

Design for testability in hardware-software systems

Citation for published version (APA):
Vranken, H. P. E., Witteman, M. F., & Wuijtswinkel, van, R. C. (1996). Design for testability in hardware-software
systems. IEEE Design and Test of Computers, 13(3), 79-87.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/c9447b4d-3689-473e-818c-cbdb7c7cf213

Design for Testability in
Ha rdwa re-Softwa re

Sys tern s

CREATING TESTABLE designs is
key to developing complex hard-
ware and/or software systems that
function reliably throughout their
operational life. Without testabili-
ty, design flaws may escape de-
tection until a product is in the
hands of users; equally, opera-
tional failures may prove difficult
to detect and diagnose.

Increased system complexity
makes thorough assessment of sys-
tem integrity by testing external
black-box behavior almost impos-
sible. System complexity also com-
plicates test equipment and
procedures. Design for testability
should increase a system’s testa-
bility, resulting in improved quali-
ty while reducing time to market
and test costs.

The term system means many
things to different people. We con-
sider asystem to be an integrated set of
hardware and/or software modules.
Each module is an identifiable part of
the system with strictly defined func-
tionality. Hardware, software, or a mix
of both, can implement each module.
Our view of DIT therefore relates to test-
ing at this abstracted system level, and

FALL 1996

HARALD P.E. VRANKEN

Eindhoven University of

Tech nology

MARC F. WllTEMAN

RONALD C. VAN

WUIJTSWINKEL

KPN Research

HARALD P.E. VRANKEN

Eindhoven University of

Tech nology

MARC F. WllTEMAN

RONALD C. VAN

WUIJTSWINKEL

KPN Research

is a function of the combined testabili-
ty of all system modules.

Traditionally, hardware designers
and test engineers have focused on
proving the correct manufacture of a
design and on locating and repairing
field failures. They have developed sev-
eral highly structured and effective so-

0740-7475/96/$05.00 0 1996 IEEE

lutions to this problem, including
scan design and self test. Design
verification has been a less formal
task, based on the designer‘s skills.
However, designers have found
that structured design-for-test fea-
tures aiding manufacture and re-
pair can significantly simplify
design verification. These features
reduce verification cycles from
weeks to days in some cases.

In contrast, software designers
and test engineers have targeted
design validation and verification.
(Unlike hardware, software does
not break during field use. Design
errors, rather than incorrect repli-
cation or wear out, cause opera-
tional bugs.) Efforts have focused
on improving specifications and
programming styles rather than on
adding explicit test facilities. For
example, modular design, struc-

tured programming, formal specifica-
tion, and object orientation have all
proven effective in simplifying test.

Although these different approaches
are effective when we can cleanly sepa-
rate a design’s hardware and software
parts, problems arise when boundaries
blur. For example, in the early design

79

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on June 24,2010 at 10:19:56 UTC from IEEE Xplore. Restrictions apply.

S Y S T E M L E V E L T E S T

stages of a complexsystem, we must de-
fine system level test strategies. Yet, we
may not have decided which parts to im-
plement in hardware and which in soft-
ware. In other cases, software running
on general-purpose hardware may ini-
tially deliver certain functions that we
subsequently move to firmware or hard-
ware to improve performance. Designers
must ensure a testable, finished design
regardless of implementation decisions.
Supporting hardware-software code-
sign’ requires “cotesting” techniques,
which draw hardware and software test
techniques together into a cohesive
whole. (For a review of current DFT tech-
niques, see the box.)

The access problem
Limited access to individual modules

often limits a complex system’s testabil-
ity. Design and implementation of a sys-
tem comprising multiple modules is very
attractive, because we can subdivide the
system complexity into comprehensible
parts. Nevertheless, after assembly, the
complete system’s behavior turns into
one black box with the multiplied com-
plexity of all its components.

For instance, we can model a mod-
ule’s behavior using a state machine,
expressing behavior in terms of states,
transitions, and conditions. Verifying all
state transitions can test a module’s
valid behavior. In general, if a module
has N states (state space N), there will
be at least Nstate transitions, requiring
at least N different tests.

In a complex system of several mod-
ules, the number of states increases
rapidly. The system’s black box behav-
ior consists of all the modules’ state
spaces. If the system containsKmodules
with N states each, the composite sys-
tem has state space W. We call this ex-
ponential growth state space explosion.

Clearly, the testability of modular sys-
tems improves considerably if we can
test the modules separately. Hence,
modular hardware-software designs
should incorporate access paths for test-

80

ing to enable the testing of separate mod-
ules. Researchers have widely applied
this divideandconquer approach to test-
ing complex, modular, digital circuits.

Design for system level testability
We base design for system level testa-

bility“ on a clearseparation between im-
plementation-independent system
specification and the actual hardware-
software system implementation. In the
design process, we first create a speci-
fication of the system’s functional be-
havior. Such a behavioral specification
leads to a clear, thorough understand-
ing of the system to be developed-one
not blurred by implementation details.
This specification provides a solid ba-
sis for partitioning the system into hard-
ware and software, and choosing an
appropriate architecture.

To achieve system level design for
testability, we must add system level test
requirements to the Specification. This
aims at improving the controllability
and observability of system-embedded
modules. Next, we must transform the
implementation-independent test re-
quirements into actual hardware
and/or software requirements. Placing
test requirements in the specification
can have a serious impact on the actu-
al system implementation. A design
may implement test requirements as ex-
isting test facilities like boundary scan
paths. On the other hand, test require-
ments may also demand new hardware
and software test facilities.

Separating specification from the ac-
tual implementation is a basic principle
of modern design methods. Such meth-
ods include structured4 and object-ori-
ented5 analysis and design, as well as
hardware-software There-
fore, design for system level testability
fits well within these modern design
methods.

System level testability in the
specification

Our basic principle is that we can

ackle system test complexity by parti-
ioning the system into modules.
inserting test functionality into the sys-
em a1 em testing
3y firs the 1 modules
md then the interactions between mod-
ules. Hardware testing (for example,

q y toward design for system level testa-
bility has two parts.

Partitioning the system-Struc-
tured, modular design methods
automatically lead to improved
testability. However, we can fur-
ther improve testability by making
it a major criterion for system par-
titioning.
Adding test functionality-This
allows us to control and observe
individual modules and the inter-
actions among them for testing
purposes. We first state test func-
tionality in the system specifica-
tion, without concern for
implementation details. In the next
step of the design process, we in-
corporate test functionality in the
actual hardware-software system
implementation.

Partitioning. There are many heuris-
tics and rules of thumb for system par-
titioning. Minimizing dependencies
between modules and minimizing par-
allelism inside a module are important
to improving testability.

The partitioning criterion of mini-
mum dependence between modules
means that we should partition the sys-
tem into independent modules. We
achieve this by minimizing the interac-
tions and communication between
modules. During testing, we now can
isolate a module from its environment
with relative ease.

Minimizing parallelism inside a mod-
ule offers the advantage of producing
well-testable modules. A module’s par-

IEEE DESIGN & TEST OF COMPUTERS

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on June 24,2010 at 10:19:56 UTC from IEEE Xplore. Restrictions apply.

FALL 1996 81

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on June 24,2010 at 10:19:56 UTC from IEEE Xplore. Restrictions apply.

S Y S T E M L E V E L T E S T

Figure 1. Model of a partitioned system.

allelism is an important complexity mea-
sure. As indicated in the previous sec-
tion, the number of possible states
increases exponentially if a module con-
sists of interacting, parallel, finite-state
machines. Since this state space explo-
sion dramatically increases the number
of required test scenarios, minimizing
parallelism also reduces this number.

Ideally, we can model a system as a set
of communicating processes. The mini-
mumdependence criterion aims to min-
imize process interactions. Minimum
parallelism allows each module to cor-
respond to a single sequential process.

Figure 1 shows an example of a par-
titioned system with five modules. We
have applied the minimum-depen-
dence criterion to partition the system
into a limited number of modules. We
next applied the minimum-parallelism
criterion to split complex modules into
smaller ones. For instance, a complex
module initially contained both mod-
ules B and C, but we decomposed this
module to limit test complexity.

Adding test functionality. To test
individual modules and their interac-
tions, we offer test stimuli to the mod-
ules and observe the responses at their
boundaries. This requires us to control
the module boundaries and observe
them directly in the system environ-
ment. In general, however, this is not

possible; we require paths via other
modules to offer test stimuli and ob-
serve the responses of a module under
test. In Figure 1, we can neither control
module C's boundaries, nor can we di-
rectly observe them in the system envi-
ronment. Testing thus requires test
paths through other modules.

These limited control and observa-
tion capabilities seriously reduce testa-
bility for several reasons.

We must set up and maintain test
paths to and from the module un-
der test. This may be infeasible or
require significant effort.
When the test detects an error, we
do not know whether the error oc-
curred in the module under test or
in the paths.
In real-time systems, the order and
timing of events is critical. Thus,
during test, we should be able to
control the timing of incoming
events and observe the timing of
outgoing events. This is difficult to
achieve without direct access to
the module under test.

To improve testability, we add test
functionality to the system specification
and use three kinds of test functions.

Transparent test mode (7TM). We
can eliminate the accessibility problem
if the modules that constitute the path
to the module under test are transpar-
ent. They are transparent in the sense
that they convey signals without
change. We achieve this by extending
the module's behavior with an addi-
tional transparent-test operating mode.
Whenever a module switches into this
TTM, it passes incoming events direct-
ly to outgoing events in a predefined
way, providing a transparent path from
module inputs to module outputs.

Additionally, if it is not possible or de-
sirable to make a test path from the
tester to every access point of the mod-
ule under test, we can include a test r e

sponder. This test responder more or
less inverts the test path: It returns con-
trollable signals from the module under
test to the tester.

that we often design them specifically
A disadvantage of these functio

Nonetheless, the TTM concept can be

Built-in self-test (BIST). We can equip
a module with self-test, which reduces
the required controllability and ob-
servability from the system environ-
ment. The module's BIST functionality
offers test stimuli to the module and ob-
serves and evaluates the responses. We
start and control the BIST in the mod-
ule from the system environment.
When the test ends, it returns a go/nc-go
response or diagnost
the system environment.

Point of control and observation
(PCO). At the module boundaries, we
can insert points allowing us to control
and observe interconnections between
modules directly in the system envi-
ronment. We insert a PCO in an inter-
connection between two modules. As
shown in Figure 2, a PCO has three op-
eration modes, selected by the mode
input. Table 1 lists how we use these dif-
ferent modes. (Readers can contrast
this abstracted representation with the
analog test access tec
for standardization
1149.4."')

supports all three modes. Of cou
is also possible to implement on1
modes. For instance, a point of obser-
vation (PO) supports only the transpar-
ent and observation modes. Besides
using PCOs for observing and CO

ling interconnections, we can
equip data stores with them. In obser-
vation mode, we can use the PCO to
monitor the contents of a data store. In
test mode, we can use the PCO to read

A complete PCO implementation

82 IEEE DESIGN & TEST OF COMPUTERS

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on June 24,2010 at 10:19:56 UTC from IEEE Xplore. Restrictions apply.

input -

Solutions in standardization. IS0
(International Organization for

Observation Mode Control
(a) output input

,

PCO PCO
input output

b

(b) Mode

PCO
input output

Observation Mode
(c) output

input output 53- Observation Mode Control

(a) output input

Figure 2. PCO (a) and PCO operating
modes: transparent (b), observation (c),
and test ld).

and write a data store.
In a system, we can control each

PCO individually via its mode input.
However, a common mode select can
control multiple PCOs.

TTM and PCO functionalities offer
paths between the system environment
and embedded modules. In addition to
test information, these paths can also
transport system management infor-
mation, such as programming updates
and data.

able 1. PCO operating modes.

Mode Function

Transparent We use this mode during normal operation when we require no
observation or control. The PCO input passes directly to the PCO
output, so the PCO is completely transparent. The control input
and observation output are of no concern.

Observation This mode monitors the system during normal operation. The PCO
input passes to both the PCO and observation outputs. The
observation output monitors data passing through the PCO in the
system environment. The control input is also of no concern in this
mode.
This mode tests modules in isolation from their environment. The
PCO input passes to the observation output. The control input
passes to the PCO output. We use the PCO to observe the sending
module at the PCO input and to control the receiving module at
the PCO output. Both control and observation actions proceed
independently, so we can simultaneously test both modules.

Test

Managing system Managed system

Q3

Management
interface

gure 3. Use of PCOs in the I S 0 10 164- I

andardization) and ITU (International
4ecommunications Union, formerly
CI'IT) are standardizing the applica-
3n of telecommunication manage-
lent principles to test purposes in draft
0 10164-14.'9 They call this technique
source boundary testingz2 (see Figure
I. The basis of this concept originated

FALL 1996

A0 Associated object
MORT Managed object referring to test

PCO Point of control and observation

resource boundary test category.

in the boundary scan testing techniques
for hardware.

Experiments. The TRIBUNE project
(Testing, Ratification and Interoper-
ability of the Broadband User Network
Interface) implemented an example
use of PCOs in a practical situation. This

83

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on June 24,2010 at 10:19:56 UTC from IEEE Xplore. Restrictions apply.

S Y S T E M L E V E L T E S T

-
service

IL
To interface

Figure 4. ATM test configuration.

Upper interface service

_....___...

Lower interface service

Figure 5. PCO schematic view

is project 2081 of Race (Research of Ad-
vanced Communications Technologies
in Europe).

Within TRIBUNE, 12 European com-
panies are developing a test environ-
ment for broadband ISDN systems
based on asynchronous transfer mode
technology. Project participants
designed, implemented, and tested
communication systems based on pre-

Data

-ft
Control

liminary ITU broadband protocol spec-
ifications. The TRIBUNE systems’ sig-
naling plane contains five protocol
layers or sublayers (LSAS, SSCS, CP-
AAL5, ATM, and PHY). A detailed de-
scription of this experiment is available
in Witteman and van Wui j t s~ inke l .~~

Test architecture. In this experiment,
a special test interface connects all sys-

tems. The test interface has functions
similar to the standardized test access
described earlier. However we do not
use the test interface for purposes other
than testing. Figure 4 shows the TRI-
BUNE test configuration. The test sys-
tem ships its testing data over a TCP/IP
(Transmission Control Protocol/
Internet Protocol) channel to the sys-
tem under test. The TCP/IP channel
uses a simple test management protc-
col to perform multiplexing, flow con-
trol, and identification of data and
control signals. In the system under test,
it demultiplexes and directs the signals
to the appropriate PCOs.

TRIBUNE systems implement a limit-
ed number of PCOs, each placed be-
tween two communicating entities, that
is, at a protocol interface. The PCOs
have functions to observe and control
the behavior of the protocol layers un-
der test (implementation under test).
Figure 5 shows a PCO with two identi-
cal switching cells to control informa-
tion streams in both directions at the
interface. The basis for this technique
is the IEEE standard boundary scan
conceptlo developed for hardware test-
ing. In Figure 4, two PCOs are necessary
to completely test the implementation
under test (LSAS and SSCS). We could
easily add more PCOs, although TRI-
BUNE purposes did not require them.

PCO design. The PCO control part
uses separate signals to exchange data
and control information (see Figure 5).
The control signals can be transferred
directly to the cells. We may, however,
have to adapt the data to the coding of
service primitives at the upper and low-
er interfaces of the implementation un-
der test. These interface adapters
depend on the implementation. Two
symbolic switches control the informa-
tion stream within a switching cell.
Switch S1 controls whether or not the
test system can observe the incoming
information stream. AVieW (V) or Blind
(B) control signal can set S1. Switch S2

84 lEEE DESIGN 8k TEST OF COMPUTERS

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on June 24,2010 at 10:19:56 UTC from IEEE Xplore. Restrictions apply.

controls whether or not the incoming
information stream should transfer
transparently to the adjacent layer. A
Connect (C) or Disconnect (D) control
signal sets S2. Four different switch com-
binations yield four possible modes (or
states) for each switching cell.

Experiment evaluation. The TRIBUNE
test architecture allows various test con-
figurations not possible with conven-
tional test techniques. The architecture
not only allows direct testing of internal
modules, it also facilitates interoper-
ability testing of the communication
stacks without using the application
software.The test architecture (Figure
4) shows how we can test the combi-
nation of layers WAS and SSCS using a
multilayer, local test method. The test
system can control both the upper (to
WAS) and lower (to SSCS) tester, which
implies a substantial increase in the
number of traversed states. In this way,
we achieve a more balanced test cov-
erage. Comparing this technique with
conventional test methods, we estimate
that it is possible to double the number
of implementable and executable test
purposes. Moreover, the actual tests can
be shorter, due to significant reduction
of the synchronizing sequences'
lengths.

The addition of explicit test functions
in the system under test does take extra
money and time. We represent these
costs as lines of programming code.
Since we specified the TRIBUNE sys-
tems formally in the Specification and
Description Language, we measure the
code in units of SDL lines.

An average protocol layer takes an
estimated 5,000 lines of SDL code. Asin-
gle PCO contains about 800 lines, while
the passive test control function needs
500 lines. Any additional PCO may re-
quire 80 new lines of code. Thus, a sys-
tem under test containing a protocol
stack with five layers and five PCOs will
need 26,620 lines of code, of which test
functions consume 6%.

Other
subsystems

System

controller

Figure 6. Hierarchical test architecture.

Implementation aspects
We next discuss the step from speci-

kation to hardware-software imple-
mentation, focusing on how to
implement the specified test function-
ility in hardware and/or software.

When constructing the system's hard-
uare-software architecture, we can in-
Zorporate a recursive test hierarchy into
:he system (Figure 6). For full test and
diagnostic control, this test architecture
should at least offer the functions in the
'allowing list. Preferably, these func-
ions should be available at every test
iierarchy level:

initialization of system, subsystems,
modules, or components (mode
setting, reset)
access to and control of system
components at lower levels in the
hierarchy
transportation of test stimuli
control of built-in test facilities
collection of test results
identification of components

In general, two opposing strategies ex-
st for incorporating a hierarchical test
irchitecture: centralized and distrib-
~ t e d . ~ J ~ In a centralized strategy, a sin-
;le test control module at the top level
iccesses and controls all lower levels in
he system. The distributed strategy dis-

tributes test control over the individual
levels as much as possible. Although
both strategies have advantages and d k
advantages, we prefer the distributed
strategy for the reasons discussed next.

The centralized strategy does not re-
quire us to equip every test level with
modulespecific test and maintenance
knowledge, providing asimple and low-
cost test architecture. However, because
the central test module contains the im-
plementation knowledge, we may not
interchange modules that are function-
ally equal but implemented in different
technologies. Hence, the centralized
strategy is rather inflexible. Furthermore,
it introduces significant communication
overhead for transporting test data be-
tween hierarchy levels.

The distributed test strategy is more
flexible, because it locates test knowl-
edge at the individual system levels. This
facilitates concurrent testing and thus re-
duces test time. Distribution of test func-
tions also reduces the system test control
module's complexity. Furthermore, lo-
cating implementation knowledge at the
individual test levels stimulates imple-
mentation independence, because the
system test controller can operate at an
implementation-independent level. This
also eliminates the need for complex
and application-specific test interfaces.
By providing standardized, general-

FALL 1996 85

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on June 24,2010 at 10:19:56 UTC from IEEE Xplore. Restrictions apply.

S Y S T E M L E V E L T E S T

purpose test interfaces, the distributed
strategy facilitates use of commercially
available products that are fully inter-
changeable. In this way, we can produce
highly testable systems with little effort.
These advantages show that the distrib-
uted approach is highlysuitable for test-
ing complex systems.

The centralized and distributed test
strategies represent extremes. In prac-
tice, designers may often use a mixed
strategy that incorporates features of
both.

ARDWARE AND SOFTWARE design-
ers have developed different DFT tech-
niques. Hardware DIT focuses on
implementation, while software DFT fo-
cuses on specification.

The application of these techniques
alone does not produce satisfactory sys-
tem level testability. The power of the
individual DFT techniques may well
need to come together in one overall
DFT approach.

Modular systems, composed of mul-
tiple parts, offer no advantages to
testers, unless we can test the system
parts separately. Modular design should
imply modular testing. The next chal-
lenge will be developing a complete d e
sign process. Such a process should
provide implementation-independent
testability requirements in the specifi-
cation, like transparent test mode, built-
in self-test, and points of control and
observation. We must incorporate these
testability requirements in the hard-
ware-software system implementation.
This implies translating high-level testa-
bility requiremqnts onto existing or new
test function implementations. e

Acknowledgments
We gratefully acknowledge Ilja van Rhee

for his considerable contribution to this ar-
ticle. We also thank Ren6 Segers and Mario
Stevens of the Eindhoven University of
Technology for their support. Finally, we
thank Colin Maunder for his review and
valuable suggestions.

References
1. W.H. Wolf, “Hardware-Software CO-De-

sign of Embedded Systems,” Proc. IEEE,
Vol. 82, No. 7, IEEE, Piscataway, N.J.,

2. D.D. Gajski and F. Vahid, “Specification
and Design of Embedded Hardware-
Software Systems,” IEEEDesign & Test o f
Computers, Vol. 12, No. 1, Spring 1995,

3. H.P.E. Vranken et al., ‘System-Level
Testability of Hardware/Software Sys-
tems,” Roc. Int’l Test ConL, IEEE CS Press,
1994, pp. 134142.

4. P.T. Ward and S.J. Mellor, Stnrctured De-
velopment for Real-Time Systems, Pren-
tice Hall, Englewood Cliffs, N.J., 1985.

5. I. Jacobson et al., Object-Oriented Soft-
ware Engineering: A Use Case Driven Ap-
proach, Addison-Wesley, Reading, Mass.,
1992.

6. F.P.M. Beenker, R.G. Bennetts, A.P. Thi-
jssen, Testabili@ Concepts for Digital ICs:
The Macro TestApproach, Kluwer, 1995.

7. C. Maunder, “A Univevsal Framework for
Managed Built-In Test,” Proc. Int’l Test
Conf, IEEE Computer Society Press, Los
Alamitos, Calif., 1993, pp. 21-29.

8. V.D. Agrawal, C.R. Kime, and K.K. Salu-
ja, “ATutorial on Built-InSelf-Test, Part 1:
Principles,” IEEE Design di Test of Com-
puters, Vol. 10, No. 1, Mar. 1993, pp. 73-
82.

9. V.D. Agrawal, C.R. Kime, and K.K. Salu-
ja, “ATutorial on Built-In Self-Test, Part 2:
Applications,” IEEE Design & Test of
Computers, Vol. 10, No. 2, June 1993, pp.

10. IEEE Std 1149.1, Test Access Port and
Bounday-Scan Architecture, IEEE, 1990.

11. L. Whetsel, “Hierarchically Accessing
1149.1 Applications in a System Envi-

1994, pp. 967-989.

pp. 53-67.

69-77.

ronment,” Proc Int’l Test Conf, IEEE CS
Press, 1993, pp. 517-526.

12 IEEE Std 1149.5, Standard Module Test
and Maintenance Bus, IEEE, 1995.

13. J W Sheppard and W.R. Simpson, series
of 6 articles on system test and diagno-
sis, IEEE Design & Test o f Computers,
Sept. 1991 to June 1993.

14 W R Simpson and J.W. Sheppard, Sys-
tem Test and Diagnosis, Kluwer, Boston,
1994.

15. B. Beizer, Software Testing Techniques,
Van Nostrand Reinhold, New York, 1990.

16. ISO/IEC 9646-1, Information Technolo-
gy-OSI Conformance Testing Method-
ology and Framework, Part 1. General
Concepts, Int’l Organization for Stan-
dardization, Geneva, Apr. 1994.

17. ISO/IEC IS 10164-12 Information Tech-
nology-Open Systems Interconnec-
tion-Systems Management, Part 12. Test
Management Function, (also Recom-
mendation ITUX 7 4 3 , Int’l Organization
for Standardization, 1992.

18. R. McRee, “OS1 Test Management An In-
troduction,” IEEE Design & Test of Com-
puters, Vol. 12, No 4, Winter 1995, pp

19. ISO/IEC IS I O 1 64-14 @raft) Information
Technology-Open Systems Intercon-
nection-Systems Management, Part 14.
Confidence and Diagnostic Test Cate-
gories (ITU Recommendation X.737),
Int’l Organization for Standardization,
June 1994

20. M.S. Abadir and M.A Breuer, “A Knowl-
edge-Based System for Designing
Testable VLSI Chips,” IEEEDesign & Test
ofcomputers, Vol. 2, No 4, Aug 1985, pp.

21 KP Parker, J.E McDermid, and S.
Oresjo, “Structure and Metrology for an
Analog Testability Bus,” Proc. Int’l Test
ConL, IEEE CS Press, 1993, pp. 309-322.

22. R.C. van Wuijtswinkel and M.F. Witte-
man, “Testing Using Telecommunica-
tions Management,” Protocol Test
Systems VIL Chapman & Hall, London,
1995.

23. M.F. Witteman and R.C. van Wui-
jtswinkel, “ATM Broadband Testing Us-

68-80.

56-68

86 IEEE DESIGN 8t TEST OF COMPUTERS

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on June 24,2010 at 10:19:56 UTC from IEEE Xplore. Restrictions apply.

ing the Feny Principle,” Protocol TestSys-
terns VI, North-Holland, Amsterdam,
1994, pp. 125-138.

Harald P.E. Vranken is currently a PhD stu-
dent in the Department of Electrical Engi-
neering at the Eindhoven University of
Technology. His research interests include
design for test and testing at the system level,
focusing on embedded, real-time systems
that incorporate both hardware and embed-
ded software. Vranken holds the MS degree
from the Department of Electrical Engineer-
ing at the Eindhoven University of Technol-
ogy, the Netherlands, and also completed the
postmaster‘s education program in informa-
tion and communication technology at the
Stan Ackermans Institute in Eindhoven.

Marc F. Witteman is a project leader for
testing communication systems at KPN Re-
search, where he started work in confor-
mance testing. He has participated in
several test projects for GSM, intelligent net-
work, and ATM protocols. His favorite sub-
jects are the investigation of testability and
the design of test architectures. Currently,
his main concern is the validation of IN ser-
vices and chip cards. Witteman holds an
MSc from the Department of Electrotech-
nical Engineering at the University of Delft,
the Netherlands.

Ronald C. van Wuijtswinkel also works
for KPN Research, the research laboratory
of Royal PTT Nederland N.V. He has par-
ticipated in several test projects for GSM, IN,
and ATM protocols and for PSTN, ISDN and
IN services. These experiences contributed
to new developments that improve com-
munication systems testability. He current-
ly develops and plans joint test activities
between Unisource partners. Van Wui-
jtswinkel graduated with an MSc from the
Department of Electrical Engineering at the
Eindhoven University of Technology.

Address questions or comments about this
article to Marc Witteman, KPN Research, PO
Box42 1,2260 AK Leidschendam, the Nether-
lands; M.F.Witteman@research.kpn.com.

Special Issue on
Economics of Design and Test

Issue date: Fall 1997 Submissions due: November 4,1996
For this special issue of IEEE Design di Test of Computers, guest editors Tony Ambler and Magdy Abadir seek significant contributions that ad-

dress the current and future design, test, and manufacturing trends and how they are driven by the economics of delivering ever-increasingly com-
plex microelectronic systems. Areas of interest include, but are not limited to

rn Cost of ATE, DFI (scan versus BIST)
rn Relationship between design, test, quality, and cost

Quality and reliability effects on maintenance costs
rn Cost effectiveness of design for test

Test cost modeling (micro and macro models)
rn CAE tools for analyzing design and test cost

Design/test standards
Models for design, test, and manufacturing process flow

rn High-level trade-off analysis tools
rn MCMs and WSI

Design automation tools
rn INDUSTRIAL CASE STUDIES WELCOMED!

Interested authors may submit four copies of a 35-page, doublespaced paper, in English, to the guest editor(s) no later than November 4, 1996. Each
copy must contain contact information (contact name, postal address, telephone number, and e-mail address) and a 100-word abstract. Papers must
not be under consideration elsewhere or published a in similar form. IEEEDesign di Test publishes articles of near-term interest to the professional
engineering community.

I Guest Editors:
Prof. Tony Ambler Dr. Magdy Abadir

Uxbridge, Middlesex UB8 3PH, UK 9737 Great Hills Trail, Austin, TX 78759
Phone: 44 (1895) 20-33-80 Phone: (512) 795-7192

Fax: 44 (1895) 25-87-28 Fax: (512) 795-7510
tony.ambler@brunel.ac.uk abadir@ibmoto.com

(UT Austin from September 1st)

Brunel University Motorola

FALL 1996 87

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on June 24,2010 at 10:19:56 UTC from IEEE Xplore. Restrictions apply.

mailto:M.F.Witteman@research.kpn.com
mailto:tony.ambler@brunel.ac.uk
mailto:abadir@ibmoto.com

