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Design for Testability in 
Ha rdwa re-Softwa re 

Sys tern s 

CREATING TESTABLE designs is 
key to developing complex hard- 
ware and/or software systems that 
function reliably throughout their 
operational life. Without testabili- 
ty, design flaws may escape de- 
tection until a product is in the 
hands of users; equally, opera- 
tional failures may prove difficult 
to detect and diagnose. 

Increased system complexity 
makes thorough assessment of sys- 
tem integrity by testing external 
black-box behavior almost impos- 
sible. System complexity also com- 
plicates test equipment and 
procedures. Design for testability 
should increase a system’s testa- 
bility, resulting in improved quali- 
ty while reducing time to market 
and test costs. 

The term system means many 
things to different people. We con- 
sider asystem to be an integrated set of 
hardware and/or software modules. 
Each module is an identifiable part of 
the system with strictly defined func- 
tionality. Hardware, software, or a mix 
of both, can implement each module. 
Our view of DIT  therefore relates to test- 
ing at this abstracted system level, and 
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is a function of the combined testabili- 
ty of all system modules. 

Traditionally, hardware designers 
and test engineers have focused on 
proving the correct manufacture of a 
design and on locating and repairing 
field failures. They have developed sev- 
eral highly structured and effective so- 
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lutions to this problem, including 
scan design and self test. Design 
verification has been a less formal 
task, based on the designer‘s skills. 
However, designers have found 
that structured design-for-test fea- 
tures aiding manufacture and re- 
pair can significantly simplify 
design verification. These features 
reduce verification cycles from 
weeks to days in some cases. 

In contrast, software designers 
and test engineers have targeted 
design validation and verification. 
(Unlike hardware, software does 
not break during field use. Design 
errors, rather than incorrect repli- 
cation or wear out, cause opera- 
tional bugs.) Efforts have focused 
on improving specifications and 
programming styles rather than on 
adding explicit test facilities. For 
example, modular design, struc- 

tured programming, formal specifica- 
tion, and object orientation have all 
proven effective in simplifying test. 

Although these different approaches 
are effective when we can cleanly sepa- 
rate a design’s hardware and software 
parts, problems arise when boundaries 
blur. For example, in the early design 
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stages of a complexsystem, we must de- 
fine system level test strategies. Yet, we 
may not have decided which parts to im- 
plement in hardware and which in soft- 
ware. In other cases, software running 
on general-purpose hardware may ini- 
tially deliver certain functions that we 
subsequently move to firmware or hard- 
ware to improve performance. Designers 
must ensure a testable, finished design 
regardless of implementation decisions. 
Supporting hardware-software code- 
sign’ requires “cotesting” techniques, 
which draw hardware and software test 
techniques together into a cohesive 
whole. (For a review of current DFT tech- 
niques, see the box.) 

The access problem 
Limited access to individual modules 

often limits a complex system’s testabil- 
ity. Design and implementation of a sys- 
tem comprising multiple modules is very 
attractive, because we can subdivide the 
system complexity into comprehensible 
parts. Nevertheless, after assembly, the 
complete system’s behavior turns into 
one black box with the multiplied com- 
plexity of all its components. 

For instance, we can model a mod- 
ule’s behavior using a state machine, 
expressing behavior in terms of states, 
transitions, and conditions. Verifying all 
state transitions can test a module’s 
valid behavior. In general, if a module 
has N states (state space N), there will 
be at least Nstate transitions, requiring 
at least N different tests. 

In a complex system of several mod- 
ules, the number of states increases 
rapidly. The system’s black box behav- 
ior consists of all the modules’ state 
spaces. If the system containsKmodules 
with N states each, the composite sys- 
tem has state space W. We call this ex- 
ponential growth state space explosion. 

Clearly, the testability of modular sys- 
tems improves considerably if we can 
test the modules separately. Hence, 
modular hardware-software designs 
should incorporate access paths for test- 
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ing to enable the testing of separate mod- 
ules. Researchers have widely applied 
this divideandconquer approach to test- 
ing complex, modular, digital circuits. 

Design for system level testability 
We base design for system level testa- 

bility“ on a clearseparation between im- 
plementation-independent system 
specification and the actual hardware- 
software system implementation. In the 
design process, we first create a speci- 
fication of the system’s functional be- 
havior. Such a behavioral specification 
leads to a clear, thorough understand- 
ing of the system to be developed-one 
not blurred by implementation details. 
This specification provides a solid ba- 
sis for partitioning the system into hard- 
ware and software, and choosing an 
appropriate architecture. 

To achieve system level design for 
testability, we must add system level test 
requirements to the Specification. This 
aims at improving the controllability 
and observability of system-embedded 
modules. Next, we must transform the 
implementation-independent test re- 
quirements into actual hardware 
and/or software requirements. Placing 
test requirements in the specification 
can have a serious impact on the actu- 
al system implementation. A design 
may implement test requirements as ex- 
isting test facilities like boundary scan 
paths. On the other hand, test require- 
ments may also demand new hardware 
and software test facilities. 

Separating specification from the ac- 
tual implementation is a basic principle 
of modern design methods. Such meth- 
ods include structured4 and object-ori- 
ented5 analysis and design, as well as 
hardware-software There- 
fore, design for system level testability 
fits well within these modern design 
methods. 

System level testability in the 
specification 

Our basic principle is that we can 

ackle system test complexity by parti- 
ioning the system into modules. 
inserting test functionality into the sys- 
em a1 em testing 
3y firs the 1 modules 
md then the interactions between mod- 
ules. Hardware testing (for example, 

q y  toward design for system level testa- 
bility has two parts. 

Partitioning the system-Struc- 
tured, modular design methods 
automatically lead to improved 
testability. However, we can fur- 
ther improve testability by making 
it a major criterion for system par- 
titioning. 
Adding test functionality-This 
allows us to control and observe 
individual modules and the inter- 
actions among them for testing 
purposes. We first state test func- 
tionality in the system specifica- 
tion, without concern for 
implementation details. In the next 
step of the design process, we in- 
corporate test functionality in the 
actual hardware-software system 
implementation. 

Partitioning. There are many heuris- 
tics and rules of thumb for system par- 
titioning. Minimizing dependencies 
between modules and minimizing par- 
allelism inside a module are important 
to improving testability. 

The partitioning criterion of mini- 
mum dependence between modules 
means that we should partition the sys- 
tem into independent modules. We 
achieve this by minimizing the interac- 
tions and communication between 
modules. During testing, we now can 
isolate a module from its environment 
with relative ease. 

Minimizing parallelism inside a mod- 
ule offers the advantage of producing 
well-testable modules. A module’s par- 
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Figure 1. Model of a partitioned system. 

allelism is an important complexity mea- 
sure. As indicated in the previous sec- 
tion, the number of possible states 
increases exponentially if a module con- 
sists of interacting, parallel, finite-state 
machines. Since this state space explo- 
sion dramatically increases the number 
of required test scenarios, minimizing 
parallelism also reduces this number. 

Ideally, we can model a system as a set 
of communicating processes. The mini- 
mumdependence criterion aims to min- 
imize process interactions. Minimum 
parallelism allows each module to cor- 
respond to a single sequential process. 

Figure 1 shows an example of a par- 
titioned system with five modules. We 
have applied the minimum-depen- 
dence criterion to partition the system 
into a limited number of modules. We 
next applied the minimum-parallelism 
criterion to split complex modules into 
smaller ones. For instance, a complex 
module initially contained both mod- 
ules B and C, but we decomposed this 
module to limit test complexity. 

Adding test functionality. To test 
individual modules and their interac- 
tions, we offer test stimuli to the mod- 
ules and observe the responses at their 
boundaries. This requires us to control 
the module boundaries and observe 
them directly in the system environ- 
ment. In general, however, this is not 

possible; we require paths via other 
modules to offer test stimuli and ob- 
serve the responses of a module under 
test. In Figure 1, we can neither control 
module C's boundaries, nor can we di- 
rectly observe them in the system envi- 
ronment. Testing thus requires test 
paths through other modules. 

These limited control and observa- 
tion capabilities seriously reduce testa- 
bility for several reasons. 

We must set up and maintain test 
paths to and from the module un- 
der test. This may be infeasible or 
require significant effort. 
When the test detects an error, we 
do not know whether the error oc- 
curred in the module under test or 
in the paths. 
In real-time systems, the order and 
timing of events is critical. Thus, 
during test, we should be able to 
control the timing of incoming 
events and observe the timing of 
outgoing events. This is difficult to 
achieve without direct access to 
the module under test. 

To improve testability, we add test 
functionality to the system specification 
and use three kinds of test functions. 

Transparent test mode (7TM). We 
can eliminate the accessibility problem 
if the modules that constitute the path 
to the module under test are transpar- 
ent. They are transparent in the sense 
that they convey signals without 
change. We achieve this by extending 
the module's behavior with an addi- 
tional transparent-test operating mode. 
Whenever a module switches into this 
TTM, it passes incoming events direct- 
ly to outgoing events in a predefined 
way, providing a transparent path from 
module inputs to module outputs. 

Additionally, if it is not possible or de- 
sirable to make a test path from the 
tester to every access point of the mod- 
ule under test, we can include a test r e  

sponder. This test responder more or 
less inverts the test path: It returns con- 
trollable signals from the module under 
test to the tester. 

that we often design them specifically 
A disadvantage of these functio 

Nonetheless, the TTM concept can be 

Built-in self-test (BIST). We can equip 
a module with self-test, which reduces 
the required controllability and ob- 
servability from the system environ- 
ment. The module's BIST functionality 
offers test stimuli to the module and ob- 
serves and evaluates the responses. We 
start and control the BIST in the mod- 
ule from the system environment. 
When the test ends, it returns a go/nc-go 
response or diagnost 
the system environment. 

Point of control and observation 
(PCO). At the module boundaries, we 
can insert points allowing us to control 
and observe interconnections between 
modules directly in the system envi- 
ronment. We insert a PCO in an inter- 
connection between two modules. As 
shown in Figure 2, a PCO has three op- 
eration modes, selected by the mode 
input. Table 1 lists how we use these dif- 
ferent modes. (Readers can contrast 
this abstracted representation with the 
analog test access tec 
for standardization 
1149.4."') 

supports all three modes. Of cou 
is also possible to implement on1 
modes. For instance, a point of obser- 
vation (PO) supports only the transpar- 
ent and observation modes. Besides 
using PCOs for observing and CO 

ling interconnections, we can 
equip data stores with them. In obser- 
vation mode, we can use the PCO to 
monitor the contents of a data store. In 
test mode, we can use the PCO to read 

A complete PCO implementation 
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Solutions in standardization. IS0 
(International Organization for 

Observation Mode Control 
(a) output input 

, 

PCO PCO 
input output 

b 

(b) Mode 

PCO 
input output 

Observation Mode 
(c) output 

input output 53-  Observation Mode Control 

(a) output input 

Figure 2. PCO (a) and PCO operating 
modes: transparent (b), observation (c), 
and test ld). 

and write a data store. 
In a system, we can control each 

PCO individually via its mode input. 
However, a common mode select can 
control multiple PCOs. 

TTM and PCO functionalities offer 
paths between the system environment 
and embedded modules. In addition to 
test information, these paths can also 
transport system management infor- 
mation, such as programming updates 
and data. 

able 1. PCO operating modes. 

Mode Function 

Transparent We use this mode during normal operation when we require no 
observation or control. The PCO input passes directly to the PCO 
output, so the PCO is completely transparent. The control input 
and observation output are of no concern. 

Observation This mode monitors the system during normal operation. The PCO 
input passes to both the PCO and observation outputs. The 
observation output monitors data passing through the PCO in the 
system environment. The control input is also of no concern in this 
mode. 
This mode tests modules in isolation from their environment. The 
PCO input passes to the observation output. The control input 
passes to the PCO output. We use the PCO to observe the sending 
module at the PCO input and to control the receiving module at 
the PCO output. Both control and observation actions proceed 
independently, so we can simultaneously test both modules. 

Test 

Managing system Managed system 

Q3 

Management 
interface 

gure 3. Use of PCOs in the I S 0  10 164- I 

andardization) and ITU (International 
4ecommunications Union, formerly 
CI'IT) are standardizing the applica- 
3n of telecommunication manage- 
lent principles to test purposes in draft 
0 10164-14.'9 They call this technique 
source boundary testingz2 (see Figure 
I.  The basis of this concept originated 
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A0 Associated object 
MORT Managed object referring to test 

PCO Point of control and observation 

resource boundary test category. 

in the boundary scan testing techniques 
for hardware. 

Experiments. The TRIBUNE project 
(Testing, Ratification and Interoper- 
ability of the Broadband User Network 
Interface) implemented an example 
use of PCOs in a practical situation. This 
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- 
service 

IL 
To interface 

Figure 4. ATM test configuration. 

Upper interface service 

_....___... 

Lower interface service 

Figure 5. PCO schematic view 

is project 2081 of Race (Research of Ad- 
vanced Communications Technologies 
in Europe). 

Within TRIBUNE, 12 European com- 
panies are developing a test environ- 
ment for broadband ISDN systems 
based on asynchronous transfer mode 
technology. Project participants 
designed, implemented, and tested 
communication systems based on pre- 

Data 

-ft 
Control 

liminary ITU broadband protocol spec- 
ifications. The TRIBUNE systems’ sig- 
naling plane contains five protocol 
layers or sublayers (LSAS, SSCS, CP- 
AAL5, ATM, and PHY). A detailed de- 
scription of this experiment is available 
in Witteman and van Wui j t s~ inke l .~~  

Test architecture. In this experiment, 
a special test interface connects all sys- 

tems. The test interface has functions 
similar to the standardized test access 
described earlier. However we do not 
use the test interface for purposes other 
than testing. Figure 4 shows the TRI- 
BUNE test configuration. The test sys- 
tem ships its testing data over a TCP/IP 
(Transmission Control Protocol/ 
Internet Protocol) channel to the sys- 
tem under test. The TCP/IP channel 
uses a simple test management protc- 
col to perform multiplexing, flow con- 
trol, and identification of data and 
control signals. In the system under test, 
it demultiplexes and directs the signals 
to the appropriate PCOs. 

TRIBUNE systems implement a limit- 
ed number of PCOs, each placed be- 
tween two communicating entities, that 
is, at a protocol interface. The PCOs 
have functions to observe and control 
the behavior of the protocol layers un- 
der test (implementation under test). 
Figure 5 shows a PCO with two identi- 
cal switching cells to control informa- 
tion streams in both directions at the 
interface. The basis for this technique 
is the IEEE standard boundary scan 
conceptlo developed for hardware test- 
ing. In Figure 4, two PCOs are necessary 
to completely test the implementation 
under test (LSAS and SSCS). We could 
easily add more PCOs, although TRI- 
BUNE purposes did not require them. 

PCO design. The PCO control part 
uses separate signals to exchange data 
and control information (see Figure 5). 
The control signals can be transferred 
directly to the cells. We may, however, 
have to adapt the data to the coding of 
service primitives at the upper and low- 
er interfaces of the implementation un- 
der test. These interface adapters 
depend on the implementation. Two 
symbolic switches control the informa- 
tion stream within a switching cell. 
Switch S1 controls whether or not the 
test system can observe the incoming 
information stream. AVieW (V) or Blind 
(B) control signal can set S1. Switch S2 
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controls whether or not the incoming 
information stream should transfer 
transparently to the adjacent layer. A 
Connect (C) or Disconnect (D) control 
signal sets S2. Four different switch com- 
binations yield four possible modes (or 
states) for each switching cell. 

Experiment evaluation. The TRIBUNE 
test architecture allows various test con- 
figurations not possible with conven- 
tional test techniques. The architecture 
not only allows direct testing of internal 
modules, it also facilitates interoper- 
ability testing of the communication 
stacks without using the application 
software.The test architecture (Figure 
4) shows how we can test the combi- 
nation of layers WAS and SSCS using a 
multilayer, local test method. The test 
system can control both the upper (to 
WAS) and lower (to SSCS) tester, which 
implies a substantial increase in the 
number of traversed states. In this way, 
we achieve a more balanced test cov- 
erage. Comparing this technique with 
conventional test methods, we estimate 
that it is possible to double the number 
of implementable and executable test 
purposes. Moreover, the actual tests can 
be shorter, due to significant reduction 
of the synchronizing sequences' 
lengths. 

The addition of explicit test functions 
in the system under test does take extra 
money and time. We represent these 
costs as lines of programming code. 
Since we specified the TRIBUNE sys- 
tems formally in the Specification and 
Description Language, we measure the 
code in units of SDL lines. 

An average protocol layer takes an 
estimated 5,000 lines of SDL code. Asin- 
gle PCO contains about 800 lines, while 
the passive test control function needs 
500 lines. Any additional PCO may re- 
quire 80 new lines of code. Thus, a sys- 
tem under test containing a protocol 
stack with five layers and five PCOs will 
need 26,620 lines of code, of which test 
functions consume 6%. 

Other 
subsystems 

System 

controller 

Figure 6. Hierarchical test architecture. 

Implementation aspects 
We next discuss the step from speci- 

kation to hardware-software imple- 
mentation, focusing on how to 
implement the specified test function- 
ility in hardware and/or software. 

When constructing the system's hard- 
uare-software architecture, we can in- 
Zorporate a recursive test hierarchy into 
:he system (Figure 6). For full test and 
diagnostic control, this test architecture 
should at least offer the functions in the 
'allowing list. Preferably, these func- 
ions should be available at every test 
iierarchy level: 

initialization of system, subsystems, 
modules, or components (mode 
setting, reset) 
access to and control of system 
components at lower levels in the 
hierarchy 
transportation of test stimuli 
control of built-in test facilities 
collection of test results 
identification of components 

In general, two opposing strategies ex- 
st for incorporating a hierarchical test 
irchitecture: centralized and distrib- 
~ t e d . ~ J ~  In a centralized strategy, a sin- 
;le test control module at the top level 
iccesses and controls all lower levels in 
he system. The distributed strategy dis- 

tributes test control over the individual 
levels as much as possible. Although 
both strategies have advantages and d k  
advantages, we prefer the distributed 
strategy for the reasons discussed next. 

The centralized strategy does not re- 
quire us to equip every test level with 
modulespecific test and maintenance 
knowledge, providing asimple and low- 
cost test architecture. However, because 
the central test module contains the im- 
plementation knowledge, we may not 
interchange modules that are function- 
ally equal but implemented in different 
technologies. Hence, the centralized 
strategy is rather inflexible. Furthermore, 
it introduces significant communication 
overhead for transporting test data be- 
tween hierarchy levels. 

The distributed test strategy is more 
flexible, because it locates test knowl- 
edge at the individual system levels. This 
facilitates concurrent testing and thus re- 
duces test time. Distribution of test func- 
tions also reduces the system test control 
module's complexity. Furthermore, lo- 
cating implementation knowledge at the 
individual test levels stimulates imple- 
mentation independence, because the 
system test controller can operate at an 
implementation-independent level. This 
also eliminates the need for complex 
and application-specific test interfaces. 
By providing standardized, general- 
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purpose test interfaces, the distributed 
strategy facilitates use of commercially 
available products that are fully inter- 
changeable. In this way, we can produce 
highly testable systems with little effort. 
These advantages show that the distrib- 
uted approach is highlysuitable for test- 
ing complex systems. 

The centralized and distributed test 
strategies represent extremes. In prac- 
tice, designers may often use a mixed 
strategy that incorporates features of 
both. 

ARDWARE AND SOFTWARE design- 
ers have developed different DFT tech- 
niques. Hardware DIT focuses on 
implementation, while software DFT fo- 
cuses on specification. 

The application of these techniques 
alone does not produce satisfactory sys- 
tem level testability. The power of the 
individual DFT techniques may well 
need to come together in one overall 
DFT approach. 

Modular systems, composed of mul- 
tiple parts, offer no advantages to 
testers, unless we can test the system 
parts separately. Modular design should 
imply modular testing. The next chal- 
lenge will be developing a complete d e  
sign process. Such a process should 
provide implementation-independent 
testability requirements in the specifi- 
cation, like transparent test mode, built- 
in self-test, and points of control and 
observation. We must incorporate these 
testability requirements in the hard- 
ware-software system implementation. 
This implies translating high-level testa- 
bility requiremqnts onto existing or new 
test function implementations. e 
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