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Abstract 

Every 7r-calculus expression can be translated to a term in "nannal form ll built 

from +, input and output prefix, match, and inaction. Many difficulties of the 
7r-calculus are easier to understand and address at this simpler normal form 
level. We introduce a theory called Basic Conditional Process Algebra (BCPA), 
which we use to study these issues. BCPA is BPA extended with a conditional 
construct over Boolean expressions which can contain free variables. In this 
article, we consider a restricted setting without bound variables, since it already 
presents many non-trivial problems. 

Note: Supported by NWO, the Netherlands Organization for Scientific Re­
search, project 612-16-433, HOOP: Higher-Order and Object-Oriented Processes. 

1991 Mathematics Subject Classification: 68Q60, 68Q10, 68Q40 

1991 CR Categories: F.1.2, D.3.1, F.3.1, D.1.3. 

Additional keywords and phrases: Process algebra, 7r-calculus, value pass­
ing, term rewriting, ACP. 

1 Introduction 

We consider algebras in which names can be transmitted as data. Different semantics 
were considered already in the original work [MPW92] according to the moment of 
instantiation of the variables used to transmit these names. These different semantic 
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ideas were mainly based in two different notions of transition relation, called early and 
late transitions. In the early case, the variable is instantiated in the transition itself. 
This can be expressed (in the notation of the 1l'-calculus) as follows: 

x(y).P -=-, P{y:= z} 

where z is any name not free in P. The associated semantics is defined by using the 
traditional (ground) bisimulation. The late semantics has a simpler transition rule 

x(y).P x(Y1 P 

and the different instantiations of the variable yare considered in the definition of the 
corresponding bisimulation: a relation S is a late bisimulation if whenever PSQ and 
x(y). x(y) 

P -----> P' then there eXists a process Q' such that Q -----> Q' and for any name z not 
free in P' it holds that P{y:= z}SQ{y:= z}. 

However, a result from [MPW91] introduces a bisimulation that applied to two late 
transition systems will relate two terms if and only if they are early bisimilar. This 
relation inverts the quantifiers in the definition of the late bisimulation, saying that 
for any name there exists a (different) process which will match the transition. 

It is shown that late bisimulation is strictly finer that early bisimulation for the 
1l'-calculus. It is almost immediate to see that late bisimulation is finer than the early 
one. To show that they are different the matching operator has to be used, due to the 
fact that in the 1l'-calculus there is no syntactic construct for the free input. 

A still finer equivalence was introduced in [San93] under the name of open bismu­
lation. This equivalence has the advantage of being a congruence with respect to all 
the operations of the 1l'-calculus. The variables are instantiated even later than in the 
late bisimulation. This fact is reflected in the way the matchings are evaluated, what 
shows an intrinsic difference with both early and late bisimimulations. 

In [PS93] some axiomatizations of early/late equivalence and early/late congruence 
were introduced. The axiomatizations of the equivalences have weaker axioms for 
input prefixes (two process of the form a(x) . P and a(x) . Q will be equal only if 
P{X:= y} = {X:= y}Q for any name y, whereas for the congruence one (obviously) 
has a general rule of the form P = Q =? aP = aQ for any atomic action a. Such a 
rule will be always implicitly assumed in our theories. The counterpart of this simple 
treatment of congruence is that the matching cannot be eliminated. Hence, in [PS93] 
some axioms are introduced to deal with it. In our algebraic framework we are only 
interested in congruences, since we want to use all the power of equational reasoning. 
The differences between the congruence and the equivalence present in [PS93] appear 
in our work mainly through the presence of two different predicates for equality: one 
like the one in [MPW92], which is true if and only if the two names are the same, 
and another closer to the one in [San93] which can introduce non-standard booleans 
(boolean values that are not equal to true or false). 

1.1 Notes 

No binding mechanisms needed. 
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Related work: Ponse and Groote [GP94] who have Ii false, c as true, negation, and 
a Boolean algebra which only includes true and false (in any case: either 1> or ,1> is 
true). 

symbolic bisimulations [HL95], open bisimulations [San93], 

2 Syntax and Semantics of BCPA 

2.1 Operators of BCPA 

We start with the simplest possible version of BCPA, which is BPA extended with 
true, false, and an if-then-else. 

DEFINITION 2.1 The signature of BCPA consists of the sort P for processes: 

• P ::= A I Ii I P + PIP· P I B:-> P 

• A is a set of atoms. 

• B ::= true I false I B /I. BIB V B I ,B I B =} BIB <=} B. 

• The operator precedence is: + < :-> < .. 

We write E(BCPA) to denote the signature of BCPA. 

Both A and B are not yet filled in completely. We left them open at this moment. 

2.2 Axiomatization 

The axiomatization given below consist of all equations of BPA [BV95], extended with 
two straightforward equations for the conditional [BB94]. 

SPECIFICATION 2.2 

x + y y + x [AI] 

(x+y)+z x + (y + z) [A2] 
x + x x [A3] 

(x+y)·z x·z+y·z [A4] 
(x·y)·z x·(y·z) [A5] 

x + Ii x [A6] 
Ii·x Ii [A7] 

true:-t x x [GCl] 
false :-t x Ii [GC2] 

We also need to axiomatize the booleans. However, there exist many complete 
axiomatizations of the booleans, and we assume that we can use any of them to prove 
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equivalence of booleans. We only need the following conditional axiom that relates 
equivalence of booleans and conditionals: 

SPECIFICATION 2.3 

(3 B I==? (3 :-+ x I :-+ x [B] 

Using these equations, we can translate closed BCPA terms to basic terms, which 
only have action prefixing, not full sequential composition: 

DEFINITION 2.4 Basic terms are given by the syntax: 

T ::= 81 T + T I B:-+ A. I B :-+ A. . T 

PROPOSITION 2.5 Let s be a closed BCPA term. Then there is a basic term t s11ch 
that E(BCPA) f- t = s. 

2.3 Variables 

Next, we also consider equality tests in which variables may occur. First we define an 
equivalence relation over Booleans: 

DEFINITION 2.6 A predicate [_ = _] over some set D is an equivalence if, for every 
d, dt , d2 , d3 E D, it is: 

• Reflexive: [d = d]; 

• Symmetric: [d, = d2 ] B [d2 = d,J; 

DEFINITION 2.7 

• The set Var = {v, vO, v1, ... } consist of an infinite number of data variables. We 
use (meta)variables v, w to denote elements from Var. 

• The operation [v =Var w] is the test for variable equality: it takes two variables 
v, wand produces a Boolean result. 

• [v =Var w] is an equivalence relation. 

DEFINITION 2.8 The theory BCPAvar consists of BCPA where the Booleans Bare 
extended with [v =Var w]. 

A canonical semantics for equality of variables can be defined as follows: 

DEFINITION 2.9 

We define the notion of satisfaction of a boolean condition by an equivalence rela­
tion inductively on the structure of the condition 
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.SF[x=y]ifandonlyif(x,y)ES 

• 5 F ,(3 if and only if 5 IF (3 

• 5 F (3 A 1 if and only if 5 F (3 and 5 F 1 

DEFINITION 2.10 We define the notion of satisfaction of a boolean condition by a 
substitution inductively on the structure of the condition 

• cr F [x = y] if and only if cr(x) = cr(y) 

• cr F ,(3 if and only if cr IF (3 

• cr F (3 A 1 if and only if cr F (3 and cr F 1 

LEMMA 2.11 Given a condition (3, a substitution cr satisfies (3, if and only if the 
(equivalence) relation 5 defined as 

(x,y) E 5 {} cr(x) = cr(y) 

satisfies (3. 

DEFINITION 2.12 Actions can be parameterized by variables, giving rise to actions 
a(vl 1 '" ,vn ). 

A t this stage, actions do not have a binding effect; this will be discussed in a 
forthcoming paper. 

Observe that we genuinely extended the Boolean values: in addition to true and 
false, we have non-standard elements like [v =v., w] which are neither equal to true nor 
to false. This complicates the theory of BCPAvan since now the conditional cannot 
be eliminated anymore. For that reason, we need to extend the axiomatization of the 
conditional: 

SPECIFICATION 2.13 

(3:-+(x+y) 
(3:-+ 1 :-+ x 

(3 :-+ x . y 
(3 :-+ x . y 

x + (3:-+ x 

(3:-+ x + (3:-+ y [C3] 
(3 (If:-+ x [C4] 
((3:-+ x) . y [CS] 
(3 :-+ x . (3 :-+ y [C6] 
x [C7] 

REMARK 2.14 In the literature, Baeten and Bergstra [BB92, BB95] give equations 
[C3], [C4] and [C5] as GCIO, GCI2, GCI3. Equation [C6] is not sound in their system 
(where actions can change an environment and hence the equality between variables). 
They formulate [C7] in a stronger form: 

(3 V 1 :-+ x = (3 :-+ x + 1:-+ x 
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from which [C7] easily follows. However, this axiom is not sound for our conditional 
bisimulation (see section4). 

The formulation of [C7] comes from [San93, Axiom M4]. Sangiorgi has included 
[C3], and he does not need, in the more restricted syntax of the 1l'-calculus, [C4] or 
[C5]. He gives [C6] as 

[x = y]P = [x = y](P{x/y}) 

REMARK 2.15 We can easily see that: 

. [C7] [GC2] 
• [A6] can now be denved: x = x + false :--> x = x + 8 

. [C7] [GCI] 
• [A3] can now be denved: x = x + true:-t x = x + x 

[C7] [AB] 
• We have (3 :-t 8 = 8: 8 = 8 + (3 :-t 8 = (3:-t 8 

• Assume (3 =? T Then (3:-t X· I:-t z = (3:-t.7: . z 
. [C6] 

Smce (3 :-t x . I :-t y = (3:-t x . (3 :-t I :-t y [~] (3 :-t x . (3 II I :-t y f3'2,"i 

[C6] 
(3 :-t x . (3 :-t y = (3:-t x . y 

2.4 Conditional Transition Graphs 

Next, we define transition graphs where the labels are pairs consisting of a Boolean 
expression and the action performed. 

DEFINITION 2.16 A labeled transition system is a 5-tuple (S, L, -->, --> V, so) where 

• S is a set of states, 

• L is a set of labels, 

• --><;;; S X L X S is a transition relation, 

• --> V <;;; S X L is a terminating transition relation, and 

• So EO S is the initial state. 

DEFINITION 2.17 In a conditional labeled transition system each label I EO L is a pair 
((3, a) with (3 a Boolean, and a a label from some other set. 
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2.5 Inference Rules for BCPA 

We can produce a conditional labeled transition system from a term over BePA by 
the following inference rules. The set of labels L = B x A, i.e., consists of pairs of 
Booleans and atomic actions. 

SPECIFICATION 2.18 The inference rules for the relations -----+ and -----+ V over BePA 
are the following: 

ACT (true,a) .j 
a -----+ 

(lI.a) , (lI,a) V x -----+ x x -----+ 
COND 

('YAf3,a) I 
TCOND 

bAII,a) V 
, : --> x -----+ x , : --> x -----+ 

(lI,a) , (lI,al ' x -----+ x y y 
SUM-L + (lI,a) , 

SUM-R + (lI,al ' x y -----+ x x y y 

xl!!:jv (lI,a) V 
TSUM-R 

Y -----+ 
TSUM-L 

+ y l!!:j V + (lI,a) V x x y -----+ 
(lI,a) , x (lI,al V x -----+ x 

SEQ (lI,a) , 
TSEQ 

l!!:j x'y-----+x .y x· y y 

The rules indicate which transitions can be performed, and how processes affect 
the Boolean values associated with transitions. Rule ACT states that an atomic action 
can directly perform, producing the non-restrictive true value in the label condition. 
Rule COND (and TCOND) expresses that a conditional I :--> x moves its condition, 
into the label, conjuncting it with the deeper condition fl. The remaining rules do not 
interpret or change the conditional labels. 

EXAMPLES 2.19 

• A process [v =y" v] :--> a . X can do one (true, a) step . 

• A process [v =Yar w] :--> a· X can do one ([v =Var w], a) step. 

2.6 Unconditional Inference Rules 

An unconditional transition system can be obtained for the syntax of BePA in the 
following way. Use actions as labels, and use the conditional transition system, ignoring 
the Boolean elements of the labels. Furthermore, replace rule COND by: 
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., 
X ~--t S 

UNCOND 
true:--t x ~ s 

The difference is that in the conditional case, we can continue if we have a Boolean 
expression of which we do not know the value; with the unconditional inference rules 
we have to block as long as we are not sure that it is equal to true. 

2.7 Conditional Bisimulation 

We define conditional bisimulation over conditional transition systems. This bisimu­
lation ignores actions for which the label has become false. Moreover, if a process is 
to simulate another, its conditions should be at least as strong as the ones from the 
process it is simulating. 

DEFINITION 2.20 Let T = (8, L, ------+, ------+ V, so) be conditional transition system. A 
relation R <;;; 8 x 8 is a simulation if xRy implies 

• Whenever x (iJ,a} x', with (3 # false, there exist y', / such that: 

1 b,b) I 'th . y ------+ y , WI 

2. (3 :---> a = (3 :---> b, 

3. (3 =} b, and 

4. ((3:---> y')R((3:---> y') . 

• Whenever u (iJ,a} V, with (3 # false, there exist / such that: 

1 b,b) / 'th . v ----t y, WI 

2. (3 =} /, and 

3. (3:---> a = (3 :---> b. 

A relation R is a bisimulation if both R and its inverse R-1 are simulations. We 
write XHy if there is a bisimulation R with xRy. 

2.8 Completeness 

PROPOSITION 2.21 Bisimulation equivalence for BCPA is a congruence. 

PROPOSITION 2.22 (Soundness:) If E(BCPA) f- x = y then XHy. 

LEMMA 2.23 

1. x ((3,a} V==} E(BCPA) f- x = x + (3 :---> a, 

2. x ~ x' ==} E(BCPA) f- x = x + (3 :---> a . x'. 
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PROPOSITION 2.24 (Completeness:) If x<=±y then E(BCPA) I-- x = y. 

PROOF Given a term x let n( x) denote the number of occurrences of operators + and 
. in it. 

The required completeness result is a consequence of the following property that 
we will prove by induction on n(x) + n(y), where x and yare basic terms: 

x + y<=±y ===? E(BCPA) I-- x + y = y 

We consider only the most difficult case when 

x = fJ :-> ax' 

by definition of the action rules we know that 

+ (Il,al ' 
J; y x 

and then, since from the premises x + y<=±y we can conclude that 

where 

2. fJ:-> a = fJ :-> b, 

3. fJ:-> x'<=±fJ :-> y' 

b,b) , 
Y --+ Y 

Since <=± is a congruence we can infer from 3: 

fJ :-> x' + fJ :-> y'<=±fJ :-> y' 

and 
fJ :-> x' + fJ :-> y'<=±fJ :-> x' 

It follows then by induction hypothesis that 

fJ :-> x' = fJ :-> y' 

Moreover, combined with 2. above we have 

((3 :-> a)· (3 :-t x' = ((3 :-t b) . fJ :-t y' 

or equivalently (by axiom C6) 

fJ :-t ax' = fJ :-t by' 
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Hence, we can prove that 

y 

2.9 Names 

[c::!] 

(2~3) 

[0] 

[~] 

IH 

y + f3 :---> y 

y + f3 :---> (y + " :---> by') 

y + f3 :---> y + (J :---> b :---> by') 

y + f3 II, :---> by' 

y + f3 :---> by' 

y + f3 :---> ax' 

y+x 
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The decision to have an incomplete ("open") equality predicate over variables does 
not correspond with the original name equality available in the ll'-calculus [MPW92]. 

DEFINITION 2.25 

• The operation [v =Name w] is the test for name equality of variables: it takes two 
variable names v, wand produces a Boolean result . 

• We require that [v =Name w] = true if v = w, and that it is false otherwise. 

EXAMPLE 2.26 In the ll'-calculus under late and early bisimulation, name equality 
[x =Name y] is taken as the semantics of the match operator [x = yjP. 

In the ll'-calculus under open bisimulation, variable equality [x =Var y] is used. (see 
also Section 3). 

Following the tradition of ACP-like algebra.s, we are mainly interested in congru­
ences, which implies that we can use all the power of equational reasoning in our 
systems. We allow also the [x =Name y] predicate but change the (axiomatic) defini­
tion of substitution (see next section) In the axiomatizations of name-passing calculi 
introduced in [PS93] the [x =Name y] predicate is implicitly used when the equivalences 
are axiomatized but [x =Var y] is used instead when the respective congruences are 
considered. 

3 Substitution 

3.1 Inductive Definition 

A substitution is a replacement of a variable by another. We define it equationally as 
follows 

SPECIFICATION 3.1 We introduce four substitution operators: 
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• P{Var:= Var} ---t P for replacement in processes; 

• B {Var := Var} ---t B for Booleans; and 

.5{u:=v} .5 [SI] 
(x + y){u:= v} x{u:= v} + y{u:= v} [S2] 

a( v" ... vn){ U : = v} a(v,{u:= v}, ... ,vn{u:= v}) [S3] 
(a·x){u:=v} a{u:= v}. x{u:= v} [S4] 

(q,:---tx) q,{ u := v} :---t x{ u := v} [S5] 

true{ u := v} true [S6] 
false{ u := v} false [S7] 

(q, 1\ ,p){u:= v} q,{u:= v} 1\ ,p{u:= v} [S8] 
[v, =Var V2]{ u := v} [v,{u:= v} =Var V2{U:= v}] [S9] 

u{u:=v} v [S10] 
u oj u' =} u{u' := v} u [SI1] 

We use xcr for a sequence x{ u, := v,} ... {un := vn } of substitutions. 

REMARK 3.2 Adding the equation 

[v, =Name 7h]{U:= v} = [v,{u:= v} =Name V2{U:= v}] 

makes the Booleans inconsistent: 

false = false{ v := w} = [v =Name wJ{ v := w} = [v =Name v] = true 

Essentially, this is what happens in the 7r-calculus under late and early bisimulation: 
the equality test used is name equivalence, but substitution can alter the names tested. 
As a result, this bisimulation is not a congruence under substitution, and therefore 
not under input prefix. 

3.2 Open Bisimulation 

The various bisimulations for the 7r-calculus all vary in the way variable instantiations 
are handled. Some differences between the several proposed bisimulations can be found 
already in systems without a binding mechanism. Here we discuss open bisimulation, 
as proposed by [San93], which is the finest (in the sense that it equates the smallest 
number of processes). In order to compare our system with the one defined in [San93] 
we restrict our booleans to the following syntax: 

B ::= true I [x =Var y]1 B 1\ B 

A formula into this smaller system will be called a restricted boolean formula. Observe 
that a substitution can turn a restricted boolean into true, but not into false. 

DEFINITION 3.3 A relation S is closed under a substitution cr if PSQ implies PcrSQcr. 

DEFINITION 3.4 A relation S is a ground simulation if PSQ implies: 
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• whenever P ~ P' then Q' exists s.t. Q -.!:'...., Q' and P'SQ'. 

DEFINITION 3.5 (Sangiorgi [San93]) A relation S on processes is an open simulation 
if PSQ implies, for every 0": 

• Whenever PO" ~ P', then Q' exists s.t. QO" ~ Q' and P'SQ'. 

Two processes P and Q are open bisimilar, written P ~ Q, if PSQ for some open 
bisimulation S. 

PROPOSITION 3.6 (Sangiorgi [San93j) Supose that a relation S 

1. is a ground bisimulation 

2. is closed under all substitutions 

Then, S is an open bisimulation. 

PROPOSITION 3.7 (Sangiorgi [San93]) The relation ~ is the largest ground bisimula­
tion which is closed under all substitutions. 

In the original presentation of open bisimulation two different ways to define transi­
tion relations were introduced: One equivalent to our unconditional transition relation, 
and other similar to our conditional one, which Sangiorgi calls "efficient characteriza­
tion". The bisimulation defined for this last system differs from ours in the fact that 
it still uses some form of substitution. 

DEFINITION 3.8 Let (3 be a restricted boolean formula. There is an obvious way 
to associate an equivalence relation on names R(3 to it. We define then a specia.! 
substitution 0"(3 which sends every name to a chosen representative in its equivalence 
class. 

In the previous definition we can see the price one has to pay to have general 
booleans instead of matching sequences: we cannot define such a canonical substitution 
in our system, since a boolean formula does not necessarily define an equivalence 
relation on names. 

DEFINITION 3.9 A relation S on processes is a ;~-simulation iffor any pair of processes 
P, Q it holds that P SQ implies 

• whenever P ((3'"1 P' then there exist " b, Q' such that Q h,bl Q' and 

1. (3 ='? " 

2. aO"(3 = bO"(3, 

3. P'O"(3SQ'O"(3. 

• whenever P ((3,"/ V then there exist " b such that Q h,bl V and 

1. (3,*" 
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2. aU{3 = bU{3, 

A relation 3 is a ~-bisimulation if both 3 and 3-1 are ~-simulations 
The following lemma is needed for the proof of proposition 3.12 

LEMMA 3.10 For fJ, fJ' oF false, 

13 

1. if P ~ Q then for any substitution U it holds that Pu (~) Q' with fJ' ¢} 

fJu,a' = au and Q' = Qu. 

2. if for a substitution u, Pu ({3',a;) Q', then P ({3,al Q with fJ' ¢} fJu, a' = au and 

Q' = Qu. 

C 3 11 P ba~,aa") Q 'f d I 'f a P bl\{3,a) Q OROLLARY. u{3 ---> U{31 an on y 1 fJ:-> ---> 

PROPOSITION 3.12 P ~ Q if and only if P'=±Q 

PROOF Assume first that p ~ q. We will construct a conditional bisimulation relating 
p and q. 

We leave the proof that 3 is indeed a conditional bisimualtion to the reader. The fact 
that ~ is closed under substitution is needed in the proof. 

For the other implication, we take a conditional bisimulation 3 and construct a 
:=:-bisimulation as follows 

R.EMARK 3.13 As a consequence of the proof of the previous proposition we have the 
fact that for any condition fJ it holds that 

The following proposition was proved in [San93] for a system slightly different than 
ours which also had bound variables and more operators, like parallel composition. 

PROPOSITION 3.14 With restricted booleans open bisimulation based on the uncon­
ditional inference rules for BCPA coincides with conditional bisimulation over BCPA. 

PROOF See Sangiorgi [San93]: our conditional bisimulation corresponds to his "effi­
cient characterization" . 
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3.3 Distinctions 

Distinctions were proposed in [MPW92]. They form a way of re-introducing the dif­
ference between names and variables into the 7r-calculus. 

DEFINITION 3.15 A distinction is a finite symmetric and irreflexive relation on vari­
ables. 

DEFINITION 3.16 We abbreviate distinctions in the following way: A set S of variables 
is considered an abbreviation of the distinction (S x S)\{(v, v) I v E S} 

The idea behind distinctions is that they express that two different names should 
be kept different. In our framework this can be expressed simply as the negation of an 
equality test. It is important that we use the predicate [_ =Var -J and not [- =Name -J. 
We first introduce the theory of distinctions presented in [San93] and then show that 
we can embed it in our framework without adding any extra machinery. 

DEFINITION 3.17 A substitution U respects a distinction D if and only if for any pair 
of names (x, y) EDit holds that u(x) # u(y). A condition f3 (only with equality tests 
and conjunctions) respects a distinction D if for every pair (x, y) ED the implication 
f3 =? [x =Var yJ is not true. (note that it is not necessarily equal to false). 

DEFINITION 3.18 (Sangiorgi [San93]) A family of relations {Sv}v indexed by dis­
tinctions is an indexed open simulation iffor all D it holds that P SvQ implies 

• whenever P ({J,al P', f3 respects D, then there exist " b, Q' such that Q b,bl Q' 
and 

l.f3=?, 
2. aU{J = bU{J 

3. P'U{JSVa~Q'U{J 

• whenever P ({J'"I y', f3 respects D, then there exist " b such that Q ~ y' and 

l.f3=?, 
2. aU{J = bU{J 

A family of relations {Sv}v indexed by distinctions is an indexed open bisimulation 
if both {Sv}v and its inverse {Sijl}V are indexed open simulations. We write x ;:'v Y 
if there is an indexed open bisimulation {Sv}v with xSVY. 

DEFINITION 3.19 Given a distinction D we associate a canonical formula rPv to it as 
follows: 

rPv = 1\ ~[x =Var y] 
(x,y)EV 

PROPOSITION 3.20 A general condition f3 (now it can contain negation and disjunc­
tion) respects a distinction D if and only if rPv /I f3 is not false. 
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PROOF Immediate, since (3 =} [x =Var y] is not true is equivalent to say that (3 II 
~[x =Var y] is not false, and since this holds for any pair (x, y) E V, the result follows. 

The following technical proposition will be needed in lemma 3.22. 

PROPOSITION 3.21 Let (3 be a restricted formula and D a distinction, then 

LEMMA 3.22 Given a distinction D, P ::=:'v Q if and only if <Pv :-+ Pi=±<pv :-+ Q. 

PROOF 
Assume first that Sv : P ::=:'v Q. We will construct a conditional bisimulation 

relating <pv :-+ P and <Pv :-+ Q. 

S = {((3 II <Pv :-+ P,(3 II <Pv :-+ Q)I:J(3·PCTj1SVQCTj1} 

We leave the proof that S is indeed a conditional bisimualtion to the reader. 
For the other implication, we take a conditional bisimulation S and construct an 

indexed bisimulation as follows 

4 Symbolic bisimulation 

In the previous section we have seen that our notion of conditional bisimulation agrees 
with the open bisimulation of [San93]. However, our framework is different since 
we do not have bound variables but on the other hand our language for booleans is 
richer. In this section we will show that the difference between open bisimulation and, 
on t.he other hand, early Ilate congruence appears already in our simplified systems. 
Moreover, this difference is represented by the presence of the following axiom: 

SPECIFICATION 4.1 

(3 V, :-+ x (3 :-+ x + ,:-+ x [eS] 

DEFINITION 4.2 Let T = (S, L, ---+, ---+ V, so) be conditional transition system. A 
relation R c:: S X S is a symbolic simulation if uRv implies 

• Whenever u (j1,a} U', with (3 # false, there exist a decomposition (3 = V~h" .. "n), 
and ,L ... ,~, v~, ... , v~, such that: 

1 b,b,) I 'th ,V---tV,WI 

2. ,i =} ,i, 
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3. ,i :--> a = ,i :--> b, and 

4. bi:--> u')Rbi :--> vi) . 

• Whenever u «(3,"1 ,j, with (3 # false, there exist a decomposition (3 = V~('I'" "n), 
and ,;, ... ,~, such that: 

1 b,b;), 'th 
.V---tV,Wl 

2. ,i =} ,:, 

3. ,i :--> a = ,i :--> b, and 

A relation R is a symbolic bisimulation if both R and its inverse R- I are simula­
tions. We write X'cl.sY if there is a bisimulation R with xRy. 

REMARK 4.3 It is immediate that a conditional bisimulation is a symbolic bisimula­
tion as well. 

R.EMARK 4.4 In the presence of C8 some of the axioms of BCPA are derivable: 

C7 is derivable as follows: 

[GOII [e'B] 
x + (3 :--> x = true:--> x + (3 :--> X = (true V (3) :--> X = true :--> x = x 

C5 is derivable as follows: 

((3 :--> x) . y 

[0'] 

[~] 

[ c:::!] 

[06],[q02] 

true :--> (((3 :--> x) . y) 
((3 V ,(3):--> (((3:--> x)· y) 

(3 :--> ((3 :--> x) . y + ,(3 :--> ((3 :--> x) . y 

((3:--> ((3:--> x)). (3:--> y + (,(3:--> ((3:--> x))· ,(3:--> y 

((3 II (3 :--> x) . (3 :--> y + (,(3 II (3 :--> x) . ,(3 :--> y 

((3 :--> x) . (3 :--> y + (false :--> x) . ,(3 :--> y 

(3 :--> xv + [) 
(3 :--> xv 

PROPOSITION 4.5 Symbolic bisimulation equivalence for BCPA is a congruence. 

PROPOSITION 4.6 (Soundness:) If E(BCPA) + C8 f- x = y then X'cl.sV. 

PROOF We only need to check axiom [CS], since a conditional bisimulation is also a 
symbolic bisimulation. It is simple to show that for any process x and conditions (3 
and, the relation S defined as follows: 

S = I d U {((3 V , :--> x, (3 :--> x + , :--> X)} 
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is indeed a symbolic bisimulation. 

PROPOSITION 4.7 (Completeness:) If Xf=±,y then E(BCPA) f- x = y. 

PROOF 

We use the same technique as for proposition 2.24. Note that lemma 2.23 can also 
be used here since it only depends on the definition of the transition relation, not on 
the equivalence. 

The required completeness result is a consequence of the following property that 
we will prove by induction on n( x) + n(y): 

x + yf=±sY ===? E(BCPA+C8) f- x + y = y 

We consider only the most difficult case when 

x = fJ :-> ax' 

by definition of the action rules we know that 

+ (/l,al ' x y x 

and then, since by hypothesis x + Yf=±,Y we can conclude than 

where 

1. fJ = V,i 

2. ' ,i =? 'i, 
3. ,i:-> a = ,i :-> bi, 

4. ri :--+ x' f::::±sri :--+ y~ 

b: lbi) I 

Y ---t Yi 

Since f=is is a congruence we know that 

, I I 
Ii :---t x + Ii :--+ Yifd:.s"'/i :---+ Yi 

and 

It follows then by induction hypothesis that 

I I 
Ii :--+ x = "'Ii :--+ Yi 

moreover, from the second condition of the definition of bisimulation 

bi :--+ a) ·,i :-> x' = bi :--+ b) ·,i :-> Y; 
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or equivalently (by axiom C6) 

Ii :-> ax' = Ii :-> by: 

Hence, we can prove that 

Y 

[~J 

[~J 

[~J 

Y + Ll::-> biYi 
i<n 

Y + L ,: :-> biYi + L Ii :-> ,: :-> biYi 
i<n i<n 

Y + L Ii /\ ,: :-> biYi 
i<n 

Y + L Ii :-> biYi 
i<n 

Y + L Ii :-> ax' 
i<n 

Y + (V Ii) : -> ax' 
i<n 

18 

PROPOSITION 4.8 BPA is a Reduced Model Specification of BCPA: The initial algebra 
of BPA is a subalgebra of the initial algebra of BCPA. 

PROPOSITION 4.9 BCPA + C8 is a conservative extension of BPA. 

EXAMPLE 4.10 Consider the following three processes: 

P=T'T+T 

Q = T . T + T + T . [x =Var y] :-> T 

R=T·T+T·/5 

They are not open bisimilar. The process Q is symbolic bisimilar to R but not to 
P. This difference with a similar example presented in [San93] is due to the presence 
of both successful and unsuccessful termination in our algebra and the identification 
of the second with a process with a false condition. 

5 Concluding Remarks 

A simple process algebra was introduced, in which conditions play an important role 
from the start. This approach simplifies the completeness proofs and allows a sim­
ple comparison between (a generalization of) open bisimulation and late and early 
bisimulations. We showed that the main difference between both relies on the way 
in which the conditions are evaluated, whereas the difference between late and early 
bisimulations can only be expressed by using different ways to instantiate the variables. 
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6 Further Work 

The aim of defining basic conditional process algebra is to use it as a starting point to 
build a ACP-style algebra of mobile processes. The next step will be the introduction 
of binding mechanisms for names, restriction and communication. 

It may be possible to combine conditional bisimulation with an early scheme for 
the instantiation of variables, by only changing the action relations for input prefix 
and communication as in [MPW91]. This can combine the good property of open 
bisimulation of being a congruence for all the operators with the possibility to eliminate 
bound input in terms of free input as in [BB94]. 

Given the logic-oriented presentation of the different semantics it seems natural 
also to look for modal logics that characterize conditional and symbolic bisimulation 
in our framework. 

7 Related Work 

Many works on ACP-style algebras introduced some form of conditions on processes, 
for example [GP94]. However, in all these works, axiom [C6] was missing. This axiom 
means intuitively that the knowledge about names can only increase with time. The 
conditional bisimulation introduced here generalizes open bisimulation from [San93] 
to a framework where also negation is present in a conservative way. The presence of 
negation (or at least inequations) allows us to introduce (a generalization of) distinc­
tions without any extra machinery. The symbolic bisimulation is very similar to the 
one introduced in [HL95], but it is presented here in a less abstract way. 
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