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NUMERICAL AND ANALYTICAL
MODELLING OF HAT-SECTION WEB
CRIPPLING BEHAVIOUR
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Hat-sections of thin-walled steel are subject to a concentrated load and a bending moment
at an nterior support. For a large concentrated load and a small bending moment, two
farlure mechanisms can occur: the yield-arc and the rolling mechanisms. Research indicated
that the corner radius has a strong influence on the failure mechanism to occur [1-2]. It
has been wnvestigated whether small strips of the hat-section cross-sections can be used to
gather wnsight into the differences of the two failure mechanisms. For small corner radu,
strip behaviour and section behaviour are comparable. For large corner radii, this is not
the case. Finite element models have been used to describe the cross-sectional behaviour of
hat-sections for varying corner radu. Relatively simple analytical models have been derived
which determine the location of first yield in the cross-section’s web and the cross-section’s
rigid-plastic behaviour. Ezcept for the largest corner radius, analytical models and finite
element models give comparable results.

1. Introduction

Thin-walled steel sheeting is frequently used for cladding and roof construction. To
test the sheeting’s resistance to combined bending moment and concentrated load, often
hat-sections are used instead of sheeting in a three point bending test, figure 1.

Hat-section '_.lﬂ,{ Load bearing plate F /Cross-section
-

Y
O AN de |

& o s ==
dx b

Figure 1: Three point bending test of a hat-section, the cross-section defines some variables.

These three point bending tests indicate that hat-sections subjected to a large concen-
trated load and a small bending moment can fail by two failure mechanisms: the rolling and
the yield-arc mechanisms, figure 2. Bakker [1] studied the rolling and yield-arc mechanisms
and some related observations are presented in the next paragraph.
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1.1 Rolling and Yield-arc Failure Mechanisms

Bakker [1] found that one very important section variable which determines whether the
vield-arc or rolling mechanism occurs is the section corner radius (r in figure 1).

Web crippling deformation is defined as the decrease of cross-section height below the
load bearing plate. This is shown in figure 2 at the left. The rolling and yield-arc mechanisms
each have a characteristic load-deformation curve as shown in figure 2 at the right.

initiation r=10mm.
rolling mechanism

Mechanis

lF F
’ Web crippling /
7 ‘ deformation Ah,y, | |
=h-h. r=1mm,
4 ’ T i _// yield-arc mechanism

hy Deformed cross-section / /
h,y I
I/

PR Ay,

Figure 2: Qualitative load-web crippling behaviour for rolling and vield-arc mechanisms.

Before both mechanisms initiate, the hat-sections first behave elastically: the straight
lines in the load-web crippling deformation curves. Thereafter. the failure mechanism initiates
and plasticity occurs. The initiation of the failure mechanism is marked with a bold dot for
both mechanisms (the mechanism initiation points). After mechanism initiation, the rolling
mechanism increases in strength. After some deformation. the strength reduces. The vield-arc
mechanism decreases in strength immediately after mechanism initiation.

Figure 3 shows the yield line patterns of the two failure mechanisms. A rolling mechanisin
(figure 3 at the top) starts with the moving yield lines 7 and 8 near the upper corner. For
an increase of the load, the moving yvield line 8 in the web moves downward in the web. The
moving yield line 7 in the top flange moves through the corner. After further increase of the
load, other yield lines (1 to 6) will occur in the flange and web for reasons of compatibility.
A yield-arc mechanism (figure 3 at the bottom) starts with the curved yield line 8§ in the
web. For an increase of the load, the movement of this yield line is negligible small. As for
the rolling mechanism, other yield lines (1 to 7) will occur for reasons of compatibility after
some loading.

1.2 Cross-sectional Behaviour

Bakker introduced the rolling and yield-arc mechanisms by simple mechanical models as
shown in figure 4. Yield line numbers are according to figure 3.

For the longitudinal section, the rolling and yield-arc mechanisms are quite similar: yield
lines 1 to 6 are all fixed and have more or less the same positions for the rolling and yield-arc
mechanisms in figure 3. Thus, only one simple mechanical model for the longitudinal section is
used in figure 4. For the cross-section the rolling and yield-arc mechanism are different: yield
lines 7 and 8 are moving for the rolling mechanism, but fixed for the yield-arc mechanism.
Thus, two simple mechanical models are used for the cross-sectional behaviour in figure 4.
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The simple mechanical models in figure 4 suggest that the differences between the two
failure mechanisms may be explained by investigating the differences of the mechanisms for

the cross-section only.

Top flange

rolling mechanism,
r=10 mm

Web

— fixed yield lines
""" moving yield lines

yield-arc mechanism,
r=1 mm

Figure 3: Rolling and vield-arc mechanisms.

, Longitudinal section for both
'Aﬁ‘ rolling and yield-arc mechanism

Zone of
cross-section deformations Yield lines
7 ;
f .58 ?v:i, She AT e W
8 ¥ L2 l
+}? -] ‘Fi_ _\*x Rolling mechanism
b F

T

; | / Yield- chanism
— \ L ield-arc me i

Cross-section A-A

Figure 4: Rolling and vield-arc mechanisms presented by simple mechanical models [1].

For this reason. only the cross-sectional behaviour of hat-sections is investigated in this
paper. With the finite element method. a small strip dr of the hat-section as shown in
figure 1 is modelled. The simulations are presented in section two. For the same strip dz,
an analytical model has been derived. This model makes it possible to predict the behaviour
of the two failure mechanisms for the strip do. The analytical model is presented in section
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three. Chapter 4 presents a comparison between the analytical model of section three and an
already existing model and a comparison of finite element models for a strip dr and whole

hat-sections.

2. Numerical Simulations

2.1 Support Conditions

In the previous section, it was explained that the cross-sectional behaviour of hat-sections
would be studied by the behaviour of a strip dr of the hat-section. Normally. this strip dw
is kept in place by the flanges and web adjacent to the strip. Without these adjacent parts.
the strip dz should be fixed into space to make loading possible. It can only be fixed at the
bottom because otherwise, cross-sectional deformations will not be possible. Figure 4 shows
that for the cross-section, the bottom flange and bottom corner do not play a significant role
in the cross-sectional behaviour. Therefore, the bottom flange and bottom corners are not
modelled in the numerical model. Regarding the possible rotation of the bottom of the web,
due to all sort of actions of the neglected bottom flange and corner, two extreme situations
are modelled: hinged and clamped.

lF lf

Q | N ,
‘ Cross-section |
. YT {
. \
|
A

Strip should be
fixed here

rstripdx l
0

Figure 5: Two possibilities to fix the strip dz: hinged and clamped.

2.2 Finite Element Model

Figure 6 presents a finite element model for the strip dr. At the top of the figure, the
load bearing plate is shown. This plate is modelled as a solid piece of steel. Load is applied by
a forced displacement of the load bearing plate along the negative y-axis. Contact elements
are modelled between the load bearing plate and the top flange to prevent penetration of the
load bearing plate into the strip. A geometrically non-linear analysis has been carried out,
accounting for small strains and large rotations.

Elements sizes are 3 x 3mm for web and top flange. The corner is modelled by 10
elements. Shell elements are used, having four nodes with six degrees of freedom each and
five integration points along the thickness. The material behaviour is given by points of the
stress-strain curve of the steel used. Plasticity and hardening is thus taken into account.
Some variables of the steel used are: yield strength 335 [N/mm?], modulus of elasticity

210.000 [N/mm?, strain at yielding 0.003 [1].
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Boundary conditions are shown in figure 6. The two sides of the strip (for which z = 0
and 3mm) are part of a symmetry surface. This is also true for the nodes at the top flange
edge.

Load bearing plate

rot. y=0
rot.z=0
Top flange
Top corner
: Corner radius =
gl 1,3,5,10, 15 mm
100 mm-corner radius
Web /i
Nodes along
these lines: ? Nodes along this line:
z=0 N L Clamped:
rot. x =0 x=0
rot.y =0 y=0
rot.z =
Y . .
2 x l—lzlgged.
v y=0
¥

Figure 6: Finite element model.

Because of these symmetry conditions. the strip width is not of importance. The strip
width of the model is chosen arbitrarily to be dr = 3mm. Nodes at the bottom of the web
corner are fixed for movement along the r— and y—axis. The rotation around the z—axis is
free or fixed for a hinged or clamped condition.

Results of the simulations are interesting for two main aspects. Load-deformation be-
haviour (paragraph 2.3), and location and movement of the first yield line (paragraph 2.4).

2.3 Load-deformation Behaviour

Paragraph 1.1 presented web crippling deformation, and load-deformation curves for the
rolling and yield-arc mechanisms for hat-sections.

Figure 7 presents the load-deformation curves for the strips of the finite element models.
From r=1 mm to r=10 mm, the qualitative behaviour of the strip dx is the same for the hinged
and clamped situation. However, the ultimate loads are higher for the clamped situation. For
r=15mm, the clamped situation leads to an ascending curve after elastic behaviour. In the
next paragraph, it is shown that an additional yield line occurs for r=15mm. This difference
can cause the ascending curve for r=15mm.

If the curves at the right in figure 2 and figure 7 are compared, it can be seen that for
r=1mm the load-deformation curves are qualitatively similar for both figures. For r=10 mm,
the curves are qualitatively different. Figure 2 shows an ascending curve after mechanism
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initiation and hereafter a descending curve. Figure 7, however. shows a descending curve
directly after elastic behaviour. This means that for r=10 mm. the cross-sectional behaviour
according the finite element model, cannot be used to explain the ascending curve in the
three-point bending tests.

40 40

30 30
z z

< 20 = 20
e ; o
-l : |

10+ 57 10

o f : 0

0 5 10 15 20 0 5 10 is 20
Web crippling deformation [mm], Web crippling deformation [mm],
hinged bottom of webs clamped bottom of webs

Fig. 7: Load-deformation curves for finite element models for different corner radii, hinged
bottom of webs at the left, clamped bottom of webs at the right.

Looking at all curves for all corner radii in figure 7, it seems that there is not really a
typical curve for the yield-arc (r=1mm) or the rolling (r=10 mm) mechanism, but that there
is a smooth transition between all the curves. In the next paragraph. it will be shown that
for the location and movement of yield lines, an equivalent transitional behaviour occurs.

2.4 Location and Movement of the First Yield Line

A yield line will occur in the web as shown in figure 8 with a continuous bold line.
During further deformation this yield line will move downwards in the web. Figure 8 defines
the initial position (L, ), the movement direction (arrow), and distance moved (d,) of the yield
line. After the forming of a yield line in the web, yield lines will occur in the top flange (dotted
in figure 8) and at the bottom of the web for clamped bottoms of the web. For »=15mm,
for clamped bottoms of the web, an additional yield line occurred in the top corner, also
dotted in figure 8. This yield line in the top corner may cause the different load-deformation
behaviour for r=15 mm. All yield lines contain significantly smaller plastic strains than the
main yield line in the web and therefore they will not be subject to further investigation in
this paragraph.

Table 1 presents the distance L, for =1 mm to =15 mm for hinged and clamped bottoms
of the web. For clamped bottoms of the web, for r=10 mm, the yield line in the web is located
almost at the top corner. For r=1mm, the yield line is located above the middle in the web.
This is also true for three-point bending tests (see figure 3). For hinged bottoms of the web,
the yield line in the web is located approximately in the middle for all corner radii r. From
now on, only the model with clamped bottoms of the web will be used, because this model
has more similarities with full three-point bending tests.

Numerical and Analytical Modelling of Hat—section Web Crippling Behaviour

(2) Yield line
occurring
after (1)

(4) Yield line

occurring
o) for =15 mm
E Movement s Aaher.(3)
(1) Yield line [yof yield line % () vield line
in web during in web
| deformation d, N
N ‘L>
i
I
| . N
1 (3) Yield line
: occurring N
: ! after (2) x
Ly
Hinged bottom of web Clamped bottom of web

Figure 8: Location of vield lines.

Figure 9 presents yield line position L, and yield line movement d, for r=1mm to
r=15 mm for clamped bottoms of the web.

As figure 9 shows in the left graph, the yield line is located lower if the corner radius is
smaller. Because the graph presents the vield line position as function of the web crippling
deformation, it can be seen that for increasing deformation, the yield lines move. This is true
for all corner radii. The graph at the right presents the movement of the yield lines dy. In
general, yield line movement increases for larger corner radii. As an exception, for a corner
radius equal to 15 mm. the yield lines moves comparable to r=1mm and r=3mm. This
may be an indication that for =15 mm another failure mechanism occurs. This indication is
strengthened by the occurrence of an extra yield line in the top corner for r=13mm.

r [mm)] L, [mm)] L, [mm],
hinged bottoms of the web | clamped bottoms of the web
1 46.0 64.3
3 47.0 66.2
5 49.4 69.8
10 56.5 80.0
15 61.3 72.5

Table 1: distance L, for all simulations at mechanism initiation.

In paragraph 1.2, it was mentioned that for whole hat-sections, moving yield lines exist
for the rolling mechanism (r=10 mm) and fixed yield lines exist for the vield-arc mechanism
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(r=1mm). Figure 9 points out that for r=1mm the yield line in the web indeed is almost
fixed in position and that for r=10mm the yield line is moving strongly.

.
(o=l

E E 20
£ £ =10
> ! >
o 75 . A
4 - 5 16
S ;___ = -
£ 70 . 5w E s
2 s N =Is 2 3 :
= r:;g. -~ . N ; - .,«.';'v
265 i0e e T 8 =S e =3
=4 - ,r,=,5, ~ T :\ Lo P
I S = -
c 60 000 vt R A =] e i\/ AR
:g ..... ATAEN % 4 i G AN -
2 é v..—- =13
< 55 S 0 e
0 10 20 0 10 20

Web crippling deformation [mm] Web crippling deformation [mm]

Fig. 9: Location and movement of yield lines. At the left yield line position L, and at the
right yield line movement d,.

3. Analytical Model

For describing the behaviour of a small strip dz of the hat-section, an analytical model
has been developed. First, the location of the first yield line in the web is determined by
calculating the maximum bending moment in the web. Then, an analytical model is presented
in paragraph 3.2, which predicts the rigid-plastic behaviour of the strip.

3.1 Location of First Yield

The geometry for the calculation of the ultimate bending moment in the web is shown
in figure 10.

FI2 (Ff/z{

._ﬂi.‘l -M,

\ N - T~y __-"=

Figure 10: Cross-section and simplified cross-section of strip dz.
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At the left of figure 10, the cross-section of the strip dr is shown. The load bearing plate
and the load F acting on this plate have been replaced by two forces F/2 at the intersection
of the top corners and the top flange. This is acceptable because if the cross- section is loaded,
it will deform as shown in figure 2 at the left. Then. the load bearing plate only contacts
the intersections of top corners and top flange. The cross-section at the left is simplified at
the right side of the figure. The bottom flange has been removed. as for the finite element
models in section two. The corner radius has been flattened. Instead of the force F/2 having
a distance r to the web in horizontal direction. the load is applied directly on the web plus
an additional bending moment (F/2)r. Because the strip dr is symmetrical, the right web
needs not to be modelled.

Now, the second-order bending moment in the web as a function of the distance y will
be derived. The rotation at location C can be calculated by:

M;b
Yo =5 Et[f (1)
Horizontal forces in the top flange are neglected because they will make the calculation

very complex and the finite element models showed these forces to be very small compared

to the Euler load of the top flange.
The second-order rotation at location B can be calculated by using equations for bending
of prismatic bars presented by Timoshenko [3]:

o Ms(bu-1)
vB= 6ET

o) = > (*1—~ . ) (3)

n \sin(2n) 2
3 (1 1

by — 1 [(F/2
= 2r (5/1)‘ (5)

The rotation at location C should be equal to the rotation at location B for which follows:

Mb,y  My(b,—71) (F/2)r — Mi(by — 1)

= / 6

SE1 oer vt 3EI @) (6)

The rotation at location A should be zero and can be calculated by using the same
equations for bars by Timoshenko [3]:

(F/2)r — M;)(b, —T) M,(by — 1)

pa=0= ol o(n) + SE] ¥(n) (7)

Equation 6 and 7 can be solved to calculate the internal bending moment M; and the
reaction bending moment M;:

(bu = 1) (&3() = $u() > @)

M, = (F/2)r <O2(bu1 — 1) = 6bpur(n) — 4(by. — r)i(n)

, _ 3b:s0(n)
M, = (F/2)r <®2(bu, — 1) — 6bpur(n) — 4(b. — r)z,'v2(7)))

(9)
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If the two above presented moments are known, the displacement wu(y) of the web can be
calculated, using equations presented by Timoshenko [3]:

. (2 . (2n b
() M, | PP\ oy | M= (/2 | BT b=y (10)
uwy)=- 3 T 3 -
(£/2) sin (;—7Zbu,> bu (£/2) sin <;—nbu.) by

The horizontal reaction H; can be calculated by described the moment equilibrium at
the rigid support:

M, + (M; — (F/2)r)

H, = 11
T (11)

The bending moment in the flange as a function of y can now be written as:
M(y) = M, + HI* — (F/2)u(y) (12)

Using the yield strength f, and steel plate thickness ¢, the yielding moment of the strip
d, can be calculated by:

2 1
My=—=* 1 x 17 x fy*xdy (13)

V3
Formula 13 has been derived by Hill [4]. Formula 12 is used to find the location of the
yield line in the flange. Therefore, the next sequential steps will be followed:

1. A load (F/2) is assumed. Formula 3, 4, 5, 8, 9, 11, and 12 can be used to calculate
the bending moment M (y) for a set of positions y. The maximum bending moment
is the maximum value found for the set of positions.

2. The calculated maximum bending moment M (y) is compared to the yielding bending
moment of the strip M, (formula 13). If M(y) is lower than M,,. the assumed load
(F/2) should be higher. If M(y) is greater than M,,, the assumed load ( F'/2) should
be lower.

3. If the calculated value of the bending moment M(y) equals the yielding moment
M,;, the load (F/2) to initiate yielding in the flange has been found.

The above-presented sequence is carried out for a strip dx for five different corner radii:
1, 3,5, 10, and 15 mm. The width of the strip equals 3 mm thus making possible a comparison
between this model and the finite element models. Table 2 presents the results.
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Location L, [mm] for maximum (F/2) [N] for maximum M(y) = My
bending moment M(y) = M,; | bending moment M (y) = My [Nmm]
r [mm] | Analytical model Finite Analytical Finite Both
element models element
models models
1 61.9 64.3 36.5 36.5 138
3 64.7 66.2 314 31.7 138
5 67.1 69.8 27.4 25.8 138
10 73.1 80.0 19.8 15.9 138
15 80.2 72.5 14.2 11.0 138

Tab. 2: Initial position of the yield line in the web for strips dz, width 3 mm, having
different corner radii.

There are some differences between the analytical model and the finite element model,
but table 2 shows the analytical model gives a good indication of the location of first yield
and the load (F/2) at which first yielding occurs. Differences can be caused by:

1. The geometry of the analytical model is different from the geometry of the finite
element model.

Lo

The analytical model predicts the location of the yield line by using the full plastic
moment that occurs in the web. whereas the numerical model indicates first yield by
(some) plastic strains in the outer fibres of the web.

3. In the analytical model, first order rotations are calculated for the top flange because
the influence of the horizontal load in the top flange is not taken into account.

Table 3 presents the same five strips as in table 2. hut now all are loaded by the same
load (F/2) equal to 10 N. The location of the maximum bending moment L, and the value
of the bending moment M (y) are listed.

r [mm)] | L, for maximum M (y) [mm] | M(y) [Nmm] | F/2 [N]
1 94.6 6.1 10
3 94.0 18.6 10
) 93.4 31.3 10
10 90.0 64.5 10
15 85.0 99.5 10

Tab. 3: Results for constant load.

Table 3 shows that the location of the maximum bending moment comes down for an
increasing corner radius r and fixed load F/2 (conclusion 1). The value of the maximum
bending moment increases for an increasing corner radius (conclusion 2).
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Table 4 presents the results for a strip having a corner radius r equal to 1 mm. The load
is varied between 10 and 30 N.

Table 4 shows that for increasing load. the value of the maximum bending moment
increases (conclusion 3) and the location of the maximum bending moment is lower {conclu-
sion 4).

Using the four conclusions presented above. it can be explained why the vield line is
located near the top corner for large corner radii and in the middle of the web for small
corner radii.

r [mm] | » for maximum M(y) [mm] | M, [Nmm] | F/2 [N]
1 94.6 6.1 10
1 82.7 9.7 15
1 5.4 15.0 20
1 70.2 24.0 25
1 66.1 42.3 30

Tab. 4: Results for constant corner radius.

If the corner radius r is small, a load results in a small moment M(y) (conclusion 2).
Therefore, the load F'/2 has to be high to reach the yield bending moment (conclusion 3). If
the load is high, the location of the maximum bending moment (and thus the yield line) is
low (conclusion 4). These effects seems to be more important than the fact that the location
of ultimate bending moment also decreases slightly for increasing corner radii (conclusion 1).
For a large corner radius, the same conclusions can be used to show that the yield line occurs
near the top corner.

A second-order calculation is needed to predict the position of the first vield line, as
shown in figure 10 at the right. The reaction forces at the rigid support are now drawn in
their actual working direction, not in positive direction. If only a first-order approach is used,
reaction V; is not used. Then the maximum bending moment is always located at the bottom
or at the top of the web depending on the magnitude of H, compared to M,. If a second-order
approach is used an additional bending moment in the web occurs equal to reaction V, times
the deflection in x—direction of the web. For this case, the position of the maximum bending
moment depends on the reactions and the deflection of the web.

3.2 Rigid—plastic Behaviour

In the previous paragraph, an analytical model was presented to find the first location of
yield of a hat-section strip dz, for different corner radii. If this location is known, a new
analytical model can be developed which makes it possible to predict rigid-plastic strip
behaviour. Figure 11 presents the geometry of the rigid-plastic model.

At the left of figure 11, the undeformed geometry is shown. Yield lines are shown by
a bold dot. The yield line in the web has a distance L, from the bottom of the web. This
distance L, depends on the corner radius and was predicted in the previous paragraph. Yield
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lines are modelled at the bottom of the web and at the right in the top flange. The locations
of these yield lines are according the observations of the finite element models in section two.
The displacement of the web «; and the upper part uy should be equal. therefore:

b
Uy = uy e —Lysinp, = %f(l —cosp. )+ (b, —r—L,)sinp, &
bey :
(1 —cosyge)+ (b —7— L,)sinp.
Y, = arcsin|—= (14)

‘Ly

The web crippling deformation Ak, equals to the reduction of height of the two parts of
the web and the top corner:

Ahy = Ly(1 = cosgy) + (b, —2r — L) (1 — cosp.) — rsing, (15)

L
,,,,,,, 2 .
“_ Y <
_,l,,_u,._,“___,___A____é
' ' ) -Hs M.
<, > Web crippling ~rsin g, zf‘_t:x/ Qc* > pli2
deformation < > reosg dZ
Ay, = — ! c
® . w hl }}2 ,Mp[;z B — oo V.
_ B I -uy
=y <
“Mpr2,
L ~ s - I
Y - b
e < -y
Forces, displacements, ;
moments, rotations
e
s
Pa
A v
Hy =M pi2

Figure 11: Detailed. geometry to determine rigid-plastic behaviour.

The vertical reaction V, at the bottom of the web equals the load F/2. At the yield line
in the web, moment equilibrium exists for the lower part of the web:

F
Mpa — My + Hyx Ly cos p, + 5 * L,sing, =0 (16)

At the yield line in the web, moment equilibrium exist for the upper part of the web, the
top corner and top flange:
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F ~
AM,,,:2+M},1;2—§*d1+H5*d-2:0 (17)
And:
di = —(b,—2r—L,)sing.+ rcosy. (18)
b
d, = (bu‘—r—Ly)cos,;C—}—%fsinpC (19)

The load F/2 can be solved from equations 16 and 17:

Foo2(L, My + da M2 sec oq)
2 L,(d, + dytan p,)

Using the yield strength f, and steel plate thickness ¢. the plastic bending moment of a
yield line equals:

My = %*%*tz*‘fy*dx (21)

A rigid-plastic curve of a strip dr can be calculated as follows. A rotation . is taken.
Then rotation ¢, can be calculated by equation 14 and the web crippling deformation Ah,,
by equation 15. A fixed value for the distance L, can be taken from the analytical model of
paragraph 3.1. Nevertheless, it is also possible, for the web crippling deformation Ah,, to
find the distance L, in the curves of figure 9. Both results are presented in figure 12. Because
equation 14 and 15 are dependent on the value of distance L,. these equations should be
solved iterative using the curves of figure 9. Equation 20 calculates the load (F'/2). Figure 12
presents rigid-plastic curves (bold lines) including the results of the finite element models
(normal lines) for r=1, 10, and 15 mm. The results for r=3 mm and r=5mm are almost equal
to the results for r=1mm. The dotted lines represent the same calculation as the normal
rigid-plastic line, only the distance Ly has been fixed on its initial value.

40
40 40
3
30 30 — 0
z z s o
= py ot e
Q o =20 o
< 20 = 20 =~ — :
F 3 3
3 § 2
10 10 10
0 0 0
0 5 10 15 20 0 4 8 12 16 20 0 5 10 15 20
Web crippling deformation {mm] Web crippling deformation {mm} Web crippling deformation {mm]
=] mm r=10 mm =15 mm

Fig. 12: Normal line: finite element model. Bold line: analytical model with moving yield line.
Dotted line: analytical model. Dotted and dashed line: already existing analytical model for
the rolling mechanism [1].

100

Numerical and Analytical Modelling of Hat—section Web Crippling Behaviour

Especially the strips with small corner radii show an extremely close correlation between
the analytical model and the finite element model. For large corner radii, r=15mm, the
rigid-plastic curve only joins the finite element model around the mechanism initiation load.
This means the rigid-plastic behaviour of the strip dr for a corner radius r=15mm is not
correctly described by the analytical model, despite of the fact that the analytical model
has no geometrical simplifications. One possible cause can be that strong deformations of
the relatively weak corner radius lead to a different geometry, which seriously influences the
load-deformation behaviour. Indeed, numerical analyses show that the corner radius deforms
during the load-deformation path.

Another cause can be the movement of the yield line in the web. The movement of the
vield line in the web dissipates energy. which is not taken into account in the analytical
model. This should lead to an increasing underestimation of the rigid-plastic load for larger
deformations, if vield line movement is strong (this is the case for large corner radii).

3.3 Existing Model for Rolling Mechanism

Bakker developed an analytical model for the rolling mechanism in 1992 [1]. A part of
this model is shown in figure 13. This part of the model predicts the ultimate load for a small
strip having three yield lines: two moving yield lines near the corner and one fixed yield line
at the bottom of the web. The energy dissipated by the movement of the yield lines is taken
into account.

7 Moving yield lines
8 ro\ F§\1'=ZA¢1P[5¢,’+ZMPI§%
! Fixed yield lines Moving yield lines
Cross-section Fixed yield line

Figure 13: Analytical model for the rolling mechanism.

4. Discussion

4.1 Comparison of Analytical Models

In paragraph 3.2, an new analytical model was presented to predict the rigid-plastic
behaviour for the strips. For r=15mm, this model was not able to predict the curve of the
finite element model correctly. Therefore, the already existing analytical model, in paragraph
3.3, for the rolling mechanism was tried. Note that this model takes the dissipated energy
due to yield line movement into account.

Figure 12 shows that for a strip with » = 15 mm, also the existing model only predicts
a part of the curve of the finite element model well. This means that the lack of modelling
the energy dissipation for moving yield lines of the new model is not the cause for differences
between the new model and the numerical simulations.

Figure 12 shows also that for a strip with r = 10 mm. a rolling mechanism does not
occur because the model for the rolling mechanism predicts to high loads. For a hat-section
with » = 10 mm, a rolling mechanism does occur.
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4.2 Comparison of Strips and Whole Hat Sections Using Finite
Element Models

A finite element model for a real hat-section with r = 3 mm was studied. This is shown
in figure 14. After elastic behaviour, yield lines occur in the top flange near the corner and
in the web between the middle of the web and the top corner. After some web crippling
deformation. the yield line in the top flange stops rotating and the yield line in the web
rotates further and moves slowly down in the web. Finally. a vield line occurs at the bottom
of the strip. A strip with » = 3 mm behaves almost in the same manner as the real section.
After elastic behaviour, it shows a yield line in the web. but not in the top flange. The line
in the web is located a little bit lower than for the real hat-section. After some web crippling
deformation, the yield line in the web moves slowly down in the web. Finally. vield lines occur
at the bottom of the web and in the middle of the top flange.

Also a finite element model for a real hat-section with r = 10 mm was studied, figure 14.
After elastic behaviour, two yield lines occur near the top corner: one in the web and one in
the top flange. For more web crippling deformation, the yield line in the web moves strongly
down through the web and the yield line in the top flange moves through the corner. Finally.
a yield line occurs at the bottom of the web and in the middle of the top flange. A strip with
r = 10mm behaves equal to a strip with r = 3mm (see previous paragraph). As additional
information, it is interesting to observe that a strip with r = 15mm has some more similarity
with a hat-section with » = 10 mm. After the forming of yield lines in the web, bottom of the
strip, and in the top flange, a yield line occurs in the top corner too.

5. Conclusions and Further Research

For three-point bending tests of hat sections, the location of the first yield line in the
web depends on the failure mechanism. For a rolling mechanism. the first yield line occurs
in the web near the top corner and for a yield-arc mechanism, the first yield line occurs in
the upper middle of the web. The analytical model for a strip da of the hat section, explains
these different yield line locations. Only one analytical model was used to show this for
both mechanisms. A second-order calculation is necessary to predict the location of the first
yield-line in the web.

For the finite element models of the strips dr, for intermediate corner radii, behaviour
occurs that is a transition between the behaviour for large corner radii and small corner
radii. This is not only seen for the load deformation behaviour, but also for the location and
movement of the first yield line. As a conclusion, the strips dz do not fail by two completely
different failure mechanisms. This was also observed for three-point bending tests [1], where
sometimes a failure occurred which was a mixture of yield-arc and rolling failure.

An analytical model has been developed to find the rigid-plastic curves for the finite
element models of the strips dz. Only one model was used. The model predicts the rigid-plastic
curve of the strips well for r =1, 3, 5, and 10 mm. For the large corner radius r = 15mm only
a small part of the curve is covered. This is not caused by the lack of modelling the energy
dissipation of the moving yield line in the web.

For small corner radii, the behaviour of a strip of a hat-section’s cross-section is quali-
tatively similar to the behaviour of a real hat-section in a three-point bending test. For r =
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10mm, this is not the case (comparisons made based on finite element analyses and existing
rolling model).

For a large corner radius, » = 15mm, an already existing analytical model for the rolling
mechanism predicts the first part of the rigid-plastic curve well. The finite element model
shows that for a strip with r = 15 mm, two yield lines occur near the top corner. This makes
it possible that for a strip with » = 15mm, indeed a rolling mechanism occurs. This needs
further investigation.

Further research can be focussed on three items. First, boundary conditions of the strips
can be studied for large corner radii. In this way, an explanation can be found for the different
behaviour between strips and three-point bending tests. Secondly, for small corner radii, it
can be investigated how the strip behaviour can be translated into behaviour of three-point
bending tests. As a third item, inclined webs should be covered by the analytical models.

Whole hat section, Strip Whole hat section, Strip
mesh continues to the mesh continues to the

right right

B.C B.C.D
B,D
T B B.C
,B
Load [N] B.C

Web crippling deformation [mm] ——>

Figure 14: Behaviour of whole hat sections and strips for » =3 mm and r = 10 mm.
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A fundamental topic regarding riveted structures subjected to dynamic loading, such as
bridges, is the determination of the Constant Amplitude Fatigue Limit (CAFL). In order to
gain an estimation of this limat, some 16 full-scale tests on stringers taken from an old railway
bridge have been performed at the Department of Structural Engineering, Chalmers University
of Technology. In order to reduce the extremely long timne that this kind of ezperiments require,
a technique, which 1s believed to be original, is proposed.

1. Introduction

The problem of keeping old railway bridges in service as long as possible is becoming an
issue of more and more concern. This is primarily due to two reasons, namely:

- financial interest of the bridge owners;

- the inestimable cultural heritage represented by many bridges of this kind.

An adequate estimation of the remaining fatigue life of a riveted structure has often
been impeded because of the insufficiency of a reasonable database of test results of full-size
members. Even though considerable amount of fatigue testing on riveted structures has been
carried out in Europe and North America during the past decade, there is still a lack of
information in the region close to the CAFL. This region is of crucial importance, especially
for the determination of whether or not previous dynamic loading (i.e. train passages) has
produced fatigue damages.

2. Constant Amplitude Fatigue Limit for Riveted
Bridges

The constant amplitude fatigue limit is defined as the stress range level below which
there will be no fatigue crack growth during cyclic loading. A review of previously executed
fatigue tests on rivet members by several researchers (see [2], for instance) indicates that this
limit should - if it exists — fall within the stress amplitude range of 40-70 MPa. In order to
achieve a more precise estimation about the CAFL, more tests are required within the above
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