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Nomenclature

Notations

a scalar
a column
a vector
A scalar
A matrix
A tensor
∂
∂t time derivative

Symbols

cβ concentration of ion β per unit fluid volume [mol m�3]
Bβγ friction tensor between components β and γ [N s m�4]
d(v f ) rate of strain tensor [s�1]
Dβ diffusion tensor of ion β [m2 s�1]
e edge (2D) or face (3D) of subdomainω
f β activity coefficient of component β [�]
fα body force of phaseα [N m�3]
F Faraday’s constant [C mol�1]
h element size [m]
H aggregate modulus [N m�2]
I unit tensor [�]
J relative volume change [�]
J current density [A m�2]
ke electrokinetic coefficient [V m2 N�1]



8 NOMENCLATURE

K hydraulic permeability tensor [m4 N�1 s�1]
L length [m]
mβ mass of component β [kg]
Mβ molar mass of ion β [kg mol�1]
nα volume fraction of phaseα [�]
nβ volume fraction of component β [�]
n outward unit normal on a surface [�]
p fluid pressure [N m�2]
R universal gas constant [J mol�1 K�1]
t time [s]
T absolute temperature [K]
Tα stress-tensor of phaseα [N m�2]
u displacement of the solid matrix [m]
v specific discharge [m s�1]
vα velocity of phaseα [m s�1]
vβ velocity of component β [m s�1]
V representative elementary volume [m3]
Vα volume of phaseα [m3]
Vβ volume of component β [m3]

V
β

molar volume of component β [m3 mol�1]
W energy equation [J m�3]
xβ molar fraction of component β [�]
x position [m]
zβ valence of component β [�]

Γ boundary of a domain
ε(u) strain-tensor [�]
λ Lagrange multiplier [N m�2]
λα Lamé parameter of phaseα [N m�2]
Λα viscous stress parameter of phaseα [N s m�2]
µα Lamé parameter of phaseα [N m�2]
µβ electro-chemical potential of component β [N m�2]
Mα viscous stress parameter of phaseα [N s m�2]
ξ electrical potential [V]
π osmotic pressure [N m�2]
πα momentum interaction with phases other thanα [N m�3]
ρα intrinsic mass density of phaseα [kg m�3]
σα effective stress-tensor for phaseα [N m�2]
φβ osmotic coefficient of component β [�]
ω subdomain
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Ω domain

Superscripts

D Dirichlet boundary
f fluid
f c fixed charge
l liquid
N Neumann boundary
s solid
tot total mixture
+ cation
� anion

Subscripts

0 reference state
f fluid
h discrete space variable
n discrete time variable
p pressure
s solid
u displacement
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1 Introduction

Cartilaginous tissues like, for example, intervertebral disc tissue, exhibit swelling or
shrinking behaviour. The swelling of these tissues influences the behaviour of the cells.
For example, the hydration of the extra-cellular matrix influences the metabolism of
the chondrocytes [67]. This swelling is caused by mechanical, chemical or electrical
mechanisms. An example of a mechanical force is the weight of the body applied on the
human spine. A chemical force is for example a concentration difference over the tis-
sue. An electrical force can be applied by an electrical potential field. In all cases, the
macroscopic swelling and shrinking is caused by inflow or outflow of fluid. The forces
cause a fluid flow, a solute flow and/or an electrical current. By the interaction between
these fixed charges and the freely moving and electrically charged particles inside the
tissue, physical phenomena occur, like osmosis, streaming potentials, diffusion poten-
tials, electro-phoresis and electro-osmosis (table 1.1). These phenomena may influence
the function of the tissue [16, 17, 20, 32, 55, 56]. In order to develop more insight into
the mechanism, this swelling and compression behaviour has been modelled.

Pressure gradient Concentration gradient Electrical potential
Fluid flow Filtration Osmosis Electro-osmosis
Solute flow Ultra-filtration Diffusion Electro-phoresis
Electrical current Streaming current Diffusion current Electrical conduction

Table 1.1 Particle flow in porous media.

The behaviour of intervertebral disc is chosen to be studied. A reason for choosing
this tissue is that the intervertebral disc is the most vulnerable structure of the human
spine. Damage of the disc causes serious health problems, like hernia. In disc hernia-
tion, the fibre structure at the outer part of the disc is damaged in such way that the soft
inner part is pushed outwards. When this tissue presses against the nerves, low back
pain, radiating to the lower limbs, or even paralysis occurs. The intervertebral disc
tissue is a soft biological tissue that is suitable for in vitro experiments: large samples
(order of mm’s) can be made. Furthermore, the tissue has no blood vessels and there are
less cells than in other tissues. Therefore, the tissue does not deteriorate during swelling
and compression experiments that last for 20 to 24 hours [23, 40, 41, 71].
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1.1 Anatomy of the Intervertebral Disc

Intervertebral discs are located in the spine. The spine carries the load of the upper part
of the human body and allows different postures. The human spine consists of bone
segments, the vertebrae, that are mutually connected by intervertebral discs, ligaments
and muscles. An intervertebral disc is located between two vertebral bodies. The tissue

Figure 1.1 The motion segment (printed with permission from Medical Multi-
media Group, Missoula, Montana, USA).

is softer than the vertebrae. The intervertebral discs have a shock absorbing function
and they give some flexibility to the spine. In the human, the intervertebral discs are
responsible for 20 – 33 % of the total height of the vertebral column [77]. The combina-
tion of two vertebrae and an intervertebral disc is called a motion segment (figure 1.1).
An intervertebral disc consists of a soft inner part, the nucleus pulposus, and a stronger
outer part, the annulus fibrosus (figure 1.2). The nucleus pulposus consists of a gelatinous
material. In the annulus fibrosus, the main structures are a fibre network consisting of
collagen fibres and proteoglycan molecules, freely moving charged particles (mainly ions
and proteins), and an interstitial fluid. This network is arranged in lamellae. Within a
lamella, the fibres lie parallel to each other.

A collagen fibre is a rod-like protein molecule built of long polypeptide chains of
amino acids. A collagen fibre is composed of several smaller fibres, called microfibrils
(figure 1.3). The fundamental unit of such fibril is a macromolecule, called tropocollagen,
held together by covalent bonds. Tropocollagen consists of three polypeptide chains
folded by hydrogen bounds in such way, that they form a triple helical configuration
[9].
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Figure 1.2 Schematic representation of the intervertebral disc tissue.

a. collagen fibre

b. microfibril

c. tropocollagen

microfibril

tropocollagen

covalent bond

polypeptide chain

Figure 1.3 Schematic representation of a collagen fibre (a) build of microfibrils
(b), that consist of polypeptide chains in a triple helical configuration (c).

Proteoglycans are large molecules consisting of many glycosaminoglycans (GAGs)
linked to core proteins (figure 1.4). These glycosaminoglycans are made up of long
chains of polysaccharides. A single core protein carries between 6 and 60 polysaccharide
chains [9]. Via linker proteins, several proteoglycan units form a chain of hyaluronic
acid. In this way, a three-dimensional network is formed. Due to the physiological pH
and the ionic strength of the interstitial fluid, the carboxyl and sulfate groups of the
polysaccharides are ionised. The density of these charges is called fixed charge density.
Due to this ionisation the proteoglycans are capable of retaining water up to a 50-fold
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of their own weight [19]. Thus, the fixed charges cause an osmotic pressure.

{

proteoglycan unit core protein glycosamineglycan

hyaluronic acid

link protein

Figure 1.4 Schematic representation of proteoglycan aggregates.

From experiments [23, 28, 40, 71] it appears that chemical loads can invoke large de-
formations of the annulus fibrosus (osmosis). For example, when switching the bathing
solution from the natural fluid to pure water, the volume of a sample of the nucleus
pulposus, can increase to 200 % of the original volume [71]. Even in a physiological
salt solution, the tissue swells substantially. These deformations can also be achieved
by applying a mechanical load. Not only the geometry but also the composition of the
tissue changes by swelling.

1.2 Models of Cartilaginous Tissues

The models that describe the behaviour of soft biological tissues, are split into two
groups: micromodels and macromodels. In a micromodel, the tissue is described at molec-
ular level. The macroscopic material behaviour is derived by the summation of all
molecular behaviours. In a macromodel, an averaged structure is used.

First, we consider the micromodels. In physics, two important models are used for
the water binding capacity of gel-like structures: the DLVO-model, derived by Derjaguin,
Landau, Verwey and Overbeek [22, 76] and the Poisson-Boltzmann unit-cell model (PB-
model).

In the DLVO-model, the major forces that operate between macromolecules or sur-
faces in fluids, are the attractive Van der Waals force and the repulsive electrical double-
layer force [47]. The first force is always present. The second depends on the presence
of charged surface groups. Double-layer forces are caused by fixed, negatively charged
groups of the solid matrix. In order to maintain electro-neutrality, freely moving cations
(positive ions) are attracted by those fixed charges and form electrical dipole layers, also
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called double-layers. The double-layer forces are caused by the repulsion of equally
charged particles of neighbouring double layers, thus forcing the fluid compartment to
grow. The observation that even uncharged particles and molecules are often miscible
in water, led to the postulation of an additional repulsive force [21], i.e. the hydration or
structural force. This hydration force is caused by a bounded layer of water molecules to
the surface. The layer prevents the surfaces or macromolecules from approaching closer
than the thickness of two water molecules. When two surfaces or macromolecules ap-
proach closer, the relation between the force and the distance between the two surfaces
or macromolecules is described by the DLVO-theory. This theory predicts that at long
range (distance between the surfaces of macromolecules larger than 2.5 nm) the net
repulsive force is due to the electrical double-layer force. This force increases exponen-
tially with decreasing distance. For a shorter range, the attractive Van der Waals force
is more important. The DLVO-theory predicts the forces well up to 2 nm [47]. Exper-
iments have shown that when the distance becomes smaller, the hydration of smooth
rigid surfaces gives rise to an oscillatory force [48]. The spatial period of oscillations cor-
responds to the size of the water molecules. Rough heterogeneous surfaces or biological
surfaces, like a lipid bilayer, cause oscillations with a smaller range and magnitude [47].

In the Poisson-Boltzmann unit-cell model (PB-model), the repulsive forces between
the glycosaminoglycans (GAGs) cause an electrostatic contribution to the tissue stiffness
[14]. These repulsive forces are calculated from the fundamental laws of electrostatics
and thermodynamics using the PB unit-cell as described by, for example, Marcus [57].
In the PB-model, the tissue consists of a large number of unit-cells. Each unit-cell is an
idealised cylinder with in the centre one polyelectrolyte molecule (GAG) surrounded by
a cylindrical space of aqueous electrolyte. The total macroscopic forces are derived by
summing the microscopic forces of these unit-cells. The PB-model neglects hydration
forces and Van der Waals forces, and does not apply for distances below 2.5 nm.

A drawback of the micromodels is that a precise description of the tissue material
is needed. In general, the internal structure and the geometry are too complicated to
use the micromodels. So, it is almost impossible to model the material behaviour in this
way. Therefore, macromodels are used.

A macromodel is the Donnan model. As shown by Basser and Grodzinsky [4], this
macroscopic model is an approximate solution of the PB-model using homogenisation
and scaling methods. Homogenisation methods are mathematical procedures to sim-
plify complicated equations by averaging them over a finite volume. The resulting
equations are scaled by the Debye length (a characteristic molecular length). So, the
macrocontinuum, thermodynamic Donnan model as well as the statistical, mechanical
PB-model describe the electrostatic repulsion and attraction between charged groups.
They differ however in the scaling length for the continuum (figure 1.5).

The mixture theory is a broad framework in which a wide variety of macromodels fit.
In this theory, from the microstructure of the tissue, a continuum model is derived based
on volume fractions of a representative elementary volume (figure 1.6). A representative
elementary volume is chosen so that it is large enough, compared to the size of the pores,
that it may be treated as homogeneous. At the same time it is small enough, compared
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Figure 1.5 Schematic representation of the microcontinuum PB-model (left) and
the macrocontinuum Donnan model (right). The macroscopic electrical potential
in the PB-model is derived by summing the potentials of the unit-cells around
the charged GAG molecules. In the Donnan model, the electrostatic potential is
approximated by a homogenisation method.

to the macroscopic phenomena we are interested in, so that it may be considered as
infinitesimal in the mathematical treatment. In this continuum theory, there is a fraction
of every component in every point.
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Figure 1.6 Continuum approach of the tissue.

The first concept for the mixture theory was introduced at the end of the 18th century
by Woltman [78]. He introduced the concept of volume fractions in connection with a
discussion on the mechanical behaviour of mud. He stated that the specific weight of
the mud is described by

vP + up
v + u� rv

, (1.1)
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where P and p are the weight of the loose earth and the water, respectively. The volumes
are v for the loose earth and u for the added water. Finally, r is the ratio between the
pore volume filled with water and the earth volume. So, rv is the volume of the added
water that goes into the pores without increasing the total volume. If the mud does
not contain more water than the spaces between the loose earth can hold, then the mud
does not expand. For the water volume it holds that u = rv, and the weight of the mud
is described by

vP + up
v

=
v(P + rp)

v
= P + rp. (1.2)

In this context, he spoke of a mixture.
In the 19th century, Fick, Darcy and Stefan laid the foundations of the mixture theory.

Fick [25] studied the problem of diffusion of mixtures. He derived a differential equa-
tion of the diffusion stream in a channel along the x-direction with varying cross-section
A:

∂y
∂t

= �k(
∂2 y
∂x2 +

1
A

∂A
∂x

∂y
∂x

), (1.3)

where y is the concentration of the component, t the time and k is a constant depending
on the nature of the components. He stated that for constant cross-section, the equation
simplifies to

∂y
∂t

= �k
∂2 y
∂x2 . (1.4)

Nowadays, this equation is known as Fick’s second law.
In the same period, Darcy performed flow experiments through natural sand (figure

1.7). He observed a relation between the total water volume running through the sand
sample, and the pressure loss over the sample. In this way, he experimentally found a
relation between the pressure difference P2 � P1 and the fluid flow Q [18]:

Q
A

=
K(P2 � P1)

L
, (1.5)

where A the cross-sectional area, K the hydraulic permeability, and L the sample length.
This result is essential for a continuum approach for the liquid flow in a porous medium.

Stefan [72] made another important step in developing the theory of mixtures. Based
on the principles of mechanics founded by Maxwell, he presumed interaction forces
between the constituents. In a mixture of two gases, equilibrium and motion equations
were derived for each component. He stated that these equations are also valid for
liquids and electrons in conductors. Later, he considered also a special case, i.e. the
diffusion of a gas through a porous solid [72]. The porous solid was modelled as a gas
with the property that the gas particles were fixed. This is the first mixture model of a
porous medium.
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manometer

manometer

water

sand L

Figure 1.7 Darcy’s experimental set-up.

In the previous theories, the solid was assumed to be rigid. Terzaghi [73, 74] ex-
tended the theory to a deformable porous solid that is saturated with a liquid. He
considered the problem of consolidation. He performed experiments on the one-di-
mensional consolidation process in a thin clay layer. Using Darcy’s law, the partial
differential equation describing the problem of consolidation was derived:

k
a

∂2w
∂z2 =

∂w
∂t

, (1.6)

where k is the permeability, a is the compression number, w is the pore-water overpres-
sure (p1 � p, where p1 represents a constant load), z is the position and t is the time.
Later, the theory was extended by Biot [7, 8] and by Bowen [10, 11]. Biot generalised
Terzaghi’s one-dimensional theory to the three-dimensional case being able to handle
any arbitrary load which may vary in time. Bowen considered finite deformation of the
porous media. He derived the equations for the incompressible [10] and compressible
[11] porous solids with any number of immiscible fluids. These biphasic models are still
used in the field of civil engineering.

Since the 1980’s, biphasic models are successfully used to model the compressive
behaviour of soft biological tissues, like articular cartilage [60, 61], skin and subcutis
[62, 64], and the left ventricle of the heart [42, 45, 46]. However, these models are
not suited for modelling osmotic phenomena, since they do not take into account the
charged proteoglycans. This tissue component causes the osmotic pre-stress of the tis-
sue. Therefore, Lai et al. [51] developed a triphasic theory for soft hydrated tissues.
They distinguished three components: a charged porous solid (collagen fibres and pro-
teoglycans), a fluid, and the fluid miscible components (ions). Their theory combines
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the physico-chemical theory for ionic and poly-ionic (proteoglycans) solutions with the
biphasic mixture theory. Therefore, it is possible to describe the deformations and the
stresses for cartilage for chemical and mechanical loads. In their theory, they neglect
geometric non-linearities and hydration forces. Snijders [70] developed a finite element
formulation of a simplified version of the triphasic theory, neglecting electrical fluxes
and electrical potential gradients.

From confined compression experiments, performed by de Heus [19], Snijders [71]
and Houben [40], and their triphasic finite element simulations, it appeared that fitting
the experimental data required a diffusion coefficient for the ions, many times larger
than the diffusion coefficient of the ions in water [63]. As the fixed charge density is
large, the electrical effects inside the tissue may not be neglected. A four-component
mixture theory, derived by Huyghe and Janssen [43], includes geometric non-linearity,
electrical fluxes and potential gradients. In this mixture theory, four components are
distinguished: a charged solid, a fluid, cations and anions. By the distinction between
cations and anions, the electrical phenomena can be modelled. Huyghe and Janssen [43]
introduce electro-neutrality as a restriction on the second law of thermodynamics, while
Lai et al. [51] introduce the electrical potential as an external field. Thereby, Huyghe
and Janssen introduce the electrical potential as a Lagrange multiplier and hence as a
field intrinsic to the material. Following the approach developed by Lai et al. [51],
Gu et al. [34] derived a mixture theory consisting of a solid phase, a fluid phase and n
different species of mono- or multi-valent ions. They incorporated the electro-neutrality
condition in their model. Achanta et al. [1] used a hybrid mixture theory, modelling the
interfaces as separate continua. Therefore, the hydration layer is modelled as a separate
component in the mixture.

In order to reduce the number of material parameters to a minimum, we do not dis-
tinguish between the hydration layer and the rest of the fluid as long as the experiments
do not require such complex model.

1.3 Objectives

In this thesis, the four-component mixture theory is studied. The objectives of this study
are:

� The development of a finite element description for the four-component mixture
theory as derived by Huyghe and Janssen [43]. With this finite element model,
we should be able to compute the deformations, the fluid and ion flows, the fluid
pressure, the cation and anion concentrations and the electrical potential field.

� The verification of the four-component mixture theory with respect to the evo-
lution in time of the deformations and the electrical potential field by confined
swelling and compression experiments.
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1.4 Outline of the Thesis

In chapter 2, we derive the four-component mixture theory from the balance equations
and the constitutive equations for the solid matrix, the fluid flow and the ion flows. It is
shown that this theory reduces to the biphasic theory when assuming that there are no
particles dissolved in the fluid phase.

In chapter 3, the two-component mixture theory is considered. It is shown that the
problem definition has a unique solution when making adequate assumptions on the
behaviour of the displacements, fluid velocity and the fluid pressure. These assump-
tions are not in conflict with the physical problem we are interested in. Two ways of
describing the problem are considered: the displacement-pressure formulation and the
displacement-pressure-velocity formulation. From the first one, a conforming finite el-
ement method is derived. From the second one, a mixed-hybrid finite element method
is derived. For both methods, the errors are considered that are caused by size of the
elements and by the size of the time-steps.

In chapter 4, the two-component mixture model is extended to the four-component
mixture model. A mixed finite element method is derived that results in a non-symmet-
ric matrix-vector system. The displacements, the fluid and the ion flows, the fluid pres-
sures, the ion concentrations and the electrical potentials are unknown. The finite ele-
ment model is used to simulate the experiments described in chapters 5 and 6.

In chapter 5, the four-component mixture theory is tested in experiments on interver-
tebral disc tissue. Uniaxial confined swelling and compression experiments were per-
formed on cylindrical samples made out of the annulus fibrosus part of intervertebral
discs. The value of the material parameters were estimated by fitting the experiments
with the finite element model of chapter 4. The theory was verified by comparing the
estimated values to values reported by other studies.

In chapter 6, the four-component mixture theory was tested in experiments on a
hydrogel. A hydrogel is an artificial material that has similar properties as cartilagi-
nous tissues. Uniaxial confined swelling and compression experiments were performed
again. This time we also measure the electrical phenomena: streaming potentials and
diffusion potentials. These phenomena gave an extra possibility to check the theory.
The values of the material parameters were estimated by the finite element model of
chapter 4. The theory is verified by comparing the estimated values of the parameters
to the values reported in other studies.



2 Modelling of Cartilaginous Tissues

Cartilaginous tissues mainly consist of four components: a fibre network (collagen fi-
bres and proteoglycans), a fluid, and positively and negatively charged particles. Due to
this consistency, physical effects as described in table 1.1 can occur. In order to describe
these effects in a physical model, these four components have to be included.

The interactions of the components can be described by either a micromodel or a
macromodel. In a micromodel, a detailed description of the tissue is needed. In gen-
eral, this structure is too complex to describe. Therefore, we choose to use a macromodel
based on a continuum approach. In this approach, the material is divided into represen-
tative elementary volumes that have a size such that they are large enough to be treated
as homogeneous. At the same time, they are small enough to model the differences in
material properties.

In each representative elementary volume, the structure properties are averaged and
the volume fractions of each component are determined (figure 2.1). Next, the represen-
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Figure 2.1 Continuum approach of the tissue.

tative elementary volume is considered to be a homogeneous material. This means that
at every point in the material, a fraction of every component is present. In this way,
the tissue is modelled as a continuum. We describe this continuum by a four-component
mixture theory.
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2.1 Four-Component Mixture Theory

In the four-component mixture theory, the material is modelled as a charged, porous
solid (denoted by s) that is saturated with a fluid (denoted by f ), in which some freely
moving ions (cations (+) and anions (�)) are dissolved [28, 43]. The solid can shrink
only by expelling the fluid into its surroundings, and swell only by attracting the fluid
from its surroundings.

In this thesis, we distinguish components and phases. A component is a group of
particles with the same properties. A phase is defined as a set of miscible components.

In the four-component mixture theory, there are four components: a solid (s), a liquid
(l), cations (+) and anions (�). But there are only two phases: a solid (s) and a fluid
( f ). In this case, the fluid consists of three components: the liquid, the cations and the
anions.

In the four-component mixture theory, the material behaviour is described by a set
of coupled equations: balance equations and constitutive equations

2.1.1 Balance equations

For each phaseα, the material fulfils the momentum equation

r � Tα + πα = fα, α = s, f , (2.1)

where Tα is the stress-tensor of phase α, πα represents the interaction with the phases
other than α, and fα represents the inertial terms and the body forces, such as gravity.
The stress-tensors are modelled by

Tα := �nαpI +σα, α = s, f , (2.2)

where nα is the volume fraction of phaseα, p is the fluid pressure, and σα is the effective
stress-tensor of phaseα. The volume fractions are defined by

nα :=
Vα

V
, α = s, f , (2.3)

where V is a representative volume of the mixture and Vα is the volume occupied by
phase α inside volume V. Conservation of the momentum for the whole mixture leads
to the restriction πs + π f = 0. So, the total momentum balance is simplified to

r � (Ts + T f ) = fs + f f , (2.4)

or

r � (σ s +σ f )�r( (ns + n f ) p) = f. (2.5)

From now on, we neglect the inertial terms and the body forces, that are represented
by f. So, f = 0. Further, we assume that the material is saturated, i.e.

ns + n f = 1. (2.6)
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In every representative elementary volume, the material has also to fulfil the mass
balances:

∂(nαρα)
∂t

+r � (nαραvα) = 0, α = s, f , (2.7)

∂(n f Mβcβ)
∂t

+r � (n f Mβcβvβ) = 0, β = +,�, (2.8)

where ρα, vα, Mβ, cβ and vβ are the intrinsic density of phase α, the velocity of phase α,
the molar mass of ion β, the concentration of ion β per unit fluid volume, and the velocity
of ion β, respectively. Here, the intrinsic density for phaseα is defined by

ρα :=
mα

Vα
, α = s, f , (2.9)

where mα is the mass of phase α in a representative elementary volume and Vα the
volume occupied by this phase in the same elementary volume.

In equations (2.7) and (2.8), it is assumed that there are no sources or sinks. The first
term in these equations is an accumulation term. This term accounts for the influence
of the deformation of the solid. The second term in the mass balances accounts for the
mass flow.

In this thesis, we assume that the phases are intrinsically incompressible (ρα is con-
stant) and that the molar masses of the ions are constant (Mβ is constant). So, the intrin-
sic density and the molar masses can be left out in the mass balances.

The total mass balance follows from the summation of all phase mass balances and
the saturation assumption:

r � vs +r � (n f (v f � vs)) = 0. (2.10)

Here, the solid velocity vs is defined by

vs :=
∂u
∂t

, (2.11)

where u are the solid displacements and t is the time.
Finally, electro-neutrality is needed:

z+c+ + z�c� + z f cc f c = 0, (2.12)

where zβ is the value of the valence of the charged particles. For a mono-valent salt, its
value is +1 for the cations and �1 for the anions. The superscript f c stands for fixed
charge. A fixed charge is an electrically charged particle attached to the solid skeleton.

2.1.2 Constitutive equations

Also constitutive equations are needed. The first equations define the effective stress-
tensors σα:

σα := 2µαε(u) + λαr � u I + 2 Mαd(vα) +Λαr � vα I, α = s, f ,
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where ε(u) = 1
2

�
(ru) + (ru)T

�
is the strain tensor, µα and λα are Lamé parameters,

and d(vα) = 1
2

�
(rvα) + (rvα)T

�
is the rate of strain tensor, and Mα and Λα are the

viscous stress parameters.
The solid matrix is modelled as a linearly elastic material. This means that the vis-

cous stress parameters Ms and Λs are equal to zero. So, the mechanical behaviour is
described by Hooke’s law:

σ s = 2µsε(u) + λsr � u I, (2.13)

where µs and λs are the Lamé parameters for the solid. These Lamé parameters depend
on the Poisson’s ratio and the stiffness of the solid material, see e.g. [12].

The fluid is modelled as a Newtonian viscous fluid. So, µ f = 0 and λ f = 0, i.e.

σ f = 2M f d(v f ) +Λ fr � v f I. (2.14)

We now assume that the viscosity is negligible compared to the momentum transfer.
So, kσ sk � kσ fk. This is usually the case except for very small layers of very permeable
materials [2]. So, the momentum balance (2.5) is described by

r �σ �rp = 0, (2.15)

where

σ = 2µsε(u) + λsr � u I. (2.16)

The next constitutive equations describe the fluid flow and the ion flows. We assume
that the average pore size (� 3.5 nm for cartilaginous tissues [30]) is large enough
to neglect some boundary effects, such as the Knudsen diffusion and the Klinkenberg
effect [39]. Then, the flows are described by an extended Darcy’s law and an extended
Fick’s law. These extended laws are derived by Huyghe and Janssen [43, 44] such that
the second law of thermodynamics is fulfilled. Therefore, Huyghe and Janssen [44] use
electrochemical potentials. These potentials are continuous functions. They are defined by

µβ := p +
zβ

V
β

Fξ +
∂W
∂nβ

, β = l, +,�, (2.17)

where V
β

is the volume occupied by one mole of component β, F is Faraday’s constant,
ξ the electrical potential, W is the energy, and l is the liquid component. Note that all
electrochemical potentials are defined with respect to the components.

Now, the partial derivative of the energy equation is defined by [43]

∂W
∂nβ

:= µ
β
0 (T) +

RT

V
β

ln( f βxβ), (2.18)

where µβ0 is a reference value for the electrochemical potential that may depend on the
absolute temperature T, R is the universal gas constant, fβ is an activity coefficient of
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component β (0 � fβ � 1) and xβ is the molar fraction of component β (0 � xβ � 1).
The activity coefficients fβ are equal to one for an ideal solution. Further, they are
defined such that fβ ! 1 if xβ ! 1.

The definition of the energy equation is based on the partial derivative to the volume
fractions nβ. Therefore, the molar fractions are written as functions of the volume frac-
tions. First, we derive a relation between the molar fractions and the concentrations:

xβ =
xβ=V f

1=V f =
xβ=V f

∑
γ=l,+,�

xγ=V f =
cβ

∑
γ=l,+,�

cγ
, β = l, +,�. (2.19)

Now, the relation between the concentrations and the volume fractions is given by

V
β

cβ =
nβ

n f
, β = l, +,�. (2.20)

Substitution of (2.20) into (2.19) results in

xβ =
cβ

∑
γ=l,+,�

cγ
=

nβ=V
β

∑
γ=l,+,�

nγ=V
γ . (2.21)

So, the partial derivative of the energy equation W is defined by

∂W
∂nβ

:= µ
β
0 (T) +

RT

V
β

ln
�

f βnβ=V
β

∑
γ=l,+,�

nγ=V
γ

�
, β = l, +,�. (2.22)

For the activity coefficients we choose

f β := (nβ)1�φβ , β = l, +,�, (2.23)

where φβ is the osmotic coefficient for component β (0 � φβ � 1). The osmotic coeffi-
cients φβ model the non-ideality of the material. In the case of an ideal material, the
osmotic coefficients are equal to one. It holds that fβ ! 1 if nβ ! 1 and f β = 1 for an
ideal solution (φβ = 1). So, the activity coefficients fβ have the right properties.

We assume that cl + c+ + c� is constant. This means that number of particles inside
the fluid stays the same. From these assumptions and equation (2.22) it follows that

W = W0(u, T) + ∑
β=l,+,�

µ
β
0 (T)n

β + ∑
β=l,+,�

RT
nβ

V
β

ln
�

nβ=V
β

∑
γ=l,+,�

nγ=V
γ

�

+ ∑
β=l,+,�

RT
nβ

V
β

ln( f β)� ∑
β=l,+,�

RT(1�φβ)
nβ

V
β

.

(2.24)

Note that for an uncharged liquid (zl = 0), the electrochemical potential µl is equal
to the difference between the fluid pressure p and the osmotic pressure π [65], i.e. µ f =
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p� π , assuming that the reference value is equal to zero, i.e. µ f
0 = 0. Thus, the osmotic

pressure is defined by

π := �
∂W
∂n f . (2.25)

For an ideal dilute solution ( f l = 1, n+ � nl , and n� � nl), the osmotic pressure is
approximated by

π = �
RT

V
l ln

�
nl=V

l

∑
β=l,+,�

nβ=V
β

�

= �
RT

V
l ln

� cl

∑
β=l,+,�

cβ
�

= �
RT

V
l ln

�
1�

c+ + c�

∑
β=l,+,�

cβ
�

�
RT

V
l

c+ + c�

∑
β=l,+,�

cβ

�
RT

V
l

c+ + c�

cl

=
n f

nl RT(c+ + c�)

� RT(c+ + c�).

(2.26)

This is equal to the often used expression for the osmotic pressure, see e.g. [65].
From the definitions of the electrochemical potentials and the assumption that cl +

c+ + c� is constant, it follows

rµβ =rp + zβ
F

V
β
rξ +

RT

V
β

�rcβ

cβ
+
r f β

f β
�
. (2.27)

Now, we combine relations (2.20) and (2.23) to

r f β

f β
= (1�φβ)

�
rnβ

nβ

�
= (1�φβ)

�
rcβ

cβ
+
rn f

n f

�
.

We assume small deformations. This means that

r f β

f β
� (1�φβ)

rcβ

cβ
.

So, we write for the gradient of the electrochemical potentials

rµβ = rp + zβ
F

V
β
rξ +

RT

V
β
(2�φβ)

rcβ

cβ
. (2.28)
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According to Huyghe and Janssen [43], the relation between the electrochemical poten-
tials and the component velocities is given by

�nβrµβ = ∑
γ=l,+,�

Bβγ(vγ � vs), β = l, +,�, (2.29)

where Bβγ are friction tensors between components β and γ. They are defined by

B++:= RTn+(V
+
)�1(D+)�1,

B��:= RTn�(V
�
)�1(D�)�1,

B+�:= B�+ = 0,
Bl+ := B+l = �B++,
Bl� := B�l = �B��,
Bll := (n f )2K�1 � (Bl+ + Bl�).

Equation (2.29) can also be written as

0
@ vl � vs

v+ � vs

v� � vs

1
A = �

0
BB@

Knl

(n f )2
Kn+

(n f )2
Kn�

(n f )2

Knl

(n f )2
Kn+

(n f )2 +
V
+

D+

RT
Kn�

(n f )2

Knl

(n f )2
Kn+

(n f )2
Kn�

(n f )2 +
V

�

D�

RT

1
CCA
0
@rµl

rµ+

rµ�

1
A ,

or by

n f (vl � vs) = �
K
n f

�
nl
rµl + n+

rµ+ + n�rµ�
�

, (2.30)

cβ(vβ � vl) = �DβV
β
cβ

RT
rµβ, β = +,�. (2.31)

The equations (2.30) and (2.31) are the extended Darcy’s law and the extended Fick’s law,
respectively.

The fluid velocity v f is a weighted average of the velocity of the liquid and the ve-
locities of the ions. Since we are interested in the situation in which there are far more
water molecules than ions, we approximate the velocity of the fluid by the velocity of
the liquid: v f � vl . After substituting equations (2.28) into equation (2.30) and assum-
ing cl + c+ + c� to be constant, the extended Darcy’s law is given by

n f (v f � vs) = �K
�
rp + (φl �φ+)RTrc+ + (φl �φ�)RTrc�� z f cc f cFrξ

�
.

(2.32)

Note, that if there are no particles in the fluid (c+ = c� = 0) and there is no electrical
potential field (ξ = 0), equation (2.32) results in the standard Darcy’s law nf (v f � vs) =
�Krp.
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After substituting equations (2.28) into equation (2.31) and assuming cl + c+ + c� to
be constant, the extended Fick’s law is given by

cβ(vβ � vl) = �Dβ
�
(2�φβ)rcβ + zβ

F
RT

cβrξ +
V
β

RT
cβrp

�
, β = +,�. (2.33)

Note that if there is no pressure gradient, equation (2.33) is equal to the extended Fick’s
law as described by Barthel et al. [3]. If there is no liquid flow (vl = 0) and the particles
have no charge (zβ = 0), and we have an ideal solution (φβ = 1), equation (2.33) is equal
to Fick’s first law cβvβ = �Dβrcβ (see e.g. [39]).

2.1.3 Total set of equations

The material is described by the following equations:

r �σ �rp =0,
∂nα

∂t
+r � (nαvα) =0, α = s, f ,

∂(n f cβ)
∂t

+r � (n f cβvβ) =0, β = +,�,

z+c+ + z�c� + z f cc f c =0,

ns + n f =1,

and

σ = 2µsε(u) + λs r � u I,

n f (v f � vs) = �K
�
rp + (φl �φ+)RTrc+ + (φl �φ�)RTrc�� z f cc f cFrξ

�
,

cβ(vβ � v f ) = �Dβ
�
(2�φβ)rcβ+ zβ

F
RT

cβrξ +
V
β

RT
cβrp

�
, β = +,�,

vs =
∂u
∂t

,

and some proper boundary conditions.

2.2 Reduction to a Two-Component Mixture Theory

In this section, the four-component mixture theory is reduced to the two-component
mixture theory as described by, for example, Biot [7]. Therefore, we neglect the influence
of all electrically charged particles. Then the electro-neutrality condition (2.12) is not
relevant anymore. Furthermore, the mass balances for the ions (2.8) and Fick’s law (2.33)
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disappear. Darcy’s law (2.32) is simplified by removing the concentration dependent
terms. Thus, it holds:

r �σ �rp =0,
∂nα

∂t
+r � (nαvα) =0, α = s, f ,

ns + n f =1,

and

σ =2µsε(u) + λsr � u I,

n f (v f � vs) =�Krp,

vs =
∂u
∂t

,

and some proper boundary conditions.
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3 Two-Component Mixture Theory

3.1 Physical Model

In this chapter, the tissue is modelled by a two-component mixture theory, in literature also
known as a biphasic theory [61], or as the theory of poroelasticity, see e.g. [2, 68, 69]. In
the two-component mixture theory, the tissue is modelled as a porous solid saturated
with a fluid. In the case of an intervertebral disc tissue, the porous solid skeleton repre-
sents the fibre network (collagen fibres and proteoglycans) and the fluid the interstitial
fluid. For the sake of simplicity, we assume that the fluid is incompressible and New-
tonian viscous, and the solid is linearly elastic. The solid can shrink only by expelling
fluid into its surroundings, or swell only by attracting the fluid from its surroundings.

In the two-component mixture theory, the material behaviour is described by a set
of coupled equations as described in chapter 2:

r �σ �rp =0,
∂nα

∂t
+r � (nαvα) =0, α = s, f ,

ns + n f =1,

(3.1)

and

σ =2µsε(u) + λs r � u I,

n f (v f � vs) =�Krp,

vs =
∂u
∂t

.

(3.2)

The set of equations can be reduced by summing the mass balances for the solid and
the fluid. This results in

∂(ns + n f )

∂t
+r �

�
n f (v f � vs)

�
+r �

�
(ns + n f )vs� = 0. (3.3)

Using the saturation condition (nf + ns = 1) and the definition of the solid velocity, this
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equation can be written as

∂
∂t

�
r � u

�
+r �

�
n f (v f � vs)

�
= 0. (3.4)

In order to make the notation more compact, the specific discharge v is introduced:

v := nf (v f � vs). (3.5)

So, the total mass balance is described by

∂
∂t

�
r � u

�
+r � v = 0. (3.6)

Further, the stress-strain relation is substituted into the momentum equation. Then,
the two-component problem is described on domainΩ by the following set of equations

�r �
�
2µsε(u) + λs r � u I

�
+rp = 0 inΩ,

K�1v +rp = 0 inΩ,
∂
∂t

�
r � u

�
+r � v = 0 inΩ.

(3.7)

For the sake of simplicity, the following boundary conditions are considered:

u = 0 on ΓD
u ,

n �
�
2µsε(u) + λs r � u I� p I

�
= gN

u on ΓN
u ,

p = 0 on ΓD
p ,

n � v = gN
p on ΓN

p ,

where the Dirichlet boundaries ΓD
α and the Neumann boundaries Γ N

α are open portions
of the total boundary Γ , such that ΓD

α

T
ΓN
α = ; and Γ

D
α

S
Γ

N
α = Γ . Other boundary condi-

tions can also be considered, but they make the writing of the proofs more complicated.
Furthermore, these boundary conditions are sufficient for describing compression ex-
periments.

The porosity can be determined in the following way. We assume the components to
be incompressible. Furthermore, we assume that there are no reactions by which solid
is formed. Therefore the volume Vs of the solid in the deformed state is equal to the
volume Vs

0 of the solid in the reference state in a representative elementary volume:

Vs = Vs
0.

The tissue deformation is characterised by the relative volume change

J := det(ru). (3.8)
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The mixture volume Vtot in the deformed state is described by

Vtot = J Vtot
0 .

Now, the porosity in the deformed state is described by (figure 3.1)

n f :=
V f

Vtot =
Vtot �Vs

Vtot = 1�
Vs

Vtot

=1�
Vs

0

J Vtot
0

= 1�
ns

0

J

=1�
1� n f

0

J
.

(3.9)
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Figure 3.1 Schematic representation of the tissue deformation.

Throughout the thesis, Ω shall denote an open connected domain in Rd (d = 1, 2, 3),
with a Lipschitz continuous boundary Γ (see for example [12]).

3.2 Variational Formulation

In order to solve the coupled equations (3.7) by the finite element method, the problem
is written in a variational form. Therefore, some Hilbert spaces and corresponding norms
are needed. These spaces are defined by (see for example [12, 13, 37])

L2(Ω) := fφ : Ω! Rj
Z
Ω

φ2 dV <1g,

L2(Ω) := fu : Ω! R
d j
Z
Ω

juj22 dV <1g, d = 1, 2, 3,

H1(Ω) := fφ 2 L2(Ω)jrφ 2 L2(Ω)g,

H1,0(Ω) := fφ 2 H1(Ω)jφ = 0 on ΓD
p g,

H1(Ω)d := fu = (u1, u2, ..., ud)jui 2 H1(Ω), i = 1, 2, ..., dg,

H1,0(Ω)d := fu 2 H1(Ω)dju = 0 on ΓD
u g,

H(div,Ω) := fu 2 L2(Ω)jr � u 2 L2(Ω)g,

H0(div,Ω) := fu 2 H(div,Ω)jn � u = 0 on Γ N
p g.
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The corresponding norms are defined by

kφk0 :=
�Z
Ω

φ2dx
� 1

2 , φ 2 L2(Ω),

kuk0 :=
�Z
Ω

juj22 dV
� 1

2 , u 2 L2(Ω),

kφk1 :=
�
kφk2

0 + krφk2
0

� 1
2 , φ 2 H1(Ω),

kukdiv :=
�
kuk2

0 + kr � uk2
0

� 1
2 , u 2 H(div,Ω).

3.2.1 Displacement-pressure formulation

The equations that describe the behaviour of a deformable two-component material,
are often reduced to a set of equations with only the solid matrix displacements and the
fluid pressure as unknowns. In this displacement-pressure formulation (u-p formula-
tion), Darcy’s law is substituted into the mass balance equation (3.6). In this way, the
fluid fluxes are eliminated. So, the u-p problem can be described by the equations

�r �
�
2µsε(u) + λs r � u I

�
+rp = 0 inΩ,

∂
∂t

�
r � u

�
�r � (Krp) = 0 inΩ,

(3.10)

with boundary conditions

u = 0 on ΓD
u ,

n �
�
2µsε(u) + λs r � u I� p I

�
= gN

u on ΓN
u ,

p = 0 on ΓD
p ,

�n � (Krp) = gN
p on ΓN

p .

These boundary conditions can depend on time. We assume that they do not depend
on time, since we consider several stages in our experiments, as described in chapters 5
and 6, in which the boundary conditions do not change. Every stage can be considered
as a new problem with a different initial condition depending on the previous stage.

In order to solve these equation by a finite element method, the first equation is mul-
tiplied by a vectorial test function w and the second equation by a scalar test function
q. The resulting equations are integrated over the domain Ω. In this way, a variational
form is derived:

Problem 3.1 Find (u, p) 2 H1,0(Ω)d � H1,0(Ω) such that

a(u, w) + b(w, p) = hgN
u , wi,

d
dt b(u, q) � c(p, q) = hgN

p , qi, (3.11)

for every w 2 H1,0(Ω)d and q 2 H1,0(Ω).
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Here

a(u, w) :=
Z
Ω

2µsε(u) : ε(w) + λs(r � u)(r �w) dV,

b(w, q) := �
Z
Ω

r �w q dV,

c(p, q) :=
Z
Ω

�
Krp

�
�rq dV,

hgN
u , wi :=

Z
ΓN

u

gN
u �w dS,

hgN
p , qi :=

Z
ΓN

p

gN
p q dS.

In these equations, a time derivative appears. The Euler implicit time discretisation
is introduced, since it is a stable time discretisation. The problem to solve is now

Problem 3.2 Find (un, pn) 2 H1,0(Ω)d � H1,0(Ω) on time tn, such that

a(un , w) + b(w, pn) = hgN
u , wi ,

b(un, q) � ∆t c(q, pn) = b(un�1, q) +∆t hgN
p , qi, (3.12)

for every w 2 H1,0(Ω)d and q 2 H1,0(Ω) and ∆t = tn � tn�1 > 0.

Here, the subscript n� 1 denotes the value of a parameter at time tn�1, and the subscript
n the value at the next time tn = tn�1 +∆t.

A drawback of this formulation is that, when a finite element formulation is derived,
the displacements and the fluid pressures are computed directly, but the fluid flux is
computed a posteriori by Darcy’s law. Therefore, the gradient of the pressure field is
needed. This has to be approximated. So, the accuracy of the fluid flux will be less than
when it is computed directly. Also, when there is locally a steep gradient in the perme-
ability, the accuracy for the fluid flux will be poor since Darcy’s law is approximated. A
good accuracy can only be reached by using a locally very fine grid. This problem can
be avoided by computing the fluid flux directly. This is done in the next section.

3.2.2 Displacement-pressure-velocity formulation

The displacement-pressure-velocity formulation (u-p-v formulation) of the two-compo-
nent mixture theory employs the solid matrix displacements, the fluid pressure and the
fluid flux as unknowns. The variational formulation is derived by multiplying the first
equation of (3.7) by a vectorial test function w, the second one by a vectorial test function
s and the third one by a scalar test function q. The resulting equations are integrated
over the domain Ω. After applying the rules of partial integration, the variational form
of two-component problem is given by
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Problem 3.3 Find (u, v, p) 2 H1,0(Ω)d � H(div,Ω)� L2(Ω) such that n � v = gN
p on ΓN

p
and

a(u, w) + b(w, p) = hgN
u , wi,

c(v, s) + d(s, p) = 0,
d
dt b(u, q) + d(v, q) = 0,

(3.13)

for every w 2 H1,0(Ω)d, s 2 H0(div,Ω), and q 2 L2(Ω).

Here

a(u, w) :=
Z
Ω

2µsε(u) : ε(w) + λs(r � u)(r �w) dV,

b(w, q) := �
Z
Ω

r �w q dV,

c(v, s) :=
Z
Ω

(K�1v) � s dV,

d(s, q) := �
Z
Ω

r � s q dV,

hgN
u , wi :=

Z
ΓN

u

gN
u �w dS.

In these equations a time derivative appears. Therefore a time discretisation is need-
ed. A stable discretisation is the Euler implicit time discretisation. Now, the variational
problem is given by

Problem 3.4 Find (un, vn, pn) 2 H1,0(Ω)d � H(div,Ω)� L2(Ω) such that n � vn = gN
p on

ΓN
p and

a(un , w) + b(w, pn) = hgN
u , wi ,

∆t c(vn, s) + ∆t d(s, pn) = 0,
b(un, q) + ∆t d(vn, q) = b(un�1, q),

(3.14)

for every w 2 H1,0(Ω)d, s 2 H0(div,Ω), q 2 L2(Ω), and ∆t = tn � tn�1 > 0.

Note that the relative fluid velocity vn can be written as

vn = v0
n + v1

n, (3.15)

where v0
n 2 H0(div,Ω) and v1

n 2 H(div,Ω) such that n � v1
n = gN

p on ΓN
p . For the

theoretical considerations in the following analysis, we assume that gN
p = 0 without

loss of generality.
In order to investigate the existence and uniqueness of the solution of the variational

formulation of the two-component problem, the problem is rewritten as

Problem 3.5 Find (un, vn, pn) 2 H1,0(Ω)d � H0(div,Ω)� L2(Ω) such that

A(un, vn; w, s) + B(w, s; pn) = F(w),
B(un, vn; q) = b(un�1, q), (3.16)

for every w 2 H1,0(Ω)d, s 2 H0(div,Ω) and q 2 L2(Ω).
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Here

A(u, v; w, s) := a(w, u) + ∆t c(v, s),
B(w, s; q) := b(w, q) +∆t d(s, q),

F(w) := hgN
u , wi.

(3.17)

This problem is a saddle point problem.

Lemma 3.6 Problem 3.5 has a unique solution.

Proof. In the proof of uniqueness of the solution, the norm on H1,0(Ω)d � H0(div,Ω) is
used. This norm is defined by

kw, sk2
1,div := kwk2

1 + ksk2
div. (3.18)

First, a general saddle point problem is considered. Then, the two-component mix-
ture model is considered again.

In this proof, some additional definitions are needed. Let U and P be two Hilbert
spaces, and suppose a : U � U ! R and b : P �P ! R are continuous bilinear forms,
i.e.

kak := sup
0 6=u2U ,0 6=w2U

ja(u, w)j

kukUkwkU
<1,

kbk := sup
0 6=w2U ,0 6=q2P

jb(w, q)j
kwkUkqkP

<1.
(3.19)

Before the problem 3.5 is considered, we recall some properties for a general saddle
point problem. A general saddle point problem has the form

Problem 3.7 Find (u, p) 2 U �P with

a(u, w) + b(w, p) = hf, wiU 0�U ,
b(u, q) = hg, qiP 0�P ,

(3.20)

for every w 2 U , and every q 2 P .

For this problem, the kernels of the operators B and Bt are defined by

ker B :=fw 2 Ujb(w, q) = 0, 8q 2 Pg, (3.21)
ker Bt:=fq 2 Pjb(w, q) = 0, 8w 2 Ug. (3.22)

The saddle point problem 3.7 has a unique solution if the following two conditions
are satisfied (see for example [13]):
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1. The bilinear form a(u, w) is elliptic on ker B, i.e. there exists anα > 0, such that

a(w, w) � αkwk2
U , 8w 2 ker B. (3.23)

2. The bilinear form b(u, q) satisfies the inf-sup condition , i.e.

inf
0 6=q2P=ker Bt

sup
0 6=u2U

b(u, q)
kukUkqkP

� β, (3.24)

where β > 0.

Now, we return to the two-component mixture theory. Analogous to the general
saddle point problem, the kernels are defined by

ker B :=f(w, s) 2 H1,0(Ω)d � H0(div,Ω)jB(w, s; q) = 0, 8q 2 L2(Ω)g, (3.25)

ker Bt:=fq 2 L2(Ω)jB(w, s; q) = 0, 8(w, s) 2 H1,0(Ω)d � H0(div,Ω)g. (3.26)

The two-component mixture model has a unique solution if the following two condi-
tions are satisfied:

1. The bilinear form A(u, v; w, s) is elliptic on ker B, i.e. there exists an α > 0, such
that

A(w, s; w, s) � αkw, sk2
1,div , 8(w, s) 2 ker B. (3.27)

2. The bilinear form B(w, s; q) satisfies the inf-sup condition, i.e.

inf
0 6=q2L2(Ω)=ker Bt

sup
0 6=(w,s)2H1,0(Ω)d�H0(div,Ω)

B(w, s; q)
kw, sk1,divkqk0

� β, (3.28)

where β > 0.

First, the ellipticity condition is considered. In the proof of this condition, some extra
definitions with respect to the Lamé parameters and the permeability are needed:

µs,o := ess inf
x2Ω

µs > 0,

λs,o := ess inf
x2Ω

λs > 0,

Ko := ess sup
x2Ω

jKj2 <1.

(3.29)

Furthermore, Korn’s second inequality (see for example [12]) is needed:

Korn’s second inequality Let Ω � R
d be an open bounded set with a piecewise smooth

boundary. Then there exists a positive number c = c(Ω) such that
Z
Ω

ε(w) : ε(w) dV � ckwk2
1, 8w 2 H1,0(Ω)d . (3.30)
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Now, it is proven that A(w, s; w, s) fulfils the condition (3.27) using definitions (3.29)
and Korn’s second inequality. Let (w, s) 2 ker B, then

A(w, s; w, s) = a(w, w) +∆t c(s, s)

� 2µs,o

Z
Ω

ε(w) : ε(w) dV + λs,o

Z
Ω

(r �w)(r �w) dV +
∆t
Ko

Z
Ω

s � s dV

� 2cµs,okwk2
1 + λs,okr �wk2

0 +
∆t
Ko
ksk2

0

= 2cµs,okwk2
1 + λs,o(∆t)2 kr � sk2

0 +
∆t
Ko
ksk2

0

� min(2cµs,o, λs,o(∆t)2,
∆t
Ko

) kw, sk2
1,div .

(3.31)

So, the ellipticity condition (3.27) is fulfilled withα = min(2cµs,o, λs,o(∆t)2, ∆t
Ko
).

Next, the inf-sup condition is considered. Before this condition is proven, the follow-
ing problem is considered, see e.g. [13]:

Problem 3.8 Let q 2 L2(Ω), then there exists a unique φq 2 H1,0(Ω) such that
Z
Ω

rφq �rψ dV =
Z
Ω

qψ dV, 8ψ 2 H1,0(Ω). (3.32)

When choosing ψ = φq, the following equation holds:

krφqk
2
0 =

Z
Ω

qφq dV � kqk0kφqk0 � C(Ω)kqk0krφqk0, (3.33)

according to the Poincaré-Friedrichs inequality, see e.g. [12]:

kφk0 � C(Ω)krφk0, 8φ 2 H1,0(Ω), (3.34)

where C(Ω) > 0.
So, we end with the inequality

krφqk0 � C(Ω) kqk0. (3.35)

Note thatrφq 2 H0(div,Ω). Now, we choose s =rφq:

sup
0 6=(w,s)2H1,0(Ω)d�H0(div,Ω)

B(w, s; q)
kw, sk1,div

� ∆t sup
0 6=s2H0(div,Ω)

d(s; q)
kskdiv

� ∆t
�
R
Ω ∆φqq dV
krφqkdiv

= ∆t
kqk2

0�
krφqk2

0 + kqk2
0

�1=2

�
∆t�

1 + C(Ω)2
�1=2

kqk0.

(3.36)
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So, condition (3.28) holds with β = ∆t
�
1 + C(Ω)2

��1=2
.

Since conditions (3.27) and (3.28) are fulfilled, the continuous variational formula-
tion of the two-component mixture theory has a unique solution. Note that α and β
depend on ∆t. �

3.3 Finite Element Models

Both variational formulations described in the previous section, can be used to derive a
finite element model.

3.3.1 Displacement-pressure finite element model

The displacement-pressure equations (3.12) are solved numerically by means of the fi-
nite element method. In order to do so, the total domain Ω is split up into a number of
subdomainsω 2 Ωh.

We refer to the polynomial spaces Pn(Ωh) as a set of piecewise polynomials of degree
� n. Pn

0 (Ωh) means that the value of the piecewise polynomials of degree � n is zero at
the Dirichlet boundary.

The problem to solve is:

Problem 3.9 Find (uh, ph) 2 P1
0 (Ωh)d � P1

0 (Ωh) , i.e. uh = 0 on ΓD
u and ph = 0 on ΓD

p , such
that at time tn, for every wh 2 P1

0 (Ωh)d and for every qh 2 P1
0 (Ωh), it holds that

a(uh,n, wh) + b(wh , ph,n) = hgN
u , whi ,

b(uh,n, qh) � ∆t c(ph,n, qh) = b(uh,n�1, qh) +∆t hgN
p , qhi.

(3.37)

The functions uh and ph, and their basis functions are expressed as

uh(x, t) :=
I

∑
i=1

ũi(t)wi(x),

ph(x, t) :=
J

∑
j=1

p̃ j(t)qj(x).

In this way, problem 3.9 can be written in a matrix-vector notation:�
A B
BT �∆t C

� �
un

pn

�
=

�
F1

BTun�1 + ∆t F2

�
, (3.38)
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where

u := [ũ1 ũ2 � � � ũI ]
T,

p := [p̃1 p̃2 � � � p̃J ]
T,

Ai j :=
Z
Ω

2µsε(w j) : ε(wi) + λs(r �w j)(r �wi) dV,

Bi j := �
Z
Ω

r �wiq j dV,

Ci j :=
Z
Ω

(Krqj) � (rqi) dV,

F1,i :=
Z
ΓN

u

gN
u �wi dS,

F2,i :=
Z
ΓN

p

gN
p qi dS.

A drawback of this u-p formulation, is that the mass balance of the system is not
enforced, because an extra error is made by the computation, a posteriori, for the fluid
flow. This error arises in the approximating of the derivatives of the fluid pressure field,
which are used to compute the fluid flow via Darcy’s law. This extra error can be large
if there are large differences in the values for the permeabilities [50]. This error can be
avoided by a mixed finite element method as shown in the next section.

3.3.2 Mixed finite element model

Problem 3.3 is used to derive a mixed finite element model of the two-component mix-
ture model. In this finite element model, the infinite-dimensional spaces H1,0(Ω)d,
H0(div,Ω) and L2(Ω) are approximated by finite-dimensional spaces Uh, Vh and Ph.
Therefore, the total domain Ω is split up into a number of subdomains ω 2 Ωh. We
introduce a collection e 2 Eh of edges of subdomains ω 2 Ωh in the two-dimensional
case or the collection e 2 Eh of faces of subdomains ω 2 Ωh in the three-dimensional
case. The subdomains are chosen such that ΓN

p is described by a number of edges or
faces.

In this way, the variational problem 3.4 is approximated by

Problem 3.10 Find (uh, vh, ph) 2 Uh �Vh �Ph such that for every (wh , sh, qh) 2 Uh �Vh �
Ph,

a(uh,n, wh) + b(wh , ph,n) = hgN
u , whi,

∆t c(vh,n, sh) + ∆t d(sh , ph,n) = 0 ,
b(uh,n, qh) + ∆t d(vh,n, qh) = b(uh,n�1, qh).

Now, we are looking for the lowest order finite element spaces Uh, Vh and Ph such
that the approximated problem also has a unique solution. For the theoretical consider-
ation in the following analysis, we assume that gN

p = 0 without loss of generality.
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In order to do so, some finite element spaces have to be introduced. The first ones
are called Raviart-Thomas spaces [13]. The Raviart-Thomas space RT0(ω) is the space of
linear vectorial functions u on ω, such that n � u is constant on edges or faces. Now,
some other Raviart-Thomas spaces are defined by

RT0
�1(Ωh) :=fu 2 L2(Ω)j ujω 2 RT0(ω), 8ω 2 Ωhg,

RT0
0 (Ωh) :=fu 2 RT0

�1(Ωh)j the normal component of u is continuous
across the interelement boundariesg

=RT0
�1(Ωh) \ H(div,Ω),

RT0
0,0(Ωh) :=fu 2 RT0

0 (Ωh)j n � u = 0 on ΓN
p g

=RT0
�1(Ωh) \ H0(div,Ω).

(3.39)

The finite dimensional space RT0
0,0(Ωh) is spanned by linearly independent vectorial

basis functions vi, i = 1, ..., I, such that
Z

e j

n j � vidS = δi j, i, j = 1, ..., I,

where n j is the normal vector of edge or face ej. The normal is directed outwards when
its on the Dirichlet edge or face.

Other spaces we need, are called multiplier spaces [13]. The multiplier space M0(ω)
is the one-dimensional space on constant scalar functions on ω 2 Ωh. Then, another
multiplier space is defined by

M0
�1(Ωh) := fp 2 L2(Ω)j pjω 2 M0(ω), 8ω 2 Ωhg. (3.40)

The finite dimensional space M0
�1(Ωh) is spanned by linearly independent scalar basis

functions ψ j, j = 1, ..., J, such that

ψi(x) = δi j, x 2 Ω j, i, j = 1, ..., J.

Lemma 3.11 The approximated variational problem 3.10 has a unique solution if Uh = P1
0 (Ωh)d,

Vh = RT0
0,0(Ωh), and Ph = M0

�1(Ωh).

Proof. In order to prove this lemma, it has to be checked whether the discrete ellip-
ticity condition is fulfilled and whether the discrete inf-sup condition, also called LBB-
condition, is fulfilled.

First, the discrete ellipticity condition is checked. Therefore, the kernels of the dis-
crete operators Bh and Bt

h are defined by

ker Bh:=f(wh , sh) 2 P1
0 (Ωh)

d � RT0
0,0(Ωh)jB(wh , sh; q)h = 0, 8qh 2 M0

�1(Ωh)g, (3.41)

ker Bt
h:=fq 2 M0

�1(Ωh)jB(wh , sh; qh) = 0, 8(wh, sh) 2 P1
0 (Ωh)

d � RT0
0,0(Ωh)g. (3.42)
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Next, a projection is used with the property that for every q 2 L2(Ω) there is a Πhq 2
M0
�1(Ωh) such that

Z
Ω

(q�Πhq) r dV = 0, 8r 2 M0
�1(Ωh). (3.43)

Let (w, s) 2 P1
0 (Ωh)d � RT0

0,0(Ωh) and q 2 L2(Ω), then r �w 2 M0
�1(Ωh) and r � s 2

M0
�1(Ωh). So,
Z
Ω

r �w q dV + ∆t
Z
Ω

r � s q dV =
Z
Ω

r �w Πhq dV +∆t
Z
Ω

r � s Πhq dV. (3.44)

This means that ker Bh � ker B. Thus, A(wh, sh; wh, sh) is elliptic on ker Bh, since
A(w, s; w, s) is elliptic on ker B.

Next, the LBB-condition is considered. A projection is used for s: for every s 2
H0(div;Ω) there exists a Πhs 2 RT0

0,0(Ωh), such that
Z

e
n � (s� Πhs) dS = 0, 8e 2 Eh. (3.45)

Furthermore it holds that
Z
ω
r � (s�Πhs) dV =

Z
∂ω

n � (s� Πhs) dS = 0, 8ω 2 Ωh. (3.46)

Since
Z
ω
r � s�Πh(r � s) dV = 0, (3.47)

it holds that

r � (Πhs) = Πh(r � s). (3.48)

For the projection Πh it holds that

kΠhskdiv � Cpkskdiv. (3.49)

Next, the proof is analogous to section 3.2.2. The following problem is considered:

Problem 3.12 Let qh 2 M0
�1(Ωh), then there exists a unique φh 2 H1,0(Ω) such that

Z
Ω

rφh �rψ dV =
Z
Ω

qhψ dV, 8ψ 2 H1,0(Ω). (3.50)

When choosing ψ = φh, it follows

krφhk0 � C(Ω) kqhk0, (3.51)

where C(Ω) � 0.
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Note thatrφh 2 H0(div,Ω). Further,
Z
Ω

∆φh r dV =
Z
Ω

r � (Πh(rφh)) r dV, r 2 M0
�1(Ωh). (3.52)

Now, we choose sh = Πh(rφh):

sup
0 6=(wh,sh)2P1

0 (Ωh)d�RT0
0,0(div,Ω)

B(wh, sh; qh)

kwh, shk1,div
� ∆t sup

0 6=sh2RT0
0,0(div,Ω)

d(sh ; qh)

kshkdiv

� ∆t
�
R
Ωh
r � (Πh(rφh))qh dV

kΠh(rφh)kdiv

� ∆t
�
R
Ωh

∆φhqh dV

Cp krφhkdiv

= ∆t
kqhk2

0

Cp
�
krφhk2

0 + kqhk2
0

�1=2

�
∆t

Cp
�
1 + C(Ω)2

�1=2
kqk0.

(3.53)

So, condition (3.28) holds with β = ∆t C�1
p

�
1 + C(Ω)2

��1=2
.

Since conditions (3.27) and (3.28) are fulfilled, the continuous variational formula-
tion of the two-component mixture theory has a unique solution. Note that α and β
depend on ∆t. �

The function uh 2 P1
0 (Ωh)d, vh 2 RT0

0,0(Ωh) and ph 2 M0
�1(Ωh), and their basis

functions are expressed as

uh(x, t) :=
I

∑
i=1

ũi(t)wi(x),

vh(x, t) :=
J

∑
j=1

ṽ j(t)s j(x),

ph(x, t) :=
K

∑
k=0

p̃k(t)qk(x).

Substitution in the discrete variational formulation leads to2
4A 0 B

0 ∆t C ∆t D
BT ∆t DT 0

3
5
2
4un

vn

pn

3
5 =

2
4 F1

0
BT un�1

3
5 , (3.54)
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where,

u := [ũ1 ũ2 ... ũI ]
T,

v := [ṽ1 ṽ2 ... ṽJ]
T,

p := [p̃1 p̃2 ... p̃K]
T,

Ai j =
Z
Ω

2µsε(w j) : ε(wi) + λs (r �w j)(r �wi) dV,

Bi j := �
Z
Ω

(r �wi)qj dV,

Ci j :=
Z
Ω

(K�1s j) � si dV,

Di j := �
Z
Ω

r � s j qi dV,

F1,i :=
Z
ΓN

gN
u �wi dS.

The disadvantage of modelling the two-component mixture theory in this mixed fi-
nite element method is that it results in very large and sparse matrices A, B, C and D,
especially if the domain is three-dimensional. We would like to reduce the system with-
out losing the advantages of the displacement-pressure-velocity formulation. Therefore,
we introduce a mixed-hybrid finite element model that is discussed in the next section.

3.3.3 Mixed-hybrid finite element model

In the mixed-hybrid finite element model a Lagrange multiplier is introduced, that en-
forces the continuity of the normal component of the fluxes v across the inter element
boundaries. Therefore, an approximation of the Dirichlet boundary condition is defined
by

Z
e
(gD

h � gD) dS = 0, 8e 2 Eh. (3.55)

Now, some additional multiplier spaces are defined, see e.g. [50]:

M0
�1(Eh) := fλ 2 H1=2(

[
e2Eh

e) j λe 2 M0(e), 8e 2 Ehg,

M0
�1,0(Eh) := fλ 2 M0

�1(Eh) j λ = 0 on ΓD
p g.

(3.56)

It follows that if v 2 RT0
�1(Ωh), then v 2 RT0

0,0(Ωh) if, and only if,

∑
ω2Ωh

Z
∂ω

n � v µ dS = 0, 8µ 2 M0
�1,0(Eh), (3.57)

where n is the outward normal to ∂ω.
So, the mixed-hybrid finite element model of the two-component mixture theory is

as follows
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Problem 3.13 Find (uh, vh, ph, λh) 2 P1
0 (Ωh)d � RT0

�1(Ωh)� M0
�1(Ωh)� M0

�1,0(Eh) such
that for every (wh, sh, qh,µh) 2 P1

0 (Ωh)d � RT0
�1(Ωh)� M0

�1(Ωh)� M0
�1,0(Eh),

a(uh,n, wh) + b(wh , ph,n) = f1(wh),
∆t c(vh,n, sh) + ∆t d(sh , ph,n) + ∆t e(sh , λh) = 0,

b(uh,n, qh) + ∆t d(vh,n, qh) = b(uh,n�1, qh) ,
∆t e(vh,n,µh) = ∆t f2(µh),

where,

a(uh , wh) :=
Z
Ω

2µsε(uh) : ε(wh) + λs(r � uh)(r �wh) dV,

b(wh , ph) := �
Z
Ω

r �wh ph dV,

c(vh, sh) :=
Z
Ω

(K�1vh) � sh dV,

d(sh , ph) := � ∑
ω2Ωh

Z
ω
r � sh ph dV,

e(sh, λh) := ∑
ω2Ωh

Z
∂ω

n � sh λh dS,

f1(wh) :=
Z
ΓN

u

gN
u �wh dS,

f2(µh) :=
Z
ΓN

p

gN
p µh dS.

Now, the discrete form of the functions uh, vh, ph and λh and their corresponding
basis functions are introduced. These functions can be expressed as

uh(x, t) :=
I

∑
i=1

ũi(t)wi(x),

vh(x, t) :=
J

∑
j=1

ṽ j(t)s j(x),

ph(x, t) :=
K

∑
k=1

p̃k(t)qk(x),

λh(x, t) :=
L

∑
l=1

λ̃l(t)µl(x).

By substituting these functions into the variational formulation, the following system is
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derived 2
664

A 0 B 0
0 ∆t C ∆t D ∆t E

BT ∆t DT 0 0
0 ∆t ET 0 0

3
775
2
664

un

vn

pn

λn

3
775 =

2
664

F1

0
BT un�1

∆t F2

3
775 , (3.58)

where

u := [ũ1 ũ2 ... ũI ]
T,

v := [ṽ1 ṽ2 ... ṽJ]
T,

p := [p̃1 p̃2 ... p̃K]
T,

λ := [λ̃1 λ̃2 ... λ̃L]
T,

Ai j :=
Z
Ω

2µsε(wi) : ε(w j) dV +
Z
Ω

λs(r �wi)(r �w j) dV,

Bi j := �
Z
Ω

(r �wi)qj dV,

Ci j :=
Z
Ω

(K�1s j) � si dV,

Di j := �
Z
ω j

r � si dV,

Ei j :=
Z

∂ω j

n � si dS,

F1,i :=
Z
ΓN

u

gN
u �wi dS,

F2,i :=
Z
ΓN

p

gN
p µi dS.

C is a symmetric positive definite block-matrix. So, it has an element-wise inverse
C�1. Using this property, it follows:

vn = C�1(�D pn � E λn). (3.59)

This can be substituted into the system of coupled equations:2
4A B 0

BT �∆t DTC�1D �∆t DTC�1 E
0 �∆t ETC�1 D �∆t ETC�1 E

3
5
2
4un

pn

λn

3
5 =

2
4 F1

BT un�1

∆t F2

3
5 . (3.60)

Note that DTC�1D is a diagonal matrix with positive diagonal entries.
Eventually, we obtain

pn = (DTC�1D)�1�BT

∆t
un �

BT

∆t
un�1 � (DTC�1E) λn

�
. (3.61)
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So, the system that has to be solved reduces to�
A� B�
BT
� �∆tC�

� �
un

λn

�
=

�
F̃1
�

F̃2
�

�
, (3.62)

where

A� := A +
1
∆t

B(DTC�1D)�1BT,

B� := �B(DTC�1D)�1(DTC�1E),

C� := �(ETC�1D)(DTC�1D)�1(DTC�1E) + ETC�1E,

F̃1
� := F1 +

1
∆t

B(DTC�1D)�1BT un�1,

F̃2
� := ∆t F2 � B(DTC�1D)�1(DTC�1E) un�1.

The matrices A� and C� are positive definite matrices (see [50]).

3.4 Examples

3.4.1 One-dimensional example

A one-dimensional confined compression experiment is considered (figure 3.2). In such
experiment, a force is applied by an impermeable piston at one side of the sample. At
the other side, the fluid can flow out freely, but solid displacements are not possible. The
rest of the cylindrical sample is enclosed in an impermeable ring. So, the experiment can
be described by a one-dimensional model.

The boundary conditions are as follows (figure 3.2): the first boundary condition is a
Dirichlet boundary condition for the displacements: u(0, t) = 0. The second boundary
condition is p(0, t) = 0. So, the material fixed at x = 0 and there is a free fluid outlet at
x = 0. At x = L (at the other side of the material), a force F is applied. At that side, no
fluid flux is allowed.

The behaviour of the solution is analysed by letting the time step going to zero (∆t !
0). This may cause problems, since for example the ellipticity condition (3.27) depends
on ∆t. From earlier studies, it appeared that when ∆t was chosen smaller than a critical
value, oscillations in the solution occurred. For the sake of simplicity, it is assumed that
the material parameters (the permeability K and the Lamé parameters µs and λs) have
the same value over the whole domain. Further, it is assumed that these parameters
do not depend on the deformation of the solid matrix. A uniform mesh is used with
element length h.

Displacement-pressure finite element model

Since a one-dimensional model is used, problem 3.9 reduces to
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Figure 3.2 Schematic representation of the confined compression experiment.

Problem 3.14 Find (uh, ph) 2 P1
0 (Ωh)� P1

0 (Ωh) such that on time tn, for every wh 2 P1
0 (Ωh)

and for every qh 2 P1
0 (Ωh),

a(uh,n, wh) + b(wh, ph,n) = hgN
u , whi,

b(uh,n, qh) � ∆t c(qh , ph,n) = b(uh,n�1, qh) +∆t hgN
p , qhi,

(3.63)

where,

∆t := tn � tn�1,

a(uh , wh) := (2µs + λs)
Z L

0
(

d
dx

uh
d

dx
wh) dx,

b(wh , ph) := �
Z L

0
ph

d
dx

wh dx,

c(qh , ph) := K
Z L

0

d
dx

qh
d

dx
ph dx,

hgN
u , whi := gN

u ,

hgN
p , qhi := gN

p ,

and L is the size of the material.
The functions uh and ph, and their basis functions are expressed as

uh(x, t) :=
I

∑
i=1

ũi(t)wi(x),

ph(x, t) :=
J

∑
j=1

p̃ j(t)qj(x).

In this way, problem 3.14 can be written in matrix-vector notation�
A B
BT �∆t C

� �
un

pn

�
=

�
F1

∆t F2 + BTun�1

�
, (3.64)
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where

u := [ũ1 ũ2 � � � ũI ]
T,

p := [p̃1 p̃2 � � � p̃J ]
T,

Ai j := (2µs + λs)
Z L

0
(

d
dx

wj
d

dx
wi) dx,

Bi j := �
Z L

0

d
dx

wi qj dx,

Ci j := K
Z L

0

d
dx

qj
d

dx
qi dx,

F1,i := gN
u ,

F2,i := gN
p .

The material is divided up into N uniform elements with element size h = L=N. Then,
the following N�N matrices are established:

A =
2µs + λs

h

2
66666664

2 �1
�1 2 �1

�1 2 �1
. . . . . . . . .

�1 2 �1
�1 1

3
77777775

, B =
1
2

2
66666664

0 1
�1 0 1

�1 0 1
. . . . . . . . .

�1 0 1
�1 �1

3
77777775

,

C =
K
h

2
66666664

2 �1
�1 2 �1

�1 2 �1
. . . . . . . . .

�1 2 �1
�1 1

3
77777775

.

Now, the numerical properties are investigated, which are related to the size of the time
steps (∆t) and the element size (h). Therefore, the matrix notation of equation (3.64) is
rewritten by eliminating the displacements un. The resulting equation is

(BT A�1 B +∆t C) pn = ∆t F2 + BTun�1 � BT A�1F1.
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The matrix on the left is now written out completely:

(BT A�1 B +∆t C) =
h

4(2µs + λs)

2
66666664

2 1
1 2 1

1 2 1
. . . . . . . . .

1 2 1
1 1

3
77777775
+

∆t
K
h

2
66666664

2 �1
�1 2 �1

�1 2 �1
. . . . . . . . .

�1 2 �1
�1 1

3
77777775

.

In order to investigate the numerical behaviour when using small time steps, the defi-
nition of an M-matrix [66] is needed.

Definition 3.15 A matrix A is an M-matrix if its entries ai j satisfy ai j � 0 for i 6= j and
aii > 0, and its inverse A�1 exists with A�1 � 0.

The matrix BT A�1 B + ∆t C is an M-matrix if

∆t > ∆tcrit =
h2

4K(2µs + λs)
. (3.65)

This critical step size ∆tcrit is important for the occurrence of oscillations in the solution:
if ∆t < ∆tcrit then oscillations can occur in the solution. If∆t > ∆tcrit then no oscillations
will occur.

The same critical step size can be derived by eliminating the pressures pn:

(B C�1 BT +∆t A) un = �∆t F1 + B C�1 un�1 � B C�1 F2. (3.66)
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The matrix on the left is now written out completely:

B C�1 BT +∆t A =
h

4K

2
6666666664

2 1 �4
1 2 1 �4

1 2 1 �4
. . . . . . . . . . . . ...

1 2 1 �4
1 2 �3

�4 �4 �4 � � � �4 �3 4N � 3

3
7777777775
+

∆t
2µs + λs

h

2
6666666664

2 �1
�1 2 �1

�1 2 �1
. . . . . . . . .

�1 2 �1
�1 2 �1

�1 1

3
7777777775

.

Oscillations in the solution can occur when matrix B C�1 BT +∆t A is not an M-matrix.
The matrix B C�1 BT + ∆t A is an M-matrix if

∆t > ∆tcrit =
h2

4K(2µs + λs)
.

This gives of course the same result as by elimination of the displacements.
From simulations, it appears that oscillations occur when ∆t < ∆tcrit. Figure 3.3

shows the results for ∆t = 0.5 ∆tcrit and ∆t = 1.5 � ∆tcrit. These values are chosen,
because then the oscillations are visible. For every other ∆t < ∆tcrit oscillations will
occur also.

Also the convergence of the solution of this problem is considered. The computed
displacements are compared to the analytical solution for the confined compression ex-
periment as described by Terzaghi [74]. The maximum norm for the global error in the
displacement solution is put in the table 3.1. The parameters have the values K = 1 (per-
meability), t = 0.01 (final time), µs = 0.400 and λs = 0.267. All errors are considered at
the final time. From table 3.1, it appears that the error is O(∆t) and O(h2).

Mixed-hybrid finite element method

The same confined compression experiment is solved by the mixed-hybrid finite ele-
ment method. The boundary conditions are applied to the matrix system (3.62). Then,
the Lagrange multipliers λn are eliminated. We derive

(A� +
1
∆t

B�C�1
� BT

� )un = F̃1
� +

1
∆t

B�C�1
� F̃2

�,
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Figure 3.3 Simulated data for a confined compression experiment for ∆t =
0.5 ∆tcrit (left) and for ∆t = 1.5 ∆tcrit (right).

Number of Number of Time Steps
Elements 2 4 8 16 32 64 128 256

2
4
8
16
32
64
128
256

3.76e-04
1.59e-04
6.56e-05
6.56e-05
6.56e-05
6.56e-05
6.56e-05
6.56e-05

4.09e-04
1.66e-04
3.93e-05
3.35e-05
3.35e-05
3.35e-05
3.35e-05
3.35e-05

4.28e-04
1.69e-04
4.02e-05
1.69e-05
1.69e-05
1.69e-05
1.69e-05
1.69e-05

4.38e-04
1.71e-04
4.45e-05
9.99e-06
8.50e-06
8.50e-06
8.50e-06
8.50e-06

4.43e-04
1.71e-04
4.66e-05
1.08e-05
4.26e-06
4.26e-06
4.26e-06
4.26e-06

4.46e-04
1.72e-04
4.77e-05
1.14e-05
2.52e-06
2.13e-06
2.13e-06
2.13e-06

4.47e-04
1.72e-04
4.82e-05
1.16e-05
2.71e-06
1.07e-06
1.07e-06
1.07e-06

4.48e-04
1.72e-04
4.85e-05
1.18e-05
2.86e-06
6.32e-07
5.33e-07
5.33e-07

Table 3.1 Maximum norm for the global error in the displacements for the u-p
finite element formulation.

where

A� =
�2µs + λs

h
+

h
12K∆t

�

2
6666666664

2 �1
�1 2 �1

�1 2 �1
. . . . . . . . .

�1 2 �1
�1 2 �1

�1 1

3
7777777775
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and

1
∆t

B�C�1
� BT

� =
h

4K∆t

2
6666666664

2 1 �4
1 2 1 �4

1 2 1 �4
. . . . . . . . . ...

1 2 1 �4
1 2 �3

�4 �4 �4 � � � �4 �3 4N � 3

3
7777777775

.

Oscillations in the solution can occur when matrix A�+
1
∆t(B�C

�1
� BT

� ) is not an M-matrix.
This matrix is an M-matrix if

2µs + λs

h
+

h
12K∆t

>
h

4K∆t
,

i.e.

∆t > ∆tcrit =
h2

6K(2µs + λs)
.

This means that the critical time step size ∆tcrit is 1 1
2 times smaller is than in the u-p

formulation.
From simulations, it appears that oscillations occur when ∆t < ∆tcrit. Figure 3.4

shows the results for ∆t = 0.5 ∆tcrit and ∆t = 1.5 ∆tcrit. These values are chosen, be-
cause then the oscillations are visible. For every other ∆t < ∆tcrit oscillations will occur
also. The convergence of the solution of this problem is considered also. The computed
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Figure 3.4 Simulated data for a confined compression experiment for ∆t =
0.5 ∆tcrit (left) and for ∆t = 1.5 ∆tcrit (right).
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displacements are compared to the analytical solution for the confined compression ex-
periment as described by Terzaghi [74]. The maximum norm for the global error in the
displacement solution is put in the table 3.2. The parameters have the values K = 1 (per-
meability), t = 0.01 (final time), µs = 0.400 and λs = 0.267. All errors are considered at
the final time.

Number of Number of Time Steps
Elements 2 4 8 16 32 64 128 256

2
4
8
16
32
64
128
256

3.76e-04
1.60e-04
6.56e-05
6.56e-05
6.56e-05
6.56e-05
6.56e-05
6.56e-05

4.09e-04
1.66e-04
3.93e-05
3.35e-05
3.35e-05
3.35e-05
3.35e-05
3.35e-05

4.28e-04
1.69e-04
4.02e-05
1.69e-05
1.69e-05
1.69e-05
1.69e-05
1.69e-05

4.38e-04
1.71e-04
4.45e-05
9.99e-06
8.50e-06
8.50e-06
8.50e-06
8.50e-06

4.43e-04
1.71e-04
4.66e-05
1.08e-05
4.26e-06
4.26e-06
4.26e-06
4.26e-06

4.46e-04
1.72e-04
4.77e-05
1.14e-05
2.52e-06
2.13e-06
2.13e-06
2.13e-06

4.47e-04
1.72e-04
4.82e-05
1.16e-05
2.71e-06
1.07e-06
1.07e-06
1.07e-06

4.48e-04
1.72e-04
4.85e-05
1.18e-05
2.86e-06
6.32e-07
5.33e-07
5.33e-07

Table 3.2 Maximum norm for the global error in the displacements for the
mixed-hybrid finite element formulation.

From table 3.2, it appears that the error is O(∆t) and O(h2).

3.4.2 Two-dimensional example

Mixed-hybrid finite element method

Also a two-dimensional example is investigated. A two-dimensional version of the
squeezing a sponge (plane strain) is considered [49]. In this problem, the sponge is
squeezed in x- and y-direction over distance u0 (figure 3.5). Because of the symmetry
of the problem, we consider the part x � 0 and y � 0. The x-axis and the y-axis are
considered to be impermeable and only displacements along the direction of the axes
are allowed.

The analytical solution for the displacements in i-direction is given by [49]

u(xi) =
u0

L
xi +

1

∑
k=1

Lγk sin(
kπxi

L
) exp(

�k2π t
C

), i = 1, 2, (3.67)

where

γk =
2(�1)k

kπL
u0,

C =
L2

(2µs + λs)K
.
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Figure 3.5 Schematic representation of the two-dimensional squeezing experi-
ment.

The fluid pressure p and the fluid velocity v are described by

p = (2µs + λs)
1

∑
k=1

kπγk

2

∑
i=1

cos(
kπxi

L
) exp(

�k2π t
C

), (3.68)

and

v(xi) = �L
1

∑
k=1

γkk2xi

C
sin(

kπxi

L
) exp(

�k2π t
C

), i = 1, 2. (3.69)

These analytical solutions are compared to the mixed-hybrid finite element solutions.
The parameters have the values K = 1 (permeability), µs = 0.400, λs = 0.267 and
L = 1. In figures 3.6 and 3.7, the analytical solutions for the displacements and fluid
pressures are compared to the mixed-hybrid finite element solutions at t = 0.01. The
displacements that are shown, are a combination of the displacements in x-direction, ux,
and the displacements in y-direction, uy:

u(x) =
q

u2
x(x) + u2

y(x).
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Figure 3.6 Analytical solution (left) and FEM solution (right) for the displace-
ments at t = 0.01.
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Figure 3.7 Analytical solution (left) and FEM solution (right) for the fluid pres-
sure at t = 0.01.

In figure 3.8 the analytical evolution in time of the solid displacements and the fluid
flow are compared to the computed evolution in time at several positions in the sample.
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Figure 3.8 The evolution in time of the solid displacements (left) and the fluid
flow (right) at several positions in the sample.

When the time-step size is smaller than the critical size ∆tcrit, derived for the one-
dimensional case, oscillations in the solution occur too (figure 3.9).
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Figure 3.9 Computed solutions for the solid displacements (left) and for the
fluid pressure (right) at t = 0.6 ∆tcrit.

3.4.3 Discussion and conclusions

In the u-p formulation and the mixed-hybrid formulation, oscillations can occur when
the time steps are chosen too small. In the one-dimensional case, the critical time step
size ∆tcrit is related to the square of the element size h. The critical time step size in the
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mixed-hybrid formulation however is 11
2 times smaller than in the u-p formulation. Fur-

thermore, the fluxes can be computed more accurately in the mixed-hybrid formulation
than in the u-p formulation, especially when there are large gradients in the permeabil-
ity. In the one-dimensional examples this is not notable, since the the fluid can only flow
in one direction. The errors for both methods are about the same in the one-dimensional
examples. Advantages of the mixed-hybrid finite element method to the mixed finite
element are that the matrix size is reduced without loss of accuracy and that the matrix-
vector system in the mixed-hybrid finite element method has a form for which more
iterative methods are available. So, for computing the fluid flux in a two- or three-
dimensional situation with a large gradient in the permeability, it is better to choose the
mixed-hybrid finite element method. A drawback for the mixed and the mixed-hybrid
methods is that it is more expensive to compute the matrices.

It appears that in the u-p formulation and in the u-p-v formulation the error is O(∆t)
and O(h2).

From the inf-sup condition and the LBB-condition, it follows that the uniqueness
depends only on d(s, q) or d(sh , qh) and not on b(w, q) or b(wh , qh). This means that
there are more choices for the finite element space for wh without loosing the uniqueness
of the solution. The finite element space for wh has only to fulfil the discrete ellipticity
condition and does not have to fulfil the LBB-condition.
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4 Four-Component Mixture Theory

4.1 Physical Model

The two-component mixture theory of chapter 3 is not able to describe the swelling
and compression behaviour of the tissues, that is caused by chemical and/or electrical
loads. Therefore the theory is extended to a four-component mixture theory. In the
four-component mixture theory, the material is modelled as a porous medium that is
saturated with a fluid in which ions are dissolved. In the case of an intervertebral disc
tissue, the porous solid skeleton represents the fibre network (collagen fibres and pro-
teoglycans), the fluid represents the interstitial fluid and the ions represent the freely
moving positively and negatively charged particles. For the sake of simplicity, we as-
sume that the fluid is incompressible and Newtonian viscous, and the solid is linearly
elastic. The solid can shrink only by expelling fluid into its surroundings, or swell only
by attracting fluid from its surroundings.

According to chapter 2, the material behaviour is described by

r �σ �rp = 0, (4.1)
∂nα

∂t
+r � (nαvα) = 0, α = s, f , (4.2)

∂(n f cβ)
∂t

+r � (n f cβvβ) = 0, β = +,�, (4.3)

z+c+ + z�c� + z f cc f c = 0, (4.4)

ns + n f = 1, (4.5)
σ = 2µsε(u) + λsr � u I, (4.6)

n f (v f � vs) = �K
�
rp + (φl �φ+)RTrc+ + (φl �φ�)RTrc� � z f cc f cFrξ

�
, (4.7)

cβ(vβ � v f ) = �Dβ
�
(2�φβ)rcβ + zβ

F
RT

cβrξ +
V
β

RT
cβrp

�
, β = +,�, (4.8)

vs =
∂u
∂t

. (4.9)

Now, the mass balances for the phases, equations (4.2), are summed, the saturation
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equation (4.5) and the definition of the solid velocity (4.9) are substituted into the equa-
tion. Furthermore, the constitutive equation for the stress (4.6) is substituted into the
momentum equation (4.1) and the extended Darcy’s law (4.7) and the extended Fick’s
laws (4.8) are substituted into the mass balances for the ions (4.3).

The material behaviour is now described by

r � (2µsε(u) + λsr � u I)�rp = 0,

v = �K
�
rp + (φl �φ+)RTrc+ + (φl �φ�)RTrc� � z f cc f cFrξ

�
,

jβ = �Dβ
�
(2�φβ)rcβ+ zβ

F
RT

cβrξ +
V
β

RT
cβrp

�
, β = +,�,

∂
∂t
(r � u) = �r � v,

∂(n f cβ)
∂t

= �r � (n f jβ)�r � (cβv)�r � (cβn f ∂u
∂t

), β = +,�,

z+c+ + z�c� + z f cc f c = 0,
(4.10)

where v := n f (v f � vs) is the fluid flux relatively to the solid velocity and jβ := cβ(vβ �
v f ) is the ion flux relatively to the fluid flow. The stress σ and the solid velocity vs can
be derived a posteriori by the relations (4.6) and (4.9). The porosity nf is a function of
the deformation. We assume that solid is incompressible. So, the total volume can only
change by expelling or attracting the fluid. Then, the porosity nf is described by (3.9):

n f :=
V f

Vtot = 1�
1� n f

0

J
, (4.11)

where n f
0 is the initial porosity and J := det(ru) is the relative volume change.

For the sake of simplicity, the following boundary conditions are considered

u = 0 on ΓD
u ,

p = pin on ΓD
p ,

c+ = c+in on ΓD
p ,

c� = c�in on ΓD
p ,

ξ = ξin on ΓD
p ,

n � (2µsε(u) + λs r � u I� p I) = gN
u on ΓN

u ,

n � v = 0 on ΓN
p ,

n � j+ = 0 on ΓN
p ,

n � j� = 0 on ΓN
p ,

where the Dirichlet boundaries ΓD
α and the Neumann boundaries Γ N

α are open portions
of the total boundary Γ , such that ΓD

α

T
ΓN
α = ; and Γ

D
α

S
Γ

N
α = Γ . Other boundary
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conditions can also be considered, but they make the formulae even more complex. We
assume that the Dirichlet boundaries ΓD

p are the same for the fluid pressure, the cation
concentration, the anion concentration and the electrical potential. In that case, the
sample is in contact with a bathing solution (figure 4.1). So, the the fluid pressure, the
cation concentration, the anion concentration and the electrical potential are prescribed.
On the boundary ΓN

p , the sample is in contact with an insulating, impermeable wall. So,
no fluxes are allowed over that boundary. These boundary conditions are sufficient for
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Figure 4.1 Schematic representation of the boundary conditions.

describing the swelling and compression experiments of chapters 5 and 6.
Since there is a jump over the boundary, the values for the fluid pressure pin, the

cations concentration c+in, the anion concentration c�in and the electrical potential ξin are
prescribed inside the sample. We assume that the outer part of the sample is in equi-
librium with the bathing solution. Then, the ion concentration for a mono-valent salt
solution is given by the Donnan equilibrium, see e.g. [28, 43]:

c+in = �
1
2

z f cc f c +
1
2

s
(z f cc f c)2 +

f+out f�out

f+in f�in
(c+out + c�out)

2, (4.12)

c�in = +
1
2

z f cc f c +
1
2

s
(z f cc f c)2 +

f+out f�out

f+in f�in
(c+out + c�out)

2, (4.13)

where the cβout and f βout are the concentrations and the activity coefficients of ion β in the
bathing solution and fβin is the activity coefficient of ion β inside the sample. Note that
the concentrations always fulfil the electro-neutrality condition (4.4):

c+in � c�in + z f cc f c = 0. (4.14)
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This means that c+in and c�in can not be chosen independently. The jump in the fluid
pressure is equal to the jump in the osmotic pressure, see e.g. [28, 43]:

pin � pout = πin � πout = �
RT

V
l ln

�
f l
in(1�

c+in + c�in
∑

γ=l,+,�
cγin

)
�
+

RT

V
l ln

�
f l
out(1�

c+out + c�out

∑
γ=l,+,�

cγout
)
�
,

(4.15)

where the definition of the osmotic pressure (2.25) is used. When c+ � cl and c� � cl,
this equation is approximated by

pin � pout = πin � πout � RT((c+in + c�in)� (c+out + c�out)). (4.16)

The jump on the electrical potential is described by the Nernst potential ξN, e.g. [35, 38]:

ξin �ξout = ξN = �
RT
zβF

ln
� f βincβin

f βoutc
β
out

�
, β = +,�. (4.17)

4.2 Variational Formulation

Equations (4.10) are solved by a finite element method. Therefore, the equations are
written in a variational form. Hence, the equations are multiplied by test functions and
integrated over the volume Ω. Further Gauss’ theorem is used. We assume that we can
choose the same spaces for the ion concentrations and the electrical potential as we use
for the fluid pressure in the two-component mixture theory (chapter 3), since they act
in the same way. Further, we assume that the fluid and ion fluxes behave in the same
way as the fluid flux in two-component mixture theory. The material behaviour is now
described by

Problem 4.1 Find ( u, v, j+, j�, p, c+, c�, ξ ) 2 H1,0(Ω)d � H0(div,Ω) � H0(div,Ω) �
H0(div,Ω) � L2(Ω) � L2(Ω) � L2(Ω) � L2(Ω) such that

a(u, w) +b(w, p) = Fu,
c(v, r) +d(r, p) +e(r, c+) +e(r, c�) + f (r,ξ) = F f ,

g(j+, s+) +h(s+, p)+i(s+, c+) + j(s+,ξ)= F+,
g(j�, s�) +h(s�, p) +i(s�, c�) + j(s�,ξ)= F�,

d
dt b(u, q) +d(v, q) = 0,
k( ∂

∂t u, d+)+l(v, d+)+m(j+, d+) + d
dt n(d+, c+) = 0,

k( ∂
∂t u, d�)+l(v, d�) +m(j�, d�) + d

dt n(d
�, c�) = 0,

o(r, c+) +o(r, c�) = Fξ ,

for every w 2 H1,0(Ω)d, r 2 H0(div,Ω), s+ 2 H0(div,Ω), s� 2 H0(div,Ω), q 2 L2(Ω),
d+ 2 L2(Ω), d� 2 L2(Ω), and r 2 L2(Ω).
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Here,

a(u, w) :=
Z
Ω

2(µsε(u) : ε(w) + λs(r � u)(r �w) dV,

b(w, p) := �
Z
Ω

r �w p dV,

c(v, r) :=
Z
Ω

(K�1v) � r dV,

d(r, p) := �
Z
Ω

r � r p dV,

e(r, cβ) := �
Z
Ω

r � r (φl �φβ)RTcβ dV,

f (r,ξ) :=
Z
Ω

r � r z f cc f cFξ dV,

g(jβ, sβ) :=
Z
Ω

(Dβ)�1jβ � sβ dV,

h(sβ, p) := �
Z
Ω

r � (cβsβ)
V
β

RT
p dV,

i(sβ, cβ) := �
Z
Ω

r � sβ(2�φβ)cβ dV,

j(sβ ,ξ) :=
Z
Ω

r � (cβsβ)zβ
F

RT
ξ dV,

k(
∂
∂t

u, dβ) :=
Z
Ω

r � (cβn f ∂
∂t

u) dβ dV,

l(v, dβ) :=
Z
Ω

r � (cβv) dβ dV,

m(jβ, dβ) :=
Z
Ω

r � (n f jβ) dβ dV,

n(dβ, cβ) :=
Z
Ω

dβn f cβ dV,

o(r, cβ) :=
Z
Ω

rzβcβ dV,

Fu(w) :=
Z
ΓN

u

gN
u �w dS,

F f (r) := �
Z
ΓD

p

n � r pin dS�
Z
ΓD

p

n � r (φl �φ+)RTc+in dS

�
Z
ΓD

p

n � r (φl �φ�)RTc�in dS +
Z
ΓD

p

n � r z f cc f cFξin dS,

F+(s+) := �
Z
ΓD

p

�
n � s+(2�φ+)c+in + n � s+z+

F
RT

c+inξin + n � s+
V
+

RT
c+in pin

�
dS,

F�(s�) := �
Z
ΓD

p

�
n � s�(2�φ�)c�in + n � s�z�

F
RT

c�inξin + n � s�
V
�

RT
c�in pin

�
dS,
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Fξ(r) := �
Z
Ω

rz f cc f c dV.

Note that this problem reduces to problem 3.3 (page 35), when there are no charged
particles inside the fluid. The problem is non-linear since, for example, h(sβ, p) con-
tains two unknowns: cβ and p. Also j(sβ , p), k( ∂

∂t u, dβ), l(v, dβ), m(sβ, dβ) and n(dβ, cβ)
contain more than one unknown.

4.3 Mixed Finite Element Model

Now, the variational problem is approximated by finite elements. Therefore, we choose
the finite element spaces (uh, vh, j+h , j�h , ph, c+h , c�h ,ξh) 2 P1

0 (Ω)d �RT0
0,0(Ωh)�RT0

0,0(Ωh)�
RT0

0,0(Ωh)� M0
�1(Ωh)� M0

�1(Ωh)� M0
�1(Ωh)� M0

�1(Ωh). These spaces are defined in
chapter 3. So, the finite element formulation of the problem is:

a(uh, wh) +b(wh, ph) = Fu
h ,

c(vh , rh) +d(rh, ph) +e(rh, c+h ) +e(rh, c�h ) + f (rh,ξh)= F f
h ,

g(j+h , s+h ) +h(s+h , ph)+i(s+h , c+h ) + j(s+h ,ξh)= F+h ,
g(j�h , s�h ) +h(s�h , ph) +i(s�h , c�h ) + j(s�h ,ξh)= F�h ,

d
dt b(uh , qh) +d(vh, qh) = 0,
k( ∂

∂t uh, d+h )+l(vh, d+h )+m(j+h , d+h ) + d
dt n(d+h , c+h ) = 0,

k( ∂
∂t uh, d�h )+l(vh, d�h ) +m(j�h , d�h ) + d

dt n(d�h , c�h ) = 0,
o(r, c+h ) +o(r, c�h ) = Fξh .

The functions uh, vh, j+h , j�h , ph, c+h , c�h and ξh are expressed as

uh(x, t) :=
I

∑
i=1

ũi(t)wi(x),

vh(x, t) :=
J

∑
j=1

ṽ j(t)s j(x),

j+h (x, t) :=
J

∑
j=1

j̃+j (t)s
+
j (x),

j�h (x, t) :=
J

∑
j=1

j̃�j (t)s
�
j (x),

ph(x, t) :=
K

∑
k=1

p̃k(t)qk(x),

c+h (x, t) :=
K

∑
k=1

c̃+k (t)d
+
k (x),
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c�h (x, t) :=
K

∑
k=1

c̃�k (t)d
�
k (x),

ξh(x, t) :=
K

∑
k=1

ξ̃k(t)rk(x).

Substitution in the discrete variational formulation leads to2
66666666664
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K� 0 0 0 0 0 N� 0
0 0 0 0 0 0 0 0

3
77777777775

d
dt
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p
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ξ
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2
66666666664

Fu

F f

F+

F�

0
0
0
Fξ

3
77777777775

,

(4.18)

where,

u := [ũ1 ũ2 ... ũI ]
T,

v := [ṽ1 ṽ2 ... ṽJ]
T,

j+ := [ j̃+1 j̃+2 ... j̃+J ]
T,

j� := [ j̃�1 j̃�2 ... j̃�J ]
T,

p := [p̃1 p̃2 ... p̃K]
T,

c+ := [c̃+1 c̃+2 ... c̃+K ]
T,

c� := [c̃�1 c̃�2 ... c̃�K ]
T,

ξ := [ξ̃1 ξ̃2 ... ξ̃K]
T,

Ai j :=
Z
Ω

2(µsε(w j) : ε(wi) + λs(r �w j)(r �wi) dV,

Bi j := �
Z
Ω

r �wi q j dV,

Ci j :=
Z
Ω

(K�1r j) � ri dV,

Di j := �
Z
Ω

r � ri q j dV,
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Eβi j := �
Z
Ω

r � ri (φ
l �φβ)RTdβj dV,

Fi j :=
Z
Ω

r � ri z f cc f cFr j dV,

Gβ
i j :=

Z
Ω

((Dβ)�1sβj ) � sβi dV,

Hi j := �
Z
Ω

r � (cβsβi )
V
β

RT
qj dV,

Iβi j := �
Z
Ω

r � sβi (2�φ
β)dβj dV,

Jβi j :=
Z
Ω
r � (cβsβi )zβ

F
RT

rj dV,

Kβ
i j :=

Z
Ω

r � (cβn f w j) dβi dV,

Lβi j :=
Z
Ω

r � (cβr j) dβi dV,

Mβ
i j :=

Z
Ω

r � (n f sβj ) dβi dV,

Nβ
i j :=

Z
Ω

dβi n f dβj dV,

Oβ
i j :=

Z
Ω

rizβdβj dV,

Fu
i :=

Z
ΓN

u

gN
u �wi dS,

F f
i := �

Z
ΓD

p

n � ri pin dS�
Z
ΓD

p

n � ri (φ
l �φ+)RTc+in dS�

Z
ΓD

p

n � ri (φ
l �φ�)RTc�in dS +

Z
ΓD

p

n � ri z f cc f cFξin dS,

F+
i := �

Z
ΓD

p

�
n � s+i (2�φ

+)c+in + n � s+i z+
F

RT
c+inξin + n � s+i

V
+

RT
c+inpin

�
dS,

F�i := �
Z
ΓD

p

�
n � s�i (2�φ

�)c�in + n � s�i z�
F

RT
c�inξin + n � s�i

V
�

RT
c�inpin

�
dS,

Fξi := �
Z
Ω

riz f cc f c dV.

This system of equations is solved by an Euler implicit time discretisation.
For the non-linear terms in the matrices, the values of the parameters at the previous

time-step are used, assuming that the values do not change much in between the time
steps.

The non-linear terms do not cause problems in the finite element formulation, be-
cause in H+, H�, J+, J�, K+, K�, L+, and L�, the gradient of a piecewise constant
function for cβ times a piecewise linear function is used. This results in a gradient of
a piecewise linear function, that can be computed easily.
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4.4 Electrochemical Potentials

A disadvantage of this set of equations is that the concentrations c+ and c�, the fluid
pressure p, and the electrical potential ξ are discontinuous functions. So, it is more
complicated to prescribe the boundary conditions. This is caused by the presence of
the fixed charges. When there is a discontinuity of the fixed charges, for example over
the boundary between a sample and the bathing solution, there is a discontinuity for
the ion concentrations (because of electro-neutrality), the fluid pressure (because of an
osmotic pressure) and the electrical potentials (because of a Nernst potential). From the
electro-neutrality condition (4.4) it follows that

c+ = �
z�

z+
c� �

z f c

z+
c f c. (4.19)

So, when the fixed charged density c f c shows a jump, the ion concentration c+ shows a
jump too. The same holds for the anion concentration.

The jump in the fluid pressure is described by (4.16). Since the concentrations are
discontinuous, the osmotic pressure is discontinuous. The electrical potential difference
over the boundary of a sample is described by (4.17) and is discontinuous too.

Therefore, Huyghe and Janssen [44] use electrochemical potentials. These potentials
are continuous functions. They are defined by equations (2.17) and (2.18):

µβ := µ
β
0 (T) + p +

zβ

V
β

Fξ +
RT

V
β

ln
�

f β
cβ

∑
γ=l,+,�

cγ
�
, β = l, +,�. (4.20)

The extended Darcy’s law (2.30) and the extended Fick’s law (2.31) are given by

n f (vl � vs) = �
K
n f

�
nl
rµl + n+

rµ+ + n�rµ�
�

,

cβ(vβ � vl) = �DβV
β
cβ

RT
rµβ, β = +,�.

The four-component mixture theory is described by (4.10). Now, the discontinuous fluid
pressure p, the cation concentration c+, the anion concentration c� and the electrical po-
tential ξ are replaced by the continuous electrochemical potentials. In a special case,
these unknowns can be expressed as algebraic functions of the electrochemical poten-
tials µl, µ+ and µ�. Therefore, we have to make some assumptions:

� We consider a mono-valent salt-solution (z+ = +1 and z� = �1).

� The number of ions is small compared to the number of liquid molecules: c+ � cl

and c� � cl . This means also that n+ � n f , n� � n f and cl = 1
V

l
n f

n f+n++n�
� 1

V
l .

� The activity coefficients f+ and f� do not depend on the ion concentrations.
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� In the electrochemical potentials for the ions, the fluid pressure can be neglected
compared to the concentration and the electrical potential terms:

µβ � µβ0 (T) + zβ
F

V
β
ξ +

RT

V
β

ln
�

f β
cβ

∑
γ=l,+,�

cγ
�
, β = +,�. (4.21)

Now, the equations (4.21) are multiplied by V
β

and then summed:

RT ln
� f+c+ f�c�

( ∑
γ=l,+,�

cγ)2

�
= V

+
(µ+ �µ+0 ) + V

�
(µ� �µ�0 ). (4.22)

Then, the condition of electro-neutrality (4.4) is used:

c�(c� � z f cc f c) =

( ∑
γ=l,+,�

cγ)2

f+ f�
exp

�V
+
(µ+� µ+0 ) + V

�
(µ� �µ�0 )

RT

�

�
1�

V
l�2

1
f+ f�

exp
�V

+
(µ+� µ+0 ) + V

�
(µ��µ�0 )

RT

�
.

From this equation and the electro-neutrality condition, it follows that

c� = +
1
2

z f cc f c +
1
2

vuut(z f cc f c)2 + 4
1�

V
l�2

1
f+ f�

exp
�V

+
(µ+ �µ+0 ) + V

�
(µ� �µ�0 )

RT

�
,

(4.23)

c+ = �
1
2

z f cc f c +
1
2

vuut(z f cc f c)2 + 4
1�

V
l�2

1
f+ f�

exp
�V

+
(µ+ �µ+0 ) + V

�
(µ� �µ�0 )

RT

�
.

(4.24)

The relations for the ions have to be substituted into equation (4.20) for β = l:

p = µ l �µl
0 �

RT

V
l ln

�
f l�1� c+ + c�

∑
γ=l,+,�

cγ
��

� µl �µl
0 �

RT

V
l ln

�
f l
�
1�V

l
(c+ + c�)

��
.

(4.25)

Furthermore, the relations for the ions have to be substituted into relation (4.21):

ξ =
1
F

�
V
+
(µ+� µ+0 )� RT ln

�
f+

c+

∑
γ=l,+,�

cγ
��

�
1
F

�
V
+
(µ+� µ+0 )� RT ln

�
V

l
f+c+

��
.

(4.26)
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The functions p = p(µl ,µ+,µ�) and ξ = ξ(µ+,µ�) are highly non-linear. These func-
tions are substituted into equations (4.10). In this way four discontinuous unknowns
are replaced by three continuous unknowns. The electro-neutrality condition can be re-
moved from the set of equations, since this condition is already used in order to express
the fluid pressure, the cation and anion concentrations and the electrical potential as
functions of the electrochemical potentials.

The advantages of this set of equations compared to the set of equations of section
4.1 are:

� The equations to solve contain less unknowns (15 unknowns in 3D: u, v, j+, j�, µl,
µ+ and µ�) than in the set of equations of section 4.1 (16 unknowns in 3D: u, v, j+,
j�, p, c+, c� and ξ).

� All unknowns are continuous over the boundary.

The disadvantages are:

� The equations are highly non-linear.

� The electrochemical potentials do not have a direct physical meaning. It is easier
to interpret the fluid pressure, the ion concentrations and the electrical potential,
than the electrochemical potentials.

This formulation has advantages for the three-component mixture theory [51, 70].
For the four-component mixture theory, the disadvantages are bigger than the advan-
tages for the description with electrochemical potentials. Therefore, we consider only
the set of equations of section 4.1.
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5 Experiments on Intervertebral Discs

5.1 Introduction

Connective tissues, like articular cartilage and intervertebral disc tissue, swell or shrink
due to mechanical, chemical and electrical loads. The tissue behaviour has been mod-
elled by mixture theories [15, 28, 29, 43, 45, 51, 61, 70]. We consider the four-component
mixture model derived by Huyghe and Janssen [43]. Here, four components are distin-
guished: a charged porous solid, a fluid, cations and anions. As described in table 1.1,
the fluid flow, the solute flow and the electrical current can be induced by a pressure
gradient, a concentration gradient and an electrical potential field. In order to describe
these phenomena by the four-component mixture theory, we need to determine the stiff-
ness, the permeability, the diffusion coefficients for the ions and the osmotic coefficients.
The values of these parameters are determined by experiments.

Previously, the material parameters were determined by one-dimensional perme-
ation experiments [33, 35] or by uniaxial experiments. In permeation experiments, a
pressure gradient is applied across a sample. In this way, a fluid flow and a streaming
potential are generated [33, 58]. The uniaxial experiments can be split into two groups.
In the first group of experiments, the deformation of the sample is allowed and mea-
sured in one direction. The deformation may be due to mechanical loads only [45, 61]
or to a combination of mechanical and chemical loads [24, 28, 29, 40, 41, 63]. In the sec-
ond group of experiments, the deformation is kept constant and the resulting swelling
pressure is measured [23, 63].

The goals of this study are the verification of the four-component mixture theory
and the determination of the material parameters of the intervertebral disc tissue by
confined swelling and compression experiments. The parameters are determined by
fitting the measurements to the four-component mixture theory. The mixture model is
verified by comparing the values estimated by parameter fitting to the values reported
in other studies [6, 23, 36, 59].
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5.2 Intervertebral Disc Tissue

An intervertebral disc is a cartilaginous structure that is located between two vertebral
bodies (figure 5.1). The tissue consists of a gelatinous centre, the nucleus pulposus,
surrounded by several concentrically arranged lamellae, the annulus fibrosus. In these
lamellae, fibre networks can be seen. The orientation of these fibres differs per lamella.
Obviously, these fibres make the material anisotropic.
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Figure 5.1 Intervertebral disc tissue.

The material mainly consists of a collagen network embedded in a hydrated proteo-
glycan gel. Collagen is a rod-like protein molecule built of long polypeptide chains.
Proteoglycans are large molecules consisting of many glycosaminoglycans linked to
core proteins. These glycosaminoglycans are made up of long chains of polysaccha-
rides. Due to the physiological pH and the ionic strength of the interstitial fluid, the
carboxyl and sulfate groups of the polysaccharides are ionised. The density of these
charges is the fixed charge density. Due to this ionisation the proteoglycans are capable
of retaining water up to a 50-fold of their own weight [19].

Because the proteoglycans are relatively fixed to the collagen network, osmotic phe-
nomena occur under physiological conditions. The osmotic pressure within the disc
ensures that the fibres of the annulus fibrosus are mainly subjected to tensile stresses, al-
though the disc transfers compressive stresses from vertebral body to vertebral body. To
understand this osmotic contribution, we subject samples to non-physiological changes
in the external salt concentration. The chemical load to the sample changes with the salt
concentration of the bathing solution. The osmotic swelling pressure in the disc highly
depends on the proteoglycan content [23].

The tissue can also deform because of a mechanical force. The evolution in time of
the deformation depends on the permeability and the stiffness of the matrix [41, 61].

The disc also contains cells. Since the cell density is low (5800 cells/mm3) and the
cell volume is less than 1% of the total volume [75], we assume that the cells hardly
contribute to the mechanical behaviour of the total material. Meanwhile, the cells are



5.3. MATERIAL AND METHODS 75

responsible for maintaining and remodelling the solid matrix. Their activity is vital
for the health of the disc [75]. It is believed that mechanisms controlling the cellular
metabolism depend on mechanical, physicochemical and electrical events in the tissue
during deformation (see e.g. [26, 33]). Therefore, it is important to understand the
relation between these events and the external forces.

5.3 Material and Methods

5.3.1 Sample preparation

The samples were made out of the annulus fibrosus part of the intervertebral disc tissue.
They were prepared according to Houben [40, 41]. Here a short description is given.
Intervertebral discs were obtained from the lumbar spines of 3 German Shepherds (2
males, 1 female, weight: 25� 40 kg, age: 1� 3 years), which were previously used for
cardiac experiments. We assumed that the operations and the drugs did not influence
the mechanical properties of the intervertebral discs. The lumbar part of the spine (L1�
S1) was removed within 3 hours after death. The muscle tissue and the ligaments were
cut off while avoiding damage of the disc surface. The spines were sealed in plastic bags
and placed in a freezer at �65 oC. Within two weeks, rectangular slabs were sawed out
of the annulus fibrosus part of the frozen discs L4-L5 to L7-S1, while cooling by liquid
nitrogen (�196 oC). Out of these slabs, 79 cylindrical samples (diameter 3.9 mm, height
approximately 1 mm) were made using a lathe, while cooling again by liquid nitrogen.
Each sample was put in an aluminium cup and kept in the freezer for maximally 21
days. During all stages of preparation the tissue was kept frozen.

5.3.2 Experimental set-up

In a uniaxial confined swelling and compression experiment, a cylindrical sample was en-
closed in an impermeable confining ring made out of stainless steel (figure 5.2). A me-
chanical load was applied on top of the sample via a stainless steel loading piston. At
the bottom of the sample was a glass filter through which a NaCl solution flowed. The
permeability of the glass filter (pore size 16 – 40 µm, permeability 10�12 m4N�1s�1) was
much larger than the permeability of the sample. Thus, the boundary conditions were
well defined for the fluid flow and for the ion concentrations along the filter-sample
interface. A chemical load was applied by altering the salt concentration of the bathing
solution.

During the experiments, the displacement of the piston was recorded via a linear
variable displacement transducer (LVDT, Schaevitz, USA) interfaced by a Labmaster
12 bit AD converter (Scientific Solutions Inc., USA) to an IBM-AT. The data acquisition
sampling frequency was 0.125 Hz. A vibrator was attached to the set-up, in order to
overcome the sticking of the piston to the wall. This device vibrated intermittently at 50
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Figure 5.2 Schematic representation of the experimental set-up. The sample is
enclosed in an impermeable confining ring.

Hz during 2 seconds. The vibration started 2 seconds after the data-acquisition. Lateral
forces on the piston were minimised by allowing free lateral motion of the measuring
chamber floating on a silicon oil film. Furthermore, the piston was greased with vaseline
to prevent leakage between the wall and the piston.

5.3.3 Experimental protocol

Before starting the experiment, the irregularities of the frozen sample were removed by
a scalpel. Then, the sample was placed in the loading chamber and the piston was put
on top of it. Air in the set-up was removed by a vacuum pump. The temperature was
kept at 22 � 1 oC. The sample was loaded by the protocol of table 5.1 [28]. The duration
of each stage was chosen such that an equilibrium was reached at the end of each stage.
An equilibrium was considered to be reached when the sample height did not change
more than 1% for the last hour. The duration of each stage depended on the size of the
sample and its original position in the disc. The first stage, the conditioning stage, was
used to get a well defined starting situation.

stage conditioning swelling consolidation control
mechanical load [MPa] 0.078 0.078 0.195 0.078
concentration [mol l�1] 0.469�0.026 0.159�0.014 0.159�0.014 0.469�0.026

Table 5.1 Experimental protocol.

Note that the boundary conditions of the first and last stage were the same. This was
done to check whether the material properties were maintained during the experiments.
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5.3.4 Data analysis

Successful experiments were selected for further analysis. An experiment was consid-
ered successful, when no visible leakage occurred over the piston, no parts of bones or
blood were included in the samples and the sample height after the first and the fourth
stage differed less than 5%.

The material parameters were obtained by fitting the second and third stage. We
assumed that the values of the parameters did not depend on the deformation. We fitted
the experiments in the following way. In first approximation, the osmotic pressure was
the same at the end of both stages, since there was no change in the concentration of
the bathing solution, only a change in the fixed charged density. So, the value for the
aggregate modulus H := 2µs + λs was determined from the increase of the mechanical
load ∆σ and the strain ε of the sample:

H :=
∆σ

ε
, (5.1)

with

ε :=
h2 � h3

h3
, (5.2)

where h2 and h3 were respectively the sample heights at the end of the second and the
third stage.

The porosity of a sample was measured afterwards by freeze drying [40]. In this
method, the weight of wet sample was measured directly after the experiment. The wet
sample is the sample saturated with fluid. Also, the weight of the dried sample was
measured. The difference in weight determined the amount of fluid that had disap-
peared. We assumed that the density of the fluid is equal to the density of water. Then,
we computed the volume of the fluid V f . Since we knew the total sample volume Vtot,
we computed the porosity at the end of the experiment by

n f =
V f

Vtot
. (5.3)

The fixed charge density c f c was measured by a tracer cation method [40]. Here, the
amount of fixed charges was measured. Since we knew the amount of fluid, the fixed
charge density was computed.

Next, the osmotic coefficients were fitted. According to the momentum balance (4.1)
and Hooke’s law (4.6), the equilibrium height depends on the aggregate modulus H
and the fluid pressure p. In equilibrium, the fluid and ion flows are equal to zero and
the fluid pressure p is coupled to the osmotic coefficientsφl,φ+ andφ�, the ion concen-
trations c+ and c� and the electrical potential field ξ, according to the extended Darcy’s
law (4.7) and the extended Fick’s law (4.8). The aggregate modulus H was determined
already. We assumed that the osmotic coefficients for the fluid, the cations, and the
anions were the same:

φl = φ+ = φ� = φ. (5.4)
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The value for the osmotic coefficient in a free NaCl solution depends on the concentra-
tion. However, in the range from 0.15 M to 0.50 M it is almost constant [40, 63]. So,
we assumed a constant osmotic coefficient φ in the bathing solution: φ = 0.924. The
value inside the sample was estimated by a fitting procedure such that the absolute er-
ror between the measured and computed equilibrium height of the second stage was
minimised. Therefore, the experiments were simulated by a finite element code of the
four-component mixture theory (chapter 4). We assumed that there was no leakage
over the electrode filter and that the material parameters did not depend on the tissue
deformation. The mechanical loads at the top of the sample were prescribed (figure 5.3).
There were no ion and fluid flows at the top. At, the bottom the ion concentrations, the
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ξ = 0
c = c
c = c

+
0−
0

n q = 0
n j  = 0
n j  = 0

+

−

.

.

.
filter

piston

filter

force

sample

Figure 5.3 Boundary conditions for the uniaxial confined swelling and compres-
sion experiment.

fluid pressure (p = 0: free outflow) and the electrical potential (ξ = 0) were prescribed.
Since these values had to be described in the middle of an element, we assumed that the
element closest to the filter was immediately in equilibrium with the bathing solution.
We checked this assumption by estimating the time constant τ . Since the convection is
slower than the diffusion, the biphasic time constant is used:

τ :=
h2

HK
, (5.5)

where h is the distance to the boundary and K is the hydraulic permeability. The total
sample height is about 1 mm. We divided the sample in 10 uniform elements. Thus,
h � 0.05 mm. The aggregate modulus H is about 1 MPa and the permeability K is about
2.5 � 10�16 m4N�1s�1. So, τ � 10 s. Thus, the equilibrium assumption is reasonable.

The permeability was determined by fitting the curve of the sample height of the
swelling and the consolidation stages. We fitted the permeability in such way that
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the absolute difference between the measured and the computed curve for the sample
height was minimised.

The values for the diffusion coefficients could not be estimated directly. Therefore
we used the values determined by Maroudas [59]:

Dβ = 0.63
�
n f
�2

Dβ
w, β = +,�, (5.6)

where D+
w = 13.34 � 10�10 m2s�1 and D�

w = 20.32 � 10�10 m2s�1 are the diffusion coeffi-
cients in an aqueous solution [54].

5.4 Results

Representative results of 4 successful experiments are shown in figure 5.4. Using the
criteria 23 experiments out of 79 were successful [40].

In the figures, the four stages can be recognised. In the first stage, from an unknown
starting condition a well defined equilibrium was reached.

In the second stage, the external salt concentration was reduced, causing the sample
to swell in the range of 4.9% – 10.0%.

In the third stage, the sample shrank due to an increase of the mechanical load from
0.078 MPa to 0.195 MPa. The tissue shrinking was in the range of 8.1% – 17.8%.

In the final stage, the same equilibrium should be reached as at the end of the first
stage.

The results of the fitting procedure are shown in figure 5.5 and table 5.2.
The values of the material properties were estimated by parameter fitting. The ag-

gregate modulus H was 0.87� 0.22 MPa (mean � standard deviation), the osmotic co-
efficient φ inside the sample was 0.896� 0.008, and the permeability was 2.6 � 10�16 �
0.8 � 10�16 m4N�1s�1.

The measured values for the porosity nf at the end of the first stage is 0.767� 0.043
and the fixed charged density c f c is 0.115� 0.016 mol l�1.

parameter value
aggregate modulus H 0.87 � 106 � 0.22 � 106 N m�2

hydraulic permeability K 2.6 � 10�16 � 0.8 � 10�16 m4N�1s�1

diffusion coefficient for the cations D+ 5.0 � 10�10 � 0.6 � 10�10 m2 s�1

diffusion coefficient for the anions D� 7.6 � 10�10 � 0.9 � 10�10 m2 s�1

osmotic coefficient φ inside the sample 0.896� 0.008

Table 5.2 The values of the parameters estimated by the fitting procedure.
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Figure 5.4 Experimental results for 4 confined swelling and compression experi-
ments performed on intervertebral disc tissue. The boundary conditions are given
in the corresponding top figures.
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Figure 5.5 Experimental and numerical results for confined swelling and com-
pression experiments performed on intervertebral disc tissue. The boundary con-
ditions are given in the top figures.
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5.5 Discussion

One-dimensional confined swelling and compression of annulus fibrosus samples were
fitted reasonably well by the four-component model (absolute error in the sample height
is maximal 3 %), although we assume that the material parameters are constant. The val-
ues for the aggregate modulus 0.87� 0.22 MPa (mean value� standard deviation) were
in the same range as found in other studies, for example by Drost et al. [23]: 1.01� 0.31
MPa for specimens taken in axial direction and 0.66 � 0.30 MPa for specimens taken
in radial direction. The values for the permeability, 2.6 � 10�16 � 0.8 � 10�16 m4N�1s�1,
were also in the same range as found in other studies, for example by Best et al. [6]
and Guilak et al. [36]: 2.2 � 10�16 � 4.0 � 10�16 m4N�1s�1. However, the rate of swelling
appeared to be overestimated, since the computed data for the sample height are above
the measured data, whereas the rate of consolidation is underestimated. It appeared
that the fluid inflow was slowed down by the ion outflow. The swelling in the second
stage was caused by an osmotic pressure. In this stage, a new equilibrium had to be
reached. This could be reached by an inflow of the fluid and an outflow of cations and
anions. So, there were two flows in opposite direction. Both flows were slowed down
due to the friction between the fluid particles and the ions. This process can be mod-
elled by an ’effective’ permeability that is smaller than the permeability that is needed
when the swelling is caused by a decrease of the mechanical load. It can also be mod-
elled by increasing the difference between the liquid and the ion osmotic coefficient:
φl �φβ, β = +,�. For example by taking φl = 1. From equation (2.32) it follows
that the fluid flux is slowed down. In the consolidation stage, another mechanism plays
a role: the fluid flow and the flow of the ions are in the same direction, since the salt
concentrations should stay the same. Since the flows are in the same direction, the fric-
tion between the molecules and the ions is less important and the resulting ’effective’
permeability is larger. This follows also from equation (2.32), since the gradient in the
ion concentrations is very small.

In contrast to the triphasic models used by de Heus [19], Snijders [70, 71] and Houben
[40], physically realistic values for the diffusion coefficients were used to fit the exper-
iments, because the electrical phenomena were not neglected in the four-component
mixture theory.

For the set of experiments selected, the equilibrium height after the first (condition-
ing) and fourth (control) stage are the same within 5%. If this was not the case, the
material had deteriorated during the experiment or some experimental problems had
occurred, like air in the experimental set-up or a leakage between the piston and the
cylinder wall.

As a rule the equilibrium height at the end of the fourth stage was lower than the
equilibrium height at the end of the first stage. It means that some mechanical or os-
motic stiffness is lost during the experiments. This loss is not included in the model
simulations.
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5.6 Conclusions

We were able to simulate the evolution in time of the confined swelling and compression
experiments by the four-component mixture theory. We verified the theory by compar-
ing the estimated material properties for the stiffness, the permeability and the diffusion
coefficients by values reported by other studies [6, 23, 36, 59]. These values were in the
same range.
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6 Experiments on Hydrogel

6.1 Introduction

When a biological tissue is subjected to a mechanical load, an electrical potential gradi-
ent is generated [5, 15, 32, 31]. Bassett and Pawluk [5] showed this effect for cartilage,
whereas Gross and Williams [32] showed the same effect for bone. Such potential gradi-
ent is associated with the flow of charged particles through a matrix with fixed charges
[15, 26, 31]. A deformation of the matrix causes a fluid flow relatively to the solid matrix.
This fluid flow tends to separate the freely moving ions in the fluid from the oppositely
charged particles, that are attached to the matrix (figure 6.1). In this way, an electri-
cal field is created collinear to the fluid flow. This results in an electrical potential, the
streaming potential.

fluid flow

∆ξ

proteoglycan molecule

collagen fibre

insulator

+ +

+
+

+
+

−
−

−

−

− −

Figure 6.1 Schematic representation of the mechanism that creates a streaming
potential ∆ξ in cartilaginous tissues.

In articular cartilage, streaming potentials have been demonstrated by permeation
experiments and confined compression experiments [15, 27, 31, 33, 53, 58]. In the per-
meation experiments, a hydrostatic pressure gradient is applied across the sample. The
pressure generates a fluid flow and a streaming potential that can be measured [33, 58].
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Streaming potentials are also generated by deformation of the tissue. Lee et al. [53]
and Frank et al. [27] measured streaming potentials generated by oscillatory compres-
sion experiments. Chen et al. [15] measured streaming potentials in confined compres-
sion experiments. In these experiments, bovine cartilage discs were subjected to step
changes of the compressive stress.

The experiments by Lee et al., Frank et al. and Chen et al. can be described reason-
ably well by a combination of the biphasic theory [61] and linear, macroscopic laws for
electrokinetics [15, 26, 27] for isotropic media. These laws relate the relative fluid velocity
n f (v f � vs) and the current density J to the gradients of the fluid pressure p and the
electrical potential ξ [27]:�

n f (v f � vs)
J

�
=

�
�k11 k12

k21 �k22

� �
rp
rξ

�
, (6.1)

where k11 is the hydraulic permeability, k12 and k21 are electrical coupling coefficients
and k22 is the electrical conductivity. Note that when the electrical coupling coefficients
are equal to zero, i.e. k12 = k21 = 0, this set of equations results in Darcy’s law and
Ohm’s law. For the open circuit condition, i.e. J = 0, and without an imposed fluid
flow, the electromechanical coupling is characterised by an electrokinetic coefficient ke that
relates the change of the mechanical load ∆σ to the change in the electrical potential ∆ξ
for a uniaxial confined compression experiment [15]

∆ξ = ke ∆σ . (6.2)

Although this theory describes the change in the electrical potential caused by mechan-
ical loads reasonably well, it can not describe the changes in the electrical potential
caused by chemical loads. This can be done by the four-component mixture theory [43].

The first goal of this study is the measurement of the electrical potential field caused
by mechanical and chemical loads in a confined swelling and compression experiment.
The second goal is the verification of the four component mixture theory with respect to
the tissue deformation and the electrical potential. Therefore, the material parameters
are determined by fitting the measurements to the four-component mixture theory. The
mixture theory is verified by comparing the values estimated by parameter fitting to the
values reported in other studies

To our knowledge, it is the first time that a streaming potential is measured that
is caused by mechanical and chemical loads in a confined swelling and compression
experiment. We choose to do the experiments with a tissue that mimics the behaviour
of biological tissues: a hydrogel. A hydrogel is a synthetic material that consists of large
charged polymers that are linked to each other. They form a three-dimensional network.
A hydrogel attracts water from its surroundings similar to cartilaginous tissues [19, 63].
Important advantages of the hydrogel compared to biological tissues [63] is that

1. the material degenerates less during the experiments,

2. the samples can be made repeatedly with the same material properties,
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3. the material is homogeneous.

In this way the differences between the experimental and the numerical results can be
caused by problems in the experimental set-up or by imperfections in the theory. They
are not caused primarily by differences in material parameters between the samples or
by the degeneration of the tissue.

6.2 Material and Methods

6.2.1 Sample preparation

The samples were made out of a hydrogel. The hydrogel consisted of 11 g acrylic acid
monomer (AA), 11 g acrylamide monomer (AAm), 100 g water (H20), 0.5 g cross linker
MBAAm (N,N’-methylenebisacrylamide) and 0.1 g of the initialisators (NH4)2S2O8 and
K2S2O5. The solution was neutralised by 6.2 g NaOH. These constituents were put in
a test tube where they react with each other as described by de Heus [19]. After the
reactions between the components stopped, the material was submerged in a 0.15 molar
NaCl-solution for one or two days.

Then, the hydrogel was put in a cup filled with a 0.15 molar NaCl solution and was
stored at room temperature.

After taking the hydrogel out of the test tube, it was cut by a scalpel in slices with a
thickness of about 1 mm. The diameter of these samples was 4.0 mm.

6.2.2 Experimental set-up

The samples were put in a testing device that was similar to the testing device for the in-
tervertebral disc tissue. In this set-up, we measured the deformation of the sample and
the electrical potential difference over the sample (figure 6.2). The following changes
were made:

� The confining ring was not made of stainless steel, but it was made of AthlonR

(Trespa International B.V., The Netherlands). This was done in order to have an
electrical insulating ring around the sample. AthlonR was used because it was
an insulator and it did not swell due to water absorption (water absorption < 1
weight%, according to the manufacturer).

� The piston material was an insulator, glass, instead of stainless steel. Inside the
piston was a chamber filled with a 0.15 M NaCl solution (figure 6.3). This chamber
was closed at the bottom with a dense glass filter. Inside the chamber, a Ag/AgCl
electrode was placed ( MI-402 Micro-Reference Electrode, Microelectrodes Inc.,
USA).

� A similar electrode as in the piston was mounted in the fluid channel.
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Figure 6.2 Experimental set-up. A: linear variable displacement transducer, B:
electrode, C: confining ring, D: piston, E: measuring chamber, F: weights, G: load-
ing arm, H: fluid inlet, I: vibrator.

The deformation of the sample and the electrical potential difference over the sam-
ple were measured. The electrical potential difference between both electrodes were
amplified by an amplifier (Unicam 9460, Unicam, USA). During the experiments, the
displacement of the piston was recorded via a linear variable displacement transducer
(LVDT, Schaevitz, USA). The data acquisition sampling was 0.5 Hz. A vibrator was at-
tached to the set-up in order to overcome the sticking of the piston to the wall. This
device vibrated intermittently at 50 Hz during 1 second. The vibration started 0.5 sec-
ond after the data-acquisition. Lateral forces on the piston were minimised by allowing
free lateral motion of the measuring chamber floating on a silicon oil film. Furthermore,
the piston was greased with vaseline to prevent leakage between the wall and the pis-
ton.

Before the experiment started, the electrodes were filled with an electrolyte solution
from Microelectrodes Inc., USA (3.0 M KCl solution saturated with AgCl).

6.2.3 Experimental protocol

The experimental protocol (table 6.1) was similar to that of the intervertebral disc tissue.
The first three stages were the same. Thereafter, a faster change in the external salt con-
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Figure 6.3 Schematic representation of the experimental set-up.

centration was applied. In these stages no equilibrium was reached for both the sample
height and the electrical potential difference. The values for the ion concentration were
chosen such that the shrinking of the sample due to the mechanical load was about the
same as the swelling due to the chemical load.

stage mechanical load [MPa] concentration [mol l�1]
1 0.078 0.45
2 0.078 0.15
3 0.195 0.15
4 0.195 0.45
5 0.195 0.15
6 0.195 0.45
7 0.195 0.15
8 0.195 0.45
9 0.195 0.15

10 0.195 0.45
11 0.195 0.15

Table 6.1 The protocol for the hydrogel experiment.

6.2.4 Data analysis

The material parameters were obtained by fitting curves for the sample height and the
electrical potential difference. We assumed that the values of the material parameters
did not depend on the deformation. We fitted the experiments in the following way.
In first approximation, the osmotic pressure was the same at the end of both stages,
since there was no change in the concentration of the bathing solution, only a change in
the fixed charged density. So, the value for the aggregate modulus H := 2µs + λs was
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determined from the increase of the mechanical load ∆σ and the strain ε of the sample:

H :=
∆σ

ε
, (6.3)

with

ε :=
h2 � h3

h3
, (6.4)

where h2 and h3 were respectively the sample heights at the end of the second and the
third stage.

From the reactions that took place during the polymerisation, see e.g. [19], the
amount of solid and the number of fixed charges were computed. When knowing the
mass of the sample immediately after the reaction and the mass of the same sample in
equilibrium with the 0.15 M bathing solution, the porosity of the gel is calculated by

n f
0 :=

V f

Vtot
=

m f=ρ f

mtot=ρtot
. (6.5)

We assumed that density of the sample ρtot is equal to the density of the fluid, since
more than 90% of the sample consists of water: ρtot � ρ f � 1.0 � 106 g m�3. This
porosity was valid for the unloaded case. Since there was a preload, the value had
to be corrected according to equation (4.11). The deformation due to the preload was
computed according to equation (6.3).

Since we knew the fluid volume V f and the number of fixed charges, the fixed
charged density was computed by

c f c :=
number of fixed charges

V f . (6.6)

Next, the osmotic coefficients were fitted. According to the momentum balance (4.1)
and Hooke’s law (4.6), the equilibrium height depends on the aggregate modulus H and
the fluid pressure p. In equilibrium, the fluid and ion flows are equal to zero. According
to the extended Darcy’s law (4.7) and the extended Fick’s law (4.8), the fluid pressure p
is coupled to the osmotic coefficients φl, φ+ and φ�, the ion concentrations c+ and c�,
and the electrical potential field ξ. The aggregate modulus H was determined already.
We assumed that the osmotic coefficients for the fluid, the cations, and the anions were
the same:

φl = φ+ = φ� = φ. (6.7)

The value for the osmotic coefficient in an aqueous NaCl solution depends on the con-
centration. However, in the range from 0.15 M to 0.50 M it is almost constant [40, 63].
So, we assumed a constant osmotic coefficient φ in the bathing solution: φ = 0.924.
The value inside the sample was estimated by a fitting procedure such that the absolute
error between the measured and computed equilibrium height of the second stage was
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minimised. Therefore, the experiments were simulated by a finite element code of the
four-component mixture theory (chapter 4). We assumed that there was no leakage over
the electrode filter. The material parameters did not depend on the tissue deformation.
The mechanical loads at the top of the sample were prescribed (figure 6.4). There were
no ion and fluid flows at the top. At the bottom, the ion concentrations, the fluid pres-

u = 0
p = 0
ξ = 0
c = c
c = c

+
0−
0

n q = 0
n j  = 0
n j  = 0

+

−

.

.

.

filter

piston

filter

force

sample

Figure 6.4 Boundary conditions for the uniaxial confined swelling and compres-
sion experiment.

sure (p = 0: free outflow) and the electrical potential (ξ = 0) were prescribed. Since
these values had to be described in the middle of an element, we assumed that the el-
ement closest to the filter was immediately in equilibrium with the bathing solution.
We checked this assumption by estimating the time constant τ . Since the convection is
slower than the diffusion, the biphasic time constant is used [15]:

τ :=
h2

HK
, (6.8)

where h is the distance to the boundary and K is the hydraulic permeability. The total
sample height is about 1 mm. We divided the sample in 10 uniform elements. Thus,
h � 0.05 mm. The aggregate modulus H is about 0.2 MPa and the permeability K is
about 5 � 10�16 m4N�1s�1. So, τ � 25 s. Thus, the equilibrium assumption is reasonable.

The permeability was determined by fitting the curve of the sample height of the
second and the third stages. We fitted the permeability such that the absolute difference
between the measured and the computed curve for the sample height was minimised.

The diffusion coefficients influence the slope of the streaming potential curve. The
faster an ion diffuses, the faster the electrical potential difference over the sample de-
creases, since the potential difference depends on the concentration gradient, see (4.17).
So, the values for the diffusion coefficients were estimated by fitting the curve for the
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electrical potential, while keeping the relation between the diffusion coefficients for the
cations and the anions in the sample (D+ and D�) the same as in an aqueous solution
(D+

w and D�
w ) [54]:

D+

D�
=

D+
w

D�
w
=

13.34 � 10�10

20.32 � 10�10 = 0.6565. (6.9)

6.3 Results

The results of 2 representative experiments out of 11 are shown in figure 6.5.
After 4.5 hours, the sample started swelling due to a change in the chemical load: the

concentration of the bathing solution was decreased from 0.45 M to 0.15 M. The tissue
swelling was in the range of 30% – 36%.

After 12.5 hours, the sample shrank due to an extra mechanical load. The load was
increased from 0.078 MPa to 0.195 MPa. The tissue shrinking was in the range of 33%
– 36%. An equilibrium was reached after about 1 to 3 hours, depending on the sample
thickness.

In the last part (t > 20 hours), the sample started swelling and shrinking because of
changes of the chemical loads. These changes were prescribed before a new equilibrium
was reached. The change of the salt concentration in the bathing solution was also
responsible for the forming of an electrical potential difference over the sample. This is
shown in the lower graphs of figure 6.5.

The experiments were fitted. The computed data for the porosity and the fixed
charges density were used: nf = 0.945 and c f c = 0.301 mol l�1 at t = 4h. Two fit-
ted experiments are shown in figure 6.6. The other 9 experiments were fitted too. The
values are shown in table 6.2.

parameter value
aggregate modulus H 0.20 � 106 � 0.04 � 106 N m�2

hydraulic permeability K 5.5 � 10�16 � 2.4 � 10�16 m4N�1s�1

diffusion coefficient for the cations D+ 4.4 � 10�10 � 2.0 � 10�10 m2 s�1

diffusion coefficient for the anions D� 6.7 � 10�10 � 2.9 � 10�10 m2 s�1

osmotic coefficient φ inside the sample 0.971� 0.005

Table 6.2 The values of the parameters estimated by the fitting procedure.

6.4 Discussion

Although we assumed the material parameters to be constant, we were able to fit the
experiments reasonably well. The deformation in the first part of the experiment (un-
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Figure 6.5 Experimental results for 2 confined swelling and compression exper-
iments performed on hydrogel. The boundary conditions are given in the corre-
sponding top figures.
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Figure 6.6 Experimental and numerical results for 2 confined swelling and com-
pression experiments performed on hydrogel. The boundary conditions are given
in the corresponding top figures.
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til 20 h) is fitted reasonably by the four-component mixture theory. Then, the sample
deformation is overestimated. This is because the permeability is too large. This is
caused by neglecting the deformation dependency of the permeability. When the tissue
is compressed, the permeability should decrease because the pores are squeezed.

It seems that the permeability is lower in the case of swelling that was caused by
an osmotic pressure change, than in the case of shrinking caused by a mechanical load.
This effect was probably caused by friction between the ions and the fluid. The flows
of the ions and the fluid have opposite directions, when the swelling is caused by an
osmotic pressure. When the fluid flow is hindered by the ion flow, the ’effective’ per-
meability will be lowered. This can be modelled by increasing the difference between
the liquid and the ion osmotic coefficient: φl �φβ, β = +,�. For example by taking
φl = 1. From equation (2.32) it follows that the fluid flux is slowed down. In the third
stage, the ions flow and the fluid flow were in the same direction. Hence, the fluid flow
was not slowed down by the ion flow: the ’effective’ permeability is larger. This follows
also from equation (2.32), since the gradient in the ion concentrations is very small.

The diffusion coefficients for the cations and the anions were respectively 4.4 � 10�10�
2.0 � 10�10 m2s�1 and 6.7 � 10�10 � 2.9 � 10�10 m2s�1. These values were in the same range
as reported by Lanir et al. [52]: D+ � 6.0 � 10�10 m2s�1 and D� � 10.4 � 10�10 m2s�1.

The values for the diffusion coefficients hardly influenced the evolution in time of
the deformation. This evolution was mainly influenced by the permeability of the sam-
ple. The diffusion coefficients influenced the width of the peaks of the electrical po-
tential difference: when the value of the diffusion coefficient decreases, the width of
the peak increases. Then, the electrical potential difference decreases slower. So, the
values for the diffusion coefficients were fitted by looking at the last part of the curve
for the electrical potential difference (t > 20 h). The measured electrical potential dif-
ference was smaller than the computed one, because the concentration of the bathing
solution changed slower in the experiment than in the simulation. In the simulation we
assumed that at a certain moment the external salt concentration changes from one con-
centration immediately to another. In the experiment, this concentration went gradually
from one value to another. This effect decreased the peaks in the electrical potential sig-
nal, because the electrical potential difference was lowered rapidly in the first couple of
seconds. Qualitatively, the signals were predicted reasonably well.

In other confined compression experiments, a streaming potential was measured
when a mechanical load was applied [15]. This streaming potential is characterised by
an electrokinetic coefficient ke:

ke :=
∆ξ

∆σ
. (6.10)

Here, ξ is the electrical potential and σ is the mechanical load. The value for the elec-
trokinetic coefficient ke for bovine cartilage was found to be in the range from -2 to -12
mV MPa�1 [15].

In our confined swelling and compression experiment, we also applied a mechanical
load to the sample (t = 12.5 h). We measured a streaming potential ∆ξ = 0.85 �
0.65 mV. The change in the mechanical load ∆σ equals -0.117 MPa. Thus, the value for
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the electrokinetic coefficient is �7.3 � 5.6 mV MPa�1. This was in the same range as
measured for bovine cartilage.

In the experiments, it is seen that the equilibrium values for the electrical poten-
tial difference were different for different concentrations of the bathing solution. The
difference between the equilibrium values of the first and the second stage is �0.93 �
2.96 mV. This may indicate that there was a small leakage over the electrode filters.

6.5 Conclusions

We were able to measure the electrical potential differences over the samples that were
caused by a change in the mechanical loads or by a change in the chemical load. The
evolution in time of the tissue deformation as well as the evolution in time of the elec-
trical potential differences were simulated by the four-components mixture theory. Fur-
thermore, the estimated values for the stiffness, permeability, the diffusion coefficients
and the electrokinetic coefficients were in the same range as reported by other studies.



7 Conclusions and Recommendations

7.1 Conclusions

7.1.1 Numerical aspects

We have considered the four-component mixture theory and a reduction to a two-
component mixture theory. Two finite element formulations for the two-component
mixture theory were derived: a conforming finite element method and a mixed-hybrid
finite element method. One finite element formulation for the four-component mixture
theory was used: a mixed finite element method. We conclude that

� The finite element implementations of the two-component mixture theory show
that the error is linear with respect to the size of the time-steps and quadratic with
respect to element size.

� For a time-step size ∆t < ∆tcrit, oscillations may appear in the solution for the
displacement-pressure formulation of the two-component mixture theory in the
one-dimensional case.

� For a time-step size ∆t < ∆tcrit, oscillations in the solution may appear for the
mixed-hybrid finite element formulation of the two-component mixture theory in
the one-dimensional case. This critical time-step size ∆tcrit is 1.5 times smaller than
in the displacement-pressure formulation.

� The critical bounds for the time-steps appear to hold for the two-dimensional case
too.

� The extension to the four-component mixture theory, does not result in a symmet-
ric matrix-vector system. The size reduction of the matrix-vector system, that is
used in the two-component mixture theory, does not hold anymore.

� In a special case, the discontinuous fluid pressure, cation and anion concentra-
tions, and electrical potential can be replaced by continuous electrochemical po-
tentials. The related equations are however highly non-linear.
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7.1.2 Experimental aspects

We performed confined swelling and compression experiments on intervertebral disc
tissue and on a hydrogel. These experiments were used to verify the four-component
mixture model by comparing the estimated values for the material parameters to values
reported by other studies. We conclude that

� The confined swelling and compression experiments yield reproducible results
with respect to the evolution in time of the deformations for the intervertebral
disc tissue.

� In the confined swelling and compression experiments, the evolution in time of the
deformations as well as the evolution in time of the electrical potential difference
for the hydrogel are found to be to be reproducible.

� We are able to fit the experimental data by the four-component mixture model.
The values for the stiffness, the permeability, the diffusion coefficients and for the
osmotic coefficients are in the same range as reported in other studies [6, 23, 36,
52, 59].

� The measured values for the streaming potentials lie in the same range as reported
for bovine cartilage [15, 26, 27].

� Using the four-component mixture theory, the behaviour of cartilaginous tissues
is simulated while using physically realistic values for the material parameters.

7.2 Recommendations

7.2.1 Numerical aspects

The following aspects with respect to the finite element methods may be investigated
further:

� We used a direct solver for one-dimensional finite element code. The performance
of the code can be improved by an iterative method without loss of accuracy.

� We assumed that the material parameters, like the stiffness, the permeability and
the diffusion coefficients do not depend on the deformations and/or salt concen-
trations. Although, the experiments were fitted reasonably well with these con-
stant values, it is better to implement these dependencies, since the deformations
and the changes in the salt concentrations are relatively large.

� We assumed that the solid matrix behaves linearly elastic. Since the solid matrix
consists of fibres that can be stretched or folded, it should be possible to replace
the constitutive equation for the stress by, for example, a visco-elastic relation.
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� We assumed that all components are incompressible. This is a reasonable assump-
tion in biomechanics. However, in geomechanics the fluid pressures are much
larger. Then, this assumption is not valid anymore. So, the compressibility of the
components has to be taken into account.

7.2.2 Experimental aspects

� We verified the four-component mixture theory for one-dimensional experiments.
The model has to be verified for two-dimensional experiments, for example by
unconfined swelling and compression experiments.

� By connecting a voltage source to the electrodes in the set-up of figure 6.3, an
electrical potential field is generated. By this electrical potential field, the particles
will start to flow and the tissue will deform. In this way an extra verification of
the four-component mixture theory is achieved.



100 CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS



Bibliography

[1] S. Achanta, J. H. Cushman, and M. R. Okos. On multicomponent, multiphase ther-
modynamics with interfaces. International Journal of Engineering Science, 32:1717–
1738, 1994.

[2] S. I. Barry and G. N. Mercer. Flow and deformation in poroelasticity - I unusual
exact solutions. Mathematical and Computer Modelling, 30:23–29, 1999.

[3] J. M. G. Barthel, H. Krienke, and W. Kunz. Physical Chemistry of Electrolyte Solutions:
Modern Aspects, volume 5 of Topics in Physical Chemistry. Steinkopff, Darmstadt,
1998.

[4] P. J. Basser and A. J. Grodzinsky. The Donnan model derived from microstructure.
Biophysical Chemistry, 46:57–68, 1993.

[5] C. A. L. Bassett and R. J. Pawluk. Electrical behavior of cartilage during loading.
Science, 178:982–983, 1972.

[6] B. A. Best, F. Guilak, M. Weidenbaum, and V. C. Mow. Compressive stiffness and
permeability of intervertebral disc tissues: Variation with radial position, region
and level. In Proceedings Winter Annual Meeting ASME, pages 73–74, San Fransisco,
1989.

[7] M. A. Biot. General theory of three-dimensional consolidation. Journal of Applied
Physics, 12:155–164, 1941.

[8] M. A. Biot. Theory of finite deformation of porous solids. Indiana University Math-
ematical Journal, 21:597–620, 1972.

[9] N. Bogduk and L. T. Twomey. Clinical Anatomy of the Lumbar Spine. Churchill
Livingstone, 1985.

[10] R. M. Bowen. Incompressible porous media models by the use of the theory of
mixtures. International Journal of Engineering Science, 18:1129–1148, 1980.



102 BIBLIOGRAPHY

[11] R. M. Bowen. Compressible porous media models by the use of the theory of
mixtures. International Journal of Engineering Science, 20:697–735, 1982.

[12] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics.
Cambridge University Press, Cambridge, 1997.

[13] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag,
New York, 1991.

[14] M. D. Buschmann and A. J. Grodzinsky. A molecular model of proteoglycan-
associated electrostatic forces in cartilage mechanics. Journal of Biomechanical En-
gineering, 117:179–192, 1995.

[15] A. C. Chen, T. T. Nguyen, and R. L. Sah. Streaming potentials during the confined
compression creep test of normal and proteoglycan-depleted cartilage. Annals of
Biomechanical Engineering, 25:269–277, 1999.

[16] S. C. Cowin. Strain or deformation rate dependent finite growth in soft tissues.
Journal of Biomechanics, 29:647–649, 1996.

[17] S. C. Cowin, L. Moss-Salentijn, and M. L. Moss. Candidates for the mechanosen-
sory system in bone. Journal of Biomechanical Engineering, 113:191–197, 1991.

[18] H. Darcy. Les Fontaines Publique de la Ville Dijon. Dalmont, Paris, 1856.

[19] H. J. de Heus. Verification of Mathematical Models Describing Soft Charged Hydrated
Tissue Behaviour. PhD thesis, Eindhoven University of Technology, Eindhoven,
1994.

[20] A. de Loof. The electrical dimension of cells: the cell as a miniature electrophoresis
chamber. International Review of Cytology, 104:251–361, 1986.

[21] B. V. Derjaguin and N. V. Churaev. Properties of water layers adjacent to inter-
faces. In C. A. Croxton, editor, Fluid Interfacial Phenomena, pages 663–738, Chich-
ester, 1986.

[22] B. V. Derjaguin and L. Landau. The theory of stability of highly charged lyopho-
bic sols and adhesion of highly charged particles in solutions of electrolytes. Acta
Physicochimica URSS, 14:633–662, 1941.

[23] M. R. Drost, P. Willems, H. Snijders, J. M. Huyghe, and J. D. Janssen. Confined
compression of canine annulus fibrosus under chemical and mechanical loading.
ASME Journal of Biomechanical Engineering, 117:390–396, 1995.

[24] S. R. Eisenberg and A. J. Grodzinsky. Swelling of articular cartilage and other
connective tissues: electromechanochemical forces. Journal of Orthopaedic Research,
3:148–159, 1985.



BIBLIOGRAPHY 103
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Summary

Cartilaginous tissues, like intervertebral disc tissue, and hydrogels exhibit swelling and
shrinking behaviour. This behaviour is caused by water bound by the charged solid
skeleton of the tissue through an interplay of mechanical, chemical and electrical mech-
anisms. In order to develop more insight into the mechanism, this swelling and com-
pression behaviour is modelled by the four-component mixture theory. In this theory,
the tissue is represented as a charged, deformable porous medium which is saturated
with a fluid in which ions are dissolved. By distinguishing between cations and anions,
the electrical phenomena can be modelled.

The objectives of this study are:

� The development of a finite element description for the four-component mixture
theory. With this finite element model, we are able to compute the deformations,
the fluid and ion flows, the fluid pressure, the cation and anion concentrations and
the electrical potential field.

� The verification of the four-component mixture theory with respect to the evo-
lution in time of the deformations and the electrical potential field by confined
swelling and compression experiments.

In this thesis, the four-component mixture theory is derived from the balance equa-
tions and the constitutive equations for the solid matrix, the fluid flow and the ion flows:
Hooke’s law for the solid matrix and an extended Darcy’s law and an extended Fick’s
law for the fluid flux and the ion fluxes, respectively. This theory reduces to the biphasic
theory when assuming that there are no particles dissolved in the fluid phase.

First, we consider the two-component mixture theory. The problem definition has a
unique solution when making adequate assumptions on the behaviour of the displace-
ments, fluid velocity and the fluid pressure. These assumptions are not in conflict with
the physical problem we are interested in.

The two-component problem is described in two ways: the displacement-pressure
formulation and the displacement-pressure-velocity formulation. An advantage of the
second one is that the fluid flux is computed more accurately than with the displacement-
pressure formulation. From the displacement-pressure formulation, a conforming fi-
nite element method is derived. From the displacement-pressure-velocity formulation,
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a mixed-hybrid finite element method is derived. In the mixed-hybrid finite element
model, a Lagrange multiplier in introduced, that enforces the continuity of the normal
component of the fluid fluxes across the inter element boundaries. Using the properties
of the matrix, the matrix-vector system is reduced to a system with only the displace-
ments and the Lagrange multipliers as unknowns. The fluid pressure and the fluid flux
are computed a posteriori without loss of accuracy. For both methods, the errors are
considered that are caused by size of the elements and by the size of the time-steps.
From the numerical analysis, it follows that the global error is linear with respect to the
size of the time-steps and quadratic with respect to element size for both methods. It is
shown that oscillations in the solution may appear in the one-dimensional case, when
the time-step size is smaller than a critical value. This critical size is 1.5 times smaller
in the the mixed-hybrid finite element formulation than in conforming finite element
formulation. This critical size of the time-steps appears to hold for the two-dimensional
case too.

Then, the two-component mixture model is extended to the four-component mixture
model. From this model, a mixed finite element method is derived. It results in a non-
symmetric matrix-vector system. In a special case, the discontinuous fluid pressure,
cation and anion concentrations, and electrical potential can be replaced by continuous
electrochemical potentials. The related equations are however highly non-linear.

The four-component mixture theory was verified by uniaxial confined swelling and
compression experiments on intervertebral disc tissue. These experiments were per-
formed on cylindrical samples made out of the annulus fibrosus part of intervertebral
discs from the lumbar spine of dogs. The values of the material parameters were esti-
mated by fitting the experiments with the mixed finite element model. The theory was
verified by comparing the estimated values to values reported by other studies. The
estimated values were in the same range. So, the four-component mixture theory is able
to describe the evolution in time of the displacements.

The four-component mixture theory was also verified by uniaxial confined swelling
and compression experiments on a hydrogel. A hydrogel is an artificial material that
has similar properties as cartilaginous tissues. The evolution in time of the deformation
as well as the evolution in time of the electrical potential difference over the sample
were measured. The electrical phenomena gives an extra possibility to check the theory.
The values of the material parameters were estimated by fitting the experiments with
the mixed finite element model. The values for the stiffness, the permeability and the
osmotic coefficients were fitted by the evolution in time of the deformation; the diffusion
coefficients were fitted by the evolution in time of the electrical potential difference.
The theory was verified by comparing the estimated values to the values reported in
other studies. The estimated values were in the same range. So, the four-component
mixture theory is able to describe the evolution in time of the displacements as well as
the evolution in time of the electrical potential field.



Samenvatting

Kraakbeenachtige materialen, zoals tussenwervelschijven, maar ook hydrogelen ver-
tonen zwel- en krimpgedrag. Dit gedrag wordt veroorzaakt doordat er water aan de
elektrisch geladen vaste-stofmatrix wordt gebonden door een samenspel van mecha-
nische, chemische en elektrische mechanismen. Om het inzicht in deze mechanismen
te vergroten, wordt het zwellen en krimpen van het weefsel gemodelleerd door een
vier-componentenmengseltheorie. In deze theorie wordt het weefsel beschouwd als
een elektrisch geladen vaste-stofmatrix, die verzadigd is met een vloeistof waarin ionen
zijn opgelost. Door onderscheid te maken tussen de positief geladen ionen en negatief
geladen ionen kunnen de elektrische verschijnselen gemodelleerd worden.

De doelstellingen van dit onderzoek zijn:

� Het ontwikkelen van een eindige-elementenbeschrijving van het vier-componen-
tenmengselmodel. Met behulp van dit eindige-elementenmodel berekenen we de
vervormingen, de vloeistof- en de ionenstromingen, de vloeistofdruk, de ionen-
concentraties en het elektrisch potentiaalveld.

� De verificatie van het vier-componentenmengselmodel met betrekking tot het tijds-
verloop van de vervormingen en van het elektrisch potentiaalveld door één-di-
mensionale zwel- en consolidatie-experimenten.

In dit proefschrift wordt het vier-componentenmengselmodel afgeleid uit de balans-
wetten en constitutieve relaties voor de vaste-stofvervormingen en de vloeistof- en io-
nenstromingen: de wet van Hooke voor de vaste stof en uitgebreide wetten van Darcy
en Fick voor respectievelijk de vloeistof- en de ionenstromingen. Als men aanneemt
dat er geen deeltjes in de vloeistof zijn opgelost, is deze theorie gelijk aan de twee-
componentenmengseltheorie.

Als eerste wordt het twee-componentenmengselmodel bekeken. Het probleem heeft
een unieke oplossing, wanneer er adequate aannamen worden gemaakt met betrekking
tot de (wiskundige) eigenschappen van de verplaatsingen, de vloeistofstroming en de
vloeistofdruk. Deze aannamen zijn in niet strijd met het onderzochte fysische probleem.

Het twee-componenten probleem wordt op twee manieren onderzocht: met behulp
van de ’verplaatsing-druk’-formulering en met behulp van de ’verplaatsing-druk-snel-
heid’-formulering. De laatste formulering heeft als voordeel dat de vloeistofstroming
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nauwkeuriger wordt berekend dan in de ’verplaatsing-druk’-formulering. Uit de ’ver-
plaatsing-druk’-formulering wordt een conforme eindige-elementenmethode afgeleid.
Uit de ’verplaatsing-druk-snelheid’-formulering wordt een gemengd-hybride eindige-
elementenmethode afgeleid. In dit model wordt een extra Lagrange multiplicator in-
gevoerd, die de continuı̈teit van de normale componenten van de vloeistoffluxen af-
dwingt over de inwendige randen van de elementen. Door gebruik te maken van de
speciale eigenschappen van de matrix, wordt het matrix-vectorstelsel verkleind tot een
stelsel waarin alleen de vaste-stofverplaatsingen en de Lagrange multiplicatoren nog
onbekend zijn. De vloeistofdrukken en de vloeistofstroming kan a posteriori worden
berekend zonder verlies in nauwkeurigheid.

Voor beide methoden wordt de fout onderzocht, die samenhangt met de grootte van
de elementen en de grootte van de tijdstappen in een één-dimensionaal experiment.
Uit numerieke analyse volgt dat voor beide methoden de fout lineair afhangt van de
grootte van de tijdstappen en kwadratisch afhangt van de grootte van de elementen.
Bovendien is aangetoond, dat er oscillaties in de oplossing kunnen optreden wanneer
de tijdstappen kleiner worden dan een kritische waarde. Deze kritische waarde is in
de gemengd-hybride formulering 1,5 keer zo klein als in de conforme formulering. De
berekende kritische tijdstapgrootte blijkt ook voor een twee-dimensionaal probleem te
gelden.

Vervolgens wordt het twee-componentenmengselmodel uitgebreid tot het vier-com-
ponentenmengselmodel. Uit dit model wordt een gemengd eindige-elementenmodel
afgeleid. Dit resulteert echter in een niet-lineair, niet-symmetrisch matrix-vectorstelsel.
In een speciaal geval kunnen de discontinue vloeistofdruk, ionenconcentraties en het
elektrisch potentiaalveld vervangen worden door continue electrochemische potentia-
len. Het matrix-vectorstelsel wordt dan echter sterk niet-lineair.

Het vier-componentenmengselmodel wordt geverifiëerd aan de hand van één-di-
mensionale zwel- en consolidatie-experimenten aan tussenwervelschijfmateriaal. Deze
experimenten zijn gedaan aan cilindrische proefstukjes, die afkomstig waren uit het
annulus fibrosus gedeelte van tussenwervelschijven uit de lumbale wervelkolom van
honden. De vervorming van het proefstuk is gemeten. De waarden voor de materiaal-
parameters zijn bepaald door het ’fitten’ van de experimentele data met het eindige-e-
lementenmodel. De mengseltheorie wordt geverifiëerd door de geschatte materiaalpa-
rameters te vergelijken met waarden, die in andere studies bepaald zijn. De geschatte
waarden liggen in hetzelfde bereik. Het vier-componentenmengselmodel is dus in staat
om het verloop van de vervorming goed te beschrijven.

Het vier-componentenmengselmodel wordt ook geverifiëerd aan de hand van één-
dimensionale zwel- en consolidatie-experimenten aan hydrogelen. Een hydrogel is een
kunststofmateriaal dat vergelijkbare eigenschappen heeft als kraakbeenachtige weef-
sels. De vervormingen van het proefstuk en het elektrisch potentiaalverschil over het
proefstuk zijn gemeten. De waarden van de materiaalparameters zijn bepaald door het
’fitten’ van de experimentele resultaten met het eindige-elementenmodel. De stijfheid,
de permeabiliteit en de osmotische coëfficiënten zijn gefit aan de vervormingsmeting;
de diffusiecoëfficiënten van de ionen zijn gefit aan de metingen van het elektrisch po-
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tentiaalverschil. De mengseltheorie wordt geverifiëerd door de geschatte materiaalpa-
rameters te vergelijken met waarden, die in andere studies bepaald zijn. De geschatte
waarden liggen in hetzelfde bereik. Het vier-componentenmengselmodel is dus in staat
om het tijdsverloop van de vervorming en het tijdsverloop van het elektrisch poten-
tiaalverschil goed te beschrijven.
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Stellingen

behorende bij het proefschrift

A Four-Component Mixture Theory
Applied to Cartilaginous Tissues
Numerical Modelling and Experiments

door

A.J.H. Frijns

1. Het bewijs voor de existentie en uniciteit voor het twee-componentenmengsel-
model kan worden uitgebreid tot het algemenere geval waarin Neumann, Dirich-
let en Robin randvoorwaarden voorgeschreven zijn. Daartoe moeten wel extra
Hilbert-ruimtes H(div,Ω) = fv 2 L2(Ω)jr � v 2 L2(Ω), n � v 2 L2(Γ R)g, en
H0(div,Ω) = fv 2 H(div,Ω)jn � v = 0 on ΓNg geı̈ntroduceerd worden.

2. Het bewijs voor de LBB-conditie in hoofdstuk 3 kan ook worden gehouden met
betrekking tot b(wh , qh) in plaats van d(sh, qh). In dat geval is er een extra vrij-
heid met betrekking tot het kiezen van de eindige-elementenruimte voor sh, omdat
d(sh , qh) niet meer aan de LBB-conditie hoeft te voldoen.

3. De theorie voor het vier-componentenmengselmodel uit hoofdstuk 4, kan eenvou-
dig worden uitgebreid tot een n-componentenmengselmodel.

4. Men kan beter de mengselmodellen rangschikken aan de hand van het aantal com-
ponenten dan aan de hand van het aantal fasen: afhankelijk van de definitie is
het vier-componentenmengselmodel een één-fasenmodel [1], een twee-fasenmo-
del [2], een drie-fasenmodel [3] of zelfs een vier-fasenmodel [4].
[1] R. Helmig, Multiphase Flow and Transport Processes in the Subsurface, 1997.
[2] J. Schweers & P. van Vianen, Natuurkunde op Corpusculaire Grondslag, deel 1, 1980.
[3] W.M. Lai, J.S. Hou & V.C. Mow, J. Biomech. Eng., 113, 245, 1991.
[4] J.M. Huyghe & J.D. Janssen, Int. J. Engng. Sci., 35, 793, 1997.

5. De experimentele en numerieke resultaten geven geen aanleiding om een chemi-
sche expansiespanning in te voeren zoals Lai et al. [1] voorstellen.
[1] W.M. Lai, J.S. Hou & V.C. Mow, J. Biomech. Eng., 113, 245, 1991.



6. Die Mathematiker sind eine Art Franzosen. Redet man zu ihnen, so übersetzen sie
es in ihre Sprache und dann ist es alsobald ganz etwas anderes.
J.W. Goethe, Maximen und Reflexionen.

7. Een praktische werktuigbouwkundige zoekt een oplossing bij zijn probleem, ter-
wijl een theoretische wiskundige een probleem bij zijn oplossing zoekt.

8. In verband met het groeiend aantal interdisciplinaire en interuniversitaire onder-
zoeken, moet het mogelijk zijn om naast twee promotoren ook twee copromotoren
te benoemen.

9. Het is in psychologisch opzicht beter om in het journaal te spreken over een stij-
ging van de dollar ten opzichte van de euro dan van een daling van de euro ten
opzichte van de dollar.

10. Vele ouderen leven als het ware in de sciencefiction van hun jeugd.
Troonrede, 19 september 2000.

11. Door telewerken zal het file-probleem zich verplaatsen van de autosnelweg naar
de digitale snelweg.

12. Door bezuinigingen in de gezondheidszorg is het beddentekort veranderd in een
personeelstekort.

13. Door de eigen bijdragen in de gezondheidszorg veroorzaakt pijn in het lichaam
ook pijn in de portemonnee.

14. Het vier-componentenmengselmodel vormt de ruggengraat van mijn proefschrift.
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