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Summary

Aluminum extrusion is a bulk forming process in which a hot aluminum billet is placed in a
container and subsequently pressed through a die. The die plays a crucial role in this process
because it ensures that the flow of the aluminum is balanced, such that the profile meets the
requirements e.g. concerning dimensions and straightness of the extruded profile. In the
current engineering practice the design of extrusion dies is primarily a trial and error based
process. Trial-pressings, used to assess the performance of a die, are an integral part of this
process. However, trial-pressings are time consuming and expensive and the translation of
errors in the extruded profile to adjustments of the die design is complicated and, generally,
requires years of learning experience. Therefore, the objective of this thesis is to develop
a finite element model that can, at least partly, replace these trial-pressings by numerical
simulations.

The aluminum extrusion process is modeled as a Stokes flow problem, coupled to a ther-
mal convection-diffusion problem. The flow problem is formulated in an Eulerian, spatially
fixed, reference frame which is well suited to describe processes in which large deformations
occur, such as extrusion. The Eulerian approach, however, requires special attention in case
the material domain changes. This occurs at the outflow of the die where the aluminum is
not constrained by the tooling and can deform due to flow imbalances. It also occurs at the
aluminum-die interface where the die deforms due to the extrusion pressures. The deforming
aluminum domain is dealt with by employing a three field approach. In this approach the
shape of the profile at the outflow of the die and the shape of the die are computed separately.
The effect of changes in the profile shape and/or the die shape on the aluminum flow is
accounted for by adapting the (aluminum) mesh.

The constitutive behavior of aluminum is modeled as a non-Newtonian fluid of which the
viscosity depends on the temperature and the shear rate. Furthermore, the frictional behavior
between aluminum and tooling is described by adopting Coulomb’s law of friction.

The flow problem is discretized using the MINI element which enables the application of
powerful tetrahedral mesh generators while a minimal number of unknowns is introduced for
each element in the mesh. Additionally, the Lagrange multipliers that incorporate the effect
of the frictional surface tractions on the aluminum flow, are discretized according to a new
method that makes it possible to obtain accurate results near sharp edges on relatively coarse
meshes. Finally, the thermal problem is discretized using linear tetrahedral elements that are
stabilized using the SUPG (Streamline Upwinding / Petrov-Galerkin) method.

The domains associated with the aluminum and the die package are complex. As a result
mesh generation poses a serious problem in the analysis of aluminum extrusion. To over-



xii Summary

come this problem, new meshing algorithms have been developed that produce directionally
refined meshes on which gradients in the solution fields can be captured accurately while
a minimal number of elements is created. Moreover, these algorithms contain a number of
post-processing steps to incorporate the varying bearing length and the complex geometries
of dies for hollow profiles. The newly developed method of generating meshes makes it
possible to create a mesh for any die (design) with only a minimal effort from the user.

Based on the comparison of various numerical experiments it is concluded that it is im-
portant to incorporate the temperature dependence of the viscosity, as well as the shape of the
outflow surface, and occasionally the deflection of the die. It can also be observed that the
value that is assigned to the (Coulomb) friction coefficient has a substantial influence on both
the flow and the temperature fields of the aluminum. Comparison with industrially obtained
experimental data shows that the model predicts the flow field and the resulting profile shape
accurately, even for very complex profiles.

In conclusion the model that has been developed in this thesis is able to predict the perfor-
mance of a complex extrusion die accurately, within time spans that can definitely compete
with the time necessary to perform a trial-pressing.
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Chapter 1

Introduction

Aluminum extrusion is a bulk forming process used to manufacture a great diversity of alu-
minum profiles. Since there are almost no constraints on the cross-sectional shape of these
profiles, extrusion allows the incorporation of a high level of functionality into one profile.
This makes extruded aluminum profiles increasingly popular with designers. For example,
the profile of a mast fulfills the functions of a light structure that supports the sail, a rail
through which the sail can be guided, a surface that is esthetically pleasing and a shape that
is aerodynamical. Each functionality requires that the profile meets certain tolerances with
respect to the cross-sectional shape and/or metallurgical state. The current trend in profile
design is to incorporate an ever higher level of functionality into one profile which results in
ever decreasing tolerance ranges for the profile. This poses a considerable challenge on the
design of the aluminum extrusion tools.

In Section 1.1 the extrusion process is explained. The importance of the die in this process
is elucidated along with the drawbacks that are inherently associated with the trial and error
process usually involved in die design. In Section 1.2 the benefits of using finite element sim-
ulations of extrusion to assist in the die design process are indicated. Also, the shortcomings
of the finite element analyses that can be found in the literature are identified and are used as
a basis to formulate the goals for this thesis. Finally, in Section 1.3 an outline of the rest of
the thesis is given.

1.1 Practical aspects of aluminum extrusion

Aluminum extrusion is a process in which a hot billet is placed in a container and pressed
through a die. The objective of this process is to obtain a straight profile with a cross-sectional
shape that meets the specifications defined by the customer. A profile that conforms to the
specifications can only be produced if the aluminum velocities at the exit of the die are bal-
anced. The exit velocities are balanced when the velocity component in extrusion direction is
constant over the profile cross-section and when the components perpendicular to the extru-
sion direction are zero. The first requirement ensures that the profile is straight, whereas the
second requirement ensures that the profile complies to the predefined cross-sectional shape.
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It is obvious that the geometry of the die has a dominant influence on the balancing of the
exit flow and thus on the shape of the profile.

Figure 1.1: Examples of flat profiles. Figure 1.2: Examples of hollow profiles.

Extrusion dies can be classified into four groups with increasing levels of complexity.
The specification of the groups is closely related to the type of profile that the die produces.
The first group encompasses single opening dies that produce one ’flat’ profile out of each
billet. Flat profiles do not contain enclosed hollow sections (see Figure 1.1). The second
group contains multiple opening dies of which each opening renders a separate flat profile.
Typically, these dies generate two to six profiles out of each billet. The third group contains
single opening dies designed for hollow profiles. Some examples of hollow profiles are plot-
ted in Figure 1.2. The last group is made up out of multiple opening dies for hollow profiles.
The die for a flat profile consists of a die plate that contains a pocket and a bearing (see
Figure 1.3). The die for a hollow profile consists of a more complicated die plate that also
contains a welding chamber, and of an additional bridge-part (Figure 1.4).

The increasing level of complexity between the four groups is based on the following
reasoning. For a flat profile die, only the pocket and the bearing have to be designed in such
a manner that a balanced exit flow is obtained. If the die has multiple openings this is more
complicated, because the separate profiles then have to be mutually balanced as well. Also,
when the profile is hollow not only the design of the die plate is more complicated because the
shape of the welding chamber has to be devised, but the shape of the additional bridge-part
has to be defined as well.

In current engineering practice, die design is a process that is based on trial and error.
When designing a flat profile die, the pocket shape and the bearing shape have to be defined.
The pocket shape is given by the pocket contour and the pocket length, the bearing shape
by the bearing contour and the bearing length. Moreover, the bearing length can vary along
the bearing contour for flow balancing purposes. The effect of, for instance, local variations
in the bearing length on the balancing of the aluminum exit flow cannot be fully predicted
a priori. Therefore, a die is designed according to the experience of the designer and/or by
using expert systems. After design, the die is manufactured and, subsequently, tested in a
trial-pressing. If the die performs satisfactorily it is ready for production, otherwise it is
corrected, or, if the distortions of the profile are too severe, it is redesigned. Subsequent to
the correction or the redesign and remanufacturing, the die is tested again. This process is
repeated until a die that produces acceptable profiles is obtained. For some dies a considerable
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Figure 1.3: Die for flat profiles.
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Figure 1.4: Die for hollow profiles.

number of these iterations are required before a satisfactory die design has been obtained. The
number of iterations that is actually required depends highly on the level of complexity of the
profile. Since the complexity of the profiles is consistently increasing and the tolerances on
the profiles are constantly narrowing, the number of necessary trial-pressings is becoming
larger in the extrusion industry.

The trial and error process has a number of important drawbacks. Obviously, the trial-
pressing, the correction, the redesign and the remanufacturing are expensive in terms of man
hours, machine time and raw material. A less apparent drawback is that, due to the unpre-
dictability of the number of trial-pressings that will be required for a certain profile, it is very
difficult to give an accurate estimate of the time that is necessary to realize an adequate die
design. As a result, the term of delivery that is agreed upon with the customer has to allow
for possibly unnecessary trial-pressings to avoid the risk of a late delivery. Lastly, sometimes
there is no consensus on the mechanisms that cause the failing of a die and the opinions
deviate on the methods that have to be used to adjust a die.

1.2 Finite element modeling of extrusion

To reduce the drawbacks of the trial and error process dealt with in the previous section,
aluminum extrusion companies have invested large amounts of money and effort to limit the
number of trial-pressings. Partly these efforts have aimed at improving the expert systems,
and partly these efforts have been put into replacing the trial-pressings by numerical com-
putations which predict what the profile shape would be for a given die design. Predictions
can be obtained using analytical upper-bound models but these are only applicable to very
simple profile shapes and require extensive simplifications of the aluminum material model
(Solomon et al., 1998; Støren, 1993). The approach most commonly pursued in predicting
the performance of a die is the finite element method because it allows for complex profile
shapes and material models. In this work the finite element method will be applied as well.

Until now finite element computations have only been moderately successful. Most com-
putations have been restricted to two-dimensional (2D) settings due to the prohibitively large
computational times associated with modeling extrusion in a three-dimensional (3D) config-
uration (Hanssen et al., 1998). Nevertheless, some 3D computations have been performed
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(Lishnij et al., 1998) but these computations are restricted to very simple profile shapes with
a high level of symmetry (Mooi, 1996). The modeling of simple profiles allow the manual
generation of the 3D discretization of the domain while the symmetry can be exploited to
model only a representative part of the domain in order to reduce the size of the model to a
manageable level (Legat and Marchal, 1993). Moreover, simplifications with respect to e.g.
the interaction of the aluminum with the die and/or the influence of thermal effects, are often
introduced. The simplifications reduce the order of non-linearity of the numerical models
to arrive at acceptable computational times. The applicability of these simplified models
is limited since the underlying assumptions make the results only valid for straightforward
profile shapes for which the die design does not pose problems in practice. Furthermore, the
large preprocessing time associated with the, partly manual, discretization of the 3D domain
is a limiting factor on the applicability of these computations in extrusion practice.

The goal of this work is to improve the applicability of finite element computations to
the extrusion practice by eliminating the shortcomings discussed above. To do so, an ad-
vanced description of the aluminum behavior is adopted, including thermal effects. Also,
the interaction between the aluminum and the die is modeled accurately. Additionally, the
discretization process is highly automated, such that only a limited amount of input from the
user is required, to reduce the amount of time needed for preprocessing drastically. Lastly,
the models are implemented in such a manner that they require acceptable computational
times, that can compete with the time needed to perform a trial-pressing. As a result of these
improvements complex 3D profiles can be analyzed accurately and efficiently.

1.3 Scope of the thesis

In Chapter 2 of this thesis a set of equations will be derived which model the extrusion
process. Starting from the integral conservation laws the irrelevant terms will be identified
and eliminated. This leads to a Stokes flow problem that is coupled to a thermal convection-
diffusion problem. The equations will be formulated in an Eulerian, i.e. spatially fixed, refer-
ence frame. The Eulerian reference frame requires that special attention is paid to changing
domain boundaries which occur when the profile is free to move after the exit of the die, or
when the tooling deflects. To this end, two additional problems are introduced that will be
discussed as well. The first problem models the shape of the aluminum profile that leaves the
die. This free surface problem is reformulated in an innovative manner which leads to two
independent convection problems that are defined on the surface of the profile. The second
problem describes the shape of the die package as it deflects under the extrusion pressures.

Chapter 3 will discuss how the equations derived in Chapter 2 can be discretized using
the finite element method. For the discretization of the flow problem the MINI element is
used. This is a mixed, stabilized element in which the velocity and the pressure are equally
interpolated. The boundary conditions at the aluminum-tooling interface are modeled with
a Coulomb friction model. The Coulomb friction is incorporated into the flow problem us-
ing a Lagrange multiplier method that is discretized using a new, more accurate method.
For the discretization of the thermal problem a stabilized method, the Streamline Upwind
/ Petrov-Galerkin (SUPG) method is employed to capture the temperature field in the con-
vection dominated areas of the aluminum domain. The discretization of the outflow shape
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problem is performed by applying the SUPG method as well, while the discretization of the
die deflection problem requires the use of Lagrange multipliers to incorporate the interaction
between the various parts of the tooling. After all the separate problems have been discretized
a non-linear, coupled system of equations results. The staggered approach, applied to decou-
ple and linearize this system of equations into several linear systems, is outlined, followed by
an overview of the preconditioned iterative solvers that are used to solve the resulting linear
systems of equations.

The spatial discretization of the computational domain, the mesh generation, is presented
in Chapter 4. To keep the number of elements to a minimum without jeopardizing the accu-
racy of the solution fields, special algorithms are developed to generate the surface and vol-
ume meshes. These mesh generators produce high aspect ratio elements that are stretched in
the direction where low gradients occur in the solution field and compressed in the direction
where the gradients are high. The meshes resulting from these dedicated mesh generators
cannot be used directly for extrusion. The varying bearing length and the geometry of the
bridge-part can only be captured through specially designed post-processing steps. These
steps will be discussed last.

Chapter 5 is concerned with the accuracy of the finite element model that has been elab-
orated in the previous two chapters. In the first section, the influence of each of the coupled
problems on the solution fields that are computed for the aluminum flow is investigated.
Also, the effect of altering the coefficient related to the friction boundary conditions is demon-
strated. In the next section, it is shown that the high aspect ratio meshes are sufficiently fine to
compute the solution field accurately. This is done by comparing the results of computations
on meshes, generated along the strategy explained in Chapter 4, to those obtained on very
refined meshes. In the final section the performance of the finite element model is assessed
by comparing the results of the analysis to the results that are obtained in extrusion practice
for a die that has been specially designed for this comparison.

Three examples of finite element computations on extrusion are presented in Chapter 6.
In the first example the shape of a profile that was extruded in practice with a die that did not
perform satisfactorily, is predicted. The computations display the same behavior as observed
in reality and render insight into the question why the alterations that were made to the die did
not suffice to improve the performance of the die. The second example concerns the assess-
ment of the performance of a die designed for a hollow profile. In practice this die performed
well, which is confirmed by the computations of the flow field. The last example illustrates
the general applicability of the tool that has been developed. It concerns the computation of
the flow field associated with the extrusion of a polymer through a fictive die. In this example
the influence of the shape of the out-flowing polymer on the computed velocity field is very
strong. Moreover, in this example the polymer is not pressed through the die using a ram, but
by applying a twin-screw extruder, which is incorporated in the model as well.

In Chapter 7 conclusions are drawn and recommendations for future work are given.
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Chapter 2

Mathematical modeling of
extrusion

The extrusion process is numerically analyzed using the finite element method. To derive the
set of equations that have to be solved, a Lagrangian or an Eulerian approach can be adopted.
Eulerian approaches, which are characterized by a stationary spatial reference frame, are
especially useful for those processes where large deformations occur, because the computa-
tional domain (the mesh) is spatially fixed and not ’attached’ to the material. This eliminates
the problems of large mesh distortions that can occur in a Lagrangian approach. However,
when the shape of the material domain is unknown a priori, or changes during the process,
this poses a problem in an Eulerian approach. In that case additional equations have to be
introduced to ensure that the material and the computational domain become and/or remain
coincident.

This chapter will start with the conservation laws for mass, momentum and energy within
an Eulerian framework. These equations are simplified using the process characteristics of
extrusion and the constitutive behavior of aluminum to arrive at a mechanical Stokes problem
combined with a thermal convection-diffusion problem. The boundary conditions needed to
solve these problems are presented, where particular attention is paid to the friction between
the aluminum and the die in the mechanical problem.

Thereafter, the problems which are intrinsically caused by using the Eulerian approach in
combination with a changing material domain are considered. At the outflow of the die the
aluminum boundary is not constrained by tooling and can therefore deform. The equations
that determine the deformations at the outflow are discussed. Also, the die can deform signif-
icantly due to the process forces. Since the aluminum is in contact with the die, this affects
the shape of the aluminum domain. The equations necessary to determine the deformations
of the die will be discussed last.
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2.1 Conservation laws

Without loss of generality the conservation laws can either be formulated in terms of a
Lagrangian or an Eulerian description. In this thesis the latter formulation is adopted for
several reasons. First, the aluminum undergoes extremely large deformations during extru-
sion as can be deduced from the experiments presented in e.g. (Valberg et al., 1996) and
(Kialka and Misiolek, 1996), where a grid was attached to aluminum during extrusion. In a
Lagrangian finite element approach large deformations would necessitate remeshing to ensure
acceptable element quality throughout the simulation. Second, a velocity based formulation,
which is typical for an Eulerian framework, follows naturally from the constitutive model that
is adopted for the aluminum in the following section.

Within the Eulerian framework, where the relevant physical fields are expressed as func-
tions of the spatial position �x , and the time t , the conservation laws are given by:

∂ρ

∂t
+ �∇ · (ρ�v) = 0 (2.1)

ρ
∂ �v
∂t

+ ρ�v ·
( �∇�v

)
= �∇ · σ + ρ �g (2.2)

ρ

(
∂e

∂t
+ �v ·

( �∇e
))

= σ : D − �∇ · �h + ρr (2.3)

where ρ represents the density, �v the velocity vector, σ the Cauchy stress tensor, �g the
distributed force per unit of mass related to gravity, e the specific internal energy, D =
1
2 (

�∇�v + ( �∇�v)c) the rate of deformation tensor, �h the heat flux, and r the internal heat source.
These conservation laws are used as a basis to derive the equations that govern the flow and
the temperature of the aluminum during extrusion.

2.2 Constitutive equations

The Cauchy stress σ in (2.2) can be split into a hydrostatic and a deviatoric part:

σ = −p I + τ (2.4)

where p is the hydrostatic pressure and τ the deviatoric part of the stress tensor. The de-
viatoric part of the stress tensor is associated to the rheological behavior of the material.
This part will be considered first. Then attention will be focused on a mutual comparison
of the separate terms in (2.1) and (2.2). It will be shown that for extrusion a steady state,
incompressible description is adequate, and that inertia effects and gravity can be omitted.

For extrusion conditions the deviatoric stress in the aluminum is determined by the tem-
perature T , and the strain rate according to (Lalli and DeArdo, 1990; Wright et al., 1996):

τ = 2η(D, T )Dd (2.5)
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where η(D, T ) represents the viscosity which is defined as:

η(D, T ) =
sinh−1

(( Z
A

) 1
n

)
3βγ̇

(2.6)

where β, A, and n are constants that depend on the type of aluminum. The variable γ̇ rep-
resents the strain rate and Z is the Zener-Hollomon parameter which can be interpreted as
a temperature compensated strain rate (Garafolo, 1963). These variables are defined by, re-
spectively:

γ̇ =
√

2

3
D : D, Z = γ̇ exp

(

H

RT

)

where
H is a constant related to the activation energy, and R the gas constant. In this thesis
the material parameters as suggested in (Sample and Lalli, 1987) will be used, see Table 2.1.


H 1.772 · 105 [J mol−1] R 8.321 [J mol−1K−1]

β 3.224 · 10−8 [m2 N−1] A 1.445 · 1012 [s−1]

n 4.750 [-]

Table 2.1: The material parameters used in the constitutive model for aluminum.

If the parameters in Table 2.1 are used to plot the viscosity as a function of the respectively
the shear rate γ̇ and the temperature T the plots in Figure 2.1. By comparing Figure 2.1(a)
with Figure 2.1(b) it can be seen that the influence of the the shear rate γ̇ on the viscosity η
is much larger than that of the temperature T .

2.3 Flow problem

An approach that is commonly pursued to analyze aluminum extrusion is to model the process
as an incompressible Stokes flow. To investigate the correctness of this simplification the
conservation law of mass (2.1) is reformulated:

1

ρ

∂ρ

∂t
+ �∇ · �v + �v · 1

ρ
�∇ρ = 0

assuming the density to be a function of the temperature and the pressure this leads to:

1

ρ

∂ρ

∂T

∂T

∂t
+ 1

ρ

∂ρ

∂p

∂p

∂t
+ �∇ · �v + �v · 1

ρ

∂ρ

∂T
�∇T + �v · 1

ρ

∂ρ

∂p
�∇ p = 0
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Figure 2.1: Viscosity η for values of the shear rate γ̇ and temperature T , typical for extrusion.

with α = − 1
ρ
∂ρ
∂T and 1

κ
= 1
ρ
∂ρ
∂p this is rewritten as:

−α ∂T

∂t
+ 1

κ

∂p

∂t
+ �∇ · �v − α�v · �∇T + 1

κ
�v · �∇ p = 0 (2.7)

where α and κ are the thermal expansion coefficient and the compressibility modulus, respec-
tively, which are both assumed constant. Next, the constitutive model for aluminum, (2.5) is
substituted into (2.2) to render:

ρ
∂ �v
∂t

+ ρ�v ·
( �∇�v

)
= �∇ ·

(
−p I + 2η(D, T )Dd

)
+ ρ �g (2.8)

Now the characteristic velocity v0, length l0, time t0, viscosity η0, gravity g0, density ρ0,
offset temperature T0 and temperature range 
T are introduced to scale the variables and
operators present in (2.7) and (2.8) according to:

�v = v0�v∗, η = η0η
∗, p = η0v0

l0
p∗

�g = g0 �g∗, ρ = ρ0ρ
∗, �∇ = 1

l0
�∇∗ (2.9)

∂

∂t
= 1

t0

∂

∂t∗
, D = v0

l0
D∗, T = T0 +
T T ∗
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With the scaling the conservation of mass in (2.7) and the conservation of momentum in (2.8)
can be rewritten to:

Sr α
T

(
∂T ∗

∂t∗

)
+ Sr

1

κ

v0η0

l0

(
∂p∗

∂t∗

)
+

+
( �∇∗ · �v∗) − α
T

(
�v∗ · �∇∗T ∗) + 1

κ

v0η0

l0

(
�v∗ · �∇∗ p∗) = 0 (2.10)

Sr

(
∂ �v∗

∂t∗

)
+

(
�v∗ · �∇∗�v∗) =

= 1

Re

(
1

ρ∗ �∇∗ ·
(
−p∗ I + 2η∗(D∗)d

))
+ 1

Fr

(�g∗) (2.11)

where the dimensionless numbers Sr , Re and Fr are the Strouhal, the Reynolds and the
Froude numbers, respectively, which are defined according to:

Sr = l0
t0v0

, Re = ρ0v0l0
η0

, Fr = v2
0

g0l0
(2.12)

For aluminum extrusion characteristic values for the parameters in (2.10) and (2.11) are:

v0 = 100 [m s−1], η0 = 105 [kg m−1s−1], g0 = 101 [m s−2]
l0 = 10−3 [m], t0 = 102 [s], 
T = 102 [K] (2.13)

ρ0 = 103 [kg m−3], α = 10−7 [K−1], κ = 1011 [kg m−1s−2]
Substitution renders the following order of magnitude estimations:

Sr α
T = O(10−10), Sr
1

κ

v0η0

l0
= O(10−8),

α
T = O(10−5)
1

κ

v0η0

l0
= O(10−3) (2.14)

Sr = O(10−5),
1

Re
= O(105),

1

Fr
= O(10−2)

If the negligible entries in (2.10) and (2.11) are removed, an incompressible Stokes problem
emerges:

�∇ · �v = 0 (2.15)

�∇ · (−p I + 2η(D, T )D) = �0 (2.16)

where the scaling has been dropped and use has been made of the fact that Dd = D as a
result of (2.15).
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2.4 Mechanical boundary conditions

In order to solve the differential equation (2.16), subject to the incompressibility constraint
(2.15), boundary conditions need to be prescribed. In the extrusion process two distinct zones
can be identified. In the container and the die the aluminum is constrained by the tooling
which exerts surface tractions due to contact and friction (see also Figure 2.2). It is assumed
that the aluminum remains in contact with the tooling throughout the analysis. In the other
zone, at the outflow of the die, the aluminum does not experience any surface forces and the
boundary is therefore stress free. The boundary conditions for these zones are governed by
equations formulated in the following.

Γram
Γcontainer

Γoutflow

Γdie

Billet

Container

Ram

Die

Bearing

Pocket

Figure 2.2: Surface definition for extrusion.

2.4.1 Friction

Friction in aluminum extrusion is a complex and hardly understood phenomenon. Due to
the high pressures and temperatures it is extremely difficult to perform in situ experiments.
Consequently, most information on friction phenomena is obtained by studying the bearing
surface after extrusion (Abtahi et al., 1996; Clode and Sheppard, 1990; Welo et al., 1996).
These studies render some insight into the mechanisms that govern friction but do not supply
sufficient information to specify the constitutive relations that can be applied to model friction
in an extrusion analysis. Yet, there are indications that some models are more suitable than
others.

To model friction, a variety of constitutive laws can be used to define the surface tractions
that are exerted on a material when it is sliding along a surface. Usually, the tangential surface
tractions, (I − �n�n) ·σ · �n, with �n the outward unit surface normal vector, are related to the size
of the normal surface traction �n · σ · �n and to the relative sliding velocity along the tooling
(�v − �vtool ). As a point of departure a Norton-Hoff type law is considered which gives the
following relation (Moal and Massoni, 1995):

(I − �n�n) · σ · �n = −µ‖�n · σ · �n‖α‖�v − �vtool‖β−1(�v − �vtool ) (2.17)

whereµ represents the friction coefficient, and α and β are additional constitutive parameters.
Notice that for this law the dimension of µ depends on the choice of α and β. For extrusion
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the velocity of the tooling is given by (see also Figure 2.2):

�vtool =
{�0 ∀�x ∈ �die ∪ �container ,

�vram ∀�x ∈ �ram
(2.18)

For the particular values of α = 0, β = 1, (2.17) reduces to the Norton friction law. For
α = 0, β = 0, (2.17) represents the constant friction law, while for α = 1, β = 0, the
Coulomb friction law is recovered.

In extrusion analysis all of these laws have been used to model friction (see e.g. (Welo et al.,
1996) for Norton, (Yang, 1994) for constant friction, and (Mooi, 1996) for Coulomb). How-
ever, in extrusion practice it has been observed that locally increasing the length of the bear-
ings above a certain value, does not further improve the balance of the extrudate. This sug-
gests that towards the exit of the bearing the frictional traction decreases and even vanishes
for large bearing lengths. This trend cannot be captured by adopting the constant friction
law. Also, the Norton law is incapable of describing this behavior since it predicts that a
particle that is sliding along the bearing will experience a frictional traction proportional to
the sliding velocity. Since the velocity of a particle will not change significantly within the
bearing, the Norton law suggests a nearly constant friction. Furthermore, there are indica-
tions that the sliding velocity has very little influence on the friction forces in metal-metal
contact (Anand, 1993; Anand and Tong, 1993). Additionally, experiments in extrusion with
non-parallel bearings reveal that the contact pressure plays a crucial role (Abtahi et al., 1996;
Welo et al., 1996). Therefore, in this thesis a Coulomb friction law is employed.

Coulomb’s law of friction may be expressed (Heege et al., 1995) by a friction criterion
(2.19) which defines the limits of the frictional traction in relation to the normal traction, a slip
rule (2.20) which prescribes the frictional tractions to be opposed to the sliding velocity, and
a complementarity condition (2.21) which ensures that stick and slip are mutually exclusive
conditions:

‖(I − �n�n) · σ · �n‖ ≤ −µ(�n · σ · �n) (2.19)

�v − �vtool

‖�v − �vtool‖ = − (I − �n�n) · σ · �n
‖(I − �n�n) · σ · �n‖ (2.20)

(‖�v − �vtool‖) (‖(I − �n�n) · σ · �n‖ + µ(�n · σ · �n)) = 0 (2.21)

In every point on the aluminum surface that is in contact with the tooling, the stress state and
the velocity must satisfy these three equations. Also, in case of sliding the size of the frictional
surface tractions, µ(�n · σ · �n) should not exceed the local yield stress of the aluminum γ̇ η.
In extrusion this requirement is implicitly met because numerical experiments show that, in
the areas where the aluminum slides along the tooling, the contact pressures are considerably
lower than the yield stress of the aluminum there.

Due to the difficulties of performing in situ experiments it is impossible to measure the
Coulomb friction coefficient, µ. Therefore, the friction coefficient has been estimated by
performing a number of simulations with varying Coulomb coefficients for a die design that
rendered a well balanced exit flow in extrusion practice. Of these computations the flow field
that was obtained with a Coulomb friction coefficient of 0.4 [-] displayed the most uniform
exit flow. Therefore in this work a Coulomb friction coefficient of 0.4 [-] will be used.
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2.4.2 Free surface

The boundary of the outflow at the end of the die is stress free since surface tractions are
assumed to be absent. The boundary condition applied at the outflow is then given by:

σ · �n = �0 ∀�x ∈ �out f low (2.22)

2.5 Thermal problem

The conservation of energy law in (2.3) that governs the thermal problem can be simplified
based on the assumption that no heat is generated or lost due to phase changes or chemical
reactions, i.e. by removing �r from (2.3). Furthermore, it is assumed that Fourier’s law, given
by �h = −λ �∇T , holds for the heat flux, and that the specific internal energy is only a function
of the temperature, i.e. e = ρcpT , which follows directly from the incompressible, viscous
material model that is used for aluminum. If the mechanically dissipated heat is computed
using the flow field from (2.15) and (2.16), the following expression for the conservation of
energy law results:

ρcp
∂T

∂t
+ ρcp �v · �∇T = 2ηD : D + λ �∇ ·

( �∇T
)

(2.23)

where cp represents the specific heat capacity, and λ the heat conduction coefficient, which
are both assumed constant. Equation (2.23) can be scaled with the use of (2.9) to render:

Sr

(
ρ∗ ∂T ∗

∂t∗

)
+

(
ρ∗�v∗ · �∇∗T ∗) = Br

Pe
2

(
η∗ D∗ : D∗) + 1

Pe
�∇∗ ·

( �∇∗T ∗) (2.24)

where the dimensionless numbers Fo, Pe and Br are the Fourier, the Péclet and the Brinkman
numbers, respectively, which are defined according to:

Sr = l0
t0v0

, Pe = ρ0cpv0l0
λ

, Br = η0v
2
0


Tλ
(2.25)

To evaluate the importance of each of the terms, the characteristic values in (2.13) are
adopted along with:

cp = 103 [J kg−1K−1], λ = 102 [J m−1s−1K−1] (2.26)

Substitution renders the following order of magnitude estimations:

Sr = O(10−5),
Br

Pe
= O(100),

1

Pe
= O(10−1) (2.27)

If the irrelevant entries in (2.24) are removed the following convection diffusion problem
emerges:

ρcp �v · �∇T − λ �∇ ·
( �∇T

)
= 2ηD : D (2.28)

where the scaling has been dropped.
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2.6 Thermal boundary conditions

In order to model the thermal boundary conditions of extrusion accurately it is necessary
to perform a complete heat transfer analysis of the press and the surrounding (instationary)
air. Since such an analysis is complicated, the boundary conditions are usually simplified
by assuming that the ram has a constant temperature and that the container, the die and the
outflow are insulated (see e.g. (Mooi, 1996)):{

T = Tram ∀�x ∈ �ram

�∇T · �n = 0 ∀�x ∈ �container ∪ �die ∪ �out f low
(2.29)

In this assumption the heat transfer across the boundary of the aluminum domain is solely at-
tributed to convection. This neglects the heat transfer due to diffusion, i.e. due to temperature
gradients at the aluminum boundary.

Ram

vout

AoutAin twall

AcontTwall

Talu

vin

Billet

Die

Container

Figure 2.3: Simplified extrusion model.

To investigate the correctness of this assumption a simplified heat model of the container
is analyzed (see Figure 2.3). The contribution of convection and diffusion to the thermal
power that is inserted into the aluminum at the boundary can be computed as follows. The
order of magnitude of the thermal power put into the aluminum due to convection Pconv , is:

Pconv [W] = vin Ainρ0cpTin − vout Aoutρ0cpTout

= vin Ainρ0cp(−
T ) (2.30)

= −O(10−2)O(10−2)O(103)O(103)O(102) = −O(104) [W]
where vin = O(10−2) [ms−1], Ain = πr2 = πO(10−1)2 = O(10−2) [m2] are used, and ρ,
cp and 
T as introduced previously.

The thermal power that is inserted into the aluminum due to diffusion Pdi f f is governed
by temperature gradients at the container, the die and the outflow wall. Compared to the
container surface area, the die surface area is less than 10% and the outflow surface area
for the modeled profile lengths is less than 1%. The container consists of a steel shell that
is in contact with the aluminum on the inside and that is kept at a constant temperature on
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the outside. The thickness of this shell is twall = O(10−1) [m] and the temperature drop
over the thickness of this shell is Twall − Talu = −O(101) [K] which renders a temperature
gradient �∇T = −O(102) [K m−1] at in the shell. In extrusion practice similar temperature
gradients have been measured in the die and the profile. These measurements, combined with
the relative surface areas justify the assumption that the power inserted through temperature
gradients is mainly governed by the container. This leads to the following order of magnitude
estimate:

Pdi f f [W] = Acontλsteel
Twall − Talu

twall
(2.31)

= O(10−1)O(101)
−O(101)

O(10−1)
= −O(102) [W]

where Acont = 2πrl = 2πO(10−1)O(10−1) = O(10−1) [m2] is used, as well as λsteel =
O(101) [Jm−1s−1K−1]. It should be noted that the same order of magnitude estimates are
obtained for Pconv and Pdi f f if real values, rather than order of magnitude estimates, are
substituted for the variables in (2.30) and (2.31), respectively.

A comparison between Pconv and Pdi f f reveals that the power related to convection is
considerably larger than that related to diffusion. Therefore the boundary conditions in (2.29)
are a justifiable simplification and will be used in this thesis.

2.7 Changing aluminum boundary

To obtain accurate results from the finite element computations it is of paramount importance
that the computational domain, the mesh, coincides with the aluminum domain. However,
the shape of the aluminum domain cannot be predicted a priori. It is therefore impossible
to generate a mesh that is coincident with the shape of the aluminum domain. Specifically,
the shape of the outflow surface and of the die surface change depending on the process
conditions. The shape of the outflow surface will not coincide with the original one if the
calculated velocities at this (by definition stress-free) surface have a component perpendicular
to the boundary of the original surface. The shape of the die surface will change if the
die deflects due to the process forces. Strictly speaking the deflections of the ram and the
container influence the shape of the aluminum domain as well. However, the deformations
of the ram and the container are so small that they can be neglected. As a consequence of
these changing boundaries, the mesh has to be adapted to ensure that it remains, or becomes,
coincident with the aluminum.

2.7.1 Three field approach

The varying shape of the aluminum is handled in the following way (van Rens et al., 1998a)
(see also Figure 2.4). As a first approximation, it is assumed that the die does not deform and
that the aluminum exits the die according to the domain initially specified, which is perfectly
straight in general. Using this point of departure, the shape of the aluminum domain � is
defined and a mesh, denoted by triangularization T k consisting of tetrahedral elements k,
can be generated. Then an iterative procedure is started. Within this procedure the first step
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consists of computing the flow field of the aluminum using the current aluminum mesh. From
this flow field the aluminum velocities, �v at the outflow surface can be computed, as well as
the surface traction −p�n+τ ·�n that the aluminum experiences at the die surface. In the second
step the new shape of the outflow surface is computed, using the velocities at the surface, and
the new shape of the die is computed, using the interface tractions between the aluminum and
the die. From these new shapes the aluminum surface displacements �u, required to keep the
boundary of the aluminum mesh conform with the outflow surface and the die surface, can
be computed. In the third step the new node positions of the aluminum mesh are computed
using the displacements of the boundary. These new node positions define a new mesh T k

on the aluminum domain �. With the new mesh the next iteration is started.

Aluminum flow field
Equations (2.15) and (2.16)

Fluid problem �v on �out f low

−p�n + τ · �n on �die

Mesh problem

�u on �out f low

�u on �die

Equation (2.34)
Node displacements

Structure problem

Die shape
Section 2.7.3

Section 2.7.2
Free surface shape

T k on �

initial T k on �

Figure 2.4: The incorporation of a varying aluminum shape.

The iterative procedure described above can be characterized as a three field approach
(Farhat et al., 1998; Lesoinne and Farhat, 1998). Other procedures that fall within this cat-
egory are the Arbitrary Euler Lagrange method and the dynamic mesh method. In such an
approach three fields with corresponding problems are defined. The first field, the fluid field,
involves the velocities and pressures that are present in the aluminum flow problem that was
discussed in Section 2.3. The second field describes the displacements of the structure with
which the aluminum domain interacts. In this work, two structure problems are present, the
outflow surface shape problem and the flexible die shape problem. The third field is related
to the displacements of the aluminum mesh. The problem related to this field provides the
relations that govern the displacements of the nodes in the mesh as a function of the chang-
ing boundary. For this purpose the mesh is treated as a pseudo structure. Since it is only
defined for computational purposes, the mechanical properties of the pseudo structure are not
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relevant. Therefore, linear elastic behavior is used.
To solve the problems that are present in the three field approach depicted in Figure 2.4,

their exact form has to be defined. To do so, the displacements �us and �um are defined on
the domains of the structure and the mesh, respectively. Then these problems can be written
according to:

flow problem

{ �∇ · �v = 0
�∇ · (−p I + 2ηD) = �0 (2.32)

structure problem
{
G(�us) = 0 (2.33)

mesh problem
{ �∇ ·

(
C : 1

2

( �∇ �um + ( �∇ �um)
c
))

= �0 (2.34)

where G represents the function that defines the shape of the structure, and C the fourth order
Hookean elasticity tensor. The exact form of G will be discussed in more detail for both the
free surface and the flexible die in Section 2.7.2 and Section 2.7.3, respectively.

2.7.2 Structure problem - Free surface shape

The outflow surface is modeled by a membrane structure of zero thickness. This membrane
does not exert any surface tractions on the aluminum, which corresponds to a stress-free
outflow condition for the aluminum. The shape of the structure is fully defined by the set
of particle tracks belonging to those particles that are located on the outflow surface. Be-
cause a particle that starts on the surface remains on the surface, the shape of the structure is
determined by those particles that are on the outflow surface when the aluminum leaves the
die.

�er

�x0

hr

�eq

�x�ey

�out f low�die

hq

�v

p

�ep

lp

�ez

�ex

Figure 2.5: Variable definition for particle track.

Let the principal flow direction of the aluminum at the outflow be denoted by the unit
vector �ep (see also Figure 2.5). Also, �eq and �er represent the unit vectors that constitute an
orthogonal basis with �ep. Then, the trajectory of one particle can be described by the length
measuring coordinate p along the line l p, and two variables defined on l p, hq (p) and hr (p)
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which represent the distance from l p in �eq - and �er -direction respectively. As a result, the
position of a particle �x can be defined as:

�x(�x0, p) = �x0 + p�ep + hq(p)�eq + hr (p)�er (2.35)

where �x0 is the starting point of the particle track.
The tangent to the track of a particle and the local velocities of that particle have to be

codirectional for any point along the track. Considering the velocity field to be constant
during the extrusion process, the shape of the particle track is defined by (van Rens et al.,
1999c):

vq = vp
dhq

dp
, vr = vp

dhr

dp
(2.36)

where vp = (�v · �ep), vq = (�v · �eq) and vr = (�v · �er ) represent the components of the velocities
in the �ep,�eq ,�er reference frame. The equations in (2.36) can be solved on the line l p to render
the fields hq and hr , related to one particle. The boundary conditions that are supplied to
(2.36) should ensure that the particle track is on the outflow surface as the aluminum leaves
the die and can be expressed as:

hq = 0, hr = 0 for �x = �x0, �x0 ∈ �die ∩ �out f low (2.37)

p

�eq�x0

�ez

�er �ep

s
�es

�l

l p

�out f low

�ex

�ey

�die

Figure 2.6: Surface definition of �l .

Since it is not feasible in reality to solve the fields hq and hr separately for every par-
ticle track that starts at the die exit, equations (2.36) are redefined on the surface �l that is
constituted by the set of all the lines l p (see also Figure 2.6):

�l =
{⋃

l p; l p|�x0 ∈ �die ∩ �out f low

}
(2.38)

To do so, a local orthogonal basis is defined by �ep and �es on �l , along with their respective
length measuring coordinates p and s. If the fields hq and hr are redefined on �l to be of a
function of both p and s, the position of a particle on the outflow surface can be written as:

�x(p, s) = �x0(s)+ p�ep + hq (p, s)�eq + hr (p, s)�er (2.39)
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Also, the local gradient operator on �l is defined as �∇l = �ep
∂
∂p + �es

∂
∂s and the vector field

�w = vp�ep is constructed. Then (2.36) can be rewritten in terms of the local coordinates p
and s on �l .

vq = �w · �∇l hq , vr = �w · �∇l hr (2.40)

which are convection equations that have to be solved on �l to render the distances hq and
hr between the outflow surface and �l for a given point �x(p, s). The advantage of the for-
mulation introduced here is that for a given velocity field the shape of outflow surface can be
determined instantly by solving two convection equations. This removes the need for pseudo-
time stepping schemes that are commonly used to determine the shape of a free surface flow.

2.7.3 Structure problem - Die shape

Die Backer

Container

Aluminum

Holder

Figure 2.7: Configuration of the die package.

The interaction between the aluminum and the ram, the container and the die causes
changes to the aluminum domain. However, only the deformation of the die package has a
significant effect (see also Figure 2.7). The die package consists of a steel die and backer that
are placed inside a steel die holder which in turn is placed against a bolster (not shown). All
of these components deform to a certain extent under the extrusion pressures. In this work
only the elastic behavior of the die and the backer are considered, because these are the only
two that have been found to deform significantly in extrusion practice.

The elastic deformation of the die and the backer is modeled in a Lagrangian framework
as a quasi-static process. For static processes and elastic material behavior the conservation
of momentum law reduces to:

�∇ ·
(

C : 1

2

( �∇�us + ( �∇�us)
c
))

= �0 (2.41)

where the fourth order Hookean elasticity tensor C is fully defined by the Young’s modulus,
E = 2.1 · 1011[Nm−2], and the Poisson’s ratio, ν = 0.3.

To solve (2.41) subject to the tractions that the aluminum exerts on the die, the boundary
conditions that describe the interaction between the tool parts and the surrounding support
have to be imposed. These conditions are based on the assumptions that contact between the
different parts of the tooling is frictionless, and that the die holder is rigid.
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Finite element implementation

It is impossible to arrive at analytical solutions for the coupled partial differential equations
that were derived in the previous chapter, especially for the complex geometries represen-
tative for aluminum extrusion. For this reason either the differential equations and/or the
relevant geometry have to be simplified to such a level that analytical solutions can be ob-
tained (see e.g. (Støren, 1993)), or the solutions of the differential equations have to be
approximated using numerical methods. In this work a numerical method, the finite element
method, will be used because the simplifications needed to attain an analytical solution are
too constraining to obtain realistic solutions.

Within the finite element framework the partial differential equations that represent each
of the distinguishable problems have to be spatially discretized. The discretization of the
(aluminum flow) Stokes problem, is described in Section 3.1, where special attention is paid
to the MINI element and the incorporation of friction through Lagrange multipliers. The
discretization of the thermal convection-diffusion problem is handled in Section 3.2. There,
the Streamline Upwind / Petrov-Galerkin (SUPG) method, necessary to stabilize the resulting
system of equations, will be outlined. The discretization of the additional problems that result
from the application of the three field approach to handle the varying aluminum shape will
be discussed in Section 3.3. There, the structure problems and the mesh problem associated
with the free-surface shape and the elastic die deformation, will each be treated separately.

After discretization each problem reduces to a system of algebraic equations. For the
problem that describes the aluminum flow, the system consists of a non-linear Stokes problem
that is coupled to a non-linear convection diffusion problem. This system of equations has to
be decoupled and linearized before it can be solved. The iterative procedure that is used to
decouple and linearize the system of equations is presented in Section 3.4. Also the solvers
that are used to solve the linearized systems will be presented.

3.1 Discretizing the Stokes problem

The Stokes problem associated with extrusion, governed by (2.15) and (2.16), can be ap-
proximated using the classical Galerkin finite element method. To do so first the spaces of
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trial solutions V (for the velocity �v) and P (for the pressure p) are defined on the aluminum
domain � with boundary �:

V =
{
�v ∈

(
H1(�)

)n}
P =

{
p ∈ L2 (�)

}
(3.1)

where n ∈ {1, 2, 3} represents the dimension of the problem, and H 1(�) and L2(�) are
the standard Hilbert and Lebesque spaces, respectively. The variational form of the Stokes
problem can then be written:



find (�v, p) ∈ V × P such that∫
�

2ηDw : Dvd�− ∫
�

( �∇ · �w
)

p d� = ∫
�

�w · �s d� ∀ �w ∈ V∫
�

q
( �∇ · �v

)
d� = 0 ∀q ∈ P

BC(�v, p) = 0 on �

(3.2)

where Dw and Dv represent the rate of deformation tensor related to the fields �w and �v,
respectively. The variable �s = (−p I + 2ηDv) · �n denotes the surface tractions on �. The
function BC(�v, p) is used to introduce the appropriate boundary conditions on the boundary
of the aluminum domain, �, and will be discussed further on in this chapter. Next, the finite
dimensional subspaces Vh ⊂ V and Ph ⊂ P are defined on a family of discretizations T k

of the domain. To accommodate the meshing issues to be considered in the next chapter, T k

is supposed to contain elements, K , of triangular (2D) or tetrahedral (3D) form. Now the
following subspaces are chosen:

Vh =
{
�vh ∈ V ; �vh|K ∈ (P1(K ))

n , ∀K ∈ T k
}

(3.3)

Ph =
{

ph ∈ P ; ph |K ∈ P1(K ), ∀K ∈ T k
}

(3.4)

where Pk(K ) denotes the space of polynomial functions of degree k or less and thus P1(K )
denotes the space of linear functions on the element K . Now the problem formulation (3.2)
can be written in terms of �vh ∈ Vh and ph ∈ Ph :



find (�vh, ph) ∈ Vh × Ph such that∫
�

2ηDwh : Dvh d�− ∫
�

( �∇ · �wh
)

phd� = ∫
�

�wh · �s d� ∀ �wh ∈ Vh

∫
�

qh
( �∇ · �vh

)
d� = 0 ∀qh ∈ Ph

BC(�vh, ph) = 0 on �

(3.5)

where the weighting functions are chosen identically, in conjunction with the (Bubnov-)
Galerkin method. It is well-known that, for the given choices of Vh and Ph , the problem
definition (3.5) is ill-posed because it does not satisfy the inf-sup or Babuška-Brezzi (LBB)
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stability condition (see e.g. (Bathe, 1982; Hughes, 1987) and references therein). As a re-
sult, spurious pressure modes will cause severe oscillations in the pressure solution and the
velocity solution will lock in many cases, irrespective of the mesh size.

Two approaches exist that are generally employed to remedy the ill-posedness of (3.5)
(Russo, 1996). The first method is to chose the polynomials that span the spaces of trial
solutions �vh and ph of different order. In that case the combination of these function spaces
has to be chosen such that the LBB condition will be satisfied. An example is the triangular
or tetrahedral P2 P1 element implemented in standard FE packages, where the velocity is
interpolated quadratically and the pressure linearly. However, these elements introduce a
large number of degrees of freedom for each element which results in (actually unacceptably)
large systems of equations to be solved.

The second approach is to stabilize the linear elements by modifying the Stokes equation
through the inclusion of a certain amount of diffusivity to the formulation, without affecting
the consistency of the solution (see (Franca et al., 1993) for an overview). An example of such
an approach is the method indicated as Galerkin Least Squares (GLS) (Hughes et al., 1994).
This allows to circumvent the compatibility requirements imposed on Vh and Ph by the
LBB condition and thus enables the use of equal order trial spaces. A disadvantage of these
methods is that they usually require the selection of a stabilizing parameter that is a function
of the mesh size and the viscosity, which makes the method less suitable in case of strong
variations in the element sizes and viscosities within �. However, in the formulation of the
MINI element (Pierre, 1995), which is also a stabilized element, the stabilization parameter
follows directly from the formulation. Therefore, the MINI element has been selected to be
applied in this research.

3.1.1 MINI element

In the MINI element an enriched space of trial functions Vh+ is constructed out of the linear
trial space Vh , and the space of bubbles Vh

b :

Vh+ = Vh ⊕ Vh
b (3.6)

Bubbles are functions which are equal to zero at element boundaries and positive within the
element to which they are associated. The bubble space is generally taken to be

Vh
b =

{
�vh

b ∈
(

H1
0 (K )

)n ; �vh
b |K ∈ (Bk(K ))

n , ∀K ∈ T k
}

(3.7)

where Bk(K ) represent the space of bubbles constructed out of polynomials of degree k or
less and all basis functions φ ∈ Bk(K ) satisfy:



φ(�x) > 0 ∀�x ∈ K \ ∂K

φ(�x) = 0 ∀�x ∈ ∂K

φ(�x) = 1 �x = geometrical center of K

(3.8)
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where ∂K indicates the boundary of the element K . The trial velocity solution �vh+ ∈ Vh+ can
now be split into a linear and a bubble contribution in a unique way:

�vh+ = �vh + �vh
b ∀(�vh, �vh

b ) ∈ Vh × Vh
b (3.9)

Using this split of variables, the discretized form of (3.5) at the element level, can be written
as: 



find (�vh, �vh
b , ph) ∈ Vh × Vh

b × Ph such that∫
K 2ηDwh+wh

b
: Dvh+vh

b
d K − ∫

K

( �∇ · ( �wh + �wh
b

))
phd K =∫

∂K ( �wh + �wh
b ) · �sk d∂K ∀( �wh, �wh

b ) ∈ Vh × Vh
b∫

K qh
( �∇ · (�vh + �vh

b

))
d K = 0 ∀qh ∈ Ph

(3.10)

where �sk represents the surface tractions acting on d∂K .
The operations that will be performed to simplify (3.10) are based on the property of the

bubble space that for any constant tensor A on element K the following holds:∫
K

A :
( �∇�vh

b

)
d K = 0 (3.11)

which is a direct result of the fact that, by construction, �vh
b = �0 on ∂K . This property, together

with the observation that, as a result from the linear interpolation, �∇�vh is constant within an
element leads to the orthogonality of the subspaces:∫

K

�∇�vh : �∇�vh
b d K = 0 ∀(�vh, �vh

b ) ∈ Vh × Vh
b (3.12)

The orthogonality property (3.12) can be applied to simplify (3.10) if the viscosity (at the
element level) is assumed constant for the moment:




find (�vh, �vh
b , ph) ∈ Vh × Vh

b × Ph such that

2η
∫

K Dwh : Dvh d K − ∫
K

( �∇ · �wh
)

phd K = ∫
∂K �wh · �sk d∂K

∀ �wh ∈ Vh

2η
∫

K Dwh
b

: Dvh
b
d K − ∫

K

( �∇ · �wh
b

)
phd K = ∫

∂K �wh
b · �sk d∂K

∀ �wh
b ∈ Vh

b∫
K qh

( �∇ · �vh
)

d K + ∫
K qh

( �∇ · �vh
b

)
d K = 0 ∀qh ∈ Ph

(3.13)

Integration of (3.13) for one element leads to a linear system of equations with the following
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structure:


K 0 L

0 K
b

L
b

−Lt −Lt
b

0






v

vb

p


 =




f

f
b

0


 (3.14)

where v, vb, and p are columns containing the nodal velocities and pressures and f , and
f

b
are columns with nodal loads. The matrices in (3.14) are related to the integrals over K .

Since the bubble velocities, �vb are only defined inside the element considered, the system in
(3.14) can be reduced by static condensation of the bubble degrees of freedom to render:

 K L

−Lt Lt
b

K −1
b

L
b





 v

p


 =


 f

Lt
b

K −1
b

f
b


 (3.15)

The structure of this element matrix is similar to that obtained with other stabilization tech-
niques. An added feature of this structure is that the zero diagonal matrix, which is still
present in (3.14), has disappeared (the zero matrix tends to cause problems with iterative
solvers).

It is obvious that the stabilization solely stems from the bubble. Therefore it is expected
that the shape of the bubble will have some influence on the performance of the element. This
influence is investigated next.

3.1.2 Choice of the bubble shape

Recently much effort has been invested in determining optimal shapes of bubbles. An impor-
tant and promising result from these efforts is the residual free bubble (see e.g. (Brezzi et al.,
1997; Franca and Farhat, 1995; Franca and Russo, 1997)). The essence of these bubbles is
that their shape is not defined a priori but depends on the solution of a differential equation
that is defined on each element. However, these residual-free bubbles are still in a very
exploratory phase and are therefore not applied in this work.

The selection of the bubble will be restricted to invariant bubbles, i.e. bubbles of which
the shape is determined a priori. Typical shapes of invariant bubbles that are within B(K ) are
the cubic bubble, used in the standard MINI element, and the piecewise linear bubble. For
these bubbles, the shape functions can be written in terms of the baricentric coordinates λi

defined on K as (Pierre, 1995):

φcubic = (n + 1)n+1
n+1∏
i=1

λi (3.16)

φlinear = (n + 1)
n+1
min
i=1

λi (3.17)

with n, as in the rest of this work, the dimension of the domain. Also, it should be noted
that even though the φcubic is a quartic in 3D, the term cubic will be used to refer to these
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bubbles in 3D as well. It has been proven in (Pierre, 1995) that the space of bubbles can be
extended with shapes that do not satisfy the first two requirements in (3.8) without losing the
orthogonality property. An example of these bubble shapes is the quadratic bubble function:

φquadratic = 2 −
n+1∑
i=1

(n + 1)(λi )
2 (3.18)

where it can easily be verified that in the geometrical center φ = 1, but that the conditions
φ > 0 within the element, and φ = 0 on the boundary, are violated.

The optimal bubble shape should render sufficient stabilization at an acceptable computa-
tional cost. For the Stokes problem an equilateral MINI element with a cubic bubble renders
the optimal level of stabilization. However, in extrusion modeling grids will be applied with
highly distorted elements and it has been proven in (Pierre, 1995) that the level of stabilization
is reduced for distorted cubic MINI elements. For these distorted elements the performance
of the quadratic element is expected to be better. Furthermore, to integrate the cubic bubbles
analytically, integration rules that are exact for polynomials of order 6 in 3D and 4 in 2D, are
required. Such integration rules are computationally rather time consuming. These problems
may be overcome by applying lower order integration rules, but this may result in a poor
performance of the stabilization and thus in degenerated pressure solutions.

To investigate the influence of using lower order bubbles and lower order integration the
linear system (3.14) is constructed for four different 2D MINI elements. The first has a cubic
bubble and is integrated using a four point Gauss rule which is only exact up to polynomials
of degree 3. The second, third and fourth elements considered here have cubic, quadratic
and linear bubbles respectively that are all integrated analytically. To compare the elements,
a dimensionless Stokes problem with an external distributed body force (per unit volume,
�f �= �0) is considered:{ �∇ · �v = 0

�∇ · (−p I + 2ηD) = �f (3.19)

Starting with a divergence free velocity field and a constant pressure field, according to:{
�vexact = (1 − y2)�ex + (1 − x2)�ey

pexact = 0
(3.20)

the necessary body force can be derived to be (considering η = 1 for the dimensionless
problem):

�f = (
2�ex + 2�ey

)
(3.21)

The appropriate Dirichlet boundary conditions are prescribed on the boundary of the domain
for the velocities �v and at the corners of the domain for the pressures p.

Two test cases are examined. For the first test a square domain, −2 ≤ (x, y) ≤ 2,
is meshed with an unstructured mesh that mainly consists of equilateral elements (see Fig-
ure 3.1). The characteristic mesh length h, is defined as:

h2 = area

number of elements
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Figure 3.1: Left: Errors in the pressure ep , dashed lines (- -), and in the velocity ev , solid lines (—), for
the numerically integrated cubic bubble (+) and for the analytically integrated cubic bubble
(�), quadratic bubble (◦) and the linear bubble (��). Right: Example mesh for h ≈ 1/3.

For several values of h, the maximal error for the velocity and the pressure field are computed
according to:

ev = max(‖�v − �vexact‖) ep = max(|p − pexact |) (3.22)

The results are plotted in Figure 3.1. For the second test the domain again spans the square
−2 ≤ (x, y) ≤ 2. However, the mesh consists of stretched elements. The results are plotted
in Figure 3.2.

For both types of meshes the expected linear convergence for the pressure and quadratic
convergence for the velocity can be observed. In an absolute sense, the errors are slightly
larger in the stretched mesh. In both cases the errors that are obtained using the quadratic
analytically integrated bubble and the cubic numerically integrated bubble coincide. This is
caused by the fact that the element matrices of the quadratic analytically integrated and the
cubic numerically integrated bubble are exactly identical.

It can be observed that for the equilateral mesh the choice of the bubble has almost no
influence on the prediction of the velocity field or on the pressure field even though the
performance of the linear bubble slightly decreases for finer grids. For the stretched mesh
the velocities are very similar for all elements. Yet, the prediction of the pressures is better
for the element with the quadratic bubble. It is proven in (Pierre, 1995) that for the quadratic
bubble this difference is more pronounced in 3D. The analytically integrated quadratic bubble
appears to be numerically equivalent to the numerically integrated cubic bubble. Since the
latter bubble is straightforward to implement in the finite element package that is used, it will
be used in the following.



28 Chapter 3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

mesh size h

er
ro

r 
e

Figure 3.2: Left: Errors in the pressure ep , dashed lines (- -) , and in the velocity ev , solid lines (—), for
the numerically integrated cubic bubble (+) and for the analytically integrated cubic bubble
(�), quadratic bubble (◦) and the linear bubble (��). Right: Example mesh for h ≈ 1/3.

3.1.3 Non-constant viscosity

In the derivation of (3.13) the viscosity, η, was assumed to be constant. However, for alu-
minum the viscosity is a function of the shear rate tensor, D, and the temperature, T , which
are both not constant at the element level. Consequently, the viscosity is not constant across
an element, which implies that the orthogonality property (3.12) cannot be used to derive
the simplified form (3.13) of the Stokes problem. To overcome this difficulty the viscosity
is made constant within an element. For this purpose, two new piecewise constant solution
fields are introduced to map the shear rate and the temperature onto solution fields that are
constant within an element. The associated solution spaces read:

Dh =
{

dh ∈
(

L2(�)
)n×n ; dh |K ∈ P0(K ), ∀K ∈ T k

}
(3.23)

�h =
{
θh ∈ L2(�); θh|K ∈ P0(K ), ∀K ∈ T k

}
(3.24)
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If the viscosity is now defined to be a function of the mapped quantities dh and θh which are
constant within one element, the problem formulated in (3.10) can be written as:




find (�vh, �vh
b , ph, dh, θh) ∈ Vh × Vh

b × Ph × Dh ×�h such that

2η(dh, θh)
∫

K Dwh+wh
b

: Dvh+vh
b
d K − ∫

K

( �∇ · ( �wh + �wh
b

))
phd K =∫

∂K ( �wh + �wh
b ) · �sk d∂K ∀( �wh, �wh

b ) ∈ Vh × Vh
b∫

K qh �∇ · (�vh + �vh
b

)
d K = 0 ∀qh ∈ Ph

∫
K eh : (dh − Dvh+vh

b
)d K = 0 ∀eh ∈ Dh

∫
K ς

h(θh − T )d K = 0 ∀ςh ∈ �h

(3.25)

Since Dvh is constant within the element, application of the orthogonality relation (3.11) to
the third equation in (3.25) gives dh = Dvh . Using this relation, (3.25) can be simplified to
render the new form of (3.13):



find (�vh, �vh
b , ph, θh) ∈ Vh × Vh

b × Ph ×�h such that

2η(Dvh , θh)
∫

K Dwh : Dvh d K − ∫
K

( �∇ · �wh
)

phd K =∫
∂K �wh · �s d∂K ∀ �wh ∈ Vh

2η(Dvh , θh)
∫

K Dwh
b

: Dvh
b
d K − ∫

K

( �∇ · �wh
b

)
phd K =∫

∂K �wh
b · �s d∂K ∀ �wh

b ∈ Vh
b∫

K qh
( �∇ · �vh

)
d K + ∫

K qh
( �∇ · �vh

b

)
d K = 0 ∀qh ∈ Ph

∫
K ς

h(θh − T )d K = 0 ∀ςh ∈ �h

(3.26)

Clearly, the last equation of (3.26) can be interpreted as averaging of the temperature within
one element and can be performed as a preprocessing step. The remaining set of equations
can then be written in the same form as (3.15).

3.1.4 Friction

To incorporate the effect of the frictional surface tractions, denoted by σ · �n in (2.19)-(2.21),
into the discretized system (3.26), these tractions have to be defined in terms of discretized
entities. To this end one of three approaches is commonly pursued: a Lagrange multiplier
method (Baaijens et al., 1986), an augmented Lagrange method (Heege and P.Alart, 1992),
or a penalty method (Shimizu and Sano, 1995). Here the Lagrange multiplier method is
adopted to avoid the introduction of a penalty parameter (Baaijens, 1987). In this method
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a Lagrange multiplier, �λ = σ · �n, which can be considered as a traction, is used to enforce the
friction equations on the boundary �tool . Furthermore the inequalities in (2.19)-(2.21) have
to be reformulated into a set of equalities. This is done by the introduction of three distinct
frictional states that allow the formulation of a set of equalities associated with each state.

Formulation of friction using three distinct states

To rewrite the inequalities in (2.19)-(2.21) into equalities, 3 distinct states are introduced,
being stick, slip and release, comparable to the approach suggested in (Brekelmans, 1989).
The friction states ’stick’ and ’slip’ follow directly from the complementarity condition. The
friction state ’release’, on the other hand, is introduced to cope with negative contact pres-
sures. An unrealistic negative contact pressure implies that the aluminum would loose contact
with the die and create a free surface that might regain contact again. To accurately capture
this behavior a contact analysis would be required which introduces numerous numerical
instabilities. Moreover, in extrusion practice it has been observed that, even if the aluminum
releases from the die, the gap between the die and the aluminum is minimal. Therefore,
in the separate state ’release’, negative contact pressures are coped with by prescribing that
the frictional tractions are zero and by neglecting the gap between the aluminum and the
die. Neglecting this gap implies that the velocities of the aluminum remain tangential to the
tooling surface.

Associated with each state, a set of equations is defined which enforce that the material
either sticks to the tooling, slides along the tooling or ’releases’ (i.e. slips along the tooling
with zero friction tractions). With �n the outward unit normal to the aluminum surface, a
function �F(�v, �λ) is defined according to:

�F(�v, �λ) =




stick

{
(�v − �vtool) = �0

slip



(�v − �vtool) · �n�n +

�λ · (I − �n�n)− µ(�λ · �n) �v−�vtool‖�v−�vtool‖ = �0
release

{
(�v − �vtool) · �n�n + �λ · (I − �n�n) = �0

(3.27)

The function �F(�v, �λ) is applied in an iterative procedure that proceeds as follows. At the start
of the first iteration each point on the boundary is estimated to be in either the stick, the slip or
the release state. For this distribution of states on the friction boundary, the solution field can
be obtained by combining �F(�v, �λ) with the equations that govern the flow of the aluminum.
For the solution field computed using this set of equations, it is assessed whether for every
point on the friction boundary the inequalities in (2.19)-(2.21) are satisfied. For each state
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these inequalities can be simplified according to:




stick ‖�λ · (I − �n�n)‖ + µ�λ · �n ≤ 0

slip (�v − �vtool ) · (�λ · (I − �n�n)) ≤ 0

release −�λ · �n ≤ 0

(3.28)

If the inequalities are not satisfied for a point on the boundary, the state of that point is
adjusted accordingly and a new iteration is started. This process is continued until (2.19)-
(2.21) are satisfied on the entire friction boundary.

Discretization of the Lagrange multipliers

Before �F(�v, �λ) can be incorporated into the finite element formulation, the Lagrange multi-
pliers that operate on the friction boundary, T kλ , have to be discretized. The discretization
has to be such that it does not introduce spurious modes or locking in the other degrees of
freedom of the velocity field (Brezzi et al., 1996). It is therefore subject to similar stability
considerations as the discretization of the pressure degrees of freedom in the mixed formu-
lation. In (Bertrand et al., 1997) it has been suggested that, for piecewise linear integration
of the Lagrange multiplier space, the distance between two adjacent points of T kλ should be
larger than the edge length of the elements in T k to avoid locking of the solution field. As
a result, it is complicated to generate a discretization of the surface on which the Lagrange
multiplier is applied. However, if each component of �λ is approximated with a piecewise
constant the distance between two points in T kλ is less constrained and can be equal to the
edge length in T k (Bertrand et al., 1997). This piecewise constant approximation is referred
to as the virtual finite element method. In this method N control points, �xci , i = 1, 2, ..., N
are introduced on the boundary. At these control points the friction equations are enforced
locally (comparable to the collocation method). This leads to the following subspace of trial
solutions for �λ:

�h =
{�λh ∈

(
L2(�tool)

)n ; �λh |�xci
∈ P0(�xci ), ∀i ∈ 1, ..., N

}
(3.29)

Now the appropriate weighting function that expresses the local operation of the Lagrange
multiplier is a Dirac function δ(�x) which defines the subspace:

Zh =
{

�ζ h =
N∑

i=1

�zi δ(�x − �xci )

}
(3.30)

In principle friction should be modeled on the entire tooling surface �tool . However,
both numerical experiments and observations in extrusion practice indicate that the aluminum
sticks to the ram and the container surface. Therefore, at these surfaces stick is assumed a
priori and friction is only modeled on those parts of the tooling surface associated with the
die. Then, using the enriched solution space for the velocities Vh+ (3.6) (rather than the linear
space, Vh), the linear space for the pressures Ph and the piecewise constant space for the
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Lagrange multipliers �h along with their spaces of weighting functions, the flow problem in
(3.5) can be written as:



find (�vh+, ph, �λh) ∈ Vh+ × Ph ×�h such that∫
�

2ηDwh+ : Dvh+d�− ∫
�

( �∇ · �wh+
)

phd�

− ∫
�die

�wh+ · �λhd� = ∫
�tool\�die

�wh+ · �sd� ∀ �wh+ ∈ Vh+∫
�

qh
( �∇ · �vh

)
d� = 0 ∀qh ∈ Ph

∫
�die

�ζ h ·
( �F(�vh+, �λh)

)
∂� = 0 ∀�ζ h ∈ Zh

�vh = �vtool on �tool \ �die

(3.31)

where the surface integral over the surface tractions �s is not taken over the die area or the
outflow area. This is allowable because on the die surface the surface tractions are introduced
by the friction Lagrange multipliers and on the outflow surface the surface tractions are zero,
according to a stress-free outflow.

�nk

�nki

jk
i

�λki

Die

Aluminum

�nk j

�vki

Figure 3.3: Vectors associated with node k on a discretized, curved boundary.

Since the friction boundary coincides with a domain boundary it is most convenient to
locate the control points on the nodes of the boundary. This implies that the friction is en-
forced at the nodal level and therefore (3.27) and (3.28) have to be written in terms of nodal
entities. The velocities in these relations are readily available but the surface normal �nk poses
a serious problem (see also Figure 3.3). In node k the direction of the normal is not uniquely
defined for the discretized boundary. In fact, if there are m element faces (for a 2D flow m=2)
connected to node k, there are m normals defined in node k: �nk1 , ..., �nkm , where �nki represents
the face normal of the i th face connected to k. Only if �nki = �nk j , ∀i, j ∈ [1,m] the normal
in k is uniquely defined. Since this is not the case for curved boundaries, as exemplified in
Figure 3.3, the normal �nk has to be determined in an appropriate manner.

Defining the nodal normal on curved surfaces

To define the normal the new reconstruction method first suggested in (van Rens et al., 1998b)
will be employed since it is basically independent of the discretization and renders accurate
results on coarse grids. The method is based on using the local flow field to determine the
direction of the local normal and can be explained as follows. The normal �nk in node k is
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defined to be a weighted average of the normals on the element faces connected to the node
under consideration:

�nk =
∑m

i=1wi �nki

‖ ∑m
i=1wi �nki ‖ (3.32)

with wi the weight of each face. Usually these weights are determined by, for example,
the surface area of the associated element faces (Brekelmans, 1989), or local smoothing
techniques (Fourment et al., 1997). However, in the approach of (van Rens et al., 1998b)
the weight factors, wi are determined such that �nk becomes positioned in the plane that is
perpendicular to the direction of the average velocity �v in a thin boundary layer near k. This
approach is based on the observation that when material is sliding along a surface, the velocity
in a thin boundary layer is mainly perpendicular to the surface normal.

To determine wi such that �nk is perpendicular to �v in the vicinity of k an iterative method
is used. Initially the weights, wi are chosen equal for all faces connected to k. Then the
velocity field is computed. Next the velocity field is used to update wi in the following
manner. For each element face e connected to node k with position vector �xk , the velocity
�v pi is calculated in a material point pi located at

�x pi = �xk − θ �nki (3.33)

where θ > 0 represents the thickness of the boundary layer, which should be small compared
to the local element size. From �v pi the component orthogonal to �nki and thus tangential to
the element face can be computed:

�v pi
ti = (I − �nki �nki ) · �v pi (3.34)

The weight wi of each element normal is now defined to be the length of the tangential
velocity in the sampling point:

wi = ‖�v pi
ti ‖ (3.35)

It can be verified that in a two dimensional flow (m = 2) this definition ofwi is correct since it
leads to a normal in k that is perpendicular to the average velocity in the two sampling points.
In a three dimensional configuration the proposed method is less transparent. The definition
of wi is then still based on the principle that the velocity in the boundary layer should be
tangential to the boundary and therefore only the tangential component of the velocity should
influence the direction of �nk .

The benefits of the proposed definition of �nk can be illustrated by considering the flow
field that can be computed for a 2D extrusion problem. Four velocity fields are computed on
a relatively coarse mesh (750 elements, see Figure 3.4(a)) for the following definitions of the
normal �nk in the node k on the edge at the entrance of the outflow channel:

(a) normal of upstream element face
(b) normal of downstream element face
(c) average direction of (a) and (b)
(d) the flow dependent normal discussed above
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(a) Coarse mesh (b) Fine mesh

Figure 3.4: The meshes near the outlet

Figure 3.5: The particle tracks resulting from a fine mesh (triple lines indicate boundary)

The velocity fields are compared to a velocity field that is obtained on a very fine mesh
where several elements were positioned along the arc at the entrance of the outflow channel
(2500 elements, see Figure 3.4(b)). For the velocity fields on the fine and the coarse mesh
particle tracks are calculated. The starting positions of the particles are chosen at the inflow as
indicated with the dots in Figure 3.5. The particle tracks near the re-entrant corner of the fine
mesh (Figure 3.5) are compared to the corresponding tracks in the coarse mesh in Figure 3.6.

The results in Figure 3.6 indicate that the new method of defining the normal on a curved
surface renders more accurate results for a coarse mesh. For the substitute normal that is
based on the flow field, the position and shape of the particle track on the coarse mesh
practically coincides with that of the fine mesh, while the other methods show significant
deviations.

It is remarked that the extra computational costs that are introduced by the method are
small. This is due to the fact that the iterative procedure, necessary to determine the direc-
tion of the normals, can be executed simultaneously within the iterative procedure that is
necessary to solve the friction equations. In the computations the number of iterations that
are necessary to solve the friction equations are only increased by 20% as a result of the
concurrent determining of the direction of the normals.
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n

(a) Upstream normal

n

(b) Downstream normal

n

(c) Average normal

n

(d) Flow normal

Figure 3.6: Particle tracks of coarse mesh (solid line) and fine mesh (dashed line)

3.2 Discretizing the temperature problem

As a point of departure, the thermal problem of extrusion, governed by (2.28), is approxi-
mated with the classical Galerkin finite element method. Analogous to the Stokes problem
in the previous section, the variational form can be derived by introducing trial solution and
weighting function spaces for the thermal problem which can be chosen to be equal, ac-
cording to the (Bubnov)-Galerkin method. To reduce the meshing effort, the same spatial
discretization T k , with equal order of interpolation, is employed for the flow and the tem-
perature problems. Then, automatically the subspace in which the temperature trial solutions
and weighting functions are defined, results:

T h =
{

T ∈ H1(�); T |K ∈ P1(K ), ∀K ∈ T k
}

(3.36)
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where, again, P1(K ) denotes the space of linear functions on the element K . By employing
T h , equation (2.28) can be written in the weak form:




find T h ∈ T h such that

ρcp
∫
�

sh �v · �∇T hd�− λ ∫
�

�∇sh · �∇T hd� =∫
�

sh2ηDvh : Dvh d�− ∫
�

shφ d� ∀sh ∈ T h

T h = Tram on �ram

(3.37)

where φ = λ �∇T · �n represents the heat flux across the boundary �.
For systems described by (3.37) in which the convection term is dominant the solution of

the temperature will display oscillations. This problem can be overcome by adding stabilizing
terms to the formulation. One of the most commonly employed methods is the Streamline
Upwind / Petrov-Galerkin (SUPG) method that was first suggested in (Brooks and Hughes,
1982).

3.2.1 Streamline Upwind / Petrov-Galerkin method

In the SUPG method the weighting functions are selected such that they do not lie in the
same space as the trial functions. Within each element the weighting function sh ∈ T h is
modified by adding an upwinding term. The formulation of the upwinding term is based on
obtaining the same sort of diffusion that is present in a 1D convection-diffusion problem using
a standard first order finite difference method with an Il’in upwind scheme (Segal, 1993). The
modified weighting function s̃h then becomes:

s̃h = sh + hα

2

�v · �∇sh

‖�v‖ (3.38)

where h is the characteristic element size width, and α is a dimensionless upwinding param-
eter that has to be chosen appropriately. For triangular or tetrahedral elements the value of h
in (3.38) is non-trivial. It has been proposed in (Mizukami, 1985) to define h as ”the longest
distance a particle can travel through the element, given a velocity field �v ”. This proposal
for h is adopted in this work. Apart from h, the parameter α has to be defined. From the Il’in
scheme it can be derived that the optimal value of α is given by

α = coth(β)− 1

β
, with, β = ‖�v‖h

2(λ/ρcp)
(3.39)

Since the evaluation of the hyperbolic co-tangent is numerically expensive many approxima-
tions exist. In this thesis the so-called critical approximation (Segal, 1993) is used, which
reads α = 1 − 1/β.

Employing the upwinding shape functions renders the following weak SUPG formulation
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for an element K with boundary ∂K :


find T h ∈ T h such that

ρcp
∫

K sh �v · �∇T hd K − λ ∫
K

�∇sh · �∇T hd K+
ρcp

∫
K

(
hα
2

�v· �∇sh

‖�v‖
)

�v · �∇T hd K − λ ∫
K

�∇
(

hα
2

�v· �∇sh

‖�v‖
)

· �∇T hd K−∫
K

(
hα
2

�v· �∇sh

‖�v‖
)

2ηDvh : Dvh d K + ∫
∂K

(
hα
2

�v· �∇sh

‖�v‖
)
φkd∂K =∫

K sh2ηDvh : Dvh d K − ∫
∂K shφkd∂K ∀sh ∈ T h

(3.40)

where φk represents the heat flux across the element boundary.

3.3 Discretizing the changing boundary problems

Each of the three problems that govern the changing boundary of the aluminum domain are
discretized using the finite element method. The discretization of the first problem, the fluid
problem, has been discussed in Section 3.1. The discretization of the second problem, the
structure problem, is discussed in detail, where the discretization of the free surface shape
problem and the deforming die problem are dealt with in Section 3.3.1 and Section 3.3.2,
respectively. The discretization of the third problem, the deforming fluid mesh problem,
which is essentially a standard elastic problem, will be handled briefly, for completeness, in
Section 3.3.3.

Each of the problems is discretized such that the nodes for each domain coincide on the
interface boundaries, i.e. on the outflow and the die boundaries. Also the discretization is
realized such that the interpolation of the stresses and the displacements are of the same
order on both sides of the interface boundary. This discretization makes it possible to easily
map solution fields between the problems.

3.3.1 Structure problem - Free surface

In the free surface problem the two independent convection equations in (2.40) have to be
solved on �l to obtain the fields hq(p, s) and hr (p, s) which define the distance between
the domain �l and the aluminum outflow surface, �out f low for any point �x(p, s) on �l . It
would be most convenient if the surface mesh on �out f low could be used to solve (2.40), for
two reasons. First the velocity field �v, and thus the vector field �w needed in the convection
equations, is readily available in the nodes of �out f low. Second, no separate mesh would have
to be generated on �l . However, �l generally does not coincide with �out f low , which poses
a problem.

This problem is remedied by defining a new domain �n that coincides with �out f low

and by rewriting (2.40) in terms of the variables that define �n (see also Figure 3.7). On
the surface �n the local, orthogonal unit vectors �eζ and �eξ are defined, along with length
measuring coordinates ζ and ξ in their respective directions. The axes are oriented such that
�ep · �eξ = 0 and �es · �eζ = 0. This implies that �eζ has the same direction as the projection of
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Figure 3.7: Surface definition of �n .

�ep onto �n . The surface velocity �w = vp�ep on �l , is projected onto �n to render:

�wn = �w · (�eζ �eζ + �eξ �eξ ) = vp(�ep · �eζ )�eζ (3.41)

Then, it is easily verified that (2.40) can be defined on�n through the application of the local
gradient operator �∇n = �eζ ∂∂ζ + �eξ ∂∂ξ along the lines:

�wn · �∇nhq = vq(�ep · �eζ )2 �wn · �∇nhr = vr (�ep · �eζ )2 (3.42)

where the equivalence between (2.40) defined on�l and (3.42) defined on�n can be verified
by applying (3.41) to (3.42) and by observing that ∂

∂ζ
= ∂

∂p
∂p
∂ζ

= ∂
∂p (�ep · �eζ ) holds for the

given definitions of �eζ and �eξ .
The discretization of �n , T kn , is constructed such that it is conform with the aluminum

mesh on �out f low . Also, the space of trial solutions for hq and for hr on �n is constructed
out of linear polynomials:

Qh =
{

hh ∈ H1(�n); hh |K ∈ P1(K ), ∀K ∈ T kn
}

(3.43)

Using this space of trial solutions the weak formulation of (3.42) can be written in the fol-
lowing form:



find hh
q , h

h
r ∈ Qh × Qh such that∫

�n
sh

q �wn · �∇nhq = ∫
�n

sh
q vq

(�ep · �eζ
)2

d� ∀sh
q ∈ Qh

∫
�n

sh
r �wn · �∇nhr = ∫

�n
sh
r vr

(�ep · �eζ
)2

d� ∀sh
r ∈ Qh

hq = hr = 0 on �die ∩ �out f low

(3.44)

Because (3.44) is a convection problem, the same stability issues as those in the convection-
diffusion temperature problem arise. Therefore, (3.44) is stabilized through the application
of the SUPG method that has been described in Section 3.2.1 with an α = 1.
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The advantage of formulating the free surface in terms of the two independent convection
problems in (3.44), as has been introduced here, is that the solutions of these convection
problems renders the shape of the outflow surface instantly, without the need for (pseudo-)
time integration. Also, the problem is defined on a surface which implies that the resulting
system of equations will be small and, therefore, numerically inexpensive to solve.

3.3.2 Structure problem - Die deflection

In the discretization of the differential equations that govern the deflection of the die and the
backer, the frictionless interaction between the various parts of the tooling requires special
attention. The frictionless interaction between the die, the backer and the holder on the die-
backer interface �db and the holder interface �h can be expressed as:

(I − �nb �nb)�sd = (I − �nb �nb)�sb = �0 ∀�x ∈ �db ∪ �h (3.45)

where �nd represents the normal on the die surface, �nb the normal on the backer surface,
�sd = σ d · �nd the surface tractions on the die, and �sb = σ b · �nb the surface tractions on the
backer. It should be noted that, based on the geometry of the die and the backer, �nd = −�nb

holds on �db, which makes it possible to express the requirement that the die and the backer
should not penetrate each other as:

(�ud − �ub) · �nd �nd = �0 ∀�x ∈ �db (3.46)

Also, the holder is assumed to be rigid which reduces (3.46) to:

�ud · �nd �nd = �ub · �nb �nb = �0 ∀�x ∈ �h (3.47)

For the discretization of the die deformation problem, the tooling domain is split into
the two relevant domains, the die �d with boundary �d , and the backer �b with boundary
�b, (see also Figure 2.7). The discretizations of these domains are performed such that the
meshes are conforming at the interface surfaces between the aluminum and the die, �alu , and
between the die and the backer, �db. This facilitates the mapping of stresses and displace-
ments between the various domains. Consequently, a linear interpolation of the displacements
of the die, �ud , and the backer �ub is used:

Uh =
{
�uh,∈

(
H1(�d ∪�b)

)n ;
(
�uh|K

)
∈ (P1(K ))

n , ∀K ∈ T d
h ∪ T b

h

}
(3.48)

The constraints given in (3.45) and (3.47) are respectively Neumann and Dirichlet type
boundary conditions that can be applied in a straightforward manner. However, to impose the
constraints expressed in (3.45) the introduction of surface tractions that enforce (3.45) on �db

is required. These surface tractions are applied through the use of a Lagrange multiplier �λ
which has to be discretized as well. The discretization of the Lagrange multiplier is performed
in the same manner as discussed in Section 3.1.4, i.e. by introducing a control point with
position �xc for every surface node in �db, and by approximating the components of the force
vector �λ by piecewise constants in each control point. Then the weak form of the variational
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problem now becomes:


find (�uh
d , �uh

b,
�λh) ∈ Uh × Uh × Lh such that∫

�d
εh
wd

: C : εh
ud

d� = ∫
�alu

�wh
d · (p I − 2ηD) �ndd�+∫

�db
�wh

d · �λhd� + ∫
�d\(�alu∪�db)

�wh
d · �sd� ∀ �wh

d ∈ Uh

∫
�b
εh
wb

: C : εh
ub

d� =∫
�db

�wh
b · �λhd�db + ∫

�d\�db
�wh

b · �sb� ∀ �wh
b ∈ Uh

∫
�db

�ζ h · (
(�uh

d − �uh
b) · �nd �nd

)
d� = 0 ∀�ζ h ∈ Zh

�uh
d · �n = �uh

b · �n = 0 on �h

(3.49)

where εu = 1
2

( �∇�u + ( �∇�u)c
)

and Lh , Zh , �λh and �ζ h have been introduced in Section 3.1.4.

3.3.3 Mesh problem

As mentioned before, the mesh of the aluminum domain is considered to be an elastic pseudo-
structure. Since the mesh domain �m with boundary �m coincides with the fluid domain �,
the discretization of the mesh problem T km is taken identical to the discretization T k of
the fluid domain. The space of trial solutions Uh for the mesh displacements �um on �m is
constructed out of linear polynomials:

Uh =
{
�uh

m ∈
(

H1(�m)
)n ; �uh

m |K ∈ (P1(K ))
n , ∀K ∈ T km

}
(3.50)

The material properties of an elastic structure are fully determined by the Young’s modulus
E and the Poisson’s ratio ν. Since the pseudo-structure has no physical relevance the actual
values of Young’s modulus and Poisson’s ratio do not really matter; here E = 1[N m−2] and
ν = 0 are used. Then, considering that the mesh displacements at the interface boundary,
�inter f ace = �out f low ∪ �die, are prescribed by the structural displacements, of the outflow
surface and the die �us , the weak form of the mesh problem becomes:



find �uh
m ∈ Uh such that∫

�m
εh
wm

: εh
um

d� = ∫
�m

�wh
m · �sm d� ∀ �wh

m ∈ Uh

�uh
m = �0 on �m \ �inter f ace

�uh
m = �us on �inter f ace

(3.51)

where εum = 1
2

( �∇ �um + ( �∇ �um)
c
)

is the elastic strain tensor and �sm = εum · �nm , with �nm

the outward pointing normal, represent the surface tractions acting on �m . The advantage
of taking ν = 0 is that after elaboration of (3.51) the individual components of the mesh
displacements are uncoupled and can be solved separately.
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3.4 Solution procedure

The discretized partial differential equations derived in the previous sections each render a,
possibly non-linear, system of algebraic equations. The solution of each system is depen-
dent on the solution of the other systems, which is handled through the staggered approach
depicted in Figure 2.4. The system of equations related to the fluid problem is non-linear
and has to be linearized by applying a staggered approach as well. In the following, first the
staggered approach that is applied will be discussed, followed by the linear solvers which are
applied to solve the linearized systems.

3.4.1 Staggered approach

A staggered approach consists of solving the system of equations related to one problem
while assuming that the solution of the other problems does not change. This decouples
the system of equations enabling the independent solution of each system. As a result, the
solution of each of the systems can be performed using the method that is best suited for that
system, which makes the staggered approach very appealing.

The staggered approach that is used here is based on the scheme depicted in Figure 2.4
and can be summarized as follows (see also Figure 3.8). First an estimate of the shape of the
aluminum domain �0 is made and this is discretized to obtain a mesh T k

0 on �0. With this
mesh the velocity of the aluminum is computed by solving the fluid problem. The solution of
the fluid problem renders the velocity on the outflow surface and the surface tractions that the
aluminum exerts on the die. With these velocities and tractions known, the updated shape of
the outflow surface and the updated shape of the die can be computed by solving the structure
problems. The changing shape of the outflow surface and the deflection of the die define
the displacements of the surface of the aluminum and thus the shape of the new aluminum
domain �1. With the displacements of the aluminum surface known, the displacements of
the nodes in the mesh can be computed by solving the mesh problem. This renders the new
mesh T k

1 on �1, which can be used to enter the fluid problem again.
The system of equations related to the fluid problem consists of a flow problem coupled to

a temperature problem because the viscosity η(D, T ) is a function of both the shear rate and
the temperature field. The coupling between the flow problem and the temperature problem is
dealt with by applying a staggered approach within the solution of the fluid problem. First the
temperature is held constant and the flow field is solved. Next the flow field is held constant
and the temperature field is solved. The solution of the flow problem for a given temperature
has to be obtained iteratively because both the viscosity η and the friction function �F are non-
linear functions of the flow field. To this end a Picard scheme is employed that uses the flow
field of the previous iteration to compute the viscosity and the friction function that is used in
the current iteration. Also the solution of the temperature problem for a given flow field has
to be obtained iteratively because the viscosity is a nonlinear function of the temperature. To
solve the temperature field, again a Picard scheme is used.
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Equation (3.51) on T km
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Figure 3.8: The iterative procedure.

3.4.2 Linear solver

Each of the linearized systems of algebraic equations that results from the staggered approach
can be written in a matrix-vector format:

A x = b (3.52)

where the vector x is related to the entities that have to be solved (e.g. nodal velocities,
pressures, displacements), the matrix A is constructed from the element contributions, and
the vector b follows from external loads on the element.

For the linearized systems of equations associated with aluminum extrusion the solutions
have to be obtained using a linear iterative solver because the number of degrees of freedom is
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of such magnitude (O(105−106)) that direct linear solvers would require unrealistic amounts
of memory and solution time. The robustness and effectiveness of an iterative solver de-
creases when the size and/or the condition number of the system matrix, κ(A) = ‖A‖‖A−1‖,
increases. The condition number of A, will increase when the elements that are used to
assemble A become more distorted or when the material properties display larger variations.

In the following the attention will be focused on the linearized system of equations that
is related to the flow problem because this is the most challenging to solve. This system has
the highest number of degrees of freedom, the mesh of the domain is very distorted, and the
variations in the material parameters over the domain are severe. If friction is omitted for
ease of notation, the system of equations associated with the flow problem can be written as
(see Section 3.1.1):

 K Lt

−L S





 v

p


 =


 f

g


 (3.53)

This system can be solved using a one-level or a two-level strategy. In the one-level
strategy the velocity field v and the pressure field p are solved simultaneously. Examples of
this strategy are the integrated method in which the original system is solved and the penalty
function method, in which a small amount of compressibility is introduced to enable the
elimination of the pressure degrees of freedom at the element level, after which a smaller,
positive definite system can be obtained (see e.g. (Cuvelier et al., 1986)). In the two-level
strategy the pressure and the velocity field are solved separately. The velocities are written
as:

v = K −1( f − Lt p) (3.54)

Then the relation for the pressures can be written as:(
L K −1Lt + S

)
p = g + L K −1 f (3.55)

After the pressures have been solved, the velocities are computed through back substitution.
Examples of this strategy are the two-level penalty function method and the pressure-matrix
method ((Quarteroni and Valli, 1994)).

In this work the integrated approach is used because it has been proven to converge faster
than the two-level pressure matrix method (Ramage and Wathen, 1994; Wille, 1994). Also
the integrated method renders better results than the two-level penalty method (Silvester and Atanga,
1992). The one-level penalty method cannot be used in combination with the MINI element
because this method is based on the static condensation of the pressure degrees of freedom
at the element level. This condensation can only be performed if the pressure field is approx-
imated with a trial space that is discontinuous across the element boundaries, which is not
the case for the MINI element. An additional disadvantage of a method based on a penalty
parameter is that the condition number of the matrix becomes very high due to the very small
numbers that appear in the S-matrix as a result of the added diffusivity. As discussed above
this higher condition number has a negative influence on the efficiency of the iterative solver.

Iterative solvers can be split into solvers based on Arnoldi’s method and those based
on Lanczos’ method. Since the matrix in (3.53) is square and positive definite, but non-
symmetric, a considerable restriction is posed on the iterative solvers that can be applied. Of
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the remaining solvers based on Arnoldi’s method the Generalized Minimum Residual (GM-
RES) method requires the least computation time for the same system compared to other
solvers based on this method (e.g. Full Orthogonalization Process (FOM) and Direct Quasi
GMRES (DQGMRES)) (Saad, 1996). A disadvantage of these methods is that they require
a large amount of memory and computational effort because for every iteration an additional
solution vector has to be stored and an additional vector-vector multiplication has to be per-
formed. This introduces a serious problem for large systems since the number of iterations
required increases with the number of degrees of freedom in the system. This problem can
be overcome by restarting GMRES after a fixed number of iterations. However, convergence
of the restarted GMRES method is not guaranteed.

An alternative to the solvers based on Arnoldi’s method are the iterative solvers based
on Lanczos’ method. Examples of these methods are the Bi Conjugate Gradient (BICG)
method, the Bi Conjugate Gradient Stabilized (BICGSTAB) method which is an improve-
ment of BICG, and the Transpose-Free Quasi Minimal Residual (TFQMR) method which is
closely related to DQGMRES. A disadvantage of these methods is that they are less robust.
However, for large systems this is compensated by the fact that they need to store only a
few vectors and require less computational effort per iteration. Numerical experiments with
a number of test problems using the different solvers have indicated that BICGSTAB will
require the least amount of computational time (Saad, 1996). Therefore the BICGSTAB
method is adopted in this work.

The robustness and convergence rate of the BICGSTAB solver is improved by using a
preconditioner. The matrix-vector equation is then multiplied with a preconditioning matrix
P to render:

P A x = P b (3.56)

after which this system is solved. The purpose of this preconditioning is to reduce the con-
dition number of the linear system and thus increase the convergence of the iterative solver.
The ideal preconditioning matrix is P = A−1, because this matrix renders the exact solution

immediately. In reality P is chosen such that it is a good approximation of A−1. The three
possibilities for P discussed here are diagonal, Gauss Seidel and ILU(0) preconditioning
matrices. The interested reader is referred to (Saad, 1996) for a complete overview of the
existing possibilities.

In diagonal preconditioning the matrix is chosen such that P =
(

diag(A)
)−1

which

is very cheap to compute but is not a very good approximation of A−1. A slightly better
preconditioning of A is obtained by performing one or several iterations of a Gauss Seidel
iterative solver before applying the real solver. The advantage of the Gauss Seidel solver
over the solvers based on Arnoldi’s or Lanczos’ method is that it is computationally cheap
per iteration; however the rate of convergence is much smaller. The ILU(0), Incomplete LU
preconditioner is based on a LU-factorization of A where the entries in the lower triangular
L and the upper triangular U matrices are only filled if the corresponding entries in A are
nonzero. This method is more expensive than the other preconditioning methods discussed
here but it renders a better approximation of A−1. Numerical experiments indicate that the
diagonal and the Gauss Seidel precondition do not decrease the condition number of the
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flow problem sufficiently to guarantee convergence of the BICGSTAB solver. Therefore the
ILU(0) method is used for the flow problem, even though it is more expensive.

In summary, the flow problem is solved by applying an integrated approach in which the
BICGSTAB algorithm is applied to solve both the velocity and the pressure field simulta-
neously. The system is preconditioned with the ILU(0) approach. For the temperature and
the outflow problem the systems are also non-symmetrical and the BICGSTAB algorithm
with ILU(0) preconditioning is used for these problems as well. The systems associated
with the die deflection and the mesh deformation problem are symmetrical, positive definite
and well conditioned, so the conjugate gradient (CG) solver with the cheaper Gauss Seidel
preconditioning is used for these systems.
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Chapter 4

Mesh generation

To arrive at the systems of algebraic equations that have been presented in the previous chap-
ter, it is crucial that spatial discretizations of the relevant domains are available. However, the
generation of these discretizations, from now on referred to as meshes, poses an enormous
challenge due to the complex shapes that are associated with aluminum extrusion. As a result,
existing meshing methods either fail or generate an unacceptably large number of elements
for these complex domains. Therefore, new, dedicated meshing algorithms are presented that
generate meshes with which the solution field can be captured accurately while the number
of elements is kept to a minimum. To make these dedicated algorithms as robust and flexible
as possible they are restricted to the generation of triangular surface and tetrahedral volume
elements.

Container

Ram

Profile / ouflow
Bearing

PocketBillet

Die

Envelope surfaces

Cross-section surfaces

Figure 4.1: Cross-section and envelope surfaces.

For a standard flat profile two types of surfaces define the shape of the die and thus of the
aluminum domain (see also Figure 4.1). Surfaces of the first type are oriented perpendicular
to the extrusion direction and will be referred to as cross-section surfaces. Surfaces of the
second type are tangential to the extrusion direction and will be called envelope surfaces.
The cross-section surfaces of the aluminum are fully defined by the contours that define the
die, i.e. those related to the container, the pocket and the bearing. The envelope surfaces
are defined by these cross-sectional contours, combined with the lengths of the container, the
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pocket, the bearing and the profile. It should be noted that the length of the bearing can vary
along its contour and that the length of the container is determined by the ram position.

Before a 3D volume mesh of the aluminum can be generated, the enclosing surfaces have
to be meshed. Therefore, first the methods that have been devised to mesh the surfaces are
discussed, where the generation of the cross-section meshes and the envelope meshes will
be considered separately. This is followed by the method that has been developed to mesh
the pocket, the bearing and the outflow volumes. Thereafter, the method that is adopted to
discretize the billet volume is explained and finally the attention is focused on the meshing
of the die.

As a first step volume meshes will be created with a constant bearing length. In extrusion
practice, however, the bearing length varies. The mesh obtained in the first step is therefore
adapted by local stretching to account for the varying bearing length. The methods used to
adapt the mesh are described in detail below.

The geometry of the aluminum domain associated with a hollow profile is too complex
to be fully captured using cross-section and envelope surfaces. The additional operations that
have been designed to capture these complex shapes in the discretization of the aluminum
will be discussed last.

4.1 Meshing the surfaces - Paving generator

Extrusion profiles are often thin walled, which implies that the flow through the cross-section
is characterized by different length scales; the length scale in the direction of the profile wall is
much larger than that perpendicular to the wall (see Figure 4.2). Therefore, the cross-section
mesh should be directionally refined perpendicular to the profile wall. Several methods exist
to generate directionally refined meshes for domains as depicted in Figure 4.2. These methods
can be split into mapped and unstructured procedures. Here an unstructured mesh generator
is applied because it is more suitable for complex domains.

Bearing

Billet

Large length scale
Small length scale

Pocket

Figure 4.2: Contours for a simple profile.

Unstructured mesh generators can globally be split up into two classes, Delaunay triangu-
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lation type generators (Zheng et al., 1996) and paving or plastering generators (Blacker and Stephenson,
1991). Delaunay type generators construct grids between just the boundary nodes of the do-
main. Since this often generates very low-quality elements, points are added to the interior
of the domain in order to meet quality criteria for the mesh. Directionally refined meshes
can be generated by defining different quality criteria for different directions (Gobeau et al.,
1995). However, for complex geometries the direction of the refinement varies throughout the
domain, which makes the definition of the refinement direction rather cumbersome. Paving
generators, on the other hand, add the elements by proceeding along the boundary between
the gridded and the ungridded part of the domain, adding one element layer at a time (see
Figure 4.3). An advantage of paving, as it has been indicated in (van Rens et al., 1998g),
is that the thickness of each layer can be controlled to render directionally refined meshes.
Therefore a paving algorithm is used.

(a) Input data (b) Use existing nodes (c) Adding a layer

(d) Merge close nodes (e) Domain meshed (f) Smoothing

Figure 4.3: The principle of paving.

The paving algorithm consists of the following steps (van Rens et al., 1998c) (see also
Figure 4.3):

(a) Process the input data
(-) Repeat

(b) Generate triangles using existing nodes on the current boundary
(c) Add a layer of quadrilaterals and split into triangles
(d) Merge nodes on the new boundary that are close

(e) Until entire domain is meshed
(f) Smooth the mesh to improve the element geometry

In the following each of these steps will be discussed briefly.
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4.1.1 Input data

The input for a paver consists of the discretized boundaries of the domain and a measure
for the thickness of the first layer of elements to be generated. Additionally an evolution or
growth factor is used to indicate how this thickness should evolve during the paving process.
Typically, the discretized boundaries are obtained (almost) directly from the Computer Aided
Design (CAD) package with which the die has been designed. The thickness and the growth
factor are then the only parameters that have to be supplied for each contour that defines the
die.

The contours related to physical boundaries, such as the bearing opening, will be referred
to as permanent boundaries (Blacker and Stephenson, 1991). The permanent boundaries re-
main constant during mesh generation. The boundary between the ungridded domain and
the gridded domain will be referred to as the current boundary (see Figure 4.4). The current
boundary continuously evolves during mesh generation and eventually vanishes when the
entire domain has been meshed.

Current boundaries
Permanent boundaries Element boundaries

Boundary orientations

Figure 4.4: Permanent and current boundaries.

For every node i on the permanent boundary the starting thickness of the layers t0
i is

prescribed. Also a growth factor fi is specified for every node (see Figure 4.5). This growth
factor indicates the ratio between the thickness tn

i of a layer n and the thickness tn−1
i of the

previous layer n − 1:

tn
i = fi tn−1

i (4.1)

A directional refinement can then be achieved by setting the thickness in each node to a
fraction of the length of the boundary line elements it is connected to. If this fraction is small,
elements with a high aspect ratio will result.

4.1.2 Generating triangles with the current boundary nodes

Before adding nodal points to pave a subsequent layer of elements a check is made to ensure
that there is enough space between opposing parts of the current boundary to add a new layer
of elements. If there is not enough space, adding a layer would imply the generation of
overlapping elements. To avoid overlapping elements, bridging triangles are added at these
locations. By adding these triangles the current boundary is altered such that no overlapping
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i − 1
i

i + 1

i + 2

t0
i , fi

t0
i

t1
i = fi t0

i

Figure 4.5: Thickness in node i for various layers.

elements will be generated in a subsequent paving step. This approach ensures, as an added
benefit, that no superfluous nodes are generated.

The generation of new triangles using the current boundary nodes is attempted by check-
ing all the line segments on this boundary. For a line segment ei , spanned by nodes i and
i + 1, triangles are generated by selecting as a third node j any of the other nodes on the
current boundary. The quality of all these triangles is evaluated. A triangle is considered
to have an acceptable quality if all its corners are sharp and the distance h between the line
segment ei and the node j satisfies:

h <
tn
i + tn

i+1

2
+ tn

j (4.2)

Of all the triangles that are acceptable the aspect ratio, i.e. the longest edge length of the
element divided by the shortest edge length, is assessed. The triangle with the lowest aspect
ratio is then generated and the current boundary is updated. This process is repeated until no
more acceptable triangles can be generated.

4.1.3 Adding a layer of elements

In order to continue the meshing procedure, new nodes have to be generated. These new
nodes are positioned at a distance tn

i along the normals associated with the existing nodes
on the current boundary. The normal in a node is defined to be the average normal of the
line segments connected to that node. Between the existing and the new nodes quadrilaterals
elements are constructed, which are subsequently divided into two triangles each (Figure 4.5).

A slightly different procedure must be followed at sharp angles in the current boundary
in order to avoid distorted elements. Let αi denote the angle between the normals �ni−1 and
�ni which belong to the line elements ei−1 and ei , respectively (see Figure 4.6). For αi >

π
3

the two new quads that share node i would become too distorted in node i . To prevent this,
additional nodes are inserted (nodes j ′ and j ′′ in Figure 4.6). The number of additional nodes
is given by m = αi ÷ π

3 . This definition of m leads to a small number of extra nodes while
maintaining an acceptable element shape. Generating elements using the additional nodes is
straightforward.

4.1.4 Merging nodes on the current boundary

To keep the mesh as efficient as possible the number of nodes on the newly created boundary
is reduced to a minimum by merging nodes that are almost coincident. Two nodes are merged
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i + 1 ei j ′′
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j − 1
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i
i − 1
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Figure 4.6: Inserting two additional nodes and triangles for αi >
2π
3 .

if the distance between the nodes is less than the average layer thickness defined in these
nodes. The replacing node is positioned exactly between the two original nodes. Both the
thickness and the growth factor in the new node are the average of the values in the nodes it
replaces.

4.1.5 Smoothing the mesh

After the entire domain has been gridded the quality of the mesh is improved by flipping and
subsequent node shifting. Flipping is used to replace elements with large angles. To obtain
a balance between meshing effort and mesh quality it is only performed on elements that
contain a corner with an internal angle greater than 0.6π . The process of element flipping
consists of joining a triangle with that neighboring triangle that shares the longest edge with
the triangle to be flipped. These two triangles then form a quad; the common edge of the
triangles is one of the diagonals of the quad. Next, the quad is split along the other diagonal
to render two new triangles (see also Figure 4.7).

Figure 4.7: Flipping an element with a bad
corner (shaded).

Figure 4.8: Only shifting nodes inside convex
polygons.

If flipping does not improve the mesh, an attempt is made to shift the node of the triangle
in which the large angle occurs. The displacement of the node should neither change the
refinement direction of the mesh nor turn elements inside out. Therefore, a node is only
shifted if the polygon formed by the elements connected to that node is convex. The node is
then moved to the geometrical center of the polygon, as depicted in Figure 4.8.
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4.1.6 Resulting meshes

In Figure 4.9 the meshes resulting from the procedure introduced above have been depicted
for the example configuration in Figure 4.2. The discretization of each contour is identical for
every mesh it occurs in, which facilitates the meshing of the envelopes. As can be seen, high
aspect ratio triangles have been generated for the bearing ro render many elements across the
thickness of the profile because high gradients in the solution fields are to be expected there.
The mesh of the ram surface is much coarser because near the the ram the gradients will be
very low.

(a) Bearing

(b) Pocket

(c) Billet (d) Ram

Figure 4.9: Cross-section meshes (the billet and the ram are scaled differently).
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4.2 Meshing the surfaces - Expansion generator

The meshing of the envelopes is performed in two steps. First, quads are generated from the
line segments in the discretized cross-section contours. Next, these quads are subdivided into
triangles. This method of meshing requires that the discretizations of the two contours that
bound the envelope are identical.

Line elements Quadrilaterals TrianglesTranslate

Figure 4.10: Generating triangles.

The quads are created by translating the line segments by a prescribed distance to render
a new discretized contour. The line segments from the two contours are combined into quads
(see Figure 4.10). This is repeated until the entire envelope surface is meshed with quads. By
varying the translation distance between each contour, different levels of refinement can be
obtained in extrusion direction.

To obtain a triangular surface mesh the quads have to be split into triangles. As indicated
in Figure 4.10 a quad can be split into two triangles in two different ways, depending on the
choice of the orientation of the diagonal in the quad. Since, as a result of the rectangular
shape of the quad, both orientations will render triangles with the same quality, either orien-
tation is acceptable. The diagonals are therefore oriented such that their direction alternates
for adjacent quads. This eliminates the mesh orientation that would result from setting all
diagonals in the same direction.

Freeflow envelope

Bearing envelope

Pocket envelope

Figure 4.11: Mesh of the envelope surfaces.

In Figure 4.11 the envelope (and the cross-section) surfaces generated for the example
problem are plotted. In this figure the alternating orientation of the diagonals on the en-
veloping surfaces can clearly be seen. It can also be observed that the mesh of the bearing
envelope is more refined than the meshes of the freeflow and the pocket envelopes. This is
done to appropriately capture the high gradients in the solution field in the bearing.
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4.3 Meshing the volumes - Expansion generator

Of all the volumes that have to be filled with tetrahedral elements the volumes of the pocket,
the bearing and the outflow are descretized using the expansion mesh generator discussed in
this section. The volumes of the billet and the die are meshed using the generator discussed in
the next section. The expansion generator applied in this work generates tetrahedra (tets) in
two steps which will be treated in more detail in the following. First, prisms are created from
the triangles in the cross-section meshes. Next, the prisms are subdivided into tetrahedra.
The volumes that can be meshed with this expansion generator are restricted to volumes of
which the top and the bottom surface have topologically equivalent meshes and of which
the envelope surface has been created using the expansion surface generator dealt with in
Section 4.2.

4.3.1 Generating prisms

The creation of the prisms is performed in a process similar to the creation of the quads in
the envelope surfaces. Each triangle of the cross-section mesh is translated in the extrusion
direction to render a new cross-section mesh (see also Figure 4.12). Subsequently, the trian-
gles of both cross-section meshes are combined into prisms. The process of translating and
combining is repeated until the entire volume is filled. To ensure that the nodes on the contour
of each cross-section coincide with the nodes of the envelope mesh that encloses the volume,
the distances over which the cross-section meshes are translated, are equal to the translation
distances that have been used in the generation of the envelope mesh.

Triangle PrismTranslate

Figure 4.12: Generating prisms.

4.3.2 Generating tetrahedra

After the prisms have been generated they are split into tetrahedra. To do so, each rectangular
face of a prism has to be split into two triangles (see also Figure 4.13). The split has to be
performed such, that the diagonals introduced on the rectangular faces of two adjacent prisms
have matching directions. This will be referred to as the matching-criterion.

With the diagonals set, each prism can be subdivided into tets using one of two paradigms.
The first consists of introducing a node in the baricenter of the prism. This node then serves
as the common top node which, when combined with each of the 8 triangles on the sides of
the prism, generates 8 tets. The second method entails the splitting of the prisms into 3 tets,
without introducing an internal node in each prism. The second method is applied in this
work because it reduces the number of nodes and elements. Furthermore, it can easily be
verified that the worst aspect ratio of the elements that are created by applying the 3-tet split
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Prism Diagonals 8 tetrahedra 3 tetrahedra

Figure 4.13: Splitting a prism into 8 or 3 tetrahedra.

is always better than the worst aspect ratio of the elements that are obtained with the 8-tet
split.

A disadvantage of the 3-tet split is that it imposes an extra requirement on the orientation
of the diagonals of each prism. The orientation of the diagonals should not only match for
adjacent prisms, but within one prism the diagonals should be oriented such that the 3-tet split
is possible (Löhner, 1993). The 3-tet criterion dictates that both orientations of the diagonals
should occur on the rectangular faces of an individual prism (see also Figure 4.14).

21

3 3

213 up

2 down

1 up 1 up

2 up

3 up

incorrectcorrect

Figure 4.14: Diagonal orientation with respect to the 3-tet criterion.

An iterative procedure is used to select the orientation of the diagonals in a pattern that
meets the additional 3-tet requirement (van Rens et al., 1998c). With the predefined diagonal
orientations of the faces in the envelope mesh as a starting point a loop over the prisms is
performed. For those prisms in which the orientation of the diagonal has been set for one
or two rectangular faces, the orientation is set for one additional face. The orientation is
chosen such that the diagonals of both this prism and of the adjacent prism obey the matching
criterion and do not violate the 3-tet criterion. However, it is not possible to satisfy the
matching criterion and the 3-tet criterion for both prisms in case both prisms already have two
diagonals set and the 3-tet criterion in each prism requires non-matching diagonal orientations
on their mutual face. In this case the orientation of the diagonal is set such that the current
prism meets the 3-tet criterion, which implies that the adjacent prism obtains a diagonal
configuration that does not satisfy the 3-tet criterion. The prisms with incorrect diagonal
configurations are dealt with next. This loop is repeated until the diagonals of all the faces
are set.

Due to the possible incompatibility between the matching and the 3-tet criterion described
above, it is likely that the mesh contains prisms for which the 3-tet criterion is not satisfied.
The orientation of the diagonals in these prisms is corrected as follows. For each prism
that violates the 3-tet criterion the orientation of one of the diagonals is changed while the
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diagonal of the adjacent prism is altered accordingly to ensure that the matching criterion
is not violated. Of the three rectangular faces in the incorrect prism on which the diagonal
can be swapped that face is selected for which the adjacent prism still conforms to the 3-tet
criterion after the swapping. If none of the adjacent prisms allow the swapping of a diagonal,
the diagonal direction of one face is altered nevertheless, thus causing the 3-tet criterion to be
violated in the prism adjacent to this face. Consequently, it is possible that after the alteration
of the diagonal directions other prisms violate the 3-tet criterion. These prisms are identified
by performing a new scan for incorrect prisms, which are adjusted in turn. This is repeated
until all prisms satisfy the 3-tet criterion (typically 1 to 2 iterations are required). To avoid
repetitions, the orientation of each diagonal can be altered only once in this process.

4.4 Meshing the volumes - Unstructured generator

The tetrahedral mesh of the billet (or the die package) cannot be generated using the ex-
pansion generator discussed in Section 4.3 because this generator requires that the volume
has topologically equivalent cross-section meshes on both ends of an envelope mesh. The
mesh of the ram surface is much coarser than that of the combined bearing, pocket and billet
surface (see Figure 4.9). Therefore, an unstructured mesh generator is used to generate the
tetrahedral mesh of the billet (the die package is considered separately in Section 4.4.7).

It is beyond the scope of this thesis to give a detailed description of the unstructured
mesh generator and therefore only the basic ideas are presented here. The unstructured mesh
generator is based on ideas similar to the paving approach introduced in Section 4.1. It
consists of the following steps:

(a) Process the input data
(-) Repeat

(b) Generate tetrahedra using existing nodes on the current boundary
(c) Try to add one new node to generate one new tetrahedron

- on success goto (b), else goto (d)
(d) Apply Delaunay method to resolve complex areas
(f) Smooth the mesh
(g) Delete elements with unacceptable shape or size

(h) Until entire domain is meshed

The concepts behind each of the steps will be discussed briefly.

4.4.1 Input data

The input consists of the triangulation data for the volume boundary. As in the paving al-
gorithm a distinction is made between the permanent, physical boundary and the current,
constantly evolving boundary. Before elements have been generated the permanent and the
current boundary coincide. While elements are generated the current boundary changes and
eventually vanishes.

The triangulation of the permanent boundary is used to compute the edge length distri-
bution of the boundary mesh. The edge lengths on the boundary are interpolated inside the
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volume to obtain a field of desired edge lengths for the entire domain. This field of edge
lengths is used to determine the coarseness of the mesh everywhere in the domain.

4.4.2 Generate elements with the current boundary nodes

Before adding new nodes a check is made whether elements can be generated using the
existing nodes on the current boundary. This is done by considering all triangles on the
current boundary. For each triangle, tets are generated by combining the triangle with all
the other nodes on the current boundary. For each tet, the lengths of the edges that connect
the node to the triangle are computed. Also, the angles between these edges and the triangle
surface are determined. The edge lengths and angles are compared for every tet associated
with one triangle. If at least one tet has edge lengths and angles that are acceptable the tet that
is most resembling to an equilateral tet is generated. To determine whether the edge lengths
of a new tet are acceptable, they are compared to the local desired edge length that is stored
in the field computed in step (a), Section 4.4.1. The angles of a tet are acceptable if they are
within preset limits. After a tet is generated the current boundary is updated. Then the loop
over the current boundary is repeated until no additional tets can be generated.

4.4.3 Adding a node to generate a tetrahedron

�n

Figure 4.15: Generating a tet by adding a node.

If no more tets can be created from the current boundary mesh a new node has to be
generated to continue the meshing procedure. The new node is created using a triangle in
the current boundary as basis (see also Figure 4.15) and is positioned along the normal of
the triangle that starts in the geometrical center of the triangle. The position is selected such
that the edges of the new tet between the triangle and the new node have the desired length.
If the new node is positioned inside the unmeshed part of the domain, the node and the tet
are maintained and the current boundary is updated. Then step (b) is repeated to generate
elements with the updated current boundary. If the new node is positioned inside an existing
tet, the node and the tet are discarded and the next triangle is used to create a new tet by
adding a node. This is repeated until a node and tet have been generated or all triangles have
been considered. If all the triangles have been tried and no new nodes could be generated
the current boundary will be very complex. In this case a Delaunay mesh generator will be
employed for the remaining unmeshed domain.
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4.4.4 Applying the Delaunay algorithm

The Delaunay algorithm is used to deal with complex current boundaries. For a detailed de-
scription the Delaunay method the interested reader is referred to (Zheng et al., 1996) or (Joe,
1991) and references therein. Here it is only mentioned that the Delaunay method is capable
of generating a tetrahedral mesh for almost any boundary triangulation without introducing
additional nodes. One of the few cases for which it fails, is a boundary that is topologically
equivalent to a prism with incorrect boundary orientations as depicted in Figure 4.14. Then
an additional node has to be added to generate 8 tets. The major drawback of Delaunay’s
method is that it often generates elements with very poor aspect ratios. Therefore it is only
used if the element generation algorithms in steps (b) and (c) have failed.

Delete elements Delete nodes

Figure 4.16: Removing the current boundary.

The current boundary is not used for the Delaunay algorithm because the region it en-
closes can be very slender, which may result in extremely deformed tets. Therefore the cur-
rent boundary is redefined by eliminating all the elements connected to nodes on the current
boundary (see also Figure 4.16). After the element elimination the nodes that were on the
current boundary are no longer connected to any elements and are therefore deleted as well.
Next, the Delaunay algorithm is applied to the redefined boundary.

4.4.5 Smoothing the mesh

The mesh is smoothed to increase the quality of the tets. This smoothing is performed using
a standard Lagrangian smoothing algorithm. This algorithm consists of a loop over all nodes
in the mesh. For each node the polyhedron that is spanned by the elements connected to the
node is constructed. Then the node is translated to the geometrical center of that polyhedron.
It should be noted that it is possible that elements become overlapping during this rather crude
smoothing method. If this happens the inside-out elements are dealt with in the next step.

4.4.6 Deleting unacceptable elements

At the end of one meshing iteration two types of unacceptable elements can occur in the mesh.
The first type of unacceptable elements are those elements that overlap other elements as a
result of the node repositioning during the smoothing of the mesh. Such elements are never
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acceptable and are all marked for deletion. The second type are those elements which have
edge lengths that deviate too much from the locally desired edge length. Of all the elements
that have unsuitable edge lengths only the worst element is marked for deletion.

The marked elements are deleted along with all the elements that share a node with the
marked elements. Since the nodes of the marked elements are not connected to any ele-
ments anymore after the element deletion, these are deleted as well. The deletion of marked
elements causes the reformation of a current boundary which necessitates another meshing
iteration. The mesh generation is terminated if no more elements have been marked for
deletion.

4.4.7 Resulting mesh of the die package

Backer

Bearing
Offset

Pocket
Die

Figure 4.17: The volume mesh of the die package.

The mesh of the die package depicted in Figure 4.17 has been generated using the un-
structured mesh generator. The resulting mesh is plotted on the left whereas an intersection
of the die package is plotted on the right. In the intersection plane of the die the pocket, the
bearing and the outflow offset can be identified. The outflow offset ensures that the aluminum
of an unbalanced profile does not touch the die when the profile exits the die under an angle.

The domain of the die and the backer are meshed separately. At the aluminum-die inter-
face the surface mesh of the die domain is taken in conformity with the mesh of the aluminum
surface to simplify the modeling of the interactions between these domains. Also, the surface
mesh of the backer at the die-backer interface is identical to the surface mesh of the die to
simplify the discretization of the Lagrange multiplier that is used to model the frictionless
contact between the die and the backer. Since the gradients in the displacement field will
be larger in the die domain than in the backer domain the element size in the die domain is
smaller than in the backer domain.
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4.5 Stretching the bearing

In the example mesh generated in the previous sections the bearing has a constant length in
extrusion direction. However, in reality the bearing length varies along the bearing contour
and numerical experiments indicate that the length of the bearing has a significant influence
on the outcome of the simulations (van Rens et al., 1998d). Therefore, the constant bear-
ing length mesh is adapted in a number of steps to incorporate the varying bearing length
(van Rens et al., 1998e). These steps are visualized in Figure 4.18, but only for the bearing
volume mesh. Of course, these operations are applied to the outflow volume mesh and the die
mesh as well to ensure the meshes remain compatible. In each of the steps nodes are trans-
lated in the extrusion direction while the topology of the mesh remains the same. This implies
that different bearing lengths can be studied by repeating only the stretching operation, i.e.
without having to generate a new mesh.

The mesh of the aluminum bearing volume with a constant bearing length, as depicted
in Figure 4.18(a), serves as a point of departure. The length of the bearing is only specified
in a discrete number of control nodes along the bearing contour and varies linearly between
these nodes. In the first step the control nodes are translated to the specified position (Fig-
ure 4.18(b)).

In the second step all the other nodes on the contour are translated to the real bearing
geometry. The translation distance for these nodes is computed by a linear interpolation
between the control nodes (Figure 4.18(c)). The linear interpolation is performed by solving
a diffusion problem on the line segments that constitute the contour of the bearing. In this
diffusion problem the translation distances are computed by prescribing the bearing lengths
in the control points as Dirichlet boundary conditions.

It can be seen in Figure 4.18(c) that the cross-section surface that separates the aluminum
bearing volume from the outflow volume has become very distorted. Therefore, in the third
step, this surface is smoothed by repositioning the nodes that belong to this surface (Fig-
ure 4.18(d)). Many methods exist to compute the distance over which the surface nodes have
to be translated (see e.g. (Tezduyar et al., 1992) and (Johnson and Tezduyar, 1994)). Here,
it is obtained in the same manner as in the previous step, by solving a diffusion problem
on the surface. In this problem the translation distances for the surface are computed, using
Dirichlet boundary conditions to prescribe the previously computed translation distances on
the bearing contour.

Lastly, in the fourth step, the volume mesh of the bearing is smoothed by translating
the nodes in this volume (Figure 4.18(e)). Again, the translation distances for the nodes in
the volumes are obtained by solving a diffusion problem for the bearing volume. In this
diffusion problem the previously computed translation distances of the cross-section surface
are imposed as Dirichlet boundary conditions. When both the bearing and the outflow meshes
are plotted after the stretching, Figure 4.18(f) is obtained.

4.6 Extension to hollow dies

For hollow profiles the shape of the aluminum domain is considerably more complicated than
for flat profiles. This is caused by the fact that the die is constructed out of two parts, instead
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(a) Constant bearing length (b) Moving the control points

(c) Linear interpolation of contours (d) Smoothing the surface

(e) Smoothing the bearing (f) Final mesh with outflow

Figure 4.18: Stretching the bearing.

of one (see Figure 4.19). The first part is the die plate which determines the external contour
of the profile. In the die plate a welding chamber is added to allow the aluminum flow, that
has split to pass the legs, to weld together again before entering the pocket of the die. The
second part, the bridge part, consists of a core that determines the internal contour of the
profile and the legs which support the core.

The core and the die plate consist of surfaces that are either perpendicular or tangential
to the extrusion direction. This implies that they can be meshed with the methods described
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Figure 4.19: Extrusion of hollow profiles (left) and the bridge part of a die (right).

earlier in this chapter. However, as can be seen in Figure 4.19, the complex geometry of
the legs cannot be described with just perpendicular or tangential surfaces. Therefore, the
meshing of the aluminum domain associated with hollow profiles is performed in several
steps (see also Figure 4.20):

Leg
Aluminum

(a) Geometry (b) Initial mesh

(c) Internal elements removed (d) Translate onto boundary, smooth

(e) Intersecting elements removed (f) Translate onto boundary, final mesh

Figure 4.20: Removing elements in four steps.
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(a) The aluminum geometry is constructed taking only the geometry of the core into
account. The geometry of the legs is described separately.

(b) The aluminum geometry is meshed, incorporating the geometry of the core but
neglecting the geometry of the legs, using the methods discussed in the previous
sections.

(c) The elements of which all nodes are positioned inside the geometry of the legs are
removed.

(d) After the removal of the elements a set of external faces has been generated. These
newly formed external faces are connected to nodes that are inside the legs. These
nodes are translated onto the surface of the legs. During the translation the new
positions of the nodes are determined such that they do not cause elements to be-
come overlapping. The translation is followed by a local smoothing of the mesh
around the translated nodes. To realize this the elements that are connected to
newly formed external faces are marked. The nodes of these elements that are not
connected to external faces are repositioned to increase the quality of the elements.

(e) It is possible that near sharp edges some elements intersect the legs, even though
their nodes are on or outside the boundary of the legs. Therefore, the elements
that have their geometrical center inside the geometry of the legs are deleted. The
number of elements deleted in this step is generally very small.

(f) The translation of step (d) is repeated. In this case the newly formed external faces
are connected to nodes that are positioned on or outside the geometry of the legs
and these nodes have to be translated onto the surface of the legs as well.

In Figure 4.21 an example is given of an initial and final mesh belonging to the aluminum
domain of a rectangular hollow profile.
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(a) Initial mesh (b) Final mesh

Figure 4.21: Generating the aluminum domain mesh for a rectangular hollow profile.
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Chapter 5

Evaluation of the finite element
model

In this chapter the finite element model developed in the previous chapters will be evaluated.
First, it is investigated whether the separate modeling problems that are coupled in the stag-
gered scheme have a significant influence on the results of the finite element computations.
To this end, a number of extrusion simulations is performed for one die design, while in each
of these simulations the influence of one of the coupled phenomena is neglected, or altered.
The results of these simulations are compared to results that are obtained for a reference
configuration that incorporates all the coupled problems, see Section 5.1. Second, the influ-
ence of the mesh coarseness on the accuracy of the solution field will be examined. This is
done by comparing the solution fields that are obtained on a very fine mesh to the solution
fields that have been computed on meshes with coarsenesses that are typically used in this
thesis. The results of this comparison are presented in Section 5.2. Third, in Section 5.3, the
predictions of finite element simulations are compared to data that have been measured in
extrusion practice.

5.1 Relevance of the separate problems

In this section results will be presented which indicate that the solution of each of the sepa-
rate problems that constitute the staggered scheme depicted in Figure 3.8 has a considerable
influence on the flow field of the aluminum. Also, it will be shown that the selected value
for the friction coefficient plays a crucial role in the outcome of the simulations. The data
that justifies these conclusions is obtained by computing the solution fields for a number
of test problems. In each test problem either one of the separate phenomena is neglected,
or the friction coefficient is altered (van Rens et al., 1999a). The flow fields from these test
problems are compared to a reference flow field that is computed using an analysis in which
each of the separate problems is accounted for.

For the actual comparison the profile visualized in Figure 4.2 is used. The mesh of the
aluminum domain is shown in Figure 4.11, and the mesh of the die-package is depicted in
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Figure 4.17. The radius of the billet is in the order of magnitude of 130 [mm], the thicknesses
of the thick and the thin legs are 6 [mm] and 3 [mm], respectively, and the area reduction
from billet to profile is close to a factor 40. For each problem the prescribed ram velocity
equals 6.3 · 10−3 [m s−1] and the imposed ram temperature is 733 [K]. As mentioned in
Section 2.4.1, the reference Coulomb friction coefficient µ is taken to be 0.4 [-].

First the attention will be focused on the solution fields that are obtained for the reference
problem. The streamlines of the aluminum are plotted in Figure 5.1. The notable corners
in the streamlines near the pocket and the die are indicative for the relatively high velocity
gradients in those areas.

Figure 5.1: Streamlines of the aluminum.

The desired and the computed shapes of the profile are plotted in Figure 5.2 for the reference
problem, where the geometrical deviations of the computed profile shape from the nominal
shape have been multiplied by a factor 10 for visualization purposes. It can be concluded that
the die is not optimally balanced, because the profile tends to flow to the right.

Figure 5.2: Undeformed and deformed outflow surface (deformations scaled with factor 10).
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Due to the u-shape of the profile, the die has a large lip in the middle which is connected to
the rest of the die through a relatively thin bridge, between the inward pointing legs of the die.
Such lips are notoriously weak sections of a die in which considerable deformations occur as
a result of the high extrusion pressure. The shape of the deformed die is plotted for a number
of cross-sections in Figure 5.3, where the deformations of the die have been magnified with
a factor 50. It can be observed that the lip bends out as a result of the interaction with the
aluminum. Also, at the interface between the die and the backer it can be seen that the die
and the backer can move freely with respect to each other. This is in agreement with the
frictionless contact condition that has been used.

C

B

A

A

C

B

A-A

B-B

C-C

Figure 5.3: Left: Die package with the cross-section planes A-A, B-B and C-C indicated. Right: The
undeformed and deformed shapes of the cross-sections (deformations scaled with factor
50).

With the reference problem as a point of departure, the test problems in Table 5.1 are
defined. Three test problems are formulated that neglect the influence of either the deforma-
tion of the die, the deformation of the outflow surface, or the temperature dependence of the
viscosity, on the flow field of the aluminum. Additionally, four test problems are constructed
in which the friction coefficient, µ is altered to respectively, 0.0, 0.2, 0.75, and ∞. It should
be noted that the first and the last choice of µ represent a free slip and a full stick boundary
condition for the aluminum in the die, respectively.

In Figure 5.4 the velocities in extrusion direction are presented for the reference problem
and the test problems. The velocity contours are plotted in a cross-section of the computed
(and consequently deformed) profile shape. In these plots the outline of the desired profile
shape is also depicted as a reference. The deformations of the outflow surface have been
magnified with a factor 5 to make the shapes more distinguishable. This magnification causes
the boundary of the profiles to become somewhat jagged even though they are relatively
smooth as can be seen in Figure 5.5, in which the temperature distribution at the outflow has
been plotted in the computed cross-sections without additional scaling.

By comparing Figure 5.4(a) to Figure 5.4(b)-(d) it can be established that each of the
coupled problems has an influence on the velocity field and, consequently, on the computed
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Problem Die Outflow Temperature Friction
deformation deformation dependent coefficient

viscosity

Reference yes yes yes µ = 0.4
Test 1 no yes yes µ = 0.4
Test 2 yes no yes µ = 0.4
Test 3 yes yes no µ = 0.4
Test 4 yes yes yes µ = 0.0
Test 5 yes yes yes µ = 0.2
Test 6 yes yes yes µ = 0.75
Test 7 yes yes yes µ = ∞

Table 5.1: Definition of the reference and test problems.

Min=0.1 [m s−1] Max=0.4 [m s−1]

(a) Ref, µ = 0.4 (b) T1, rigid die (c) T2, rigid out-
flow

(d) T3, const. tem-
perature

(e) T4, µ = 0 (f) T5, µ = 0.2 (g) T6, µ = 0.75 (h) T7, µ = ∞

Figure 5.4: Velocities in extrusion direction. The difference between the computed and the nominal
shape is magnified with a scaling factor 5.

shape of the aluminum. Here, the flow field differs the least from the reference flow field
for problem T1, where the deformation of the die is neglected, and the flow field deviates
the most for problem T3, where the effect of the temperature on the viscosity is left out of
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consideration. The velocity field for test problem T2, where the changing shape of the out-
flow is neglected, deviates only slightly from the reference problem, because the computed
outflow shape of the reference problem is almost identical to the desired outflow shape. It
can, therefore, be expected that these differences become more pronounced if the computed
profile shape differs more from the desired profile shape. Furthermore, problem T2 lacks
the information about the final shape of the profile, which makes the simulation results more
difficult to interpret. It can be concluded that the temperature problem and the free outflow
problem should always be incorporated. The deformation of the die only needs to be consid-
ered if the die is expected to have weak sections such as the lip in the die for this example.

The large influence of the friction modeling on the flow field of the aluminum becomes
apparent when Figure 5.4(a) is compared to Figure 5.4(e)-(h). For the full stick assumption
in problem T7 the outflow velocities are depicted in Figure 5.4(h); the full stick assumption
is physically unrealistic and it can be seen that it also renders an unrealistic flow field. For
the friction coefficients µ = 0.0, µ = 0.2 and µ = 0.75 the balance of the flow field is
worse than in the reference problem. This can be concluded from the distorted cross-sections
that are associated with the problems T4, T5 and T6 in Figure 5.4(e)-(g). For the coefficients
µ = 0.0 and µ = 0.2, the exit velocity of the thick leg is slightly higher than that of the
thin leg. This can be attributed to the low value of the friction coefficient which reduces the
balancing effect of the longer bearings in the thick leg. For a friction coefficient µ = 0.75 the
opposite can be observed since the higher friction coefficient increases the balancing effect
of the longer bearings and restricts the flow in the thick leg.

In Figure 5.5 the temperatures in a cross-section of the profiles are plotted. The temper-
ature contours are depicted in the computed profile shape without additional scaling while
the nominal profile shape is outlined as a reference. The differences in the temperature fields
between the problems T1-T4 are relatively small. Even when the temperature is computed as
in T3, where the influence of the temperature on the viscosity is neglected, the temperature
is only marginally overestimated. For the varying friction coefficients on the other hand, the
temperature does increase considerably as the friction coefficient µ is increased above 0.4,
where it should be noted that the temperatures in T7 exceed the maximum of the temperature
scale by as much as 50 [K]. Enlarging the friction coefficients leads to temperature increases
because the shear rates inside the bearing become higher. The temperatures do not decrease if
the friction coefficient is lowered below 0.4. This indicates that in these cases the temperature
of the profile is mainly determined by the deformations that the aluminum experiences before
it enters the bearing.

5.2 Mesh sensitivity

To assess the sensitivity of the finite element analyses to the size and orientation of the mesh,
two tests are performed on a cylindrical hollow profile (see also Figure 5.6). First, a compar-
ison is made between the solution fields that are computed on meshes with different element
sizes. Second, the effect of the diagonal orientation in the envelope mesh on the computed ve-
locity fields is assessed. In both cases the solution fields are compared to the ’exact’ solution
for this profile. This exact solution is obtained on an extremely fine referenced mesh.
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Min=733 K Max=873 K

(a) Ref, µ = 0.4 (b) T1, rigid die (c) T2, rigid outflow (d) T3, const. tem-
perature

(e) T4, µ = 0 (f) T5, µ = 0.2 (g) T6, µ = 0.75 (h) T7, µ = ∞

Figure 5.5: Temperatures in a cross-section of the profile. Both the computed (solid) and the nominal
(outline) shape are depicted.

Figure 5.6: One of the meshes of the hollow profile.

5.2.1 Reference mesh

To compute the ’exact’ solution fields for the extrusion of the hollow cylindrical profile de-
picted in Figure 5.6, an extremely fine mesh is required. Since it would be computationally
infeasible to perform the analysis with a very fine 3D mesh, the rotational symmetry of the
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profile is exploited to compute the velocity fields for the exact solution on a 2D mesh. The
2D mesh was generated using the paving algorithm introduced in Section 4.1 and the element
size was determined such that the flow field and the temperature field did not change upon
further refinement of the mesh. This mesh contains about 30 elements across the thickness of
the profile and is shown in Figure 5.7.

Figure 5.7: Left: 2D mesh, used to compute the ’exact’ solution. Right: Detail of the die outflow area.

5.2.2 Mesh coarseness

The domains associated with aluminum extrusion contain a sharp edge at the entrance of the
pocket and at the entrance of the bearing. Especially the sharp edge near the entrance of
the bearing has to be captured accurately since the gradients near that edge are rather high.
To correctly compute the flow field near this edge, the special discretization of the friction
normal has been introduced in Section 3.1.4 of this thesis. Additionally, the dedicated mesh
generators developed in this work are used to create small elements near that edge. In the
present section it is investigated whether these measures are sufficient to describe the global
solution fields properly or a further refinement is necessary.

Two meshes are generated for the aluminum domain depicted in Figure 5.6. The first
mesh is much coarser than the 2D mesh (see Figure 5.8(a)). However, when compared to the
meshes that have typically been used in this work for the aluminum domain, it is still rather
refined near the entrance of the bearing. To avoid unrealistically large numbers of degrees of
freedom the discretization is coarsened away from the bearing entrance. The cross-section
surface mesh of the bearing volume contains approximately 8 elements across the thickness
of the profile. The distribution of these elements is strongly biased towards the boundaries
of the cross-section, such that more slender elements with higher aspect ratios are located
at the boundaries of the mesh than in the middle. This bias is achieved by using a small
starting thickness combined with a large growth factor in the paving algorithm described in
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(a) Fine mesh (b) Coarse mesh

Figure 5.8: The fine and the coarse mesh.

(a) Fine mesh (b) Coarse mesh

Figure 5.9: The bearing cross-section mesh for the fine and the coarse discretization.

Section 4.1 (see also Figure 5.9(a)). Moreover, the envelope mesh for the bearing contains
about 7 elements in extrusion direction. In the other meshes presented in this work between
6 to 8 elements are generated across the thickness of the profile and the bias towards the
boundaries is less pronounced. Also, usually only 4 to 5 elements are used for the bearing
envelope mesh.

The second mesh is rather coarse near the die entrance compared to the meshes that have
typically been used in this work. It contains only 6 elements across the thickness of the profile
that are moderately biased towards the boundary of the cross-section (see also Figure 5.9(b)).
Also, only 4 elements in extrusion direction are used in the envelope mesh of the bearing.

In Figure 5.10 the velocity field and the temperature field are depicted for the three dif-
ferent discretizations. The same contour levels have been used for each set of contour plots.
The temperature fields that are computed on both the fine and the coarse mesh render results
that are very similar to the exact solution. This can be observed in Figure 5.10(a). For a
coarser mesh the exit temperature is slightly overestimated. The error in the maximum exit
temperature of the aluminum is less than 1% of the temperature range for the fine mesh
whereas it is about 3% for the coarse mesh.

In Figure 5.10(b) and (c) the contour plots for respectively the axial and the radial com-
ponents of the velocity field are plotted. It can be observed that these contour plots are also
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Min Max

(a) Temperatures

(b) Axial velocities

(c) Radial velocities

Figure 5.10: Solution fields for extremely fine, fine and coarse mesh.

very similar for the mesh sizes under consideration. In fact, for the fine mesh the maximum
axial velocity (in extrusion direction) deviates by less than 1% of the maximum velocity from
the exact solution field and for the coarse mesh by about 2%. Moreover, the maximum and
minimum radial velocities differ by less than 1% of the maximum total velocity for both the
fine and the coarse mesh.

From the results presented above it can be concluded that the meshes used in this work,
which contain about 6 to 8 elements across the thickness of the profile wall and which are
refined to obtain the smallest elements near the die entrance, are sufficiently fine to capture
the important features of the flow field accurately. Refining these meshes to more than 8
elements across the thickness will hardly render a further improvement of the solution field.
It is, however, important that the cross-section meshes are biased towards the bearing contour
to generate elements that are as small as computationally feasible at the bearing inflow edge.

5.2.3 Orientation of the envelope mesh

As pointed out in Section 4.2, the direction of the diagonal that splits a quad on the envelope
surface into two triangles can be chosen freely. To investigate the influence of this orientation
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on the computed flow field, two patterns of diagonal orientations on the envelope surface
are considered. First a unidirectional diagonal orientation is applied to generate the enve-
lope meshes (see also Figure 5.11(a)). Second the alternating diagonal orientation, that is
employed throughout this thesis, is used (see also Figure 5.11(b)).

(a) Unidirectional (b) Alternating

Figure 5.11: Close-up of envelope meshes for different diagonal orientations.

For both meshes the velocity fields are computed. Based on the rotational symmetry of
the domain, the tangential component of the velocity field (i.e. the component in the cross-
sectional plane, along the wall of the bearing) should be zero. However, for both meshes the
tangential component deviates from zero. This deviation is O(10−4) times the magnitude of
the local velocity vector for the unidirectional diagonal mesh, which is negligible. Neverthe-
less, this error is reduced by a factor 20 for the alternating diagonal orientation. Even though
the tangential velocity components are relatively very small for both orientation patterns, this
comparison supports the choice of the alternating diagonal orientation that is used in this
work.

5.3 Experimental validation

In this section the results of finite element simulations will be compared to measurements
that have been performed in situ at the extrusion plant of Alcoa Europe, location Drunen,
The Netherlands. These validations are aimed at establishing whether the simulations can
capture the trends in the influence of the bearing length on the balance of the aluminum flow
that are observed in practice. A disadvantage of performing the experiments in an extrusion
plant is that the control of the process parameters is not as good as in a laboratory setting.
The in situ circumstances may cause unwanted variations between two pressings in, amongst
others, the ambient temperature and moisture, the initial billet and die temperature and/or the
extrusion speed,. However, a laboratory press was not available to realize an experimental
set-up. Therefore, an experiment has been arranged such that the results can be interpreted
in a reliable manner in spite of possible variations in the process parameters. This has been
achieved by determining the influence of different bearing length distributions for a given
profile in one pressing.

To this end, a die was designed to generate two flat, nominally identical profiles which
are twice as thick in the middle as at the ends (see also Figure 5.12). The opening for the
first profile has a constant bearing length along its contour, indicated in Figure 5.12(a). The
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(a) Constant bearing length
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(b) Varying bearing length

Figure 5.12: Profile shape for experimental validation; The bearing lengths are specified.

opening of the other profile was machined such that the bearing was considerably longer at the
locations where the cross-section of the profile was thicker. This bearing length distribution
(specified in Figure 5.12(b)) follows from the empirical relations which are normally used in
die design.

The design of the bearing lengths was aimed at obtaining approximately equal exit ve-
locities for both profiles. However, during the experiment the exit velocities showed a con-
siderable difference between the two profiles. The profile from the constant bearing length
opening had a higher exit velocity than that from the varying bearing length opening. In
fact, the velocity difference between the two profiles was of such magnitude that after ex-
truding one billet the length of the profile from the constant bearing length opening had a
length of 52[m] whereas the profile from the varying bearing length opening was 42[m] long.
This imples that the exit speed of the varying bearing length profile was 81% of that of the
constant bearing length profile. This length difference was also clearly visible during the
extrusion because it resulted in the folding of the profile with the higher velocity as can be
seen in Figure 5.13. This unexpected difference in the exit velocities of the two profiles is
very illustrative of the complexity of the die design process.

The experiments further revealed that the flow of the profile from the constant bearing
length opening was not balanced. This can be concluded from the start-up sections of the
profiles, that are depicted in Figure 5.14. If the profile is well balanced this section is straight.
This is the case for the profile from the opening with the varying bearing length that is de-
picted in Figure 5.14(b). For the constant bearing length profile shown in Figure 5.14(a) the
thin sides clearly lag behind the thicker center of the profile.

Also, geometrical measurements were taken from the cooled profiles. These measure-
ments show that the constant bearing length profile was 0.5[mm] wider than the other profile.
Additionally, the long cross-sectional axis of the profile from the varying bearing length
opening was slightly curved whereas that of the constant bearing length profile was almost
straight. This is surprising because, judging from the balancing of the profiles, the constant
bearing length profile is expected to be more prone to shape deviations.

For the numerical analysis the aluminum domain associated with the die design was
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Constant bearing length opening

Varying bearing length opening

Figure 5.13: Picture of the two profiles begin extruded from left to right. The top profile exits with the
higher velocity, which causes it to obtain a wavy shape in extrusion direction.

(a) Constant bearing length (b) Varying bearing length

Figure 5.14: First parts of the profiles.

meshed rendering the discretization depicted in Figure 5.15. The different bearing length
distributions for the two profiles can be clearly distinguished. This mesh was used to compute
the solution fields within the aluminum domain. In the computation of the solution fields the
deformation of the die is neglected since it is not expected that the die will deflect significantly
in this case. Otherwise, the material parameters that have been introduced previously for the
aluminum and the friction are used in the analysis.

The nominal and the computed profile shapes are plotted in Figure 5.16, where the de-
viations of the predicted profile shape from the desired shape are magnified with a factor
10. The exit velocities are plotted in Figure 5.17, for a cross-section of both profiles. The
deformations of the profiles have been multiplied by a factor 5 for visualization purposes.
The outline of the desired profile shape is plotted as a reference.
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Figure 5.15: Mesh for the aluminum domain of the two exit die. The varying bearing length opening is
situated in front of the constant bearing length opening.

Figure 5.16: Desired (left) and computed (right) profile shapes. The deviations from the desired shape
are magnified with a factor 10.

Min Max

(a) Constant bearing length

(b) Varying bearing length

Figure 5.17: Exit velocities in a cross-section of the profiles. The deformation of the profiles are mag-
nified with a factor 5.

It should be noted that the velocity field is not exactly symmetrical, as can be observed in
Figure 5.17(b) where the computed profile for the varying bearing length is slightly shifted to
the right. This is caused by a rigid body rotation of the profile at the exit of the die that is due
to an asymmetry in the flow field. The error in the flow field which causes the asymmetry is
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less than 0.1% of the exit velocities and therefore negligible. The asymmetry in the flow field
can be attributed to the asymmetrical mesh that is used for the analysis. The effects of this
asymmetry become noticeable because the deformations of the profile are scaled.

From Figure 5.17 it can be concluded that the trends that were observed in the extrusion
practice are predicted well. The difference in exit velocities is captured correctly by the
computations. The average computed exit velocity for the profiles from the constant bearing
length opening is 19.2[m s−1], while that of the varying bearing length profile is 16.7[m s−1],
which is 87% of the velocity of the constant bearing length profile. The computed ratio
between the exit velocities is close to the ratio that was measured in the experiment (87%
vs. 81%). Also, the balancing within each profile is represented accurately. For the constant
bearing length the velocities are higher in the center of the profile than at the tips, while for
the varying bearing length the exit velocities are practically constant throughout the cross-
section. Finally, the differences in the shape are computed correctly as well. In Figure 5.17(a)
the computed profile cross-section is wider than the desired shape, while the computed and
the desired cross-sections are almost identical in Figure 5.17(b). Additionally, the profile in
Figure 5.17(b) is slightly bent down at the tips, which matches the deformations observed in
the experiments.
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Extrusion of complex profiles

In this chapter three examples will be presented of finite element simulations of the extru-
sion of complex profiles. The first example concerns a flat profile that has been extruded in
practice. The die that was designed for this profile did not perform satisfactorily during the
extrusion. The finite element simulation that will be discussed, predicts the observed imbal-
ance and gives a good indication of how the die should be corrected. In the second example
an existing hollow profile with very thin walls and two chambers will be analyzed. The finite
element model predicts that the die for this profile renders an almost completely balanced
flow field, which was observed in aluminum extrusion practice as well. The third example
concerns the extrusion of a fictive polymer profile. This example is included to underline
the flexibility of the modeling tool that has been presented in this thesis. Also, this example
demonstrates the necessity to include the shape of the outflowing profile in the model.

6.1 Flat profile

In this section the extrusion of the flat profile depicted in Figure 6.1, will be analyzed. The
die that was initially designed for the extrusion of this profile did not produce a balanced exit
flow, which resulted in a profile that was too severely curved in the extrusion direction. Based
on the bent shape of the profile it was concluded that the left tip of the profile lagged behind.
The die was adjusted accordingly; i.e. by locally enlarging the cross-section of the pocket to
stimulate the flow of aluminum to the left tip of the aluminum. However, the modified die
gave no improvement and still failed to produce acceptable profiles. A renewed adjustment
appeared to be necessary.

Determining the shortcomings of a die design based on the geometry of the extruded
profile is very difficult. Often conflicting theories can be applied to explain the same observed
failure mechanism of the die. As a result, it is not uncommon that, for a complex die such
as the one considered in this section, the wrong theory is adhered and the design is altered
erroneously, as was the case in this example. The extrusion simulation that will be presented
here is performed to understand why the alternations to the die did not improve the balance
of the outflow. Also, the solution fields from this simulation will indicate how the die should
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Figure 6.1: Mesh of the bearing cross-section. The circles correspond to enlarged details.

be adjusted to obtain an appropriate profile geometry.
The die for the profile in Figure 6.1 is more complicated than a standard die. It consists

of the normal bearing and pocket, but it has an additional pocket-like recess that is positioned
between the billet and the actual pocket. This extra recess is called a feeder. The cross-
sectional surface mesh for the aluminum in the bearing is plotted in Figure 6.1 and the meshes
for the pocket, the feeder and the billet are shown in Figure 6.2.

Combination of these cross-sectional meshes with the appropriate envelope surfaces ren-
ders an enclosing volume that can be filled with tetrahedra using the expansion and unstruc-
tured mesh generators presented in this work. The resulting mesh of the aluminum domain
contains 260,000 elements and is depicted in Figure 6.3.

The computation of the solution fields associated with this mesh was performed in ap-
proximately 2.5 days of computer time (real time, i.e. not CPU time) on an Silicon Graphics
O200 work station with a R10,000 processor that operates at 195 MHz. The computation
required about 6 iterations over the 3 field problem to arrive at the converged solution fields.
It should be noted that within these 3 field iterations the deformation of the die was not
incorporated because it was expected that the die would only deflect marginally.

In Figure 6.4 the temperature field is plotted in the computed profile shape. The devi-
ations of the outflow shape from the nominal profile shape are magnified with a factor 10
for visualization purposes. The velocities at which the aluminum exits the die are plotted in
Figure 6.5 in a cross-section of the deformed profile.

In Figure 6.4 it can be seen that in the computations the section of the profile on the right
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(a) Pocket

(b) Feeder (c) Billet

Figure 6.2: Cross-section surface meshes.

Figure 6.3: Mesh of the aluminum domain.

hand side bends inward as has been observed in practice. This is an indication that the exit
velocities on the right hand side of the profile are too high. A logical conclusion is then that
the velocities of the left tip should be increased by stimulating the flow of aluminum to this
part of the profile. However, the exit velocity field in Figure 6.5 shows that this conclusion is
not completely correct.

Based on the velocities in extrusion direction, depicted in Figure 6.5, the following can
be concluded. The aluminum at the right hand side of the profile does indeed exit the bearing
opening at a flow rate that is higher than the average flow rate. However, the aluminum at
the left hand side flows at velocities that are too high as well. It is the top of the arc that lags
behind and probably causes the most serious distortions of the profile. Moreover, the flow
field within the fork on the right hand side of the profile is unbalanced as well. The tips of
the fork lag behind slightly which causes the entire fork to bend inwards. In conclusion, this
simulation suggests that the die should be altered to allow aluminum to flow more freely to
the arc of the profile and to the tips of the fork. The fact that the suggested alterations to
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Min =733[K] Max =833[K]

Figure 6.4: Temperature field for the deformed profile. The deformations of the profile are magnified
with a factor 10.

Min =0[m s−1] Max =0.2[m s−1]

Figure 6.5: Velocity field for a cross-section of the deformed profile. The deformations of the profile
are magnified with a factor 10.

the design are very different from the adaptations that were performed in reality, probably
explains the failing of the redesigned die that occurred in practice. A new simulation with a
die that has been altered along the lines suggested here would have to be performed, to assess
the correctness of this assumption.

6.2 Hollow profile

In this section the extrusion of a complex hollow profile is simulated. The profile consists
of two hollow chambers as can be seen in Figure 6.6 and is relatively thin-walled, while the
wall thickness varies with a factor 2 within the cross-section of the profile. The combination
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of the multiple chambers, the thin walls, and the wall thickness variations complicates the
design of the die considerably. The die design that is used in the simulation was obtained in
extrusion practice after several trial and error iterations and renders an aluminum flow that is
balanced to such a degree that the geometry of the profile meets the shape specifications of
the customer.

Figure 6.6: Hollow profile with 2 chambers.

Figure 6.7: Mesh of the aluminum cross-section in the bearing. The circles correspond to enlarged
details.

It was already indicated in Section 4.6 that dies for hollow profile are considerably more
sophisticated than those for flat profiles. This is mainly caused by the fact that these dies
consist of two parts instead of one, where the second part is the bridge part. To mesh the
aluminum domain occupying the hollow die for this profile the approach that was proposed
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(a) Pocket

(b) Welding chamber

(c) Billet

(d) Bottoms of cores (e) Ram

Figure 6.8: Cross-section surface meshes (billet and ram surfaces are scaled differently).
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in Section 4.6 was adopted. In this approach the domain is initially discretized to obtain a
provisional mesh. In this provisional mesh the presence of the legs is neglected. The first
relevant cross-section surface of the aluminum in the provisional mesh, is the bearing surface
of which the mesh is shown in Figure 6.7. The second surface is the pocket cross-section of
which the mesh is depicted in Figure 6.8 consisting of one external surface related to the die
plate and two internal surfaces related to the core of the bridge part. The third and fourth
surfaces are cross-sections of the welding chamber and the billet, respectively. The meshes
of these surfaces are also depicted in Figure 6.8. The fifth surface is constructed out of the
bottoms of the cores and the mesh is depicted in Figure 6.8 as well, along with the sixth and
final mesh of the ram surface.

Figure 6.9: Positioned cross-section meshes. Figure 6.10: Envelope meshes.

After these cross-section meshes are positioned at the correct heights (see Figure 6.9)
they can be combined with the appropriate envelope meshes (see Figure 6.10) to create the
volume mesh. The resulting discretization is the provisional mesh that is drawn in Figure 6.11
in which the geometry of the legs of the bridge part visualized in Figure 6.12, still has to be
incorporated. The provisional mesh contains 350,000 elements.

The geometry of the legs of the bridge part is taken into account by eliminating the appro-
priate elements and repositioning the remaining nodes as explained in Section 4.6. Since in
this method the geometry of the bridge part is only used to determine whether points are po-
sitioned inside or outside the bridge part, the quality of the surface mesh of this bridge part is
allowed to be very low. This enables the application of standard CAD surface meshes, which
are generally of extremely poor quality, for the representation of the bridge part geometry.
Clearly, this is advantageous because no remeshing of the bridge part surface is required.
After incorporation (of the legs) of the bridge part and the stretching of the bearing the mesh
in Figure 6.13 is obtained. This resulting mesh contains 320,000 elements.
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Figure 6.11: Provisional volume mesh. Figure 6.12: Geometry of the bridge part.

The computation of the solution fields associated with this mesh was performed in ap-
proximately 3 days of computer time (real time, i.e. not CPU time). Within the computation
less than 10 iterations over the 3 field problem were necessary to calculate the converged
solution fields. It should be noted that within these 3 field iteration process the deformations
of the die were not incorporated because it was expected that these would be relatively small.

In Figure 6.14 the temperature fields are plotted in the computed profile shape. The
deviations of the outflow shape from the nominal profile shape are magnified with a factor
10 for visualization purposes. It can be observed that, contrary to flat profiles, the aluminum
heats up considerably before entering the pocket and the bearing. This heating occurs in the
legs, where the shear rates are relatively high. Also, it can be concluded that the computed
profile hardly deviates from its nominal shape. This corresponds to the well balanced profiles
that were extruded in practice with this die design.

The fact that the profile is well balanced is further illustrated in Figure 6.15, where the
velocities at which the aluminum exits the die are plotted in a cross-section of the deformed
profile. The differences between the computed shape and the nominal shape have been mag-
nified with a factor 10. As can be observed, the only significant deviation from the nominal
shape, apart from rigid body movements, occurs in the part of the profile that separates the two
chambers. The middle of this part is slightly off-centered to the left, which is precisely what
is observed in the extruded profile. It can also be concluded that the velocity of the aluminum
in extrusion direction is practically constant throughout the cross-section. It should be noted
that this prediction of an almost constant exit velocity is a non-trivial result, considering the
flow imbalances that were observed in the results of the previous section.

Until now there was a complete lack of knowledge on the distribution of the aluminum
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Figure 6.13: Top: The shape of the aluminum domain. Bottom: The final mesh of the aluminum
domain. In the enlarged picture the varying bearing length can be observed.

flow in the openings between the legs of the bridge part. This distribution is of practical
interest because imbalance in this area of the die can easily lead to an unbalanced exit flow.
Also, the flow rate distribution between the legs influences the position in the profile of the
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Min = 733[K] Max = 833[K]

Figure 6.14: Temperature field of the deformed profile. The deformations of the profile are magnified
with a factor 10.

surface where the aluminum has welded together again behind the legs. Clearly, the flow can
not be measured in situ because of the high pressures and temperatures in these parts of the
aluminum domain. However, now this distribution can obviously be determined, using the
flow fields from the simulations. In Figure 6.16 the contours of the velocities in extrusion
direction are plotted for a number of cross-sections of the aluminum domain. It can be seen
that the velocities in each of the legs are different. This implies that the pressure distribution
is different in the holes which can cause an undesirable bending of the bridge part.

6.3 Polymer extrusion

In this section the extrusion of a polymer through a fictive die is analyzed. This example is
included for a number of reasons. First, it illustrates the versatility of the finite element model
that has been presented in this thesis and underlines the potential of the meshing algorithms.
Second, this example emphasizes the necessity of modeling the shape of the extrudate. Last,
the method that is used to discretize the polymer domain elucidates the advantages of dis-
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Min= 0[m s−1] Max= 0.4[m s−1]

Figure 6.15: Velocity field in a cross-section of the deformed profile. The deformations of the profile
are magnified with a factor 10.

Min = 0[m s−1] Max = 0.015[m s−1]

Figure 6.16: Left: Cross-sections in the aluminum domain. Right: Velocities in extrusion direction in
the cross-sections.
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cretizing the Lagrange multipliers that enforce stick on a surface, through the introduction of
control points, as has been discussed in Section 3.1.

In the example the polymer acrylontrile-butadiene-styrene (ABS) is used that shows a
strain rate and temperature dependent viscosity. This dependency can be formulated as
(v.d. Vegt, 1994; Zoetelief, 1995):

η = η0
1 + (λ2γ̇ )

−1

1 + (λ1γ̇ )n1

with

η0(T ) = Hβ(T ), β(T ) = e
−c1(T −T0)
c2+T −T0

λ1(T ) = B1β(T ), λ2(T ) = B2β(T )

where the definition of γ̇ has been introduced in Section 2.2. The relevant parameters for
ABS are quantified in Table 6.1. The fact that the viscosity of this polymer is dependent

c1 7.04 - c2 119.7 K
B1 0.11 s B2 3.8 s
n1 0.79 - λ 0.17 W m−1K−1

H 9.5 · 103 N s m−2 ρ 945 kg m−3

T0 473 K cp 1.4 · 103 J kg−1K−1

Table 6.1: Parameters for ABS

on the strain rate and the temperature, as is the case for aluminum, makes the incorporation
of the material model into the numerical procedure that has been developed for aluminum
extrusion, straightforward.

The geometry of the extrusion die for the ABS is defined by a combination of cross-
sections, as depicted in Figure 6.17. As can be seen, a directional refinement is applied in
the surface meshes to obtain thin elements perpendicular to the die wall. This way the high
velocity gradients in the polymer close to the die can be captured accurately while keeping
the total number of elements relatively low. Since the number of line segments along the
contour of a cross-section mesh is not constant for subsequent cross-sections, the expansion
mesh generator cannot be applied to generate the envelope meshes. Therefore, an unstruc-
tured surface mesh generator has been used for the envelopes. This unstructured surface
generator employs Coon’s point placing algorithm to generate a smooth surface between the
contours (Segal, 1983). The polymer volumes in the die are meshed with tetrahedra using an
unstructured generator, whereas the meshes of the polymer volumes in the bearing and the
outflow are generated using the expansion generator. Several perspectives of the resulting
mesh are depicted in Figure 6.18.

To investigate the effect of the free surface deformation on the exit velocity of the poly-
mer, two computations have been performed. In the first analysis the altering shape of the
free surface was not accounted for. In the other analysis the actual geometry of the extrudate,
being the shape of the outflow domain, was determined iteratively using the 3-field approach.
In both extrusion simulations, the die was assumed to be thermally insulated and the polymer
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Figure 6.17: Cross sections of the die with corresponding meshes.

was modeled to stick to the surface of the die. The polymer entered the die with a velocity of
0.04[m s−1] and a temperature of 493[K]. In Figure 6.19 the shapes of the extrudate surfaces
are plotted for the nominal outflow geometry and the computed outflow geometry. It should
be noted that in Figure 6.19(b) no additional magnification of the differences between the
computed and the nominal shape has been applied.

In Figure 6.20 it can be seen that taking the geometry of the outflow surface into account
has a noticeable effect on the velocity distribution at the outflow. It can be seen that when the
geometry of the outflow shape is incorporated in the model, the thin sections of the profile
connected to thick parts will be pulled from the die. This results in a reduced cross-sectional
thickness and also in a higher exit velocity. This is clearly visible in the left and right legs.
Also thicker parts will be slowed down by the thin sections which in turn results in an in-
creased cross-sectional thickness. This effect can be seen in leg of the middle ’T’. Of course,
the changes in the velocity field have a noticeable impact on the temperature field as well
(van Rens et al., 1999c).

From Figure 6.20 it can be concluded that, for this example of polymer extrusion, it is
necessary to incorporate the actual shape of the outflowing polymer into the computations
in order to obtain accurate predictions of the velocity field. The reason that this effect is so
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Figure 6.18: Several views of the polymer mesh.

(a) Nominal extrudate shape (b) Actual extrudate shape

Figure 6.19: Shape of polymer surface.

pronounced for this analysis, is that the computed extrudate shape differs considerably from
the nominal shape.

In the analyses presented above use has been made of a fixed inflow velocity and tem-
perature. However, in real polymer extrusion practice the inflow velocity is not prescribed
through a ram speed, as it is in aluminum extrusion. In polymer extrusion the material is
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Min = 0[m s1] Max = 0.015[m s1 ]

(a) Initial extrudate shape (b) Actual extrudate shape

Figure 6.20: The exit velocity in a cross-section of the extrudate.

forced through the die using a (twin) screw extruder of which the rotational speed is pre-
scribed (see also Figure 6.17). Therefore, the analysis is now extended with the incorporation
of a twin screw extruder that forces the polymer through the die.

Figure 6.21: Last section of a twin screw extruder.

y

Leg

Remeshing Lagrange multipliers

x

Figure 6.22: Velocity in x-direction for the flow around a simplified leg. The leg geometry is incorpo-
rated through remeshing as introduced in Section 4.6 (left) and through Lagrange multi-
pliers (right).

To this end the polymer domain is enlarged such that it covers the last section of the
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twin screw extruder as well (see Figure 6.21). It is extremely difficult to obtain a suitable
mesh for the polymer domain in Figure 6.21 because of the complex shapes of the screws
that have very small clearances between the flights. Therefore, initially the polymer domain
is meshed, neglecting the presence of the screws. The shape of the domain is then simple
enough to be meshed using the methods presented in this work. The effect of the screws on
the polymer is then incorporated by employing Lagrange multipliers on the surfaces of the
screws. The Lagrange multipliers are comparable to those introduced in Section 3.1.4, and
enforce that the polymer sticks to the surface of the screws in a set of control points. The
introduction of Lagrange multipliers for the incorporation of complex geometries is different
from the method introduced in Section 4.6 which consists of element elimination and node
repositioning. However, both methods render the same results as can be seen in Figure 6.22
where the difference between the two methods is illustrated for the simplified leg geometry
that was introduced in Section 4.6. For both cases the contours of the velocities in x-direction
are very similar even though the computational domain on the right hand side of Figure 6.22
does not account for the leg.

Clearly, as is also the case in the example in Figure 6.22, the screw surfaces do not coin-
cide with nodal points of the polymer mesh. This makes it impossible to choose the control
points coincident with the nodes in the mesh, as has been done for the friction surfaces in alu-
minum extrusion. Therefore, the control points are positioned on the intersections between
edges of the polymer mesh and the surfaces of the screws. To ensure that the resulting system
of equations remains well posed and does not become overconstrained, the control points are
not added on every intersected edge. The edges on which control points are positioned are
selected such that at most one of these edges is connected to a node in the mesh.

The solution fields have been computed using a simplified material description: The
polymer has been modeled as a Newtonian liquid with constant viscosity. Moreover, the
deformation of the outflow surface of the polymer has not been considered. The velocity
boundary conditions are defined such that the polymer sticks to the (stationary) walls of the
extruder and the die, as well as to the (rotating) walls of the screws. The velocity field that
has been obtained in this simulation is used to plot the particle tracks depicted in Figure 6.23.
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Figure 6.23: Particle tracks for the constant viscosity polymer.
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Chapter 7

Conclusions and recommendations

In aluminum profile manufacturing there is a strong desire to reduce costs associated to the
design of a die. A considerable portion of these costs is related to the physical trial-pressings
that have to be performed before a satisfactory die design is obtained. As a result, the cost
reduction can be achieved by replacing these trial-pressings by finite element computations.
In these computations a trial-pressing is simulated to assess the success or failure of a given
die design, which will generally be cheaper, faster and more informative. In this thesis a finite
element model has been presented with which the extrusion of complex (possibly hollow)
profiles can be analyzed within acceptable time spans and with a high level of reliability.
In the following, first conclusions with respect to the model and its performance will be
drawn. Next, recommendations will be made to improve the model, to make better use of the
available solution fields, and to obtain these solution fields faster.

7.1 Conclusions

The finite element model that has been presented in this thesis is able to accurately predict
the performance of extrusion dies, irrespective of the type (flat or hollow) or the multiplicity
(single or multiple opening) of the profile they are designed for. For all the profiles that have
been examined in this thesis the numerical predictions concur with the phenomena that are
observed in the extrusion practice for these profiles. Moreover, the models are constructed
in such a way that these predictions require only a small amount of pre- and post-processing
time, and that the computations can be completed within acceptable time spans. In the fol-
lowing, conclusions will be drawn for a number of important aspects of the model.

Based on order of magnitude estimations for the physical entities associated with extru-
sion, the conservation laws of mass, momentum and energy can be reformulated to arrive
at an incompressible Stokes flow problem that is coupled to a convection-diffusion thermal
problem. The Eulerian framework that is adopted to describe the flow problem in a finite
element context has proven to be suitable to model high deformations of the aluminum while
avoiding severe distortions of the mesh. Furthermore, the velocity based formulation that
inherently follows from the spatially fixed Eulerian framework can be easily combined with
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the non-Newtonian fluid model that describes the constitutive behavior of the aluminum. A
drawback of a spatially fixed reference frame is that it complicates the incorporation of the
moving boundaries that occur at the aluminum outflow and at the interface with the flexible
die. This drawback is overcome by employing an iterative three field approach to capture
the influence of the changing boundaries on the aluminum flow. This three field approach is
found to be stable and to have a satisfactory convergence rate.

The flow problem is discretized through the application of the MINI element which con-
sists of a tetrahedral element with a linear interpolation for the pressure and a linear velocity
interpolation which is enriched by a bubble contribution. The shape of this bubble has been
taken quadratic to obtain the best results with the highly distorted elements that occur in
the discretization of the aluminum domain. The MINI element is of crucial importance for
efficient finite element analyses because it enables the use of robust mesh generators as a
result of its tetrahedral shape while the piecewise linear interpolation of both the pressure
and the velocity ensures that the number of degrees of freedom remains manageable, even for
highly complicated meshes.

To model the frictional interaction of the aluminum with the die, the interface surface
is discretized and Lagrange multipliers are introduced in the nodes of the surface. These
multipliers impose the Coulomb friction at the nodal level. The discretization of the inter-
face surface normal is performed using a new, iterative method that renders more accurate
results near sharp edges in coarse grids. Without this new method of defining the normal,
the meshes would have to be refined to such a degree near the sharp edges in the die that the
analysis of complex profiles would be practically infeasible. Numerical experiments indicate
that the coefficient that quantifies the frictional behavior has a considerable influence on the
predictions of the model and that accurate results can be obtained by using a value of 0.4 [-]
for this coefficient.

The system of equations that describes the entire aluminum extrusion process is split into
separate subsystems for the problems associated to the flow, the temperature, the outflow
shape, the die deflection and the mesh displacement. These subsystems are solved separately
and coupled through a staggered approach. Numerical experiments indicate that each of
the problems in the staggered algorithm has a noticeable influence on the outcome of the
simulations. However, the effect of the die deflection on the predicted profile shape is the
least pronounced. The staggered approach is well stabilized and generally only six to eight
iterations are necessary to obtain a converged solution. Moreover, the Picard-iteration pro-
cess that is applied, is well suited to linearize the strongly non-linear flow and temperature
problems that have to be solved within each consecutive iteration.

The dedicated meshing algorithms that have been developed in this work are of paramount
importance in generating meshes for the complex domains associated with extrusion. The
algorithms generate tetrahedral meshes that are directionally and spatially refined to capture
the solution fields accurately while the number of elements is kept to a minimum. This
makes it possible to analyze the flow of aluminum through complex dies within reasonable
time spans. The mesh generation is split into four steps, being the meshing of the surfaces,
the meshing of the volumes, the stretching of the bearing and the incorporation of the leg
geometries in case of hollow profiles. This split results in four manageable meshing problems
rather than one enormously complex problem. As a result, it is possible to discretize the 3D
domains associated with any conceivable die design, while requiring minimal user effort.
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Also, the combination of a fast mesh generator and a relatively small number of generated
elements allows the analysis of a multitude of die designs within a limited time span.

7.2 Recommendations

For the finite element analyses of extrusion presented in this thesis, three major areas of
improvement can be identified. First, systematic, in situ experiments have to be performed to
validate the results of the simulations in a structured manner. Second, the solution fields that
result from the analysis can be exploited to a larger degree than has been done in this work. A
number of possible extensions can be obtained by performing post-processing computations
on the solution fields for the flow, the temperature, and the die deflection. Third, the solution
time can be reduced drastically by using parallelization techniques. This would make it
feasible to perform extrusion computations as a part of the die design process. Each of these
areas of improvement will be discussed briefly below.

7.2.1 Experimental validation

Even though the finite element simulations of extrusion have proven to predict the extrusion
process accurately for the die designs considered in this thesis, the model has not been sub-
jected to a sufficiently large amount of experimental validation. A structured comparison
between experimental data and the computed flow and temperature fields can be used to as-
sess the correctness of the constitutive models that have been adopted for both the aluminum
and the friction. Also, these experiments can be designed to verify the thermal boundary
conditions that are imposed on the aluminum as well as the mechanical boundary conditions
that are imposed on the die.

Since the in situ measurements of forces, pressures and displacements is complicated as
a result of the high pressures and temperatures that are associated to the extrusion process,
most variables can only be derived from measurements that are performed on the cooled
profile. It is therefore important that, when measuring the (small) effects of a process variable
on the geometry of the profile, each profile is extruded and cooled under exactly the same
circumstances. This can be achieved by using the multiple opening dies that have been used
in this thesis for experimental validation. For such dies the process conditions are the same
for each of the profiles that have to be compared, which will improve the reliability of the
evaluation.

7.2.2 Exploitation of the solution fields

The solution fields for the velocity, the pressure and the temperature can be used to compute
additional, derived quantities. Examples are the shape and position of weld surfaces, the sizes
and distribution of aluminum crystals in the profile, and the expected life of a die.

Weld surfaces are formed at those places where two aluminum surfaces come in contact
during extrusion. This occurs when a new billet is inserted into the container and this billet is
pressed against the remainder of the old billet. This weld surface is initially flat but deforms
as it passes through the die and forms a tongue (see also Figure 7.1(a)). The weld surfaces
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Figure 7.1: Formation of weld surfaces.

are intrinsically weak parts of the profile and can be visible on the surface of the profile.
Therefore, the part of the product that is expected to contain the tongue, is removed from the
profile after extrusion. Since in the current extrusion practice the exact position and shape
of the tongue is not known, the part that is removed from the profile is chosen considerably
larger than the actual size of the tongue. If the shape and position of the tongue would be
known, the part that is removed can be decreased, thus increasing the yield of each billet.

Weld surfaces are also formed in dies for hollow profiles when the aluminum separates
to flow around the legs of the bridge part and welds together behind these legs in the weld
chamber (see also Figure 7.1(b)). For strength and/or esthetic reasons it may be necessary
to accurately predict the position of the weld surfaces in hollow profiles and even adapt the
die design to change their position. The position, shape and size of the weld surfaces can be
computed from the flow field of the aluminum through particle tracking.

Since the crystal size at the surface of the profile influences the appearance of the profile
after anodizing or painting, a uniform crystal size distribution is desirable to prevent streaks
on the profile. However, in reality it is difficult to predict a priori whether a profile will render
uniform crystal size distributions at the surface, particularly near joints and/or jumps in the
cross-sectional geometry of the profile. The crystal size distributions within an aluminum
profile are determined by the initial crystal size distributions in the billet combined with the
strain and temperature history that the aluminum experiences during extrusion and cooling.
The velocity and temperature fields from the extrusion analyses can be used to determine
the strain and temperature paths during extrusion, which can in turn be used to compute the
crystal size distribution before cooling. For a given temperature path during cooling the final
crystal size distribution can then be assessed.

From a safety and a commercial perspective it is crucial that a die is strong enough to
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withstand the enormous pressures that are exerted on it during extrusion. Two types of die
failure are common in extrusion practice. The first occurs when the die is filled with alu-
minum at the start-up of extrusion. During start-up, the die is subjected to peak pressures
which may cause the die to fail. The other type of failure is caused by fatigue resulting from
the cyclic loading associated with the insertion of a new billet into the container. The die
deflection computations render the maximum stresses that occur in the die during normal
operation. These maximum stresses are indicative of the peak stresses and the cyclic stresses
the die will experience during start-up and billet insertion, respectively, and can thus be used
to predict failure of the die.

7.2.3 Parallelization

Ideally, the analyses presented in this work would be applied to automatically design a die
through inverse engineering and optimization. Optimization methods start with a given die
design and compute the flow field for that design. The quality of the flow field for a given
die shape is evaluated through the use of an object function that is minimal for an optimal die
design. In extrusion the object function would typically be related to the variation in the exit
speed in a cross-section of the profile and the size of the velocity components perpendicular
to the extrusion direction. Obviously, the optimization process requires the solution of the
flow field for many variations of the die design. Since each permutation in principle implies a
completely new extrusion analysis, the optimization approach is only feasible if the solution
of one flow field requires a small amount of time. However, the actual analysis of a simple
profile requires several hours of CPU time whereas that of a complex profile can consume
several days of computer time. This makes it infeasible to pursue these optimization methods
at this time.

A less ambitious solution is to compute the flow field as an integrated part of the die design
process. While designing the die, the engineer can concurrently perform several analyses
to assess the influences of the design choices that were made and change the design in an
appropriate manner. To make this approach feasible, however, a considerable reduction of
computational time is needed as well.

A reduction in the computational time can be achieved by using parallel solvers, rather
than standard iterative solvers, for the solution of the linearized systems of equations. It is
beyond the scope of this work to give a detailed description of parallel solvers. Therefore,
only a brief overview is given here.

The principle of solving a system of equations in parallel is to distribute the work that
needs to be done for the solution of the system over several processors, instead of one. If
the work is distributed over n processors the solution time should theoretically be reduced
by a factor n. The simplest way of parallelizing an iterative solver is to split the global
matrix-vector products that have to be performed within one iteration into n local matrix-
vector products that each render a local solution. The global solution is then assembled
after the multiplication (Farhat and Roux, 1994). However, each assembly requires mutual
communication between the processors which is a comparatively time consuming process
and reduces the theoretically possible speed-up of a factor n to a real speed-up of much less
than n. Therefore, more sophisticated parallelization algorithms have been developed which
require less communication.
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These methods are generally known as substructuring methods. The domain is divided
into n non-overlapping substructures for which the system of equations is a subset of the
global system of equations. These subsystems of equations can be solved separately on each
domain and therefore in parallel, provided that the correct precautions are taken to ensure
that the solution field is compatible across the subdomain boundaries. This is realized by
prescribing displacements (Dirichlet preconditioning) or surface tractions (Neumann precon-
ditioning) at the interfaces of the subdomain boundaries (Farhat and Chen, 1995). If these
displacements or tractions were known a priori, the system of equations could be solved
on each subdomain to render a local solution field. The global solution field could then be
assembled using only one communication step. However, in practice the required boundary
displacements or tractions are not known and have to be computed. The methods that can
be used to compute these boundary surface displacements or tractions can be subdivided into
primal- and dual-substructuring methods (Le Tallec, 1994).

The primal-substructuring method consists of formulating a Schur-complement prob-
lem that can be solved to render the surface displacements or tractions (Lassignardie et al.,
1998). The solution inside the subdomains is then obtained by back-substitution. In the dual-
substructuring method additional degrees of freedom λ are introduced in each node on the
boundary of a subdomain. These degrees of freedom λ are associated with nodal loads on
the boundary. The problem is then rewritten to render a formulation in terms of these degrees
of freedom λ. Next, a preconditioned conjugate gradient (PCG) algorithm is applied to solve
for λ. After λ is computed the solution field can be obtained for each subdomain. The most
commonly used dual-substructuring method is the Finite Element Tearing and Interconnect-
ing (FETI) method (Papadrakakis and Harbis, 1998). The FETI method seems to be the most
promising method to speed up the solution of the extrusion analyses. It requires very little
communication within each PCG iteration and the number of PCG iterations that is to obtain
a converged solution, is, in theory, constant if the number of elements per subdomain is con-
stant. This makes the number of iterations required, and thus the number of communication
steps, independent of the problem size as long as a sufficient number of subdomains is defined
(Farhat and Roux, 1994).

As a result of the low amount of communication between the processors that is required
in the FETI algorithm, this algorithm is extremely well suited to be used on a distributed
parallel computer that is constructed out of a heterogeneous network of computers with lim-
ited mutual communication speed. The network of computers that is in use in a standard
design environment is a typical example of such a distributed parallel computer. Since these
machines are only used during the day, for design purposes, they can be combined at night
to form a distributed parallel computer. Furthermore, the FETI algorithm is more efficient
than an iterative solver, even if it is invoked sequentially on a single processor computer
(Farhat and Roux, 1994). This is due to the fact that the problem that defines the nodal loads
λ has a better condition number than the original system of equations. Also, the systems of
equations that is defined on each of the subdomains is better conditioned than the original
system of equations. This makes the switch to a FETI-based solver worthwhile, even for use
on a single processor computer.

It is expected that, due to the apparent drawbacks of physical trial-pressings, the nu-
merical simulation of trial-pressings will become ever more important. Also, because the
complexity of the profiles is constantly increasing, more simulations will be required to ob-
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tain a satisfactory die design. Moreover, the size of each simulation will become larger as
well because the complexity of the domains involved increases. This inevitable growth in
the number of simulations that have to be performed and in the size of these simulations
will increase the importance of obtaining solutions faster, which is best obtained through
parallelization.
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lation of the forging process. In Owen, Oñate, and Hinton, editors, Proceedings of the 5th
International Conference on Computational Plasticity, pages 873–877, 1997. 3.1.4

L.P. Franca and C. Farhat. Bubble functions prompt unusual stabilized finite element meth-
ods. Comput. Methods Appl. Mech. Engrg., 123:299–308, 1995. 3.1.2

L.P. Franca, T.J.R. Hughes, and R. Stenberg. Stabilized finite element methods for the Stokes
problem. In Incompressible Computational Fluid Dynamics - Trends and Advances, pages
87–108, 1993. 3.1

L.P. Franca and A. Russo. Unlocking with residual-free bubbles. Comput. Methods Appl.
Mech. Engrg., 142:361–364, 1997. 3.1.2

F. Garafolo. An empirical realtion defining the stress dependence of minimum creep rate in
metals. Met. Trans., 227, 1963. 2.2

J.F. Gobeau, T. Coupez, B. Vergnes, and J.F.A. Agassant. Computation of profile dies for
thermoplastic polymers using anisotropic meshing. In Simulation of Materials Processing:
Theory, Methods and Applications, pages 59–66, 1995. 4.1

L. Hanssen, M. Lefstad, S. Rystad, O. Reiso, and V. Johnsen. Billet surface flow in alu-
minum extrusion using ’half-moon’ dies. In J.L. Chenot, J.F. Agassant, P. Montmitonnet,
B. Vergnes, and N. Billon, editors, Proceedings of the 1st ESAFORM conference on Mate-
rial Forming, pages 141–144, 1998. 1.2
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Samenvatting

Aluminiumextrusie is een productieproces waarin een blok heet aluminium in een recipient
wordt geplaatst en vervolgens door een matrijs wordt geperst om een profiel te verkrijgen. De
matrijs speelt een cruciale rol in dit proces omdat deze zorgt voor de balancering van de alu-
minium stroom. Een gebalanceerde aluminium stroom is nodig opdat het resulterende profiel
aan de eisen van de klant voldoet wat betreft, bijvoorbeeld, de vorm van de dwarsdoorsnede
en de rechtheid. In de praktijk wordt voor het ontwerp van de matrijs een trial-and-error stra-
tegie gevolgd waarin proefpersingen een belangrijke rol spelen. Deze proefpersingen, waar-
mee de toepasbaarheid van een gegeven matrijs ontwerp wordt vastgesteld, zijn tijdrovend en
duur. Daarnaast is het moeilijk om afwijkingen in het geëxtrudeerde profiel te vertalen naar
aanpassingen in de matrijs en er is veel ontwerpervaring vereist om deze vertaalslag te kunnen
maken. Het doel van dit proefschrift is het ontwikkelen van een eindige elementen model dat
de proefpersingen, in ieder geval ten dele, kan vervangen door numerieke simulaties.

Het extrusieproces van aluminium is gemodelleerd als een Stokes stromingsprobleem
dat is gekoppeld aan een thermisch convectie-diffusie probleem. Het stromingsprobleem is
geformuleerd met een Euler beschrijvingswijze, waarbij de ruimtelijk gefixeerde discretisatie
geschikt is om processen te modelleren waarin grote deformaties plaatsvinden, zoals extrusie.
Deze beschrijvingswijze vraagt echter wel extra aandacht als het ruimtelijke domein van
het materiaal a priori (gedeeltelijk) onbekend is. Deze complicatie doet zich voor na de
uitstroomopening van de matrijs omdat daar het aluminium niet meer omsloten is door het
gereedschap en dus kan vervormen als gevolg van een onbalans in de stroming. Ook op het
scheidingsvlak tussen matrijs en aluminium kan dit probleem zich manifesteren wanneer de
matrijs significant deformeert door de extrusiedruk. Het reconstrueren van de vorm van het
aluminium domein wordt bereikt met behulp van de zogenaamde drie-velden benadering. In
deze benadering worden de vorm van het profiel nadat het de matrijs heeft verlaten, en de
vorm van de matrijs, afzonderlijk berekend. Het effect van de geometrische veranderingen
van het aluminium domein wordt vervolgens verdisconteerd door de (aluminium) mesh aan
te passen.

Het consitutieve gedrag van het aluminium is gemodelleerd als een niet-Newtonse vloei-
stof waarvan de viscositeit afhangt van de temperatuur en de effectieve afschuifsnelheid.
Daarnaast is voor de interactie tussen het aluminium en het gereedschap Coulombse wrijving
verondersteld.

Het stromingsprobleem is gediscretiseerd door gebruik te maken van het MINI element.
Dit element maakt het mogelijk om krachtige tetraheder meshgeneratoren toe te passen, ter-
wijl er per element een minimaal aantal graden van vrijheid wordt gegenereerd. Tevens zijn
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de Lagrange multiplicatoren, die het effect van de wrijving op de aluminium stroming verdis-
conteren, gediscretiseerd volgens een speciaal daartoe ontwikkelde methode die het mogelijk
maakt om nauwkeurige resultaten te verkrijgen op relatief grove meshes. Tenslotte, is het
thermische probleem gediscretiseerd met behulp van lineaire tetraheder elementen die gesta-
biliseerd zijn op basis van de SUPG (Streamline Upwinding / Petrov-Galerkin) methode.

De ruimtelijke domeinen die behoren bij het aluminium en de matrijs zijn complex. Daar-
door poneert het genereren van een eindige elementen verdeling een ernstig probleem. Dit
probleem is opgelost door nieuwe meshgeneratie algoritmes te ontwikkelen. Deze algoritmes
creëren meshes met richtingsafhankelijke verfijning, zodanig dat de gradienten in de oplos-
singsvelden kunnen worden berekend met gebruik van een beperkt aantal elementen. Tevens
bevatten deze algoritmes een aantal nabewerkingsstappen om de variërende lengte van de
matrijscylinders en de complexe vormen van holle matrijzen in de discretisatie op te nemen.
De nieuwe methode van meshgeneratie maakt het mogelijk om, met een minimale inspanning
van de gebruiker, meshes te genereren voor elk realistisch matrijsontwerp.

Gebaseerd op de vergelijking van verschillende numerieke experimenten kan worden ge-
concludeerd dat het belangrijk is om de temperatuurafhankelijkheid van de viscositeit, de
vorm van het uitstromende profiel, en soms de deformatie van de matrijs te verwerken in
de berekeningen. Ook kan worden geobserveerd dat de waarde die wordt toegekend aan de
(Coulombse) wrijvingscoëfficiënt een aanzienlijke invloed heeft op zowel de snelheid- als
de temperatuurvelden van het aluminium. Vergelijking met experimentele gegevens uit de
industrie laten zien dat het model de stromingsvelden en de vorm van het resulterende profiel
goed voorspelt, zelfs voor een complexe profielgeometrie.

Concluderend kan worden gesteld dat het model dat is beschreven in dit proefschrift in
staat is om de merites van complexe matrijzen op accurate wijze te voorspellen, in een tijd
die aanzienlijk korter is dan de tijd die noodzakelijk is om een proefpersing uit te voeren.
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