
 

Numerical simulation of unsteady premixed laminar flames

Citation for published version (APA):
Hof, van 't, B. (1997). Numerical simulation of unsteady premixed laminar flames. (RANA : reports on applied
and numerical analysis; Vol. 9706). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/b78d3ce9-c8f6-478d-a5cd-39df235db7b0


EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

RANA 97-06
.July 1997

Numerical Simulation of Unsteady
Premixed Laminar Flames

by

B. van 't Hof



Reports on Applied and Numerical Analysis
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands
ISSN: 0926-4507



Numerical Simulation of Unsteady Premixed Laminar Flames

B. van 't Hof

Eindhoven University of Technology
Department of Mathematics and Computing Science

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

Recently, a computer code for the numerical simulation of two-dimensional, steady laminar
flames called LAMFLA2D was modified to allow for unsteady calculations. This paper de
scribes why and how this was done and in what direction this research may continue.

1 Introduction: Purpose of the Study.

The natural gas-powered appliance industries, like any other industries, have to meet increasingly
strict legal (environmental) requirements and customer expectations. Technology has to make a
constant progress in order to keep up with these ever-increasing demands. Apart from exper
imental design, computer simulations have started to playa certain role in this effort, though
possibilities are still rather modest as the amount of computational work involved with gas-flame
simulation is immense. The steady increase of modern computers' power has enabled more and
better simulations to be performed, and will continue to do so, turning computer simulation into
a serious design tool. Present day research and programming effort should therefore always be
done with the possibilities in mind that the near future will bring.

At Eindhoven University of Technology, the Department of Mechanical Engineering has de
veloped several computer codes for gas-flame simulation. These include CHEMID [1, 3], a code
for the simulation of steady and unsteady one-dimensional laminar methane/air flames with a de
tailed description of the chemistry, CHEM2D, the two-dimensional equivalent of CHEMID, which
can, however, only handle the nonlinear steady state equations, and LAMFLA2D [4], a code very
similar to CHEM2D, but used for the solution of laminar flames described by one-step chemistry.
This paper describes how the LAMFLA2D code was modified to allow for simulations of unsteady
flame behavior. When decisions are taken concerning the approach to such a modification, the
kind of simulations the code is expected to do now, as well as what it will be expected to do in
the (near) future have to be taken into account.

A code for unsteady simulations is, of course, meant to give insight into time-dependent behav
ior of the phenomenon studied. There are, however, different types of time-dependent behavior.
It can be interesting to investigate the stability of steady solutions, a study for which only a very
short time span needs to be simulated with very small time steps. Another type of time-dependent
behavior is the oscillatory behavior a flame will display when fuel supply is insufficient, known as
quenching oscillations [10]. Tests with CHEMID have indicated that this type of behavior can
be adequately studied by time span simulations of approximately one second, where the typical
time step can be in the range of tenths of milliseconds for accuracy (first-order time integration).
A third type of time-dependent behavior which will be studied with the new code is the blow-off
phenomenon which occurs when gas supplies are too large for a stationary flame to develop. This
type of behavior requires roughly the same simulated time span and time step that the quenching
oscillations do. A fourth use of an unsteady code is to use time-stepping as a solver for the steady
equations. A similar time span as for quenching oscillations and for blow-off behavior needs to be
simulated for this purpose, but a larger time-step can be used if the code can do so without losing
stability.
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Initially, therefore, it is our goal to construct a code that can calculate several thousands of
time steps on a fine enough grid for a combustion model that is so detailed that it can capture
the essential behavior of a flame accurately enough. Required computing power for one simulation
should not exceed, say, 16 hours on a Silicon Graphics workstation. Since this is a rather ambitious
task, it is necessary to use a careful approach to building the code. We applied the computational
techniques that best seemed to suit our needs rather than develop a lot ourselves. This lead us
to believe that the multi grid approach as described in [2], with some minor modifications, should
yield a powerful and dependable solver.

One of the extensions to the code which will be made soon is allowing a more complex cheIllical
reaction scheme: from the 5 chemical species included in the current code we will include around
20. This is the reason for the focus on matrix-free solving techniques, because the matrices involved
in linearizing the flame equations will need up to 20 or 30 Kbytes of storage per grid point for
such a detailed problem, and this will definitely cause memory problems fbr today's computers.
Another possible extension is to refine the physics of the problem to include sound waves.

The next section is devoted to the equations which are used to mathematically describe the
mechanisms occurring in gas flames. In Section 3, we will describe the discretization of these
equations. Section 4 describes the solvers used. Last, results will be shown and conclusions drawn
in Section 5.

2 Mathematical Model

A laminar, two-dimensional flame is described in terms of the following variables:

Yi, i = 1, ... ,n mass fraction of the chemical species 1,' .. ,n,
T temperature,
P pressure,
p mass density,
v = (u,v) velocity vector.

The governing equations used by the LAMFLA2D code are the following [3].
Mass conservation for chemical species:

apYi a ( 1 A aYi) a ( 1 A aYi)--+- puYi---- +- pvYi----
at ax Lei Cp ax ay Lei cp ay

Energy equation:

apT +~ (PUT _ ~ aT) +~ (PVT _ ~ aT) = ST,
at ax Cp ax ay Cp ay

Equation of Motion:

apu a ~ 2 (4au 2av)) a ( (au av))at + ax P+ pu - fL "3 ax - "3 ay + ay puv - fL ay + ax = 0,

apv a au av a 2 4 av 2 au
-+- pUV-fL(-+-)) +- (P+9YP+PV -fL(-----)) =0,at ax ay ax ay 3 ay 3 ax

Continuity Equation:
ap apu apv _ 0
at + ax + ay - ,

Equation of State:

(2.1)

(2.2)

(2.3)

(2.4)

pRT
Po = M' (2.5)

The chemical source term ST for the temperature and the average molecular mass M of the gas
mixture are given by

1 n

ST = --L hiSi and
cp i=1

2

~_~ Yi
M - LJ M·'

i=l 1



respectively.
The model is complete when expressions for

Lei, i = 1, ,n Lewis numbers for the chemical species,
Si, i = 1, ,n source terms for the chemical species,
hi, i = 1" .. ,n enthalpy of the chemical species,
M i , i = 1, ... , n molecular mass of the chemical species,
A heat conductivity coefficient,
cp specific heat of the gas mixture,
J.L viscosity coefficient,
R universal gas constant,
9 gravity constant,
Po atmospheric pressure

are given. These coefficients have been studied and measured by various scientists and more
or less accurate estimates are available [5]. Much more complicated models than the one de
scribed here are available, especially where the energy equation and the conservation equations for
chemical species are concerned. Smooke [6] and Somers [3], among others, use the energy equation
(2.2). Equation (2.1) is obtained using what is called the generalized law of Fick [11].

These equations can of course only be solved if they are supplied with initial conditions and
with boundary conditions. To see what kind of boundary conditions have been used, Figure 1
shows what the computational domain looks like and what types of boundaries there are.

Inflow

Outflow,------=-==

Figure 1: Computational Domain and Boundaries.

There are the following type of boundaries.

Inflow Boundary v = vo(x), u = 0, Yi = Yio, T=To,

Outflow Boundary ov - 0 u=O, oy; - 0 oT - 0oy - , oy - , oy - ,

Symmetry Axis ov = 0 u= 0, oy. -0 aT -0ox , ax - , ox - ,

Cooled Fixed Wall v = 0, u=O, ay. -0 T=To,an - ,

Insulated Fixed Wall v = 0, u - 0 ay; - 0 oT - 0-, an -, an - .
With these boundary conditions given and initial conditions given also, the system can be solved,
though the pressure P is only determined up to a constant.

This concludes the discussion of the model. However, it is possible to eliminate several equa-
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tions. Obviously, using (2.5), one can eliminate p from the system. Then, we can eliminate one
species' mass fraction from the system using the equation

n

LYi = l.
i=l

Best results are obtained if a bulk species is eliminated in this way: typically, this is' N2. More
equations can be eliminated by the idea of Element Conservation, which is well explained by
Somers in [3].

Doing so, we are left with the Equation of Motion (2.3), the Continuity Equation (2.4), the
Energy Equation (2.2) and the Mass Conservation Laws (2.1) for a reduced number (which we will
call n s ) of chemical species. How these are to be discretized in space and time is described in the
next section.

3 Discretization of the Equations

The discretization was done through the so-called method of lines, which means that space dis
cretization and time integration have been studied separately. This section will therefore consist
of two parts: one about the space discretization, the other about the time integration.

3.1 Space Discretization

Before looking at the discretized equations, let us have a look at the grid. We use a standard
staggered grid. Figures 2 and 3 show what the grid looks like and the notations used to denote
grid points.

w

N

s

E e

Figure 2: Grid around the point C. Figure 3: Grid around the point e.

All the variables, except the velocity components u and v, are approximated at the cell-centers,
i.e. grid points denoted by capital letters C, E etcetera. The horizontal velocity component u
is approximated at the vertical cell-faces: grid points with names like e, wand Ee. The vertical
velocity component v, at last, is approximated at the horizontal cell-faces: grid points with names
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like n, s nE, sE. The equations (2.1), (2.2), (2.3) and (2.4) all have the same generic form

(3.1)

where F and G are the horizontal and vertical components of some flux vector. Note that, for the
continuity equation, ¢ = 1. All the equations except the equations of motion are approximated at
the cell-centers. Therefore, all the conserved quantities (i.e. pT, PY;;, p) except pu and pv, as well
as the pressure P are approximated at the cell-centers, whereas their fluxes are approxiI!1ated at
the cell-faces. The approximation of (3.1) then reads:

8pc¢c Fe - Fw Gn - Gs
~+ 6x + 6y =sc,

where, for any variable H and grid point g, H g denotes the approximation of H at grid point g.
For all these equations, the fluxes F and G have the following form:

8¢
F =pu¢-r8x'

8¢
G=pv¢-r-,

8y

though for the continuity equation, r = O. The fluxes F and G are then approximated by central
differences:

F - Pc + PE ¢c + ¢E _ r c + r E ¢E - ¢c
e - 2 U e 2 2 6x

G _ Pc + PN ¢c + ¢NrC +r N ¢N - ¢C
n - 2 V n 2 - 2 6y'

This concludes the description of the space discretization of all equations except the equation of
motion.

The horizontal equation of motion is approximated at the vertical cell-faces. This approxima
tion reads

~ 8(pc + PE)Ue FE - Fc Gne - Gse - 0
2 8t + 6x + 6y -,

where the fluxes are given by

F = p + pu2 _ fL (~8u _ ~ 8V)
38x 38y

and approximated by

(
8U 8V)

, G = puv - fL 8y + 8x '

Fc

=

(
Ue+uw)2 (4ue-uw 2Vn -vs)

Pc +Pc 2 - fLc "3 6x -"3 6y ,

Pc + PN + PE + PNE Ue+ UNe Vn +VnE
422

fLc + fLN + fLE + fLNE (UNe - Ue + VnE - vn) .
4 6y 6x

The vertical equation of motion is approximated in a totally analogous way.
Note that this space-discretization is a standard, central-difference based finite volume dis

cretization on a standard staggered grid. Large local Peclet numbers or cell-Reynolds numbers
may cause non-physical wiggles in the solution. This problem can be dealt with by adding just
so much artificial (stream line) diffusion that the well-known exponential, Patankar [7], or Il'in
discretization schemes are obtained.

This discretization can be easily generalized to rectangular grids with variable 6x and 6y
('tensor-product grids').
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Figure 4: Discrete boundary conditions at
the inflow boundary
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Figure 5: Discrete boundary conditions at
the outflow boundary.
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Figure 6: Discrete boundary conditions at
a fixed wall.
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Figure 7: Discrete boundary conditions at
a symmetry boundary.



Dirichlet boundary conditions are trivially discretized for grid points on the boundary. All
other boundary conditions are discretized by means of so-called virtual grid points: a grid point is
defined outside the domain, and an equation is derived from the boundary conditions. A Dirichlet
boundary condition

cPI8n = cPo

then becomes
cPvirtual = 2cPo - cPa,

and a homogeneous Neumann boundary condition becomes

cPvirtual = cPa.

This is, again, a standard procedure. The resulting discrete boundary equations are shown in
detail by the Figures 4, 5, 6 and 7.

The semi-discrete equations now have to be integrated in time in order to obtain numerical
results.

3.2 Time Integration

For the time integration of the semi-discretized equations, we have to make a choice between
explicit and implicit time integrators, or we have to use a partly implicit, partly explicit time
integrator. In the equations we study, a number of effects playa role. Let us make an estimation
what the maximum time step will be for an explicit time integrator for all of these terms.

First, we have chemical reactions. Maas and Pope [12] found that chemical reactions in pre
mixed methane/air combustion happen at time scales ranging from 10-2 to 10-10 seconds. There
fore, unless we are willing to take millions of time steps, chemical source terms have to be taken
implicitly.

Next, there are diffusive and viscous effects. The following rule of thumb gives clear insight in
the maximum time step allowed:

in which r stands for the diffusion or viscosity coefficient. In typical problems, this maximum
time step will be in the order of 10-6 to 10-8 , so again an implicit approach is necessary.

Then, there are convective phenomena. Here, we have the following rule of thumb:

t::.t =o(M+M)max t::.X t::.y ,

which indicates that t::.tmax will be something in the order 10-5 to 10-6 seconds. Again, these are
time step sizes we are not very happy to be held to.

Last, there are pressure wave effects. The propagation velocity of these waves depends on
the Mach number which, because of the special form of the equation of state (2.5), is zero. This
implies that a fully explicit time stepping algorithm is doomed unless we introduce some sort of
artificial compressibility. Many pressure correction algorithms have been developed to minimize
the number of implicit terms.

From these considerations we may conclude that hundreds of thousands up to billions of time
steps have to be taken for one second of simulated time, unless a fully implicit time stepping
algorithm is used (Euler Backward, BDF2). We chose the Euler Backward time integration. This
required us to have a very powerful solver. We think we have found this in the Multi grid approach
due to [2], as described in Section 4.
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4 Matrix Free Nonlinear Solvers

Many solvers for nonlinear equations are based on Newton iteration: an (approximate) lineariza
tion of the system is built, after which the resulting linear system is solved (approximately). We
are, however, dealing with a very large system of nonlinear equations. Also, in any of these equa
tions, many variables occur. A linearization matrix will consequently not be very sparse, and will
require (too) much computer memory.

4.1 Broyden Iteration

A method which avoids the numerical approximation of a linearization matrix is Broyden iteration
[13]. It does not, however, avoid working with a full matrix, so it is not suited for very large systems
(though sparse modifications exist). For non-sparse problems, the advantage of Broyden Iteration
as compared to a modified Newton iteration with a numerically approximated linearization matrix
can be summarized by stating that with the computational work necessary to start the Newton
process, one can do as many Broyden iterations as the dimension of the system.

Broyden iteration works in the following way for the solution of the system

f(x) = o.

• choose a cheap, crude approximation B o of the inverse linearization matrix J j l.

• choose an initial approximation xo.

• repeat for i = 0,1, ... :

- Calculate the update 6Xi := Bd(Xi) =: Bdi' just like you would do if you were doing
Newton iteration and B i were equal to the J j l.

- Find a relaxation parameter Ai such that

Ilf(xi - Ai6xi)1I < Ilf&

Update the solution
Xi+l := Xi - 6Xi.

- to construct a matrix Bi+l which is a better approximation of the inverse linearization
matrix, we set

or, equivalently,
Bi+l(fi - fi+l) = Ai8xi'

This is an under determined system, so we have many options in constructing Bi+l'
The following choices are widely used:

B B (1 ()..-1)f.+f.+l (f f )T) b .. .. liB B II*. i+l:= i + 111.-1.+
1

11 2 i- i+l , ecauseltmlnImlZeS i+l- i2

B (1 B ()..-I)f.+fi±l J; T) B b .. .. IIB-l B-l ll* i+l:= + i J; TB. f -f uX i i, ecause It mInImIZeS i+l - i 2·
uX, ,( .+1 J

• until Ilfill < tol.
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4.2 Symmetrically Coupled Gauss Seidel (SCGS) Iteration

We are dealing with a very large system of nonlinear equations. It is impossible to solve all of
these equations at once. However, if we take a small number of these equations, and the same
number of variables, it is possible to solve this subset by changing the selected variables only, if
the equations and variables are chosen wisely.

In Symmetrically Coupled Gauss Seidel (SCGS) Iteration, we associate equations and variables
with grid cells (see Figure 2). These equations and variables are:

• Y1 , "', Yns at point C, with equation (2.1), integrated around the point C,

• T at point C with equation (2.2), integrated around the point C,

• p at point C with equation (2.4), integrated around the point C,

• u at points e and w with equation (2.3), integrated around those points,

• v at points nand s with equation (2.3), integrated around those points.

The resulting system in point C is then a system of n s + 6 variables and equations. Let us write
this equation formally as

f(cPc) = o.

We chose Broyden iteration to solve this system.
In this way, the equations associated with one grid cell can be solved changing only the variables

associated with the same cell. After the variables associated with one grid cell have been updated
in this way, the variables of the next grid cell can be updated and so on, until all the grid cells have
been visited once. This we call one SCGS-sweep. The SCGS solver simply makes SCGS-sweeps
until the equations are solved accurately enough.

SCGS Iteration is not a very efficient solver. In the following subsections it will be discussed
how it can be accelerated.

4.3 Local Re-Iteration

When SCGS Iteration is applied, it is found that the residuals vanish much more quickly in most
of the domain, and only remain in a small number of grid points which we call the reaction zone.
This is the zone where chemical source terms are dominant. It makes sense to iterate more in
this small area where the equations appear to be more difficult than elsewhere. This is done in
the following way. First, the difficult points are located. These are defined as those points, where
the norm of the residual exceeds a certain multiple of the average residual norm. The points
at which the residual is large after iteration number n are then denoted by {di, ... , d~(n)}' An
SCGS-sweep can be made more effective by first visiting the difficult points a number of times
(e.g. 3 times), and then the rest.

4.4 Multi grid

There are many ways in which multi grid can be used to solve equations efficiently. An overview
is given in [9]. The specific form in which our solver is put is very close to the approach of [2] and
is discussed in this subsection.

Assume that the set of equations which have to be solved every time step is

(4.1)

(4.2)

In order to find cP, we apply a number of (Locally Re-iterated) SCGS-sweeps. We call this number
of sweeps k. We then find the approximation cPk' for which

cPk - cPn
-

1

fit + Fh(cPk) =Tk·
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It is interesting to investigate how the residual Tk depends on k, the number of seas sweeps.
Since seas is a solver, the residual will be small if k is large. However, since seas is an inefficient
smoother, this will only be so if k is very large, and it is not good to wait that long. For small k,
Tk will not be substantially smaller than TO. It will, however, be substantially smoother. What is
meant by this is illustrated by Figure 8. Figure 8 shows the plot of what could be TO on the left,
and what could be T4 on the right. The two residuals are approximately equally large. The plot
of TO, however, has a lot more detail than the one of T4. Therefore, to represent the residual T4
well, one only needs a very coarse grid. It is this notion of smoothing that leads to the multi grid

Fine Grid

Coarse Grid

Before Smoothing After Smoothing

-1 -1

Figure 8: Plots of residual, before and after smoothing, on coarse and fine grids.

approach. If we write 8¢ := ¢ - ¢k> then we can combine (4.1) and (4.2) to obtain

(4.3)

If we can find 8¢, we can set ¢ = ¢k + 8¢ and (4.1) will be solved. To find an approximation to
8¢, we proceed as follows. First, represent ¢k and Tk on a coarse grid. The resulting coarse grid
functions are called ¢H and TH . The operator F h is the discretization of a differential operator
F on the fine grid. The discretization of the same operator on the coarse grid will be F H. The
second step is to solve

(4.4)

This produces 8¢H, a good approximation of 8¢, but it is defined on the coarse grid. It is
therefore necessary to represent 8¢H on the original fine grid. The resulting fine grid function

is called 8¢h. This is a good approximation of 8¢, so (¢k + 8¢h) will be very close to ¢. If

this new approximation of ¢ is not good enough, we redo the whole routine: first we do a small
number of seas sweeps, then represent solution and residual on the coarse grid, solve the coarse
grid equations, and represent the correction on the fine grid.

In this description of the solution procedure, mention was made of 'representing ¢k and Tk on
the coarse grid', of 'representing 8¢H on the fine grid', and of 'solving the coarse grid equation'.
The first two ofthese actions are called 'restriction' and 'prolongation'. In order to restrict, prolong
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and solve, one must of course first have a coarse grid. In Figure 9 it is shown how the coarse grid
is obtained from the fine grid. The coarse grid equation is solved using multi grid recursively, so
we obtain what is called a 'W'-cycle [9]. We used 4 grids. The equation on the very coarsest grid
available is solved by many (40) SCGS iterations. In Sections 4.3 and 4.4, the restriction and
prolongation operators are discussed.

Figure 9: Fine and coarse grids.

4.4.1 The Restriction Operator

The restriction operator must make it possible to place fine grid functions on the coarse grid.
As was seen in Section 3, some grid functions live on the cell-centers, while others live on the
cell-faces. These will have to be restricted in different ways.

Restrictions

• •

• •

--
-..

1/4

1/4

1/4

1/4

1/2

1/2

1/8 1/4 1/8...-
1/8 1/4 1/8

Figure 10: Cell-Centers. Figure 11: velocities. Figure 12: motion residuals.

As is seen in Figure 10, coarse grid cell-centers lie right between four fine grid cell-centers. The
restricted value of a function in the coarse grid cell-center is found by taking the mean of these
four fine grid cell-centers, as is indicated in Figure 10.

For the velocity grid functions, we see that a coarse grid cell face center lies right between two
fine grid cell face centers. The restricted value of a velocity component on the coarse grid cell-face

11



is found by taking the mean of these two fine grid cell-face velocities, as is· indicated in Figure 11.
Last, we must restrict the residuals of the equations of motion (2.3). This is done by area

weighting: a control-volume for the equation of motion on the coarse grid partly covers six control
volumes for the equation of motion on the fine grid. The restricted residual is then a weighted
average of these six residuals, where the weighting is done according to the area of the fine grid
control volumes that is inside the coarse grid control volume, as is indicated in Figure 12.

This concludes the discussion of the restriction operator we used.

4.4.2 The Prolongation Operator

Inversely to the restriction operator, the prolongation operator must make it possible to place
coarse grid functions on the fine grid. However, no residuals have to be prolongated, just corrections
to concentrations, temperatures, pressures and velocities. A fine-grid cell center is always between
four coarse grid cell-centers, though some are farther away than others. Bilinear interpolation is
used to find fine grid values, as Figure 13 indicates.

Some fine grid cell face centers are located between two, and others between four coarse grid cell
face centers. Again, (bi)linear interpolation is used to obtain weights for constructing a weighted
average, as Figure 14 indicates.

Prolongations

• • • •
• • • •
• • • •
• • • •

I

-3/8

-1/8
I

I

318 -

118 -
I

I
-3/4 --+--+-

~

-1/4 -+--+-
I

Figure 13: Cell-Centers. Figure 14: velocities.

4.5 Linear Subspace Minimization

Let us assume that we have a certain iterative method, ¢n+l = U(¢n)' The iteration function U
can be, for instance, a W-cycle from the multi grid algorithm. Furthermore, we have a residual
function R(¢), which is properly scaled in the sense that it is a good measure of the accuracy of
¢ as a solution of the equation R(¢) = o.

If the computational work involved with one iteration is large, then this work can be used more
fully. This is done by storing the update V n :

and the effect that this update had on the residual:

12



,,,,,,

\/V\./~Vl' W1

Now, in first order approximation we have:

R (cPn+l + (VI,'" ,vn)a) == R(cPn+l) + (WI,'" ,wn)a,

for any n-vector a. The vector a which minimizes IIRII2 is the the solution of the (small) least
squares system

Wa = -R(cPn+l)'

This linear subspace minimization is very similar to Krylov subspace methods like GMRES or
BiCGStab [14]. It takes more work and storage per iteration and is therefore less efficient than
those in certain cases. In our case it has the definite advantage that it has a clear meaning for
non-linear problems and that it is more flexible in (not) using certain search vectors available, for
instance because the minimization procedure fails and only increases the residual. We found that
this subspace minimization increased robustness of the method.

Figure 15 gives a schematical overview of the method discussed in this section.

Locally Re
iterated SCGS

',,' '1 Broyden I
In every po'int,
solve local. ----- ... - .... -
system

\
\

\
\

\
\

\
\

\

\
\

\
\

\
\

\
\\ro_---+-------_

\

Subspace
Minimization

Figure 15: Schematical overview of the method.

5 Results

To test our code, we made a simulation in which rather abrupt changes occur. This would give us
insight in the robustness and correctness of the method.

We did this in the following manner. On a grid of approximately 2100 points, we started
from a steady solution, with a cooling (Dirichlet) condition at the lower wall and an insulation
(Neumann) condition for the temperature at the right hand side of the domain. At t = 0 these
boundary conditions were changed: cooling at the right hand side and insulation at the bottom.
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Figure 16: Temperatures. 
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The resulting behavior of the flame in time is shown in Figure 16. First, the temperature drops 
at the right . At the same time, the flame is lifted because not enough fuel is burnt. After about 
0.03 seconds, burning intensity has increased so much that a hot area appears in the middle of 
the flame. This hot area expands and curls around the burner mouth , resulting in a new steady 
solution which is completely different from the initial conditions. 

The behavior of the gas flow is illustrated in Figure 17. At first glance, it looks as if this 
solution can by no means be correct. Although the initial flow looks plausible, we see that over 
a very short time span, a flow develops which seems almost impossible: streak lines running into 
fixed walls. 

At second sight, however, there appears to be an explanation for this outrageous behavior. 

Figure 17: Streak Lines . 
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The side walls are cooled down extremely quickly: in no time at all, the temperature drops from 
1600K to 300K. This results in an increase of the density, which in turn attracts the streak lines. 
After a while the flow fans out and assumes a more natural pattern, although long-time oscillating 
phenomena have not died out after the first 0.2 seconds. 

This example shows the robustness of the code: all the abrupt changes which occur have been 
simulated without the method's breaking down. 
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