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Some numerical studies of exotic shock wave behavior

Jason W. Bates? and David C. Montgomery
Department of Physics & Astronomy, Dartmouth College, Hanover, New Hampshire 03755

(Received 2 June 1998; accepted 21 October 1998

For shock waves propagating in materials with nonideal equations of state, a variety of nonstandard
phenomena can occur. Here, we present numerical studies of two such exotic shock @ffects:
“anomalous” behavior, in the terminology of Zel'dovich and Raizer; &inpa search for “acoustic
emission instabilities.” The motivation is in part the possibility of such phenomena in the implosion

of inertial confinement fusioiCF) pellet materials, whose equations of state are currently far from
well known. In shock wave theory, anomalous materials are those whose isentropes have regions of
negative curvaturdin the plane of pressure versus specific volurtteough which the shock
adiabatic passes. The existence of such regions is significant because they can interfere with the
steepening of compressive pulses into shocks, lead to the formation of rarefactive shock waves, and
even cause shocks to “split.” A van der Waals fluid with a large heat capacity is one example of

a material possessing such anomalous properties. Acoustic emission instability—the second exotic
shock mechanism considered—may occur when the slope of the shock adiabatic lies below a critical
value. In this phenomenon, perturbations of a two-dimensional planar shock front can render it
unstable, and lead to the downstream emission of acoustic waves. In addition to the van der Waals
fluid, an equilibrium dissociation model for strong shocks in diatomic hydrogen is shown to fulfill
the theoretical criteria for this instability, but its numerical verification has been hard to achieve,
suggesting that further study is needed. Both classes of phenomena may be expected to play a role
in ICF compression scenarios. €999 American Institute of Physids$$1070-663(99)01402-9

I. INTRODUCTION shocked” or “upstream’} values ofV andp, and leading to
| inertial f t fusidiCF) sch it a pair of “shocked” or “downstream” values. Both the ini-
N Some Inertial confinement fusi SCNEMES, ILIS 0| and final states of the material are assumed to be in local

intended to compress deuterium—tritiylT) pellets by one . o .
: . : - hermodynamic equilibrium and are separated by a moving
or more imploding shock compressions, to densities as muc . o :
shock discontinuity across which mass, momentum, and en-

as 1000 times greater than solid DT values, and to tempera-
ergy are conserved.

tures of several keV. The compressions will lead through A key point in the standard development is the demon-

regimes where the equations of st of hydrogen iso- . .
topes are still imperfectly known and very difficult to mea- stration that shocks can only .be compressive aqd not r"?‘rEfaC'
e under normal conditions, using the inequality

sure, e.g., see Refs. 1-3. In Refs. 2 and 3, and more recentjy, 1aV2).>0. where the derivati ted holdi

in Ref. 4, there is evidence that the shock Hugoniot may pas p/o .)ffs W er? g Tehr.""'?‘ IVes :T_re comEu eh olding

through regions associated with phase transitions wher € Speciiic entropys Ixed. This inequality can be shown to
be equivalent tac’(p)>—c(p)/p, wherec(p) is the adia-

highly nonideal equations of state might be involved. It is ™ | 4 _ e
possible that such phenomena as “anomalous” shock wavB2tic sound speed ang=1/V is the mass density. This in-
equality is valid for the vast majority of materials in which

behavior~’ or “acoustic emission instabilitiestalso known : A
shocks are typically launched. Howevérjs not a thermo-

as “transverse wave instabilitie$® 2 might occur, and if i X ; &d
they did, could be important considerations with regard todynamic requirementand it has long been noted that

the efficiency of the compression. Our purpose in this papetrhere exist regions of phase space in which the inequality is
is to report some hydrodynamical simulations of such shockeversed. For such “anomalous” substances, rarefactive

peculiarities and to suggest some possible consequences Y1Ocks are thermodynamically possible in some regions and
them for ICF target compression. compressive ones are not. lvanov and Novikavere appar-

In shock wave theory!? a central role is played by the €ntly the first to document clear experimental evidence of
“shock Hugoniot” or “shock adiabatic” curve in the\(,p) this effectin iron and steel near a polymorphic phase transi-
plane, whereV is the volume per unit mass of the material tion. In later years, Thompson and co-workérs’ provided
(specific volumg andp is the pressure. The shock adiabatic compelling demonstrations of anomalous behavior in a vari-
is the locus of all those values af and p which may be ety of other materials.

connected by a single shock, starting from initi&lin- The sign of the quantityd@®p/3V?)s is also an important
consideration with regard to thetability of shock waves. For

dpresent address: Hydrodynamic Methods GréégHM), Applied Theo- a two-dimensional compressive shock whose adiabatic

retical and Computational Physics Division, MS D413, Los Alamos Na- passesthrough an an(_)malous region .Of thé\/(p). plane,
tional Laboratory, Los Alamos, New Mexico 87545. downstream perturbations of the flow field may stimulate the

1070-6631/99/11(2)/462/14/$15.00 462 © 1999 American Institute of Physics
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shock to “split” into two other shocks, which are then tic waves(incident on the downstream face of the shock
stable, but possess different amplitudes and propagatidmecomes infinite. This implies that infinitesimal downstream
velocities® The splitting process is, of course, an irrevers-perturbations to the flow can cause finite disturbances at the
ible one, and is evidently accompanied by the emission of asurface of discontinuity. Said another way, acoustic waves
acoustic wave that moves away from the shock front in thecan be generated spontaneously at the shock front—thus ren-
downstream directiofh’° dering it unstable—whenever the inequalities in E2).are

One signature of an anomalous region for a material irsatisfied.
the (V,p) plane is a shock adiabatic which is locally concave  Experimental results reported by Thompset al
downward rather than upward. Experimental techniques existhow evidence of this class of instabilities in shocks travel-
for measuring shock adiabatfdseven when the measure- ing through fluids with large heat capacities and in the vicin-
ment does not permit the extraction of the full EOS fromity of a phase transition. In addition, Mond and Rutke®%ich
which the shock adiabatic could be inferred theoretically.have shown that instabilities of this type are likely to occur
One popular way of exhibiting shock adiabatics is by plot-in inert gases through which strong ionizing shocks are pass-
ting the logarithm of the pressure as a function of the mas@g. Their theoretical predictions seem to be in good agree-
density for the downstream region. In such a plot, a region ofent with the experimental shock-tube data presented by
negative slope may have associated with it an anomalouGriffiths, Sandeman, and HornuA§and Glass and Li&®
region for the material at any place where the curvature ofor the case of argon gas.
the adiabatic is also concave downward. Though the calcu- In the following sections, we present numerical simula-
lation of the EOS for hydrogen isotopes at solid densitiegions of both anomalous behavior and a search for acoustic
remains provisional and difficult, anomalous regions may bemission instabilities in shock waves. We begin in Sec. Il by
suggested, for example, by Fig. 16 of Mceeal? and by  employing a van der Waals EOS with a large heat capacity
Fig. 4b) of DaSilvaet al* as a tractable example of an anomalous fluid. Implications of

Some of these Hugoniot data also suggest that hydrogeanomalous behavior for shock propagation are investigated
isotopes at high temperatures may be susceptible to anothby studying numerically the results of one-dimensional hy-
exotic shock wave mechanism known as acoustic emissiomlrodynamical simulations of shock tubes. Ignoring the ef-
This phenomenon is a special type of instability in whichfects of viscosity and thermal conductivity, we use the “flux
deformations to the planarity of a compressive shock frontorrected transport(FCT) method®28to solve the nonlin-
are stationary and result in the enhancement of acoustic noigar partial differential equations involved, i.e., the Euler
behind the shock It should be pointed out that this class of equations. In a second series of runs, piston-launched com-
unstable shock-wave activity is distinct from so-called “cor- pressive pulses are used to explore the dynamical formation
rugation instabilities,” in which perturbations to the front are of shock fronts from smooth initial data. This is done to gain
predicted to grow with tim&:1221:22 confidence that the FCT technique is well adapted for study-

Using a linearized normal mode analysis, Kontorovich ing shocks in media with anomaloias well as more stan-
derived the criteria for acoustic emission in the form of in-dard equations of state. The topic of instabilities in two-

|l7

equalities involving the parameter dimensional shock waves is treated in Sec. lll, where we
dv show simulations for two different equations of state. For our

h= 2<_> , (1) first EOS, we again consider the van der Waals fluid near the
dp/, known anomalous region, and an instability of the shock

wherej2=(p,— p.)/(V1—V,) is the square of the mass flux front results in a shock splitting. The second EOS used is
density across the shock, and subscripts “1” and 2" de- perhaps of greater relevance to ICF research, and is based on

note upstream and downstream values, respectively; the dg_smple dissociation model of d_|atom|c hydrogen. The_ re-
rivative is taken along the shock adiabatidugonioy and sults are somewhat unexpected, in that though the criteria for

evaluated at the downstream state. The condition for acoustRECUStIC emission seem to be.sat|sf|ed,_we cannot say con-
emission to occur can be statedbsl2 vincingly that any numerical evidence of instability has been

observed in the simulations. Finally in Sec. IV, we summa-

he<h<1+2v,/c,, (2)  rize our findings and outline some suggestions for future
Where research.
272 2
1-v3lca—vyw,/c) 3) II. ANOMALOUS VAN DER WAALS FLUID BEHAVIOR
C

_1—v2/02+v volcd . . S
22 1 P12 2 Anomalous behavior, in the sense of Zel'dovich and

Here, v is the fluid velocity in the frame of reference in Raizer? is not characteristic of ideal gases. Typically, it has
which the shock is stationary. Equati¢®) can be satisfied been associated with the presence of nearby phase transitions
on some shock adiabatics havingp{dV),>0. However, in which particle interactions become significant in the en-
because the lower limit, may be negative, it is also pos- ergy budget. Any sudden increase of the adiabatic compress-
sible for instabilities of this type to arise on some sections ofbility with density (and thereby, a sudden decrease in sound
ordinary-shaped adiabatics witt§/dV),,<0 everywheré?  speed may lead to anomalous behavior, and may occur in
Fowles® obtained the instability condition in E¢2) by  fluids or solids. Perhaps the simplest example of a material
determining when the reflection coefficient of oblique acous+that exhibits such behavior arises in a van der Waals Péid,
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FIG. 1. Shock adiabatic through the one-phase anomalous résfianded
of the (V,p) plane for a van der Waals fluid withc, /R=280. Initial and

final states are\(;,p;) =(1.6V(,0.95,) and (V,,p,) =(1.2V,,1.030), re- 0 e . ‘ . ey .
spectively. The critical point occurs &Vy,=1 andp/py=1. The curve at 0 100 200 300 400 500
the bottom of the shaded region denotes the boundary of the two-phase X (cell no.)

coexistence region.

FIG. 2. One-dimensional shock-tube simulation of a van der Waals fluid in

a nonanomalous region of theV(p) plane, with §1,p;)=(2Vy.po),

(V,,p,2)=(0.63V(,3.2py), and wcy/R=80, where Vyo=3b and pg
just to the right of the critical point and outside the two- =a/27b?. Profiles of pressurésolid line), density(dashed ling and veloc-

phase region in the\{,p) plane. Here, we will use a van der itly (‘TOtt‘?d,b'Ii”e are ShQW’;J at@) t|=0? T]”d (b;]t=ﬁ0- A SthCk_ wave,
Waals EOS to illustrate dynamical consequences which e o the I?;(t. A?’?:%r']?; Ci’ c}irsa;’fnfi;%ittyengg ;’et"\"N e active wave
sult when it is attempted to launch shocks in anomalous me-
dia. Similar results may be expected any time the attractive
forces between molecules begin to be strongly felt.

The pressure—volume relationship for a van der Waal

fluid is well known:

shock adiabatic which passes through an anomalous region
?shadeai In creating this figure, the specific heat at constant
volume was chosen to have a valug=80R/u, whereR is
(p+a/V?)(V—b)=NKT, (4)  the universal gas constant, apdis the molecular weight of

the fluid. This assumption amounts to considering many in-

where N is the number of molecules per unit massjs i~
\ . ternal molecular degrees of freedom. The specific volumes
Boltzmann’s constant, anflis the temperature. The constant ) .
and pressures in the plot are normalized to the reference

a represents the effect of long-range attrgqtlve mtermOIeCU|a\5aluesV053b andp,=a/27b?, respectively. Other features
forces, and the constahtrepresents the finite volume occu- . ; .
of Fig. 1 will be explained later.

pied by the molecules themselves. The ideal gas limit fol- . .
. : In order to study the effect of anomalous fluid properties
lows from settinga andb equal to zero. Supplementing Eg. : :

. . : on shock wave formation and compression, we have em-
(4) is the expression for the entropy incremels . ) .

ployed a gas-dynamical numerical code of the “flux-
corrected transport'(FCT) variety?®=28 The code involves
dv, ) inviscid one-dimensional equations of continuity, momen-
tum, and energy, supplemented by an EOS given in our case
wheree is the internal energy per unit mass. For simplicity, by Eqgs.(4) and (5). When shocks form from compressive
we shall assume that the specific heat per unit mass at copulses, the FCT code propagates them stably and according
stant volumeg,,, is independent of temperature and equal toto the conservation laws, but does not address microscopic
a constant, though this is not a consequence of(&q. dissipative processes or issues of irreversibility.

For this van der Waals fluid, it is possible to express  Perhaps the simplest numerical example in which
algebraically the entropyand the energy as functions o/ anomalous behavior is evident is in the simulation of a one-
andp. The Rankine—Hugoniot relatioh¥ can then be used dimensional shock tube filled with a van der Waals fluid.
to construct the shock adiabatics, as well as the “Poissofrigures Za, b and 3a, b show the results of using a FCT
adiabatics” or isentropes. In Fig. 1, we display a typicalalgorithm to model such a system. At tinte-0, a “dia-

Tds=de+pdV=c,dT+

a
D+W
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FIG. 4. The piston-launched compressive wave for the initial and final states
1 4\ J
shown in Fig. 1 at=300 (At=0.01; Ax=1 initially). The piston moves

[2]
= I E— ; from rest with an acceleration 0.2 for a time 1.2, after which it travels at a
508; { P . T constant subsonic velocity 0.24. In a nonanomalous fluid, this wave would
(] / \ . .
@ ; i steepen to form a shock, but that is not the case here; as time passes, the
=06y T profiles of pressurésolid line), density(dashed ling and velocity(dotted
.09) line) continue spreading to the right, but never form a shock. The cross-
S 04l | hatched region indicates the location of the piston.
£
i=)
0.2}
., gorithms. Runs performed with even smaller step sizes did
0 T not give noticeably different results, indicating that a con-
0 100 200 300 400 500 g y g

verged solution had been achieved.

To understand better the dynamical formation of shock
FIG. 3. One-dimensional shock-tube simulation of a van der Waals fluid inwaves in the presence of anomalies, as well as to acquire
a\r; anomaliulsfrf/gii% of the Vdp) plfge,lvgg/hl bg/éépl); (f_lI-No,?-SaJo), experience with initial conditions which start out as continu-
Escfli’gzli)ne)(, dens%&(diﬁtdigg gr?é velocity(détted-IinéoaL:Zh%W%rii;ure QUS, \_Ne C(_)ndUCtEd a S.econd series of numenca.l Comp.Uta-
t=0;and(b) t=420. Note the formation of a leftward-travelimgrefactive tions in which compressive pulses were launched into quies-
shock wave in(b) at x=120. cent van der Waals fluids by accelerating a piston from rest

to a subsonic velocity, then holding it at that velocity. This

was accomplished by using a “sliding rezoning” mesh in the
phragm” in the middle of the tube separates a region ofFCT algorithm. The boundary conditions prescribed at the
higher pressure and density on the left from a region of lowepiston/fluid interface were that the fluid velocity be equal to
pressure and density on the right. Ro¥ 0, this barrier is  the instantaneous piston velocity, and that the pressure gra-
removed and for nonanomalous fluids, a shock wave propadient be equal to the product of the piston acceleration and
gates into the lower pressure, lower density region, while dhe local fluid density(The boundary condition on the den-
rarefactive wave spreads into the higher pressure, highesity then follows from an adiabatic relation between the pres-
density region; see Fig.(B). For ananomalousfluid, how-  sure and density A compressive pulse forms and propagates
ever, a very different scenario may occur. Figufe)3hows into the undisturbed medium according to the Riemann
what happens in a run for a van der Waals fluid whichsimple-wave solutioh? In a normal medium, this predicts
evolves from the initial conditions in Fig.(8. Here, the the steepening of the pulse into a compressive shock in a
upstream and downstream conditions were chosen to makiame inversely proportional to the maximum initial spatial
the fluid lie in an anomalous regintsee Fig. 1 In this case, gradient of the fluid velocity. However, embedded in the
a rarefactiveshock wave—rather than a compressive one—Riemann solution in its usual form is the assumption that
propagates leftward, while a spreading compressive pulsepc(p)]’ >0, and when this inequality is reversed, what had
moves to the right. In all cases, the pressure, density andeen a steepening compressive pulse becomes a spreading
velocity profiles have been normalized to the valpgs po  one, and a shock refuses to form. In an implosion experi-
=1N,, andv,=(8a/27b)'? respectively. The speed, ment, shocks are often launched by irradiating one or more
can be used to define the ratio of a reference length to faces of the fuel pellet with ionizing radiation which raises
reference time, allowing us to cast the governing equationthe local pressuréthis enhanced pressure acts as the “pis-
in dimensionless form before programming them on theton” for the compressive pulse which then steepens into a
computer. For this series of computational runs, the dimenshock. In many laser-compression ICF scenarios, it is the
sionless spatial and temporal step sizes wexe=1 andAt  expectation that the action of such a piston will launch a
=0.06, respectively. For the magnitude of fluid variablescompressive pulse which steepens into a shock.
occurring in this problem, these values are well within the  Figure 4 illustrates the complications to the canonical
Courant stability and “positivity” requirements for FCT al- picture of shock wave formation that can arise when a com-

x (cell no.)
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18—+ — evolve in time. This perturbation is regarded as “small” in
16L @ [ | | (b) ] ] the sense that the ratio of its amplitude to wavelength is
14 much less than unity. The boundary conditions in the
27 x-direction are “inflow” and “outflow” conditions behind
512} and in front of the shock, respectively; periodic boundary
§ 1l conditions are imposed in thedirection.
S 0.8} For ideal gases, the inequalitias<h<1+2v,/c, are
2 never satisfied, and acoustic emission from shock fronts can-
“E’ 0.6 /- not occur. Initial perturbations are propagated along the front
S 0.4 ] . 1 in the form of running linear waves that decay with
ool ] | | time 3032 This gives rise to small-amplitude entropy-vortex
and sound waves in the downstream wake of the shock.
Oo 40 80 120 60 100 140 180 Eventually, the uniformity of the front is restored.
x (cell no.) x (cell no.) For fluids in whichh,<h<1+2v,/c,, however, the

_ _ linear stability analysis of Kontorovichpredicts markedly
FIG. 5. Piston-launched compressive wave fdf (p;) = (1.95V4,0.880), different behavior. In that case, stationary undamped pertur-
which is outside and slightly to the right of the shaded region of Fig. 1. Inb . ist indefinitel h hock f (% Th
(a), the piston(initially at resh moves with an acceleration 0.185 for a time ations may exist inaefinitely at the shock frohtInese
1.5. The final state\(,, p,) = (1.14V,,1.0%,) lies just inside the anomalous Perturbations may cause the shock to become unstable and
region, and in this case the compressive wave does not steepen to formgmit acoustic waves in the downstream direction—the en-

shock. In(b), the piston acceleration has been increased to 0.4; the shocérgy carried away by these emitted waves being drawn from
adiabatic still passes through the shaded region of Fig. 1, but the final statﬁ,]e bulk fluid motiont2

(V,,p2) =(0.65V,,1.62,) is much higher on this curve, lying outside and . .
to the left of the anomalous region. An “ideal-gas-like” shock wave results. Let us now pass to a consideration of each of our model

Profiles of pressurésolid line), density(dashed ling and velocity(dotted equations of state in turn.

line) are shown at=160, withAt=0.02, andAx=1 initially.
A. Another van der Waals example

Here, we study the stability of two-dimensional shock

pressive pulse is launched into an anomalous material. T onts by once again employing a van der Waals EOS. The
piston-launched compressive wave connects the initial an st step is to write down expressions for the pressure and
final states shown in Fig. 1. Upstream states bear the sul%—

script “1” and downstream states the subscript “2.” Be- pecific internal energy:

cause both states lie in the anomalous region of W) 8(T/Ty) 3

plane, though, this wavdoes notsteepen to form a shock. p/p°:3(V/V —1 2

Instead, a spreading compressive pulse is the result. 0 (VIVo)
In Figs. a, b), the initial point (V1,p;) was chosen to Cy 9

lie outside and slightly to the right of the shaded region of s/so=?(T/To)— 8(VIVy)’ (7)

Fig. 1 (with the shock adiabatic still passing through the 0

anomalous region For final states in or near the left bound- where T,=8ua/(27Rb), and SOEUCZ): RT,/u are conve-

ary of the anomalous region, shock waves refuse to fornhient reference values. As in Sec. II, we shall assume that the

[Fig. 5a)]. As the piston acceleration is increased, thoughgpecific heat is a constant. In order to determine whether a

the final state rides higher along the shock adiabatic, movingarticular shock configuration satisfies the criteria for this

further and further to the left of the anomalous region. Evenclass of instabilities, we also need an expression for the adia-

tually, a shock wave does indeed result, and the usuaatic sound speedc. Starting from the definitionc?

“ideal-gas-like” behavior is recoverefFig. Sb)]. =(aplap)s, and using Eq(A3) in the Appendix, we find

3 R \3+(p/po)(VIVy)? 1 ]2
€=V M ey T B(VIVg—2 VIV,

(6)

Ill. ACOUSTIC EMISSION

®

In this section, we explore the evolution of perturbed
shock fronts by conducting numerical simulations using arhe ideal gas limit of this expression is obtained by taking
two-dimensional FCT-based code. Two different equations//Vy>1, in which case + R/ucy— vy, wherey=cy/cy is
of state are considered) a van der Waals fluid with large the ratio of specific heats, amg is the specific heat at con-
specific heat; andii) an equilibrium dissociation model for stant pressure. Then, one can easily show tiat/yp/p,
diatomic hydrogen. Both simulations are initiated &t0 by  which is the correct expression for the speed of sound in an
first establishing a steady shock propagating in thddeal gas.
x-direction with upstream and downstream values of pres- With the fundamental shock relationj=v,/V;
sure, density and-component of velocity chosen to be con- =v,/V,, Egs.(6) and(8) can now be used to compute the
sistent with the Rankine—Hugoniot relatioh’ and satisfy- parameter$ andh, for a van der Waals fluid. Plots fand
ing the downstream criteriah,<h<<1+2v,/c,. The h., as well as the difference.—h, as a function o/, /V,
planarity of this shock front is then deformed with a singlefor V,/Vy=3.0, p,/py=0.66, anducy,/R=80, are shown
sinusoidal perturbation or “ripple” transverse to the direc-in Figs. a, b. In Fig. 6b), it is apparent that a region exists
tion of motion(they-direction, and the system is allowed to nearV,/V,=0.9 where the differencle;—h is indeed nega-
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X

FIG. 7. The surface plot of density in a van der Waals fluide( /R
=80) showing the perturbed shock fronttat0. The upstream and down-
stream Mach numbers here avb =1.114 andM,=0.744, respectively.

0.6 (b)

0.4 . shock front is readily discernible, as is the appearance of an
acoustic pulse near=200. What is not so apparent in these
figures is the fact that at a very early stage in the calculation,
02k - the initial shock has “split” into two other shocks. This
splitting can be seen more clearly in Figga)9-(d), which
show the double-shock structure at the later tisel001;
0 the acoustic wave is now far downstream from the front, and
\/ does not appear in this set of figures. The resulting shocks
05 1 1'5 : é : 2'5 : é are now stable. The shock on the rlght_travels slightly _faster
' ) ' than the one on the left, so that the distance separating the
Vo / Vg two increases the longer the simulation is allowed to run. In
the region of compressed fluid between the two fronts, per-
downstream specific volumé, /V, for a van der Waals fluid withwc, /R turbations are .Stll! visible, but have been almost _entlrely at-
—80; in (b), the differencen,— h is shown. The upstream state hags/V, tenuated by this time. Both shocks possess a uniform planar
=3 andp, /p,=0.88. Note the region neaf, /V,=0.9 where the theoret-  Structure, and will continue propagating to the right indefi-
ical criteria for acoustic emission instability are satisfied. nitely without overtaking. In this series of computations, the
maximum dimensionless time step allowed wes=0.005.
Since the shock splits at such an early stage in the simu-
tive, and henceh>h_; there. Accordingly, we choose Ilation, it is difficult to ascertain whether any numerical evi-
V,/V,=0.88 for the value of our downstream specific vol- dence of acoustic emission exists, or just what the conse-
ume in our simulation. The associated downstream pressuences of satisfying the Kontorovich critefiag. (2)] are,
value in this case ip,/py=1.068. The upstream and down- in this example. It is important to realize, though, that the
stream Mach numbers then have valbds=v,/c;=1.114  shock splitting observed in Figs. 8 and 9 is almost certainly
andM,=v,/c,=0.744, respectively. not a result of the conditionb.<h<1+2v,/c, being sat-

In Fig. 7, a sinusoidal perturbation has been superimisfied. Rather, it is undoubtedly a consequence of the fact
posed on a two-dimensional shock front moving into a qui-that the shock adiabatic for this van der Waals fluid passes
escent van der Waals fluid on the right; this is taken as théhrough an anomalous region of phase spE@Ep/dV?)s
initial condition at timet=0 in our simulation. The compu- <0], a region in which multiple solutions of the Rankine—
tational grid is 1024 32 cells withAx=Ay=1, butin Fig. 7  Hugoniot relations can exist. That is, the initial upstream and
only the first 128 cells in the-direction appear. Also note downstream states may be connected by either a single
that this figure shows the perturbed density profile, but theshock, or by a pair of successive ones. While a rigorous
pressure and-component of velocity surfacdsot shown  criterion cannot be given here, it seems reasonable to con-
are deformed with the same sinusoidal ripple; the ratio oftlude that shock splitting can happen only if the shock adia-
perturbation amplitude to wavelength in all cases is 1:8. Théatic curve and the Rayleigh ling=(p,—p1)/(V1—V,)
y-component of velocity is left unperturbed, and is initially have more than two intersection points, as occurs in this van
zero everywhere. der Waals example.

Figures 8a)—(d) show the surfaces of pressure, density, ~ We should also remark that the shock splitting observed
andx- andy-components of velocity, respectively, at tihe in these simulations seems to be related to the fact that the
=350. In these plots, the persistence of a perturbation to thehock adiabatipasses througla region wheréh<<—1 [see

FIG. 6. (a) The plot ofh (solid line) andh, (dashed lingas a function of
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FIG. 8. (a)—(d) Surface plot of perturbed sho¢®) pressure(b) density,(c) x-component of velocity, an@) y-component of velocity in a van der Waals fluid
(ucy /R=80) att=2350.

Fig. 6(@], which is one of the limits for the onset of the The expressions for the pressure and specific internal

corrugation instability mentioned earli®t??122|t is well  energy density of the dissociating gas are given by
known that in such regions a shock wave may not be “evo-
lutionary,” and the solution of the fluid dynamic equationsis ~ P=N(1+a)pkT, €)
not necessarily uniqui:2%-22

For purposes of comparison, Figs.(48-(d) show an e=(1— a)(ENkT'FS +3aNKT+NUa (10)
analogous run using an ideal-gas EOS wjith 1.4. The up- 2 ’ ’

stream Mach number here is the same as for the van der : I _— e
Waals exampleM;=1.114. The initial perturbation ampli- wheree, is the vibrational contribution to the specific inter-

tude and wavelength are also the same. In this case, thougd! €nergy. andJ is the dissociation potentidbinding en-
gy of the diatomic molecule. In the case of hydrogen,

the perturbation at the front has been attenuated significant X e ) i
e dissociation temperaturbl/k is approximately 5.17

by time t=280, and the shock has nearly regained its uni- | i i

formity. Small-amplitudg(sound and entropy-vortgxvaves X10'K. T he parametea sa d|.menS|onIess nu.mber kn_own

are visible behind the shock, but it is clear that no splittingas the .dlssomguon'fractlon, with<Oa<1. Physmal!y,a IS

has occurred. the ratio of dissociated molecules to nondissociated ones.
Using relations appearing in the Appendix, it is a straightfor-

ward exercise to compute the adiabatic sound speeds

well as the specific heat at constant volumey

In this section we discuss an EOS that is perhaps ot (ds/dT)y,, for this model.

greater relevance to ICF research than anomalous van der By neglecting any interactions between particles, and as-

Waals fluids. Following Zel'dovich and Raiz&wye consider suming that the rotational states of the hydrogen molecules

an equilibrium dissociation model for diatomic hydrogen,are fully excited, even at low temperatures, Zel'dovich and

which we briefly outline below. As we shall see, this simple Raizer construct partition functions for both the molecular

EOS yields a shock adiabatic curve that qualitatively agreeand atomic hydrogen states. This leads to an expression for

with data of shock-compressed liquid deuterium from recenthe Helmholtz free energy, as a function of the temperature,

ICF-related experiments.For additional detail on this specific volume, and number of particles for each species of

model, the reader is referred to pp. 176—188 of Ref. 5. the gas. The authors then obtain the so-called “law of mass

B. Dissociating hydrogen
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FIG. 9. (a)—(d) The composite shock front ¢&) pressure(b) density,(c) x-component of velocity, an@) y-component of velocity in a van der Waals fluid
(mncy /R=80) att=1001. The splitting of the original shock front is now readily visible. As time passes, the distance between two fronts increases due to their
different propagation speeds.

action” for the dissociative process by using the fact thatin = ¢ =(n+1/2hv, n=012..., (12)
thermodynamic equilibrium, the Helmholtz free energy is

stationary with respect to the total number of atdfhst  whereh is Planck’s constant and is a characteristic vibra-
should be pointed out that the dissociation process is asjonal frequencyfor hydrogert® hv/k=6210K). The vibra-
sumed to take placand reach a state of equilibriynmfi-  tional partition function is then found by summing a Boltz-
nitely fast, so that no finite-time relaxation effects are con-mann distribution over all accessible states from0 to o:
sidered in this model. The result is an equation relating the

dissociation fraction to the density and temperature of the % hy
gas: Z,=>, exg —(1/2+n)—=
i=o kT
o o< exf — U/KT] (11) 2
=cons exd — , e
1-a rZ, —e P (1tetre Zy.. )= (13)

where the constant on the right hand side contains atomic

data specific to hydrogen. In arriving at E41), it has been )
assumed that the electronic partition functions contain term@/nere the shorthand notatiofr=hv/KkT, has been used. The

corresponding to only the ground molecular and atomicvibrational contribution to the specific internal energy is then

4
states. The form of the vibrational partition functiafy,, in ~ 9'Ven by’
this equation has yet to be specified. For reasons to be dis-
cussed below, we do not necessarily assume, as Zel'dovich :NkT2<a|n Z,,) —Nhv EJF 1
and Raizer do, thaf, is well described by the high tempera- v aT |, 2 exphv/kT)—-1)
ture limit of the harmonic-oscillator partition function in (14
which all quantum vibrational energy levels are accessible.

Usually in the derivation of a model EOS for diatomic where Nhv/2 is the so-called “zero-point energy” for the
hydrogen, the vibrational energy levels are approximated byscillator. Note that both Eq(13) and Eq.(14) are un-
those of a quantum oscillatdr: bounded at high temperatures, both tending to infinity faster
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FIG. 10. (a)—(d) Surface plot of perturbed sho¢l) pressure(b) density,(c) x-component of velocity, an¢d) y-component of velocity in an ideal gag (
=1.4) att=280. The upstream Mach number is the same as in the van der Waals exdmpid (114), and, initially, the front was deformed as shown in
Fig. 7. Although small-amplitude sound and entropy-vortex waves are visible behind the shock, it is evident that no instability has occurred in this case.

than T asT—. According to Eq(11), we then find upon in Eq. (13). Figure 11 shows such an adiabatic for the up-
substitution that the dissociation fraction vanishes at higtstream statep;=0.17 g/cni and T;=20K, values which
temperatures, which is a nonsensical result. were chosen to mimic realistically a typical initial state of
We can see this point graphically by constructing thecryogenic ICF targets. The adiabatic curve is parametrized
shock adiabatic for dissociating hydrogen usi)gas written by the value of the downstream temperatufg, A plot
showing the corresponding value of the downstream disso-
ciation fractiona along this curve also appears in the figure.
The downward-pointing arrow indicates that the curvedor
108 should be read on the horizontal axis, but without units. At
low temperatures, we see that=0. As the temperature is
increasedp departs from zero, but does not monotonically

4
10 o approach the value 1 as we would expect from physical con-
p(GPa) siderations. Insteady experiences a maximum value of
100 about 0.5, then begins to decrease again, eventually going to
l« zero asT—o. The same general behavior is obtained if one
1 “assumes the vibrational states are fully excited,” as

Zel'dovich and Raizer do, and replac&s with its high-
temperature limitk T/hv.
0 0204 06 08 1 12 14 This unsatisfactory feature af is ameliorated by a vi-

p (g/cm3) brational partition function _that remains finite a5 0.

Equation(13) can be modified to have this propertsind

FIG. 11. Shock adiabatic for dissociating hydrogen. The form of the vibra-thus yield a dissociation fraction that goes to unity at high
et CTIPEIELIGSY t2ing e upper Tt i e sumnaton
behavior,of the diss:ciati’on fraction. The initiaFI) dyata for ?he upgtream be a finite integer, rather than_ infinity. Such a restrlctlonlls
state werep;=0.17 g/cnd and T;=20 K. The downward pointing arrow S€€N to make sense on physical grounds for the following
indicates thatx should be read on the horizontal axis, but without units. ~ reasons. As it stands, E¢L3) is meant to represent a sum
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FIG. 12. The improved shock adiabatic for dissociating hydrogen. Using the (C) (d)
first two terms in the series for the vibrational partition functich, 0.06 0.06
=ef2(1+e ¢+...), whereé&=hw/kT, leads to a dissociation fractiom ’ @ ) Zv(3)
that now has the correct high-temperature behavior. Keeping any finite num- 0.04 Z, 0.04
ber of terms in the series yields the same qualitative result. The upstream 0.02 0.02
data are the same as used in Fig. 11. 0o ’ ’
- 0 0
-0.02 -0.02
over all vibrational energy levels that aeecessibleto a -0.04 -0.04
diatomic molecule. As the temperature is raised, though, a 0.06 -0.06
given molecule will eventually dissociate; thus, only a finite 0 2 4 & 8 0 2 4 6 8
number of these states can be realized, which places a finite In (My) In (M4)

upper bound on the series in EQ.3). (Note that a more

rigorous treatment using the so-called “Morse” poterffial F'C: 13- (3—(d) Plots of the differencé, —h vs upstream Mach number for
dissociatingH, and various partial sums of the vibrational partition function

for an anharmonic oscillator adopts a similar reStriCﬁdn' Z(VN). In all cases, the upstream data are the same as in Figs. 11 and 12.
the present analysis, just how many terms should appear in
the summation foZ, is not clear. We only note here that
since diatomic hydrogen has a characteristic vibrational temscription of the shock dynamics. Examples of such high-
peraturehv/k, that is approximately 12% of the dissociation temperature phase changes may include ionization and a
temperaturel/k, it seems appropriate to us that at most thetransition to a metallic state.
first “several” terms should be used. Figure 12 shows a  For the present EOS model, it turns out that the range of
shock adiabatic curve drawn for the same initial data as ishock strengthupstream Mach numberfor acoustic emis-
Fig. 11, but using just the first two terms in the series for thesion to occur in theory is only slightly affected by the num-
vibrational partition function. More terms can be included, ber of terms included in the series for the vibrational parti-
but as long as the total number is finite, the same qualitativéon function, Z,. Figure 13 shows plots of the difference
behavior resultgof course, quantitative features such as theh,—h as a function of the upstream Mach numidéy for
location and extent of the “nose” of the adiabatic curve will four different partial sumg{", whereN denotes the num-
be affected by this choigeWe now find that at high tem- ber of vibrational energy levels included beyond the zero-
peraturesa— 1, which is commensurate with our physical point energy. In these plots, the initial state was again chosen
intuition, and a much more satisfactory asymptotic behaviorto be typical of the density and temperature of cryogenic ICF
The equilibrium dissociating model for diatomic hydro- targets prior to shock compressigm;=0.17 g/cni and T,
gen outlined above, while crude, is a useful place to begin=20K. The notationz(f) refers to the case in which every
studying the phenomenon of acoustic emission instabilitiegibrational energy level is permitted, as in Ed3). We see
in ICF compression scenarios. As in the van der Waals exthat in all four cases, there is a critical shock strength of
ample, this EOS admits a range of shock strengths ovesboutM;~e*°~90 beyond which always exceeds,, and
which the theoretical criteria for instability are satisfied. Un-the criteria for instability are met. The value of this critical
like the van der Waals case, though, it never fulfills the conMach number is dependent on the parameters of the up-
dition for anomalous behavior. That is not to say, thoughstream state, and of course would be different if the gas were
that the occurrence of anomalous effects in real ICF targenitially at “room temperature,” or if multiple-stage shock
materials can be necessarily ruled out. After all, ICF pelletcompressions were used.
usually have an inhomogeneous composition, and the pas- In an effort to simulate dynamically the emission of
sage of shock waves through substances other than DT hasgound from two-dimensional shocks with this model EOS, a
be considered. Moreover, additional phase changes—whickeries of computational runs similar to those performed for
are often the harbingers of anomalous activity—are expectethe van der Waals fluid was conducted using an FCT-based
to occur in DT at very high temperatures where the presentode. The numerical approach for this system, though, was
dissociative EOS certainly does not provide a complete deslightly more complicated than in the ideal gas or van der
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FIG. 14. The density surface plot of the perturbed shock frihi=£ 150) in FIG. 15. The density surface plot of the shock front in the dissociating
the dissociating hydrogen-gas modet at0. The upstream and downstream hydrogen—gas model d@t=20. At this early time in the simulation, the
states have densities and temperatyres 0.17 g/cnd, T,=20K, and p, occurrence of an instability is uncertain.

=0.98 g/cm, T,=7.97x 10* K, respectively. In this computation, densities

and temperatures were cast in dimensionless form using the reference values

po=8.89 g/cni and T,=5.24x 10° K. According to the linear theory, the %10~4. Not surprisingly, it is apparent that also unlike the
downstream state satisfies the criteria for acoustic emission instability. !

There, the dissociation fractiom is 0.49. van der Waals case, the perturbation has not “triggered” a
splitting of the shock wave sinced¥p/dV?)s is nowhere

negative in this example. Sound and entropy-vortex waves
Qe visible in the downstream wake of the shock, but evi-

¢ as a simple function o andp only [see Eqs(9)—(11)]. dently no instability has occurred. The behavior appears to

Starting from specified initial conditions, the FCT algorithm 2€ €ssentially that of an ideal gas, despite the fact that the
solves the 2D Euler equations in conservative form to givdneoretical criteria for acoustic emission instabilityc{h

new values op, v, ande, but before the next time step can ~1+2v2/Cz) are met. Using sinusoidal perturbations of
begin, updated values of andT (and hencep) must also be other amplitudes and wavelengths, this simulation was re-
determined. In the code, this was accomplished through thBéated for b higher upstream Mach numberhb{=400,

use of a Newton—Raphson root-finding procediire. which for Z,”, corresponds t.—h=—0.058—the abso-

In order to maximize the likelihood of witnessing this !Ute minimum of the curve in Fig. 18). Once again, though,
phenomenon numerically, we chose the vibrational partitiorf"€ initial perturbation was attenuated with no clear indica-
function for which the differenceh,—h was most pro- ton thatan instability had taken place.
nounced, i.e.Z(”). As discussed above, such a choice be- We should also mention that subsequent computer runs

comes unphysical at high-enough temperatures where tHuere performed using other methods of perturbing the shock

dissociation fraction does not monotonically approach unity{ront. In particular, small Gaussian "bumps” were superim-

For lower-temperature downstream states lying near the “tirposed on the downstream flow field behind a uniform planar

of the nose” on the shock adiabatic curve, though thishock in an effort to stimulate unstable emission activity.

choice can be made without introducing any spurious fegAlthough these Gaussian perturbations featured a wider

tures in the shock dynamics. For our first simulation, we
chose a downstream state characterizecpfy 0.98 g/cnd
and T,=7.97x10*K. This corresponds to an upstream
Mach numberM ;=140 and a valuér,—h=-0.04 in Fig. 0.15
13(a).

As before, a planar shock front was perturbed at ttime
=0 with a single sinusoidal “ripple.” Figure 14 shows the
initial density profile in which this perturbation is readily
apparent.(In this figure, the density values are nondimen- 0.05
sionalized with respect to a reference valug,
=8.89 g/cni.) Although not shown, the shock fronts in pres- 0
sure andx-component of velocity were distorted in exactly
the same way, with the amplitude-to-wavelength ratio taken
once again to be 1:8. The value of theomponent of fluid
velocity was initially zero everywhere.

Figures 15 and 16 show the density at two subsequerfiG. 16. The density surface plot of the shock front in the dissociating
times,t=20 andt= 50, respectively. Due to the larger sound hydrogen—gas model at later time=(50). The initial perturbation is sig-
and propagation speeds, the time step in his series of SmAITCeT ST, =¥ tee e soure ane cnvory vores s B
lations was necessarily smaller than in the van der Waalgaye peen satisfied in this example, no clear evidence is apparent in the
example; here, the maximum allowed value &f was 5  simulation. The behavior resembles that of an ideal gas.

Waals cases because of the inability to algebraically expre

density

01f

30

x 225 0
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spectrum of perturbing wave vectors than the sinusoidal depropagation velocities of the resulting shocks are different
formation, they too failed to precipitate any unmistakablethan those appearing in Figs. 8 and 9, where initially this
numerical evidence of acoustic emission phenomenon in theatio was 1:8. For smaller ratios, though, clear evidence of
dissociating hydrogen gas example. shock splitting is not always seen in the simulations, suggest-
ing that there may be a threshold for this phenomenon.
The second exotic shock mechanism considé¢aedus-
tic emission is a class of shock instabilities that can occur
The equations of state of materials used in shockwhen the parametdr=j?(dV/dp), (where the derivative is
imploded ICF targets are far from well-known. In typical taken along the shock adiabatic and evaluated at the down-
compression scenarios, these targets experience enormastseam stafeexceeds a critical valudy,, which depends on
pressure and temperature changes, often spanning several tire downstream Mach number and the compression ratio.
ders of magnitude. In the process, it is likely that a variety ofPrevious theoretical analyseé§?predict that perturbations
phase changes such as melting, vaporization, molecular dits a shock front can stimulate the continuous emission of
sociation, ionization, and possibly even a transition to a meacoustic waves from the downstream face of the shock. This
tallic state® are crucial physical considerations in under-instability has apparently been observed for some time in
standing the physics of the shock compression. The extent shock-tube experiment§;?®in which weak perturbations of
which such nonideal effects complicate shock behavior anthe shock front can ostensibly arise from fluid inhomogene-
the efficiency of the compression, though, has not been welties and/or surface irregularities on the walls of the appara-
elucidated. Here, we have attempted to take a few tentativis.
steps towards addressing these issues by conducting numeri- Although a simple dissociative EOS for diatomic hydro-
cal studies of two peculiar shock-wave phenomena that pogten gas also was shown to fulfill the theoretical criteria for
sibly play a role in ICF compression schemes. They(8re instability, no clear evidence of acoustic emission was ob-
anomalous behavior, an@d) acoustic emission instabilities. served during the associated dynamical simulations. It is pos-
Neither phenomenon occurs in an ideal gas. sible that this result is to some extent tied up with the par-
We have seen that shock wave formation and stability irticular features of the numerical approach employed. It is
a van der Waals fluid, with a large heat capacity and in thelso possible that the theoretical analysis of shock wave sta-
vicinity of a liqguid—gas phase transition, can be greatly af-bility based on a linearization of the gas-dynamic equations
fected by shock adiabatic curves that pass through anomaoes not yield complete or accurate criteria for emission in
lous regions of the\(,p) plane—regions where the adiabatic all circumstances. Kuznetsd?for instance, has argued that
sound speed is a rapidly decreasing function of the densitthe normal mode representation of perturbations used in the
and (#%p/dV?)s is negative. In such cases, compressivelinear theory gives only an indirect indication of the nonsta-
pulses may not steepen to form shocks, if their intended initionary character of the flow, and does not provide a correct
tial and final states lie in or close to anomalous regionsdescription of its long-term development. The results of our
Whether or not shocks form is a subtle question of wherdnvestigation seem to be in accord with this latter assertion,
those states lie, relative to those regions. Additionally, wesuggesting that additional work may be needed to more
have observed that a compressive planar shock, once formetiearly elucidate our theoretical understanding of shock wave
is not necessarily a stable and unique solution of the hydroinstability.
dynamic equations; in the two-dimensional case, perturba- Quite likely, though, the reason that an acoustic emission
tions may precipitate a splitting of the shock in two, with instability was not observed in our simulations has to do with
each resulting shock wave propagating with a different vethe perturbation method employed. The sinusoidal deforma-
locity. In our simulations, this split was accompanied by thetion of the front, while convenient and simple to implement
generation of a downstream acoustic pulse whose directionumerically, is probably not an optimal means of stimulating
of propagation was opposite to that of the original shockacoustic emission activity. As Fowf@shas pointed out,
The extent to which a converging geometeyg., spherical acoustic emission from an unstable shock front can be
modifies any of these findings is unclear at present, and wilViewed as a resonant reflection phenomenon. That is, for
require further investigation. While theoretical expressionsacoustic waves impinging on the downstream face of the
for the EOS of high-density ICF-target materials that couldshock, a range of incident angles exists such that the ampli-
be used in a dynamical code may still be lacking, there igude of the reflected waves exceeds that of the incident
every reason to expect the van der Waals EOS to exemplifwaves. In particular, there is eertain angle of incidence
typical anomalous behavior. where the ratio of reflected to incident amplitudes becomes
Additional study also will be required to ascertain how infinite. To see more clearlystimulated acoustic emission
considerations such as boundary conditions and perturbatigghenomena in a numerical experiment, then, it is probably
amplitude and wavelength affect shock stability. Particulamecessary to superimpose on the downstream flow field a
quantitative issues that may be of interest include the predigeerturbation of the form expfiwt+ikx+ikyy), where o,
tion of when splitting occurs, and the strength of the resultk,, andk, are the angular frequency and wavenumbers in
ing shocks. Subsequent calculations using the van der Waatlke x- and y-directions, respectively, of an acoustic wave.
EOS have revealed that a perturbation amplitude-toThese parameters would be chosen to make the propagation
wavelength ratio of 1:16 can also “trigger” a two- direction(angle of incidenceof the wave lie in the narrow
dimensional shock front to split, but the amplitudes andband of resonant reflection. In a dynamical code, though,

IV. DISCUSSION AND CONCLUSIONS
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such an arrangement presents significant challenges. One clange heat capacitiesnay add to the likelihood of this oc-
no longer just seek solutions of the 2D Euler equations froncurrence.

initial data. Most likely, it would be necessary to include a

term in the governing differential equations that represents ACKNOWLEDGMENTS
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Besides van der Waals fluids and dissociating hydroger'?‘PPENDlX' USEFUL THERMODYNAMIC RELATIONS
gases, a third ICF-relevant EOS was identified during the In order to determine whether a particular shock wave
course of this investigation that also met the criteria forconfiguration satisfies the criteria for acoustic emission, the
acoustic emission. This was an ionization model for veryparameterh must be computed from the shock adiabatic
strong shocks in monatomic hydrogen. It should be pointegurve. Since EOS data is most often specified with the spe-
out that at the downstream parameters of interest in thi§ific volume and temperature taken as the preferred indepen-
study (e.g., p»=0.98 g/cni and T,=7.97x 10*K), effects dent variables, e.gp=p(V,T), a particularly convenient
due to ionization cannot rightfully be ignored, as energymeans of calc_:ulatipg_the or(_jinary differential gquation_for
losses due to dissociation and ionization are approaching tH8€ shock adiabatic is provided by the following relation
same order of magnitude. Due to our inability to successfuly?Mong derivatives of thermodynamic quantiffés:
witness an instability _in the dissoc_iating_ hydrqgen gas ex- dp (aplaV) e+ (1) (p— py)TIV
ample, though, a series of numerical simulations was not (d_\/) = 1
conducted for this EOS. Salient details are discussed on pp. H 1- (3 (Vi=)I'IV

192-201 of Ref. 5, where the ionization fraction is deter-where the total derivative on the left hand side is taken along
mined from a Saha equilibrium. Note, however, that unlikethe shock adiabatic and evaluated at the downstream state;
the stability analysis of ionizing shocks in argon given bythe parameteF is the so-called “Groeisen” index,
Mond and Rutkevick? satisfaction of the conditiom,<h
<1+2wv,/c, here does not depend on any finite relaxation- = X( &_p) (A2)
time effects. cv\dT/,’
Undoubtedly, though, shock stability is sensitively 5.4

linked with nonequilibrium effects in fluids such as the re-
tarded excitation of some degrees of freedothWhile the (ﬁ_p) _ (&_p) B l(a_p
dissociative EOS model used in this paper was an equilib- Vv s V) cy\dT
rium one—which assumed that the dissociation reaction of a S

) oo In the study of anomalous shock wave properties, it is
given hydrogen molecule proceeded infinitely fast so that n%Iso useful to have an expression for the second partial de-
relaxation mechanisms were taken into account — it may b?ivative of p with respect toV at constans. We find
profitable in the future to include nonequilibrium dissocia- '

(A1)

2
(A3)

\%

tion (by permitting finite relaxation time scales in the com- °p ap 3T{aop\ °p
putathrjgl model and study its effect on the formation of 2\ av2]  eylaT VT
instabilities in shocks. s T

aT

The immediate practical consequences of anomalous be- ST( <9p>2( acy
\%

havior, shock splitting, and acoustic emission instability for N
ICF research is unclear and will require time and experience

2
Cv T

to determine. In addition, diagnosing the presence of these 3

i ) . ; T [dp T /[ dcy
phenomena in actual ICF targets is probably exceedingly dif- +— 5T “o\ a7 | (A4)
ficult at present. It is clear, though, that the temporal profile c?\ 9T/ AR

of driver mechanismge.g, lasers in the case of “direct which agrees with formulas given by Befheand
drive”) is sensitively linked to the expectation that a com-Thompson'®

pressive pulse will steepen into a shock of a particular

_Stren_gth at a particular tlme_' . High gompr_essmn may belJ. D. Lindl, “Development of the indirect-drive approach to inertial con-
impaired—and successful ignition spoiled—if such a shock finement fusion and the target physics basis for ignition and gain,” Phys.
does not form or splits into a composite wave structure be-zF’IasmaSZ, 3933(1995. _
fore reaching the DT fuel at the core of an ICF pellet. It “R- M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, “A new

. . . quotidian equation of sta{®EOS for hot dense matter,” Phys. Fluichi,
seems to us that the use of cladding materials is some pelleggsg (1983,
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