recovery,
Lecture Notes in Computer Science 16, pp 171-187,
Springer Verlag, Ber1in, 1974.

Horowitz, E.,
Fundamentals of programming languages,
Springer-Verlag, Berlin-Heidelberg, 1983.

IEC 50.
International Electrotechnical V ocabulary (lEV),
CEIIEC, 1975, Chapter 351.

IEC 848,
International Standard IEC 848: Preparation of function charts for control
systems,
CEl IEC, Geneva, 1988.

Ichbiah, J.D. et al.,
Pre1iminary Ada reference manual,
SIGPLAN Notices, June 1979.

Ichbiah, J.D. et al.,
Reference manual for the Ada programming language,
ANSIIMIL-STD-1815A, 1983.

Issarny, V.,
Design and implementation of an exception handling mechanism for
communicating sequential processes,
Proc. CONPAR 90-VAPP IV, 1990, pp. 604-615.

Issamy, V. and Banátre, J.P.,
An exception handling mechanism for communicating sequentia} processes
and its verification rules,
Proc. Computer Systems and Software Engineering (COMPEURO) 1990, pp.
550-551, IEEE, Los Alamitos.

References 187

Issamy, V.,
An exception handling model for parallel programming and its verification,
Sofware Engineering NoteS, Proc. ACM SIGSOFT '91 Conference on
Software for Critica) Systems, December 1991, pp. 92-100.

Kemighan, B.W. and Richie, D.M.,
The C programming language,
Prentice Hall, Engtewood Cliffs, 1978.

Kilgerman, E. and Stoyenko, D.,
Real-tirne Euclid: A language for reliable reai-time systems,
IEEE Transactions on Software Engineering, September 1986, pp. 941-949.

Knudsen, J.L.,
Better exception handling in block structured systems,
IEEE Software, May 1987, pp. 40-49.

Laprie, J.C.,
Dependability: a unifying concept for reliable computing and fault tolerance,
in Dependability ofResilient computers ed. T. Anderson,
BSP Professional Books, Oxford, 1989.

Laprie, J.C. (ed),
Dependability: basic concepts and terminology,
Springer-Verlag, Vienna, 1992.

Lacoutre, S.,
Exceptions in Guide, an object oriented language for distributed applications,
Proc. ECOOP 1991, pp. 268-287, Springer-Verlag, Berlin.

Lee, P.A. and Anderson, T.,
Fault tolerance: principles and practice,
Springer-Verlag, Vienna, 1990.

Levin, R.,
Program structures for exceptional condition handling,
Ph.D. thesis, Camegie-Mellon University, June 1977.

188

Lieber, G.,
Erweitertes CSP-Modell zur Programmierong Paralleier Prozesse (in
Gennan),
(Extended CSP-model for the programming of parallel processes),
Dissertation, Technische Universitat Wien, 1989.

Liskov, B.H. and Snyder, A.,
Exception handling in CLU,
IEEE Transactions on Software Engineering, November 1979, pp. 546-558.

Melliar-Smith, P.M. and Randell, B.,
Software reliability: the role of programmed exception handling,
Proc. ACM Conf. on Language Design for Reliable Software,
March 1977, pp. 95-100.

Meyer, B.,
Object oriented software construction,
Prentice Hall, New Y ork, 1989a.

Meyer, G.R. and Hertzberger, L.O.,
Off-line programming of exception handling strategies,
Proc. IFAC Robot Control '88 (SYROCO '88), pp. 431-436, Pergamon Press
Oxford.

Meyer, G.R. and Hertzberger, L.O.,
Exception handling system for autonomous robots basedon PES,
Proc. Intelligent Autonomous Systems 2, 1989b, Vol. 1, pp. 65-77.

Overwater, R.,
Processes and interactions, an approach to the rnadelling of industrial
systems,
Dissertation, Eindhoven University of Technology, 1987.

ParcPlace,
Objectworks, advanced users guide, Smalltalk-80 Version 2.5,
ParePiace Systems, Mountain View, California, 1990.

References

Randell, B.,
System stroefure for software fault tolerance,
Current Trends in Programming Methodology, pp. 195-219,
Prentice Hall, Engtewood Cliffs, 1977.

Randell, B., Lee, P.A. and Treleaven, P.C.,
Reliability issues in computing system design,
Computing Surveys, June 1978, pp. 123-165.

Redford, A.H.,
Error recovery in assembly by robot,
Advanced Manufacturing Engineering, Vol. 1, January 1989, pp 109-112.

Rossingh, T.J. and Rooda, J.E.,
ROSKIT, a reai-time operating system kit,
Research report, Technica! University Twente, 1985.

Rooda, J.E.,
Discrete event simulation for the design and operation of logistics systems,
International Logistics Congress, San Fransisco, 1981.

Rooda, J.E.,
Procescalculus: systemen, modellen en formele talen (in Dutch),
J2 Werktuigbouwkunde, August 1991, pp. 36-39.

Rooda, J.E.,
Procescalculus: definities en begrippen (in Dutch),
J2 Werktuigbouwkunde, October 1991, pp. 3540.

Srinivas, S.,
Error recovery in robots through faiture reason analysis,
Proc. National Computer Conference, 1978, pp. 275-283.

Sun Microsystems,
Sun OS reference manual, Volume 2,
Sun Microsystems, Mountain View, 1990.

Szalas, A. and Szczepanska, D.,
Exception handling in parallel computations,
Sigp1an Notices, October 1985, pp. 95-104.

189

190

Tennent, R.D.,
Principles of progranuning languages,
Prentice Hall International, Engtewood Cliffs, 1981.

Watt, D.A.,
Programming language concepts and paradigms,
Prentice Hall, London, 1990.

Wirth, N.,
Programming in Modula-2,
3rd edition, Springer-Verlag, Berlin, 1985.

Wortmann, A.M.,
Modelling and sirnulation of industrial systems,
Dissertation, Eindhoven University of Technology, 1991.

Young, S.J.,
Real time languages: design and development,
Ellis Horwood Ltd., Chichester, 1982.

Appendix A
An introduetion to Smalltalk-80

This appendix gives an introduetion to the aspects of the Smalltalk-80
programmingenvironment used in the example programs in this thesis. The
text is not meant to be a general introduetion to Smalltalk-80. For this the
reader is referred to one of the many textbooks on Smalltalk, such as
[Goldberg and Robson, 1989]. This introduetion concentrates on the
Smalltalk programming language; the interactive programming environment is
not treated.

Classes and /nstances

The Srnalltalk-80 programming language is a true object-oriented
programming language. Every object is an instanee of a certain class. A ~:<lass
is comparable to a module implementing an abstract data type, as in Modula-
2 [Wirth, 1985] or other Pascal-like languages that support modules. A class
defines an abstract data type, together with some allowed operations on that
data type.

The instanee variables of the class defme the internal representation, or
private memory, ofthe data type. The definition ofthe instanee variables of a
class is comparable with a record type definition of an abstract data type in a
module of Modula-2-like Janguages. All instanees of a class have the same
instanee variables. The values of the instanee variables, however, are private
and usually differ between instanees.

The operations that are defined in the class are called the methods ofthe class.
They can be perfonned on the instances ofthe class and are comparable to the
procedures implementing the functionality of an abstract data type of Modula-
2 Jike languages.

192 Appendix A

Messages and Methoeis

Each object can access only its own instanee variables and the instanee
variables of its superclasses, The object interfaces with the outside world by
means of messages that can he sent to the object. Messages are sent in
message expressions. A message expression consists of a receiver of the
message and the message itself.

An example is self receive: true from: 'i-forkUfter-isUp'. In this expression, self
is the receiver. The receiver is the object to wbich the message receive: true
from: 'i-forkUfter-isUp' is sent. The message can have zero or more arguments.
Argumentsin messages are placed immediately aftera colon(:). In this case,
there are two actual arguments: the boolean object true and the string
'i-forkUfter-isUp'. The message selector is the message without the arguments.
In this case receive:from:. The message selector, togetber with the receiver of
the message, defines wbich metbod is invoked as a result of the evaluation of
the message expression. The metbod that will he invoked is the metbod in the
class ofthe receiver that has the samemessage selector. lf, in the example, the
class of the receiver self is the class Bubble, then the metbod receive: object

from: portName as defined in the class Subbie would he invoked. The formal
arguments object and portName would he set to the value of the actual
arguments true and 'i-forkUfter-isUp'.

Another example is the message expression KiiiSignal raise. In this case the
receiver is KiiiSignal. The message is raise and the message selector is also
raise, because there are no arguments. KiUSignal is a signal object. lt is an
instanee of class Signal. Therefore, the message expression will result in the
invocation of the metbod raise in the class Signal.

The variabie self is a pseudo-variable. lt can only ·he used in metbod
definitions. No values can he assigned to pseudo-variables in assignment
statements. When a certain metbod is executing, self refers to the receiver of
the message wbich resulted in the execution of the method. So, the message
expression KiiiSignal raise will cause the metbod raise in the class Signal to he
executed, wbile the value ofthe pseudo-variabie self, wbich can he used in the
metbod raise, will refer to KiiiSignal.

An introduetion to Smalltalk-80 193

lnheritance

Every class (exeept Object) has one (direct) superclass. A class inherits the
instanee variables and the methods from its superclasses. The superclasses of
a class are the class's direct superclass, tagether with the superclasses of the
superclass's direct superclass. A class can have several subclasses. In this
way, a tree-like class structure is created where the class Object is at the root
ofthe tree.

A superclass contains the instanee variables and methods that are common to
all of its subclasses. This approach makes it easy to reuse code. Apart from
inheriting already defined methods from superclasses, methods can also be
redefined.

When a message is sent to an object, the search for the metbod to be invoked
starts in the object's class. If a corresponding metbod cannot be found there,
the search is continued in the class's superclass and recursively in all of the
other superclasses. If the metbod is not found in any of the superclasses an
error results. In this case, the object is said not to understand the message.

The pseudo-variabie super in a metbod refers to the receiver of the message
which resulted in the invocation of the method. This is analogous to the
meaning of the pseudo-variabie self. The ditterenee is that, when the pseudo­
variabie super is used as the receiver of a message, the search for the metbod
to be invoked starts in the superclass of the class of the receiver of the
message. An example of this is when the message expression super
initializeTasks is found in a metbod initializeTasks. In this case, self cannot be
used because this would result in endless recursion.

Variables

Five kinds of variabie have been used in this thesis: globals, class variables,
instanee variables, arguments, and temporary variables.

Global variables are accessible tbraughout the system. They are written with
a capital initial letter. All classes can be referred to by means of global
variables.

194 Appendix A

Class variables are a kind of global variables, but they have a more restricted
scope. Class variables also have an initial capitalletter. The signals KiiiSignal
and AnySignal that are used in this thesis are class variables.

There are two kinds of argument metbod arguments and block arguments.
Metbod arguments have already been treated in this appendix. Block
arguments are treated in the next section.

Temporary variables are declared between bars, as in 1 temp1 temp2 1. They
are usually declared at the beginning of a metbod and exist only during the
invocation of the method.

Smalltalk is an untyped language. Therefore variables are untyped: all
variables can refer to objects of an arbitrary class.

Blocles

A block represents a deferred sequence of actions. A block expression
consists of a sequence of expresslons separated by periods and delitnited by
square brackets. Block expresslons can be seen as ln-line function definitions.
Blocks can be assigned to variables. Their expresslons wiJl only be executed
when the message value is sent to the block.

A block can have one or more arguments. The format arguments of a block
are listed immediately after the opening bracket of the block and are prefixed
by a colon. The argument declaration is terminated with the symbol '1'. Actual
arguments are provided to a block by sending a block the message value:
actuaiArgument or value: argument1 value: argument2 etc.

Consider the example given in Figure A.l. The time-out block acts as last
argument to the metbod receive:from:within:iffimedOut:. If a time-out. occurs,
then the time-out block will be executed by sendingit the message value. This
is done by the implementation ofthe metbod receive:from:within:ifTimedOut:, so
it is not seen here. The exception handter is also a block. The exception
handter block will only be executed when an exception is caught. The
Smalltalk exception handling mechanism will set the format argument exc of
the exception handter block to the exception object which was created when
the KiiiSignal was raised in the time-out block.

An introduetion to Smalltalk-80

ForkLifterCtrl >> forkUp
AnySignal

handle:
[:exc I

do:

self putOff: 'o-forklifter-power'.
exc reject]

[self putOn: 'o-forklifter-up'.
self putOn: 'o-forklifter-power'.
self

receive: true
from: 'i-forkLifter-isUp'
within: 6 seconds
iffimedOut: [KiiJSignal raise].

self putOff: 'o-forklifter-power')

Figure A.l An example of the use of blocks.

Control Structures

195

Control structures are nota part of the language definition in Smalltalk-80.
Selection and iteration are implemented using the classes Boolean with
subclasses True and False and a class the instances of which are blocks. The
predefined pseudo-variables true and false are the only instances of the
respective classes True and False. Boolean expressions yield either the true or
false object. Selection is achieved by means of the methods ifTrue:, ifFalse:,
and ifTrue:ifFalse:. The arguments of these methods are blocks that are only
executed in the case of the corresponding boolean receiver. For instanee the
message

(3 > 2) ifFalse: [...]

is analogous to

true ifFalse: [...].

Therefore, the block will not be executed. The message

(1 == 2) ifTrue: f'block A'1 ifFalse: ["b/ock 8'1

will result in the execution of block B.

196 Appendix A

Some final syntactic issues

• Every Smalltalk metbod returns an object, even when no explicit return
statement is specified. Intbis case, tbe metbod returns tbe receiver (self)
of tbe message expression which resulted in tbe metbod invocation.
Frequently, tbe returned object is not used. An explicit return statement is
constructed by prefixing an expression witb an up arrow: 't'. For
example, t'error'.

• The expression or statement separator in Smalltalk is tbe period.
• Strings are created by enclosing a sequence of characters by single quotes

as in: 'an example sbing' or 'i-forklifter-isUp'.
• Symbols can he constructed by prefixing identifiers witb tbe character #

as in #forkUp. Symbols are unique objects in the systems, strings are not.
• The two most important parsing rules are the following:

Parsing is nonnally done from left to right. For example self
maxStackSize negated evaluates as (self maxStackSize) negated.
Messages without arguments have preeedenee over messages with
arguments; For example self send: 'ok' to: self errorPort is evaluated as self
send: 'ok' to: (self errorPort).

Appendix B
The semantics of the Smalltalk methods
used in the program examples

This appendix gives a description of the most important Smalltalk methods
that are used in the programs contained in this thesis. The methods from the
Smalltalk system itself are given in Section B.l. Additional methods that
support modeling using Process Calculus are given in Section B.2, and .
additions for exception handling in a Process Calculus environment are given
in Section B.3. The methods that are used and explained in only one place in
this thesis are not given here. For the methods that have already been properly
de:fined in this thesis on1y a cross-reference to the section of the de:finition is
given.

B.l Methods from the Smalltalk system

----- Signa/ > handling --

handle: handierSloek do: doBiock
"Establish handferB/ock as an exception handter tor the doSloek which wil/
catch the exceptions represented by the signa/ (the receiver of the message).
Explained in Section 4. 5."

raise
"Raise the exception represented by the signa/ (the receiver). The result of
this is the creation of an ex ception object (an instanee of class Exception). A
co"esponding hand/er wil/ be sought to catch the exception."

raiseErrorString: errorString
"Raise the ex ception represented by the signa/. The e"orString wil/ be
avai/ab/e in the created exception object (see Exception » e"orString)."

198 AppendixB

-- Signa/Col/eetion > handling ---

handle: handierSloek do: doSloek
"Establish handlerB/ock as an exception hand/er for the daBloek which wil/
catch the exceptions represented by the signals in the signa/ col/eetion (the
receiver). "

--- Ex ception > hand/er responses --

"The messages in this protocol are messages that can be sent to the
ex ception object which acts as argument of the hand/er block of a handle:do:
expression." ·

reject
"The current exception is propagated to the invoker of the handle:do:
expression."

restart
"Restart the handle:do: expression."

return
"This is the default response from an exception hand/er. The handle:do: is
terminated. Execution continues with the expression following the handle:do:
statement. •

errorString
"Return the error string that was given as argument to the signa/ which was
raised to create the exception object. The signa/ could have been raised with
the raiseErrorString: message. •

· ----- OrderedCol/ection > adding --

add: newObject
"Add neWObject as the last element to the ordered col/eetion represented by
the receiver. •

B.2 Methods for the modeling with Process Calculus

A number of the methods given bere come from [Worbnann, 1991], these
methods are indicated with [W] in the comment.

Thesemantics ofthe Smalltalk methods used in the program examples 199

-- Bubble > process control ---

initialize Tasks
"[W]. This method is called before any processor executes initia/Actions or
body. lt should not contain any sendor receive actions, as the processas are
not running yet. ft is mainly intended to initialize instanee variables. "

initiaiActions
"[W]. This method is called once before the first execution of body."

body
"[W]. This method is called repeatedly during the execution of the process
description of the model. lt must be redefined by all subc/asses. 11

--- Bubble > receiving objects -----

receiveFrom: portName
"[W]. The most basic receive action. Receive from the specified port. Block
until some sender is available for communication. Retum the item received. 11

receive: object trom: portName
"Receive from the specified port if the item to be received equals object
(using the =massage). Blockuntil object can be received.
lf object is nil then any item wi/1 be received.
Retum the item received."

receive: object from: portName within: interval ifTimedOut: timeOutSloek
"Receive from the specified port if the item to be received equals object (see
receive:from:).
lf an item is not received within interval, timeOutB/ock is eva/ualed (no
arguments)."

--- Bubb/e > sending objects ---

send: object to: portName
"[W]. The most basic send action. Send object synchronously to the port
specified by portName. The process blocks until a matching receive is
perforrned by another processor."

sendTo: portName
"Used for the purpose of synchronization only. Behaves just like send:to:,
only sends an arbitrary object to portName."

200 AppendixB

send: object to: portName within: interval then: thenBiock else: elseBiock
"Try to send object to portName within interval. lf that succeeds, eva/uate the
thenB/ock, if it does not succeed, eva/uate elseB/ock."

send: object immediateTo: portName then: thenBiock else: elseBiock
"[W]. Try to send object to portName at this moment. lf this succeeds,
evaluate the thenBiock, if it does not succeed, eva/uate e/seB/ock. So this
send cannot b/ock."

send: object immediateTo: portName
"{W]. Try to send object to portName at this moment. lf this is not immediately
possib/e, raise an exception. So this send cannot block."

broadcast: object to: portName
"Send copies of object to all receivers that are able to receive it at this
moment. No special action is taken for those receivers that are connected to
portName by means of an interaction path but could not receive the object.
This method cannot block."

send: object continuousTo: portName
"[W]. Send object to portName. Copies of the object wil/ be available for an
unlimited number of receivers until the object is rep/aced by a new call to this
method.
Never blocks."

----- Bubble > actuator interfacing --

putOn: oActuatorPortName
"Activate the binary actuator represented by oActuatorPortName"

self send: true to: oActuatorPortName

putOff: oActuatorPortName
"Deactivate the binary actuator represented by oActuatorPortName"

self send: false to: oActuatorPortName

B.J Methods for exception handling in Process Calculus

There are two global signals available for all processors. These are the
KiiiSignal and the RetrySignal. They are explained in Section 7 .2.
The class ControiBubble is a subclass of class Bubble. lt contains the
functionality for the control of processes that interface with operators by
means of a specific Man Machine Interface (MMI).

Thesemantics ofthe Smalltalk methods used in the program examples 201

-- Contro/Bubble > mmi interfacing ---

errorMessageFor: exceptionObject
"Send the error message contained in the exceptionObject (exceptionObject
errorString) to the MM/."

restartMessage: restartString
"Send the given restartString to the operator by means of the MMI. Then wait
for the command trom the operator to continue."

------ Bubble > exceptions hand/ers ----

handle: exceptionHandler do: doBiock
"See Section 7. 2. The exceptionHandler wil/ catch all exceptions trom the
doBiock. Before execution of exceptionHandler, an error message wil/ be
issued for the exception. After execution of exceptionHand/er, the handled
exception wilt be propagated (ex reject), unless another response is specified
in exceptionHandler."

handle: exceptionHandler constraintMonitors: monitorOrMonitors do:
doBiock

"See Section 7. 2. Ju st like the above given method. The difference is that the
doBiock is protected by monitorOrMonitors."

--- ControiBubb/e > exceptions hand/ers ------

handle: exceptionHandler restart: restartBiock do: doBiock
"See Section 7.3 (and 7.5). Used to imptement the retry strategy. 11

handle: exceptionHandler restart: restartBiock constraintMonitors:
monitorOrMonitors do: doBiock

"See Section 7.3 (and 7.5). Used to implement the retry strategy. The
doBiock is proteeled by monitorOrMonitors. 11

-- Contro/Bubble > process control --

modeBody
"See Section 7.4. Processors that want to use the mode control (automatic
mode, reset mode etc.) provided by the MMt interface, shoutd define the
method body in such a way that it onty ca/Is this method."

202 AppendixB

slaveBody
"See Section 7. 4. Processors that act like slaves should define the methad
body in such a way that it only ca/Is this method. A slave receives a
cammand trom another processor (the master), ex ecufes it, and sends an
acknowledge back to the master."

automaticMode
"See Section 7.4. This methad is executed due to a cammand trom the
operator causing the processor (the receiver of the automaticMode• message)
to change to automatic mode.
May be redefined by a subclass (copied to a subclass and then edited)."

automaticBody
•see Section 7.4. Must be redefined by a subclass to define the cyc/ic control
sequence for the machine when in automatic mode."

-- ConstraintMonitor class > instanee creation --

for: processor receive: object from: portName then: thenBiock
"See Section 6. 10.2. Define a constraint monitor. The constraint vialation that
can be monitored by the constraint monitor is defined to be the receipt of
object trom the port named portName on processor. The constraint vialation
wil/ be signaled by making the thenB/ock pending in processor. This amounts
to creating a pending exception. The thenB/ock must terminale by taising an
exception. A pending thenB/ock wil/ be selected for execution when the
processor executes an interaction or a delay, or when the methad Bubble »
raisePendingException is cal/ed."

for: processor receiveFrom: aPortName then: thenBiock
"Similar to the previous method, on/y for this constraint monitor the constraint
vialation is defined to be the receipt of any object."

-- ConstraintMonitor > cantrolling ---

proleet: block
"See Section 6.10.3. The argument b/ock is bound to the constraint monitor.
The monitor wil/ be enab/ed during execution of the block."

Thesemantics ofthe Smalltalk methods used in the program examples 203

GonstraintMonitor > accassing ----

item
"See Saction 6.10.6. Raturn thaitem racaivad by tha constraint monitor (tha
receiver). Raturn nil if no item has baan recaived sinca tha constraint monitor
was last anablad or claared. A constraint monitor is eisared by tha mathod
GonstraintMonitor >> c/aarltam."

clearltem
"See Section 6. 10. 6. Simi/ar to the previous mathod. Returns tha item
racaivad by tha constraint monitor, but also ciaars tha constraint monitor."

-- GonstraintMonitorGol/action > cantrolling -----

protect: block
"See Section 6. 10. 5. Th a argument b/ock is bound to tha col/action of
constraint monitors includad in tha col/eetion representad by tha receiver.
The monitors wil/ ba anablad during execution of tha b/ock. •

204 AppendixB

Index

>> 22

Activation point of subprogram
68

Ada 65, 101, 107
AnySignal 142
Argument

block 194
metbod 192

Association
between handJer and unit 66

Binding 116
handter to exception 66
handter to unit 66

Broadcast primitive 147, 200
Bubble 9

c 110
Class 191
Component 27
Constraint

active constraints of process
83

of operation 81
specification of

common constraints 86
local constraints 86

Constraint function 82
Constraint monitor 113

activated 114
binding to block 114
binding to identifier 115
disabled 114
enabled 114

implementation in Process
Calculus 140

Constraint violation 82
by controlled process 137
by controlling process 90, 137
detection 88
handJing 130
mechanism for handJing

known mechanisms 99
requirements 96

relationship with exception 93
signalling 90, 117

Control mode
automatic mode 155
reset mode 155

Correct
internat state 32

CSP 108
CSR 109

Damage confinement 45
Delayed response controlling

system 118
Design 32

correctness 32
Domain

defined 30
standard 29

Emergency stop 46
Erroneous

extemal state 34
internal state 3 2

Error
corrective action 33
detection 42

206

diagnosis 45
banclling 41
in controlled system 40
in controlling system 38
in extemal state 34, 51
in bardware 38
in internat state 32, 51

cause 37
in software 38
precondition 35
propagation 38,42
recovery 48

backward 48
forward 50
recovery block 49
state restoration 48

Euclid 104
Exception 57 ·

asyncbronous 58
code as returned value 63
condition 57
declaration 58
discarding 132
external 57
bandJer 58
internat 57
raising 58
signaHing 58
synchronous 58
termination of unit with 59

Exception handling 58
any handter 67
mechanism

evaluation 77
in imperative languages 65
in Smalltalk 72
requirements 60

response from handler 70
propagate 70
resume 70

resume response inadequate
79,80

retry 70
return 70
return response inadequate

as default 78
resumption model 69
retry strategy

in multi-process
environment 169

in sequentia! process 153
termination model 69

Exception occurrence 55
extemal 57
intemal 57

Exceptional terminalion of unit 59
Exit point of a block 124
Expression see Message

Faiture 30
Fault

in system 36
repair 50

Finalization obligation 62, 71

Goal 29
primary 29
secondary 30

Inberitance 193
Instanee 191
Instanee variabie see Variabie
Instant response controlling

system 118
Interaction 5
Interaction mechanism

synchronous 6
Interaction path 6

compound 10
simpte 10

Index

Interaction point 120
Invariant 85

external 85, 121
internat 85, 98, 117, 120

Invocation of subprogram 68
Invoker 68, 75

KillSignal 152

Master processor 166
Message

expression 192
receiver 192
selector 192

Metbod 192
MMI 151
Mode see Control mode
Model 6
MoelPas see Modular Pascal
Modular Pascal 65
Modularity I 00
Monitoring 114

Object see Smalltalk
Object-oriented 191
Operation 53

goal 53
precondition 53

Pending exception 117
creating 117
discarding 132
raising 119
selecting 133

Port 5
compound 10
receive 5
send 5
simpte 10

Precondition 29

weakest 31
Process Calculus 5-10
Processor 5

class 10
expanded 6
leaf 6
model 6

Protected block 113
Pseudo-variabie 192

self 192
super 193

Receiver see Message

207

Resetting controlled systems 155
Response from exception bandler

see Exception bandling
Resumption model see Exception

bandling
RetrySignal 152
Robustness 36
ROSKIT 103

Safe state 47
Selector see Message
Sensor 42
Signa! in Smalltalk 72
Simulation 13
Slave processor 166
Smalltalk

object 196
string 196
symbol 196

Smalltalk-80 191
State (see System)

check 43
computational 55

String see Smalltalk
Subclass 193
Superclass 193
Symbol see Smalltalk

208

System 27
atomie 28
continuous 2
control I
controlled I
controlling I
correctness 31
design 28
discrete event 2
specification 29
state

external 28, 51
internal 28

Task language 9
port narnes 9

Terminatiort model see Exception
handling

Time-out 42
Transport system example 16

Unix 110

Variabie
class 194
global 193
instanee 191, 193
temporary 194

· VAXELN 102
Victim 93
Violator 93

Curriculum Vitae

Bert van Beek was bom in Eindhoven, The Netherlands on the 25th. March
1958. He attended the Protestant Lyceum in Eindhoven where he gained his
Atheneum-B certificate in 1976. In 1977, he was accepted into the Eindhoven
University of Technology to study Electrooie Engineering. Following a
software project on the Graphical Kemel System, he graduated with
distinction as a Master ofScience in 1985. Soon thereafter, he was appointed
as a Lecturer within the Faculty of Mechanical Engineering at the same
University. Current activities include teaching and post-graduate research in
languages, methods and techniques for the control of manufacturing systems.

STELLINGEN

behorende bij het proefschrift

Exception Handling in

Control Systems

van

D .A. van Beek

1. Het gebruik van mechanismen die het 'raisen' en athan­
delen van excepties ondersteunen vereenvoudigt het
ontwikkelen van robuuste programma's, mits geen
gebruik wordt gemaakt van de 'resume' responsie vanuit
een exceptie-afhandelaar.

Dit proefschrift.

2. De relatie tussen excepties en fouten is essentieel voor het
begrip van exceptie- en foutafhandeling.

Dit proefschrift.

3. De introductie van externe toestand-fouten maakt het
mogelijk om interne toestand-fouten te definiëren zonder
dat subjectieve elementen nodig zijn.

Dit proefschrift.

4. Het feit dat exceptie-athandelaren in Smalltalk Signal

genericSignal niet direct mogen gebruiken om excepties te
vangen, doet emstig afbreuk aan het exceptie­
athandelingsmechanisme in deze taal.

Dit proefschrift.

5. Het interactiemechanisme in GRAFCET nodigt uit om de
synchronisatie tussen besturingsprotessen via sensoren op
de bestuurde machine te laten verlopen, hetgeen in veel
gevallen leidt tot onveilige besturingen.

6. Een besturing kan ten aanzien van zijn foutafhandeling
sneller en veiliger worden getest met behulp van een
model van de te besturen machine en 'discrete event'
simulatie dan met behulp van de echte machine.

7. De gebruikersinterface van MS-Windows applicaties kan
aanzienlijk worden verbeterd door het gebruik van
context-afhankelijke pop-up menu's.

8. In zeilboten met goede planeereigenschappen draagt de
combinatie van spinaker en trapeze bij harde wind in 20%
van de tijd bij tot 80% van het plezier.

9. Aangezien velen voor de uitvoering van een alt-partij een
alt prefereren boven een counter-tenor, en vrijwel
niemand een counter-tenor prefereert boven een alt, zou
men bij uitvoeringen alt-partijen gewoon door alten
moeten laten uitvoeren.

10. Vereenvoudigingen van het. belastingstelsel zijn pas echt
succesvol wanneer de Elsevier Belastingalmanak niet
meer wordt verkocht.

