

Basic conditional process algebra

Citation for published version (APA):
Blanco, J. O., & Deursen, van, A. (1997). Basic conditional process algebra. (Computing science reports; Vol.
9703). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/6d97526d-72fc-4774-aa6b-d88b5778a243

Eindhoven University of Technology
Department of Mathematics and Computing Science

ISSN 0926-4515

All rights reserved
editors: prof.dr. R.C. Backhouse

prof.dr. J.C.M. Baeten

Reports are available at:
http://www.win.tue.nVwin/cs

Basic Conditional Process Algebra

by

J. Blanco and A. van Deursen

Computing Science Reports 97/03
Eindhoven, February 1997

97/03

Basic Conditional Process Algebra

Javier Blanco

Department of Computing Science, Formal Methods Group

TU Eindhoven, 5600 MB P.O. Box 513, The Netherlands

javier@win.tue.ni

Arie van Deursen

Department of Software Technology, CWl

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

arie@cwi.nl

Abstract

Every 7r-calculus expression can be translated to a term in "nannal form ll built

from +, input and output prefix, match, and inaction. Many difficulties of the
7r-calculus are easier to understand and address at this simpler normal form
level. We introduce a theory called Basic Conditional Process Algebra (BCPA),
which we use to study these issues. BCPA is BPA extended with a conditional
construct over Boolean expressions which can contain free variables. In this
article, we consider a restricted setting without bound variables, since it already
presents many non-trivial problems.

Note: Supported by NWO, the Netherlands Organization for Scientific Re­
search, project 612-16-433, HOOP: Higher-Order and Object-Oriented Processes.

1991 Mathematics Subject Classification: 68Q60, 68Q10, 68Q40

1991 CR Categories: F.1.2, D.3.1, F.3.1, D.1.3.

Additional keywords and phrases: Process algebra, 7r-calculus, value pass­
ing, term rewriting, ACP.

1 Introduction

We consider algebras in which names can be transmitted as data. Different semantics
were considered already in the original work [MPW92] according to the moment of
instantiation of the variables used to transmit these names. These different semantic

1

1.1 Notes 2

ideas were mainly based in two different notions of transition relation, called early and
late transitions. In the early case, the variable is instantiated in the transition itself.
This can be expressed (in the notation of the 1l'-calculus) as follows:

x(y).P -=-, P{y:= z}

where z is any name not free in P. The associated semantics is defined by using the
traditional (ground) bisimulation. The late semantics has a simpler transition rule

x(y).P x(Y1 P

and the different instantiations of the variable yare considered in the definition of the
corresponding bisimulation: a relation S is a late bisimulation if whenever PSQ and
x(y). x(y)

P -----> P' then there eXists a process Q' such that Q -----> Q' and for any name z not
free in P' it holds that P{y:= z}SQ{y:= z}.

However, a result from [MPW91] introduces a bisimulation that applied to two late
transition systems will relate two terms if and only if they are early bisimilar. This
relation inverts the quantifiers in the definition of the late bisimulation, saying that
for any name there exists a (different) process which will match the transition.

It is shown that late bisimulation is strictly finer that early bisimulation for the
1l'-calculus. It is almost immediate to see that late bisimulation is finer than the early
one. To show that they are different the matching operator has to be used, due to the
fact that in the 1l'-calculus there is no syntactic construct for the free input.

A still finer equivalence was introduced in [San93] under the name of open bismu­
lation. This equivalence has the advantage of being a congruence with respect to all
the operations of the 1l'-calculus. The variables are instantiated even later than in the
late bisimulation. This fact is reflected in the way the matchings are evaluated, what
shows an intrinsic difference with both early and late bisimimulations.

In [PS93] some axiomatizations of early/late equivalence and early/late congruence
were introduced. The axiomatizations of the equivalences have weaker axioms for
input prefixes (two process of the form a(x) . P and a(x) . Q will be equal only if
P{X:= y} = {X:= y}Q for any name y, whereas for the congruence one (obviously)
has a general rule of the form P = Q =? aP = aQ for any atomic action a. Such a
rule will be always implicitly assumed in our theories. The counterpart of this simple
treatment of congruence is that the matching cannot be eliminated. Hence, in [PS93]
some axioms are introduced to deal with it. In our algebraic framework we are only
interested in congruences, since we want to use all the power of equational reasoning.
The differences between the congruence and the equivalence present in [PS93] appear
in our work mainly through the presence of two different predicates for equality: one
like the one in [MPW92], which is true if and only if the two names are the same,
and another closer to the one in [San93] which can introduce non-standard booleans
(boolean values that are not equal to true or false).

1.1 Notes

No binding mechanisms needed.

2. Syntax and Semantics of BCPA 3

Related work: Ponse and Groote [GP94] who have Ii false, c as true, negation, and
a Boolean algebra which only includes true and false (in any case: either 1> or ,1> is
true).

symbolic bisimulations [HL95], open bisimulations [San93],

2 Syntax and Semantics of BCPA

2.1 Operators of BCPA

We start with the simplest possible version of BCPA, which is BPA extended with
true, false, and an if-then-else.

DEFINITION 2.1 The signature of BCPA consists of the sort P for processes:

• P ::= A I Ii I P + PIP· P I B:-> P

• A is a set of atoms.

• B ::= true I false I B /I. BIB V B I ,B I B =} BIB <=} B.

• The operator precedence is: + < :-> < ..

We write E(BCPA) to denote the signature of BCPA.

Both A and B are not yet filled in completely. We left them open at this moment.

2.2 Axiomatization

The axiomatization given below consist of all equations of BPA [BV95], extended with
two straightforward equations for the conditional [BB94].

SPECIFICATION 2.2

x + y y + x [AI]

(x+y)+z x + (y + z) [A2]
x + x x [A3]

(x+y)·z x·z+y·z [A4]
(x·y)·z x·(y·z) [A5]

x + Ii x [A6]
Ii·x Ii [A7]

true:-t x x [GCl]
false :-t x Ii [GC2]

We also need to axiomatize the booleans. However, there exist many complete
axiomatizations of the booleans, and we assume that we can use any of them to prove

2.3 Variables 4

equivalence of booleans. We only need the following conditional axiom that relates
equivalence of booleans and conditionals:

SPECIFICATION 2.3

(3 B I==? (3 :-+ x I :-+ x [B]

Using these equations, we can translate closed BCPA terms to basic terms, which
only have action prefixing, not full sequential composition:

DEFINITION 2.4 Basic terms are given by the syntax:

T ::= 81 T + T I B:-+ A. I B :-+ A. . T

PROPOSITION 2.5 Let s be a closed BCPA term. Then there is a basic term t s11ch
that E(BCPA) f- t = s.

2.3 Variables

Next, we also consider equality tests in which variables may occur. First we define an
equivalence relation over Booleans:

DEFINITION 2.6 A predicate [_ = _] over some set D is an equivalence if, for every
d, dt , d2 , d3 E D, it is:

• Reflexive: [d = d];

• Symmetric: [d, = d2] B [d2 = d,J;

DEFINITION 2.7

• The set Var = {v, vO, v1, ... } consist of an infinite number of data variables. We
use (meta)variables v, w to denote elements from Var.

• The operation [v =Var w] is the test for variable equality: it takes two variables
v, wand produces a Boolean result.

• [v =Var w] is an equivalence relation.

DEFINITION 2.8 The theory BCPAvar consists of BCPA where the Booleans Bare
extended with [v =Var w].

A canonical semantics for equality of variables can be defined as follows:

DEFINITION 2.9

We define the notion of satisfaction of a boolean condition by an equivalence rela­
tion inductively on the structure of the condition

2.3 Variables S

.SF[x=y]ifandonlyif(x,y)ES

• 5 F ,(3 if and only if 5 IF (3

• 5 F (3 A 1 if and only if 5 F (3 and 5 F 1

DEFINITION 2.10 We define the notion of satisfaction of a boolean condition by a
substitution inductively on the structure of the condition

• cr F [x = y] if and only if cr(x) = cr(y)

• cr F ,(3 if and only if cr IF (3

• cr F (3 A 1 if and only if cr F (3 and cr F 1

LEMMA 2.11 Given a condition (3, a substitution cr satisfies (3, if and only if the
(equivalence) relation 5 defined as

(x,y) E 5 {} cr(x) = cr(y)

satisfies (3.

DEFINITION 2.12 Actions can be parameterized by variables, giving rise to actions
a(vl 1 '" ,vn).

A t this stage, actions do not have a binding effect; this will be discussed in a
forthcoming paper.

Observe that we genuinely extended the Boolean values: in addition to true and
false, we have non-standard elements like [v =v., w] which are neither equal to true nor
to false. This complicates the theory of BCPAvan since now the conditional cannot
be eliminated anymore. For that reason, we need to extend the axiomatization of the
conditional:

SPECIFICATION 2.13

(3:-+(x+y)
(3:-+ 1 :-+ x

(3 :-+ x . y
(3 :-+ x . y

x + (3:-+ x

(3:-+ x + (3:-+ y [C3]
(3 (If:-+ x [C4]
((3:-+ x) . y [CS]
(3 :-+ x . (3 :-+ y [C6]
x [C7]

REMARK 2.14 In the literature, Baeten and Bergstra [BB92, BB95] give equations
[C3], [C4] and [C5] as GCIO, GCI2, GCI3. Equation [C6] is not sound in their system
(where actions can change an environment and hence the equality between variables).
They formulate [C7] in a stronger form:

(3 V 1 :-+ x = (3 :-+ x + 1:-+ x

2.4 Conditional Transition Graphs 6

from which [C7] easily follows. However, this axiom is not sound for our conditional
bisimulation (see section4).

The formulation of [C7] comes from [San93, Axiom M4]. Sangiorgi has included
[C3], and he does not need, in the more restricted syntax of the 1l'-calculus, [C4] or
[C5]. He gives [C6] as

[x = y]P = [x = y](P{x/y})

REMARK 2.15 We can easily see that:

. [C7] [GC2]
• [A6] can now be denved: x = x + false :--> x = x + 8

. [C7] [GCI]
• [A3] can now be denved: x = x + true:-t x = x + x

[C7] [AB]
• We have (3 :-t 8 = 8: 8 = 8 + (3 :-t 8 = (3:-t 8

• Assume (3 =? T Then (3:-t X· I:-t z = (3:-t.7: . z
. [C6]

Smce (3 :-t x . I :-t y = (3:-t x . (3 :-t I :-t y [~] (3 :-t x . (3 II I :-t y f3'2,"i

[C6]
(3 :-t x . (3 :-t y = (3:-t x . y

2.4 Conditional Transition Graphs

Next, we define transition graphs where the labels are pairs consisting of a Boolean
expression and the action performed.

DEFINITION 2.16 A labeled transition system is a 5-tuple (S, L, -->, --> V, so) where

• S is a set of states,

• L is a set of labels,

• --><;;; S X L X S is a transition relation,

• --> V <;;; S X L is a terminating transition relation, and

• So EO S is the initial state.

DEFINITION 2.17 In a conditional labeled transition system each label I EO L is a pair
((3, a) with (3 a Boolean, and a a label from some other set.

2.5 Inference Rules faT BCPA 7

2.5 Inference Rules for BCPA

We can produce a conditional labeled transition system from a term over BePA by
the following inference rules. The set of labels L = B x A, i.e., consists of pairs of
Booleans and atomic actions.

SPECIFICATION 2.18 The inference rules for the relations -----+ and -----+ V over BePA
are the following:

ACT (true,a) .j
a -----+

(lI.a) , (lI,a) V x -----+ x x -----+
COND

('YAf3,a) I
TCOND

bAII,a) V
, : --> x -----+ x , : --> x -----+

(lI,a) , (lI,al ' x -----+ x y y
SUM-L + (lI,a) ,

SUM-R + (lI,al ' x y -----+ x x y y

xl!!:jv (lI,a) V
TSUM-R

Y -----+
TSUM-L

+ y l!!:j V + (lI,a) V x x y -----+
(lI,a) , x (lI,al V x -----+ x

SEQ (lI,a) ,
TSEQ

l!!:j x'y-----+x .y x· y y

The rules indicate which transitions can be performed, and how processes affect
the Boolean values associated with transitions. Rule ACT states that an atomic action
can directly perform, producing the non-restrictive true value in the label condition.
Rule COND (and TCOND) expresses that a conditional I :--> x moves its condition,
into the label, conjuncting it with the deeper condition fl. The remaining rules do not
interpret or change the conditional labels.

EXAMPLES 2.19

• A process [v =y" v] :--> a . X can do one (true, a) step .

• A process [v =Yar w] :--> a· X can do one ([v =Var w], a) step.

2.6 Unconditional Inference Rules

An unconditional transition system can be obtained for the syntax of BePA in the
following way. Use actions as labels, and use the conditional transition system, ignoring
the Boolean elements of the labels. Furthermore, replace rule COND by:

2.7 Conditional Bisimulation 8

.,
X ~--t S

UNCOND
true:--t x ~ s

The difference is that in the conditional case, we can continue if we have a Boolean
expression of which we do not know the value; with the unconditional inference rules
we have to block as long as we are not sure that it is equal to true.

2.7 Conditional Bisimulation

We define conditional bisimulation over conditional transition systems. This bisimu­
lation ignores actions for which the label has become false. Moreover, if a process is
to simulate another, its conditions should be at least as strong as the ones from the
process it is simulating.

DEFINITION 2.20 Let T = (8, L, ------+, ------+ V, so) be conditional transition system. A
relation R <;;; 8 x 8 is a simulation if xRy implies

• Whenever x (iJ,a} x', with (3 # false, there exist y', / such that:

1 b,b) I 'th . y ------+ y , WI

2. (3 :---> a = (3 :---> b,

3. (3 =} b, and

4. ((3:---> y')R((3:---> y') .

• Whenever u (iJ,a} V, with (3 # false, there exist / such that:

1 b,b) / 'th . v ----t y, WI

2. (3 =} /, and

3. (3:---> a = (3 :---> b.

A relation R is a bisimulation if both R and its inverse R-1 are simulations. We
write XHy if there is a bisimulation R with xRy.

2.8 Completeness

PROPOSITION 2.21 Bisimulation equivalence for BCPA is a congruence.

PROPOSITION 2.22 (Soundness:) If E(BCPA) f- x = y then XHy.

LEMMA 2.23

1. x ((3,a} V==} E(BCPA) f- x = x + (3 :---> a,

2. x ~ x' ==} E(BCPA) f- x = x + (3 :---> a . x'.

2.8 Completeness 9

PROPOSITION 2.24 (Completeness:) If x<=±y then E(BCPA) I-- x = y.

PROOF Given a term x let n(x) denote the number of occurrences of operators + and
. in it.

The required completeness result is a consequence of the following property that
we will prove by induction on n(x) + n(y), where x and yare basic terms:

x + y<=±y ===? E(BCPA) I-- x + y = y

We consider only the most difficult case when

x = fJ :-> ax'

by definition of the action rules we know that

+ (Il,al '
J; y x

and then, since from the premises x + y<=±y we can conclude that

where

2. fJ:-> a = fJ :-> b,

3. fJ:-> x'<=±fJ :-> y'

b,b) ,
Y --+ Y

Since <=± is a congruence we can infer from 3:

fJ :-> x' + fJ :-> y'<=±fJ :-> y'

and
fJ :-> x' + fJ :-> y'<=±fJ :-> x'

It follows then by induction hypothesis that

fJ :-> x' = fJ :-> y'

Moreover, combined with 2. above we have

((3 :-> a)· (3 :-t x' = ((3 :-t b) . fJ :-t y'

or equivalently (by axiom C6)

fJ :-t ax' = fJ :-t by'

2.9 Names

Hence, we can prove that

y

2.9 Names

[c::!]

(2~3)

[0]

[~]

IH

y + f3 :---> y

y + f3 :---> (y + " :---> by')

y + f3 :---> y + (J :---> b :---> by')

y + f3 II, :---> by'

y + f3 :---> by'

y + f3 :---> ax'

y+x

10

The decision to have an incomplete ("open") equality predicate over variables does
not correspond with the original name equality available in the ll'-calculus [MPW92].

DEFINITION 2.25

• The operation [v =Name w] is the test for name equality of variables: it takes two
variable names v, wand produces a Boolean result .

• We require that [v =Name w] = true if v = w, and that it is false otherwise.

EXAMPLE 2.26 In the ll'-calculus under late and early bisimulation, name equality
[x =Name y] is taken as the semantics of the match operator [x = yjP.

In the ll'-calculus under open bisimulation, variable equality [x =Var y] is used. (see
also Section 3).

Following the tradition of ACP-like algebra.s, we are mainly interested in congru­
ences, which implies that we can use all the power of equational reasoning in our
systems. We allow also the [x =Name y] predicate but change the (axiomatic) defini­
tion of substitution (see next section) In the axiomatizations of name-passing calculi
introduced in [PS93] the [x =Name y] predicate is implicitly used when the equivalences
are axiomatized but [x =Var y] is used instead when the respective congruences are
considered.

3 Substitution

3.1 Inductive Definition

A substitution is a replacement of a variable by another. We define it equationally as
follows

SPECIFICATION 3.1 We introduce four substitution operators:

3.2 Open Bisimuiation 11

• P{Var:= Var} ---t P for replacement in processes;

• B {Var := Var} ---t B for Booleans; and

.5{u:=v} .5 [SI]
(x + y){u:= v} x{u:= v} + y{u:= v} [S2]

a(v" ... vn){ U : = v} a(v,{u:= v}, ... ,vn{u:= v}) [S3]
(a·x){u:=v} a{u:= v}. x{u:= v} [S4]

(q,:---tx) q,{ u := v} :---t x{ u := v} [S5]

true{ u := v} true [S6]
false{ u := v} false [S7]

(q, 1\ ,p){u:= v} q,{u:= v} 1\ ,p{u:= v} [S8]
[v, =Var V2]{ u := v} [v,{u:= v} =Var V2{U:= v}] [S9]

u{u:=v} v [S10]
u oj u' =} u{u' := v} u [SI1]

We use xcr for a sequence x{ u, := v,} ... {un := vn } of substitutions.

REMARK 3.2 Adding the equation

[v, =Name 7h]{U:= v} = [v,{u:= v} =Name V2{U:= v}]

makes the Booleans inconsistent:

false = false{ v := w} = [v =Name wJ{ v := w} = [v =Name v] = true

Essentially, this is what happens in the 7r-calculus under late and early bisimulation:
the equality test used is name equivalence, but substitution can alter the names tested.
As a result, this bisimulation is not a congruence under substitution, and therefore
not under input prefix.

3.2 Open Bisimulation

The various bisimulations for the 7r-calculus all vary in the way variable instantiations
are handled. Some differences between the several proposed bisimulations can be found
already in systems without a binding mechanism. Here we discuss open bisimulation,
as proposed by [San93], which is the finest (in the sense that it equates the smallest
number of processes). In order to compare our system with the one defined in [San93]
we restrict our booleans to the following syntax:

B ::= true I [x =Var y]1 B 1\ B

A formula into this smaller system will be called a restricted boolean formula. Observe
that a substitution can turn a restricted boolean into true, but not into false.

DEFINITION 3.3 A relation S is closed under a substitution cr if PSQ implies PcrSQcr.

DEFINITION 3.4 A relation S is a ground simulation if PSQ implies:

3.2 Open Bisimulation 12

• whenever P ~ P' then Q' exists s.t. Q -.!:'...., Q' and P'SQ'.

DEFINITION 3.5 (Sangiorgi [San93]) A relation S on processes is an open simulation
if PSQ implies, for every 0":

• Whenever PO" ~ P', then Q' exists s.t. QO" ~ Q' and P'SQ'.

Two processes P and Q are open bisimilar, written P ~ Q, if PSQ for some open
bisimulation S.

PROPOSITION 3.6 (Sangiorgi [San93j) Supose that a relation S

1. is a ground bisimulation

2. is closed under all substitutions

Then, S is an open bisimulation.

PROPOSITION 3.7 (Sangiorgi [San93]) The relation ~ is the largest ground bisimula­
tion which is closed under all substitutions.

In the original presentation of open bisimulation two different ways to define transi­
tion relations were introduced: One equivalent to our unconditional transition relation,
and other similar to our conditional one, which Sangiorgi calls "efficient characteriza­
tion". The bisimulation defined for this last system differs from ours in the fact that
it still uses some form of substitution.

DEFINITION 3.8 Let (3 be a restricted boolean formula. There is an obvious way
to associate an equivalence relation on names R(3 to it. We define then a specia.!
substitution 0"(3 which sends every name to a chosen representative in its equivalence
class.

In the previous definition we can see the price one has to pay to have general
booleans instead of matching sequences: we cannot define such a canonical substitution
in our system, since a boolean formula does not necessarily define an equivalence
relation on names.

DEFINITION 3.9 A relation S on processes is a ;~-simulation iffor any pair of processes
P, Q it holds that P SQ implies

• whenever P ((3'"1 P' then there exist " b, Q' such that Q h,bl Q' and

1. (3 ='? "

2. aO"(3 = bO"(3,

3. P'O"(3SQ'O"(3.

• whenever P ((3,"/ V then there exist " b such that Q h,bl V and

1. (3,*"

3.2 Open Bisimulation

2. aU{3 = bU{3,

A relation 3 is a ~-bisimulation if both 3 and 3-1 are ~-simulations
The following lemma is needed for the proof of proposition 3.12

LEMMA 3.10 For fJ, fJ' oF false,

13

1. if P ~ Q then for any substitution U it holds that Pu (~) Q' with fJ' ¢}

fJu,a' = au and Q' = Qu.

2. if for a substitution u, Pu ({3',a;) Q', then P ({3,al Q with fJ' ¢} fJu, a' = au and

Q' = Qu.

C 3 11 P ba~,aa") Q 'f d I 'f a P bl\{3,a) Q OROLLARY. u{3 ---> U{31 an on y 1 fJ:-> --->

PROPOSITION 3.12 P ~ Q if and only if P'=±Q

PROOF Assume first that p ~ q. We will construct a conditional bisimulation relating
p and q.

We leave the proof that 3 is indeed a conditional bisimualtion to the reader. The fact
that ~ is closed under substitution is needed in the proof.

For the other implication, we take a conditional bisimulation 3 and construct a
:=:-bisimulation as follows

R.EMARK 3.13 As a consequence of the proof of the previous proposition we have the
fact that for any condition fJ it holds that

The following proposition was proved in [San93] for a system slightly different than
ours which also had bound variables and more operators, like parallel composition.

PROPOSITION 3.14 With restricted booleans open bisimulation based on the uncon­
ditional inference rules for BCPA coincides with conditional bisimulation over BCPA.

PROOF See Sangiorgi [San93]: our conditional bisimulation corresponds to his "effi­
cient characterization" .

3.3 Distinctions 14

3.3 Distinctions

Distinctions were proposed in [MPW92]. They form a way of re-introducing the dif­
ference between names and variables into the 7r-calculus.

DEFINITION 3.15 A distinction is a finite symmetric and irreflexive relation on vari­
ables.

DEFINITION 3.16 We abbreviate distinctions in the following way: A set S of variables
is considered an abbreviation of the distinction (S x S)\{(v, v) I v E S}

The idea behind distinctions is that they express that two different names should
be kept different. In our framework this can be expressed simply as the negation of an
equality test. It is important that we use the predicate [_ =Var -J and not [- =Name -J.
We first introduce the theory of distinctions presented in [San93] and then show that
we can embed it in our framework without adding any extra machinery.

DEFINITION 3.17 A substitution U respects a distinction D if and only if for any pair
of names (x, y) EDit holds that u(x) # u(y). A condition f3 (only with equality tests
and conjunctions) respects a distinction D if for every pair (x, y) ED the implication
f3 =? [x =Var yJ is not true. (note that it is not necessarily equal to false).

DEFINITION 3.18 (Sangiorgi [San93]) A family of relations {Sv}v indexed by dis­
tinctions is an indexed open simulation iffor all D it holds that P SvQ implies

• whenever P ({J,al P', f3 respects D, then there exist " b, Q' such that Q b,bl Q'
and

l.f3=?,
2. aU{J = bU{J

3. P'U{JSVa~Q'U{J

• whenever P ({J'"I y', f3 respects D, then there exist " b such that Q ~ y' and

l.f3=?,
2. aU{J = bU{J

A family of relations {Sv}v indexed by distinctions is an indexed open bisimulation
if both {Sv}v and its inverse {Sijl}V are indexed open simulations. We write x ;:'v Y
if there is an indexed open bisimulation {Sv}v with xSVY.

DEFINITION 3.19 Given a distinction D we associate a canonical formula rPv to it as
follows:

rPv = 1\ ~[x =Var y]
(x,y)EV

PROPOSITION 3.20 A general condition f3 (now it can contain negation and disjunc­
tion) respects a distinction D if and only if rPv /I f3 is not false.

4. Symbolic bisimulatioTl 15

PROOF Immediate, since (3 =} [x =Var y] is not true is equivalent to say that (3 II
~[x =Var y] is not false, and since this holds for any pair (x, y) E V, the result follows.

The following technical proposition will be needed in lemma 3.22.

PROPOSITION 3.21 Let (3 be a restricted formula and D a distinction, then

LEMMA 3.22 Given a distinction D, P ::=:'v Q if and only if <Pv :-+ Pi=±<pv :-+ Q.

PROOF
Assume first that Sv : P ::=:'v Q. We will construct a conditional bisimulation

relating <pv :-+ P and <Pv :-+ Q.

S = {((3 II <Pv :-+ P,(3 II <Pv :-+ Q)I:J(3·PCTj1SVQCTj1}

We leave the proof that S is indeed a conditional bisimualtion to the reader.
For the other implication, we take a conditional bisimulation S and construct an

indexed bisimulation as follows

4 Symbolic bisimulation

In the previous section we have seen that our notion of conditional bisimulation agrees
with the open bisimulation of [San93]. However, our framework is different since
we do not have bound variables but on the other hand our language for booleans is
richer. In this section we will show that the difference between open bisimulation and,
on t.he other hand, early Ilate congruence appears already in our simplified systems.
Moreover, this difference is represented by the presence of the following axiom:

SPECIFICATION 4.1

(3 V, :-+ x (3 :-+ x + ,:-+ x [eS]

DEFINITION 4.2 Let T = (S, L, ---+, ---+ V, so) be conditional transition system. A
relation R c:: S X S is a symbolic simulation if uRv implies

• Whenever u (j1,a} U', with (3 # false, there exist a decomposition (3 = V~h" .. "n),
and ,L ... ,~, v~, ... , v~, such that:

1 b,b,) I 'th ,V---tV,WI

2. ,i =} ,i,

4. Symbolic bisimulation 16

3. ,i :--> a = ,i :--> b, and

4. bi:--> u')Rbi :--> vi) .

• Whenever u «(3,"1 ,j, with (3 # false, there exist a decomposition (3 = V~('I'" "n),
and ,;, ... ,~, such that:

1 b,b;), 'th
.V---tV,Wl

2. ,i =} ,:,

3. ,i :--> a = ,i :--> b, and

A relation R is a symbolic bisimulation if both R and its inverse R- I are simula­
tions. We write X'cl.sY if there is a bisimulation R with xRy.

REMARK 4.3 It is immediate that a conditional bisimulation is a symbolic bisimula­
tion as well.

R.EMARK 4.4 In the presence of C8 some of the axioms of BCPA are derivable:

C7 is derivable as follows:

[GOII [e'B]
x + (3 :--> x = true:--> x + (3 :--> X = (true V (3) :--> X = true :--> x = x

C5 is derivable as follows:

((3 :--> x) . y

[0']

[~]

[c:::!]

[06],[q02]

true :--> (((3 :--> x) . y)
((3 V ,(3):--> (((3:--> x)· y)

(3 :--> ((3 :--> x) . y + ,(3 :--> ((3 :--> x) . y

((3:--> ((3:--> x)). (3:--> y + (,(3:--> ((3:--> x))· ,(3:--> y

((3 II (3 :--> x) . (3 :--> y + (,(3 II (3 :--> x) . ,(3 :--> y

((3 :--> x) . (3 :--> y + (false :--> x) . ,(3 :--> y

(3 :--> xv + [)
(3 :--> xv

PROPOSITION 4.5 Symbolic bisimulation equivalence for BCPA is a congruence.

PROPOSITION 4.6 (Soundness:) If E(BCPA) + C8 f- x = y then X'cl.sV.

PROOF We only need to check axiom [CS], since a conditional bisimulation is also a
symbolic bisimulation. It is simple to show that for any process x and conditions (3
and, the relation S defined as follows:

S = I d U {((3 V , :--> x, (3 :--> x + , :--> X)}

4. Symbolic bisimulation 17

is indeed a symbolic bisimulation.

PROPOSITION 4.7 (Completeness:) If Xf=±,y then E(BCPA) f- x = y.

PROOF

We use the same technique as for proposition 2.24. Note that lemma 2.23 can also
be used here since it only depends on the definition of the transition relation, not on
the equivalence.

The required completeness result is a consequence of the following property that
we will prove by induction on n(x) + n(y):

x + yf=±sY ===? E(BCPA+C8) f- x + y = y

We consider only the most difficult case when

x = fJ :-> ax'

by definition of the action rules we know that

+ (/l,al ' x y x

and then, since by hypothesis x + Yf=±,Y we can conclude than

where

1. fJ = V,i

2. ' ,i =? 'i,
3. ,i:-> a = ,i :-> bi,

4. ri :--+ x' f::::±sri :--+ y~

b: lbi) I

Y ---t Yi

Since f=is is a congruence we know that

, I I
Ii :---t x + Ii :--+ Yifd:.s"'/i :---+ Yi

and

It follows then by induction hypothesis that

I I
Ii :--+ x = "'Ii :--+ Yi

moreover, from the second condition of the definition of bisimulation

bi :--+ a) ·,i :-> x' = bi :--+ b) ·,i :-> Y;

5. Concluding Remarks

or equivalently (by axiom C6)

Ii :-> ax' = Ii :-> by:

Hence, we can prove that

Y

[~J

[~J

[~J

Y + Ll::-> biYi
i<n

Y + L ,: :-> biYi + L Ii :-> ,: :-> biYi
i<n i<n

Y + L Ii /\ ,: :-> biYi
i<n

Y + L Ii :-> biYi
i<n

Y + L Ii :-> ax'
i<n

Y + (V Ii) : -> ax'
i<n

18

PROPOSITION 4.8 BPA is a Reduced Model Specification of BCPA: The initial algebra
of BPA is a subalgebra of the initial algebra of BCPA.

PROPOSITION 4.9 BCPA + C8 is a conservative extension of BPA.

EXAMPLE 4.10 Consider the following three processes:

P=T'T+T

Q = T . T + T + T . [x =Var y] :-> T

R=T·T+T·/5

They are not open bisimilar. The process Q is symbolic bisimilar to R but not to
P. This difference with a similar example presented in [San93] is due to the presence
of both successful and unsuccessful termination in our algebra and the identification
of the second with a process with a false condition.

5 Concluding Remarks

A simple process algebra was introduced, in which conditions play an important role
from the start. This approach simplifies the completeness proofs and allows a sim­
ple comparison between (a generalization of) open bisimulation and late and early
bisimulations. We showed that the main difference between both relies on the way
in which the conditions are evaluated, whereas the difference between late and early
bisimulations can only be expressed by using different ways to instantiate the variables.

6. Further Work 19

6 Further Work

The aim of defining basic conditional process algebra is to use it as a starting point to
build a ACP-style algebra of mobile processes. The next step will be the introduction
of binding mechanisms for names, restriction and communication.

It may be possible to combine conditional bisimulation with an early scheme for
the instantiation of variables, by only changing the action relations for input prefix
and communication as in [MPW91]. This can combine the good property of open
bisimulation of being a congruence for all the operators with the possibility to eliminate
bound input in terms of free input as in [BB94].

Given the logic-oriented presentation of the different semantics it seems natural
also to look for modal logics that characterize conditional and symbolic bisimulation
in our framework.

7 Related Work

Many works on ACP-style algebras introduced some form of conditions on processes,
for example [GP94]. However, in all these works, axiom [C6] was missing. This axiom
means intuitively that the knowledge about names can only increase with time. The
conditional bisimulation introduced here generalizes open bisimulation from [San93]
to a framework where also negation is present in a conservative way. The presence of
negation (or at least inequations) allows us to introduce (a generalization of) distinc­
tions without any extra machinery. The symbolic bisimulation is very similar to the
one introduced in [HL95], but it is presented here in a less abstract way.

References

[BB92]

[BB94]

[BB95]

[BV95]

J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and condi­
tions. In M. Broy, editor, Programming and Mathematical Method, Markto­
berdorf 19.90, number F 88 in NATO ASI Series, pages 273-323. Springer­
Verlag, 1992.

J.C.M. Baeten and J.A. Bergstra. On sequential composition, action pre­
fixes and process prefix. Formal Aspects of Computing, 6:250-268, 1994.

J.C.M. Baeten and J.A. Bergstra. Process algebra with propositional sig­
na,]s. In A. Ponse, C. Verhoef, and B. van Vlijmen, editors, Algebra of
Communicating Processes, ACP'.95, 1995.

J.C.M. Baeten and C. Verhoef. Concrete process algebra. In S. Abramsky,
D.M. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Com­
puter Science, Volume 4. Oxford University Press, 1995.

REFERENCES 20

[GP94]

[HL95]

J.F. Groote and A. Ponse. Process algebra with guards: Combining Hoare
logic and process algebra. Formal Aspects of Computing, 6(2):115-164,
1994.

M. Hennesy and H. Lin. Symbolic bisimulation. Theoretical Computer
Science, 138:353-389, 1995.

[MPW91] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. In
J.C.M. Baeten and J.F. Groote, editors, Proceedings CONCUR '91, volume
527 of LNCS, pages 45-60. Springer-Verlag, 1991.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. In­
formation and Computation, 100:1-77, 1992.

[PS93]

[San93]

J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi.
In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, REX - A
Decade of Concurrency: Reflections and Perspectives, volume 803 of LNCS.
Springer-Verlag, 1993.

D. Sangiorgi. A theory of bisimimulation for the 1f-calculus. In E. Best,
editor, Proceedings of CONCUR'93, volume 715 of LNCS, pages 127-142.
Springer-Verlag, 1993.

Computing Science Reports

In this series appeared:
93/01

93/02

93/03

93/04

93/05

93/06

93/07

93/08

93/09

93/10

93/11

93/12

93113

93114

93/15

93116

93117

93118

93119

93120

93/21

93/22

93/23

93/24

93125

93/26

93/27

93/28

93/29

93/30

R. van GeJdrop

T. Verhoeff

T. Verhoeff

E.H.L. Aarts
J.H.M. Karst
PJ. Zwietering

J.C.M. Baeten
C. Verhoef

J.P. Veltkamp

P.O. Moerland

J. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

J.C.M. Baeten
J.A. Bergstra

J.C.M. Baeten
l.A. Bergstra
R.N. Bol

H. Schepers
1. Hooman

D. Alstein
P. van dec Stok

C. Verhoef

G-J, Hauben

F.S. de Boer

M. Codish
D. Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Seven

H. Schepers and R. Gerth

W.M.P. van dec Aalst

T. Kloks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra

J. Deogun
T. Kloks
D. Kratsch
H. Muller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of programming
methods, p. 36.

A continuous version of the Prisoner's Dilemma. p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized locaJ search, p. 78.

A congruence theorem for structured operationaJ
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard ReaJ~Time Executions in DEDOS, p.
32.

Systems Engineering: a Fonnal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real~Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.2l.

A Process Algebra of Concurrent Constraint Programming, p. 15.

Freeness Analysis for Logic Programs - And Correctness, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

RelationaJ Algebra and EquationaJ Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding aJl minimaJ separators of a graph, p. 11.

A Semantics for a fine A.~ca1culus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. II.

93/31

93/32

93/33

93/34

93/35

93/36

93/37

93/38

93/39

93/40

93/41

93142

93/43

93/44

93/45

93/46

93/47

93/48

94/01

94102

94/03

94/04

94105

94/06

94/07

94108

94/09

W. Korver

H. ten Eikelder and
H. van Geldrop

L. Layens and J. Moonen

I.eM. Baeten and
I.A. Bergstra

W. Ferrer and
P. Severi

I.C.M. Baeten and
lA. Bergstra

J. Brunekreef
J·P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P .M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

P.D.V. van der Stok
M.M.M.PJ. Claessen
D. Alstein

A. Bijlsma

P.M.P. Rambags

B.W. Watson

B.W. Watson

E,l. Luit
I.M.M. Martin

T. Kloks
D. Kratsch
J. Spinrad

W. v.d. Aalst
P. De Bra
G,J. Hauben
Y. Kornatzky

R. Gerth

P. America
M. van der Kammen
R.P. NederpeJt
0.5. van Roosmalen
H.C.M. de Swart

F. Kamareddine
R.P. Nederpelt

L.B. Hartman
K.M. van Hee

I.C.M. Baeten
I.A. Bergstra

P. Zhou
J. Hooman

T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

K.R. Apt
R. Bol

O.S. van Roosmalen

J.C.M. Baeten
I.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits, using directed
commands and production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

ILlAS, a sequential language for parallel matrix computations, p. 20.

Real Time ~rocess Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conselVative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators vi.ewed as predicate transfonners, p. 11.

Automatic Verification of Regular Protocols in P(f Nets, p. 23.

A taxomomy of finite automata construction algorithms, p. 87.

A taxonomy of finite automata minimization algorithms, p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and II-conversion. p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A SUlVey, p. 62.

A Hierarchical Diagrammatic Representation of Class Structure. p. 22.

Process Algebra with Partial Choice, p. 16.

94110

94/11

94112

94113

94114

94115

94/16

94117

94118

94/19

94/20

94121

94/22

94/23

94124

94125

94126

94127

94128

94129

94/30

94/31

94132

94/33

94134

94/35

94136

94/37

94138

94139

T. verhoeff

J. Peleska
C. Huizing
C. Petersohn

T. Kloks
D. Kratsch
H. Muller

R. Selja

W. Peremans

R.l.M. Vaessens
E.H.L. Aarts
J.K. Lenstra

R.e. Backhouse
H. Doornbos

S. Mauw
M.A. Reniers

F. Kamareddine
R. Nederpelt

B.W. Watson

R. Bloo
F. Kamareddine
R. Nederpelt

B.W. Watson

B.W. Watson

S. Mauw and M.A. Reniers

D.Dams
O. Grumberg
R. Gerth

T. Kloks

R.R. Hoogerwoord

S. Mauw and H. Mulder

C.W.A.M. van Overveld
M. Verhoeven

J. Haoman

I.CM. Baeten
I.A. Bergstra
Gh. ~tefanescu

B.W. Watson
RE. Watson

1.1, Vereijken

T. Laan

R. Bloo
F. Kamareddine
R. Nederpelt

I.C.M. Baeten
S. Mauw

F. Kamareddine
R. NederpeJt

T. Basten
R. Bol
M. Voorhoeve

A. Bijlsma
C.S. Scholten

A. Blokhuis
T. Kloks

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transformation
Schema with State· & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus, p. 15.

The perfonnance of singie·keyword and multiple·keyword pattern matching algorithms, p.
46.

Beyond j1·Reduction in Church's A--+, p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular Ex·
pressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving '1CfL*, 3CTL* and CTL*, p. 28.

K1.3·free and W4·free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view. p. 54.

RegUlarity of BPA·Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer·Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A formalization of the Ramified Type Theory, pAO.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II·conversion in the Barendregt
Cube. p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point·free substitution, p. 10.

On the equivalence covering number of splitgraphs, p. 4.

94140 D. Alstein

94141 T. Kloks
D. Kratsch

94142 J. Engelfriet
1.1. Vereijken

94143 R.e. Backhouse
M. Bijsterveld

94144 E. Brinksma J. Davies
R. Gerth S. Graf
W. Janssen B. Jonsson
S. Katz G.Lowe
M. Poel A. PnueH
C. Rump J. Zwiers

94145 GJ. Hauben

94146 R. Bloo
F. Kamareddine
R. Nederpelt

94147 R. Bloo
F. Kamareddine
R. NederpeJt

94148 Mathematics of Program
Construction Group

94/49 I.C.M. Baeten
I.A. Bergstra

94/50 H. Geuvers

94/51 T. Kloks
D. Kratsch
H. Muller

94/52 W. Pellczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95/01 J.J. Lukkien

95/02 M. Bezern
R. 801
J.P. Groote

95/03 I.C.M. Baeten
C. Verhoef

95/04 J. Hidders

95/05 P. Severi

95/06 T.W.M. Vossen
M.G.A. Verhoeven
HMM. ten Eikelder
E.H.L. Aarts

95/07 G.A.M. de Bruyn
O.S. van RoosmaJen

95/08 R. Bloo

95/09 I.C.M. Baeten
I.A. Bergstra

95/10 R.C. Backhouse
R. Verhoeven
O. Weber

95111 R. Seljee

95/12 S. Mauw and M. Reniers

Distributed Consensus and Hard Real-Time Systems, p.34.

Computing a perfect edge without vertex elimination
ordering of a chorda1 bipartite graph. p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An Illustration. p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratieve Logistiek", p. 43.

The A-CUbe with classes of tenus modulo conversion,
p. 16.

On II-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. II.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Normalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partia1 Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small CommunicationLibrary, p.16.

Fonnalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An lsotopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Nonnalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

MatWpad: A System for On-Line Prepararation of Mathematical
Documents, p. 15

Deductive Database Systems and integrity constraint checking. p. 36.

Empty Interworkings and Refinement

95113

95/14

95/15

95116

95117

95/18

95/19

95120

95/21

95122

95/23

95/24

95/25

95126

95/27

95/28

95129

95/30

95/31

95/32

95/33

95/34

95/35

96/01

96102

96/03

96/04

96/05

96/06

96107

96/08

96109

96/10

96111

96112

96113

96114

96/15

96/16

Semantics of IntelWorkings Revised, p. 19.

B.W. Watson and G. Zwaan A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

A. Ponse, C. Verhoef, De proceedings: ACP'95, p.
S.F.M. Vlijmen (eds.)

P. Niebert and W. Penczek On the Connection of Partial Order Logics and Partial Order Reduction Methods, p. 12.

D. Dams, O. Grumberg, R. Gerth Abstract Interpretation of Reactive Systems: Preservation of eTL "', p. 27.

S. Mauw and E.A. van der Meulen

F. Kamareddine and T. Laan

I.C.M. Baeten and I.A. Bergstra

F. van Raamsdonk and P. Severi

A. van Deursen

B. Arnold, A. v. Deursen, M. Res

W.M.P. van der Aalst

F.P.M. Dignum. W.P.M. Nuijten,
L.M.A. Janssen

L. Feijs

W.M.P. van der Arust

P.D.V. van der Stok, J. van der Wal

W. Fokkink. C. Verhoef

H. Jurjus

1. Hidders, C. Haskens, J. Paredaens

P. Kelb, D. Dams and R. Gerth

W.M.P. van der Aalst

J. Engelfriet and JJ. Vereijken

J. Zwanenburg

T. Basten and M. Voorhoeve

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W.M.P. van der Aalst

S. Mauw

T. Basten and W.M.P. v.d. Aalst

W.M.P. van der Aalst and T. Basten

M. Voorhoeve

A.T.M. Aerts, P.M.E. De Bra,
J.T. de Munk

F. Dignum, H. Weigand, E. Verharen

R. Bloo, H. Geuvers

T. Laan

F. Kamareddine and T. Laan

T. Borghuis

S.H.J. Bos and M.A. Reniers

M.A. Reniers and J.J. Vereijken

P. Hoogendijk and O. de Moor

Specification of tools for Message Sequence Charts, p. 36.

A Reflection on Russell's Ramified Types and Kripke's Hierarchy of Truths,
p.14.

Discrete Time Process Algebra with Abstraction, p. 15.

On Nonnalisation, p. 33.

Axiomatizing Early and Late Input by Variable Elimination. p. 44.

An Algebraic Specification of a Language for Describing Financial Products.
p. 11.

Petri net based scheduling, p. 20.

Solving a Time Tabling Problem by Constraint Satisfaction, p. 14.

Synchronous Sequence Charts In Action, p. 36.

A Class of Petri nets for modeling and analyzing business processes, p. 24.

Proceedings of the Real·Time Database Workshop. p. 106.

A Conservative Look at tenn Deduction Systems with Variable Binding, p. 29.

On Nesting of a Nonmonotonic Conditional, p. 14

The Fonnal Model of a Pattern Browsing Technique. p.24.

Practical Symbolic Model Checking of the full ,u-calculus using Compositional
Abstractions, p. I?

Handboek simulatie, p. 51.

Context-Free Graph Grammars and Concatenation of Graphs, p. 35.

Record concatenation with intersection types. p. 46.

An algebraic semantics for hierarchical Pff Nets, p. 32.

Process Algebra with Autonomous Actions. p. 12.

Multi-User Publishing in the Web: DreSS. A Document Repository Service
Station, p. 12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

Example specifications in phi·SDL.

A Process-Algebraic Approach to Life·Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.

Structural Petri Net EquiValence, p. 16.

OODB Support for WWW Applications: Disclosing the internal structure of
Hyperdocuments, p. 14.

A Fonnal Specification of Deadlines using Dynamic Deontic Logic. p. 18.

Explicit Substitution: on the Edge of Strong Normalisation, p. 13.

AUTOMATH and Pure Type Systems, p. 30.

A Correspondence between Nuprl and the Ramified Theory of Types, p. 12.

Priorean Tense Logics in Modal Pure Type Systems, p. 61

The [2 C-bus in Discrete·Time Process Algebra, p. 25.

Completeness in Discrete-Time Process Algebra. p. 139.

What is a data type?, p. 29.

96/17

96/18

96119

96120

96121

96/22

96/23

96/24

96125

97101

97/02

E. Boiten and P. Hoogendijk

P.D.V. van dec Stok

M.A. Reniers

L. Feijs

L. Bijlsma and R. Nederpelt

M,e.A. van de Graaf and GJ. Hauben

W.M.P. van dec Aalst

M. Voorhoeve and W. van dec Aalst

M. Vaccari and R.C. Backhouse

B. Knaack and R. Gerth

J. Haoman and O. v. Roosma1en

Nested collections and polytypism, p. II.

Real-Time Distributed Concurrency Control Algorithms with mixed time con­
straints. p. 71.

Static Semantics of Message Sequence Charts, p. 71

Algebraic Specification and Simulation of Lazy Functional Programs in a concur­
rent Environment, p. 27.

Predicate calculus: concepts and misconceptions, p. 26.

Designing Effective Workflow Management Processes, p. 22.

Structural Characterizations of sound workflow nets, p. 22.

Conservative Adaption of Workflow. p.l2

Deriving a systolic regular language recognizer, p. 28

A Discretisation Method for Asynchronous Timed Systems.

A Programming-Language Extension for Distributed Real-Time Systems, p. 50.

	Abstract
	1. Introduction
	1.1 Notes
	2. Syntax and Semantics of BCPA
	2.1 Operators of BCPA
	2.2 Axiomatization
	2.3 Variables
	2.4 Conditional Transition Graphs
	2.5 Inference Rules for BCPA
	2.6 Unconditional Inference Rules
	2.7 Conditional Bisimulation
	2.8 Completeness
	2.9 Names
	3. Substitution
	3.1 Inductive Definition
	3.2 Open Bisimulation
	3.3 Distinctions
	4. Symbolic bisimulation
	5. Concluding Remarks
	6. Further Work
	7. Related Work
	References

