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Summary 

An important requirement of tropospheric propagation prediction models is their ability to 

predict the statistics of propagation parameters across a large probability range. Equally 

important to system planners is the ability of the model to quantify the variability of the 

statistical distribution of the propagation parameters when observed during shorter 

observation periods. The nature of such variability of radiowave propagation associated with 

atmospheric effects is the subject of study of this thesis. 

In this thesis we consider the modelling of the variability of an important class of propagation 

parameters, namely the so-called monthly time fraction of excess (TFE). Such TFE is of great 

importance in the Grade-of-Service specifications of the ITU (International 

Telecommunication Union). The TFE of interest in this thesis are those associated with rain­

attenuation on earth-satellite paths as well as those associated with ducting effects on 

terrestrial transhorizon paths. The work in this thesis is based on theoretical modelling as well 

as analysis of a very large amount of data on the monthly TFE. The data used are those 

collected by the European COST205 and COST21 0 projects and comprise a total of 92 site­

years of observations obtained in some 9 different climatic zones of Europe. 

The thesis starts by studying and analysing the general properties of the random process of 

the monthly time fraction of excess. In the first place a general theoretical framework is 

placed whereby the monthly TFE is defined as a random process. The ensemble associated 

with this random process is taken to be all the hypothetical radio links situated in a 

climatically homogeneous vicinity. All the links have equal parameter settings and 

configuration (frequency, path-length etc.). Subsequent analysis using the measurement 
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data shows that the random process of the TFE may, as a working assumption, be taken to be 

annually cyclo-stationary. Furthermore, the results of correlation analysis lead to the 

conclusion that for the most part the process may be assumed to be statistically independent. 

The usually complex seasonal dependence of propagation phenomena is approximated by the 

introduction of a dual-population model. 

In the second part of the thesis the focus is on obtaining good (approximate) modelling of the 

statistical distribution of the monthly TFE. For this four alternative candidate models were 

studied as to their suitability. These models are the conditional exponential model (CEX), the 

log-normal model (CLN), the gamma model (GM) and the shifted gamma model (SGM). 

Various classical statistical tests were carried out with inconclusive results. An alternative 

novel method for statistical testing has therefore been devised. This method, which is based 

on normalisation and pooling of the data, produces conclusive result on the superiority of 

SGM and CEX models. 

In the next step we investigate and show how the behaviour of the yearly TFE as well as the 

annual worst-month TFE can be modelled in a consistent and fundamental way using the 

found statistical model for the monthly TFE. For the worst-month analysis we show that the 

simplifying assumptions of dual-population would not lead to unduly large errors in the 

prediction of worst-month statistics. Further, we investigate the range of the expected 

variability and the dependence of this range on various values of the return periods. A 

climatic classification across Europe of the variability properties has also been performed (for 

slant-path rain-attenuation). The classifications result in four distinct regions, Scandinavia, 

North-West Europe, Central Europe, Alpine and Mediterranean. 

Summary ix 

In the last section we discuss various possible innovations to the current way of quantifying 

performance of radio links. We discuss and compare the methods of reliability engineering 

(e.g. the mean time between failure concept) and meteorology (e.g. return periods). Finally, 

as an example, we apply the found statistical model to an insurance type of analysis for a 

telecommunication system. 
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1. Introduction 

1.1 The need for propagation modelling 

Information on the propagation of radio waves is of primary importance in the develop­

ment/design and deployment of radio communication systems. The role of propagation in the 

development of radio systems can be appreciated if we look at the very different techniques 

used in the various radio systems. For example, digital mobile (cellular) radio modems 

employ very sophisticated signal processing systems, while the signal processing system of 

geostationary satellite communication systems is relatively simple. This difference is directly 

related to the very different propagation modes encountered in these two applications. 

In the mobile radio situation the mobile user is most of the time 'shadowed' by various objects 

such as buildings, trees, hills etc .. Here the transport of radio signal power from transmitter to 

receiver happens by way of many different radio paths (formed by reflections and/or diffraction). 

Each of such paths has a different path delay and contributes only a fraction ofthe total receiving 

power. In such a situation a transmitted digital pulse signal would result in a distorted signal 

reception (the received signal is the sum of many echoes of the original signal). The signal­

processing imit in a digital mobile receiver is specifically designed to combat such an effect. One 

way to do this is to let the transmitter send, at regular intervals, test pulses in a known sequence. 

By analysing the received signal the receiver would then 'know' the propagation situation 

regarding the delays and can then, using such information, restore the distorted signal to its 

original state. 

In a geostationary satellite communication system the transmitter and receiver are always in a 

line of sight situation with respect to each other so that only one propagation path is dominant in 

the transport of power. The specific problem associated with geostationary satellite commu-
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nications is that the propagation loss is very high due to the long distances and possibly large 

attenuation caused by rainfall. In the early days of satellite communications (when satellite 

transmit power was very low) the ground station were equipped with very large antennas and the 

receivers had to be cooled by liquid nitrogen to allow detection of the very weak signals 

received. 

In the procurement, the planning and the deployment of radio communication networks 

propagation information also plays an important role. While it is obvious that good information 

regarding the important parts of a communication network is indispensable for successfully 

carrying out the aforementioned exercises, radio propagation here has its own specific 

characteristics and problems. In the first place the behaviour of radio links is generally much 

more complex than that of guided transmission media. This regards not only the specific 

mechanisms (such as those discussed above) but also regards the statistics of occurrences of 

particular propagation phenomena that may vary from one location of the world to another. In 

the second place, there is a complicated interdependence of the propagation and the radio link 

parameters (e.g. frequency, length of radio hops, and heights of transmitter and receiver 

antennas). This fact actually gives the telecommunication providers the possibility to tailor their 

system to the required performance of the system, provided they have sufficient knowledge of 

the propagation. 

Finally we note that there is an important difference between guided transmission media on the 

one hand and radio transmission media on the other regarding the validation of their conformity 

to the required grade of service criteria. In the case of guided media their transmission properties 

are stable and known, and the producers of the components will supply the necessary 

information required for planning of the system such as e.g. the expected loss per km of a cable. 

Furthermore, once a system based on guided media has been installed, the compliance of the 

whole system with the grade of service requirement can be established through limited series of 

test measurements. In the case of radio transmission systems their conformity to grade of service 

requirements cannot be easily established through test measurements on real systems. This is due 

to the seasonal, annual and multiyear variations of propagation conditions in the case of 

microwave and satellite communication systems, or the very complex behaviour of radio waves 
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due to interactions of natural and d man-rna e structures over a Jar . 
radio and broadcast radio. ge area m the case of cellular 

From the above considerations it can be appreciated that d . we want to b .ld . . goo propagatiOn models are vital when 
m m a cost-effective and efficient marmer ood . . 

include radio transmission syste An . g commumcatwn networks that 
ms. Important aspect of such mod 1 . th . . . 

the statistics across a large pr b b.l. e sIS err abihty to predict 
o a I Ity range. The nature of the . . 

associated with atmospheric effi t . h . statistics of propagation 
. ec s IS t e subJect of study of this thesis Th 

Will be discussed in more details in Section 1 4 Before th t b . f h. . e scope of the study . . . a , a ne !Story of the rol f d. 

propagation is presented in Section 1 2 S . . e o ra IO . . . ectwn 1.3 discusses briefly the grade of service 

reqmrements of modem radio systems. 

1.2 A short history of radio propagation 

The early periods 

In 1864 Maxwell formulated the th . eory of electromagnetic waves. With th . th 

properties of electricity and magnetism which had been discovere . IS eory the many 
separate theories can be explal· d . . d prevwusly and explained by 

ne m a simple and ·fi d showed that . um le way. Just as importantly Maxwell 
the theory predicts the existence of a hitherto unkn . 

The confirmation of this th . own entity, that of radio waves. 
eory was provided by Herz in 1887 throu h . 

experiments [Collins, 
1997

]. g a senes of laboratory 

Practical use of radio w h d . aves a to await the invention of radio b M . . 
equipment Marconi demonstrated that d. y arcom m 1895. With his ra IO waves can be used as d. . . 
receiving information. In the 1 . . me mm for transmlttmg and 

. ear y penods of his experiments Marconi u 
radw (centimetre waves) but tl d h . sed very short-wave 

oun t at their range was restricted a d 
using long-wave radio I 1901 h n subsequently switched to 

. n e successfully transmitted M 
Ocean from Cornwall U K t St J hn' orse code across the Atlantic 

' · ., 0 · o s, Newfoundland c d · 
The wavelength used , ana a, a distance of some 5500 km. 

was 366 meters (corresponding to a frequency of some 0.84 MHz) while 
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the transmit power was 15kW [Delogne, 1997]. Soon after this spectacular demonstration of the 

feasibility of radio wave communication, commercial services of radio telegraphy became 

commonplace using, in general, much longer wavelengths, longer than 4000 meters (frequencies 

lower than 100kHz), as it had been found that they were more efficient in long-distance transmis-

sions. 

To the designers and users of these early radio communication systems it quickly became 

apparent that the reliability of the communication was less than satisfactory. The main problem 

encountered was the strong variation in time and space of the quality of the radio links. Although 

some general patterns were noticed (at some period of the day signal transmission would, on 

average, be better than other periods of the day), some of the observed behaviour baffied the 

designers of the radio systems. For example, at times signals could successfully be transmitted 

I dl
.stance but not to nearby receiving stations, while at other times the reverse 

across a very arge 
would occur. This posed a problem to the service providers since on one hand the customers 

were demanding better reliability and on the other no one was able to pinpoint the cause of the 

problems. Knowledge concerning the propagation of radio waves and the structure of the 

atmosphere was too limited to allow the finding of a solution to this problem. For a while the 

providers concentrated on the expensive approach of developing larger and better antennas as 

well as developing more powerful transmitters. 

At that time the radio community had no idea how such radio waves could travel so far beyond 

the visual horizon. By 1911 only an empirical formula, the so-called Austin-Cohen formula, was 

available by which the average dependence of signal strength with distance, wavelength, antenna 

heights and transmit power could be predicted with some accuracy [Kerr, 1951]. But there were 

no models available by which the above-mentioned variations in space and time could be under­

stood. As we now know, at these frequencies two propagation modes are of importance. These 

are the ground-wave propagation mode and the ionospheric propagation mode. 

In the ground-wave propagation mode the radio waves are able to follow the Earth curvature 

through a process called spherical diffraction, thereby allowing communications beyond the 

visual horizon. This effect is strongest in the frequency bands below 100kHz and is a stable 
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effect. The range allowed by this model, however, falls far short of the observed ranges. The 

second propagation mode is that related to the effects of the ionosphere, the ionised part of the 

atmosphere located at altitudes between 70km and 400km. Within this altitude range various 

layers with different density of ionised particles can be found (the layers are usually indicated as 

the E layer, the F layer, the G layers etc.). Due to such layering a bending of the propagation 

trajectory of the radio signals back to earth can occur. This "reflection" effect which occurs 

mostly at frequencies below 40 MHz can be utilised to allow very long distance propagation. 

However the propagation mechanism of the ionosphere is unstable. In the first place this is due to 

the fact that the electrical properties of the ionosphere are strongly time dependent. The main 

sources for the variability of the ionosphere are the variation of the sun's radiation (which is 

responsible for the ionisation process), and the rotation of the earth. Furthermore the ion density 

shows very complex variability which is related to atmospheric flow etc .. In the second place 

multiple propagation paths may be produced each with quite different propagation path lengths 

(or phases); the summation of the signal components associated with each of the individual paths 

may then lead to destructive and constructive interference. Small variations in path length in 

space and time would then produce very complex patterns of signal distribution. 

A breakthrough was realised in 1913 when Lee de Forest (the famous inventor of the triode) 

published the results of his analysis done for the Federal Telegraph Company [Delogne, 1997]. 

In this work he analysed the observed behaviour of many radio transmission signals. He noted 

that two signals from the same transmitter but with slightly different wavelength may show 

completely opposing behaviour. At one moment one signal would offer good reception while the 

other would be totally extinguished while at some other moment the reverse would be true. He 

concluded that this behaviour could only arise if the propagation should consist of at least two 

propagation paths with sufficiently large path length difference leading to constructive and 

destructive interference (multipath effect). He postulated that the first path is that corresponding 

to the ground wave propagation and that the second path must correspond to a path produced 

when an atmospheric layer at high altitude reflects the radiowaves. His further analysis led him 

to the (right) conclusion that this reflection may be due to partially ionised masses of air at great 

heights. Although ionisation of the upper atmosphere and its capacity of bending radio waves 

had at that time already been postulated or speculated upon by scientists such as Heaviside, 
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Eccles and Pierce it was de Forest who gave convincing empirical evidence of this phenomenon 

[Delogne, 1997]. 

On the theoretical side, noteworthy work was done by Sommerfeld in 1911 concerning the 

propagation above a plane structure. In 1908 Mie derived a series expression regarding the 

influence of a sphere on the radio wave propagation; his expression however can only be 

evaluated numerically for spheres of small radius. The real theoretical breakthrough was 

achieved by Watson in 1918 [Bremmer, 1949]. Watson was able to solve the difficult 

mathematics involved in evaluating the propagation of radio wave on a very large smooth sphere 

(with and without a concentric reflecting layer). The analysis of the smooth sphere without a 

concentric reflecting layer gave convincing proof that ground-wave propagation cannot account 

for the long propagation ranges that had been observed. The analysis of the model with a 

concentric reflecting layer leads to the Austin-Cohen empirical formula [Kerr, 1951]. 

Noteworthy are also the theoretical works of Bremmer and van der Pol of Philips Research 

Laboratory in Eindhoven [Bremmer, 1949]. 

With this new knowledge, serv1ce providers were able to improve the reliability of their 

transmission. One method was to make use of the above-mentioned multi path phenomenon, that 

is to say to pick a suitable frequency for the transmission. Needless to say that in order to 

successfully use such a strategy, a good propagation model as well as accurate data concerning 

the ionosphere is required. A lesson learned here by designers of radio links is that knowledge of 

the propagation of the radio waves and their underlying causes is essential for successful design 

and deployment of radio links. In the following years much work was then performed to 

characterise the ionospheric propagation. Major measurement campaigns were set up to obtain 

information regarding the structure of the ionosphere; atmospheric physicists as well as radio 

engineers were involved in these studies. These measurement campaigns were carried out in 

international co-operation under guidance of e.g. the International Union of Radio Science 

(URSI) and the International Telecommunication Union (ITU). These measurements have 

resulted in major advances in the understanding of atmospheric physics as well as in providing 

important data and models for the radio communications providers. Models and data for 

predicting ionospheric propagation can be found in the ITU Recommendations [ITU, 1997a] and 
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Handbooks ofHF propagation of the ITU [ITU, 1997b]. 

Since the introduction oflong distance communication by trans-oceanic cables in the 1950's, and 

by satellite in the 1960's, communication through ionospheric propagation has lost much of its 

importance to the major communication systems. Nevertheless it has remained important in 

applications in the realm of the defence agencies and in some other specialised applications such 

as that of navigation.Furthermore, better and more detailed propagation information and 

modelling of ionospheric propagation are still wanted for improving the accuracy of the Global 

Positioning Satellite (GPS) navigation systems. 

The period around the Second World War 

During the Second World War and thereafter, rapid development in electronics allowed the 

utilisation of the higher frequency bands, which provided for more traffic capacity. At first the 

VHF (30MHz-300MHz) and UHF (300MHz - 2000MHz) bands were utilised, primarily for 

broadcasting, land mobile radio and for point-to-point communications, while some radar 

systems used in the second world war already utilised microwaves (wavelength of some 3cm or 

frequency about lOGHz) [Kerr, 1951]. At these frequencies the ionosphere does not play any 

significant role in the propagation and the main causes of impairments of the quality of radio 

signal are the troposphere or various objects such as hills, trees and buildings. 

In broadcasting and mobile radio applications the propagation problems encountered are related 

to the blockage by objects and hills, although at the frequencies employed mostly (the lower 

VHF band) these effects are less serious. In 194 7 Bullington presented a simple model to predict 

the field strength in mobile radio applications. This model was inspired by the theoretical plane 

earth model. The broadcasters developed their own empirical prediction method, which has been 

incorporated in Recommendation P.370 of the ITU. Curiously, although the problem at hand is 

similar for both applications (the same frequency band, the same geometrical configuration with 

one high station serving many users with low antenna heights), until recently hardly any co­

ordination of activities took place. 
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The military encountered serious propagation problems in the use of their radar systems. These 

problems are related to anomalous vertical distributions of the refractive index of the atmosphere 

caused by anomalous humidity and/or anomalous temperature gradients. Under such 

meteorological conditions a stratified layer of atmosphere can exist in which the refractive index 

decreases very rapidly with height (the so called surface ducts) so that radiation of sufficiently 

short wavelength may be trapped in the layer and guided around the curved surface of the earth. 

The transmission problems encountered were akin to that encountered by early radio users: 

varying radio ranges, multipath effects etc .. Since these effects occur strongly in humid and hot 

areas (such as the Pacific basin where many important naval engagements took place) the U.S.A. 

invested much effort in developing the required propagation prediction models during the 

Second World War [Kerr, 1951]. 

Already during this period some pioneering work on rain-induced attenuation of microwave 

signals had been done. The attenuation effects of fog and rain on centimetre radio waves have 

already been treated as early as 1930 by J.A. Stratton [Ishimaru, 1972]. Other milestones of this 

period include the work of Laws & Parsons in 1947 who characterised the raindrop size 

distribution, thus allowing the calculation ofthe specific attenuation ofrain of a given intensity, 

which was performed by Ryde & Ryde soon after that [Kerr, 1951] using the spherical model for 

the raindrops. 

Finally we note that during the Second World War two famous statistical distributions were 

formulated describing the general behaviour of the amplitude of a radio wave composed of many 

varying independent terms. The first is the Rice distribution developed in the U.S.A., the second 

is the the Nakagami distribution developed in Japan. Both distributions represent generalisations 

of the Rayleigh statistical distribution, which was derived in the 19th century. 
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The modern era 

From the 60's onwards, higher centimetre bands were utilised for so called microwave links and 

geostationary satellite links. The highest frequency used currently in satellite communications is 

30 GHz, while microwave links operating in the 60 GHz band can now already be purchased. 

Mobile and terrestrial broadcast systems more and more are using the UHF frequency band. 

The main propagation factors affecting terrestrial microwave and geostationary satellite systems 

are those related to the troposphere. Generally two categories of effects are discerned here 

according to the specific atmospheric process influencing the propagation. The first are the 

precipitation effects (effects of rain, snow or hail), the second are the effects associated with 

anomalous refractivity distributions of the atmosphere, the so-called clear-air effects. The main 

transmission effects associated with precipitation are attenuation (loss of signal power) and 

depolarisation (deformation of the polarisation state of the radio wave). Clear-air effects may 

produce (multipath) fast fading or distortion of digital signals, but may also cause excessive 

long-distance propagation leading to interference between systems utilising the same 

frequencies. 

As mentioned above, some fundamental work on rain attenuation had already been done during 

the period around the Second World War. While such work produced important new insight in 

the propagation mechanisms, much work still had to be done before propagation models suitable 

for radio-planning purposes were obtained. In the first place, better modelling of the fine 

structure of rain had to be obtained. Some of the improvements are those with regard to the shape 

of the raindrops (which is not spherical as had been assumed before) the distribution of raindrop 

size (which as it turned out depends on the type of rain). The other improvement that had to be 

developed is with regard to new numerical calculation methods that allow the evaluation of 

propagation properties of non-spherical drops. Furthermore information is required on the 

horizontal and vertical extent of rain, the probability of occurrence of intense rainfall, their 

geographical dependence and distribution. To obtain such data, extensive long-term 

measurements on rainfall intensity and rain effects across a large frequency range had to be 

performed. Such activities required large-scale co-operation, since no single research institute 
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can bear the cost of maintaining experiments across many locations during a long period. During 

the 70's, 80's and early 90's many propagation campaigns were carried out, mainly in Europe, 

U.S.A. and Japan (in the late 80's INTELSAT and COMSAT started performing measurements 

in less accessible areas such as Africa, South America and South East Asia). In Western Europe, 

co-ordinated studies were carried out under guidance of the European Commission, the so called 

COST projects (specifically projects COST25/4 and COST205) and the European Space Agency 

(ESA). In the U.S.A. the research was co-ordinated by NASA. In Japan the Ministry of Post and 

Communications carried out national co-ordination. Satellites equipped with propagation 

beacons were put into orbit: SIRIO, OTS, OLYMPUS and IT ALSAT for Europe, BSE and ETS 

for Japan, ATS, COMSTAR and ACTS for the U.S.A .. On a global scale the co-ordination of 

model developments is carried out by the ITU within Study Group 3 of the Radiocommunication 

Sector. 

Other propagation effects which were investigated extensively in this period are those due to 

anomalies of the refractive index distribution of the atmosphere, such as the aforementioned 

surface ducts as well as elevated ducts (stratified anomalous refractive index gradient at higher 

altitudes which may reflect microwaves). Their occurrence may cause severe fast fading on 

narrowband microwave links and/or severe distortions in broadband microwave systems. They 

can also lead to anomalous long-distance propagation, which may lead to interference between 

systems, e.g. in the different countries that use the same frequency. This effect is especially 

troublesome to satellite communication systems since they operate in the same frequency band 

as the terrestrial microwave systems. Since the signals received by a satellite groundstation are 

very weak, they are especially sensitive to interference. 

In some special cases the propagation due to particular stratification of the atmospheric refractive 

index can be solved mathematically. In the more complex cases ray-tracing techniques may be 

employed successfully. However, in real life situations these approaches were found to be non­

productive. The problem is related to the fact that the distributions of refractive index profiles 

that produce the troublesome propagation do not allow simple description; many varying shapes 

of the profile can be encountered with a probability of occurrence that is strongly dependent on 

location and other environmental parameters. Therefore, the propagation researchers attacked the 
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problem on two distinct fronts . In the first place a primarily empirical modelling is pursued to 

obtain a means for predicting the statistical distribution of narrowband fading and the 

anomalously long distance propagation; in Europe this activity was co-ordinated within the 

COST230 project. In the second place separate models are developed theoretically and 

empirically for the proper understanding of dispersive properties of the broadband channel. 

The attention to the problem of propagation in the field of mobile and terrestrial broadcasting 

was at first not so great. Rather restricted empirical models were produced by individual 

researchers, see [Jakes, 1974] (e.g. Bullington in 1947, Egli in 1957 and Okumura in 1965). 

Okumura's model as modified by Hata is still currently used when high accuracy is not required. 

This model was derived from extensive measurements carried out in Japan in the frequency 

range from 150MHz to 2GHz. This model allowing the prediction of the average propagation 

effects in various types of regions (e.g. urban, suburban, rural) was presented by Okumura et.al. 

[1965]. The advent of digital systems and the very large expansion of cellular communications 

systems make, currently, the development of better models imperative. In Europe a successful 

co-ordinated effort, within the COST207 project, was made in the late 80's to model the 

broadband propagation aspects with sufficient accuracy to allow the specification of a new pan­

European land-mobile cellular system: GSM. At the moment much work is carried out across the 

world for the development of a fundamental prediction model which would allow accurate 

assessment of e.g. coverage and interference from data bases giving detailed information 

regarding the environment (buildings, trees etc.). 

The previous examples highlight the fact that the influences of the environment on radio 

communication systems are extremely complex. The magnitude of this complexity is such that 

the models for predicting the propagation effects will usually be statistical in nature. 

Furthermore, since high quality radio links are designed with stringent outage allowances (e.g. 

0.0 I% of the time) the propagation models should perform well across a large probability range. 
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1.3. Grade of services 

In the final analysis the goal of all service providers is to make profit and expand their market. 

To do this the service provider has to obtain customer satisfaction while at the same time 

minimising his cost. There are many aspects to obtaining customer satisfaction (e.g. novel 

services, quality, and knowledge of customer need, cost aspects); here we shall restrict our 

attention to those related to transmission quality (or also the "grade of service"). In the ITU 

domain many specifications regarding required grade of service have been defined. There is a 

broad range of such requirements, indicated as performance and availability criteria, covering the 

different transmission media (e.g. cable, radio-relay) and services (e.g. voice, data). The main 

goal behind the formulation of these international grade of service standards is to ensure some 

kind of minimum quality ofintemational telecommunication links (which might be composed of 

many different transmission segments). 

The ITU set of grade of service requirements is very extensive and caters for many different 

applications. Separate standards are given for high, medium and low-grade systems, for analog 

and digital etc.). For point to point communication links the structure of these standards is 

roughly the same, they are composed of: 

1. Quality criterion: this is a measure of the status of the link. Two broad categories are used 

namely 'Unavailability' and 'Performance'. Unavailability is used to indicate the case where 

transmission quality has become so bad that the link is considered useless for 

communications. Performance indicates the quality of an available link. For digital links 

Performance is measured using several criteria: 'Degraded Minutes', 'Severely Errored 

Seconds', 'Errored Seconds'. 

2. Reference Period: this is the period within which the statistics of the above quality criterion is 

evaluated. Two different reference periods are used: the 'any month' reference period and the 

'long term' reference period. 

3. Allowance Objective: this is the fractional probability that is allocated to the various quality 

criteria within the reference period. 

4. Length of a Reference Link: different reference distances have been defined varying from 

several hundred kilometres to tens of thousands of kilometres. 
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The definition of the Performance and Unavailability parameters for analogue systems is rather 

complicated. Here we give as example the, somewhat more simple, definitions related to digital 

systems: 

Degraded Minutes (OM) a period of l minute is classified as degraded when the Bit Error Ratio 

(BER) is> !0.,;. 

Severely Errored Seconds (SES) a period of l second is classified as severely errored if the BER is 

larger than l o·l. 
Errored Seconds (ES) a period of l second is classified as errored if at least l bit is wrongly 

received. 

Unavailability the period of unavailable time starts if during a l 0 second period all 

the 10 x l second periods are SES (or that the link is totally 

interrupted, e.g. loss of timing). The unavailable period terminates 

when a l 0-second block is encountered with each l 0 x I second 

periods having a BER better than 10·3 (and obviously timing etc. has 

been restored). 

The table below gives an example of the grade of service requirement for a terrestrial high-grade 

Hypothetical Reference Digital Path (HRDP) of 2500km taken from Recommendation 594 of 

ITU-R. 

Quality Criterion Allowance Objective 

Degraded Minutes 0.4% of Any month 

Severely Errored Seconds 0.054% of Any Month 

Errored Seconds 0.32% of Any month 

Unavailability 0.3% of the Long-term period 
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Note: when planning a real link composed of many short paths, the Allowance Objective is 

distributed among the individual paths. Since the length of a single microwave link is usually 

much shorter than 50km we can see that the Allowance Objective of a single link can be very 

stringent (e.g.< 0.006% of the long term period). 

At first sight these grade of service objectives place a very stringent requirement on the degree of 

details that must be given by the propagation models. Fortunately, for the characteristics of 

interest in microwave and satellite communications some simplification can be made. In the case 

of rain and clear-air induced signal variations, a separation can be made of fine-scale effects and 

large-scale effects. It has been observed that fine-scale effects (rapid signal variations) follow 

some generic stochastic process laws (e.g. Rayleigh, Rice, 1iflaw etc.). The large scale effects 

(relatively slow signal variations representing usually a loss of power due to e.g. absorption) do 

not in general obey any simple generic stochastic process laws and have to be modelled 

empirically. In the calculation of grade of service parameters, two steps are usually employed. 

First a model of fine-scale phenomena in conjunction with a model of the radio modulation 

system employed is used to determine (mathematically or using simulations) at which power loss 

level a SES, DM etc. situation is reached. In the second step the aforementioned power loss level 

is then translated to the relevant value of the (large-scale) propagation parameter. Subsequently 

the (statistical) propagation model for this parameter gives the predicted time percentage of 

excess in the required reference period. We note here that for a given radio modulation system 

the first step needs only to be done once for each propagation phenomenon and needs not to be 

redone for each location and link configuration. This step is usually done by the producer of the 

radio modem, the required 'slow' fading margin etc. forms then part of the equipment 

specification. The second step requires local meteorological information and the link 

configuration information. The planner of the radio network is usually responsible for finding the 

required information. 

An aspect of the ITU grade of service requirement, which has strongly conditioned propagation 

research, is the definition of the reference periods ("Long-term" and "Any-month"). Most 

prediction models have been tuned to produce the statistical distributions for these two reference 

periods. More discussion on these statistics is given in Section 1.4. 
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Finally we note that many of the ITU requirements have undergone a long historical evolution 

and most certainly the developer of these requirements had the best interest of the user in mind 

when formulating these requirements and also took into account some techno-economical 

considerations. However, the environment within which these requirements were formulated was 

a quite a different one than the current environment. In the past, the national PIT's were the sole 

provider of telecommunication services. In such a situation the service providers do not have to 

deal with the large differentiation regarding services to be delivered that would take place in a 

free market place. 

The old situation had the advantage that it was much easier to obtain international standards. 

Furthermore, the PIT's had only to pursue a limited set of objectives and a sense of security is 

obtained: once the grade of service requirements had been established, the PIT's could build 

their system without worrying too much whether it would really satisfy the customer's needs. 

This situation also conditioned the propagation research. The focus was to produce models that 

perform satisfactorily in the range dictated by the grade of service requirements. For example, 

the rain attenuation prediction methods were optimised for the prediction of attenuation with 

average occurrence of 0.0 I% (99.99% being one of the grade of service targets in satellite 

communication). 

The new situation is much more complex, it is more difficult to obtain international standards, 

and furthermore the service providers must have a better insight in what a chosen grade of 

service requirement would mean from the point of view of the users. In this new situation, the 

propagation models must have a validity range that is much larger than previously. This poses 

somewhat of a problem, since development of propagation models takes a long time. One of the 

purposes of our study is to present a method by which the statistical domain of current models 

can be extended. 



16 Section 1 

1.4. Scope of study 

As noted previously, satellite and microwave radio communication links are susceptible to 

propagation effects induced by changes in atmospheric/weather conditions. For example, during 

heavy thundershowers the received signals of such links may be attenuated considerably, 

sometimes even to the point where communication is completely cut off. Another example is that 

during the presence of severe atmospheric temperature inversions a microwave radio signal can 

travel much further than normally, even very far behind the horizon, and may cause unintended 

interference at another microwave link. A good overview of (atmospheric) propagation effects 

can be found in [Hall, 1979], [Boithias, 1987], [Brussaard & Watson, 1994]. 

In general, propagation effects associated with atmospheric processes show such a complicated 

behaviour that they must be treated as random processes for which only some of the statistical 

features can be determined with sufficient accuracy. Many efforts in the past were directed to the 

determination of the so-called 'long-term' statistical distribution Pa: 

P.(a) = probabi/ity(a ~ a) (1.1) 

where a denotes the propagation random variate (e.g. attenuation) while a is a threshold value of 

interest (throughout this thesis random variates are indicated by bold symbols). Usually Pa 

depends on some link parameters (such as frequency, path length) and some meteorological 

parameters. The International Telecommunication Union (ITU) gives methods and data for 

estimating Pa, for various propagation effects, [ITU, 1997]. 

As it turned out Pa alone is not a sufficient description of the propagation process for the 

purposes of the planners. This is due to the fact that the time variation of propagation parameters 

is very complicated (ranging from rapid variation to seasonal variation). During shorter periods 

the user of the radio link may experience much more detrimental propagation effects than what at 

first sight may be expected from Pa. This is certainly the case for the monthly observation period 

that is used by the ITU as one of the reference periods for defining grade of service. The 

Introduction 

observed values of the monthly distributions, i.e. the monthly time fraction of excess X/ 

Xi,J =fraction of time that a ~a within month nr. i of year nr. j 

(i=l,2, ........ ,12; }= .... ,1981,1982,1983, ........ ) 

17 

( 1.2) 

will in many cases deviate considerably from Pa. This is illustrated by Figure I. I which gives 

examples of the behaviour of XJ as was observed in Europe. 

Therefore, in addition to Pa the ITU has adopted the average annual worst-month distribution 

Pa~wM, first proposed by Brussaard & Watson [1979], as a basis for defining grade of service 

parameters, see also Recommendation ITU-R P581-2. Pa~wM is basically a conditional statistical 

distribution: 

Pa
1
wM(a) = probability(a :<:a I theannualworstmonthsperiods) (1.3) 

The annual-worst-month period in a given year is defined as the month having the highest value 

for the monthly time fraction of excess. This selection is dependent on the threshold value a. 
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Figure 1.1 Examples of observed behaviour of the monthly time fraction of 

excess Xij The threshold for the Trans-horizon link is -35 dB with respect to free 

space level. The threshold for the slant-path is 2 dB excess attenuation. 
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The usage of P tt,WM in the last decennium has served the radio communication system planners 

well (see e.g. ITU-R Recommendation P.841 [ITU, 1997] for methods and data for estimating 

Pa~wM) . However, the recent changes in the telecommunication market environment have created 

the need for a broader range of novel grade of service concepts (e.g. the concept of 'risk' 

discussed by Fukuchi & Watson [1989] , Watson [1990], Crane [1991], Crane [1993], Brussaard 

& Mawira [1993]). This in turn will create a demand for a large range of new statistical 

information. The problem facing the propagation community now is how to efficiently produce 

such new information. Ideally, a complete stochastic model for the propagation random variate 

should be developed. From such a model the required statistical information can then be derived, 

either analytically or through simulation. Unfortunately, the development of such a stochastic 

model will take a lot of time and money. 

The more modest approach considered in this thesis is to model the ensemble of X;js as a 

random process and develop good statistical models describing this random process. Such a good 

model, in combination with available models and data for determining Pa and Ptt,wM can then be 

used to derive various types of statistical information, provided that the reference period is not 

taken to be shorter than one month. 

The idea of considering the ensemble of monthly time fractions of excess as a random process 

was first proposed by Crane & DeBrunner [1978]. They also noted that the statistics of the Xij's 

obtained from 2 years of microwave rain-attenuation measurements in Switzerland can be 

modelled well by the so-called conditional exponential distribution. Subsequent work by Brus­

saard & Watson [1979], Mawira [1980], Dintelmann [1984], Mawira [1984], Fukuchi eta/. 

[1985], Dellagiacoma & Tarducci [1987], Poiares Baptista et.al. [1989] seems to support the 

usage of the conditional exponential distribution for rain-intensity and rain induced propagation 

effects. Alternatively Crane [1991] has suggested that the conditional log-normal model is the 

most suitable one. 

A shortcoming of all of these studies is that, with the exception of rainfall-intensity data 

[Mawira, 1980] and [Dellagiacomma & Tarducci, 1987], the data used in each of the analysis 

were not numerous (at most 4 site-years of observations). Moreover, with the exception of the 
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study by Crane [1991], no alternative models were considered and the tests performed were 

more graphical and intuitive than precise. 

In this thesis we therefore consider again the question of modelling of the statistics of the 

monthly time fraction of excess Xif. We also consider the applications of this model. The matters 

to be addressed and solved in this thesis are the following: 

1. A proper formal conceptual framework for modelling needs to be produced. This includes 

the general characterisation of the random process especially with regard to stationarity, 

independence, seasonal dependence and homogeneity of its population. Until now this matter 

has only been dealt with in a less formal and more intuitive manner. 

2. Determination of the most suitable model for the statistical distribution of the XJs must be 

done. In addition to the conditional exponential and the conditional log-normal models 

gamma alike models shall also be considered. Careful consideration has to be given with 

regard to statistical testing and inference methods. 

3. The resulting model and theoretical framework will be applied to derive models for 

prediction of the variability of time fraction of excess related to other base observation times 

(such as worst-month and yearly times). Formerly the characteristics of the variability of 

these other TFEs were determined in a non-unified and purely empirical manner. 

4. With respect to worst-month we need to investigate what the effect of the inevitable 

simplifying assumptions on the models for Xif. will have on the accuracy of worst-month 

prediction. Another worst-month aspect looked into is that with respect to the effects of 

limited observation time on the accuracy of the ITU prediction method. 

5. As an extension to current set grade of service criteria we shall consider various concepts 

used in reliability engineering. We shall demonstrate the possible usage of the above 

mentioned models in so-called risk or reliability analysis. 
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The analysis in this thesis is makes use of a very large amount of data on the Xy's with respect to 

diverse propagation processes (slant-path rain attenuation effects and ducting effects on trans­

horizon paths). The data used are those collected by the European COST205 and COST210 

projects and compose in total of 92 site years of observations obtained in some 9 different 

climatic zones of Europe (see [COST205, 1985], [Fedi, 1985] and [COST210, 1991]). See 

Figures 1.2 and 1.3. Other more limited sources of data have also been included. These are 5 year 

ducting data from KPN Research and processed results of 7 years of rain-rate data (also from 

KPN Research). 

1.5 Outline of the thesis 

In Section 2 the thesis studies the properties of the random process of the monthly time fraction 

of excess (TFE): the Xy's discussed previously in Section 1.4. The statistical characterisation of 

the monthly time fraction of such TFE's, is treated whereby various aspects of this random 

process are considered (independence, ergodicity, seasonality etc.). Particularly the focus is on 

obtaining good (approximate) modelling of the statistical distribution of the Xy's. For this 

purpose the merits of four alternative candidates are be studied and compared to each other. 

Attention is also given to the development of a novel method for statistical testing. 

In Section 3 we analyse the behaviour of the yearly time fraction of excess (such time fraction of 

excess is often used as the minimum observation period in propagation experiments). Here we 

investigate the year to year range of variability. In particular a model is developed for predicting 

the year to year variability based on the results of the modelling performed in Section 2. In 

Section 4 we analyse the behaviour of the annual worst-month time fraction of excess (this time 

fraction of excess forms the basis of many of ITU's Grade of Service criteria). Again we shall 

endeavour to apply the model found in Section 2 for the analysis of the worst-month statistics. 

The behaviour is discussed of an important related parameter, the "worst month quotient", used 

extensively by ITU in prediction of the worst-month statistics. In Section 5, the application of 

variability analysis to the definition of risk and return period is discussed. Also examples are 
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given of a more practical nature of application of the models developed (in a so-called ' risk' and 

'reliability' analysis of communication systems). Finally, in Section 6 the main conclusions are 

drawn. 
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Figure 1.2 Map of those COST205 measurement sites whose data is 

used for analysis in this thesis. 
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Figure 1.3 Map of the trans-horizon links where ducting measurements have 

been carried out. All data are from the COST21 0 project. 

Section 1 

2. The random process X of the monthly 

time fraction of excess 

2.1 General properties 

As noted in the introduction a simplified but useful way to quantity the performance of a 

radio link is to evaluate the behaviour of the fractional duration in each month that a 

(propagation) parameter a, relevant to performance degradation, exceeds a given threshold value 

a. The discrete time series of such fractional durations, i.e. the monthly time fraction of excess 

(TFE)XmJ: 

X m.J (a) = fraction of time that a ~ a within month nr. m of year nr. j 

(m = 1, 2, ... . , 12; j = ..... , 1981, 1982, .. .. ) 

usually exhibits a very complex behaviour and can be looked at as a random process, viz.: 

"a process nmYJing in time and controlled by probabilistic laws" [Doob, 1953]. 

(2.1) 

Basically the goal of our study is to find these probabilistic laws or at least find suitable approxi­

mations to them. 

In mathematical statistics, probability is defined with respect to an ensemble of possible 

outcomes; in the cases of a random process the ensemble is an (infinite) family of time series. 

This is a rather simplified description of the mathematical-statistical approach; for a more exact 

description see for example [Doob, 1953], [Papoulis, 1984]. To most people this approach seems 

very artificial; nevertheless, over time this approach has proven its usefulness; it gives a precise 
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framework for a statistical analysis of complex processes. Foil owing this approach the (discrete) 

time series of the monthly TFEs, XmJ• associated with a particular radio link, can be considered to 

be one member (or one 'realisation') from a discrete-time random process X. Note that a separate 

random process X is defined for each threshold level a (the dependence on a is implied in the 

following analysis). 

From a physical point of view we might consider this random process X as representing the 

family (ensemble) of time dependent outcomes of all possible (hypothetical) radio links with 

equal link parameters (e.g. frequency, polarisation, pathlength) located in a specific geographical 

zone. The area of such a geographical zone is assumed to be large enough to accommodate many 

radio links but small enough to ensure homogeneous climatic properties. There may be 

mathematical-statistical objections to this interpretation, but in any case such an interpretation is 

in accordance with the more operational aspect of the usage of statistical data in empirical 

science. Here we assume that ergodicity applies, i.e. that if we observe a radio-link long enough 

and derive its statistical properties, then these properties are valid as well for 'similar' links in the 

'same' climatic zone. 

To identify what constitutes a 'similar' link is usually reasonably simple once we know some of 

the fundamental aspects of the propagation, e.g. once we know the frequency dependence of the 

relationship between specific attenuation with rain intensity we can estimate which frequency 

bands must have equal propagation characteristics. We can even use this information to scale the 

statistics from one frequency band to another. From this example we can surmise that 

fundamental modelling of the propagation process, while not the object of our study, is an 

essential component even of statistical prediction models. The identification of the climatic zone 

is a more difficult operation, although as a first approach we can derive radiometeorological 

classification from the meteorological classification given by Meteorological Offices. As in the 

case with meteorological effects, many atmospheric propagation effects exhibit seasonal 

dependence. This is illustrated by Figures 2.1 and 2.2, which show examples of the observed 

dependence of the 84, 50 and 16 percentile values of X within each calendar month. 
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Figure 2.1 Examples of observed seasonal dependence of ducting effects. 

The x markers indicate the median value. The 84 & 16 percentile points are 

indicated by the o and the+ markers. dBf= dB with respect to free space level. 

27 

That is to say that for each calendar month the statistical distribution P~m is determined, 

subsequently from this distribution the values of X associated for P~m = 0.84, 0.5 and 0.16 were 

determined. Figure 2.1 shows ducting effects and was derived from trans-horizon measurements 

on two separate links (Martlesham - Leidschendam and Martlesham - Blavand). Figure 2.2 

shows effects of attenuation due to rain on slant paths as was observed on two different European 

Locations (Stockholm and Northern Italy). These figures show that, at least at the higher 

threshold levels, a definite concentration of propagation activities can be observed around the 

summer period. This is of course related to the underlying meteorological processes. In Western 

Europe most of the intense rainfall occurs around the summer, and also the stable high 

temperatures and high pressures needed to produce atmospheric temperature inversion layers 

occur mostly in the summer. The seasonal behaviour in other countries of these and other 

propagation parameters may exhibit different patterns, e.g. fading due to snow in winters. 
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Another way of showing such repeated patterns ofbehaviour is through the normalised 

autocorrelation function px. For of a given time-series of observation of X: 

X(t 1 ), X(t 2 ), .......... .. .. .. , X(t N) 

Section 2 

(2 .2) 

where t1 = the 1st month of the 1st year of observation, t2 = the second month in the 1st year of 

observation, ....... . . , tN =the 12th month in the last year of observation. The estimator rx for this 

autocorrelation function is usually determined as follows: 

I N - r 

rx(r) = --
1
- L(X(tn)- )11)(X(tn + r)- )12 ) 

sts2 N-r-1 n=l 

(2.3) 

where the ~-t's represent the sample averages: 

The random process X of the monthly TFE 29 

N -r 

)1, =-'- LX(tn), 
N - r 

n=l 

(2.4) 

and s 1 and s2 represent the sample standard deviations: 

N-r 

si =--
1
- L(X(tn + r)- )lz)

2 

N - r-1 
n= ! 

(2 .5) 

Some authors use an alternative expression for calculating rx; see e.g. section 2 of [Box & 

Jenkins, 1970]. The main difference being the usage of N-1 instead of N-t-1 in the denominator 

in Equation (2.3) which in fact artificially suppresses, at large lag times, the measured values. 

This is sometimes done because the data at long lead times are expected to be unstable since the 

number of data samples there becomes less and less as the lead times becomes longer. 

Examples of the observed values rx of px for the Martlesham-Leidschendam trans-horizon 

microwave link and the Stockholm slant-path link, discussed in the introduction, are given in 

Figure 2.3. This figure suggests clearly the periodic nature of the process X. 
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Figure 2.3 Examples of observed autocorrelation functions. 
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Such seasonal dependence observed of many propagation processes suggests that these processes 

are eye/a-stationary in nature with a time period T = 12 months (annual eye/a-stationary). 

Formally speaking a random process X(t) is called cyclostationary if all of its statistics are 

invariant to a shift of the time origin by integral multiples of a constant period T [Papoulis , 

1985] : 

Probability(X(t1 + kT)?. Xp ... .. .. ,X(tN + kT) >X N ) = 

Probability(X(ti) >xi' ...... .. ' X(t N ) >X N ) 
(2.6) 

with k any integers value. It is clear that formally proving or disproving such a hypothesis is 

quite beyond our current abilities. The physics of weather phenomena is of such complexity that 

it is practically impossible to formally prove or reject the hypothesis, although we can note the 

yearly period of the earth's rotation around the sun as supporting some kind of cyclostationarity. 

Theoretically we need not restrict ourselves to cyclic periods of 12 months; other cycles may 

also be present, one of which is the 11-year 'sunspot' cycle which can be observed in 

ionospheric radio propagation [Picquenard, 1974] . A study by [Po ires Baptista eta!.] 1986] 

seems to suggest that the annual rainfall intensity statistics in Europe exhibits also an 11 year 

cyclical behaviour. Examples of diurnal effects are the diurnal variation of propagation 

phase-length due to diurnal variation of the total electron content (TEC) of the ionospheric 

path [Mawira, 1990] (see Figure 2.4) and the diurnal variation in rain intensity distribution in 

Indonesia [ Brussaard eta!., 1993] . Another cyclic phenomena is the well-known occurrence 

of weather 'spells', long periods of deviating weather conditions which span a very large area 

even up to continental scales, such as the phenomenon known as El Nino. Finally we mention 

the very long duration cycles associated with major climatic changes of the earth [Miller & 

Thompon, 1970]. 
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Figure 2.4. 12Ghz phase-length variations observed in Delft 

and Leidschendam, using the Olympus satellite beacon. 

Effects shorter than I month, such as diurnal variation, will not be considered in this study. 

Furthermore, for the systems in which we are interested here (satellite and microwave) the main 

propagation processes of importance are those associated with rainfall and with ducting. For 

these, the existence of !-year cycles in many parts of the world is well established. Although 

other longer-term cycles have certainly been noticed there is at the moment very little relevant 

data for us to work with. The effects of cycles associated with major climatic changes is, 

hopefully, not noticeable within our life-span. 

We shall therefore, as a working hypothesis, formulate a cyclostationary model with period T = 

12 months (annual cyclostationarity). In this case the first-order statistics of X may need 12 

distinct statistical distributions: 

Px
1
m (X)= Probability( X?. X I within calendar month m) (2 .7) 
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where m = 1, 2, ... , 12 indicates the twelve calendar months January, February, .... , December. 

As a corollary of the annual cyclostationarity assumption we have the fact that the subprocess Xm 

of X associated with calendar months m is stationary [Papoulis, 1985]. We may thus view X as 

being composed of 12 distinct stationary random processes, Xm: 

(2 .8) 

with each Xm, m = 1, 2, ... , 12, having its own distinct statistics P~m (see Equation (2 .7)): 

(2.9) 

Note that the processes Xm are discrete-time processes at yearly time intervals. 

A question of importance in mathematical statistics is that with regard to the ergodicity of the 

random process. In mathematical statistics ergodicity, in general, means that the statistical 

parameter which can be derived by observing one member of the ensemble over an infinitely 

long period is equal to the same type of parameter associated with the whole ensemble taken at a 

fixed point in time, [Papoulis, 1985]. Actually there are various forms of ergodicity. We are here 

interested in distribution ergodicity; this is the case where the distribution function of a random 

process can be derived from time observation of a single member of this random process. For a 

cyclo-stationary process this is mostly not the case. At most ergodicity may be valid for the sub­

processes Xm associated with calendar months m (=l, 2, ... , 12). According to the theory of 

mathematical statistics, stationarity and independence comprise a sufficient condition for 

ergodicity, see Section 9.5 of [Papoulis, 1985]. To complete the framework for our model we 

have to consider the question of statistical independence of the process. Independence of the 

random processes in different months means that all their joint statistics can be decomposed to 

'products' of the marginal distributions P~m (or equivalently the probability distribution of the 

Xm's): 
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Probability(X1 ;?;X1,X2 ;?;X2 , .• • . , X 12 ;?;X12 )= 

Probability( XI ;,: XI )Probability(Xz ;,: X z ) ...... Probability(XIZ ;,: x\2) 
(2 .10) 

(see [Papoulis, 1985]). Therefore, in the case of independence the 12 statistics (the P~m's) form a 

sufficient base to fully characterise the random process X. 

Proving independence is a hard task, especially when the data are not so numerous. For example 

in our case when investigating pair-wise independence using the contingency-table analysis 

[Cramer, 1946], [Krcysig, 1970], with 2x2 tables the average number of points per table element 

per location would at most be 3 (12years/(2x2)) which would make the analysis practically 

meaningless. An alternative analysis is through the use of the autocorrelation fonction (or as is 

sometimes also called the correlation coefficient). A strong correlation value implies 

automatically a lack of independence, and although lack of correlation does not mathematically 

imply independence it is usually, in physical processes, a good indication of independence. In 

using the correlation analysis some careful consideration have to be made. In the first place it 

must be noted that the autocorrelation function only gives the average correlation properties 

between the months. E.g. for the correlation coefficient for one month time shift represents the 

average of the correlations of the months January vs. February, February vs. March, .... , 

December vs. January. A second aspect that need to be accounted for is the fact that since a 

cyclostationary process is non-ergodic we have to be careful in determining its statistical 

properties from a single time sample. At first sight Figure 2.3 would suggest that most of the 

months are strongly correlated and are therefore also strongly dependent. However, we need to 

note that Equation (2.3) by which the autocorrelation function has been determined is an 

equation developed for obtaining the estimator of the autocorrelation function of an ergodic 

process. 

Dellagiacoma & Tarducci [1984] have applied such correlation analysis, the data used are 

composed of some 200 site years of observations from Italy. They reported very low correlation 

values for lag times ;::: 1 month, and concluded that the statistical processes in separate months 

are independent. For slant-path attenuation and ducting effects we also investigated the 
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independence hypothesis using data produced by the European COST205 and COST21 0 

projects; the dataset is described in Appendix 2.1. 

Here we consider the behaviour of the (normalised) autocorrelation function p c.x of M which is 

the random process X corrected for the seasonal trend: 

(2.11) 

where !ls is a cyclic function of time constructed from the calendar monthly means <X,;> 

according to : 

11s (i2j + rn) = < xm > (2.12) 

where j is the year number and m is the calendar month index number. This removal of the 

seasonal trend is necessary, otherwise we would have in the autocorrelation the correlation 

related to the seasonal pattern. We could see this from the equation relating PM" to px: 

Px(r) 
a~ p M ( r) + a ~s p JJs ( r) 

(2.13) 

where p ~'s and a ~'s are the autocorrelation function and the standard deviation of the 

'deterministic' seasonal pattern ).1s, while a ,u- is the standard deviation of M (the random 

component of X) . We can see from this equation that even if the process M is fully independent, 

in general px would not be= 0. The analysis for P,u- is first carried out using the two data set 

with the longest time period of measurement: that of ducting from the trans-horizon link 

Marthlesham-Leidschendam and that of rain-attenuation from the slant-path measurement in 

Stockholm. 
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Figure 2.5 Examples of observed autocorrelation p ,u­

obtained after correction for the seasonal trend. 
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Figure 2.5 shows the obtained observed behaviour of P,u- . In general it is found that at time lags 

larger than 1 month most of the observed values varies somewhat randomly between -0.2 and 0.2 

with an average of 0, with a notable exception for time lags larger than 6 years. For these large 

time lags we can see large positive and negative excursions of the observed values; these large 

values may however be attributed to the instability of the estimation as the number of samples 

available becomes less and less as the time lag becomes larger. An indication of the instability of 

the estimated correlation coefficient can be obtained by using the results of Fisher concerning 

test and confidence intervals for the correlation coefficient for two normal random variates (see 

Section 18.4 of [Kreysig, 1970]). 
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This leads to the following table giving the 90% confidence interval range for various sample 

numbers for the uncorrelated case: 

Number of Samples: 48 36 24 12 

90% Interval range: ±0.240 ±0.279 ± 0.359 ±0.499 

95% Interval range: ±0.284 ± 0.329 ± 0.403 ±0.574 

99% Interval range ± 0.366 ± 0.421 ±0.510 ± 0.696 

Table 2.1 Confidence intervals for the correlation coefficient 

E.g. this table shows that when experiments were performed where each time we use 48 

(independent) samples to estimate the correlation coefficient between two uncorrelated normally 

distributed random variables we may expect that in 90% of such experiments the values 

observed will be between the range -0.24 to +0.24. 

From the above results we may conclude that at time lags longer than one month the months are 

uncorrelated which is indicative of independence. For a time lag of 1 month the values observed 

are between 0 and 0.4, with an average of around 0.2, which indicates some kind of dependence 

between the subsequent months. 

By restricting ourselves to shorter time-lags we could analyse a larger set of data. The first of this 

consist of all the trans-horizon data, the second of this consists of the slant-path data obtained in 

NW-Europe. Figures 2.6 and 2.7 show the results when averaged over three ranges of thresholds 

corresponding to long-term average X. The ranges are (a) greater than 1%, (b) from 0.1% to 1%, 

(c) from 0.01% to 0.1 %. Figure 2.6 gives the results for ducting effects on trans-horizon links, 

while Figure 2.7 gives the results for rain attenuation on slant-paths. These results also show very 

small correlation values at time lags larger than I month, both for ducting and for rain 

attenuation. For a time lag of I month we see a difference. For ducting the correlation value is 

about 0.3 irrespective of the probability range. For rain attenuation the correlation value is here 

also very small except for the probability range> I%, here we have a value of also some 0.3. At 
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this range we have only data from one site (Stockholm) at one threshold level (1d8), however 

the measurement period is reasonably long: 8 years. A physical interpretation of these 

observations will be given in Section 5 on fundamental issues. Here we just note that the 

magnitude of correlation between the months depends strongly on the 'typical' duration of 

weather conditions conducive to the relevant propagation activities. 

In conclusion, since the correlations are mostly very low, we feel justified in postulating indepen­

dence in our model, the more so because, as will be discussed in Section 2.2, further 

simplification of the model must be implemented in order to make it useful to system planners. 

In Section 4 on worst-month aspects we make some estimate of the possible errors which may be 

produced by this simplifYing assumption. 
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Figure 2.6. The autocorrel ation function PM for pooled ducting data. 

(a) range> I%, (b) 0.1 - I%, (c) range< 0.1 %, (d) all. 
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Figure 2. 7. The autocorrelation function p M for pooled rain-attenuation data. 

(a) ran ge> I%, (b) 0.1 - I%, (c) range< 0.1 %, (d) all. 
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2.2 A simplified model based on the aggregate distribution Px 

To obtain a working model we must apply some further simplification. This is because the 

available propagation data are usually not enough for characterising the 12 distributions PXJm· 

The available data are at most only sufficient for quantifying the seasonal dependence of the 

average of X for some parts of Europe. Furthermore, seasonal dependence may be very different 

in different parts of the world, so that a generally applicable statistical model cannot be expected. 

To circumvent this problem we shall use a simplified model which is based on the average, or 

aggregate, statistical distribution: 

I 12 

Px (X)=- L Px
1
m (X)= probability( X~ X) 

12 m=l 

(2.14) 

As will be shown in later sections this distribution can be determined with the aid of currently 

available and proven propagation methods for the prediction of Pa and supplemented with a one­

parameter climatic map regarding variability/seasonality. 

In this simplified model we assume that only the average distribution Px is available to the user 

instead of the 12 statistical distributions PXJm associated with each of the 12 calendar months 

January through December. In this situation the only indication concerning any seasonal 

variation is to be found in the average number of months per year, Mea, with X> 0: 

Mc, = lim l2Px( lcl) 
&~0 

(2.15) 

While Px alone is sufficient for the determination of simple statistical parameters of X (e.g. its 

long-term average), it is reasonable to expect that the inhomogeneity of the real statistical 

process should have an impact on the values of more complicated parameters associated with X 
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(e.g. the worst-month, to be discussed in Section 4). Brussaard & Watson [1979] have proposed 

a simple way to model this inhomogeneity of the statistics: 

The monthly population is assumed to be composed of two groups ('seasons'): M 

months per year being considered 'active' the other 12 - M months being considered 

'inactive'. The inactive months will always produce X= 0, the active months may 

produce X> 0. Furthermore, the active months have the same statistical distribution 

and are independent (they are i.i.d =independent and identically distributed). The 

active months are equivalent to 'the months that could produce a worst-month' as 

defined by Crane [ 1991]. Finally, M is an integer number. 

Within the ensemble of the active months the statistical distribution of X is given by: 

Px(X I X E Active) = Px(X) I probability( X E Active) (2.16) 

M is not directly observable (assuming that we only have Px at our disposal), but a lower and 

upper bound can be established. The upper bound is obviously 12 while the lower bound is Mco· 

The aggregate distribution is sufficient to determine some of the statistical parameters of X. E.g. 

the time average of the statistical moments < Xk > of X can be determined by using only the 

aggregate distribution (instead of having to use all the 12 monthly distributions) . This can be 

seen by noting that: 

The right hand side of this equation is obtained by using the definition for Px given in Equation 

(2 .14). 
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The time-averaged first moment, 1.e. <X>, is related to the ITU's long term statistics Pa 

through: 

<X(a)>:.::P.(a) (2.18) 

The approximation stems from the fact that the calendar months may have different number of 

days; the maximum discrepancy will be found if the propagation effects should only occur in the 

month February (this discrepancy is however very small, the possible values of< X> 1 P. lies 

between 1 and 1.08). A fine point to be noted here is that the ITU definition, given in 

Recommendation ITU-R P581-2 [ITU, 1997], only implies a long-term averaging across a 

sample of X. 

Finally, it should be noted that for any two threshold values a1 and a2 such that X(a 1 ) ~ X(a2 ) 

the following inequality applies: 

(2.19) 

1n a later section concerning the worst-month it is shown that Px, also known as the parent 

distribution, is sufficient to predict the extreme tail of the annual worst-month TFE, which makes 

it attractive for use by planners of radio links. Furthermore, the planners of the radio links are 

often only interested in the occurences of extreme months and do not need to know the specific 

month of occurrence (e.g. January 1995), so that the usage of Px instead of Px,m is not so 

restrictive as it might seem at first sight. 
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2.3. Candidate models for Px 

Figures 2.8 and 2.9 give examples of measured Px, for slant-path and ducting effects. These 

figures illustrate the often observed fact that severe propagation effects only occur in a fraction of 

the months, the other months producing X= 0 (conditionality or seasonality aspect). The shapes 

of the distributions suggest that exponential, lognormal or gamma type of distributions can be 

used to model Px provided suitable modifications are included to accommodate for this conditio­

nality aspect. See Figure 2.10 for examples of the behaviour of these distributions. In this section 

such models for Px will be investigated. 
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Figure 2.8 (a) Examples of Px, from measured rain-attenuation 
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The first model is the Conditional Exponential (CEX) model, first proposed by Crane and 

DeBnmner [1978] : 

(2.20) 

for X > 0, Px = 1 for X < 0 ; 0 < Co< 1, C1 > 0 .. In this study we extend the model by allowing Co 

values greater than 1: in such cases the above equation is valid when X> C1 ln(Co) otherwise Px 

= 1; this extension was first introduced by the author in [ITU, 1992]. 

Slant Path, Northern Italy 

10° 10° 
3 dB 

10'
1 1 o·1 

"' Cl.., 

1 o·2 1 o·2 

1 o·3 1 o·3 

0 5 10 0 0.5 

10° 10° 
6 dB 14 dB 

10'
1 10-1 

"' 0... 
1 o·2 1 o·2 

1 o·3 1 o·3 

0 0.2 0.4 0 0.1 0.2 
X (%) X(%) 

Figure 2.8 (b) Examples of Px, from rain-attenuation measurements 
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The second model is the Conditional Lognormal (CLN) model, more recently proposed by 

Crane [1991] : 

I' __ ,-
" 2 

Px(X)=C0 J dt-e-
1 X ..[2; 

- In(-) 
C1 cl 

for X> 0, Px = 1 for X< 0 ; 0 < Co < 1, C, , C2 > 0 .. 

10° 

10·1 

c...'< 
1 o·2 

1 o·3 

0 20 

10° 

10.1 

c..." 
1 o·2 

1 o·3 

0 

Ducting, Martlesham - Leidschendam 

10 
X(%) 

40 60 

20 

10oa-------~-------. 

10.3 L..,_---~-----'-
0 20 40 

0 dBf 

X(%) 

Figure 2.9 (a) Examples of Px, from ducting data 

(2.21) 
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The third model is the Gamma model: 

::o c,-1 e -t 
Px(X) = fdt t . 

X 
-+K 
c, 

45 

(2.22) 

for X> 0, Px = 1 for X< 0 ; c, > 0, c2 > 0. r is the well-known gamma function. K is the shift 

parameter; for our study we consider two cases: 

K=O (2.23) 

and 

K = Cz (1 - jC;)H(l- c2) (2.24) 

where His the unit-step function: H(X) = 1 for X2 0 and H(X) = 0 for X < 0. His also known as 

the Heavyside function. In the first case we have a normal Gamma (GM) model. For the cases K 

~ 0 we have a shifted Gamma model (SGM), which is the distribution of a Gamma variate from 

which the value KC2 is subtracted and afterwards the negative values are truncated to zero. A 

'shifted' gamma distribution, with K = C2, was first proposed by Fukuchi and Watson [1989] for 

describing the variability of yearly time fraction of excess. However, our initial tests shows that 

the SGM distribution with K = C2 does not model the observed distribution of the monthly time 

fraction of excess very well. After some experimentation, Equation (2 .24) was found to produce 

a much better model. The standard Gamma model (i.e. Equation (2 .22) with K = 0) was tested 

and rejected by Crane [ 1991]; this was to be expected, because the standard Gamma distribution 

is an unconditional model and is obviously unsuitable for modelling a conditional phenomenon. 

It always fails for very small values of X In our study we shall consider again this Gamma 

model, here we investigate in how far the effects of very small values of X can be ignored. 
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Figure 2.9 (b) Examples of Px, from ducting data 

Figure 2.10 gives examples of the behaviour of these distributions. This figure is obtained by 

simulating a CEX process, with Co = 0.5 and C1 = 0.1 %, and afterwards applying a 'best-fit' on 

the four models; such 'best-fit' procedures will be discussed in Section 2.4.2. This figure shows 

that there is an intermediate range where the four models are difficult to distinguish from one 

another. For very small values of X the models behave differently, however, here the measured 

data is not very accurate. At the tail of the distribution the four models also behave differently, 

however to measure the tail accurately a long-term observation is needed. It is interesting to note 

that at the tail of the distribution the CEX model descents to most rapidly, while the CLN is the 

slowest to descent to 0. 
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We note here that, mathematically speaking, the above models can only be considered to be 

approximations. This is because the monthly time fraction of excess X is, by definition, never 

larger than 1, so that Px must be equal to zero for all X> 1 (which is clearly not the case for the 

three models). In practise, however, the thresholds of interest are associated with X values that 

are well below I 0% and the approximation should cause no problems. 

Co is sometimes called a location (or conditionality) parameter, C1 is sometimes called a scale 

parameter and C2 is sometimes called a shape parameter. The conditional exponential model and 

the shifted gamma model are two-parameter distributions while the conditional lognormal model 
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is a three-parameter distribution Note that in cases where confusion may arise we shall append 

the appropriate model index to these parameters (e.g. Co.cEx or Co,GM). 

The conditionality of the phenomenon is explicitly accounted for in the conditional exponential 

model and the conditional lognormal model by the inclusion of the conditionality parameter Co. 

In the shifted gamma model the conditionality is implied, and we can define an effective Co 

parameter for the SGM model: 

(2.25) 

As noted in Section 2.2 this long-term average X is related to the ITU's long term statistics Pa 

through: 

X(a):::: P.(a) (2.26) 

The mathematical expression for the dependence of X on the model parameters has been 

derived and is given in Appendix 2.2. An important point to note here is that if Pais known, e.g. 

by using good prediction methods, the number of parameters required to determine Px is reduced 

by one. For the CEX and SGM models, therefore, in addition to a prediction method for Pa we 

would only need to determine Co in order to fully predict Px. The prediction aspects of the 

determination of the model parameters are discussed in Section 2.5. 

Finally, it should be noted that for any two threshold values a 1 and a2 such that X(a 1 ):::~ X(a2 ) 

the following inequality concerning the model parameters can be derived, through use of 

Equation (2.19): 

(2.27) 

for i = 0 for all three models. This equality is also valid for i = 2 for the CLN, GM and SGM 

models. For i = 1, Equation (2.27) has only general validity for the CEX model. However, 

intuitively we would expect it also to be valid for the CLN, GM and SGM models. 
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2.4 Testing of the models for Px 

2.4.1 Data used in the testing 

In this section we shall test the suitability of the candidate models for Px using measured 

propagation data. The data used for this testing are derived from those produced in the European 

co-operative projects COST205 and COST210, refs. [COST205, 1985], [Fedi, 1985] and 

[COST2 10, I 990] . Within the COST205 project, which took place in the period 1975-1980, data 

from propagation experiments carried out across Europe using the OTS and SIRIO satellites 

were collected and analysed. The data here that is of interest to us is that with regard to rain­

attenuation. In the COST21 0 project, which took place in the period 1984-1990, data from trans­

horizon links in Europe were collected and analysed. The data here that is of interest to us is that 

with regard to ducting. These data have been preserved in the form of monthly cumulative 

distributions. 

An important requirement for accurate testing of models for Px is the availability of a sufficient 

number of sample points. Furthermore, since the model to be tested is conditional it is the 

number, N0 , of samples with XJ > 0 that is important for the test. To establish some minimum 

size of the data we follow the following reasoning: 

Let us assume that to reasonably test a single distribution we would require at least No= 10 

points with X;J > 0. Further, for rain-attenuation in Europe for thresholds associated with a 

long-term probability of 0.0 I% (an important Grade of Service target) the average value of 

Co is around 0.23, see [COST205, 1985]. This results in a required minimum of Nj(12C0 ) 

= 4 years of observation per distribution to be tested. Since in order to avoid effects of 

measurement errors we need to remove some data points which are to close to zero we 

may establish 5 years as the lower bound for the required observation time per distribution. 

For our study we apply a scheme of data pooling in order to obtain large number of samples for 

various climatic regions of Europe. We have here some 69 site years of 11GHz slant-path 

attenuation data (from 8 zones across Western Europe) and 23 site-years of trans-horizon 
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(ducting) data (from 5 zones around the English channel). Table 2.2 and 2.3 summarise the data, 

Figure 1.2 and 1.3 of the introduction gives the geographical locations of the measurement sites; 

for more detailed description of the measurement data see Appendix 2.1. 

Table 2.2: 11 GHz slant-path rain-attenuation data 

LOCATION ID Years Source COMMENTS 

Austria AUS COST205 Lustbuehel : 4 y. OTS, Graz: 5 y. RADIOMETER. 

9 RADIOMETER data scaled to OTS configuration. 

Belgium& BNL COST205 Louvain La Neuve: 2y., Lessive: 2y., Eindhoven: ly ., 

The Netherlands 9 Nederhorst: 3y., Noordwijk: ly .. AllOTS data. 

Germany GER COST205 Leeheim: 3y. OTS. Leeheim: 4y. RADIOMETER. 

7 RADIOMETER data scaled to OTS configuration. 

Finland FIN COST205 Sodankyla: 5 y. OTS. 

5 

Italy (northern) !TAl COST205 Lario: 5y. S!RlO. Spino d'Ada: 4y. S!RlO. Milan: 3 y. 

12 RADIOMETER. 

RADIOMETER data scaled to SIRlO configuration. 

Italy (central) ITA2 COST205 Fucino: 5y. S!RlO. Fucino: 3y. OTS. Fucino: 3y. RA-

II DIOMETER. 

S!RlO & RADIOMETER data scaled to OTS configu-

ration. 

Sweden SWE COST205 Stockholm: 8y. RADIOMETER. 

8 

UK (southern) UK COST205 Martlesham: 3y. OTS. Slough: 2y. OTS. Slough: 3y. S!RlO. 

8 SIRlO data scaled to OTS configuration. 

PS. The (attenuation) threshold values used in this thesis are 1, 2, 3, 4, 6, 8, 10, 12, 14 dB. 
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Table 2.3: Sources of ducting data 

LOCATION lD Years Source COMMENTS 

Martlesham - MALS COST210 Frequency= l .3 GHz. Path-lenth = I I Okrn. 

Leidschendam 8 

Martlesham - MAE I COST2l0 Frequency = IJGHz. Path-length = l50krn 

Eindhoven 5 

Martlesham - MABL COST2!0 Frequency = IJGHz. Path-length = 200krn. 

Blavand 5 

lnsum- INLS KPN Frequency = 6.4GHz. Path-length = I OOkrn. 

Leidschendam 5 Research 

PS. The threshold values used in this thesis are: -45, -35, -25, -15, -10, -5, 0, +5 dB below free 

space level. 
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2.4.2 Discussion of statistical test methods 

Methods for testing of suitability of model distributions (goodness of fit tests) have been a 

subject of research in the branch of mathematical statistics for nearly a century. In this period 

numerous methods have been developed; most well known of these are the Chi-squared (or X
2

) 

test [Cramer,1946], the Kolmogorov-Smimov test [Massey, 1951], the Cramer-von-Mises test 

and the Anderson-Darling test [Pearson & Hartley, 1976]. 

(1) Take N observations {X} from the population X (measurements). The larger the ~umber of 
independent observations taken the better we would be able to test the model. Obviously the 
measurements should be accurately performed. 

(2) Construct from that sample the observed distribution Pobs (the sample cumulative (?r frequency) 
distribution function, s.c.d.f. resp. s.f.d.f.). A method for constructmg the s.c.d.f. IS that due to 
[Gumbel, 1967]. Here the test points for the s.c.d.f. are taken to be identical with the observation 
points. The probability assigned to the i-th (Rank 0 largest sample pomt, XRonic·i• IS : 

PobsCXRond = i I (N+ 1) 

This method of probability assignment is called Rank-ordered statistics. Note that some authors 
use, somewhat different estimators, e.g. i/N or (i-0.5)/N or (i-1)/N. The s.f.d.f. is usually 
constructed by the well known histogram method. 

(3) Estimate the model parameters {;.,, (parameter estimation). This is done using a suitable 
procedure, EstimateParameter(), applied to the observation points: k sr = EstimateParame­
ter( {X}). In some cases the model parameters are a priori given, e.g. this is the case when we are 
testing whether an in the past (fully known) process has changed with time. 

(4) Determine the probability values predicted by the model, e.g. PmodeAXRonJc-i,f:esr)- This is a simple 
application of the mathematical equation of the model distribution. 

(5) Quantify the deviation D between the predicted and observed values. The test-variate D is 
determined using a suitable procedure, Deviation(): D = Deviation(Pobs.P model) · 

(6) Derive conclusions from D (statistical inference). The basis for this step is the fact that D is 
actually a single observation from an ensemble of possible values D (random ~anate). For a given 
model one can, at least in principle, determine theoretically the expected distnbuuon Po of D. 
Now, by considering this distribution and the observed value D a statement can be made regarding 
the likelihood that the assumed model is correct (or incorrect). 

Panel 1. Procedural steps for goodness of fit tests 
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Even though the specifics of these test methods may differ considerably from one another, most 

of such test methods include common procedural steps that must be performed, see Panel 1. 

Although at first sight these steps seem straightforward, there are subtle aspects which need to be 

considered before choosing and applying the various statistical test methods. A crucial element 

in making statistical inference is the knowledge regarding the statistical properties of the test 

(random) variate D, such as the knowledge of its distribution PD . It is on the basis of this 

knowledge that from an observed value D the likelihood of the validity of the model being tested 

can be quantified. E.g. in hypothesis testing the hypothesis: "the model is correct" is rejected if 

PD(D) is smaller than a (small) agreed value called the level of significance. Note that the level 

of significance can be interpreted as the risk we are willing to take of erroneously rejecting a 

correct model/hypothesis. 

It may be argued that when we are comparing the merits of two models it is sufficient to use an 

'intuitive' approach, that is to say that the model producing the smaller value for the test variate is 

the correct model. However, this approach is only valid if the test random variates associated 

with the two alternative models have the same statistical distribution, otherwise the comparison 

will be biased in favour to one of the models. Test methods which produce a test variate D with 

statistical distribution PD which is independent of the distribution of the random variate X which 

is to be tested may be used in this 'intuitive' way. 

A test method for which PD is independent of the statistical distribution of the random variate X 

being tested is called a distribution-free test-method. Such a test method is attractive since that 

PD need only to be determined once (preferably in analytical form) and is then subsequently 

available for many test applications. The Kolmogorov-Smimov test, the Anderson-Darling test 

and the Cramer-von-Mises test are distribution-free methods with known expressions (or at least 

tabulated values) for PD provided that the model distribution is fully specified. That is to say the 

model parameters{: must be a priori known/given and not derived from the samples being tested. 

The basis for all such model is the probability transform of the observed values: 

(2 .28) 
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which is essentially transforming the random variate X to a random variate U which is uniformly 

distributed in the interval 0 to 1. The test variate D measures the deviation of observed/sample 

values { U} from that expected for a uniform distribution. Although the specifics of the measure 

D varies from method to method, e.g. root mean square measure, maximum deviation measure 

etc., the essential feature of these methods is the assumption of uniform distribution of U in the 

derivation of the expected statistical behaviour of D. 

In the cases where the model parameters were derived from the data samples we may not assume 

anymore that U is uniformly distributed, since the estimated values !;.est will in general be 

different from the true values {;,. In such cases the distribution of D will be different than the 

distribution obtained in the case of fully specified models. In fact the distribution of D will now 

be dependent on the distribution of the random variate being tested. The test method is now not 

distribution-free anymore. Finally, we note here that for popular distributions such the normal 

distribution the modifications to the distribution-free methods, when{;_ has to be derived from the 

data, has been calculated and tabulated, see e.g. [Pearson & Hartley, 1976]. 

The x2 test method, [Cramer, 1945], is based on comparing measured with expected histograms 

and is only distribution-free in the asymptotic sense (for sample size N--+ ro). There are actually 

two versions of the x2 test method. The first, which we shall call the classical x2 test, is to be 

used only for testing fully-specified model distributions, this version is the most well known and 

(mis)used. Since for our analysis we must determine the model parameters from the data samples 

the above test method cannot be used. A variation of the x2 test which allows parameter 

estimation is the l-minimum test [Cramer, 1947]. In this test the estimated model parameters 

!;.est are obtained by minimising the value of the test variate. Again, this test is only distribution­

free in the asymptotic sense, so that its application to our situation (limited number of samples) 

must be done with some caution. We shall discuss this test further in Section 2.4.3. 

Another test method that is popular in engineering community is the regression test. In this test 

the model parameters are determined through regression. That is to say the optimum values of 

the model parameter are those which minimise the deviation between the model probabilities and 

the observed probabilities. The popularity of this approach stems from the fact that for some 

The random process X of the monthly TFE 55 

probability distributions a transformation has been found which reduces the regression to a linear 

form (allowing manual graphical determination of the model parameters). The problem with this 

method is that we have no indication at all of what consists of significant deviation of the test 

variate. This test is furthermore very much model dependent. Because of the popularity of this 

test we shall apply it also in Section 2.4.3. 

Finally, since one oflimitations of severe testing is the limited number of points comprising each 

distribution, we shall apply a novel method to pool all the available points using a normalisation 

procedure and analyse the resulting "grand-pool" of data, this is also done in Section 2.4.3. 

2.4.3 Results of tests 

x2 minimum method 

The "X
2 

minimum" method is based on the r} parameter. For the calculation of this parameter the 

whole of the variable space is first divided into r bins. The observed number of sample points in 

the bins is then compared to the expected number of points predicted by the model distribution 

using the following test variate: 

N 

X
2 = ~)n;- NM;([;_)) 2 / NM;([;_) (2.29) 

i=J 

N is here the total number of samples, n; is the number of observed samples in bin i , M; is the 

predicted probability of an observed value falling in the range of bin nr. i (for given model 

parameters g. It has been proven (see [Cramer, 1945]) that if the number of samples N ~ ro and 

if the model distribution is correct the variate x2 will have a so-called Chi Square distribution 

with number of degrees of freedom (NDF): 

NDF = r - s - 1 (2.30) 
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r is the number of bins used, s depends on the method by which the model parameters~ has been 

determined. If the parameter vector~ is known a priori then s = 0. If the parameter~ has been 

estimated from the data then s equals the number of model parameters. Actually the latter 

theorem was only proven for cases when~ was estimated by minimising Equation (2.29) (the l 
minimum method), however according to Cramer [1945] this theorem is also valid for a large 

range of parameter estimation methods. Our own investigation, using simulations, have shown 

that this statement is overly optimistic; large errors are incurred if we use the x2 in conjunction 

with various standard parameter estimation methods e.g. regression. For this thesis we will 

therefore use the x2 minimum method to estimate the model parameters. 

The x2 distribution is equivalent to the Gamma distribution with scale parameter C1 = 2 and 

shape parameter C2 = NDF/2: 

co NDF -l - 1 

P (xz)_ fdtt 2 __ e __ 
z' - f(NDF I 2) 

z'/2 
(2.31) 

The way in which the bins are constructed is described in Appendix 2.3 . 

Application of the method to the measured data described in Section 2.4.1 resulted in some 62 

samples of x2 for each of the three models tested. Instead of applying the hypothesis testing to 

each sample we follow here a modified test method which obviates the need to somewhat 

arbitrarily choose significant levels. In this method we transform the X2 variate to a new variate 

Uusing: 

U = P , (X 2 , NDF) z (2.32) 

(see Equation (2 .31 )). If the model (hypothesis) is correct then X2 will have the distribution 

according to Equation (2 .31) and subsequently U will be uniformly distributed. The uniformity 

of U can be graphically investigated, since the (complementary) cumulative distribution, Fu, 

should be a linear function of U, (probability( U < U) := F u( U) = U). The results are given in 
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Figure 2.11. This Figure shows that the CEX, CLN and the SGM models produce reasonably 

linear relationship and can therefore not be rejected by this test. The points associated with the 

OM model, however, deviate considerably from the linear so that the OM is rejected by this test. 
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Figure 2.11 Results of the Chi-squared test 
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Regression method 

In this method the best estimate for the values of the model parameters are taken to be those 

values that results in the 'best fit' between the model distribution and the sampling distribution 

(the observed distribution). Usually a probability transform is applied so that a linear relationship 

between the stochasic variate and the transformed probability is obtained. Subsequently a linear 

regression fit is applied which produces the estimated values for the model parameter. Then the 

quality of the fit is often quantified by the root mean squared (RMS) value of the logarithm of the 

ratio of modelled and the predicted probabilities, Epx, calculated using: 

(2.33) 

where Xn is n-th largest sample point, Pn is the probability value assigned to that sample (see 

Panel!). The vector.( represent the model parameters. N0 ' (:::; N0 :=number of points with Xu > 

0) is the number of points selected for regression. No' is introduced to avoid possible fitting 

problems associated with the conditionality of the models : e.g. small measurement errors may 

artificially considerably reduce or add samples with small values of X;/s which in tum can have a 

large effect on EPx· We note here that the regression approach has certain disadvantages, it 

emphasises in a somewhat arbritary way the tail of the distribution. Furthermore, this method 

usually results in biased estimations of some of the model parameters (our simulations have 

shown that C1 is overestimated by this method). Nevertheless, since this method is popular in the 

engineering community we shall investigate it as well. 

Further, it is important to consider the method by which N~ can be determined (or in other 

words: how the 'active' population can be separated from the ' inactive' population). One method 

would be to just pick out the samples with X> 0, but this method was found to be less suitable 

due to sensitivity of measurements errors at low values of X (e.g. different filtering schemes, 

determination of reference levels). Furthermore for low values of X, secondary, less important 

seasons may have unduly large influence on the parameter estimation results. Crane [ 1991] has 

proposed a selection method. The selection method proposed, however, requires visual graphical 

inspection, which is of course not very suitable for processing large amount of data. Furthermore, 
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such a subjective selection method makes comparison of analyses by different researchers 

difficult. 

We therefore introduced another (more objective) method for data selection. In this method, for 

each given N observation of X the active part is selected by taking the N'o largest values of 

observed X that produce z* 100% of the total sum of the observed X: 

(2.34) 

Xi is here rank ordered (X1 > X2, .. .. , XN). Testing the consistency of the results leads to a 

recommended value of z = 0.994. 

For the CEX model linear regression is applied to the ln(Px(X)) vs. X relationship. For the CLN 

model firstly the parameter Co is estimated using our implementation of the procedure devised by 

Crane, see Appendix 2.4, subsequently the inverse Gaussian transform is applied to Px(X)IC0 and 

a linear regression vs . ln(X) then produces the parameter estimates. For the GM and SGM model 

no linear regression procedure is known. The parameter estimation here is done by the 

minimisation of EPx· This process is non linear and is done using MA TLAB's FMINS function 

which is based on the Simplex search procedure. 

Using the estimated model parameters, £ Px is calculated for the set of data described in Section 

2.4. 1. The values found are plotted against the number of points, N~, with X > 0 in Figure 2.12. 

This figure shows that there is in general not much difference between the three models in the 

goodness of fit of Px. 
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Figure 2.12 Results of the regression tests showing the dependence 

of the error variate £ Px .on the number of points No with X > 0. 
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The normalisation method 

The number of sample points of each s.c.d.f. (for a particular location and threshold) is rather 

small (at most, 120 for 10 years of measurements; the number of points with X > 0 is generally 

much smaller). This prohibits severe testing of the models. The total number of sample points 

with X > 0 is, however, very large (some 3500). If a suitable normalisation could be found then 

these can be considered as one large data pool. 

A simple normalisation method which we will consider in this section is to use the fact that when 

a stochastic variate is transformed using the mathematical expression of its cumulative 

distribution function ; the resulting new variate is uniformly distributed [Gumbel, 1967]. For a 

conditional distribution the variate with X > 0 is transformed to a uniform distribution in the 

range 0 - C0 • In order to be able to pool all the data, we must use a transformation which results 

in the same range throughout. We can obtain this by using the unconditional distribution to 

perform the transformation: 

(2.35) 

The variate V, associated with X> 0, obtained in this way is uniformly distributed in the range 0 

- 1 (note that X= 0 will produce V = 0). Since all the data belong to the same type of process the 

pooling of all the transformed variates will lead to a very large set of a uniformly distributed 

population (actually, a conditionally uniformly distributed population due to the contribution of 

X= 0 respectively V = 0). The uniformity can be easily investigated through graphical inspection 

of the cumulative distribution of V. 

Before going further we must first consider possible influence of the data selection procedure 

(during the parameter estimation phase). This selection procedure (also known as censorship) has 

been known to severely affect the shape of a distribution as well as the estimated parameters 

[Hald, 1952] , [Bury, 1986]. Its possible effect should therefore be considered since in our new 

method we are going to consider the shape of the normalised distribution. The seriousness of 
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censorship depends on the degree of censorship and the nature of the parameter estimation used. 

In our case, censorship only affects a small portion of the data points with X> 0 (with the chosen 

value of 0.994 for the threshold z parameter only some 10% of the samples with the smallest 

values were censored). Changing the value of z from 0.9999 to 0.98 only changes the values of 

the estimated parameter by a few percent. 

A second complication here is that we do not know in advance which parameter estimation 

method (in conjunction with the censorship) necessary to determine h in Equation (2 .35) will 

guarantee a linear relationship. Since the mathematics of the problem seem intractable we tackle 

the problem by adding a simulation (Monte Carlo) procedure as a reference. The procedure is as 

follows: 

(I) For each measured CDF we perform the parameter estimation (and the normalisation to 

produce V). The chosen estimation procedure used for the CEX, SGM and the CLN models 

are: 

Model Parameter estimation method 

CEX Gauss-Markov (BLUE) 

CLN Maximum Likelihood Method (modified) 

SGM Non-linear regression 

GM Non-linear regression 

Table 2.3. Chosen parameter estimation methods for the normalisation tests. 

Note we have investigated various parameter estimation methods, the above methods were the 

ones giving the best results. The Gauss-Markov method [Schejje, 1959], is a so called Best 

Linear Unbiased Estimator (BLUE) method but requires the expression for the correlation 

matrix between the rank-ordered samples, we have only been able to derive the expressions for 

this matrix for the CEX model, see also [Balakrishnan & Rao, 1997]. Description of the 

Maximum Likelihood method can be found in most textbook on statistics, e.g. [Kreysig, 1970]. 

For our application to conditional distributions we have to slightly modifY this method. The 
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modification is based on the separation of the data in two populations, see Equation (2 .34). For 

the population with the higher values their contribution to the likelihood function is done in the 

usual way (using the probability density function) . For the other population, that with the 

smallest value, the contribution to the likelihood function of each point is taken as the 

probability of observing a point with value smaller than the threshold value separating the two 

populations. 

(2) Using the obtained model parameters, produce through simulation (appropriate to the 

assumed model) l 0 CDF's for each measured CDF (here again we have used the MA TLAB 

programming environment). 

(3) Apply the same procedure as in step (1) above on the CDF's of the simulated data resulting 

in simulated V. 

( 4) Comparison of the cumulative distribution of the measured V and the simulated Vindicates 

the merits of the model. 

The advantage of this method is that we do not need the guarantee of linearity of the expected 

cumulative distribution of V. Furthermore, we are performing a valid statistical procedure: we are 

comparing the measured behaviour against the expected behaviour (even though we are using 

simulations instead of rigorous mathematical analysis). An objection that may be raised is that 

the chosen parameter estimation may be so biased that the ' ensemble' of the simulated data is 

very different from that which should be tested. On the other hand, a model with no 

corresponding reliable parameter estimation method is untestable and therefore quite useless. 
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The result is given in Figure 2.13. Here it can be seen that the SGM model gives the best 

performance with very good linearity in the range 0.05 < V < 1. Next comes the CEX model the 

range with good linearity for 0.15 < V < 1. The performance of the CLN model is not so good; a 

breakpoint can clearly be seen at V= 0.5. The GM model performs badly. 
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Figure 2.13 Results of the Normalisation tests (solid lines= simulated, circles= measured). 
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Table 2.4 summarises the performance of each model in terms of the mean and the root mean 

square (RMS) of natural logarithm of the ratio of observed to model (simulated) probability 

distribution (restricted to non-zero values of V): 

CEX CLN SGM GM 

Mean(%) -0.6 -12.5 3.4 -33.7 

RMS (%) 7.8 27.4 5.5 43.7 

Table 2.4. Results of the normalisation tests 

Finally, we note here that the CLN method using Crane's parameter estimation method produces 

somewhat poorer results, mean= -5.3% and RMS = 31.9%. Furthermore, the simulated results 

for the CLN model (for both Maximum Likelihood as well as Crane's regression method) 

deviate markedly from the expected linear, which indicates that there may be a problem with the 

CLN in conjunction with censorship. To see this we have also tested a modified CLN procedure; 

here we take the full uncensored data and take Co to be equal to the total number of points with X 

> 0 divided by the total number of samples. The result, given in Figure 2.13 (indicated as CLN­

modified), shows a great degradation of performance, only now the simulated data are very 

linear (as they should be). 
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Figure 2.14 Results of normalisation test on the CLN model 

using "uncensored" data in the parameter estimations. 
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2.5 Interpretation of the model parameters 

The mathematical expression for the dependence of the long-term average X of X on the model 

parameters has the general form of: 

(2.36) 

where kmodet is equal to 1 for the CEX model, while kmodet is a function of C2 for the SGM model 

and for the CLN model (furthermore for the SGM model Co is an effective value which depends 

on C2). Detailed expressions, have been derived and are given in Appendix 2.2. 

An important point to note here is that if Pais known, e.g. by using good prediction methods, the 

number of independent parameters required to determine Px is reduced by one. For the CEX and 

SGM model we would therefore in addition to a prediction method for Pa only need to determine 

Co in order to fully predict Px; for the CLN we need C2 as well in addition to the two 

aforementioned parameters. The parameter cl can then be determined from: 

(2.37) 

In a study carried out by [Maw ira, 1980] on the behaviour of Co for rain-attenuation on a 12 km 

microwave link at II GHz and that of the Co for simultaneously measured rainfall intensity it has 

been found that if the Co is plotted against the measured long-term value X at the same 

threshold levels the plots Co vs. X for both the rain attenuation and that for rainfall intensity 

falls very close to each other. Later studies carried out by the author for the COST205 project 

confirms such similarity between the Co vs. X for slant path attenuation in various countries. 

For slant-path crosspolarisation such a similarity was also observed albeit with a tendency for the 

cross-polarisation to produce slightly lower values of Co; this has also been observed by 

[Fukuchi et.al., 1985]. For ducting effects, we also have evidence of such an invariance 
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relationship through comparison of the Co vs. X relationships produced by different radio links 

[COST210, 1990]. Note that in all these studies the CEX model was assumed. We do not expect 

a different situation to emerge if the SGM or the CLN model has been used since these models 

has produced very similar values for Co as the CEX model for the data used in the tests carried 

out in the previous sections. 

This observation seems to warrant the interpretation of Co as a meteorological quantity related to 

the occurences of meteorological conditions conducive to their associated propagation effects. 

From this point of view it makes sense in the future to develop climatic maps of Co for the 

important time percentages. Ct on the other hand is strongly related to the path link configuration . 
(frequency, path length, elevation angle, polarisation etc.) so that mapping of C1 would not be an 

efficient approach. As noted above, however, C1 can be determined from Co and Pa (which can 

be determined using current prediction models). 

Since none of the proposed models can with certainty be excluded it may be expected that 

various models will stay in use. From this point of view it would be useful to determine the 

interrelationship between the parameters of the different models. The intention here is that if we 

are given the values of the model parameters (Co, C1 etc.) obtained from fitting a certain model to 

a particular given set of measurement data, we would then be able to use these parameter values 

to determine the parameter values that would have been obtained when assuming another model. 

Using the data described before, we have determined empirically such relationships, the results 

are shown in Figures 2.15, 2.16 and 2.17. 

Figure 2.15 shows the observed relationship between the location parameter Co associated with 

CEX model and the shape parameter C2 associated with the SGM model. The figure also show 

that the relationship is reasonably well approximated by the following (simple) equation: 

c c 1.20 
1.SGM = O.CEX (2.38) 
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Figure 2.16 shows the observed relationship between the location parameter C0 (associated with the 

CEX model) and the shape parameter C2 (associated with the GM model). Again it is found that the 

relationship can be well approximated by a simple power law: 

C C 1.45 
Z,GM = O,CEX (2.39) 

For the CLN model only the location parameter gives a consistent relationship with respect to the 

location parameter of the CEX model. The results are shown in Figure 2.17. A reasonable 

approximation is given by the following equation: 

cO,CLN = 1- exp( -( c O.CEX I 0.6) 135) (2.40) 
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2.6 Conclusions 

The properties of the random process X have been investigated. The cyclostationary nature of X 

has been demonstrated. Furthermore the statistical independence of X has been demonstrated (at 

least for lag times larger than one month). A simplified model based on the aggregate parent 

distribution Px and the feasibility of using the simplifying dual-population model has been 

demonstrated. Four models for Px have been tested using some 92 site years of data from 12 

locations in Europe (slant-path attenuation and trans-horizon signal levels). The models are the 

conditional exponential (CEX), the conditional lognormal (CLN), and the shifted gamma (SGM) 

models and the Gamma (GM) model. Classical test methods, for example the X
2 

minimum 

method and the regression method, do not allow definite statements regarding 

superiority/inferiority of these models. This is due to the limited number of sample points 

available for each sample distribution, and the similarity of the three distributions in the 

midrange. Application of a novel normalisation method (to create a "grand pool" of test data) has 

indicated the superiority of the SGM model, with the CEX model a close second. The CLN 

performs rather poorly, while the GM method performs badly. 

3. The random process Y of the 

yearly time fraction of excess 

3.1 Introduction 

The yearly observation period is also considered to be an important reference period in 

telecommunication applications. This is because considerable year-to-year variations 

generally exists with regard to atmospheric propagation effects [COST205, 1985]. In­

formation on the variability of single-year cumulative distributions with respect to the 

expected long-term distribution is therefore a useful supplement to other information (e.g. 

worst-month) used by the system designer. Moreover, by using the variability information the 

dependence between the accuracy of the measured distributions with the length of observation 

time can be established. This is of importance to system designers when deciding whether a 

given set of measured data may be used to reliably predict expected behaviour of the system. 

For propagation experimenters this information is useful when planning the minimum 

required duration of propagation experiments. In this section we shall study the modelling of 

the behaviour of the yearly time fraction of excess (TFE). Our approach is to base such 

modelling on the models for the random process X of the monthly TFE presented in the 

previous section. This approach is thought to be preferable over the purely empirical 

modelling of variability of yearly TFE, although it must be admitted that in some cases only 

the yearly TFEs are available. 
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In a similar way as with the monthly TFE we consider the discrete time series formed by the 

fractional durations Y; in each year that the relevant propagation parameter a exceeds a threshold 

value a: 

1j = fraction of time that a~ a within year nr. j (3.1) 

as a realisation from a random process Y. In the same way as with the random process X this 

random process Y is considered to represent the family (ensemble) of time dependent outcomes 

of all possible (hypothetical) radio links with equal link parameters located in a specific 

(statistically homogeneous) geographic zone. 

The relationship between the random process of the yearly TFE Y and the random process of the 

monthly TFE X is given by: 

12 D 
Y(j) = L _!!!_X(m + 12}) 

m=1365 

(3 .2) 

where m denotes the month index, j denotes the year index, and Dm is the number of days in 

month m. 

Ignoring the variations in the number of days in a month and the complication due to a leap year 

the following approximation is obtained: 

I 12 

Y(j)::::- LX(m+ 12}) 
12 m=1 

(3.3) 

In this section we shall assume this approximative relationship throughout. The maximum error 

of 8% (which may happen if all the propagation events occur only in February) is, as we shall 

show later on, much smaller than the natural variation of Y. 
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Equation (3.3) can also be expressed in terms of the 12 sub-processes Xm of X associated with 

the calendar months m: 

I 12 

Y(J)=- LXm(j) 
12 m=1 

(3.4) 

In Section 2 we have postulated the independence of the random process X; this leads to the 

independence of the random process Y. Furthermore since we have assumed that X is (annually) 

cyclostationary Yis stationary, [Papoulis, 1984]. Finally we note that: 

< Y >= P.(a) (3 .5) 

where Pa(a) is the probability of a exceeding the threshold value a. 

3.2 The coefficient of variation 

For a first-order analysis or for getting a rough impression of the variability of Y it is often 

sufficient to consider the coefficient of variation Or of Y instead of its statistical distribution. The 

coefficient of variation of any random variate is defined as the ratio of its standard deviation to 

its mean, so that Or is defined as: 

(3.6) 

where CTy is the standard deviation of Y. For calculating the coefficient of variation we need to 

express the first and second statistical moments of Y. in terms of the moments of X. The general 

expression for these moments, for the hi-population model discussed in Section 2, are as follows: 
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M A . < Y > = - < X I X E ctzve > 
12 

(3.7) 

M M 1
- M 2 

<Y 1 >= -<X1 1XEActive> + (<XI XEActive>) 
12 2 12 2 

(3.8) 

where M is the seasonality index (see Section 2.2). Using these two equations we obtain the 

following expression for the variance of Y: 

~(< X 2 IX E Active>-< X IX E Active > 2
) = ~ aieAcrive 

12 2 12-
(3 .9) 

and subsequently by combining Equations (3.6), (3.7) and (3.9) we obtain the following 

expression for the relationship between the coefficient of variation of Y and the coefficient of 

variation of the active population of X: 

(7 X eActive } n 
.[M <XI X E Active>= .[M XeA crive 

(3 .1 0) 

With this expression and the statistical models for X we can easily derive the expression of the 

coefficient of variations of Y for the various models presented in Section 2. 

For the CEX model we have previously derived the expression for Dr and shown that it is only 

dependent on Co and M [Maw ira, 1980]: 

(3 .11) 

for 0 < Co :::; 1 and 12C0 < M:::; 12. For the case of Co > 1, using the extended CEX model, 

introduced in Section 2, we can easily show that: 
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(3.12) 

The upper bound for Equation 3. 11 is obtained forM= 12, in this case: 

(3.13) 

The lower envelope of Equation 3. 11 is obtained for the special cases with Co = M/ 12, in this 

case: 

For the GM model the expression for the coefficient of variation is easily derived: 

l 

~Czy 
I 

~12C2 

(3.14) 

(3 .15) 

(Note: for the GM model we restrict ourselves to the case M = 12; a single population model). 

For the SGM model the exact expression for the coefficient of variation is rather cumbersome, 

see Appendix A3 .1. However a simple and accurate approximation has been found: 

(3.16) 

with H the Heaviside unit step function . As in the case for the GM model we also restrict 

ourselves here to the case M = 12. 
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For the CLN model the expression for is easily derived. Here we have (with M= 12): 

(3.17) 

In the following we shall investigate the relationship between the theoretical 

coefficient of variation and the observed values. 

values for the 
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Figure 3. 1. Observed relationship between O r and C0 (for CEX model). The left 

graph is for rain-attenuation data, the right graph is for ducting data. Solid and 

dotted lines are the expected theoretical dependence. 
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1.5 

Figure 3.1 show the observed relationship between Or and Co for the CEX model. In this figure 

are shown the two theoretical curves of Equations (3.13) and (3.14) associated with upper and 

lower bounds for Or. The upper bound is that associated with M = 12. The lower bound is that 

obtained for the special cases that Co= M/1 2 (with M = 1, 2, . ... , 12). We can see from this 

figure that most of the slant-path data falls neatly within the two curves. On the contrary the 

ducting data exhibit in general a much larger value for Or than theoretically predicted. The 

discrepancy can be as large as 50%. 
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Figure 3.2. Observed relationship between Or and C2 (for SGM model). The left 

graph is for rain-attenuation data, the right graph is for ducting data. Solid and 

line gives the expected theoretical dependence. 

For the SGM model we investigate the relationship between Dr and the shape parameter C2. The 

results are shown in Figure 3.2. In this figure the theoretical curve forM= 12 is shown as well. 

As in the case for the CEX model we see a rather that the theory provides a good fit for the rain­

attenuation data and a strong underestimation for the case of ducting. Further, comparing the 

results of rain-attenuation in Figure 32 with that of Figure 3.1 we may conjecture that here we 

may obtain a better fit by using another value of M instead of fixing it to 12. However, this slight 

complication of the model will not solve the discrepancy for the ducting data. 

The result for the GM model is very similar to that of the SGM model and not shown here. For 

the CLN model Dr depends on two parameters, the location parameter Co and the shape 

parameter C2, so that a simple graphical dependence as in the case of the other cases cannot be 

given_ Moreover the correspondence between the observed value of Dr and that predicted using 

Equation 3.17 is extremely bad so that it is not worthwhile to go into too much details here. We 

suffice here with showing the plots of the predicted versus the measured Dr, see Figure 33. This 

figure shows that often very extreme overestimation of Dr occurs; in some cases the theory 

overpredicts by a factor of I Ox. This overestimation is related to the very strong dependence of 
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Dr on C2 in Equation 3.17, where we have a term containing the exponent of the square of C2. 

Admittedly errors in the parameter estimation method may also aggravate the situation (we have 

used here the method recommended by [Crane, 1992]). 

+ 
10'

1 "'-~~___,_j~~-~~~~""'--~~~.........J 
10'

1 
10° 101 102 

.{1 Y.calcula!ed 

Figure 3.3 Calculated versus measured Or (CLN model). 

Finally we note that the previous figures indicate that there is little difference between the CEX 

model and the SGM model in terms of the deviations between observed behaviour and predicted 

behaviour. More striking is the difference in the behaviour between the rain-attenuation data and 

the ducting data. While for the rain-attenuation data the model predicts the values of Dr quite 

well, in the case of the ducting data the models rather strongly underestimate the values of Dr. A 

speculative explanation may be that for the cases of ducting that the model of simple annual 

cyclostationarity of the processes is not fully correct. 



80 Section 3 

3.3 The statistics Prof the annual TFE 

3.3 .1 Introduction 

According to the theory of probability [Papoulis, 1984] the probability distribution Prof Y is 

related to the probability density functionsfxm of Xm through the following integral relationship: 

py(Y}= f .. f (3.18) 

where we have made use of the independence of Xm's as discussed in Section 2. In general this 

integral is difficult to solve. However for the CEX and GM cases exact analytical expressions for 

Pr can be derived by using the well known fact that the sum of N independent and identically 

distributed ( i.i. d.) Gamma distributed random variates results again in a Gamma distributed 

random variate with however the shape parameter having a value N times the value of the shape 

of the N components (the scale parameter stays the same). For the SGM model a simple 

approximation can be derived. For the CLN model the situation is quite difficult, there is no 

closed form solution, and although approximation formulas has been developed [Yeh & 

Schwartz, 1984] they are quite cumbersome to use. 

3.3.2 The CEX model 

For the CEX model we have derived the analytical expression for Pr before within the work 

done in project COST205, see pp 192-193 [Fedi, 1985]: 

(3.19) 

for 0 < Co < I and 12Co < M < 12. PGM(z,v) is the standard Gamma function with shape 

parameter v: 
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(for z > 0) (3.20) 

PGM= I forz<O. 

For the case Co> I, i.e. the extended CEX model introduced in Section 2, the expression for Pr 

can be easily derived by noting that in such cases X is a sum of a constant term and purely 

exponential stochast 

(3 .21) 

Here x represents a standard exponential random variate. Further elaboration yields the following 

expression for Pr: 

Pr (Y) = PcM (12[(1 + ln(C 0)) < ~ > - ln(C 0)], 1 2) (3 .22) 

for Co> !. 

3.3.3 The GM model 

For the GM model Y is also Gamma distributed: 

(3.23) 

with shape parameter C1 y and scale parameter C2r: 

(3 .24) 

where C, and C2 are the scale and shape parameters associated with X. Since 

<Y> 
(3.25) 
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we can also express Equation (3 .23) as: 

Pr(Y) 

y 
PGM (C2r P.(a)'Czr ) 

Section 3 

(3.26) 

This fonnulation shows that once P. is known only one additional parameter (C2 or C2r) is 

needed in order to fully characterise the distribution Pr. 

3.3.4 The SGM model 

For the SGM an analytical solution for Pr is not found. However we have found that the 

following SGM type of fonnula gives a good approximation for Pr: 

(3.27) 

where c
1 
Y and c 2Y are the scale and shape parameters as given by Equation (3 .24 ), K r is the shift 

parameter: 

(3.28) 
Ky 

This approximation has been obtained through analysis of simulation data, see Appendix A3 .2. 

For the SGM model the relationship of Pr to Pa can also be detennined by first noting that: 

(3.29) 
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Subsequently, by using Equation (3.24), and eliminating Crr we arrive at the following 

expression for Pr: 

(3 .30) 

with 

(3.31) 

This fonnulation shows that also for the SGM model once P. is known only one additional 

parameter (C2 or C2Y) is needed in order to fully characterise the distribution Pr. 

3.4 Accuracy in the characterisation of long-term statistics 

One of the important questions in experimental radiowave propagation studies is that concerning 

the volume of data which needs to be collected to obtain accurate estimate of Pa (or <Y>). The 

models presented in the previous sections allow us to evaluate the dependence of the accuracy on 

the total length of measurement time. Another way is increasing the data size by measuring 

simultaneously at many locations. The impact of multiple spatial sampling on the accuracy of the 

estimate of the long-tenn statistics is not very well known. This aspect shall be discussed at the 

end of this section; first we consider the influence of length of measurement time on the 

accuracy. 

AnN-year measurement of the random variable Y results in the unbiased estimate ZN: 

j ,+ .V·l 

+ L Y(J) (3.32) 
j'= j, 
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for Pa (or equivalently <Y>) . A natural measure of the accuracy of ZN as estimate of <Y> is the 

coefficient of variation of ZN: 

(3 .33) 

The dependence of D.zN on the total duration N of the measurement can easily be derived by 

noting that subsequent samples of Y, in Equation (3.32), are independent so that: 

(3.34) 

Figure 3.4, taken from [COST205, 1985], illustrates the effect of 5 year averaging on the 

coefficient of variation associated with rainfall intensity data in North-West Europe and 

Scandinavia. 

N = 5 years 

NW-EUROPE 

SCAND!N A VIA 

o~~~L-~~~~~L-~~~~~ 

10·3 1 a·2 1 a·1 

Py(%) 

Figure 3.4. Influence of the observation time N on the relationship D. z, versus Py. 
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This figure is obtained using the CEX model and the empirical values for Co for the regions of 

Scandinavia and NW-Europe; this climatic classification will be discussed in Section 3.5. This 

figure illustrates the problem of characterising atmospheric propagation statistics through direct 

measurements only. Even with 5 years of measurements the tail ofthe distribution(< 0.01%) still 

exhibit large deviations. 

Another way to improve the accuracy of estimation of Y is through simultaneous measurements 

at different locations (spatial sampling). We have analysed this effect previously using data from 

7 years of measurements using a network of 6 raingauges located the vicinity of Leidschendam -

Netherlands (the average spacing between the raingauges is about 3km), [COST205, 1985]. It 

was found that the variability of the spaced (network) averaged annual TFE is much less than the 

variability of individual annual TFE, see Figure 3.5 . It is interesting to note that the reduction of 

the variability only reaches the expected factor of square root of 6 for the high rainfall-rates 

(respectively low values of Py). This is in accordance to the well-known fact that the higher 

rainfall intensities are concentrated in regions of small dimension (< 3km) so that for such 

intensities the network in effect produces independent samples. 

Finally, we note here that comparison of Figures 3.4 and 3.5 suggests that a single year of 

measurement using a network of raingauges produces an accuracy comparable to a 5 year of 

measurements using only a single raingauge. 



86 

oL...~~...L--~~~.........~-:2--~~~~10_, 
10-3 10-

PI%) 

Figure 3.5. Comparison of n Z,v obtained by using a single rain-gauge 

and that obtained through using a network of 6 raingauges. 
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3.5 Climatic zones for the Co versus <Y> relationship 

In the COST205 project the author has investigated the observed dependence between Co and 

<Y> or equivalently Pa. The CEX model was assumed throughout in the determination of C0. 

through regression on the measurement data. It was found that in general the dependence 

could be well described by the following equation: 

C0 = l/(1 + ~ f3 I P.) (3.35) 

(Pa and~ in the same units) 

Furthermore the author identified four distinct zones with differing values of p: 

Zone Typical P(%) 

North-West Europe 0.03 

Mediterranean 0.03 

Scandinavia 0.09 

Alpine 0.12 

See Figure 3.6 (a) to (d), which shows the data and the curve of the above equation. Note that 

in the right vertical axis of these figures the values of the so-called worst-month quotient Q1 

are given, these values are those calculated from Co through the theoretical relationship 

described by Equation (4.51) in Section 4. We note further here that the chosen mathematical 

expression of the dependence of Co on Pais in hindsight rather restrictive. Values of Co> 1 

were at that time thought not to occur. We know now from [Poires Baptista et al, 1986] that 

Co > 1 can easily occur at the lower thresholds. 

A formula, which does not have such a restriction, is the following: 

(3 .36) 
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For small values of Pa both formula will have the same asymptotic expression. In such a case 

the old equation will converge to: 

Co~JP. ! /3 (3 .37) 

while the new equation will converge to: 

(3 .38) 

By equating these two expression we obtain the following relationship between ~andy : 

f3 ""6y (3.39) 

Figure 3.7 (a) shows the curves associated with the new equation as well as the observed 

points obtained for the subset of the COST205 data selected for the tests in this thesis. The 

observed points fall mostly within the curves withy values between 0.005% and 0.02%.(with 

the typical value y = 0.01 %) The observations from Scandinavia falls closest to the lowest 

curve withy= 0.02% while the Netherlands, Belgium and UK data corresponds closely to the 

upper curve withy= 0.005%. The data from Northern Italy and from Austria falls very close 

to the lowest curve withy = 0.02% while the data from central Italy stays between the upper 

curve (y = 0.005%) and the mid-curve (y = 0.01 %). While these results broadly confirm the 

classification of the previous COST205 studies there are some small differences. The results 

using the selected pooled data show that Germany warrants a separate classification (withy= 

0.05%); in the COST205 studies Germany is put in the same zone as Netherlands, Belgium 

and UK. 

Figure 3.7 (b) show the corresponding results for the ducting data (the COST210 data). The 

figure shows that data points falls within the curves with y = 0.02% and y = 1.5%. The results 

suggest that there may be a dependence ofy with the land-sea distribution of the radio-link. The 

highest value ofy is obtained on the Martlesham- Blavand link which for 90% an oversea link, 

while the lowest value of y is obtained on the Irnsum- Leidschendam link which only for 40% 
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traverses the (inland) sea. 

Finally we note here that the ducting data exhibits values ofy which are much higher than those 

found for the slant-path data. 
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Figure 3.6 (a) (b) Observed dependence of C0 vs P. for slant-path rain-attenuation. 
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Figure 3.7 (a) Co vs Py for selected slant-path rain-attenuation (selected COST205 data) 
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Figure 3.7 (b) Co vs Py for ducting (selected COST210 data) 
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3.6 Conclusions 

In this section we have considered the feasibility of using the model( s) for the distribution of the 

monthly time fraction of excess (TFE), presented in Section 2, for the prediction of the 

variability of the annual TFE. It has been shown that the CEX, GM and SGM models allow 

reasonably good predictions of the magnitude of the variation of annual TFE around its expected 

mean (as expressed by the coefficient of variation Or). Specifically, the predictions performs 

good in relationship to rain-attenuation data and less well in relationship to ducting data. In this 

last case the observed values are systematically larger than predicted (the observed values of Or 

exceed those predicted by 0 to 50%). The reason for this large discrepancy is not known, it is 

conjectured that for ducting the assumption of simple annual cyclostationarity of the process is 

not correct. 

The CLN performs here rather badly, resulting often in gross overestimation. This last result 

seems to be somewhat surprising since the CLN model was found to perform not too badly in the 

statistical tests of the monthly TFE done in Section 2. It may be that the parameter estimation 

method used overestimates the values of the shape parameter C2, which in turn may lead to 

excessive predictions of the values of Or. In any way this illustrates the problem associated with 

a model using many parameters. Another surprising result is the reasonable performance of the 

GM model. This model was found to produce the worst performance in the tests performed in 

Section 2. The explanation for this may be that the bad performance of the GM model is strongly 

related to the deviation of the statistical distribution in the higher probability ranges (or the 

smaller values of X) but that the model performs well at the tail of the distribution. 

The better performance of the two parameter models (CEX, SGM) over the three parameter 

model (CLN) simplifies life. It implies that in addition to Pa only a single additional 

parameter, e.g. Co for CEX or C2 for GM and SGM, is needed to fully characterise the 

variability of the annual TFE. 
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4. The random process W of the worst­

month time fraction of.excess 

4.1 Introduction 

As mentioned in the introduction, the annual worst-month period is an important reference 

period used by the ITU for defining a class of grade of service requirements for telecommuni­

cation systems. This period is defined as that month in each year having the highest value for the 

monthly t.f.e. (time fraction of excess) . Associated with the annual-worst-month period in a 

given year j is the annual-worst-month time fraction of excess, W;: 

(4 .1) 

where a denotes the chosen threshold value at which the monthly t.f.e. Xm}s of a propagation 

variate a of interest is determined. This definition uses a data-driven selection procedure, the 

worst-month period can be different for different years and different threshold values. 

Equivalently the time series W;{a) can be considered to be a particular realisation from a random 

process W defined as: 

W(a) = Ensemble of {W1(a), for allj's} (4.2) 

that is to say that W is a family of time series, each of whom is obtained by applying the 

procedure described by Equation ( 4.1) to each time series of each of the member of the ensemble 

of monthly time fraction of excess X. Note that a separate random process W is obtained for 

each separate threshold value. In the following discussions we shall often dispense with explicit 

notation of a in order to simplify the expressions of the equations. 
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ITU's Recommendation 581-2 defines the annual worst-month statistics, Pa,WM, as the long-term 

average of the annual worst-month time fraction of excess: 

j =- +N 

PajWM =lim z .~ + \ L wj (4.3) 
N---.::o joa -N 

Note, in Section 1 we introduced PaiWM in a more intuitive manner as a conditional statistic of a: 

P (a)= probability (a~ a I during the worst- month) ajWM (4.4) 

The only difference with the formal definition of ITU, see Equation (4.3), comes from the fact 

that the number of days in a month is not constant (varying from 28 to 31 ). 

In this section we shall investigate the random process W. We shall find the relationship between 

the statistical properties of W to the properties of the random process X. It will further be shown 

that the statistical distribution of W can be accurately determined by using only the aggregate 

statistical distribution Px of X. Using these models we subsequently investigate the question of 

the accuracy of PaiWM when determined from a limited amount of data. 

The random process W of the worst-month TFE 
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4.2 The statistics of the worst-month t.f.e. W 

In Section 2.1 we have assumed annual cyclo-stationarity for the random process X. From this it 

follows that the statistical properties of Ware time independent, i.e. its cumulative distribution 

function: 

Pw(W) = probability(W ~ W) 
(4.5) 

is independent of time. Furthermore in Section 2.1 it is assumed that each of the subsets of the 

random process of X related to a particular calendar month is ergodic. Therefore W is also 

ergodic so that the long term average PaiWM (or W) of W is equal to the ensemble average <W>: 

P.1wM = <W> = Jdw W f w (W) = Jdw Pw (W) 
0 0 

(4.6) 

where fw is the probability density function of W; the last part of Equation ( 4.6) is obtained 

through application of partial integration. 

Obviously Pw, the distribution of W, is related to the 12 distributions of X, Pxm (m = I, 2, .. . 12). 

The expression for Pw can be derived by noting that the probability of W ~ W is equal to 1 minus 

the probability that all 12 samples of X in each year are smaller than the value W: 

Pw (W) = 1- probability('¥1 n '¥ 2 n .... n '¥
12

) 
(4.7) 

where If! m, with m = 1, 2, ... 12, symbolises the event: 

If m = (X < WI in month m) 
(4.8) 
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Assuming independence of the random process X, see Section 2.1, the above equation simplifies 

to: 

12 

Pw(W) 1 - n probability(\}' m) (4.9) 
m•l 

or 

I~ 

Pw(W) 1 - no - Pxtm(W)) (4.10) 
m==-1 

The expression for the associated probability density function is: 

12 12 

I w(W) I I X ln ( W) TI (1 - P X lm (W)) (4.11) 
n"" i !!!!l 

Curiously the expression for Pw at the tail (i.e. for large values of W) reduces asymptotically to a 

rather simple fonn. We can see this by expanding Equation ( 4.1 0) : 

12 II 12 

Pw IPxtm - I I PxtmPxtn + OJ - 04 ···· + 012 ( 4.12) 
m=l m=ln=m+\ 

(0, represents summations containing k products: P~1 Px.ml ... Px,mt) 

and noting that for large values of Wthe first tenn will dominate (since PX]m(W) -> 0 as W -> oo): 

(4.13) lim 
w ~ oo Px(W) 

m=! 12 

In this derivation the defining Equation (2.14) for the aggregate distribution Px given in Section 

2.2 has been used. 

An interesting feature to note here is that at the tail, the ratio of Pw over Px approaches the 

constant value of 12 . Furthennore, no detailed infonnation regarding seasonality (e.g. the 

distributions PX]m) is needed when predicting extreme values of the annual worst-month time 
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fraction of excess, since in the tail Pw only depends on p Figure 4 I "II 
x. . I ustrates such a 

behaviour, here we have assumed a CEX model with Co = 0.25 and CI = 0.1 %. 

1 0 -z~--;~:-----::-""-:---::-....._ _ __.___~.____ 
0 0.05 0.1 0.15 0.2 0.25 

Xresp. W% 

Figure 4.! Example of convergence of Pw at the tail to 12 Px. CEX model 

is assumed with Co= 0.25 and C = 0 250/ T d"'-"' · 
1 • / o. wo Iuerent population 

compositions are assumed respectively M= 12 and M = 3. 
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This figure gives plots for Px and for Pw (for the two limiting cases of M = 3 and M = 12). This 

constant ratio of 12 can be explained intuitively as follows: 

Consider how Px(W) and Pw(W) are determined empirically from a given time series of 

b 
· f X·-'s For determining Px(W) the observer would simply count the number of 

o servat10n o y • 

. N that the value of W is exceeded, this number divided by the total number of months 
times, x, 
of observations would then result in the estimated value for Px(W). For determining Pw(W) the 

ld t the number of years Nw where the worst month t.f.e. exceeds the value 
observer wou coun ' ' 

I 
· b r 

1
·s then divided by the number years of observation. Now, if W is taken 

W. The resu tmg num e . 
to be large enough then the probability of observing more than one month in each year With 

f d
. w ould be negligible so that in general we shall have Nx= Nw. Since the total 

t. .e. excee mg w ' 

f th 
· 12 x the total number of years this then result in the ratio of 12 for the 

number o mon s IS 

PwiPx. 
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4.3 Upper and lower bounds for Pw 

While at the tail Pw is simply related to Px, at the other parts of the distribution no simple 

equality can be expected to exist. However we now shall show that if Px is given then narrow 

bounds for Pw can be determined. The lower bound for Pw can be easily found, it is given by the 

following equation: 

12 

Pw(W) 2: l-IJ(l-Px(W))=1-(1-Px(W)f (4.14) 
m= l 

or 

12 [fl (1- pXIm (W))f 112 
:::; (1- Px (W)) ( 4.15) 

m=l 

The lower bound is simply obtained by replacing Px-,m, in Equation (4.10), by the aggregate 

distribution Px. To prove this inequality we first eliminate Pw, using Equation ( 4.1 0), which after 

some rearrangement of terms results in the following inequality: 

Since (I- Px(W)) is simply the the arithmetic average of the twelve 1-Px-,m(W)'s this inequality 

states that the geometric mean is smaller than the arithmetic mean; this is a proven theorem of 

mathematics, see Section 3.2.1 of [Abramovitch & Stegun, 1975]. 

An upper bound can also be readily derived using the following well-known inequality: 

( 4.16) 

Takingpm = Px-,m· and pplying this inequality with Equation (4.10) we obtain the following: 

12 

Pw(W) :::; LPx
1
m(W) = !2Px(W) (4.17) 

m= l 

And since Pw cannot be larger than l the upper bound for Pw is given by: 

Pw (W):::; Minimum_of { 12 Px (W) , 1} (4.18) 
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The above bounds were derived under very general conditions, that is to say we have detennined 

the mathematical bounds on Plf(W) when Px(W) is given. In some cases a tighter bound can be 

obtained if we are willing to make assumptions regarding the number of months per year which 

are actually involved in the random processes X and W. This is the case for the CEX and CLN 

models where we have included the hi-population modelling, see Section 2; for the SGM and 

GM models we have restricted ourselves to assuming that all 12 months of each year belong to 

the same statistical process. In Section 2 we have seen that for higher values of the threshold a 

the average number of months, Mc0 , having X > 0 is often smaller than 12. If we now assume 

that the propagation process is restricted to an integer number of months equal to: 

M c, = the first integer ;;::.: 12 Co (4.19) 

we can derive another lower bound for Pw using the same method of analysis as above, and 

obtain: 

Pw(W) ;;::.: 1 - (1 - J~, Px(W))Mc, (4.20) 

Figure 4.1 gives an example of behaviour of the bounds for Pw; we have assumed a CEX model 

for Px with Co = 0.25 and C1 = 0.1. 

Finally we note here that the upper bound is equivalent with assuming very artificial shapes for 

the monthly distributions PXJm(X). One of the distributions must have probability value of 1 in the 

range X< Xo (where Xo is found from Px(Xo) = 1/12), and probability values 12Px(X) in the 

range X> X0 . The other 11 distribution must all have a value 0 for X> Xo. We have seemingly a 

rather 'unphysical' situation where in one of the months we have a 100% probability of observing 

the event X> X0 , while in the months just before and just after it the corresponding probability is 

0%; we can consider such a case as an "absolute limit bound". 
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4.4 An approximation for Pw 

In most cases the planners do not have the 12 distributions PXJm, instead the planners have only 

the aggregate distribution Px. As noted in Section 2.5 Px can be predicted using a propagation 

model in combination with statistics of meteorological parameters such as e.g. that of rainfall­

intensity and additional general infonnation on seasonality e.g., the conditionality parameter Ca. 

The analysis in the previous section on the bounds of Pw shows that Px contains the necessary 

infonnation to detennine the upper and lower bound of Pw. Furthennore the bounds becomes 

very tight for large values of W. It seems therefore that the approximative model for the random 

process X discussed in Section 2, the so called dual-population model based on Px, might 

provide a suitable framework for plannings purposes. Here we use the infonnation on Px to 

fonnulate a simplified model for the random process X, the statistical properties of ware then 

derived in the usual way. In this dual-population model introduced by Brussaard & Watson 

[ 1979], it is assumed that the propagation process occurs solely M months per year, the "Active 

months". The exact value of M is not known but its bound can be derived from Px resp. the 

conditionality parameter Co associated with Px: 

(4.21) 

where Me, is given by Equation ( 4.19). Furthennore, within the active month the statistics of 

the propagation is assumed to be homogeneous, i.e.: 

Pxlm(X) = -:\:tPx(X) (form E Active months) 
(4.22) 

for all other months PXIm = 0. 
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Application of this simplified model to Equation (4.10) leads to the following expression for Pw: 

Pw (W) = 1- ( 1- % P x (W) )M 
(4.23) 

The expression for the associated probability density function is: 

(4.24) 

Although these equations entail major simplifications, for the important cases of large values of 

W this approximation tends asymptotically to the exact value of the distribution for W. 

Expansion of the above equation for large values of W (respectively small values of Px(W)) 

leads to: 

Pw(W) ~ 1 - (1 - M Px(W)-:\t + .... ) = 12 Px(W) 
(4.25) 

So we can see that the approximation form for Pw converges, in the tail, to that of the asymptotic 

form, Equation (4.13), obtained when using the exact expression given by Equation (4.1 0). 

Another interesting feature of this approximation is that for M = 12 and respectively M = U Co 

the approximation produces the lower respectively the upper-lower bound for Pw, see Section 

4.3. Since this approximation converges in the tail to the true value and furthermore these two 

bounds are likely to be close to a physical realistic upper bound in the mid-range the simplified 

model can be used by the planner to evaluate worst-month behaviour with reasonable accuracy. 
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4.5 Prediction of PaiWM using ITU's worst-month quotient Q1 

In many of ITU's prediction methods the long-term average of W (which is equal to the ITU's 

PaiWM) is calculated from the long-term statistics Pa (approximately equal to the long term 

average X of X) through the so called worst-month quotient Q1: 

(4.26) 

The reason for doing this is that most prediction methods in the past were developed for the 

prediction of Pa. This is necessary because most of the meteorological information is only 

available as long term statistics. For example global maps of statistics PR of rainfall intensity R 

may be available but the meteorological institutes have never bothered to produce worst-month 

statistics of R. Furthermore, the empirical data suggest that the parameter Q1 is not very sensitive 

to the radio link configuration parameter (path length, frequency, polarisation etc.) but seems 

related to more general climatic properties of various meteorological phenomena. The prediction 

methods for Pa are, therefore, supplemented by the ITU with tables/formulas of Q1 for different 

propagation phenomena and for several climatic zones. This suffices to produce reasonably 

accurate predictions of PaiWM· 

For theoretical analysis it suffices to use the following expression for Q1: 

(4.27) 

The dependence of Q1 on the parameters of the three models considered in this thesis has been 

determined numerically. The most important part of the calculation is that which deals with the 

calculation of <W> using Equation ( 4.6) and ( 4.29). An efficient expression for Q1 for the CEX 

model has been derived before by Brussaard & Watson [1979] through expansion of Equation 

(4.29) and solving the integrals. No such simplification can be obtained for the CLN and SGM 

models, in these cases numerical integration is directly applied to Equation ( 4.29). In Appendix 

4. 1 the equations for Q1 are given. 
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Figure 4.2 Q1 versus. C0 relationship. Lines give the theoretical relationships 

according to various models. Markers (o) indicate measured values. 
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The results are plotted as a function of Co in Figure 4.2 (for the SGM model we use the effective 

Co defined in Section 2). Note that Q1 does not depend on the scale parameter C1• Also shown in 

this figure is the measured dependence of Q1 on Co, whereby the parameter Co was determined 

using the method of moments and assuming the CEX model; see Section 2.4 for discussions on 

parameter estimation methods. As can be seen, except for a few points the three models predict 

the relationship reasonably well. Note that the observed spread of measured Q 1 vs. C0 , in Figure 

4.2, also contains the uncertainty due to the estimation of C0. This uncertainty becomes quite 

large for small values of C0 since very few points with X > 0 are available there for reliable 

parameter estimation. 

In general the CLN model permits the largest dispersion range, the upper bound is achieved 

when the shape parameter c2 = oo: 

The random process W of the worst-month TFE 
107 

(4.28) 

the lower bound is achieved when the shape parameter c
2 

= 0 and M= 12: 

(4.29) 

Finally, we note that for all models the influence of the seasonality index M 
0 

Q · · 
1 n 1 IS, m genera , 

not so large. On the whole the theoretical uncertainty in Q1 due to M is within the range of ±S%. 

In the next Section 4.6 we shall show that the uncertainty in experimental determination of Ql 

due to limited observation time is much larger than this. 
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4.6 Variability of the short term observed values of Q1 

In practical applications Q1 values were determined from measurements spanning a limited 

observation period. For a particular sample of the random process X a limited observation 

spanning N years, from e.g. year j-N+ I to year j, the estimated value, q,v(j), of Q1 is given by: 

j j 12 

c+ L Wr ) I c+ L 12L(1+om)Xm·J (4.30) 
j'=j - :V + ! 

where Om gives the fractional deviation of the number of days in a particular month to the 

average number of days in a month (e.g. for February we have d2 = 28/(365/ 12) - 1 = -0.08). 

Since the influence of Om's is very small in all the following analysis set b;, = 0 throughout. To 

complete the above equation we must specify the action that must be taken in the cases that all 

the observed XmJ 's are zero; this specification is especially relevant when averaging a series of 

observations. One possible action is to just discard that particular observation, another possible 

action would be to assign qN the value of 12 (which is the expected value for very rare events). 

The results of both courses of actions will be considered later on in this section, see Equation 

( 4.34). 

q,v(j) can be considered to be a sample from a random process q,v which at each (yearly) time j is 

defined as: 

qN(j) 
,U(W; [j- N + 1 :)]year) 

,U( mx: [j- N + 1 :)]year) 
( 4.31) 

where 1-1( U;[t1 :tz]) symbolises the time-averaging performed on each member of the ensemble of 

the random-process U across a specified time interval (t1 :t2] ; mx the random process obtained by 

time averaging of X across one year: 

m x(J) = ,U(X; [12)+ 1: 12)+ 12] monrh) ( 4.32) 
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Th~ ass~mption of annual cyclo-stationarity of the underlying propagation process implies that 

qN IS statiOnary (the statistical properties of q,v are independent of)). 

qv is an estimator for QJ, it is therefore useful to obtain the statistical properti.es ofq . d 
Nlil or erto 

~e able to evaluate the accuracy of the measured Ql and also to establish the required observation 

time of measurements in order to meet the specified accuracy in measured Q In g I . 
. . 1· enera smce q.v 
IS a ratw of tw~ corre~at.ed random processes it would be very difficult to obtain an analytical 

expression for Its statistics. However in the case of the CEX d I fi p . 
. mo e or x wah the further 

assumptiOn of the simplified dual-population season model [Mawira 1985] h d . d 
. . • as enve some 
mterestmg properties as well as an analytical expression for the moments of ql the I st and 2nd 

moments of qN for N> I. Later [Dellagiacoma & Targucci 1987] bt . d h 
• o ame t e same results. 

Th~ exact derivations are somewhat involved. Here we give the main results, while the exact 

denvatwn IS given in Appendix 4.2. The results are as follows: 

(1) 
If the process within the assumed M Active months in a year is purely exponential (i .e. Co~ 
MII 2 so that Px(X / Active months) ~ (12/M)Coexp(-X/C,J ~ exp(-XIC,) then : 

( 1.1) The estimator ql and the annual mean mx are uncorrelated. 

( 1.2) ql is an unbiased estimator of Ql, that is to say <ql> = Ql. 

( 1.3) The k-th moment, gk.M, of ql is given by: 

g kM 12 (i:k}" (-J) _ 1_ 
= k M' M . ]( M - 1) I 

.lf- 1 ~ l (1+/) ... (4.33) 

here. we have used the Pochammer notation: (u)i = u(u+i) ... (u+i-1) and (u)o = 1; see 

SectiOn 6.1.22 of [Abramovitch & Stegun 1975] Further th b . . 
' · ' e a ove expressiOn ts for M 

2: 1; also, we define gk.o = 12k. 
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(2) In other cases (i.e. Co* M/12): 

(2.1) q
1 

is in general a biased estimator of Q1 with a non-negative bias: <qt> ~ Q,. The bias is 

largest ( z 1.0) when Co = 2/12 and at the same time M = 12. 

(2.2) The k-th moment, <q/'>, of q, is given by: 

(3) 

k 1 ~ (jc'2 C )m(l .u.c )'w-"' g < q
1 

> = 7; £._; M 0 - M 0 k .m 

m==mx 

(4.34) 

The value of mx and rx depends on whether we are looking at this equation from the 

point of view of the "naive" experimentalist or the mathematician. Since the process 

here considered is conditional there will always be years where all the observed 

monthly t.f.e. will be equal to 0. The experimentalist will remove this year from the 

analysis since the worst month quotient cannot be determined (0/0). The mathematician, 

on the other hand, will consider this situation to be a limit case of a process occurring in 

one month only with 12Co ~ O, with as limiting value for the moments li. Intuitively 

we can say that in regions with very small Co the probability of having years with more 

than one month having X> 0 becomes remotely small in comparison of observing years 

with exactly one month having X> 0. Of course the total number of years with all 12 

months having X = 0 will predominate. This however would not influence the 

estimation value of q1 at all. We therefore have: 

1' rx 
1 - ( 1 - 22. C

0
) M (the experimentalist) 

M 
(4.35) 

0, rx 
1 (the mathematician) 

For N> 1 we have, in all cases, the following expression for the 1st and 2nd moment of qN: 

( 4.36) 

The random process W of the worst-month TFE 111 

with i = I or 2; B.v represent the binomial probability function: 

B ,t(m, p) = ( j p"' (I - p)M·m ( 4.3 7) 

and: 

(4.38) 

( 4.39) 

where the gk.m's are as given by Equation ( 4.33) and the o's are the Kronecker symbol. 

Using these equations the standard deviation crqv of error in q,v can be determined. The resulting 

mathematical expression for the standard deviation is in general very cumbersome, except, 

somewhat surprisingly, for the cases when Co = M/ 12. In this case the expression for the standard 

deviation for multi-year observation depends on a simple way on the single-year standard 

deviation: 

( 4.40) 

(for the cases C0 = M/12) 

The standard deviation rrq_, gives an indication in the uncertainty of estimating Q1 through 

limited duration measurements. Figure 4.3 shows, for 1 year observation period, the dependence 

of this standard deviation on Co. Two extreme cases of the seasonal population are shown, one 

with M = 12 the other with Co= Mll2 . In combination with the results found in Section 4.4 on 
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the dependence of Q1 on Co we can see that the root-mean-square (RMS) uncertainty in 

predicting PaiWM from Pa (assuming perfect prediction) when using Q1 determined from !-year of 

measurements is throughout some 35%. 

The dependence of a q, on N has also been calculated, the results are shown in Figure 4.4 for the 

two extremes allowed in the 2-population model, the case M= 12 and the case Co= M/12 (M= 

I, 2, ... , 12). From these results it can be seen that to measure Q1 accurately a long observation 

period is needed, e.g. 10 years of measurements are needed to obtain some 10% accuracy in Q1• 

Previously in Section 4.2 we have found that in the theoretical relationship between Q1 and Co 

there is a variation of possible Q1 values, for fixed Co, which range some ±5% due to the possible 

spread of value of M which in the 2-population model is the 'unknown' parameter. We see now 

that this uncertainty is negligible compared to the empirical uncertainty (most propagation 

measurements up to date produce less than 4 years of measurements per site). 
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part gives the dependence for a uniform population (M= 12). The right gives the 

dependence for cases when Co= M/12. 
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4. 7 Conclusions 

A theoretical analysis shows that the simplified model for the monthly TFE X (using only the 

aggregate distribution and dual population assumptions), can be used to predict the statistics 

of annual worst-month TFE W within known tight bounds. A theoretical analysis with regard 

to another related parameter, the ITU worst month quotient Q1, has been performed. The 

relationship between Q1 and the location parameter Co as predicted by various models has 

been determined. The theoretical analysis has also produced formulas and graphs to 

determine the accuracy of worst-month statistics from time-limited measurement data. The 

results show that for all models the influence of the seasonality index M on Q1 is, in general, not 

so large. On the whole the theoretical uncertainty in Q1 due toM is within the range of ±5%. 

Also, from the results it can be seen that to measure Q1 accurately a long observation period is 

needed, e.g. l 0 years of measurements are needed to obtain some l 0% accuracy in Q1• 
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5. Application to Reliability & Risk analysis 

5.1 Introduction 

Traditionally most radio networks have been designed so as to meet the grade of service 

objectives formulated by the ITU. These internationally agreed set of standards give the 

telecommunication operators a clear set of objectives to pursue. Furthermore these standards can 

be seen as representing a synthesis of the range of requirements of the various 

telecommunication operators as well as having incorporated their experiences regarding 

feasibility and particularities of various systems. Such international standards are still very 

important in telecommunication practices especially in ensuring system compatibility and inter­

operability in international telecommunications. 

However, such common standards take a very long time to develop within a multiple-party 

negotiation process where compromises have to be made. Moreover, the global deregulation of 

the telecommunication industry has now resulted in a much higher differentiation of the services 

which have to be delivered in a competitive free market environment. In this much more 

complex environment each telecommunication operator is individually responsible for making 

design choices and price-quality trade-offs with regard to novel value-added services/products he 

wants to deliver. This also means that techno-economical scenarios must be analysed in much 

more depth and sophistication than previously. In particular, the analyst must know how the 

short-term deviations ofthe performance of a system around the expected long-term performance 

could impact on the customer satisfaction. The significance of this information can be 

appreciated when we note that the way the clients perceive the quality of the system will be 

based on their direct and individual experience of the system and not on its ensemble & long-
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term averaged quality. Clients who think that they are being provided with less than the expected 

quality may decide to give their business to the competitor. 

It can be therefore stated that nowadays it is not sufficient anymore to characterise a system by 

just a single all encompassing figure of merit. The need for more extended analysis of the impact 

of propagation on the performance of the system has been pointed out already by several authors 

[Karasawa & Matsuda, 1988], [Fukuchi & Watson, 1989], [Watson, 1990], [Brussaard & 

Mawira, 1992], [Crane, 1993]. In these papers the concept of 'risk' is used to denote the 

magnitude of deviation of deviations of performance parameters around their ensemble means. 

Obviously for such extended analysis more detailed propagation information is required than, 

say, the long-term statistical distributions of e.g. the attenuation. Ideally we would like to have 

for such analysis a model which can give realistic and detailed time-series information. What we 

have at the moment on time-series modelling is very restricted and based mostly on data from 

earth-satellite paths. Therefore, as an alternative approach, we shall consider in this section the 

possibility of using the monthly time fraction of excess (TIE) for such analysis. The monthly 

TFE is of course a much cruder type of information than the detailed time-series information; on 

the other hand the behaviour of the monthly TIE has successfully been modelled as discussed in 

the previous sections. 

We note here that in a more recent development better modelling of time series behaviour of 

propagation parameters is being attempted with good progress. In particular analysis of fade 

duration on satellite links [Brussaard, 1995] has resulted in a (seemingly) generally applicable 

model for the fade duration referred to as the Simple Exponential Model (SEM). Another study 

proposes a hi-exponential model for the fade duration statistics with regard to slant path 

attenuation [Lekla, eta!., 1998]. 
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5.2 Basic concepts 

The continuous need to develop better and more reliable products, especially in the field of 

manufacturing, has led to the development of special engineering disciplines such as Quality 

Engineering and Reliability Engineering. Within these disciplines, tools and methodologies have 

been developed in an attempt to ensure the end-product quality at various phases of product 

development (e.g. identifYing customer requirements, translating these requirements into 

engineering characteristics and assigning limits based on customer tolerances etc., see [Taguchi, 

1986], [Boza eta!., 1994]). Reliability engineering is involved in various aspects concerning 

"reliability" of a product and includes reliability estimation, malfunction and failure analysis, 

cost aspects, risk analysis etc. [Ireson, 1966], [Barlow & Proschan, 1975], [Suhir, 1997]. 

Curiously in radio network design the formulations and practices of reliability engineering do not 

seem to be used extensively in the evaluation of performance aspects related to propagation 

conditions. Consider the three important classes or types of concepts/parameters from reliability 

engineering namely Life-length, Availability and Risk, defined as: 

( 1) the Life-length class of concepts/parameters quantifies the expected duration of the time 

that a system shall function until failure. A well known example is the reliability function R(t) 

which gives the probability that a failure-free operation will be obtained of a duration at least 

exceeding a value oft; here the reliability is indicated in terms of a cumulative distribution 

function. Another parameter, the MTBF (Mean Time Between Failure), is a popular single 

figure of merit for indicating the reliability of an equipment. 

(2) the Availability type ~f parameters measures the fraction of time that the system is 

operating (in a satisfactory way). There are various definitions (e.g. Intrinsic Availability, 

Operational Readiness) which depend on how the reference time is defined (e.g. whether or 

not the period for preventive maintenance is to be included in the reference time). In this 

section we restrict ourselves to systems which have only two possible states (operating 

satisfactorily or in failure). The fraction of time the system is functioning satisfactorily is 

indicated as ?Available· The complement of Availibility is the Outage Pau = 1 _ p . 
' tage AvaJ!able· 
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(3) Risk is used to characterise/quantify the uncertainties or the chance of incurring unwanted 

effec>.s. There is a large range of associated parameters and concepts, e.g. risk functions, risk 

curves, consumer's risk, producer's risk. 

Of these three classes of concepts only the Availability concept is readily recognised as being 

used extensively for the characterising propagation effects on radio systems and in the definitions 

of Grade of Services requirements of the ITU. In the ITU definition the term Availability is used 

to denote a special case of Availability as defined above; see discussion ofiTU Grade of services 

in Section 1.2. 

One of the advantage of using a Life-length type of parameters is that it provides the user with a 

measure on the temporal scale with which a system will perform satisfactorily. The basis of such 

time analysis is quite simple. The system always resides in one of two conditions, the systems is 

either operational or in failure. Two time durations are defined: 

TBF = time-between-failure 

TTR = time-to-repair 

see Figure 5.1. Note we are here only interested in repairable systems, for a non-repairable 

system the relevant time parameter is the time to failure (TTF). We can in principle easily find 

the equivalent parameters to TBF and TTR for propagation effects by noting that the duration that 

a propagation parameter exceeds a critical limit (leading to outage of the system) is the 

propagation equivalent to TTR, while the period between the exceedances (outages) corresponds 

to TBF; see Figure 5.1. 

Application to Reliability & Risk analysis 

~ ITR;----,)~(E---TBF; --7 

· ··· ··· · · · ~)----k--l-~1'\---.L. 
Start of i-th End of i-th Start of i+ 1 th 
failure failure failure 

Figure 5.1 Definitions ofTTR and TBF 

In reliability engineering the MFBF and A PT"T''R 'v11 1 , parameters defined as: 

MFBF = the mean time between failure = mean of TBF 

MFTR = the mean time to repair = mean of TTR 

are very popular for characterising a t Th 
sys em. ese two parameters are related to Availability: 

p _ MTBF 
Available -
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MTBF+ MTTR (5.1) 

and to Outage: 

P = 1- p MTTR 
Outage Available = ------

MTBF + MTTR (5.2) 

These equations can be easily derived by considering the definition of Availability or p . 
a limit: ' Avm/ab/e, as 

pAvadab/e = lim n=-N 
N 

N-+co 
LTTR" +TBFn (5.3) 

n=- N 

see Figure 5.1 , which can further be expressed as: 
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MTBF (5.4) 

PAvailable == lim MTTR+MTBF N 1 N 

__!__ L TTRn + - L,TBFn 
N n=-N N n=-N 

In a similar way Equation (5.2) can be proved as well. 

MTTR and MTBF we can 
e uations show that from the Life-length parameters . . 

The above q but the converse is not true . This IS 
. th Availability parameters ?Available and POutage. 1 

determme e MTTR d MTBF can be independent Y 

due the fact that while the two Life-length parameters ar:om lements of each other. 

. ti d th two Availability parameters ?Available and P Outage p 
spec1 1e e 

" d 
. olo ical sciences a closely related parameter, the Return Peno , 

In meteorological anThd ~yRdr tumg Period is intuitively defined as the expected duration between 
T is often used. IS e 1974) return, [Gu b I 1956} [Barry & Chorley, ' 

. of a class of events m e , ' 
two successive occurence . riod is the average of the durations 

. h d & Velds 1980) or more precisely, the Return pe [Buzs an , ' 

between two subsequent events: 

TReturn 

1 N 
lim NLI; 
N 4 cO t=l 

see Figure 5.2. 

0 0 0 n 
Figure 5.2 Definitions of durations between events 

(5.5) 
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Note that in this scheme the definition of the event is based on discrete time periods (of equal 

length e.g. an hour); when, within a given time period certain physical conditions are met an 

event is considered to have occurred. Each event, in this scheme, has a duration equal to the 

chosen discrete time period. 

The Return Period, TReturn, can be related to the probability by first noting that the probability of 

occurrence of an event can be described as : 

N 

P lim NI1T I ' T,. Event ~ 

N ---t co i=l 

where t:.T is the sample duration. By comparing this equation to Equation (5 .5) we obtain: 

t:.T 
TReturn =p 

Event 

(5 .6) 

(5 .7) 

where P Event is the probability of occurrence of the event of interest (e.g. in radio communications 

studies we often take outage as the event of interest, Event = Outage). 

Note that in this definition the mathematical definition of the Return Period requires some care in 

its interpretation, in particular with regard to the definition of an "Event" . Here it is assumed that 

"Events" are singular (defined at discrete time points). As an example of possible ambiguity in 

this definition, consider the case of a new time series constructed through oversampling a given 

time series by a factor of two (i.e. (t:.T)aversample = (t:.T)Origina/ 2). Application of Equation (5.77) 

results in the Return period value for the new time-series which is half the value of the Return 

period belonging to original time series (since PEvenr stays the same). What has actually happened 

is that by the oversampling we have actually doubled the number of events while at the same 

time the sum of the time intervals, as in Equation (5.5), (within a fixed long period) does not 

change. This ambiguity in the interpretation of what consists of an 'event' is the cause that 

although TReturn on the one hand and MTBF on the other hand each give a measure regarding the 

average duration between 'events' there is a subtle difference between the two which makes their 

inter-relationship less obvious. 
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TTR. TBF. TTR •• l TBF •• 1 
----------------------------~ ----------------

JJ 0 I 

AI 

B n n= -------------------- ----------------
r, T ;+J r i+2 r,_J 

Figure 5.3 Interpretation of time-intervals 

Figure 5.3 illustrates this difference. Here we can see that the most impo~nt differe~ce be~een 

the two definitions regards the interpretation of time intervals with multiple succe~stve ~allures . 

In the reliability method this period (e.g. A-8-C) is considered to be one long penod failure, . m 

the return period calculation each (failure) sample (A, 8, C) is considered a separate event With 

. . d with length of one sample distance LiT Actually, the problem at each defimng a return peno . 

hand is not caused by the concept of return periods but is caused by an indiscrimmate use of 

E . (57) By comparing Equation (5.2) to Equation (5.3) (taking Event = Outage) we quat1on . . 

obtain the following relationship between TReturn and MTBF: 

!:iT 
T =(MTBF + MTTR) MTT.'R Return 

!:iT 
MTBF---+!:!T 

MTTR 
(5.8) 

Since MTTR IS always arger an Ll ' Return . I th "T T will in general be smaller than MTBF (for the 

·fp ·s much smaller and the . th t MT'BF is much larger than L11). However I Event I 1mportant cases a . . . . 

I . dependent then it can be expected that the probability of obtammg two failures m samp es m 'BF · 
succession becomes negligible. In such cases the value of MTTR comes close to LiT and MT. IS 

much larger than LiT so that we have: 

TRetum "' MTBF (5 .9) 
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The reason why the Life-length concept is in general not used in characterising propagation 

effects on radiocommunication systems is not well documented. Probably one of the detriments 

in using it is the difficulty of obtaining the relevant duration statistics. Even nowadays we have 

only limited infonnation on fade duration statistics (which is the equivalence in propagation to 

the TTR statistics). Another problem is related to the presence of very many but very short 

duration events in propagation which makes the resulting values of e.g. MTBF strongly 

dependent on the integration/sample time of the data (a highly undesirable feature). This 

sensitivity of'duration' of propagation events on e.g. integration time is a known problem which 

occurs in studies on duration statistics [Brussaard eta! .. , 1985], [McCormick, 1998]. 

In order to make the Life-length concepts workable for application to propagation effects we 

extend the concept of failure from describing the instantaneous (malfunction) state of the radio 

link to a more global definition using more accessible time frame, e.g. the month . In fact this 

approach is akin to the method of ITU-R is separating the various propagation effects from the 

microscopic effects (e.g. Severely Errored Seconds criteria) to the more macroscopic effect (the 

availability criteria), see Section 1.2. In the following section we shall take the month as a unit 

reference time and the TFE as the quantity defining the failure (non-failure) mode of the system. 
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5.3 Return periods of Yearly and Worst-Month TFE 

Most ITU Grade of Service requirements are defined with respect to the long-term average of 

worst-month and/or the yearly time fraction of excess (TFE). As a simple extension to 

characterisation of the impact of propagation on radio systems we can consider the analysis of 

the variability of the annual worst-month TFE resp. the yearly TFE's and their Return periods (as 

their Life-length parameter). As noted in previous sections the annual worst-month TFE, W, and 

the yearly TFE, Y, can each be considered to be a random process. Both processes are discrete in 

time with sampling time LJT = I year. Furthermore the assumption, introduced in Section 2, of 

cyclo-stationarity and independence of X leads to a stochastic model of Y being stationary and 

independent. 

As already discussed in Section I the ITU-R grade of services are mostly expressed in terms of 

the long-term probability, Pu: 

PLT =< y > (5 .10) 

and/or average-annual-worst-month probability, PwM 

PwM =<W> (5 .11 ) 

A properly designed and implemented system will produce average values of Y and W when 

observed across a very long period very close to the target probabilities PLT and/or PwM- On a 

yearly basis however deviations of the observed value of Y and W with respect to PLr and PwM 

respectively, must be expected. These deviations are expressed by the probability distributions 

Pw and Pr discussed in the previous sections. The associated Return periods are given by: 
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T. =-1-
Re rurn,WM P. 

WM 

(months) 

TRe turn .Y (years) (5 .12) 

Using the CEX model we can easily calculate the dependence between the Return period, the 

TFE value and the model parameters. The results are given in Figure 5 4 Thi·s fig . h 
· · ure gives t e 

dependence of the normalised TFE's (WIP . 
WM respectively YIPLT) on Co for several values of the 

Retu~ peri~ds. One of the interesting properties that can be seen from this figure is that there is 

very little difference in the worst-month curves as compared to the yearly ~urves. 
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- Nonn. Annual TIE ------Norm. Worst-Month TIE 

10 

TRetum = \0 years 

Figure 5.4 Nonnalised Worst-month and nonnalised Yearly TFE values. 

r d TIE's fonn the basis for the curves 
This striking similarity between the two nonna tse . 

developed by the author, in 1992, for Recommendation 620 of ITU-R. In th~s RecommendatiOn 

the parameter Co is replaced by the parameter QI using theoretical expressiOn for CEX mod:~ 
given in Appendix 4.1 of Section 4. This replacement was perfonned since most users are mo 

familiar with the parameter Q1. 
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5.4 Example of risk assessment 

There is currently a growing interest in the radiocommunication community for usage of risk 

analysis (in addition to the classical design methods with availability/unavailability criteria etc.), 

see for example the development within ITU SG3 [reference to WP 31 Chainnan's Report DOC. 

31/32-E, 2/6/98]. While there is at the moment no single definition of what consists risk analysis 

we shall in this section discuss a simple example that we think is a good illustration of risk 

analysis. We consider the situation of a provider who wants to set up a (radio) communication 

system with many users and with each user having a separate link. The links have similar 

propagation properties but are statistically independent. The special service being provided is 

that for any monthly period in which the monthly TFE X exceeds the promised long-tenn worst­

month <W> value the victim is given a financial compensation: 

payment= {
z•(X-<W>)I<W> (whenX><W>) 

0 (when X ~ < W >) 
(5.13) 

Of course many alternative compensation schemes may be devised. However, the above scheme 

seems to be a reasonable proposal for a compensation scheme: it produces a compensation in 

proportion with the excess outage deviation from the promised value (<W>); obviously a 

necessary requirement for an honest compensation scheme. The normalisation to <W> seems 

also to be reasonable, it furthennore simplifies our analysis (by eliminating the scale parameter 

C1) . Of course in the end the service provider might want to make the choice of the value of z 

dependent on many other factors (e.g. so as to avoid excessive loss in say unfavourable 

propagation regions). 

The expected payment per user per month is: 

"' 
cost = < payment > = z J dX f x (X)( X- < W > )/ < W > (5 .14) 

<W> 
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where fx is the probability density function ofX. Equation (5 .12) can also be expressed in terms 

ofPx: 

"' 
cost =-z- fdX Px(X) 

< W > <W> 

(5.15) 

this is obtained by applying partial integration to Equation (5 .12). 

Using the extended CEX model we can readily obtain an analytical expression for the expected 

cost per user per month: 

(for C0 ~I) (5.16) 

(for C0 >I) 

where the dependence of Q1 on Co is as given in Appendix 4.1 of Section 4. 

Figure 5.5 shows the dependence of cost on Co (for several values of the seasonality index M). 

From this figure two interesting features can be seen. In the first place we can see that the largest 

cost value is obtained for the smallest value of Co, here we have a cost of z/12 per user per month 

(or simply z($) per user per year). In the second place we have a large range of Co (0.5 - 2) 

where the cost is practically constant= 0.0167 z per user per month (or equivalently 0.2 z($) per 

) F C below 0 5 the cost rapidly increases with decreasing value of Co. This 
user per year . or o · 
rapid increase of cost is not very obvious at the onset of this exercise This demonstrates the 

necessity of properly analysing the problem at hand with the aid of good models. 
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Figure 5.5 Expected cost per user versus C0. 

5.5 Conclusions 

In this section the basic-concepts from reliability engineering (e.g. MTBF), meteorology 

(e.g. Return Periods) and from radio engineering were looked into, in particular their inter­

relationships. It Is concluded that the return-period concept would be a useful addition for the 

analysis for radio link performances. Using the CEX model for X (and the consequent 

distributions for Y and W) the relationship of return periods with the conditionality parameter 

Co were determined for Yand W. An interesting fact that emerged from comparison of the 

curves for Y to that for W is their very close similarity when the values are normalised by 

their means (Y!< Y> respectively WI<W>). Finally, an example is given where the model is 

used to estimate the financial risk of an insurance scheme on a satellite communication 

system. 
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6. Conclusions and recommendations 

The primary purpose of the research of this thesis is to produce proper models for the statistics of 

the time fraction of excess (TFE) of parameters related to the propagation of microwave 

radiowaves through the troposphere. The TFE considered is that which is based on the monthly 

period although applications to TFE based on longer periods have also been considered. The 

work in this thesis is based on theoretical modelling as well as analysis on a very large amount of 

data on the monthly TFE with respect to diverse propagation processes (slant-path rain attenuati­

on effects and ducting effects on transhorizon paths). The data used are those collected by the 

European COST205 and COST21 0 projects and compose in total of92 site years of observations 

obtained in some 9 different climatic zones of Europe. 

The main results obtained by our studies are the following: 

(1) A proper formal conceptual framework has been obtained: 

Herein the TFE, associated with a particular given link, is modelled to be a realisation from a 

random process X. This random process represents the ensemble of TFEs of all (hypothetical) 

links with equal link parameters located in an area with homogeneous climatic properties. 

Analysis using measured data leads to the conclusion of a random process that is cyclo­

stationary and exhibits independence. The proof of these two aspects is, admittedly, more 

circumstantial than rigorous due to the limitations of the data. The longest observation time 

of the available data was 9 years so those cycles longer than 9 years cannot be detected in this 

study. The independence has been conjectured from the, in general, observed lack of 

correlation between the samples; for TFEs associated with lower thresholds values some 

correlation between subsequent months have been observed. Nevertheless these two 
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properties can be taken as simplifying approximations. The (seasonal) complexity of having 

to use the 12 statistical distributions (one for each month of the year) is reduced to a 

simplified model based on the aggregate distribution Px and a dual-population model has been 

proposed. 

(2) A best model for the aggregate distribution Px has been given: 

For the modelling of the aggregate distribution Px four candidate models have been tested using 

some 92 site years of data from 12 locations in Europe (slant-path attenuation and transhorizon 

signal levels). The models are the conditional exponential (CEX), the conditional lognormal 

(CLN), the shifted gamma (SGM) models and the Gamma (GM) model. The CEX model has 

been extended to cases with Co > 1. The SGM is a new model introduced by the author. 

The analysis shows that classical test methods, for example the x! minimum method and the 

regression method, do not allow definite statements regarding superiority/inferiority of these 

models. This is due to the limited number of sample points available for each sample 

distribution, and the similarity of the four distributions in the midrange. To circumvent these 

problems a novel normalisation method (to create a "grand pool" oftest data) has been devised. 

The analysis using this method has indicated the superiority of the SGM model, with the CEX 

model a close second. The GM and the CLN model do not seem to offer any advantage over the 

other two models. The table below giving the RMS errors illustrates these results: 

SGM CEX CLN GM 

6% 8% 27% 44% 

We note here further that the CLN model has one more parameter than the other three models, 

which makes it even less attractive in practical usage. 

Finally, since the difference in accuracy between the SGM and CEX model is not so large we 

may feel justified to use the CEX model whenever it is more convenient to do so. This may 

be the case in mathematical analysis where often using the CEX model is simpler than using 

the SGM model. 
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(3) Models for variability yearly TFE have been obtained: 

In the next step we have considered the feasibility of using the model( s) for the statistics of X for 

the prediction of the variability of the annual time fraction of excess Y. It has been sho\\n that the 

CEX, GM and SGM models allow good predictions of the magnitude of the variation of y 

around its expected mean (as expressed by the coefficient of variation Or). The CLN performs 

here rather badly, resulting often in gross overestimation. This last result seems to be somewhat 

surprising since the CLN model was found to perform not too badly in the statistical modelling 

of X done in Section 2. It may be that the parameter estimation method used overestimates the 

values of the shape parameter C2, which in tum may lead to excessive predictions of the values 

of Or. In any way this illustrates the problem associated with a model using many parameters. 

For the CEX, GM and SGM models the theoretical expressions for the probability distributions 
Prof Yhave been derived. 

(4) Models for worst-month predictions have been obtained: 

An important part of the thesis is dedicated to the analysis of the "worst-month" time fraction 

excess W. A theoretical analysis shows that the simplified model (using only the aggregate 

distribution) presented before on the statistics of X, can be used to predict the statistics of w 
within known tight bounds. A theoretical analysis using another related parameter, the ITU 

worst month quotient Q1, has produced formulas and graphs to determine the stability 

estimation of worst-month from time-limited data. Finally, from the measured data, a 

classification of Europe in several zones with distinct worst-month properties has been 

produced. The zones found are (l) North-West Europe, (2) Alpine, (3) Mediterranean, (4) 
Scandinavia. 

(5) Extension of grade of service criteria to risk and reliability alike methods: 

In the first place the basic-concepts from reliability engineering (e.g. MTBF), meteorology 

(e.g. Return Periods) and from radio engineering were looked into, in particular their inter­

relationships. It is concluded that the return-period concept would be a useful addition for the 

135 
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analysis for radio link performances. Using the CEX model for X (and the consequent 

distributions for Y and W) the relationship of return periods with the conditionality parameter 

Co were determined for Yand W. An interesting fact that emerged from comparison of the 

curves for Y to that for W is their very close similarity when the values are normalised by 

their means (YI<Y> respectively WI<W>). Finally, an example is given where the model is 

used to estimate the financial risk of an insurance scheme on a satellite communication 

system. 

To sum up we can state that in this thesis we have obtained a comprehensive model for the 

random process of the monthly TFE. This monthly TFE exhibits independence and annual 

cyclo-stationarity and has an aggregate distribution Px which has a SGM distribution (the 

CEX model is slightly less accurate but is also good model for Px) . Seasonality can for many 

applications be simplified to a dual-population model. This model can be used to for 

predictions of properties ofTFEs that can be constructed from the monthly TFE, e.g. worst­

month TFE, annual TFE. The model is therefore very suitable for producing more extended 

analysis of the impact of the propagation on telecommunication systems, e.g. the risk analysis 

of the 'insurance' case given in this thesis. 

Conclusions and recommendations 

Recommendation for further research 

A fact that is ~bserved from the analysis of the data is that there does not seem to be an 

funda.mental difference between the X associated with slant-path attenuation and the X y 
associated with duct" Th · · 

. mg. IS IS somewhat surprising since these two phenomena are based 

on very different mechanisms: attenuation is caused by rain whi.le d t. . 
. . uc mg IS caused by 

137 

anomalous refractive mdex stratification/layering of the atmosph (d . . 
. . ere unng non-ramy 

condi~IOns). This is pro.bably a matter worth investigating further. Another fact that should be 

Investigated Is the possible unification with duration statistics (e g how th d I 
devel · · . . · · e mo e s now 

oped m conJunctiOn With duration statistics can explain the statistics of the mo thl 
TFEs). n Y 
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Appendix to Section 2 

A2.1. Data used in testing 

(1). 11 GHz Slant-path data 

The data here are the 11-GHz slant-path rain-attenuation data which were produced within the 

European co-operative project "Influence of the atmosphere on Earth-satellite radio propagation 

at frequencies above 10 GHz" (the COST205 project, ref. [COST205, 1985]) in the early 80's. 

The data came from experiments with the OTS and SIRJO satellites as well as radiometers. 

Although the number of sites involved is large (some 30 sites) the average measurement periods 

is about 2.5 years which falls short of the minimum requirement of 5 years established in Section 

2.4.1. Therefore, in order to maximise the use the available data a pooling scheme must be 

applied. 

In this scheme we have assumed that data obtained from different sites located 'not to far apart' 

and whose radio link parameter are 'similar' may be considered to be samples from the same 

random process and may therefore be pooled together. We also applied a small scaling of the 

data when required (frequency, polarisation and elevation scaling using methods given in 

Recommendation ITU-R P618. The maximum range of frequency scaling is from ll.4GHz 

(Vertical polarization) to ll.8GHz (Circular polarization), while the maximum range of 

elevation scaling is from 33 to 45 degrees. A small correction, of some 0.25 dB, is also applied 

when the satellite attenuation data does not include the background cloud and gaseous 

attenuation. The procedure of the scaling is to first calculate new values for (attenuation) 

threshold values using the aforementioned ITU models. Afterwards the values of the measured 
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cumulative distribution for the original (attenuation) threshold values are determined through 

interpolation. 

This scheme results in 8 sets of pooled data as shown in Table 2.2 of Section 2. The size of the 

data sets varies from 5 years (Finland) to 12 years (Northern Italy). In total we have 69 site years 

of measurements. The thresholds considered in this thesis are: 1, 2, 3, 4, 6, 8, 10, 12 dB. 

(2) Trans-horizon Data 

The data here are those obtained during the European project "Influence of the atmosphere on 

interference between radio communication systems at frequencies above 1 GHz" (project 

COST21 0, ref. [COST21 0, 1990]) carried out in the period 1984 to 1990. Although the 

COST210 project has collected a very large amount of data only a small subset of this can be 

used for our investigation. This is due to two reason. The first is because many measurements do 

not reach our objective for a minimum observation period of 5 years. The second is because not 

all the data have been given in the form of individual monthly distributions. The COST21 0 data 

used in this paper are all obtained from long-distance measurements of a 1.3 GHz beacon 

transmitted from Martlesham Heath in the UK and from one link at 6.4 GHz (lrnsum -

Leidschendam, 5 years of measurements). The l.3GHz radio links involved all traverses for a 

large part the English Channel. The lrnsum- Leidschendam link traverses the Ijselmeer. For the 

Irnsum-Leidschendam data we have applied a replacement correction to correct for the fact that 

there has been one month of measurement failure. We took advantage of the fact that on exactly 

the same link measurements were at that time performed at 11 GHz. For the missing month we 

substituted the data from the 11 GHz measurements. According to a correlation analysis the 

statistical distributions at these two frequencies seems to be very similar. 

Finally, the thresholds used are: -45, -35, -25, -15, -10, -5, 0, +5 dB with respect to the 

(theoretical) free space level. Table 2.3 in Section 2 summarises the data. 
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A2.2. Expressions for long-term average of X 

As noted in Section 2.2 the long-term average X of X b I 
distribution Px usin E . . ' .' can e ca culated from the aggregate 

g quatton (2.17). By usmg this equation the expression for th I 
average for the four models considered in this thesis has been derived. e ong-term 

For the Conditional Exponential model (CEX): 

X= { Coc, 

C, + C,In(C0 ) 

(for Co :$ I) 

(for Co > I) 

For the Conditional Lognormal model (CLN): 

For the Gamma type of model (GM and SGM): 

where, by definition, K is 0 for the GM and: 

(A2.1) 

(A2.2) 

(A2.3) 

(A2 . 4) 

for the SGM model. His the.unit step function (H(X) = 0 fi X 0 
. or < , and H(X) = 1 for X> 0) 

Further, Co,etr= I m the case of the GM model for the SGM d I C . . - . 
' mo e o,eff IS given by: 

(A2. 5) 
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A2.3. Bin construction for the X2 test 

The -l distribution is obtained as an asymptotic case (N ~ oo). According to Cramer [1945] the 

x} square test is still accurate as long as we have at least I 0 samples per bin, Kreysig [ 1970] takes 

5 samples per bin as the required minimum. Further, since Number of Degrees of Freedom 

(NDF) must be~ 1 we have the following requirements on the number of bins to be used: 

r ~ s + 2 (A2 .6) 

For the conditional lognormal model, for example, s = 3 so that the minimum number of bins to 

be used is r = 5. Notwithstanding these two restrictions there are usually still many ways to apply 

the test since many different bin constructions can be made. For this study we have chosen a bin 

construction which will ensure severe testing of the tail of the distribution: the highest bin (bin 

nr. r) shall be that which contains only the 5 largest samples, the second highest bin shall be that 

which contains only the 5 samples with ranks 6 to 10, etc .. The lowest bin (bin nr 1) shall contain 

the (discontinuity) point X= 0. If the lowest bin contains less than 5 points it shall be merged 

with the second lowest bin. 
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A2.4 Implementation of Crane's method for determination of Co 

A method has devised by [Crane, 1991] to determine in a visual way the value of Co from a 

given sample distribution function, say Px(J() with X1 the largest value etc. Crane's method 

consists of first plotting 1 - Px(J() versus log()(). Obviously only points with )( > 0 can be 

plotted this way. The method is based the observed fact that often the measured data, in such 

plots, would behave in a straight line across a large range and that for small values of)( the data 

will strongly deviate from that straight line. See the example of Figure A2.1. 

Rain-attenuation, Netherlands-Belgium, 1 dB Attenuation 

0 

10·3 
0~----~0~.2~--~0~.4~----0~.6------0~.8----__J 

1 - Px(X) 

Figure A2. I example of data plot for determination of Co 

According to Crane value of Co would correspond to the position of the "breakpoint". We have 

implemented this method in software. Basically we first determine a linear best-fit line. The 

"breakpoint" is then found by removing points below the line, starting with points with the 

smallest value, until the first point above the regression line is found. 
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Appendix to Section 3 

A3.1 Or versus C2 for the SGM model 

For the SGM model the analytical relationship between Dr and C2 can easily be derived by 

using Equation (3 .l 0) in Section 3, with M = 12, and calculating the 151 and 2"ct moments of X 

etc .. The expression for the 151 moment of X has already been given in Section 2. The second 

moment of X is given by: 

(A3.1) 

This equation, together with the equations for <X> and Dr, see Section 2 & 3, would result in 

a cumbersome equation for Dr. A simple approximation has however been found , see 

Equation (3.16) in Section 3. Figure A3.1 shows the performance of this approximation. 

~ 4- exact, o approximation 
3.5,...-------------, 

3 

2.5 

2 

c:.-
1.5 

0.5 

a~-~--~-~-~~-~ 

0 0.2 0.4 0.6 0.8 
c, 

Figure A3.1 Or vs. C2 for SGM model. 
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A3.2 The distribution Py for the SGM model 

Here we detennine the distribution of Pr through the Monte-Carlo method. 

The simulation has been done using MA TLAB random generator for the Gamma variate g. For 

the SGM model X is related to a Gamma random variate g (with scale parameter C1 and shape 

parameter C2) through a shift and truncation process: 

(A3.2) 

with H the Heaviside unit step function, and K as given in Section 2. 

We perfonned this simulation for various values of C2 ranging from 0.0 I to 1.0. For each 

chosen value of C2 a run of 1000 years simulation was produced, from which the (empirical) 

distribution of Pr were detennined. Subsequent analysis of these distributions results in the 

approximation discussed in Section 3.3.4. The figures below give examples of comparisons of 

the approximation fonnula for Pr and the distributions obtained through simulation. 
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Appendix to Section 4 

A4.1 Equations for Q1 

Mathematically the ITU worst-month quotient Q1 is defined as: 

Q1 = < W > I < X> (A4.1) 

Here the average month value can be calculated using either the individual monthly probability 

density functionsfXlm (m = I, 2, .... , 12) or the average probability density functionfx: 

< X> 
12 :::tJ 

-&2: fdX X J X!m(X) (A4.2) 
m= l o 

The average worst-month is calculated from 

, 
< W > fdw W f w(W) (A4.3) 

where 

12 12 

LJ Xln(W) fi (J - Px!m(W)) (A4.4) 
n=-1 ~ 

which shows that for the exact determination of <1¥> either the probability density function/w 

must be known, or that all the 12 monthly probability density functions fXlm must be known. 

Assuming the simplified 2-population model, see Section 2.2 and 4.3, the expression for the 

probability density function of W simplifies to: 
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f w(W) = 12 f x (W) (1- -!d- Px(W)) M-I (A4.5) 

so that only the aggregate statistics of X are needed to calculate Qt. By using the models for Px 

(resp.fx) in these equations and performing some mathematics we can obtain the expressions for 

For the Conditional Exponential model we have: 

(A4.6) 

The mathematical expression for Qt was first derived by Brussaard & Watson [1979]. Equation 

(A4.6) is the slightly different formulation as given by Mawira [1980] . This formula is valid for 

0::::; Co ::::; I. For the cases Co~ I (the extended model introduced in Section 3) the expression for 

Qt can be easily derived by noting that in such cases X is the sum of a constant term Ctln(Co) 

and an (unconditional) exponential random variate with scale parameter Ct . This leads to the 

following expression of Qt for Co ~ I : 

Q1 ax = (3 .10 + ln(Co)) / (1 + ln(Co)) (A4.7) 

For the Conditional Lognormal model we have: 

(A4.8) 

For the Shifted Gamma model we have: 

( J 
k 

M· l M I 12 "' ., 70 ·U 

Q (c, M)=ll"[ -Jc--/ fdt(t-K)t C,·I_e- fduu C,· I_e_ 
l .scM - . ~ L. k M rcc ) rcc ) 

k•O K 2 1 2 

(A4.9) 

with 
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"' 
ry=Cz( fdtt c, e·' -K Jdtt C,-1_:_:__] 

/( r(l + cJ /( f(C
2

) (A4.10) 

K is a function of Cl as given by Equations (2.9) of Section 2. For the unconditional Gamma 

model the expression is the same but with K = 0. 

Note that Qt does not depend on the scale parameter Ct. Theoretically the conditional lognormal 

model has the largest possible ranges of values of Qt . The upper bound is achieved when the 

shape parameter c2 = oo: 

(A4.11) 

The lower bound is achieved when the shape parameter c
2 

= 0 and M= 12: 

(A4.12) 
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A4.2 Determination of the moments of qN 

In this section we shall derive the expressions for the moments of qN, which is the random variate 

estimator of Q1 obtained from N years of observation of the random process X monthly t.f.e.'s. A 

conditional exponential model (CEX) is assumed for the statistical distribution of X: 

Px(X) = Co e.x;c, (A4.13) 

with 0 < Co ~ I and C1 > 0. Without loss of generality we can take C1 = I so that now we have 

for Px: 

Px(X) = Co e·x (A4.14) 

Furthermore we assume the simplified 2-population model discussed in Section 2.2 and 4.3 . In 

this model the events X > 0 are only produced in a subset of M months of a year, the Active 

months, with probability distribution within each of this month given as: 

Px(X I XE Active) probability( X :?: X] X E Active month) (A4.15) 

for X> 0; for X < 0, Px= I. 

A4.2.1 A generic case 

Before solving the whole problem we shall first consider a similar but much more simplified 

situation. Here we consider an artificial world where the year isM months long(= I, 2, .. .. ) and 

where random process of the monthly t.f.e. X is statistically homogeneous, independent and of 

the exponential type: 

(A4.16) 

for X> 0; for X <= 0, Px (X)= I. The associated probability density function is : 

f x(X) = e·x U(X) (A4.17) 
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where U is the unit step function. 

The worst month random process W here is defined analogous to that defined for real years 

(accounting for the deviant length of the year). We first consider the ratio of the worst-month to 

the year total, r1: 

- w r. --M--

Ix, (A4.18) 
m=/ 

Our goal is to calculate the (statistical) moments of r 1, we need therefore first to obtain the joint 

probability of Wand the other months. We notice that the worst month can occur, with equal 

probability, in any of the M months. The M possible cases (the worst-month is month 1, the 

worst-month is month 2, ... ) are statistically equivalent, so that it is sufficient to analyse the 

structure of the joint-probabilities for the case that the worst-month occurs in the first month of 

the year, W= XJ. In this case, the probability density of observing the sequence of values (W X 
, 2, 

X3, .... ,XM): 

M 

f x(W)ilf x(Xm)U(W- Xm) 
m"" 1 (A4.19) 

with U the unit step-function. For the case when the worst month is the month k w =X th 
, k, e 

expression for the joint-probability is similar as above, only some index is modified. To obtain a 

compact notation we should define the random process associated with the months "which are 

not the worst-month" V We can obtain this by a process of renaming. The joint-probability 

density function, for the complete case (worst-month in 151 month, worst-month in 2"d month 

etc.) is now: 

M-1 

fw.~(W,~, ... . ,VM-1) = A1fx(W)flfx(Vm)U(W- V"') 
m=l (A4.20) 

and for r1 we now have: 
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(A4.21) 

forM?. 2; forM= I we have the trivial case r, =I. 

The k-th moment of r1 is defined as: 

(A4.22) 

Inserting Equation (A4.20) and Equation (A4.17) we obtain: 

oo W W M·l 

M fdW e.w fdV1 ... fdVM-1 e·LV; 
0 i = l 

(A4.23) 

and by applying a variable transform Si = V;IW: 

< r/ > 
"' I I M - 1 

M fdw wM-I e-W fdsl ... fdsM-1 e·W:Ls; 
0 0 i= l 

( 

\f 1 ) -k 

I+ ~Sm (A4.24) 

By carrying out the integration through W, and using well known properties of the Gamma 

function [Abramovitch, 1970], the equation is reduced to: 

I I ( M-1 )-M-k 
< r/ > = M1 Jds1 ... JdsM-1 1 + LSm 

0 0 m= l 

(A4.25) 

We solve this equation by using recurrence equations, to do this consider the following function: 
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I (a + m~=-llsm)·M-k Jds 1 ... Jds lf - l L 
0 0 (A4.26) 

with a> 0; note that 

(A4.27) 

By performing the integration across su. 1 m Equat · (A4 26) b ton · we o tain the following 
recurrence relationship: 

(A4.28) 

An initial value for solving the recurrence relationship can be found by solving the integral in 

Equation (A4.26) forM= 2, this leads to: 

(A4.29) 

By comparing this equation with Equation (A4 28) we can see that we can defin · · · e m a consistent 
way: 

(A4.30) 

By applying the above recurrence successively relationship we obtain: 

M-I(M ]) j (k ) - I - . 

M (a) - (k+l)" ' ~ i (-1)' (A4.3l) 

where (u)I is de Pochhammer's notation for u(u+ 1 ) ... (u+l-1), also (u)o := 1. 

By setting a= 1 we obtain: 

< r/ > M-I(M -f) 
(k+'1L L . (-IY ~ 

;~o \. 1 (A4.32) 
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for M'?:. 1 and k '?:. 0. 

An interesting property which can be proven is that: 

(A4.33) 

for n, k '?:. 0, and where 

(A4.34) 

In other words ,
1 

and SM are statistically independent; the fonnal proof of this statement is given 

in Section A4.3. 

k n D . h 
To prove Equation (A4.8l) we first obtain the expression for <r1 SM > by per ormmg t e 

integrals using the probability function/w.r in a similar as was done in the previous calculation of 

<r/'>. After the step where a variate transfom was performed, see Equation (A4.24), we arrive 

here at the following expression: 

00 l 

< r / SMn > = M fdww M+n-l e'"' fdtt 
0 0 

(A4.35) 

By carrying out the integration through w and using the known properties of Gamma function 

[Abramovitch, 1970] we obtain: 

l 

< r/ SMn > Mf'(M + n) Jdt t 

which reduces further to: 

l 

< r / sM" > = Mf'(M + n) Jdt t 
0 

I 

fdtM-l M-l 
0 {l + L>m)M+n 

m= l 

l M·l 
fdtM -t(l + L,tmr M-k 
0 m=l 

By using Equation (A4.26) and Equation (A4.27) we obtain: 

M-l 
{l + Lfm)'k+n (A4.36) 

m•l 

(A4.37) 
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f(M+n) 

f(M) 
<r/ > 

Finally we note that the n-th statistical moment of SM is : 

r(M+n) 

f(M) 
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(A4.38) 

(A4.39) 

since SM is a Gamma variate with shape parameter M and scale parameter value 1 (this is a 

consequence of the fact that SM is the sum of M independent and exponentially distributed 

stochastic variates with common shape parameter values l ). Combining the above two equations 

completes the proof of Equation (A4.33). 

We note here that according to [Shorack & Wellner, 1986] r 1 is the maximum spacing sampled 

from M i.i.d. r.v.'s unifonnly distributed between 0 and l. Using this fact the moments of r 1 

could be readily derived. 

A4.2.2 N = 1 year, the case when Co= M/12 

In this case it is assumed that the process X in the M active months of each year is purely 

exponential (e.i. unconditional), so that we can directly use the results of the previous section 

accounting for slight difference in definitions of q1 and r1: 

(A4.40) 

or, by using Equation (A4.32): 

(A4.41) 

where we have defined: 
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(A4.42) 

forM?::. 1 and k?::. 0. We further define gk.o = 1 i. 

Fork= 1 we obtain: 

(A4.43) 

This expression is exactly the same as the expression for Q, (with Co = M/ 12), see Equation 

(A4.6) in section A4.1. This means that the random variate q1 is an unbiased estimator for Q, for 

the cases where Co = M/12. Another interesting property is that in such cases q, and mx are 

statistically independent (since r 1 and SM are statistically independent, see Section A4.2.1 ). 

A4.2.3 N = 1 year, the general case 

In general Co does not have to be equal to M/12 so that the number of months per year with X > 0 

may vary from year to year. The random process X, within the M active monthly population, can 

actually be considered to be the product between two random processes: 

X= U X, 
(A4.44) 

where Xe represents an unconditional standard exponential process, while U is a binary random 

process (producing only values of 0 or 1) with probability: 

Pu(l) = probability(U= 1) = %Co 
(A4.45) 

and pu(O) = I - pu( 1 ). 

From this we can see that the ensemble of yearly sequences of X may be composed of M+ 1 

subsets of yearly sequences: those with M months having X> 0, those with M-1 having X > 0, 
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.. .. , those with 0 months having X > 0. The probability of obtaining a yearly sequence with say m 

months having X> 0 is: 

probability(mmonthsperyearwithX>O) = BM(m, Pu(l)) (A4.46) 

where B\t is the well-known Binomial probability function [Abramovitch, 1970] : 

(A4.47) 

Note: Bd_M,I) =I. 

Furthermore, for the subset of yearly sequences with m months having X > 0 the statistical 

moments can be determined in exactly the same way as in the previous section, we have here 

<q/'> = gk.m· The statistical moments related to the whole population are obtained by weighted 

averaging: 

12 

< qlk > = L BM(m, Pu(l)) gk.m (A4.48) 
m=-c O 

A4.2.4 First & second moments of qN for N > 1 

When given N years of observation theN year estimation of Q1 is given by: 

N 

LW(j) 

qN 
j =l 

(A4.49) N 

Lmx(j) 
j : f 

where, for convenience sake, we have denoted the first year of observation with}= 1 etc .. In this 

section we shall calculate the mean and the second statistical moment of qN. 
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First we rewrite the above expression by substituting W(j) = q1(j)mx(j): 

~ ( .) mx(J) 
L_.q!} N 

j=l Lmx(i) 
i=l 

(A4.50) 

The statistical averagings are performed in two steps. In the first step we restrict ourselves to the 

subset of the ensemble having m1 months with X> 0 in the first year, m 1 months with X> 0 in 

the second year, ... . , mN months with X> 0 in the final year. Here we can make use of results 

obtained from the previous section: the statistical independence between the q1's and the 

mx's.(for the purely exponential cases) 

In the second step we perform a weighted averaging using as weights the probability of 

occurrences on above mentioned sub-ensembles. This probability is a product of Binomial 

probabilities: 

The mean of qN for this subset is given by: 

or 

N 

L <q,(J)Imj > < 
j=l 

(A4.51) 

(A4.52) 
mxCJ) 

N 

Lmx(i ) 
i= l 

I m 1,mz, ... ,m N > (A4.53) 

where we have made use of the statistical independence of q1(j) and mx(j) proven in Section 

A4.2.2 and the expression for <q, jM> given by Equation (A4.41). Since g 1 m has already been 
• I 

determined in the previous section, see Equation (A4.42), we need here only to calculate the 

terms: 
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(A4.54) 

To calculate this term we make use of the fact that mx for the different years are indepe d t n en. 
Furthermore they are Gamma distributed with shape parameter values equal tom m fi 

1, 2, . ... , mN or 

respectively the first year, the second year, ... , and the fmal year (the scale parameter value= 1 in 

all cases). The expression for L; is now as follows: 

(A4.55) 

with n = m1+m2+ .. . +mN-mj. Here we have made use of the fact that the sum of a number of 

independent Gamma variates with equal scale parameter values but with possibly differing shape 

parameter values is a Gamma variate with shape parameter value equal to the sum of the 

individual shape parameter values; the resulting shape parameter value is equal to the original 

scale parameter value. 

To solve this integral we first perform a probability variate transform s = u2 and t = i . 
Subsequently a polar transform is performed in the u, v space and the integral along the radius is 

performed, this results in: 

r(m + n) rr / 2 

L = 2 j I d¢ cos2mj+ l ( ") . 2n·l (") 
; r(m;)r(n) o 'f' Sill 'f' (A4.56) 

The solution to the integral is readily found in [Abramovitch, 1975] in the section regarding 

Gamma and Beta functions : 

r(mj +n) r(mj+l)r(n) 

r(mj)r(n) r(mj+n+I) 
mj 

- N-

Lmi 
i= l 

This results in the following expression for the conditional average: 

(A4.57) 



172 Appendix to Section 4 

(A4.58) 

The unconditional mean is obtained by averaging of the above expression using the multiple 

Binomial expression given by Equation (A4.51 ): 

M M 

I ···I Pm, ,m,, ... mN <qN I mr,m2, ••. ,mN > (A4.59) 
m1=0 mN== O 

For the special case when Co = M/12 the expression can be simplified further. In this case 

Pm,.m, .... . mN = 1 when all the mjs are equal to M and zero otherwise so that: 

(A4.60) 

which as can be easily seen from Equation (A4.58) leads to: 

(A4.61) 

This shows that for these special cases q1 is an unbiased estimator for the worst month quotient 

Now we shall determine the expression for the second statistical moment of qN: 

(A4.62) 

We follow here the same strategy as in the calculation of the mean of qN. First we perform the 

statistical calculations for the sub-ensemble with m1 month with X > 0 in the first year etc. , and 

afterwards perform the overall averaging. 

-
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For this sub-ensemble we have: 

N N 

II <qN(j)qN(k) / mj, mk > Lk.j 
j=I k = I (A4.63) 

where 

where we have made use of the independence between the qN's and mx for the special situation of 

the sub-ensemble. The averaging of qN(j)qN(k) is easily found using the results from Section 

A4.2.2: 

(4.64) 

where bj,k is the Kronecker delta ('6j,k = 1 ifj = k otherwise bj,k = O). 

By again exploiting the Gamma properties of the mx's an integral expression for L can be 
1.k 

derived, which for the case} is not equal to k is given by: 

(4.65) 

where n = m, + mz + .. . + mN - mj- mk. We note here that the above equation is valid only when 

both mj and mk are> 0, in other cases Lf k = 0. 

To solve the above integral we first perform the variate transforms= xz t- yz _ 2 Aft h , - , u - z . er t at 

we perform a polar transform and carry out the integration along the radials. This results in: 
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(4.66) 

with Sq = sin(q) etc .. The solution of the above integrals can be found in [Abramovitch, 1970] in 

the section on Gamma and Beta functions . Using these results we obtain: 

f(m1 + mk + n) r(m1 + mk + 2)f(n) r(m1 + 1)r(mk + 1) 

f(mJf(mk)r(n) f(m1 + mk + n + 2) f(mJ + mk + 2) 
(4.67) 

which can be reduced to: 

(4.68) 

valid for j not equal to k. Somewhat surprisingly the above equation produces the right answer 

for m1 = 0 and/or mk = 0. 

For j equal to k the integral expression is as follows: 

(4.69) 

+ + + m _ m In a similar way as above the integral can be solved to where n = m, m2 ... N y· 

produce: 

N N (4.70) 

(Lm;)(Lm;+ 1) 
j: J i = l 

We can combine Equation (4.68) and Equation (4 .70) in one equation: 

m1(mk + 8 J.k ) 
N N (4.7 1) 

(Lm;)(Lm;+ 1) 
i= l i = l 
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with 81.k the Kronecker delta. Using these expressions we obtain: 

( 4. 72) 

The unconditional values are obtained by averaging of the expression using the multiple 

Binomial expression given by Equation (A4.51 ): 

N N 

<qN
2
> = L ··· LPm,.m, .. m_, <qN2 I mJ,mz, ... ,m,v > 

mr=l m.v-= 1 (4. 73) 

For the special cases when Co= M/ 12 this equation can be simplified further in the same way as 

was done previously for <qN>, leading to : 

<q 2> = M +/ g +~g2 
N MN+J 2,M MN +I l,M (4.74) 

Using this equation and Equation (A4.61) we can find a rather simple expression, for these 

special cases, of the standard deviation for qN. Inserting these equations in the definition for the 

variance 

(4.75) 

we obtain: 
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M + l M(N-1) 2 2 
MN+I g2,M + ,\1}/ , J gi,M- gi,M (4.76) 

or 

(4.77) 

-
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A4.3 Formal proof of independence 

In this section we give the proof of the statement that if for two random variates, say X and Y, 

their joint moments are separable: 

< X"'Y " > = < Xm >< Y" > 

(for n, m = 0, I, 2, ....... ) 

the X and Yare statistically independent: 

fx .r(X,Y) fx(X)fr (Y) 

wherefx.r is join-probability density function, while fx andfr the respective marginal 

probability density functions. 

(A4.78) 

(A4.79) 

To do this we use the characteristic functions <l>x, <Dr, <I>x,rdefined as [Papoulis, 1984]: 

>0 

<I>x(Wx)= JdX fx(X)e Jw ,x (A4.80) 

00 

<l>y(Wy)= fdY fr(Y)e Jw,r 
(A4.81) 

"' "' 
<!> (w UJ ) = JdX JdY f (X Y) eJ<w ,X+w,Y) X .Y X' Y X,Y ' (A4.82) 
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According to [Papoulis, 1984] if the joint characteristic function <l>x,r equal the product of the 

marginal characteristic functions <l>x and <Dr: 

(A4.83) 

then X and Yare statistically independent. 

To prove this we first expand the above expressions as power series : 

~1~(n) kyn-k (' )k(· )"-k <1> (((} ((} ) = ~-~ k <X > )((}x )((}r 
X .Y X' y n=O n!k=O 

(A4.84) 

(A4.85) 

(A4.86) 

Now by using Equation (A4.78) in the above expression for <l>x.r we obtain: 

"' 1 ~ ( n) k n-k ( . )k ( . )n-k <1> (((} ((})=I-~ k <X ><Y > J((}x J(()r 
X ,Y X' y n=O n!k=O 

(A4.87) 

Now we can rearrange the order of summation: 

(A4.88) 

or if we apply the explicit expression for the binomial factor(.) : 
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,.... ( ) ~ ~ I Xk y n-k (. )k(. )"-k "'x.r ((}x,((}r = ~ ~ < >< > )((}x )((}y 
k=O n=k k!(n- k)! (A4.89) 

The next step is to replace n with a new summing index I= n-k: 

(A4.90) 

By comparing this equation with Equations (A4.85) and (A4.86) we can easily see that: 

(A4.9 I) 

which completes the formal proof of statistical independence. Note that this proof requires 

that the series must be convergent. E.g. for heavy tailed distributions this proof is not valid 

because the higher moments becomes infinite for finite (moment) order. 
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Samenvatting 

Een belangrijke eis ten aanzien van troposferische propagatie modeilen is hun verrnogen om 

de lange duur statistieken van diverse propagatie grootheden te kunnen voorspeilen. Voorts 

moet de voorspeiling over een zeer groot kansbereik werken. Net zo belangrijk, zeker voor 

systeemontwerpers, is het verrnogen van een dergelijk model om de variaties aan te kunnen 

geven van de statistische verdeling bij kortere duur observaties. Het modeileren van 

dergelijke variaties is het onderwerp van dit proefschrift. Hier wordt aandacht besteed aan 

een bijzondere klasse van propagatie grootheden, namelijk de zogenaamde maandelijkse 

overschrijdingsduur; in het Engels de "monthly time fraction of excess" (TFE). Dergelijke 

TFE speelt een belangrijke rol bij de zogenaamde "Grade of Services" specificaties van de 

ITU (International Telecommunication Union). Het onderzoek wordt beperkt tot de TFE 

geassocieerd met ten eerste regen-demping op sateilietpaden en ten tweede ducting op over­

de-horizon radioverbindingen. 

Ter inleiding wordt een studie gemaakt naar de algemene statistische aard van de 

maandelijkse TFE. Er wordt een theoretisch raamwerk opgesteld waarbij de TFE als 

statistisch proces wordt gemodelleerd. Hierbij fungeert als "ensemble" van het proces de 

hypothetische verzameling van aile verbindingen in een, klimatologisch gezien, homogeen 

gebied. Aile verbindingen hebben uiteraard een zelfde parametrische insteiling (frequentie, 

padlengte etc.). Analyses, die gepleegd zijn met behulp van de meetgegevens, Iaten zien dat 

als werkhypothese jaarlijkse cyclostationariteit van het proces mag worden verondersteld. 

Verder rechtvaardigen de resultaten van correlatie analyses de aanname van 

onafhankelijkheid van het proces. De seizoensafhankelijkheid van dergelijke propagatie 

processen, die meestal complex is, wordt opgevangen door invoering van het zogenaamde 

duale-populatie model. 
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In het tweede deel van het onderzoek wordt aandacht besteed aan het verkrijgen van een goed 

model voor de statistische verdeling van de maandelijkse TFE. Vier kandidaatmodellen 

worden onderzocht. Het betreft het (geconditioneerde) exponentiele model (CEX), het 

lognormale model, het gamma model (GM), en het verschoven gamma model (SGM). 

Diverse klassieke toetsingmethoden worden toegepast zonder dat het duidelijk uitsluitsel 

oplevert. Een nieuwe toetsingmethode is derhalve ontworpen; deze methode is gebaseerd op 

invoering van een zodanige normalisatie dat alle data als een geheel beschouwd kunnen 

worden. De resultaten van de test met behulp van deze nieuwe methode Iaten overduidelijk 

de superioriteit van het SGM model zien; het CEX model is een goede tweede. 

Vervolgens wordt aangetoond dat het gevonden statistische model voor de maandelijkse TFE 

toegepast kan worden om de gedragingen van zowel de jaarlijkse TFE als de slechtste maand 

TFE te kunnen bepalen. Interessant om te noemen is dat theoretische analyses Iaten zien dat 

de vereenvoudiging tot het duale-populatie model niet tot grote fouten zal leiden. Verder, 

werd de grootte van de te verwachten variabiliteit van beide grootheden bepaald en 

gerelateerd aan de omkeerperiode (return period). Tot slot is een classificatie van de 

variabiliteit eigenschappen in Europa opgesteld op basis van de regen-demping gegevens. Er 

worden vijf klimaatzones onderscheiden, namelijk Scandinavie, Noordwest Europa, Centraal 

Europa, de Alpen en tot slot het Middellandse Zee gebied. 

In het Jaatste deel van het proefschri ft wordt ingegaan op mogelijke innovaties ten aanzien 

van manieren om kwaliteit en prestatie van radioverbindingen te kwantificeren. Besproken 

wordt de mogelijke merites van methodieken en concepten uit de "reliability engineering" en 

meteorologie. Tot slot wordt een voorbeeld uitgewerkt van een toepassing van het gevonden 

statistisch model voor de maandelijkse TFE op een verzekeringsgeval voor een 

telecommunicatiesysteem. 

Curriculum Vitae 

Agus Mawira was born in Jakarta, Indonesia in 1947. He graduated with a degree in 

Electrical Engineering at the Eindhoven University of Technology in 1974. From 1974 to 

1975 he was with the Radio Communication Department of the Eindhoven University of 

Technology where he worked on the theory of the polarisation of thermal emission of rain at 

microwave frequencies. He joined KPN Research, then called the Dr. Neher Laboraries, in 

1975 where he started with work on the experimental and theoretical characterisation of 

rainfall attenuation at microwave links. He has since worked for KPN Research on various 

propagation research ranging from satellite and slant-path propagation, rain-scatter, mobile 

propagation at VHF and UHF. He has been active in various European co-operative projects: 

the COST25/5 project for microwave terrestrial propagation, the COST205 project for slant­

path propagation, the COST207 project for mobile communications, the COST21 0 project on 

interference between fixed radio systems, the RACE project 2029 on UMTS and also in 

projects headed by the European Space Agency such as OPEX. Within the project COST205 

he was chairman on the working group dealing with precipitation aspects. Within OPEX he 

was chairman of the working group dealing with data acquisition and pre-processing. From 

1990 to 1994 he was National co-ordinator and representative for the Netherlands for ITU 

CCIR Study Groups 5 & 6. During the last few years his research activities has been focused 

on the development of propagation models for the planning of cellular systems, at first for the 

GSM systems, now more for the future UMTS systems. 



Curriculum Vitae 
184 

Acknowledgements 

The work presented in this thesis is related to activities that has spanned more than a decade 

and has involved many people and institutes. Continuous during this period has been the 

support of various divisions of KPN for these activities. These divisions are the operating 

Telecom divisions of KPN and also KPN Research. I would like to thank all the decision­

makers who had the foresight and patience in supporting our research activities. 

Many of the research have been carried out within the framework of co-operations. Such co­

operation range from national (Netherlands) through the European (e.g. the COST projects) 

and global (through the ITU - R Studygroups). I would like to thank all the people and 

institutes involved. In particular I would like to thank all the people who worked for the 

COST205 and COST21 0 projects, without their effort the valuable and extensive propagation 

database would not be available. I would also like to mention my appreciation for the special 

long term co-operation between KPN Research and Delft University of Technology, through 

prof. Leo Ligthart, and the Eindhoven University of Technology, through prof. Gert 

Brussaard. 

I am also indebted to many people within KPN and KPN Research with whom I have had a 

fruitful co-operation over the many years. On a personal note I would like to thank Jan Neessen 

who has been a mentor to me during my starting year at KPN Research. He also was the one 

who got my interest for the subject of "worst-month". Special thanks also to Ad Labrujere who 

helped me get started to work on my thesis and to Cees van Bochove who as my boss has 

throughout given me support for my work. 

I would also like to thank every person on the PhD commission for their efforts. I would 

especially like to thank those members, who caused me a lot of additional work, they are Gert 



186 Acknowledgements 

Brussaard, John Einhmal, Matti Herben and Leo Ligthart. I would like to thank Gert Brussaard, 

not only for accepting me as his PhD student, but also for the very many, sometimes heated but 

mostly fruitful, discussions we have had on various propagation subjects in the last decennia. 

With regard to the manuscript I would like to thank Jan Trompert of the infrastructure 

department for design of the cover and for complying with my unreasonably tight schedule. 

Finally, I would like to thank my family and friends who in the last year patiently put up with 

my excuses: "so sorry, I am too busy with my thesis". 



Stellingen behorende bij het proefschrift 

Variability of monthly 
time fraction of excess of 

atmospheric propagation parameters 

door 

A. Mawira 

Eindhoven, 13 September 1999 



1. Van propagatie achter de horizon, zoals die door ducting wordt veroorzaakt, is 
de invloed op cellulaire radiosystemen nog onvoldoende onderzocht. 

2. De benaderingsformule gegeven door [Abramowitz, 1978] om de inverse van 
de Onvolledige Beta-functie, Iia, b), te berekenen, Ievert verkeerde waarden 
op voor de gevallen a = 1 en/of b = I. In deze gevallen kunnen de verkregen 
waarden van X met een factor 0,4 tot 1 ,4 afwijken van de werkelijke waarden. 

3. De uitvinder van het wiel met as is homo ludens. 

4. Als geld de wortel van aile kwaad is dan moeten wij de overgang naar een 
geldloze maatschappij verwelkomen. 

5. Een altematieve aanpak voor de methode aangegeven in deze thesis is om uit te 
gaan van de variabiliteit van propagatiegrootheden in plaats van de fractionele 
overschrijdingsduur. Deze methode leidt tot complicaties en een zeer beperkte 
model, maar kan wei nuttige diensten bewijzen bij de presentatie van resultaten 
voor een specifieke toepassing. 

6. Het Teledesic-project, waarmee breedband Internet zal worden verzorgd met 
behulp van 288 LEO satellieten, is een zakelijk risico van 9 miljard dollar. 

7. Het statistisch proces van de maandelijkse TFE van atmosferische 
propagatiegrootheden vertoont cyclostationariteit en onafhankelijkheid. [Dit 
proefschrift, Hoofdstuk 2] . 

8. De afhankelijkheden van de genormeerde jaarlijkse en maandelijkse TFE van 
de omkeertijden en de Iocatie parameter C0 zijn nagenoeg gelijk. [Dit 
proefschrift, Hoofdstuk 5]. 

9. Er is geen indicatie van enig fundamenteel verschil tussen de maandelijkse TFE 
behorende bij regendemping en die behorende bij ducting. Dit is een 
verrassende uitkomst, aangezien de onderliggende fysische mechanismen van 
de betrokken propagatiegrootheden zeer verschillend zijn. [Dit proefschrift, 
Hoofdstuk 6]. 

I 0. In een vrije-markt maatschappij moet het onderwijs zodanig zijn dat iedere 
burger de financiele pagina van de krant kan lezen en daamaast zakelijke 
vaardigheden bezit. 

11. Volgens [Hagel III en Singer, 1999] zal in de toekomst elke ondememing zich 
concentreren op een van de drie basisprocessen (Klantenmanagement, 
Innovatie, Productie/infrastructuur). Dit om een maximale efficiency te 
bereiken en om conflictueuze eisen te vermijden. Een probleem met deze 
theorie is de impliciete aanname dat Innovatie (en R&D) processen met gemak 
kunnen functioneren als een onafhankelijke zakelijke entiteit (b.v. het kunnen 
verkrijgen van investeringsgelden van de financiele markt). Innovatie behoeft 
vaak langdurige financiele investeriRgen, zonder uitzicht op korte-termijn 
winsten. Dit is tegengesteld aan de behoefte van de financiele markt op winst 
op korte termijn. 
[Hagel Ill, J., Singer, M, 1999, Unbundling the corporation, Harvard 
Business Review, March-April, pp I 33- 141.] 
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