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Summary 

Multibody systems are mechanical models of interconnected rigid or flexible bod­
ies. They are commonly employed in mechanical kinematics and dynamics of, for 
example, vehicles, mechanisms and robots. Multibody system analysis software is 
available to automatically build and solve the governing equations of motion for a 
variety of multibody systems. This enables the engineer to analyze and improve 
the multi body system design early in the design stage. 

Systematic design improvements are rather difficult if the multi body system has 
multiple design parameters and several conflicting design criteria. Here, numerical 
optimization methods can aid. To this end, the multibody system analysis software 
has to be extended, and coupled with a suitable optimization strategy. The ques­
tion is then how this coupling should be established to obtain a general purpose 
multibody design tool with a reliable and efficient design optimization process. 

Mathematically formulated, the optimization problem is to find a set of de­
sign variable values that will minimize an objective function subject to constraints. 
Several mathematical programming algorithms are available that can solve such 
a problem. However, the optimization of multibody systems is hindered by the 
transient responses that follow from the numerical multibody analysis. The accom­
panying computational cost may be high, which limits the number of multibody 
analyses that can be carried out during the optimization. Another difficulty is that 
for a successful optimization the designer should not be completely left out of the 
optimization loop. User-interaction is required such that engineering experience 
and computer power can be combined to solve the optimization problem. 

The approach adopted in this thesis is to couple multibody analysis and op­
timization algorithm by means of approximation concepts. Such an interface is 
computationally more convenient than a direct coupling, and enables the design 
engineer to influence the optimization process. This is demonstrated by means of 
design optimization software that has been especially developed for multi body sys­
tems, starting from single-point local and multi-point mid-range approximations. 
The software generates approximations of objective function and constraints in 

xi 



xii Summary 

a search subregion of the design space, and solves the approximate optimization 
problem separately from the multibody analysis. Afterwards, the search subregion 
is moved towards the calculated optimum design, which means that a sequence of 
approximate optimization cycles follows to reach the final optimum design. 

The local approximation concept uses function values and derivatives with re­
spect to the design variables in a single point of the design space. It is especially 
suitable for smooth functional behavior. The local concept relies on accurate sensi­
tivities which may not be obtained by means of a finite difference sensitivity anal­
ysis. A computationally better and more efficient approach is to assemble and 
solve the sensitivity equations corresponding to the multi body' equations of mo­
tion. Within this context either the direct differentiation or the adjoint variable 
method can be used. The direct method appears to be most suited to calculate the 
sensitivities for sequential approximate optimization using time discretization. 

The mid-range concept builds approximations using numerical multi body anal­
yses of multiple design points spread over the search subregion. It does not use 
sensitivities and is appropriate whenever a band of noise is present on the global 
responses. In that case a reasonable estimation of the magnitude of the noise is 
important for a good convergence. 

The approximate optimization approach is illustrated for two analytical exam­
ples and three larger multibody design examples. For the latter design applications 
the optimization tool has been coupled with external multibody analysis codes. 
Both smooth and non-smooth design optimization problems have been success­
fully solved. The examples show that the transient multibody responses can be 
dealt with by means of time discretization, provided that a constraint deletion is 
applied. This constraint deletion retains only the most important time point con­
straints to obtain an approximate optimization problem of manageable proportions. 
Furthermore, the examples prove that suitable intermediate design variables and 
intermediate response quantities can be selected that improve the approximations 
and yield a robust and fast optimization process. 

The main conclusion of this thesis is that approximation concepts can be effec­
tively used for the design optimization of multi body systems. They provide an in­
terface in between multi body analysis and optimization that allows user-interaction. 
This gives the opportunity to develop an interactive computer aided design tool for 
multibody systems. 
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matrix 
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inverse of A 
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first time derivative of a 
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partial time derivative of a 
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Chapter 1 

Introduction 

1.1 Analysis and Optimization 

Nowadays, numerical analysis tools are commonly used in mechanical design. 
These tools allow mechanical engineers to design complex structures and machines. 
The first computer oriented analysis tools were developed in the sixties for struc­
tures, based on linear finite element methods (Bathe, 1996). Soon, finite element 
methods were applied in broader perspective like heat transfer and fluid flow, and 
developments were started for the analysis of nonlinear systems. At the end of the 
seventies, software packages became available for multibody systems. Multibody 
systems are mechanical models that consist of a finite number of rigid or flexible 
bodies. The governing equations are characterized by a strong geometric nonlin­
earity caused by the large displacements of motion. Furthermore, physical nonlin­
earities arising from, for example, contact or friction may be present. By now, a 
great variety of software is available that can automatically generate and solve the 
equations of motion for a wide range of multibody systems (Schiehlen, 1990). 

Starting from an accurate numerical simulation, design optimization is a natu­
ral next step. Usually, a lot of design parameters do not have a predefined value, 
and in some cases even the topology is unknown. So, a convenient set of parameter 
values has to be selected that accomplish the design goals. Often, this is done man­
ually by analyzing some different sets of design parameter values, and selecting 
the best set found. However, it is of great help for the design engineer to include 
design optimization tools in the analysis software for systematic design modifica­
tion and improvement. This means that the design problem can be formulated as 
an optimization problem that can be solved by the computer. 

Generally, an optimization problem is mathematically formulated as to find the 
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set of design variable values that will minimize an objective function subject to con­
straints. During the last decades several algorithms have been developed to solve 
such an optimization problem (Vanderplaats, 1984). The basic solution procedure 
consists of an iterative evaluation of objective function and constraints. However, 
with a numerical analysis involved, usually only few of them can be analytically 
expressed as function of the design variables. Most values of the objective function 
and constraints follow from the numerical analysis. Therefore, to extend the anal­
ysis software with design optimization facilities, an optimization algorithm has to 

. be implemented and coupled with the analysis routines. 

1.2 Structural Optimization 

Numerical design optimization tools have been mainly developed in the field of 
finite element structural analysis. This is probably due to the early general accep­
tance of finite element methods for linear static and dynamic analysis of structures, 
and the successful development of the accompanying design sensitivity analysis 
(Haug et al., 1986). Many optimization strategies applicable to structural optimum 
design require design sensitivity information, and therefore a numerically efficient 
and accurate sensitivity analysis is essential. Within this context, design variables 
are sizing parameters, such as cross sections of bars and beams, or shape parame­
ters describing the global geometry of the design. A large amount of literature is 
available on structural sensitivity analysis. Reviews can be found in Adelman and 
Haftka (1986) and Haftka and Adelman (1989). 

Several design optimization tools in structural design use a suitable approxi­
mation concept as interface between analysis routines and optimizer. The basic 
idea is to generate approximations of the objective function and constraints in a 
certain part of the design space, and to solve the optimum point for this approxi­
mate optimization problem. The approximate problem can be easily solved using 
a mathematical programming algorithm, since the approximate objective function 
and constraints can be cheaply evaluated. Various approximation concepts have 
been proposed (Barthelemy and Haftka, 1993). Many are based on analysis and 
design sensitivity data in a single point of the design space. Others use analyses in 
multiple design points to generate the approximations. The range of validity and the 
quality of the approximations determine whether several cycles of approximation 
and optimization are necessary to obtain the final optimum design. 

Separation of numerical analysis and optimization by means of an approxima­
tion concept is computationally more convenient than a direct coupling, and avoids 
programming difficulties (Haftka and Giirdal, 1992). This is due to the fact that 
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mathematical programming algorithms often need many function value evaluations 
(i.e. numerical analyses), and require specific subroutines to evaluate the objec­
tive function and constraints. A second advantage is that the optimization is no 
longer a black-box. The design engineer can influence the optimization process, 
for example by selecting appropriate approximation models, or by reformulating 
the optimization problem after some cycles of approximation and optimization. 

1.3 Optimizatio~ of Multibody Systems 

Multibody analysis packages are generally capable of generating and solving al­
gebraic relations and differential equations of motion for user-defined mechanical 
systems. Most packages, however, do not include routines that can automatically 
adjust the multibody systems parameters towards an improved design. To pro­
vide optimization facilities, the analysis code has to be extended with a suitable 
optimization strategy. The question is then how numerical analysis and optimiza­
tion can be effectively combined into a general multibody design tool. Within this 
context, important aspects are the mathematical formulation of the optimization 
problem, the type of optimization algorithm to solve this problem, and the actual 
implementation. Altogether, they should guarantee a reliable and efficient design 
optimization for a wide range of multibody systems. 

The multibody optimum design problem is defined by design variables, objec­
tive function and constraints. The design variables arise from the bodies, joints and 
force elements present in the multibody system. A wide variety of design variables 
can be distinguished such as the lengths of links, the sliding angle of a translational 
joint, or the stiffness and damping coefficients in a spring-damper element. The ob­
jective function and constraints are usually determined by the transient responses 
following from the numerical multibody analysis. Common multibody responses 
are displacements, velocities and accelerations, as well as induced forces and mo­
ments. For example, the objective may be to realize some specific motion subject 
to constraints on the maximum induced forces. 

In literature concerning optimization of multibody systems, usually a sensitiv­
ity based optimization strategy is applied to a multibody system of fixed topol­
ogy. Sensitivity based optimization algorithms have proven to be very effective for 
smooth problems with large numbers of design variables and constraints. Several 
successful applications have been reported for planar linkages design (Gabriele, 
1993). Many have an ad hoc character and are concentrated on a specific type of 
mechanism. The multibody systems approach, however, requires the optimization 
to work in a more general framework, for both kinematics and dynamics. 
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Several authors have paid attention to the development of accurate and effi­
cient design sensitivity methods for multibody systems, which they consider as 
the missing link between multibody analysis and optimization. For kinematically 
driven systems, Sohoni and Haug (1982) were one of the first to computer gener­
ate the governing equations for both analysis and sensitivity analysis. Dynamics 
was included by Haug etal. (1984). They studied the design sensitivity analysis of 
large-scale constrained dynamic systems. Ashrafiuon and Mani (1990) proposed 
to symbolically instead of numerically generate the equations for both analysis and 
sensitivity analysis. Starting from symbolic formalisms, Bestle (1994) gave an ex­
tensive description of analysis, sensitivity analysis and optimization of multibody 
systems. For all references the optimization is finally (or is supposed to be) carried 
out by means of a direct coupling of the analysis and design sensitivity analysis 
routines with the selected mathematical programming algorithm. 

1.4 Objective and Outline 

This thesis studies the application of approximation concepts for the design opti­
mization of multi body systems, instead of the usually applied direct coupling. The 
optimization can then benefit from the same advantages that have been mentioned 
for structural optimization in Section 1.2. Like finite element structural analysis, 
the numerical analysis of multibody systems is computationally expensive, espe­
cially for large complex systems. Approximation concepts may help to limit the 
required number of numerical analyses during the optimization. The open archi­
tecture of the approximate optimization process gives the design engineer access to 
the optimization, though still shielding the user from coming completely involved 
into the optimization loop. This opportunity to combine engineering experience 
with computer graphics and optimization may appear to be essential for an effec­
tive design optimization of multibody systems. 

Starting point is the design optimization problem formulation. An appropriate 
formulation is one of the main preconditions for a successful optimization. Chap­
ter 2 presents commonly used optimization problem formulations for multibody 
systems. It is not tried to be all inclusive in coverage. Instead, two analytical ex­
amples will illustrate some different formulations. The design parameterization is 
discussed by presenting some kinds of design variables. Next, several types of ob­
jective function and constraints are discussed. One of the important topics is how to 
deal with time dependent constraints. Optimization algorithms usually cannot deal 
directly with time dependent constraints, which means that time has to be removed, 
either by time discretization or integral type of functions. 
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Chapter 3 is the central part of this thesis, and describes the approximate opti­
mization process. Shortly, different classes of approximation concepts are reviewed 
and their usefulness for multi body systems discussed. Then, the optimization prob­
lem is formulated such that approximation concepts can be incorporated. Design 
optimization software has been developed that is able to build and solve this ap­
proximate optimization problem. The two analytical multibody design examples 
of the previous chapter are optimized to illustrate the approach. 

An accurate and cost-effective design sensitivity analysis is important if a sen­
sitivity based approximation concept is applied. Such a concept has been used 
for the multi body design examples in Chapters 5 and 7, which were modeled in 
MECANO (Samtech, 1994) and DADS (CADSi, 1995), respectively. Finite differ­
encing has been used to obtain the sensitivities with respect to the design variables, 
since both MECANO and DADS are not able to provide the required sensitivity 
information. However, finite difference sensitivity analysis suffers from two seri­
ous drawbacks: it is computationally expensive and accuracy problems may occur 
(Bestle and Eberhard, 1992). As mentioned in the previous section, alternative 
approaches for computing the gradient with additional equations have been pub­
lished. Chapter 4 reviews the basic principles behind these methods, and discusses 
the consequences for an accompanying design sensitivity analysis of the proposed 
approximate optimization strategy. 

Chapters 5, 6 and 7 show three multibody optimum design examples that have 
been solved by means of the developed design optimization software. Chapter 5 
presents the weight minimization of a stress constrained four-bar mechanism. Flex­
ibilities have been included in the MECANO model. In Chapter 6, a combined 
airbag and belt restraint system modeled with MADYMO (TNO, 1994) is designed 
for optimum crash safety. This problem clearly shows non-smooth behavior of 
objective function and constraints, and requires a special way to deal with the op­
timization problem since design sensitivities cannot be used. Chapter 7 deals with 
the design of a nonlinear damper of the suspension of a truck using DADS. For 
all examples approximate optimization proved to be an effective approach. Finally, 
Chapter 8 summarizes the main conclusions and gives some recommendations for 
further research. 

1.5 A Guideline for the Reader 

Two main parts can be distinguished: the theoretical basis in Chapters 2, 3 and 4, 
and the design applications in Chapters 5, 6 and 7. There is no need to read all 
chapters successively. After Chapter 3 one may proceed with any of the remaining 
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chapters. The chapter on design sensitivity analysis as well as each chapter on 
design application can be read separately. The only cross reference is made to 
Section 4.2 when finite difference sensitivities are used in Chapters 5 and 7. 



2.1 Introduction 

Chapter 2 

Optimization Problem 
Formulation 

Many mechanical systems can be modeled as a multibody system that is composed 
of a finite number of rigid or flexible bodies interconnected by joints and force 
elements. Well-known examples are road vehicles, mechanisms and robots. The 
bodies usually have mass and inertia, whereas the joints restrict the relative motion 
of interconnected bodies. The force elements introduce mechanical forces induced 
by, for example, springs and dampers. Due to mass, inertia and applied forces, 
second-order differential equations of motion arise. The joints add kinematic con­
straints, which are algebraic or first-order differential equations. The total set of 
equations is a mathematical representation of the multibody system, and can be 
numerically solved for simulation purposes. 

Multibody system analysis software is able to automatically formulate and 
solve the governing equations of kinematics and dynamics for a wide range of 
multibody systems. Furthermore, graphical tools are provided to visualize the nu­
merical analysis results. Several multibody packages are commercially available. 
Usually, three different types of analysis can be performed: kinematic, inverse dy­
namic and dynamic analysis (Haug, 1989). A kinematic analysis calculates the 
positions, velocities and accelerations of the generalized coordinates that follow 
from the prescribed driving conditions for the degrees of freedom. Afterwards, the 
forces to produce this motion can be obtained by an inverse dynamic analysis. Fi­
nally, dynamic analysis is concerned with the motion of the system that is due to 
the action of applied forces. 

7 
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Computer simulation tools, like multibody analysis packages, enable design 
improvements early in the design stage. The engineer can, for example, analyze 
some different designs and select the best set of design variable values found. How­
ever, the numerical analysis of multi body systems is often computationally expen­
sive. Combined with an increasing number of design variables, a 'many analyses' 
or 'trial and error' approach will become cumbersome and unsatisfactory. Here, an 
optimization tool can aid to find an improved design and reduce the required design 
time. 

In engineering design, optimization problems are often written in the follow­
ing mathematical format: find the set of n design variable values b E :nn that will 
minimize the objective function: 

F(b) 

subject to the inequality and equality constraints: 

gj(b) ~ Cj, 

8k(b) = q, 

j = 1, ... , m', 

k = m' + 1, ... , m, 

within the design space: 

b1 < bl· < bif 
l- l' i = l, ... , n. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

The scalar bi is the i-th element of the design vector b. The side-constraints define 
the design space, i.e. the region in which is searched for an optimum. For many 
multibody design examples there will be no equality constraints in the optimiza­
tion problem. The kinematic constraints of the joints, and the equations of motion 
are not considered as equality constraints. This set of equations can be separately 
solved for the unknown state or response variables by means of the multi body anal­
ysis routines. Afterwards, the objective and constraint functions related to these 
response can be evaluated. Generally, only few functions of (2.1), (2.2) and (2.3) 
are explicitly known. 

Various optimization algorithms are available to solve abovementioned stan­
dard optimization problem (Vanderplaats, 1984 ). Most of them are based on the 
iterative formula: 

(2.5) 

Starting from an initial design b0 , the old design bq-l is moved with step a* in 
direction Sq during the q-th iteration. Every algorithm has its own specific strat­
egy to determine search direction Sq and step size a*. Well-known examples are 
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the gradient projection algorithm and sequential quadratic programming. The the­
oretical background can be found in many textbooks on optimization, either from 
an engineering or a mathematical point of view (e.g., Vanderplaats, 1984; Haftka 
and Giirdal, 1992; Gill et al., 1981 ). The actual computer implementations can be 
obtained from several software libraries. 

Transient responses play a central role in the optimization of multibody sys­
tems. A kinematic, dynamic or inverse dynamic analysis will usually give the 
behavior of the multibody responses as a function of time. This means that the 
objective function and constraints may be time dependent, which complicates the 
standard problem formulation of Equations (2.1) to (2.4). In the following two 
sections, the time dependent optimization problem is defined, and several differ­
ent design variables, objective functions and constraints are presented. A separate 
section focuses on the time dependent constraints. Next, two small examples are 
given for which the response values can be analytically solved. They are used to 
illustrate the optimization problem formulation and will return in the subsequent 
chapters. Finally, this chapter is concluded with a discussion. 

2.2 Optimization Problem 

Within the time interval t E [to, t f], the optimization problem is formulated as fol­
lows: find the set of design variable values b E fin that will minimize the objective 
function: 

F(b) = F(r(b, t), b, t), t E [to,tt] (2.6) 

subject to the inequality constraints: 

V t E [to, tf], (2.7) 

j 1, ... ,m, 

within the design space: 

i = 1, ... ,n. (2.8) 

The functions stored in the column r(b, t) represent the transient responses cal­
culated from the multibody governing equations. These are usually free or forced 
responses such as displacements, velocities, accelerations and joint forces. In the 
case of flexible bodies bending stresses may be considered. A classification of ob­
jective function and inequality constraints is given in Section 2.3. The equality 
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constraints have been omitted. If they do occur, they can be included by reformu­
lation into inequality constraints (see e.g. Vanderplaats, 1984). 

The design engineer has to formulate the multibody design problem as a math:­
ematical optimization problem. This is an important stage in design optimization, 
for it has a direct influence on the optimization process and the final optimum de­
sign. A great variety of design variables, objective functions and constraints can be 
defined, depending on the specific multibody design application. In vehicle systems 
other design variables will be present than for linkages. Design for optimum crash 
worthiness gives rise to different objective functions and constraints compared with 
design for optimal comfort. The abovementioned formulation covers many differ­
ent types of optimization problems that may occur for multi body systems. 

The design parameterization plays a central role in the optimization problem 
formulation. Properly scaled design variables have to be selected that are not inter­
related: a change in one design variable should not lead to a change of one of the the 
other design variable values. For a fixed multibody system topology one can iden­
tify sizing and shape design variables. These design variables are usually related to 
the bodies, joints and force elements in the multibody system. Most of the multi­
body optimization literature focuses on sizing variables like stiffness and damping 
coefficients. Eberhard et al. (1996) applied shape optimization to nonlinear vehicle 
damper characteristics using Hermite splines to parameterize the damping curve. 

Next, suitable objective function and constraints have to be selected that reflect 
the design objectives and specifications. This seems easy, but often there is more to 
it than meets the eye. The first difficulty that arises is which mathematical functions 
to use. Think for example of how to define comfort. Several different formulations 
may be used, such as peak, mean and cumulative measures on the acceleration re­
sponse. After the mathematical functions have been defined, one has to distinguish 
the objective function from the constraints. Here, one can run into problems if a 
single objective function has to be selected from a couple of conflicting criteria. 
Multi-criteria optimization problem formulations may help (see e.g. Bestle, 1994), 
but they do not relieve the designer from the obligation to make decisions with 
respect to the multiple objective functions. Multi-criteria optimization is in fact 
an intermediate step offering structured aid to make a balanced choice towards an 
optimization problem with one objective function. 

2.3 Objective Function and Constraints 

Three classes of objective functions can be distinguished within the context of 
Equation (2.6): response independent, time point and integral type of functions. 
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A combination of the three is possible as well. A response independent objective 
function is determined by the design variables b only: 

F(b) = f(b). (2.9) 

The total mass of a linkage, for example, can usually be explicitly related to the 
link lengths and cross sectional areas. 

The second type of objective function does depend on the multibody responses 
r, but just at one or more specific time points tp: 

F(b) = f(r(b, tp), b, tp), p= 1, ... ,nt. (2.10) 

In Section 2.5.2 this function is illustrated by means of a slider-crank mechanism 
that has to generate a pre-defined path of motion. For some special design problems 
the time points t P may also be design variables, or follow from certain precondi­
tions: 

lllp(r(b, tp), b, tp) = 0, p = 1, ... ,nt. (2.11) 

Such a condition is necessary if one wants to minimize the time to reach some kind 
of final state. 

Finally, the third class of objective functions consists of integral type of func­
tions: 

1
1j 

F(b) = f(r(b, t), b, t)dt. 
0 

(2.12) 

In control and _vehicle design applications integral functions are commonly used. 
Initial time to and final timet 1 may depend on the design variables or be determined 
by a condition such as (2.11 ). 

For the constraints, the same types of functions can be defined as well: 

g(b) = f(b), 

g(b) = j(r(b, tp), b, tp). p = 1, ... , n1, 

g(b) = i 11 

f(r(b, t), b, t)dt. 

Additionally, a time dependent constraint can be distinguished: 

g(b, t) = f(r(b, t), b, t). 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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This type of time-varying constraint is parametric of nature, and often occurs in the 
optimization of multibody systems. Examples can easily found, like an accelera­
tion that may never .exceed some maximum value, or a spring whose deflection is 
limited. In some references time dependent constraints are called point-wise con­
straints (see e.g. Haug and Arora, 1979). The term point-wise will not be used in 
this thesis to avoid confusion with time point constraints. 

A time dependent constraint also occurs if a max-value operator is removed 
from the objective function: 

F(b) = max B(r(b, t), b, t). 
tE[to,t1 ] 

(2.17) 

The max-value operator may introduce discontinuities in the derivatives of the ob­
jective function. They can, however, be easily avoided by means of an artificial 
design variable. The original objective function (2.17) is then replaced by: 

(2.18) 

with an additional time dependent constraint: 

g(b, t) = B(r(b, t), b, t) ~ bn+l (2.19) 

In textbooks on optimization, often this bound formulation is suggested to deal with 
min-max problems (see e.g. Haftka and Gtirdal, 1992). 

2.4 Dealing with Time Dependent Constraints 

Mathematical programming algorithms generally cannot deal directly with para­
metric constraints like: 

g(b, t) ~ c (2.20) 

Such a constraint has to be reformulated to remove the time dependence. The most 
straightforward way is to simply discretize the time interval into n1 time points. 
Then, the original constraint (2.20) is replaced by n1 constraints: 

gp(b) = g(b, t) 1 ~ c, 
t=tp 

(2.21) 

p = 1, ... ,nt. 

The time point distribution has to be sufficiently dense to avoid large constraint 
violations between two adjacent time points. As a consequence, discretizing time 
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dependent constraints can greatly increase the number of constraints, and thereby 
the cost of the optimization (Haftka and Gtirdal, 1992). 

Several equivalent constraint formulations have been proposed to remove the 
time dependence without increasing the number of constraints. In some references 
time dependent constraint (2.20) is replaced by an integral constraint function sim­
ilar to: 

g(b) = _l_ rf max{g(b, t), c}dt::::: c. 
t f- to lro (2.22) 

Constraint (2.22) will be satisfied as long as g(b, t) is smaller than or equal to the 
constraint bound c in the entire interval [to, t f ]. Whenever a violation occurs in 
between t0 and t f, the integral constraint will be violated as well, which means 
that the final optimum solution is not affected by the reformulation. Hsieh and 
Arora (1984) showed however, that from an optimization theory point of view, 
constraints (2.20) and (2.22) are different. This can be understood by noticing that 
an equivalent integrated constraint: 

l
tf 

ge(b) = J(g(b,t))dt 
to 

(2.23) 

represents the behavior of the time dependent constraint g(b, t) on the complete 
time domain [to, t f] by a single constraint value ge (b). Information is lost and as a 
consequence, equivalent constraints tend to blur design trends (Haftka and Gtirdal, 
1992). Due to the max-value operator, constraint (2.22) has an additional difficulty 
of discontinuously behaving gradients. Numerical difficulties are therefore likely 
to occur. 

Both Grandhi et al. (1986) and Hsieh and Arora (1984) preferred to replace the 
original constraint (2.20) by critical time point constraints: 

gp(b) = g(b, t)lt=tmp ::S c, tmp E [to, tf], (2.24) 

p = 1, ... , nmt· 

Instead of a complete time discretization (2.21), they monitored the local maxima 
and the boundary maxima at to and t f of the time dependent constraint functions 
(see Figure 2.1). Part ofthese maxima will return as constraints in the optimization 
problem. Hsieh and Arora (1984) only retained the violated critical time points in 
the active set, where Grandhi et al. (1986) used a cutoff level to mark the impor­
tant maxima. The time points for which the maxima occur depend on the design 
variable values: 

tmp = tmp(b), p = 1, ... , nmr(b), (2.25) 
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c -· 

Figure 2.1: Candidate critical time point constraints. 

and may shift during the optimization. This drift requires the critical time points 
to be frequently updated as the optimization progresses, for example after every 
iteration. 

2.5 Examples 

2.5.1 Impact-Absorber 

An impact-absorber is modeled as a single degree of freedom system with a con­
stant mass m of 1 kg, a linear spring k and a linear damper c (Figure 2.2). It is 
a simplified version of the nonlinear impact-absorber of Afimawala and Mayne 
(1974). At timet= 0 s, the initial mass position and velocity are y(O) = 0 m, and 
y(O) = 1 ms-1, respectively. Starting from the equation of motion and the initial 
conditions, the mass position as a function of time can be analytically solved: 

if 0 :s < 1' 

if(~)= 1, 

l.f (c/2) > 1 .fk . 
(2.26) 

The optimum design problem is to find the stiffness coefficient b1 = k Nm- 1 

and the damping coefficient b2 = c Nsm- 1 that will minimize the maximum accel­
eration: 

F(b) = max I:Y(bJ,b2,t)l 
tE[O, 12] 

(2.27) 



y 

c 

Figure 2.2: Impact-absorber. 
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Figure 2.3: Optimization problem of the impact 
absorber for the maximum accelera­
tion objective function. The optimum 
design is marked with o. 

subject to the displacement constraint: 

g(b,t) = iy(br,hz,t)i:::: 1 VtE[0,12], (2.28) 

within the design space: 0 < b1 < 1 and 0 < bz < 1. A time period of 12 s in­
cludes all important response maxima. In Figure 2.3 the optimization problem is 
visualized. The hatched line represents the displacement constraint bound, and the 
dotted lines represent contour lines of the maximum acceleration. The feasible re­
gion is in the upper right part of the design space. A single optimum solution is 
present, determined by the curvature of the maximum acceleration. For computa­
tional convenience the problem is reformulated into: minimize the artificial design 
variable: 

F(b) = b3 

subject to the acceleration and displacement constraints: 

gr (b, t) = ji(br, bz, t) :::: b3 

gz(b, t) = -ji(br, bz, t):::: b3 

g3(b, t) = y(br, bz, t):::: 1 

g4(b, t) = -y(br, bz, t):::: 1 

VtE [0, 12], 

V t E [0, 12], 

VtE[0,12], 

V t E [0, 12], 

with: 0 < br < 1, 0 < bz < 1, and b3 ::::: 0. 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 
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(a) Displacement. (b) Acceleration (b3 0.6 ms-2
). 

Figure 2.4: Time point constraints of the impact absorber. 

band F(b) Initial Optimum 
design design1 

b] [Nm-1] 1.0 0.3628 
bz [Nsm-1] 0.3 0.4823 
Fl [ms-2] 0.8427 0.5203 
FII [m2s-4] 0.1480 
I) maximum acceleration objective function 

II) integral type of objective function 

Optimum 
design II 

0.09850 
0.7883 

0.03804 

Table 2.1: Initial and optimum impact-absorber design. 

Suppose the time dependence is removed by discretizing the time interval of 
0 to 12 s. Figure 2.4 shows the displacement time point constraints, together with 
the acceleration time point constraints for b3 = 0.6 ms-2, using a rather coarse 
discretization at every 0.25 s. For decreasing value of the artificial design vari­
able the acceleration constraints shift towards the lower left corner, diminishing the 
feasible area until one point is obtained: the final optimum design. At the opti­
mum, either two adjacent time point acceleration constraints and one time point 
displacement constraint will be active, or one acceleration and two displacement 
constraints. For 101 time points, the former case was found using the E04UCF 
nonlinear programming routine of the NAG-library (NAG, 1991). Initial and op­
timum design are tabulated in Table 2.1. To reach the final solution, 4 iterations, 
5 function evaluations, and 5 gradient calculations were necessary (optimality and 
feasibility tolerance were set to 10-5 ). 

By comparing Figures 2.3 and 2.4, one can observe that the curvature of the 
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.Figure 2.5: Optimization problem of the impact-absorber for the integral type of objective 
function. The optimum design is marked with o. 

bounds of the feasible region is caused by the drift of the maxima of the displace­
ment and acceleration functions. If the maxima had stayed at the same time, the 
feasible region would not have been determined by intersecting time point con­
straints. This confirms the necessity of a frequent updating if critical time points 
corresponding with the local maxima of the responses are used. 

A second objective function is considered to illustrate the effect of a change 
in mathematical function on the final optimum solution. The maximum accelera­
tion (2.27) is replaced by an integral type of objective function: 

F(b) = 
1 tr y2(b1, b2, t)dt. 

t f to ito (2.34) 

In vehicle design applications, comfort is often defined by functions like (2.34) in­
stead of the maximum acceleration (see e.g. Wimmer and Rauh, 1996). Figure 2.5 
shows that the new objective function has a completely different behavior. The 
optimum design moves towards the upper left comer of the design space (see Fig­
ure 2.5). Now, 14 iterations with 23 function and 23 gradient calculations yielded 
the final optimum design. 

2.5.2 Slider-Crank Mechanism 

Paradis and Willmert ( 1983) described a mechanism design problem with explicitly 
known objective function and constraints. A four-bar slider-crank mechanism has 
to be designed such that a desired coupler curve is generated. Figure 2.6 shows 
the four-bar mechanism with eight design variables bi, and the coupler point P that 
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i .. 

Figure 2.6: Slider-crank mechanism and coupler curve. 

Point k 1 2 3 4 5 6 7 
XG(k) 26 23 20 17 14 10 20 
YG(k) 16 16 16 16 16 13 7 

0 22 44 66 88 129 221 

Table 2.2: Path coordinates and prescribed timing. 

8 
0 

8 
30 
13 

314 

should generate the desired curve. The prescribed path and timing of the coupler 
curve is given in Table 2.2. The desired (xa, Yc) positions of Pare tabulated as a 
function of the crank rotations D.y(k) relative to the starting angle b8. 

The optimization problem is to minimize the objective function: 

8 

F(b) L {xp(Ay(k))- xa(k)}2 + {yp(Ay(k))- yc(k)}2 

k=l 

subject to the movability constraints: 

gl (b)= -0.85b2 + bl + b3- b6 < 0, 

g2(b) = -0.85b2 +hi- b3 +b6.::: 0, 

(2.35) 

(2.36) 

(2.37) 

and design space bounds: I .:::; b1 < 30, 1 .:::; b2 < 30 and 1 < b4 < 30. The movabil­
ity constraints ensure that the linkage can operate for the complete range of crank 
rotations. The position of coupler point P (x p, y p) follows from the response vari­
ables x2 , y2 and 82 of body 2, and the design variables b4 and b7: 

Xp = x2 + b4cos(b7 + 82), 

YP Y2 +b4sin(~ +e2). 

(2.38) 

(2.39) 
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Usually, the state or response variable values have to be numerically solved from 
the governing equations of the multi body system. But for the slider-crank mecha­
nism x2, y2 and B2 can be analytically derived as a function of rotation 6. y: 

x2 = b1 cos(bs + 6.y) +bs, 

Y2 = b1 sin(bs + 6.y) + b6, 

. (b3 Y2) e2 = arcsm b2 • 

(2.40) 

(2.41) 

(2.42) 

Objective function (2.35) clearly is of the second class of functions defined by 
Equation (2.1 0). 

band Initial Optimum 
F(b) design design 

bl 6 9.388 
b2 25 30.00 
b3 -4 -6.650 
b4 11 12.71 
b5 3 8.224 
b6 4 9.462 
b7 2 0.8215 
bs 2 0.9160 
F 3486 3.746 
gl -23.25 -32.224 

-7.25 0.0 

Table 2.3: Initial and optimum slider-crank design. 

In Table 2.3 the initial design and corresponding optimum solution found by 
the NAG E04UCF routine are given. The design variable values of b7 and bs are in 
radians. The solution was obtained after 36 iterations, 44 function evaluations and 
44 gradient calculations. The optimum design nearly exactly corresponds with the 
solution of Gabriele ( 1993). 

2.6 Discussion 

A well-considered definition of design variables, objective function and constraints 
is of vital importance for a successful design optimization. From a modeling stand 
of view, the optimization problem should be a good representation of the mechan­
ical design problem. The impact-absorber example has illustrated that a simple 
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change of the objective function may lead to a completely different optimum so­
lution. Furthermore, numerical difficulties inherent to the optimization problem 
formulation should be avoided. This numerical stand of view includes a proper de­
sign parameterization, scaling of the design variables and constraints, and selection 
of computationally convenient objective function and constraints. As an example, 
the difficulties arising from equivalent integrated constraints have been mentioned. 

For the examples of Section 2.5, the multibody responses could be analytically 
solved. As a result, the user subroutines, as required by the NAG optimization 
algorithm, could be easily generated. However, for larger and more complex design 
applications this ad hoc approach is not an option anymore. Ideally, optimization 
facilities should be included in the multibody analysis tooL This means that a 
coupling between analysis and optimization has to be established, with a designer 
able to specify the precise relations. In the next chapter it is proposed to realize this 
coupling by means of approximation concepts. 
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Sequential Approximate 
Optimization 

3.1 Introduction 

Multibody system governing equations have typical features that complicate the 
numerical optimization. First of all, the equations include time, and therefore a 
time dependent optimization problem follows, which cannot be directly solved 
by standard mathematical programming algorithms. Furthermore, the multibody 
equations are highly nonlinear. This often results in a computationally expensive 
solution, especially for larger engineering applications. Additionally, design sensi­
tivity methods successfully developed for linear finite element problems cannot be 
applied to multi body systems just like that. 

An optimization tool for multibody systems should work for most of the me­
chanical designs that can be modeled from the multibody elements library. Think 
for example of mechanical systems composed of linkages, nonlinear dampers, or 
cams. This requires a rather robust optimization strategy, integrated with the nu­
merical analysis. Besides, the multibody software should be extended with graph­
ical means for a user-friendly formulation of the optimization problem, and a clar­
ifying visualization of the optimization results. This thesis concentrates on the 
former aspect: the optimization strategy. 

The numerical and computationally expensive nature of many multibody re­
sponses places great demands on the optimization strategy. In any case, the number 
of numerical analyses required during the optimization should be limited. A call 
for an objective function or constraint evaluation at a certain design point means 
a new multibody analysis to be carried out. Furthermore, it is advantageous when 

21 
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the user is able to control the optimization process. Then, one can keep an eye 
on the progress of the optimization, and intervene if necessary, for example by an 
adjustment of the multibody system model, or by a redefinition of the optimization 
problem formulation. 

Approximation concepts give the opportunity to accomplish the demands for 
an effective design optimization of multi body systems. They can form an interface 
in between analysis and optimization. The basic idea is to build approximations of 
response based objective function and constraints that can be easily evaluated by the 
optimizer, without any call to the numerical analysis. Such an interface may open 
new ways to make the design optimization of multibody systems more accessible 
and controllable compared with a direct coupling of analysis and optimization. 

This chapter introduces the approximate optimization strategy in the context 
of multibody systems. Several different approximation concepts are discussed, to­
gether with the accompanying intermediate design variables and responses. Next, 
the optimization problem is formulated such that approximation concepts can be 
incorporated. Starting from a sequence of sensitivity based approximations, a de­
sign optimization tool is presented that has been especially developed for multi body 
systems. If the design sensitivities cannot be calculated at a reasonable accuracy, a 
sequence of multi-point approximations is generated instead. The impact-absorber 
and slider-crank mechanism, presented in the previous chapter, are used to illustrate 
the effectiveness of the approach. 

3.2 Approximation Concepts 

Starting point of the approximate optimization strategy is the generation of approx­
imations for objective function and constraints related to numerically expensive re­
sponses. Analysis and often also design sensitivity analysis results at one or more 
design points are used to build the approximation functions. The original optimiza­
tion problem is then replaced by an approximate problem that is explicitly known 
or easily calculable, and that can be solved within the region the approximation is 
valid. Barthelemy and Haftka (1993) reviewed both the basic and more recently 
developed approximation concepts in structural optimization. They distinguished 
local, global and mid-range concepts. 

Local approximations of objective function and constraints are based on func­
tion values and derivative values with respect to the design variables in a single 
point of the design space, for example linear or reciprocal approximations. Usu­
ally, these approximations are only valid in the vicinity of this design point. There­
fore, a search subregion is defined in which the approximate optimization problem 
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is solved. A sequence of approximate optimization cycles has to be performed to 
reach the final optimum solution. Local approximation concepts are very popular, 
because large numbers of design variables and constraints can be handled without 
great difficulty. For multibody systems this is an important advantage since many 
constraints may occur, especially if time discretization is used to deal with time 
dependent constraints. Moreover, efficient and accurate design sensitivity analysis 
methods for multibody systems have shown major progress during the last decade 
(see Chapter 4). Both aspects indicate that local approximation concepts can be 
effectively used for the optimization of multi body systems. 

Global objective function and constraint approximations are built from analysis 
runs spread over the design space. The original optimization problem is then com­
pletely substituted by an approximate problem formulation, which means that nu­
merical analysis and optimization are decoupled. Within this framework response­
surface techniques are commonly applied (Schoofs, 1987): approximate model 
functions are fitted to the results of a set of numerical experiments correspond­
ing to a carefully selected experimental design. Usually, an iterative updating of 
the model functions and the experimental design follows. Nevertheless, it is of­
ten rather difficult to find the correct model functions. Sacks et al. (1989) tried to 
solve this problem by means of a new model building strategy for the deterministic 
computer experiments. Though, the author of the present thesis was not convinced 
that this strategy improves the response-surface strategy (Etman, 1994). Addition­
ally to the model selection problem, global approximations become inefficient for 
growing number of design variables and constraints. These two drawbacks limit 
the application for multibody systems. Therefore, global approximations are not 
studied any further in this thesis. Still, they may be useful in the preliminary op­
timization stage, to gain more insight in the behavior of some important response 
functions or to search for promising design regions. 

Finally, mid-range approximations are extended local approximations. As a 
consequence, the optimization is a sequential approximate optimization process. 
However, the approximations are based on response data at ,more than one design 
point. One can think of using analysis and design sensitivity analysis data of for­
mer design cycles to improve the current cycle (i.e. the so-called single-point-path 
mid-range approximations). Another strategy is to generate a plan of experiments 
of several design points within the search subregion of each design cycle (multi­
point-path). Both the single-point-path as well as the multi-point-path mid-range 
concepts are valuable for the optimization of multibody systems. The single-point­
path concepts benefit from the same advantages that have been mentioned above 
for the local concepts. The multi-point-path concepts may be effective if, due to 
inaccuracies, design sensitivities cannot be used to build the approximations. 
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3.3 Intermediate Variables and Responses 

Introduction of intermediate design variables and intermediate response quantities 
aims at creating a high quality approximation that yields an efficient and reliable 
optimization process (Vanderplaats, 1993). The key idea is to improve an approxi­
mation of objective function or constraint by incorporating nonlinear behavior that 
is explicitly known or physically present. For truss-structures, a well-known ex­
ample is to linearly approximate a stress constraint with respect to the reciprocal 
of the cross-sectional area. The stress as function of the reciprocal area behaves 
more linearly compared ·with the stress as function of the area itself. Thus the ap­
proximation can be improved if this intermediate design variable is accounted for. 
Another example is the relationship of the bending stress in a beam as function of 
the bending moment and the physical dimensions. The stress is highly nonlinear 
with respect to design variables such as the beam height, width or diameter (see e.g. 
Equation (5.1) in Chapter 5). Therefore, it is beneficial to approximate the bending 
moments instead of the stresses to obtain approximations for the stress constraints. 
Now the term intermediate response quantity is used. 

Approximate optimization strategies are commonly applied to structures. How­
ever, for multibody systems intermediate design variables and intermediate re­
sponses are hardly mentioned. Though, the basic principle is not restricted to any 
specific area of application whatsoever. For multibody systems at least the same 
potential is present. Intermediate design variables and responses equivalent with 
the structural case are quite easily identified, like bending moments in beams. But 
also many relations exist that specifically belong to multibody systems. In design 
of machinery objective function and constraints are often operations on the numer­
ical responses following from the multibody analysis. Such operations are usually 
explicitly known or can be easily evaluated, which directly points towards interme­
diate response quantities. The objective function of the slider-crank mechanism in 
Section 2.5.2 is, for example, a sum of squares on the position of point P. Calcu­
lation of a comfort criterion such as (2.34) is also rather straightforward, given a 
column of accelerations in time. 

Selection of suitable intermediate design variables and intermediate response 
quantities heavily relies on the physical insight of the design engineer. The au­
thor's opinion is that this is far more beneficial than a drawback. Optimization will 
steadily become an integrated part of the analysis, and will probably never become 
just a press of a button. The optimization software should provide graphical tools 
to visualize the approximate optimization process and, more specifically, to enable 
the engineer to introduce intermediate design variables and responses. Then, the 
engineer has at his disposal a design tool that can combine both computer power 
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and engineering experience. 

3.4 Approximate Optimization Problem 

Sequential approximate optimization promises to be an effective approach for multi­
body systems. One can use a local approximation concept for smooth problems, 
or switch to a multi-point mid-range concept whenever sensitivities cannot be ac­
curately calculated. For both concepts, the optimization problem defined in Sec­
tion 2.2 of the previous chapter is replaced by a sequence of explicitly known ap­
proximate optimization problems. The approximate optimization problem of the 
q-th cycle is defined as: minimize the approximate objective function: 

p<q)(b) F(r(q)(b, t), b, t), 

subject to the approximate constraints: 

g)q)(b, t) 8 jcr-<q)(b, t), b, t) < ci 

within the search subregion: 

i(q) < b· < su(q) 
l - l- l ' 

1, ... , n. 

(3.1) 

(3.2) 

j 1, ... ,m, 

(3.3) 

As in Section 2.3, the functional relations can be either response dependent, re­
sponse independent, time dependent, or time independent. Time discretization is 
used to remove time dependence (see Section 2.4). Then the approximate optimiza­
tion problem has been reduced to the standard form of Equations (2.1) to (2.4 ). 

The framework of the approximate optimization problem is depicted below: 

b P,g, 

explicitl Texplicit (3.4) 

b/ approximation 
r 

Herein, two types of objective function and constraints are distinguished: objective 
function and constraints are either completely explicitly known, or are related to 
the approximate responses r. In the latter case, the relationship between the ob­
jective function and constraints on the one hand, and the multibody responses on 
the other hand, is supposed to be explicitly known or easily calculable. So, multi­
body responses r are treated as intermediate response quantities that are linearly 
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approximated with respect to the intermediate design variables b1. The relation­
ship between intermediate design variables b1 and design variables b is supposed 
to be explicitly known. 

The approximate optimization problem has to be solved by an appropriate 
mathematical programming algorithm. When intermediate design variables and 
intermediate response quantities are used, usually a smooth but nonlinear program­
ming problem follows. Since only a limited part of the design space is considered, 
the approximate optimization problem will often have only one optimum solution. 
However, the approximate optimization problem is not guaranteed to be convex, 
and therefore more than one local optimum solution may occur. Sepulveda and 
Schmit (1993) proposed to use a global optimizer for the solution of the approx­
imate optimization problem to yield a globally convergent optimization strategy. 
For specific types of intermediate design variables convexity can be proved, and in 
that case an optimizer can be selected that utilizes this quality of the approximation. 
Well-known examples are convex linearization (Fleury and Braibant, 1986) and the 
method of moving asymptotes (Svanberg, 1987, 1996). 

Within the search subregion, the approximate optimization problem does not 
necessarily have a feasible optimum solution. Occasionally, the initial design may 
have one or more violated constraints. The search subregion defined around this 
infeasible starting point may still not contain a feasible solution, which means that 
it is completely situated inside the infeasible domain. The objective is then to first 
move towards a feasible solution before minimizing the objective function itself. 
Many nonlinear programming packages indeed start to minimize the maximum 
constraint violation instead of the original objective function. Haftka and Giirdal 
(1992) suggested to minimize: 

j'{q)(b) + f3bn+1 (3.5) 

subject to the constraints: 

gjq) (b, t)- bn+l ::S Cj 

within the search subregion: 

t(q) < b· < !f(q) s
1 

_ 1 s
1 

, 

j=l, ... ,m, 

1, ... ,n, 

(3.6) 

(3.7) 

(3.8) 

instead of the original optimization problem (3.1) to (3.3). Design variable bn+J 
takes care of the constraint relaxation. The value of f3 should be sufficiently large 
to guarantee that the reduction of bn+ 1 is emphasized over the minimization of j'(q). 

Then, constraint relaxation will only occur if there is no alternative. 
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Figure 3.1: Sequential approximate optimization using a local approximation concept. 

3.5 Design Optimization Tool for Multibody Systems 

3.5.1 Approach 

In the current research a design optimization tool has been developed based on lo­
cal approximations. It has been especially designed for multibody systems, and 
covers time dependent constraints. The optimization tool does not include multi­
body analysis routines and has to be coupled with an external software package, 
such as MECANO (Samtech, 1994) and DADS (CADSi, 1995). Most commer­
cial multibody packages do not provide the derivatives of the multibody responses 
with respect to the design variables. In that case, the gradients necessary for the 
approximations are obtained by means of finite differencing. 

On the basis of Figure 3.1, Vanderplaats (1993) described the main program 
structure of the sequential approximate optimization process for a local approxima­
tion concept. He concentrated on finite element structural analysis, but the program 
structure is the same for multibody analysis. The process starts with the analysis of 
the initially proposed design, followed by an evaluation of all constraint functions 
(constraint screening). Approximation models are generated for the critical and 
potentially critical constraints based on analysis and design sensitivity data. The 
approximate optimization problem is built, and the region of validity is bounded by 
so-called move limits. Within this search subregion, the approximate problem is 
iteratively solved by the optimizer. At the calculated optimum a new design cycle 
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Figure 3.2: Constraint deletion. 

can be started, as visualized in Figure 3.1(b). So, the term cycle is used for the 
outer loop, and the term iteration for the inner loop. 

3.5.2 Constraint Deletion 

The constraint screening tries to identify the important constraints in the optimiza­
tion problem. Constraints that are not critical or potentially critical at the cycle start 
design b6q) are removed. This can greatly reduce the number of constraints in the 
approximate optimization problem, and thereby the cost of the numerical optimiza­
tion. Additionally, design sensitivity information is only required for the retained 
critical and potentially critical constraints. This gives the opportunity to reduce the 
cost of the design sensitivity analysis (see the next chapter). 

Great potential exists for constraint deletion if time dependent constraints are 
re~laced by time point constraints. All constraints can be removed whose value at 
b0q) is smaller than e.g. 70% of the constraint bound (Figure 3.2(a)). Furthermore, 
for each local maximum of the constraint g(b, t), only a few time point constraints 
gp(b, tp) near the maximum have to be retained (Figure 3.2(b)). This is compara­
ble with the regionalization of Vanderplaats ( 1993) who considered just a few stress 
constraints in specific regions of a structure, since many nearby elements are ex­
pected to have about the same stress value. The developed optimization tool allows 
the user to define whether a regionalization of the time domain is applied, and how 
many time points are added before and after the local maxima, including initial and 
final time. In the examples usually two points before and two after the maxima 
above 70% of the constraint bound are selected, unless otherwise stated. 
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Hsieh and Arora (1984) only retained the constraint maxima. Besides these 
worst time points no further points were considered. They studied an equation 
alike: 

g(b, t)lt=tmp = g(r(b, t), b, t)lt=tmp ::S C. (3.9) 

The time point for which a maximum occurs depends on the design variables: tmp = 
tmp (b). Taking the total derivative with respect to a design variable b E b yields: 

dg ag I [ ar I ar I dtmp] ag I dtmp ag 
db = ar t=tmp ab t=tmp + at t=tmp db + at t=tmp db + ab 

[
agar] [agar ag] dtmp ag 

= ar ab t=tmp + ar at + at t=tmp db + ab. 

(3.10) 

The second term vanishes at a local maximum since the total derivative of g with 
respect to t is zero: 

dg = [agdr + ag] =[agar+ ag] =O 
dt ar dt at t=tmp ar at at t=tmp . 

(3.11) 

So a change of the point tmp has no effect on 1/f,. Hsieh and Arora (1984) used 
this observation to treat the maximum time points as fixed during an iteration of 
their optimization algorithm. Although the shift of the top position has only a sec­
ond order effect on the constraint value, it does contribute to the curvature (see 
for example Figure 2.4). If the optimum is determined by a curvature which the 
approximation does not predict, oscillations will occur during the approximate op­
timization process. Some additional time points near the local maximum can solve 
this problem: the curvature is represented by intersecting time point constraint ap­
proximations. A conservative approximation at the maximum might be an interest­
ing alternative to avoid the increase of the number of time points in the approximate 
optimization problem. 

3.5.3 Approximation 

All responses related to the retained active and potentially active constraints need 
to be approximated. For each design cycle they are linearly approximated with 
respect to the intermediate design variables at the cycle start design. The linear 
approximation of a time independent response function rh(b) can be written as: 

(3.12) 
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Herein, superscript (q) has been omitted. For a time dependent response function 
rh (b, t) the approximation at a certain time point t P is given by: 

- I I ~ I I ( arh ) rh(bh, tp) = rh(b0h, tp) + L.)bhk- bohk) - 1 . 

k=l abhk bbh,tP 

(3.13) 

Each response function rh(b) or rh(b, t) may have its own intermediate design 
variables bh (b). The optimization tool allows the following type of intermediate 
design variables: 

k = 1, ... ,n. (3.14) 

Cross-relations in between design variables cannot be defined. 
The number of responses to be approximated is highly influenced by the op­

timization problem formulation. Suppose a constraint is active that is an integral 
function of a response: g(b) J f(r(b, t))dt. If r is indeed treated as an interme­
diate response variable, then all discrete responses rp(b, tp) from to tot 1 have to be 
approximated, or a large part of them, to calculate the integral. This can be avoided 
by directly approximating constraint g without the introduction of an intermediate 
response variable. In that case, however, any nonlinearity implied in the integral 
formulation is not included anymore in the approximation, which may cause the 
optimization to behave less well. Here, the cost to calculate the derivatives of all 
necessary responses should be weighed against the efficiency and robustness of the 
optimization process. In any case, integral functions should only be included in the 
optimization problem if they arise from a design point of view. They should not be 
introduced just to remove the time dependency. 

For each optimization cycle, the quality of the approximations can be checked 
by comparing the approximate objective and constraint values for the newly pro­
posed design with the corresponding multibody analysis values. Differences be­
tween the approximated and calculated values are measures of the quality of the 
generated approximations. So, after the q-th cycle has been completed, the follow­
ing approximation error can be calculated for the objective function: 

p(q) (b~q)) F(b~q)) 
------;-(--:-)--- X 100%, 

F(b*q) 
(3.15) 

where b~q) is the proposed optimum design computed from the approximate opti­
mization problem of the q-th cycle. The maximum constraint approximation error 
is given by: 

Eiq) = max e(q) 
j=l, ... ,m J 

(3.16) 
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with: 

if g1 is time independent, 

if g J is time dependent. 

(3.17) 

Many of the (time point) constraints will not contribute to this error E1q) since they 
have been removed from-the approximate optimization problem after the constraint 
screening. In the same way the maximum constraint violation can be calculated: 

with: 

v<q) = max v\ql 
}=l. ... ,m J 

if g1 is time independent, 

if g J is time dependent. 

(3.18) 

(3.19) 

Both the approximation errors and the constraint violation are used in the move 
limit strategy presented in the next section. For their calculation the objective func­
tion value as well as the constraint bounds should be non-zero. 

3.5.4 Move Limit Strategy 

A move limit strategy has to determine the size of the search subregion at the start 
of each new design cycle. This strategy has a great influence on the efficiency of 
the optimization process. A correct choice of the search subregion is important for 
a good convergence of the optimization process. Large move limits can cause the 
solution process to oscillate, while small move limits may slow down the conver­
gence. The effect of the move limit strategy is directly related to the quality of the 
approximations. Poor approximations much more need the support of the move 
limit strategy during the optimization than high quality approximations. Unfortu­
nately, move limit strategies are often poorly outlined in literature. Below, the main 
elements of the implemented move limit strategy are described at length. 

Usually, the solution b~q) of the approximate optimization problem will be the 
starting point of the next cycle b~q+ I). The proposed cycle start design is only 
rejected if the maximum approximation error has become too large or too high an 
infeasibility occurs, starting from a feasible or nearly feasible design. In that case 
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the current cycle is repeated for a smaller search subregion. The maximum allowed 
approximation error errmax and infeasibility viomax have been set to 40% and 
10%, respectively. 

During the optimization, the sizes of the search subregion are adapted depend­
ing on the reported maximum approximation errors, maximum constraint viola­
tions, and the convergence behavior of the design variables. Search subregion upper 
and lower bounds can be calculated from: 

si(q) b~j) - lj2s~q), 

sj(q) = b~j) + lj:Zs~q), 
i= 1, ... ,n, 

1, ... ,n. 

(3.20) 

(3.21) 

Herein, the size of the search subregion is defined relatively to the magnitude of the 
design variables: 

s~q) 2miq) ~b~j) I , i=l, ... ,n, (3.22) 

which means that the design variable values should not become zero. As an alterna­
tive, Equation (3.27) may be used. The search subregion can be adjusted by means 
of move limit factors mjq). So, besides an initial design also initial move limit fac­
tors have to be selected. For the following cycles, the move limit strategy increases 
or decreases the move limit factors according to the optimization history. Move lim­
its are decreased for approximation errors exceeding errlrg 25% or constraint 
violations rising above violrg 7.5%. If the approximation is highly accurate 
( <errsml=lO%) and the constraint violation remains small ( <viosml=5% ), in 
that case the move limits are increased. 

Near the optimum a higher accuracy is desired. This final optimization stage is 
often marked by oscillations or small changes in objective function value. If one 
of these conditions is met (see Appendix A for the computer implementation), then 
the move limit factors of oscillating design variables are halved. For an optimum 
constrained by a total amount of constraints that equals the number of design vari­
ables, usually very fast convergence occurs, without the necessity of move limit 
reduction. However, reduction of the size of the search subregion is essential for 
optimum designs that are determined by an objective function or constraint curva­
ture which the approximation does not predict. In that case oscillations are usually 
present, and convergence can only be reached by a repeated move limit reduction. 

Convergence is defined by the parameters vioace and obj ace, which rep­
resent the accuracy of the constraints and the objective function, respectively. The 
change in objective function value should be smaller than obj ace, and the con­
straint violation should not surpass vioaec. The same demands are placed on 
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Figure 3.3: Design optimization tool. 

the accuracy of the objective function and constraint approximations. For many 
engineering applications accuracies of about 0.1% will be appropriate. 

The complete description of the move limit strategy is given in Appendix A. 
It is not claimed to be the most efficient strategy that will work for any kind of 
problem. Probably many improvements are possible. Nevertheless, this simple 
strategy has worked well for many different design examples. In this thesis the 
abovementioned parameter settings have been used unless otherwise stated. No 
tuning has taken place to get the best performance for a specific example. 

3.5.5 Aspects of Implementation 

The coupling between multibody analysis program and optimization tool is estab­
lished via the input and output files of the analysis program (see Figure 3.3(a)). The 
input required for the multibody analysis is parametrized. All items related to the 
design variables are replaced by unique codes. Then, the input file(s) corresponding 
to a specific design point can be automatically generated by the optimization tool. 
The codes are replaced by the parameter values that follow from the design variable 
values. On return, the multibody program should generate output files containing 
the caJculated multibody responses that contribute to the optimization problem. 

Four major parts can be distinguished: the control program, the user interface, 
the analysis/sensitivity analysis software, and the approximate optimization tools. 
This is visualized in Figure 3.3(b ). In a database all data can be stored necessary for 
communication. In the current set-up with external analysis package, the control 
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program is embodied by a Unix-script file. It manages the approximate optimiza­
tion process. This Unix-script is package dependent, which means that the DADS 
script (slightly) differs from the MECANO script. The user-interface represents the 
problem dependent part: parametrized analysis code input files have to be provided, 
together with Fortran subroutines defining the approximate optimization problem, 
and optimization input files containing initializations and parameters settings. The 
approximate optimization tools take care of all tasks related to the optimization, 
like the generation of the approximate optimization problem and its solution by 
means of the NAG SQP subroutine (NAG, 1991). They are generally applicable, 
and do not have to be adjusted for a specific analysis package or design problem. 

3.6 Multi-Point Approximations for Noisy Behavior 

3.6.1 Approach 

For some multibody design problems design sensitivities cannot be accurately cal­
culated. Due to inaccuracies a band of noise may be present on the global response 
of objective function and constraints. In that case, the optimization tool described 
in the previous section cannot be applied. Usually, the multibody responses yield­
ing the objective function and constraint values still follow from a computationally 
expensive numerical analysis. So an alternative optimization strategy should be 
selected to handle this kind of discontinuously behaving design problems using as 
least numerical simulations as possible. 

A mid-range multi-point approximation concept is able to deal with both the 
noisy functional behavior and the high computational cost. Several concepts have 
been published. They all start from the sequential approximate optimization ap­
proach. But now just function value data is used to build the approximation models. 
Vanderplaats' method (1979) adds only one design point to the total set of points 
during each cycle, and iteratively builds a second order model of the objective func­
tion. Free et al. (1987) used statistical experimental designs, such as full factorial, 
screening and central composite designs. Toropov et al. ( 1993, 1996) suggested an 
experimental design with large difference steps in each design variable direction, 
either forward or backward depending on the path of optimization. 

The mid-range multi-point approach using the experimental design of Toropov 
et al. (1993, 1996) has been implemented*. In each design cycle approximations are 
built based on the function values calculated at the n + 1 points of the experimental 

*The multi-point approximate optimization tool was developed during the master's thesis work 
of Adriaens (1995). The research was carried out in close cooperation with TNO Road-Vehicles 
Research Institute, Delft (see also Chapter 6). 
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Figure 3.4: A sequence of search subregions and experimental designs for the multi-point 
approximation concept. Each search subregion has a cycle start design ( *) 
and plan points ( o ). The dotted lines mark the center of the search subregion. 
Lower and upper bounds are denoted by lb and ub, respectively. 

design (see Figure 3.4). A smooth approximate optimization problem follows that 
can be solved within the search subregion, separately from the numerical analysis. 
The position of the approximate optimum ( *) with respect to the center of the sub­
region determines the new search direction and position of the plan points ( o) of 
the following cycle. Basically, the procedure is equal to the optimization process 
for a local approximation concept outlined in the previous section. 

3.6.2 Approximation 

Instead of Equations (3.12) and (3.13), the response approximations for the time 
independent and time dependent case can now be written as: 

n 

r~z(b£) = r~z(b~h) + I)b£k (3.23) 
k=l 

and: 

n 

r~z(b£, tp) = rh(b~h· tp) + I)b£k 
k=I 

respectively. Again, superscript (q) denoting the q-th cycle has been omitted for 
brevity. Herein, bbhq} is the cycle start design, and bkh (k = 1, ... , n) are the plan 
points. Data of previous cycles is discarded. This in contrary to Toropov et al. 
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( 1993), who used regression techniques to fit their models to most of the available 
analysis results. 

Up to now, in the developed optimization software multi-point approximations 
can not yet be combined with the introduction of intermediate design variables and 
intermediate response quantities. So, b1 equals b, and both F and g directly corre­
spond with the responses r. As a consequence, the optimization process is actually 
a sequence of linear programming problems, which are solved using the Simplex 
algorithm of Press et al. (1992). However, it is not suggested that intermediate 
design variables and intermediate response quantities are useless for multi-point 
approximations. On the contrary, their benefit is independent of the type of approx­
imation concept. 

3.6.3 Move Limit Strategy 

The move limit strategy mentioned in the previous section can be used for multi­
point approximations as well. Instead of Equations (3.20) and (3.21) the search 
subregion is now defined by: 

i(q) b(q) - ( 1 - dfq) + d(q) a) s(q) 
I Ot 2 I l , 

i = 1, ... , n, (3.25) 

slf(q) = b(q) + ( 1 +drq)- iq)a) /q) 
t Ot 2 t t • 

i = 1, ... , n, (3.26) 

where s~q) again represents the size of the search subregion. For multi-point ap­
proximations, the size of the search subregion has been related to the size of the 
design space: 

.~(q)=m(q)(blf b1) 
·'I I l i ' i = 1, ... , n. (3.27) 

This implies that both design variable lower and upper bounds have to be present. 
Parameters diq) E 1, 1} are the search directions for each design variable, which 
determine the position of the plan points ( o) with respect to the cycle start design 
(*) (see Figure 3.4). A direction of 1 or 1 means a difference step forward or 
backward, respectively. The amount of extrapolation is determined by a. Usually, 
a is set to a value in between 0.1 and 0.2. 

For each new cycle, the move limit strategy has to calculate the corresponding 
search subregion bounds. In Section 3.5.4 move limit parameters have already been 
introduced, defining when move limits are reduced or enlarged by means of move 
limit factors mjq). The settings of these parameters are directly influenced by the 
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accuracy or the noise band of the objective function and constraints. Approxima­

tion errors smaller than or equal to variations due to the noise have to be considered 
as accurate. As a consequence, for increasing noise amplitude, the move limit pa­

rameters have to become less strict. The same is true for the convergence criteria. 
The noise confines the objective function accuracy and maximum constraint viola­
tions that can be attained. This means that at the beginning of the optimization, the 
band of noise has to be estimated. Then, the corresponding parameter settings can 
be found by adding this percentage of noise to the smooth settings of the previous 
section. 

Additionally to a new size of the search subregion, the move limit strategy has 
to select a new search direction. The search direction is determined by the position 
of the approximate optimum design b~q) with respect to the center point b~q) of the 
search subregion. For the next cycle, parameters d~q+l) are calculated from: 

i = 1, ... ,n, (3.28) 

with b~q) defined by: b~J) (s;(q) + s~(q))/2. At the start of the optimization, the 

initial design and move limit factors have to be accompanied by an initial search 
direction. 

3. 7 Examples 

3.7.1 Impact-Absorber 

Max-Value Objective Function with Smooth Functional Behavior 

The sequential approximate optimization approach is illustrated for the impact­
absorber problem of Section 2.5.1. First of all, consider the case with the maxi­
mum acceleration objective function. The optimization is carried out using a local 
approximation concept, as described in Section 3.5. No intermediate design vari­
ables and responses are introduced. As a result, the optimization is a sequential 
linear programming process. The desired accuracy is set to (cf. Section 2.5.1): 
obj ace = 0.001% and vioacc = 0.001%. The critical constraint bound is set to 
0.7, which means that all time point constraints below this value are discarded in 
the approximate optimization problem. 

An optimization is carried out with a constraint regionalization including two 
additional time points before and after the critical and potentially critical response 
maxima. Starting from the initial design b1 = 1.0, b2 = 0.15 and the move limit 
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Figure 3.5: Optimization history of the impact-absorber with max-value objective function 
for two additional time points before and after local maxima. 

Cycle active b1 b2 b3 = F Eg v 
mvlim [Nm- 1] [Nsm- 1] [ms-2] [%] [%] 

0 (y) 0 1.000 0.3000 0.8500 0.0 -7.296 ·10-1 

1 (y) 2 0.6000 0.4200 0.6232 4.703 .IQ-I 4.043. w- 1 

2 (y) 0 0.3411 0.4934 0.5110 1.625. w-1 8.996 .IQ-1 

3 (y) 0 0.3628 0.4823 0.5203 3.539. w-3 5.554. w-4 

4 (y) 0 0.3628 0.4823 0.5203 9.055. w-9 6.510. w-9 

5 0 0.3628 0.4823 0.5203 0.0 6.510 ·10-9 

Table 3.1: Optimization history of the impact-absorber with max-value objective function 
for two additional time points below and above local maxima. 

factors m1 = m2 = 0.4 the optimum design is found after five cycles using 6 func­
tion evaluations, and 5 gradient calculations. This is the same optimum design 
as calculated by the NAG SQP algorithm given in Table 2.1. The optimization 
history is summarized in Table 3.1 and visualized in Figure 3.5. For each design 
cycle design variables bi, objective function F, maximum constraint violation V 
and maximum approximation error Eg are tabulated. All cycle optima are accepted 
as starting design of the next cycle, indicated by (y) in the first column. Move lim­
its (two) are active only during the first design cycle. Constraints are included at 
a maximum of 14 time points (the complete discretization consists of 101 points). 
The maximum error and constraint violation remain smalL 

The optimization is restarted, but now just one time point constraint is included 
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Figure 3.6: Optimization history of the impact-absorber with max-value objective function 
for zero additional time points before and after local maxima. 

for each local maximum. The optimization is visualized in Figure 3.6. Eighteen 
cycles are necessary to converge. One of the move limits remains active, and con­
vergence can only be reached by a repeated reduction of the search subregion. As 
a result, an oscillatory behavior of the design variable values occurs. Furthermore, 
it can be observed that, alike Figure 3.5, the optimum is approached from outside 
the feasible domain, but now with much larger maximum constraint violations. So, 
a few more time points for each local maximum yields a much better convergence 
of the optimization. 

Integral Objective Function with Smooth Functional Behavior 

The effect of intermediate responses can be illustrated by means of the impact­
absorber example with comfort objective function (2.34). The displacement and 
acceleration responses are linearly approximated with respect to the two design 
variables, exactly the same as for the max-value example. However, the integral 
relation between objective function value and acceleration is included in the ap­
proximation. The final optimum design is found after 8 cycles using 9 function 
evaluations and 8 gradient calculations. This is about three times faster compared 
with the SQP algorithm (see Section 2.5.1). The optimization history is visualized 
in Figure 3.7, and tabulated in Table 3.2 (the number of active move limits has not 
been included in this table). During the first four cycles always one move limit is 
active. Afterwards, automatic convergence occurs without any oscillations. At cy-
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Figure 3.7: Optimization history of the impact-absorber with integral objective function. 

[Nm- 1] [Nsm- 1] [%] [%] [%] [m2s-4] 

0 (y) 1.000 0.3000 0.0 0.0 -1.938. 101 0.1480 
1 (y) 0.8657 0.4200 5.901. w-1 1.095 .IQ-l -2.132·101 0.1029 
2 (y) 0.6596 0.6640 2.225 ·10° 4.781 . 10-1 -2.549 · 101 0.06949 
3 (y) 0.3958 0.7933 3.909. 10° 2.882. w- 1 -2.277. 101 0.05384 
4 (y) 0.1847 0.6117 1.352 · 101 3.801. 10° 5.663 ·10° 0.03805 
5 (y) 0.1052 0.7750 2.494. w-2 5.378. w-1 3.192. w-1 0.03793 
6 (y) 0.09856 0.7882 7.365. w-4 2.286. 10-3 1.472. w-3 0.03804 
7 (y) 0.09850 0.7883 1.168. w-7 1.0. w-7 -1.ooo. w-7 0.03804 
8 (y) 0.09850 0.7883 0.0 0.0 -1.000·10-7 0.03804 

Table 3.2: Optimization history of the impact-absorber with integral objective function. 

cle four, the maximum approximation error of 13.5% is observed for the objective 
function, together with the maximum constraint violation of 5.6%. 

Max· Value Objective Function with Non·Smooth Functional Behaviort 

Consider again the impact-absorber optimization problem with max-value objec­
tive function, defined by Equations (2.29) to (2.33) with a discretization of the 
time interval of 0 to 12 s into 101 time points. Suppose the acceleration responses 
ji(b1, b2, t) and displacements y(b1, b2, t) have a band of artificial 'noise' added to 

tThis subsection has been partly reproduced from Etman et al. (1996a) (see also Chapter 6). 
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the smooth analytical curves Ya(b 1 , b2, t) and Ya(bJ, b2, t): 

2 

ji(bJ, b2, t) = Ya(bJ, b2, t) + 0.0125 I:sin(200rrbk), 
k=l 

2 

y(b1, b2, t) = Ya(bt, b2, t) + 0.0125 L sin(200rrbk). 
k=I 

(3.29) 

(3.30) 

This corresponds with a noise amplitude of about 5 to 10% depending on the place 
in the design space. Th~ local design sensitivities do not represent the global re­
sponse behavior anymore. The solution of the noisy optimization problem is a 
region around the smooth optimum given in Table 3.1. 

The multi-point approximate optimization strategy is tested for the following 
three initial designs: 1) h61

) = [1, 0.3, 0.843f, 2) h6° = [0.7, 0.8, 0.803f, and 3) 

h61
) = [0.2, 0.4, 0.409f. The move limit and convergence parameters are set ac­

cording to an estimated band of noise of 5%. For all initial designs, the start search 
direction d(l) and extrapolation factor a are taken [ -1, 1, -If and 0.2, respec­
tively. The start dimensions of the search subregion are sO) = [0.3, 0.3, 0.5f. For 
the third design variable linear functional behavior is present, so there is no need 
for a limitation of this variable. A value of 0.5 ensures that the corresponding move 
limit will never become active. Table 3.3 shows the final optimum design found, 
together with the maximum constraint violation and the number of optimization 
cycles. For every cycle, one cycle start design and three plan points were ana­
lyzed. Three different optima are found in the noise band near the smooth optimum 
solution. 

Initial b! bz b3 F v Number of 
design [Nm- 1] [Nsm-1] [ms-2] [%] cycles 
1 0.385 0.480 0.515 1.28 4 (17) 
2 0.356 0.467 0.531 2.21 3 (13) 
3 0.365 0.482 0.520 l.05 3 

Table 3.3: Optimum impact-absorber starting from three initial designs. The total number 
of analyses is given in the last column in between the parentheses. 

What happens if the amplitude of the noise is over or under estimated? To 
answer this question, four different move limit and convergence settings are studied 
for noise band estimations of 2.5%, 5%, 10% and 20%. The optimization is started 
from the first initial design. The start search direction and extrapolation factor stay 
the same. The final optimum designs, the maximum constraint violations and the 
number of cycles to reach the optimum solution are tabulated in Table 3.4. If a too 
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small noise band is estimated, bad convergence results. Oscillations occur within or 
near the optimum region until accidently a design is found that satisfies the required 
accuracy. An over estimation, on the other hand, leads to a premature convergence 
of the optimization process. A reasonable large region in between these extrema is 
present with a good convergence of the optimization process. 

Noise b! hz b3 = F v Number of 
estimation [Nm-1] [Nsm- 1] [ms-2] [%] cycles 
2.5% 0.349 0.510 0.516 1.76 10 (41) 
5% 0.385 0.480 0.515 1.28 4 (17) 
10% 0.364 0.468 0.529 2.74 3 (13) 
20% 0.762 0.451 0.684 1.52 1 

Table 3.4: Optimum impact-absorber for four move limit and convergence parameter set­
tings. The total number of analyses is given in the last column in between the 
parentheses. 

3. 7.2 Slider-Crank Mechanism 

The slider-crank mechanism described in Section 2.5.2 is another example for 
which the effect of intermediate response variables can be illustrate& Responses 
x2, Y2 and 82 are assumed to be not explicitly known, and are linearly approxi­
mated with respect to the design variables. Relations (2.35), (2.38) and (2.39) are 
treated as explicitly known, and included in the approximate optimization problem. 
The desired final accuracy is again obj ace 0.001% and vioacc = 0.001%. 
A sequence of ten approximate nonlinear programming problems yields the final 
optimum solution, which exactly corresponds with the solution obtained by the 
NAG SQP algorithm. However, nearly five times less function value and design 
sensitivity evaluations were required. 

The optimization history is given in Table 3.5 and visualized in Figure 3.8. 
The first design cycle is repeated (with smaller move limits) since the approxima­
tion error for initial move limit factors of mi = 0.4 (i 1, ... , 8) is far too large. 
Afterwards a good convergence occurs with a steady reduction of the number of 
active move limits. During the last three cycles no move limits are active anymore 
and the maximum design variable change max.D.bi shows an exponential decrease. 
Constraint violations do not occur since the movability constraints are explicitly 
known and included in the approximate optimization problem. If the optimization 
is started with move limit factors mi = 0.3, just eight cycles will be necessary to 
find the optimum solution. Then, a much smaller approximation error occurs at the 
first design cycle. 
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Figure 3.8: Slider-crank mechanism. 

0 (y) 0 0.000. 0.000· 3.486. 
1 (n) 5 4.000. 101 8.541 . 101 1.303. 102 

1 (y) 8 2.000 ·101 2.870. 101 6.260. 102 

2 (y) 7 1.500. 101 2.506 ·10° 8.500·101 

3 (y) 4 2.000 ·101 1.691. w-1 3.225. 101 

4 (y) 4 2.667 ·101 6.177. 10° 1.455. 101 

5 (y) 2 2.000. 101 5.953 ·10° 5.658. 10° 
6 (y) 1 2.667 ·101 2.263 ·10° 3.942 ·10° 
7 (y) 1 3.556 · 101 4.954. 10-1 3.772. 10° 
8 (y) 0 1.288. 101 9.316. w-3 3.746. 10° 
9 (y) 0 1.085. 10° 1.353. 10-4 3.746. 10° 
10 0 3.248. w-2 4.511 . w-7 3.746. 10° 

Table 3.5: Optimization history of the slider-crank mechanism. 
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3.8 Conclusion and Discussion 

Two types of approximation concepts have been proposed for the optimization of 
multibody systems: single~point local and multi-point mid-range. The former is es­
pecially suitable for smooth optimization problems. The latter will prove its value 
if some kind of noise is present and design sensitivities are of no use. For both 
concepts, the sequential approximate optimization process is basically the same. 
With slightly different convergence parameter values, the same move limit strat­
egy can be applied. In both cases, constraint deletion can reduce the approximate 
optimization problem towards manageable proportions. For the local concept the 
computational cost can be reduced if the sensitivity analysis is able to calculate just 
the gradients of the retained constraints. In the following chapter more attention is 
paid to this subject. 

Intermediate design variables and responses can highly improve the approxima­
tions, and thus enhance the optimization process. An important precondition is that 
appropriate intermediate relations are selected, otherwise bad convergence may oc­
cur. The examples show that significant improvements can be found compared with 
a direct coupling with the SQP-algorithm: the number of multibody analyses and 
design sensitivity analyses are significantly smaller. Instead, the objective function 
and constraint approximations are quite frequently evaluated. So, the actual savings 
in computer time are not so much present for the analytical examples, but become 
much more apparent for numerically expensive multibody analyses. 

To apply the multi-point approach in the case of noisy functional behavior, 
one has to have an idea of the amplitude of the noise. Engineering experience 
is required to properly select the move limit parameters and convergence criteria. 
In the ideal situation, the optimization software would automatically estimate the 
noise amplitudes of all objective function and constraints, and re-tune the settings 
accordingly. To achieve this, one can for example try to use the analysis data of pre­
vious cycles. However, it will be difficult to distinguish the noise from the global 
functional behavior. An other option is to enlarge the number of plan points in the 
experimental design, for example two or three times the number of model parame­
ters. Sufficient data is then available to locally estimate the noise amplitudes. But 
then the increase of the number of numerical analyses is a serious drawback. With­
out question, it is preferable to know the severity of the noise before the start of the 
optimization, but unfortunately this is often too high a demand. 
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Design Sensitivity Analysis 

4.1 Introduction 

Local approximation concepts require gradient information. For each new approx­
imate optimization cycle a design sensitivity analysis has to provide the derivatives 
of the multi body responses with respect to the design variables. Actually, the design 
sensitivity analysis is an extension of the multi body analysis. It may be preceded 
by a constraint screening to mark the important constraints in the approximate op­
timization problem. Then, gradients need to be calculated just for the responses 
related to the critical and potentially critical constraints. This may help to reduce 
the cost of the design sensitivity analysis. Efficiency together with accuracy are 
the most important factors determining the effectiveness of design sensitivities in 
numerical optimization. 

A finite difference sensitivity analysis is a very simple and straightforward way 
to obtain design sensitivities. In every design variable direction at least one ad­
ditional slightly perturbed design point is analyzed, from which derivatives can 
be calculated. Well-known concepts are forward, backward, and central difference 
schemes. Due to the additional set of numerical analyses, finite differencing is quite 
numerically expensive, and does not benefit from the constraint screening. Further­
more, it may suffer from numerical inaccuracies. Nevertheless, it is often used, 
not just because of its simplicity, but usually because there is no alternative at all. 
Think for example of coupling the optimization tool described in Section 3.5 with 
an external multibody code such as DADS (CADSi, 1995) or MECANO (Samtech, 
1994). 

In the ideal case, the multibody analysis software is able to calculate the design 
sensitivities corresponding to the multibody responses. For this purpose, the soft-

45 
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Reference Coordinate Type of Generation Method 
formulation equations equations 

Haug and Arora (1979) AE,ODE D,A 
Sohoni and Haug (1982) c AE N A 
Haug et al. (1984) c DAE N A 
Hsieh and Arora (1984) ODE D,A 
Chang and.Nikravesh (1985) DAE D 
Haug (1987) -,C ODE,DAE -,N D,A 
Tak and Kim ( 1989) R DAE N D 
Ashrafiuon and Mani (1990) R DAE s D 
Bestle and Eberhard (1992) R ODE s A 
Bestle and Seybold (1992) DAE A 
Bestle ( 1994) R ODE,DAE s D,A 
Dias and Pereira (1994) c DAE s D 
Eberhard (1996) R ODE S,AD A 
Fleury (1996) c DAE s D,A 
Hansen and Tortorelli (1996) R AE D 
Pagalday et al. (1996) DAE s D 
Pesch et al. c AE s D 

Table 4.1: An overview of some relevant references on design sensitivity analysis of multi­
body systems. For each reference four aspects are identified. The coordinate 
formulation from which the governing equations are generated .can be either 
relative (R) or Cartesian (C). Furthermore, three types of equations are distin­
guished: algebraic (AE), ordinary differential (ODE), and differential-algebraic 
(DAE). The sensitivity equations can be developed numerically (N), symbol­
ically (S), or by means of automatic differentiation (AD). Finally, the design 
sensitivity method is either direct (D) or adjoint (A). An empty entry (-) means 
that no specific choice was made with respect to this argument. 

ware should also generate and solve the governing equations of the design sensi­
tivities. A substantial amount of literature is available on this subject. In Table 4.1 
an overview is given of some relevant references in order of year of publication. 
The governing equations can be generated numerically or symbolically, based on a 
relative or Cartesian coordinate formulation. Relative coordinates yield a minimal 
set of equations, and are numerically more efficient than the Cartesian formulation 
that results in a much larger set of equations. However, the latter approach benefits 
from the easy and general development of the equations of motion. 

Two different methods can be identified to analytically obtain the design sensi­
tivity equations: the direct and the adjoint approach. The direct method differen­
tiates the governing equations of motion with respect to the design variables. As 
a consequence, for each design variable a new set of equations has to be solved. 
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When there are many design variables, and sensitivities are required for only a few 
responses or constraints, the adjoint method may be numerically more efficient. 
The adjoint technique introduces so-called adjoint variables and rewrites the sensi­
tivity equations of the direct method such that equations follow for each response 
or constraint function. This means that the number of adjoint equations does not 
depend on the number of design variables anymore. 

The adjoint variable method was introduced for dynamic mechanical systems 
by Haug and Arora ( 1979), as an alternative for direct differentiation. In the years 
thereafter, it became the preferred approach for the design sensitivity analysis of 
multibody systems. Firstly, pure kinematically driven systems were considered 
(Sohoni and Haug, 1982), followed by constrained dynamic mechanical systems 
(Haug et al., 1984; Haug, 1987). Chang and Nikravesh (1985) switched back to 
the direct method because of numerical and implementationa1 difficulties in the ad­
joint method. Tak and Kim (1989) also reconsidered the preference for the adjoint 
method, and selected the direct method due to newly emerging parallel computing 
technologies. The nineties are characterized by the advent of symbolic computing 
to obtain the design sensitivity equations of motion, using either the direct method 
(Ashrafiuon and Mani, 1990) or the adjoint method (Bestle and Eberhard, 1992; 
Bestle and Seybold, 1992). Besides, the design sensitivity analysis of mechanism 
kinematics regained new interest (e.g., Hansen and Tortorelli, 1996; Pesch eta/., 
1996). 

Recently, Eberhard (1996) proposed to use automatic differentiation for com­
putation of the design sensitivity equations. Automatic differentiation (AD) is a 
methodology for developing sensitivity-enhanced versions of arbitrary computer 
programs (Bischof, 1996). It applies the chain rule of differentiation between user­
defined dependent and independent variables in the program, and automatically 
generates new program text to calculate the derivatives of the dependent variables 
with respect to the independent variables. To this end, the source code of the pro­
gram should be available (in Fortran or C). Automatic differentiation produces new 
code that computes the derivatives faster and more accurately (to machine preci­
sion) as compared with finite differencing, provided that the original program is 
not too large (Barthelemy and Hall, 1995). It is able to deal with multibody prob­
lems that are difficult to solve by symbolic computation. 

This chapter starts with a short description of finite difference sensitivity analy­
sis, and continues with the analytical derivation of the design sensitivity equations. 
The text reflects the present state-of-the-art as can be found in the references of 
Table 4.1. Automatic differentiation is not described in further detail. For the 
analytical sensitivities, three types of equations are considered: algebraic, ordi­
nary differential and differential-algebraic equations. Each of them is treated in 
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a separate section. Examples are given by means of the impact-absorber and the 
slider-crank mechanism of Section 2.5. Finally, this chapter is concluded with a 
discussion. Herein, the consequences and conditions of the proposed approximate 
optimization strategy for the design sensitivity analysis are of main interest. 

4.2 Finite Differences 

An easy way to approximate the derivative of a function f(b) is to use the forward 
difference formula. Then, ~{ is approximated by: 

!::.f f(b +!::.b)- f(b) 

!::.b !::.b 
(4.1) 

The problem is now to select a proper step size !::.b > 0. For large values of !::.b 
approximation errors arise caused by the neglected terms of the Taylor series: 

(4.2) 

From Equations (4.1) and (4.2) it follows that this truncation error is of the order: 

(4.3) 

On the other hand, inaccuracies in the computed function values become important 
for small step sizes, yielding a condition error of the order: 

lf(b)l 
ec""'~€j, (4.4) 

withE f the relative accuracy of f(b). For multibody systems E f is directly related 
to the accuracy used to solve the governing equations. 

The optimal step size follows from the minimization of the sum of the trunca­
tion and condition error: 

(4.5) 

where bs is the curvature scale or characteristic scale of function f: 

(4.6) 
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Using this step size, and assuming that f, ~{and have the same order of mag­

nitude, the relative error in the approximation of the derivative (er + ec)/~ is Ff· 
In absence of any other information, Press et al. (1992) suggest b.1. b, except if b 
comes near zero. 

To improve the accuracy, the central difference formula can be used: 

D.f f(b + D.b)- f(b D.b) 

D.b 2D.b 
(4.7) 

The truncation error is then: 

(4.8) 

The condition error is about the same as compared with forward difference. As a 
result, the optimal choice of D.b becomes: 

(4.9) 

with a maximum accuracy of Ej3. If EJ = w-6, Equation (4.7) is an order of 
magnitude better than Equation (4.1). 

In Chapters 5 and 7 the forward difference formula is applied to obtain the 
derivatives of the multibody responses calculated by MECANO and DADS with 
respect to the design variables. According to Equation (4.5), finite difference step 
sizes are calculated from: 

D.b (1 + lbl)p. (4.10) 

Herein, (1 + lbl) represents the curvature scale bs. Parameter p is the relative 
difference step, and is usually set to the square root of the integration accuracy. 
Though, it never exceeds 1 o-3 since the output-files of both MECANO and DADS 
do not contain more than six significant digits. For time dependent responses it 
is important that the time points of the perturbed and unperturbed response values 
match. Using MECANO and DADS, this precondition is met by computing the 
multibody responses at a predefined grid of time points. 

4.3 Kinematically Driven Multibody Systems 

4.3.1 Algebraic Equations of Motion 

Consider a multibody system that is made up of rigid bodies with holonomic cou­
plings. Holonomic couplings constrain the relative position between pairs of bod­
ies. If driving conditions are specified for the remaining degrees of freedom, then 
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the configuration of the system can be determined as a function of time. The gen­
eralized coordinates q(t) have to be solved from a set of nonlinear algebraic equa­
tions*: 

<I>(q, b, t) = 0, ( 4.11) 

given predefined design variable values b. The Jacobian matrix <I>q plays a central 
role in the iterative solution of Equation ( 4.11 ). Often a Newton-Raphson algorithm 
is used that is quadratically convergent, provided that the Jacobian is nonsingular 
and the algorithm converges. These preconditions may not be met, for example 
if the system has yet to be assembled. For this reason Haug (1989) calculates an 
initial configuration q(to) by employing an optimization algorithm that minimizes 
the residuals present in Equation (4.11) towards zero. 

The corresponding velocities and accelerations are obtained by differentiating 
Equation ( 4.11) with respect to time using the chain rule of differentiation. The 
velocity and acceleration equations are (Haug, 1989): 

<I>qq = -<l>t = v, 

<I>q{j -(<l>qQ)qq- 2<I>qrQ <l>u =I· 

(4.12) 

(4.13) 

Subscript q and t denote partial differentiation with respect to q and t, respectively. 
A full description of the matrix notation employed here is given on page xiii. The 
Jacobian matrix <I>q, and the right sides v and 1 can be numerically assembled from 
a library of joint equations, or generated by means of symbolic computation. When 
the accelerations are available, forces imposed on the joints can be calculated from 
an inverse dynamic analysis using: 

(4.14) 

Herein, M(q, b) is the mass matrix, and QA(q, q, b, t) are the externally applied 
forces. The constraint reaction forces in the system are uniquely determined by the 
Lagrange multipliers A (Haug, 1989). 

Several steps in the numerical solution of the kinematic equations can be distin­
guished. Firstly, the multibody system has to be assembled, starting from a (poor) 
user-defined guess of the initial body positions. In some cases this may be physi­
cally impossible. Once an assembled configuration is found, the kinematic position 
equations ( 4.11) can be solved for a grid of time points, as long as the determinant 

*The algebraic equations due to kinematic couplings are often called multibody constraints or just 
constraints. Since they are not included as constraints in the optimization problem this term is not 
used here (see Chapter 2). 
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of the Jacobian stays non-zero. The iterative solution process for a time point t P 

can benefit from calculations at the previous time instant t p-l· A rapid conver­
gence may be expected if the increments in time points are not too large. Next, 
velocities q(tp), accelerations q(tp), and Lagrange multipliers )..(tp) can be easily 
obtained from Equations (4.12), (4.13) and (4.14) by linear matrix algebra. Here 
the decomposition of the Jacobian matrix <I>q (t p) can be re-used. 

4.3.2 Algebraic Sensitivity Equations 

Design sensitivities can be analytically derived by differentiation of the kinematic 
equations introduced in the previous section. Differentiating the kinematic position 
equations (4.11) with respect to design variable b (bE b) yields: 

dq 
<I>q db = -<I>b. (4.15) 

The derivatives at a certain time instant t P can be obtained by simply solving this 
set of linear algebraic equations for each design variable. The decomposition of the 
Jacobian matrix is still available. Only one additional term <I>b has to be developed. 
This is called the direct differentiation approach. 

In many cases one does not explicitly need the complete column of derivatives 
~~. For example, the constraint screening may show that only one of the general­
ized coordinates is important. To this end, a response r may be defined that linearly 
depends on q: 

T r=w q. ( 4.16) 

One can easily pick one element out of q by setting the corresponding element in 
w to a value of one, and all other elements to zero. The adjoint variable approach 
uses relation (4.16) to avoid the calculation of~~ for each design variable. 

The adjoint sensitivity equations of the kinematic positions are derived as fol­
lows. Starting point is that the design sensitivities of response r are needed instead 
ofq: 

dr Tdq 
-=W-
db db' 

( 4.17) 

Add to ( 4.17) the derivatives of the kinematic position equations ( 4.15) multiplied 
by adjoint variables t e (t) (Haftka and Gtirdal, 1992): 

dr Tdq T ( dq ) 
db =w db +e -<I>qdb -<~>b · ( 4.18) 

tHaftka and Gtirdal (1992) call them Lagrange multipliers, but to avoid confusion with the La­
grange multipliers>. in Equation (4.14) solely the term adjoint variables is used. 
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This addition has no influence on the value of ~~ since the expression between 
brackets is actually zero. As a consequence, any column ~ may be selected. Rear­
ranging Equation (4.18) gives: 

dr r 
db= (w (4.19) 

We do not want to calculate 1Jl, and therefore choose the adjoint variables ~ such 
that: 

(4.20) 

which means that the adjoint equations become: 

(4.21) 

and the sensitivity of the response: 

dr T 
db=-~ .Pb. (4.22) 

The column of adjoint variables~ for a time point can be calculated independent of 
the number of the design variables. The main computational cost is now determined 
by the number of responses r sensitivities are required for. 

Sensitivity equations of the velocities, accelerations, and the Lagrange multi­
pliers of the constraint reaction forces can be derived in a similar manner. Differ­
entiation of the kinematic velocity equations (4.12): 

(.p . ) dq (.P . ) dq (.P . ) dq 
qQ qdb + qQ 4db + qQ b = vqdb +vb (4.23) 

yields the velocity sensitivity equations: 

(4.24) 

Moreover, the following expressions for ~ and ~~ are obtained: 

(4.25) 

(4.26) 
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Although these expressions are slightly more complex, the direct and adjoint ap­
proach are equivalent to the procedure outlined for Equation (4.15). The direct 
approach requires the right hand sides to be evaluated, and the solution of the lin­
ear set of equations for each design variable. The adjoint method first rewrites these 
equations before sensitivities are calculated. 

The adjoint variable approach is demonstrated using a general expression of 
response r: 

r = r(q, q, q, ..\, b, t). (4.27) 

Design sensitivities of r are desired: 

(4.28) 

without explicitly calculating the position, velocity and acceleration sensitivities 
~2, ¥1 and *, and the sensitivities of the Lagrange multipliers ~~. Therefore, 
multiply Equations (4.15), (4.24), (4.25), and (4.26) by adjoint variables e(t), ((t), 
17(t), and p,(t), respectively. Add these expressions to (4.28), rearrange, and select 

the adjoint variables to remove terms with *· ~i, * and ~~. Then, assuming 
symmetry of the mass matrix M, the following adjoint equations are obtained: 

with: 

q,~ e = r~- [ (-PqQ)q- Vqr (- [ (-PqQ)q- Tqr 11 

-[(Mq)q+(-P~..\)q-Q:f JL, 

J..T r T T QAT "±"q'!.=rq+rq17+ 4 JL, 

-P~ 11 = r4- Mp,, 

-PqP, = r{, 

:~ = rb- eT q,b- (T (-PqbQ- Vb) -17T (-PqbQ- rb) 

-p,T (Mbq + q,~b..\- Q:) · 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

The numerical solution comprises of consecutively solving p,, 17, (,and e from 
(4.32), (4.31), (4.30), and (4.29), respectively. This corresponds with the procedure 
proposed by Sohoni and Haug (1982). Furthermore, note that response equation 
( 4.27) includes linear relation ( 4.16) by selecting r q = wT, and r 4 = rii = r >.. = oT. 

Then Equations (4.29) to (4.32) reduce to Equation (4.21), and Equation (4.33) 
becomes (4.22). 
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4.3.3 Discussion 

The sensitivity equations of kinematically driven multibody systems resemble the 
velocity and acceleration equations. They are all linear and can only be consecu­
tively solved. When derivatives of e.g. the acceleration are desired, quite a lot of 
computations need to be done beforehand. This applies for both the direct and the 
adjoint technique. However, the direct sensitivity equations are decoupled for each 
design variable, whereas the adjoint sensitivity equations are decoupled for each 
response function. So, multiple computer processors may be effectively applied 
during the multibody design sensitivity analysis. 

The Jacobian matrix plays an important role in the kinematic analysis of multi­
body systems. Its decomposition is required to compute the positions, velocities, 
accelerations and Lagrange multipliers, as well as all corresponding design sensi­
tivities. However, for lock-up and bifurcation the Jacobian becomes singular. In the 
case of lock-up the mechanism cannot move any further, whereas for bifurcation a 
branching to two possible paths of motion is present. As a consequence, computa­
tional difficulties arise near such singular configurations. Therefore, constraints are 
desired that can avoid lock-up and bifurcation, but it is difficult to mathematically 
formulate them. The problem is that the only warning of a possible singularity 
nearby is a bad condition number of the Jacobian matrix or high velocities and ac­
celerations. To make matters worse, violation of a singular configuration constraint 
may cause the numerical analysis to break down due to lock-up, or the bifurcation 
to take place. 

4.4 Multibody Systems described by Ordinary 
Differential Equations 

4.4.1 Ordinary Differential Equations of Motion 

The dynamic behavior of a multibody system with tree structure (no closed loops) 
can be described by a set of ordinary differential equations. A relative coordinate 
formulation is applied such that no algebraic equations due to kinematic joints arise: 

M(q, b)q = QA(q, q, b, t), q(to) = qo, (4.34) 

it (to) =ito. 

Herein, mass matrix M, generalized applied force QA, and initial conditions q(t0 ) 

and q(t0 ) can be identified. The column of generalized forces includes externally 
applied forces and torques, as well as forces due to Coriolis effects. For simplic­
ity, constant initial conditions are considered, although for some applications they 
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may explicitly or implicitly depend on the design variables. This set of second­
order equations can be rewritten in first-order form, which yields for holonomic 
kinematic couplings: 

y=z, 
M(y, b)z = QA(y, z, b, t), 

y(to) =Yo, 

z(to) = zo. 

(4.35) 

(4.36) 

The new generalized positions y and velocities z are equal to q and q, respectively. 
Well-established methods are available to numerically integrate first-order ini­

tial value problems. They all boil down to the evaluation of the derivatives y and z 
at several time instants. The propagation of y and z in time is computed by adding 
increments corresponding to the derivatives multiplied by step sizes (Press et al., 
1992). Usually, adaptive step size control is applied. In Equation (4.36) calcula­
tion of z requires matrix M and right-hand side QA to be evaluated, followed by 
the solution of the linear algebraic equations. For multi body systems this may be 
rather expensive. Therefore, the integration method should be efficient as well as 
accurate. 

4.4.2 First-Order Differential Sensitivity Equations 

Equations (4.35) and ( 4.36) are differentiated with respect to design variable b to 
obtain: 

dy dz 

db db' 

dz [ . A] dy Adz ( . A) 
M db = - (Mz)y - QY db + Qz db - Mbz- Qb , 

with initial conditions: 

dy 
db (to)= 0, 

dz 
db (to)= 0. 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

The direct method solves ~~ (t) and ~~ (t) for each design variable b E b. Remark 
that, in contrary to Equation (4.36), sensitivity equation (4.38) is linear in the un-
kn dy d dz owns db an db. 

The adjoint variable approach starts from a response r that is some function of 
the generalized positions, velocities and accelerations. Consider an integral func­
tion of the form: 

1
ft 

r = p(y, z, z, b, t)dt, 
to 

(4.41) 
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which covers a broad class of functions. It includes, for example, responses at a 
one specific time point t P by: 

p(y, Z, Z, b, t) r(y, Z, z, b, t)o(t- tp), (4.42) 

with o(t- tp) a Dirac delta function. Differentiation of Equation (4.41) gives: 

dr 11
1 ( dy dz dz ) 

db = to Py db + Pz db + Pz db + Pb dt. (4.43) 

If to and t 1 depend on the design variables, the Leibniz rule of differentiation has 
to be applied (see e.g. Abramowitz and Stegun, 1965), which means that two addi­
tional terms pop up. 

The adjoint method avoids to explicitly calculate sensitivities ;r, ~~, and 1!. 
To accomplish this, one may apply the following procedure. Firstly, multiply Equa­
tion (4.37) by adjoint variables p,(t), and integrate by parts: 

l tf ( dy dz) [ dy]
1

f 11
' dy lt' dz 

f..£T -db+ db dt=- f..£T db + j.LT dbdt+ f..£T dbdt. 
to to to to 

(4.44) 

Do the same for Equation (4.38) using adjoint variables ((t): 

(4.45) 

Finally, take Equation (4.38) again multiplied by another set of adjoint variables 
e<t). without integration by parts: 

(4.46) 



Design Sensitivity Analysis 57 

The aim of these operations becomes clear after adding (4.44) (4.45) and (4.46) 
to in Equation (4.43). After rearranging, adjoint variables can be selected that 

remove the terms with ~1, ~~ and ~~· Using symmetry of the mass matrix, the 
adjoint variables should satisfy: 

with boundary conditions: 

J-t(t f) = 0, 

((tt)=O. 

Herein, the 'intermediate' adjoint variables~ follow from: 

M~=pf. 

(4.47) 

(4.48) 

(4.49) 

(4.50) 

(4.51) 

The end conditions in Equations (4.49) and (4.50) require that the first-order dif­
ferential equations (4.47) and (4.48) are integrated backward in time. Furthermore, 
Equation (4.43) becomes: 

ar 111 
[ ( T T) ( • A)] db = Pb - ( + ~ Mbz- Qb dt. 

to 
(4.52) 

More adjoint equations follow if to, t f, ~ ( t0 ) and ~b (to) do not have a predefined 
constant value, but are explicitly or implicitly determined by the design variable 
values as well. Bestle and Eberhard (1992) elaborated the sensitivity analysis for 
ordinary differential equations of multibody systems in a quite general format. 

According to Equation (4.42), a time point response yields Dirac delta functions 
in the right-hand sides of the adjoint equations (4.47), (4.48) and (4.51). Haftka and 
Giirdal (1992) remark that a simpler form can be derived without Dirac function, 
by integrating ( 4.47) and ( 4.48) from t P - E to t P + E for an infinitesimal E. Hereto, 
adjoint variable~ has to be equated from (4.51), and inserted in (4.47) and (4.48). 
Finally, the following adjoint equations are found: 

with end conditions: 

J-t T (t p) = {ry- rzM- 1 
[ (Mz)y Q¢]} t=tp, 

(T(tp) = [(rz+rzM- 1Q~)M-1Jr=tp' 

(4.53) 

(4.54) 

(4.55) 

(4.56) 
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and the derivative of the response r: 

4.4.3 Discussion 

An easy way to calculate the multibody responses and design sensitivities is to use 
the direct method, and treat the first-order equations of motion and all sensitivity 
equations ( 4.35) to ( 4.38) as one large set of coupled ordinary differential equations. 
It requires a minimum of implementational efforts, and responses and derivatives 
will be calculated at the same time points, as required for time point constraints. 
However, the sensitivity equations ( 4.37)-( 4.38) are decoupled for each design vari­
able. This means that they can be integrated separately. In that case the time points 
for which sensitivities are calculated may not coincide, and an additional interpo­
lation has to be applied. 

The adjoint variable approach is often numerically more efficient if sensitivi­
ties are needed just for a small number of responses in combination with a large 
number of design variables. The adjoint equations follow independent of the num­
ber of design variables. They have to be numerically integrated backward in time. 
So, during forward integration of (4.35)-(4.36), one is obliged to store all rele­
vant information that is necessary for backward integration of adjoint equations 
(4.47)-(4.48). Generally, time points of forward and backward integration do not 
coincide, and the saved information must be interpolated. This may be a source of 
error during the backward integration, which places high accuracy demands on the 
interpolation method. After the forward integration has been completed, the adjoint 
equations can be solved independently for each response. 

4.5 Multibody Systems described by Differential­
Algebraic Equations 

4.5.1 Differential-Algebraic Equations of Motion 

A general formulation of the multibody system equations of motion is: 

M(q, b)q +<I?{ (q, b, t)A = QA(q, q, b, t), 

tf?(q, b, t) = 0. 

(4.58) 

(4.59) 

Matrix M and column QA are the mass matrix and generalized applied force, re­
spectively. Forces due to kinematic constraints (4.59) are expressed in the dynamic 
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equations of motion (4.58) by means of Lagrange multipliers A. The generalized 
coordinates q(t) can be defined either by a Cartesian or a relative coordinate for­
mulation. Velocity and acceleration equations must hold as well: 

cllq(q, b, t)q v(q, b, t), 

cllq(q, b, t)q = T'(q, q, b, t). 

(4.60) 

(4.61) 

All together, the motion of the multibody system is represented by a mixed set of 
differential-algebraic equations. 

The numerical solution of the differential-algebraic equations of motion is less 
straightforward compared with ordinary first-order differential equations. The dif­
ficulty of the numerical solution lies in the algebraic equations (4.59). Therefore, it 
is often tried to reduce the equations of motion towards ordinary differential equa­
tions. Then, an integration algorithm for first-order systems can be used, as outlined 
in Section 4.4. Within this context one may start from Equations (4.58) and (4.61): 

[!: ~~] [1] [~]. 
Given an assembled configuration with initial conditions: 

q{to) = Qo, 

<i(to) = <io, 

(4.62) 

(4.63) 

(4.64) 

accelerations q(to) and Lagrange multipliers A(to) can be computed, provided that 
the mass matrix M is positive definite and the Jacobian matrix cllq has full row rank 
(Haug, 1989). Positions q(tp+l) and velocities q(tp+l) at a next time instant tp+l 
(p 0 at the first time step) follow from numerical integration of the accelerations. 
Afterwards, Equation (4.62) can be solved again to obtain q(tp+t) and A(tp+l ). 
This process is continued until t p+ 1 exceeds the final time. 

The abovementioned direct integration procedure can be unstable. Large errors 
in (4.59) and (4.60) may arise. Therefore, an additional constraint stabilization or 
correction is necessary. A well-known approach in multibody system dynamics is 
generalized coordinate partitioning. It determines dependent and independent gen­
eralized coordinates from the Jacobian matrix. The independent accelerations are 
integrated, after which the dependent variables are evaluated by solving kinematic 
position and velocity equations (4.59) and (4.60). Generalized coordinate parti­
tioning has proven to be reliable and accurate, although it is numerically expensive 
due to the iterative solution of the position equations at each time step. A detailed 
description is given by Haug ( 1989). Three references in Table 4.1 use this method: 
Haug et al. (1984), Haug (1987), and Ashrafiuon and Mani (1990). 
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An other constraint stabilization technique is Baumgarte's method. This tech­
nique is applied in Chang and Nikravesh (1985), Dias and Pereira (1994 ), and 
Pagalday et al. (1996). Right-hand side 'Tin Equation (4.62) is replaced by: 

i' 'T 2a(~qq- v)- ,82~. (4.65) 

in which the position and velocity equations are accounted for. The modified accel­
eration equation is stable for a > 0 and f3 =f. 0. In first-order form direct integration 
can be carried out using algorithms of Section 4.4. However, the appropriate values 
of a and f3 are not known beforehand, and divergence may occur near singular con­
figurations (Haug, 1989). Therefore, in DADS (CADSi, 1995) a hybrid algorithm 
is implemented combining the efficiency of Baumgarte's method and the reliability 
of generalized coordinate partitioning. 

The multibody package MECANO (Samtech, 1994) uses a completely differ­
ent approach to solve the differential-algebraic equations of motion. An implicit 
Newmark algorithm is employed. For each new time point t P during integration, 
Equations (4.58) and (4.59) are iteratively solved, using the formulas of Newmark 
to approximate q(tp+I) and q(tp+I) in terms of q(tp), q(tp). q(tp) and q(tp+I). A 
Newton-Raphson procedure is used to calculate q(tp+I) and .A(tp+d· No further 
stabilization from (4.60) or (4.61) is required. The Newmark algorithm is explained 
in detail in e.g. Geradin and Rixen (1994). 

4.5.2 Second-Order Differential-Algebraic Sensitivity Equations 

Derivation of the sensitivity equations proceeds in a similar manner as shown 
in Section 4.4.2. The equations only become slightly more complex, especially 
the adjoint sensitivity equations. Most references maintain the second-order form 
of the differential-algebraic equations of motion. Direct differentiation of Equa­
tions (4.58) and (4.59) gives: 

dq rdA [ .. T A] dq A dq 
Mdb +~qdb - (Mq)q+(~q-A)q-Qq db +Qqdb 

dq 
~qdb =-~b. 

with initial conditions: 

dq 
db (to)= 0, 

dq 
db (to)= 0. 

( Mbij + ~ ~b.A - Qt) , 
(4.66) 

(4.67) 

(4.68) 

(4.69) 
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According to Equations (4.24) and (4.25), the following velocity and acceleration 
sensitivity equations hold as well: 

(4.70) 

(4.71) 

Hence, a set of linear second-order differential-algebraic equations determines the 
position, velocity, acceleration and Lagrange multiplier design sensitivities. They 
can be solved for each design variable b E b, using the previously mentioned so­
lution procedures. This direct differentiation method is, for example, applied in 
Ashrafiuon and Mani (1990), and Dias and Pereira (1994). 

To derive the adjoint equations, the procedure outlined in Haug ( 1987) is fol­
lowed, although design dependent initial conditions and final time are not included 
here. Fleury (1996) also adopts an approach similar to Haug (1987). We take as 
starting point the response: 

r 1t
1 

p(q. q, ij, .x, b, t)dt, 
to 

(4.72) 

The corresponding design sensitivity is: 

dr ltf ( dq dq dij d.X ) 
db = 

10 
Pq db + PiJ db + Pii db + p >. db + Pb dt' (4.73) 

which becomes after two times integration by parts: 

dr 1
1
! ( dpq d

2 Pii) dq 1
1
! d.X 

db = to Pq - dt + dt2 db dt + to p >.db dt 

+ lt! Pbdt + [(Pq- dpq) dq]t! + [Pii dq]t! 
to dt db to db to 

(4.74) 

Now equations have to be added that avoid the evaluation of ~, ~;, ~ (t 1) and 

~i (t f) in (4.74). For this purpose, the following recipe is applied. Multiply Equa­
tion (4.66) by adjoint variables p(t), and two times integrate by parts. Furthermore, 
multiply Equation (4.67) by adjoint variables 1J(t), and integrate from to to t f (no 
integration by parts). Two more equations are necessary: the position and veloc­
ity sensitivity equations (4.67) and (4.70) at final time t f• multiplied by adjoint 
variables rf and ,.,t, respectively. Finally, add all expressions to Equation (4.74), 
rearrange, and select the adjoint variables. 
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Assuming symmetry of the mass matrix, the following adjoint relations are 
obtained: 

Mil+ (21i1+ Q~t" + {M+ d~: + [ (Mij)q + (~~>.)q- Q~] r 1-' 

dp!' d2 p!. 
h..T T q q + "±"q 11 = Pq -;[( + dt2 ' 

(4.75) 

(4.76) 

and: 

M(t f )jL(t t) + [ M(t f)+ Qg (t f) r J.LU t)- [ (<Pqq)q- vq):r, "'! 

T f T dp{ 
-<Pq(tj)T =-pq(tf)+dt(tf), 

(4.77) 

M(t f )J.L(t f)+ <P~ (t f )K.f = P{ (t f), (4.78) 

with: 

~ = fotr [Pb- J.LT( Mbq + <P~bA- Qt) _TIT <Pb J dt 

- TJT (j)b (t f) - K.JT [ <Pqb(t f )q(t f) - Vb (t f)]· (4.79) 

The numerical solution comprises of four stages. Firstly, integrate the differential­
algebraic equations of motion (4.58) to (4.61) forward in time, calculate r from 
(4.72), and store all data necessary for the adjoint equations. Next, solve J.L(t 1) 
J.Lf and"'! from Equations (4.78) and (4.76): 

[ M <P~J [J.Lf] [p!.] (4.80) 
(j) q 0 t=t I 1\,f PI t=tt . 

Afterwards, solve jL(t f) jLf and Tf from Equation (4.77) and the time derivative 
of Equation ( 4.76): 

[
M (])~] [ jLf J = [- (M+Q:)r 
<Pq 0 t=tt· -Tf - d<I>q 

. dt 

[ 
T dp~] 

+ -pit~ dt . (4.81) 
~ 
dt t=tr 
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Finally, integrate the linear second-order differential-algebraic equations ( 4.75) and 
(4.76) backward in time with end conditions: 

p,(tj) p/, 
jJ,(tj) = jJ/, 

(4.82) 

(4.83) 

and calculate the derivative from (4.79). The same solver may be used as was 
applied for forward integration of the equations of motion. 

4.5.3 First-Order Ordinary Differential Sensitivity Equations 

In Bestle and Seybold (1992) a different stand of view is taken. The equations 
of motion are formulated in first-order form. Furthermore, the acceleration equa­
tions ( 4.61) are used instead of the position equations ( 4.59) to derive the sensitivity 
equations: 

dy dz 

db db' 
dz Td).. [ . T A] dy Adz 

Mdb+.Pydb=- (Mz)y+(.PyA)y-Qy db+Qzdb 

- ( Mbz + .P Jb>.. - Qt) , 
.Py ~! =- [(.Pyz)y "Yy] ~~ +"Yz~:- (.Pybz- "Yb), 

with y = q and z = q, and initial conditions: 

dy 
db (to)= 0, 

dz 
db (to)= 0. 

(4.84) 

(4.85) 

(4.86) 

(4.87) 

(4.88) 

Bestle and Seybold (1992) assumed that the numerical solution of the sensitivity 
equations do not need any further stabilization. 

The corresponding adjoint equations are first-order ordinary differential equa­
tions. We start again from: 

l
tf 

r = p(y, z, z, >.., b, t)dt, 
to 

(4.89) 

and differentiate with respect to b: 

ar (t ( dy dz dz d>.. ) 
db= }to Py db+ Pzdb + Pzdb + P>. db+ Pb dt. (4.90) 
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Add Equations (4.84), (4.85), and (4.86), multiplied by adjoint variables J.L(t), e<r), 
and 1J(t), respectively. Furthermore, add Equation (4.85) multiplied by ( (t) and 
integrate by parts. Then, assuming that M = M 7 , the following adjoint relations 
are obtained: 

it [ <Mz)y + c<~>f A)y- Q¢f cc +e)+ [ c<~>yz)y _,yr 11- pf, (4.91) 

M( = -tt :Me- Q:r cc +e)- Y~ 11 p~, (4.92) 

with end conditions: 

J.L(f j) = 0, 

((tf)=O. 

Herein, the 'intermediate' adjoint variables e and 11 are determined by: 

[ M <PrJ [e] [ p! J 
<Py 0 '11 = pr z<Py( . 

Equation (4.90) becomes: 

(4.93) 

(4.94) 

(4.95) 

dr 
db 

((T +eT) (Mbz+<P[b.X Q:) _'IJT (<Pybi-l'b)]dt. 

(4.96) 

Remind that there is no guarantee to have a stable numerical integration. Bestle 
and Seybold ( 1992) reported, however, that they studied several applications, and 
that they did not find any stability problems. Therefore, they concluded that the 
proposed method is stable. 

4.5.4 Discussion 

The points made in the discussion of Section 4.4.3 are valid here as well. Either the 
direct or the adjoint method can be applied to derive the sensitivity equations. The 
direct method is straightforward and simple, but can become computationally inef­
ficient for growing number of design variables. Then, the somewhat more intricate 
and subtle adjoint method may be beneficial. However, the adjoint method suffers 
from three drawbacks. Firstly, it is far more difficult to implement than the direct 
approach. Secondly, a lot of input/output operations and data storage is required. 
And thirdly, it is rather sensitive for interpolation errors. On account of the latter 
observation, Bestle (1994) suggested to do the forward integration of the equations 
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of motion two to ten times as accurate as the backward integration of the adjoint 
sensitivity equations. 

Two different sets of adjoint equations have been presented. The approach of 
Haug (1987) yields differential-algebraic adjoint equations, whereas the method of 
Bestle and Seybold (1992) gives pure ordinary differential equations. The latter set 
of equations is of course preferable, since they are easier to solve. Though, some 
caution is called for, since numerical stability of these adjoint equations has not 
been proven. 

Another distinction is the way Haug (1987) on the one hand, and Bestle and 
Seybold (1992) on the other, avoid to explicitly calculate the position, velocity, 
acceleration and Lagrange multiplier design sensitivities. Haug ( 1987) starts with 
two times integration by parts of~. whereas Bestle and Seybold (1992) keep the 
original form of Equation (4.90). As a consequence, other equations have to be 
selected to remove the previously mentioned design sensitivities, and the resulting 
adjoint equations are different. The procedure of Haug (1987), for example, yields 
time derivatives of pq, PiJ and P>., which may be problematic in the case of time 
point responses. On the contrary, Dirac functions in the right-hand sides of the 
adjoint equations of Bestle and Seybold (1992) can be eliminated analogously to 
Section 4.4.2. 

4.6 Aspects of Practical Implementation 

Whatever the type of the equations of motion, the sensitivity equations require a lot 
of new terms to be developed. Additional to the terms present in the kinematic and 
dynamic equations: 

;F. M QA, ";;:"q, v, /, , (4.97) 

the following partial derivatives with respect to q and q need to be computed: 

(4.98) 

Furthermore, partial derivatives with respect to the design variables arise: 

(4.99) 

In a general purpose program, the number of new terms grows very rapidly due 
to the large amount ofdesign variables that can be identified for various applica­
tions. That is why many researchers apply symbolic computation to generate the 
sensitivity equations, instead of extending a library of standard joint elements. 
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However, many existing multibody analysis codes do not use symbolic compu­
tation, and numerically evaluate the equations of motion from a library of joint ele­
ments. Then, two alternatives remain for the generation of the sensitivity equations. 
Firstly, one can refrain from analytically deriving the terms with partial derivatives, 
but use finite differencing to calculate them. This is called the semi-analytical 
method, which is commonly applied in structural optimization to compute the 
derivatives of the stiffness and mass matrix with respect to the design variables. 
Of course, semi-analytically obtained design sensitivities will be less accurate than 
their analytical counter parts. It has to be investigated whether for multibody sys­
tems in general an acceptable accuracy remains. The other alternative is to apply 
automatic differentiation (recall the introduction of this chapter). Usually, each of 
the elements in the joint library is represented by a piece of Fortran or C code of 
limited length. Automatic differentiation may be able to produce new code for the 
extra partial derivatives in the sensitivity equations. 

Another aspect of implementation concerns the calculation of integral functions 
rand ~ in Sections 4.4 and 4.5. They may be evaluated after the numerical solu­
tion of the differential( -algebraic) equations of motion and sensitivity equations has 
been completed. Bestle and Eberhard (1992)remarked, however, that it is computa­
tionally convenient to rewrite r and ~ into differential equations as well. Suppose 
that we have: 

1
tr 

li= vdt, 
to 

(4.100) 

and that function v depends on the solution of the forward integration of some set 
of differential equations. Then, Equation (4.100) can be rewritten as an initial value 
problem: 

u = v, u(to) = 0, 

li=u(tf), 
(4.101) 

and solved along with the other differential equations. In the case of backward 
integration one can use: 

u=-v, u(tf) 0, 

u = u(to). 
(4.102) 

The initial value problem formulation of Equation (4.101) is useful for the direct 
method. The final value problem of Equation (4.102) is suited for the adjoint 
method. 
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4. 7 Examples 

4.7.1 Impact-Absorber 

Consider again the impact-absorber of Section 2.5.1. The equations of motion are 
in first-order form: 

y= Z, 

Z = -b1y b2z, 

y(O) = 0, 

z(O) 1. 

(4.103) 

(4.104) 

The variables y and z represent the mass position and velocity. The acceleration re­
sponse z at an arbitrarily chosen time point tp = 5 sand comfort criterion (2.34) are 
of main interest. The objective is to calculate the corresponding design sensitivities 
for a stiffness coefficient of b1 0.5 Nm-1 and a damping coefficient of b2 = 0.5 
Nsm- 1 • For this purpose, three different approaches are applied: finite differenc­
ing, the direct method, and the adjoint method. Each approach requires first-order 
ordinary differential equations to be solved, either forward or backward in time. To 
this end, a fourth-order Runge-Kutta algorithm of MATLAB (Math Works, 1996) 
is applied at a tolerance level of 1 o-6. Furthermore, cubic spline interpolation is 
used if a state variable value is needed at a time point that does not coincide with 
the mesh points of integration. 

Time Point Acceleration 

Firstly, derivatives of the acceleration with respect to the design variables are calcu­
lated at time point t P = 5 s. Finite difference sensitivities are obtained by applying 
forward difference formula (4.1). This means that the equations of motion are 
solved for the original design as well as for two perturbed designs. Then, acceler­
ation values of six digits are calculated by interpolation. A range of perturbations 
t:.b is applied, and the finite difference sensitivities are compared with the analyt­
ical solution. The relative error is plotted in Figure 4.1 for both design variables. 
The smallest errors are found near t:.b = 1 o-3, which corresponds with the optimal 
step size resulting from Equation (4.5). For small perturbations the condition error 
dominates, for large perturbations the truncation error. 

Direct differentiation yields the following sensitivity equations for b1: 

dy dz 

db! -db!' 

dy 
db

1 
(to)= 0, (4.105) 

. dz dy dz 
db! = -bl db] - b2 db! - y, 

dz 
db

1 
(to)= 0, (4.106) 
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Parameter perturbation 

Figure 4.1: Relative errors of the acceleration sensitivities at tp = 5 s computed by forward 
finite difference as a function of the parameter perturbations. Errors of the 
derivatives with respect to b1 and b2 correspond with o and*, respectively. 

dy 
db2 (to)= 0, (4.107) 

dz 
b2 db2- z, 

dz 
db2 (to)= 0. (4.108) 

They are solved together with the equations of motion as one set of ordinary differ­
ential equations. The relative accuracy of the interpolated derivatives :Jt ( t P) and 

. l 

:Jb~ (tp) are given in Table 4.2. The accuracy is much higher than can be obtained 
by finite differencing. 

0.55708928 1.41 . w-6 2.22. w-6 

-0.29470796 1.48 . w-6 2.34 . w-6 

Table 4.2: Relative errors of the acceleration sensitivities at t P 5 s computed by the direct 
and the adjoint method. 

The adjoint method uses p = z8(t- tp) in Equation (4.42). Then, Equa­
tions (4.53) to (4.56) yield the adjoint equations: 

[L = b,~, 

~ -tL + b2~' 
tL(tp) -b,, 

~(tp) -b2, 

(4.109) 

(4.110) 
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with the design sensitivities defined by Equation ( 4.57): 

dz ltp 
db (tp) =- y~dt- y(tp), 

I to 
(4.111) 

dz ltp 
b 

(tp) =- z~dt- z(tp). 
d 2 to 

(4.112) 

Using Equation ( 4.102), these integral functions are rewritten as: 

du 
dbt = y~, 

du 
db! (tp) = -y(tp). (4.113) 

dit 
db2 = Z~, 

du 
db2 (tp) = -z(tp), (4.114) 

such that they can be solved backward in time along with the adjoint equations. 
Afterwards, the derivatives of the acceleration follow from: 

(4.115) 

(4.116) 

About the same accuracy is found as with the direct approach. For this example the 
adjoint method is computationally more expensive than the direct method due to 
the interpolation during backward integration. The adjoint approach will be most 
efficient for a larger number of design variables. 

Comfort Criterion 

Similarly, the design sensitivities of the comfort criterion: 

1 ltj 
F ·2d =-- z t 

t f- to to 
(4.117) 

are computed. Forward finite differencing gives Figure 4.2. The optimum step size 
lies again near t:.b w-3, however the relative error of j~ is smaller than the 

error of j~. The explanation can be found in Figure 2.5: the comfort criterion 
behaves more linearly in b1-direction (stiffness) than in b2-direction (damping). 
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Parameter perturbation 

Figure 4.2: Relative errors of the comfort criterion sensitivities computed by forward finite 
difference as a function of the parameter perturbations. Errors of the deriva­
tives with respect to b1 and hz correspond with o and *, respectively. 

Using the direct differentiation approach, Equations (4.103) to (4.108) are in­
tegrated forward in time together with: 

u 
z2 

t1- to 
2i di 

tJtodbl, 

2i di 

t f- to db2' 

u(to) = 0, 

du 
db

1 
(to) 0, 

du 
db2 (to)= 0. 

The comfort value and the design sensitivities then follow from: 

F = u(tf), 

dF du 
dbl db] (tf), 

dF du 
db2 = db2 (t f). 

In Table 4.3 the relative errors of the computed sensitivities are presented. 

(4.118) 

(4.119) 

(4.120) 

(4.121) 

(4.122) 

(4.123) 

The adjoint method first integrates the equations of motion (4.103) and (4.104) 
forward in time completed with: 

·2 . z 
u=--, 

t 1 to 
u(to) 0. (4.124) 
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Comfort Analytical 
solution 

Relative error 

0.083382659 1.05 . 10-6 2.80 . 10-5 

-0.040564101 1.26. 10-6 4.19. w-5 

Table 4.3: Relative errors of the comfort criterion sensitivities computed by the direct and 
the adjoint method. 

The comfort criterion then is: 

Afterwards the adjoint equations have to be integrated backward in time: 

fL=b!(~+~). 

~= -JL+b2(~+~), 
du 
db! = y(~ + ~). 
du 
dh =z(~+n, 

JL(tt)=O, 

~(t f)= 0, 

du 
db! (tf) = 0, 

du 
db2 (t f)= 0. 

Herein, intermediate variable ~is equal to: 

~=~. 
tt- to 

Finally, the comfort criterion sensitivities result: 

dF du 
db

1 
= db

1 
(to), 

dF du 
db2 = db2 (to). 

(4.125) 

(4.126) 

(4.127) 

(4.128) 

(4.129) 

(4.130) 

(4.131) 

(4.132) 

Now, the computed sensitivities are more than ten times less accurate than the sen­
sitivities of direct differentiation. This is mainly due to the interpolation of the state 
variables y and z during backward integration of the adjoint equations. 

4. 7.2 Slider-Crank Mechanism 

Design sensitivity analysis of kinematically driven multibody systems is demon­
strated using the slider-crank mechanism of Section 2.5.2. Exactly the same op­
timization problem is considered, but now the position equations of motion are 
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r 
X 

Figure 4.3: Definition of the global reference frame x-y and body-fixed reference frames 
X

1
i-Y

1
i in the slider-crank mechanism. Definition of the design variables can be 

found in Figure 2.6. 

assembled starting from a Cartesian coordinate formulation. Four bodies are iden­
tified: 1) the input-crank, 2) the coupler, 3) the slider, and 4) the ground. Each body 
has its own body-fixed reference frame x'i-Y'i as indicated in Figure 4.3. 

Eleven algebraic equations arise from the restrictions with respect to the body 
movements. The ground is fixed to the global x-y frame, yielding: 

<I>1=X4 bs=O, 

<l>2 = Y4 - b6 = 0, 

<1>3 = e4 = o. 

(4.133) 

(4.134) 

(4.135) 

Furthermore, revolute joints are present between the ground and the input crank: 

¢4 Xj - X4 = 0, 

<l>s = Y1 - Y4 = 0, 

between the input crank and the coupler: 

¢6 = Xj + b1 cosel - X2 0, 

<1>1 = Yl + b1 sine1 - Y2 = 0, 

and between the coupler and the slider: 

¢g = X2 + b2 COSe2- X3 = 0, 

<l>9 Y2 + b2 sin e2 - Y3 0. 

(4.136) 

(4.137) 

(4.138) 

(4.139) 

(4.140) 

(4.141) 
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The translational joint between the slider and the ground is defined by: 

<l>JQ=y3-b3=0, 

<I>n lh = 0. 

(4.142) 

(4.143) 

Since there are twelve generalized coordinates, one degree of freedom remains. 
To be able to calculate the generalized coordinates: 

(4.144) 

for a crank rotation t.. y, one additional driving constraint is specified: 

(4.145) 

The generalized coordinates are solved using a Newton-Raphson iteration process. 
Starting from an initial guess q0, the estimate q1 of the l-th iteration is improved 
by: 

.Pq(ql, t..y)t..ql = -.P(ql, t..y), 

ql+l ql + t..ql. 

(4.146) 

(4.147) 

This process is continued until the change of generalized coordinates and the vio­
lation of the algebraic kinematic relations is smaller than 1 o-6 . 

The sensitivity analysis has to provide the derivatives of e2 with respect to the 
design variables for all crank rotations t.. y given in Table 2.2. The direct method 
uses Equation (4.15). Since there are eight crank rotations, and six design variables 
present in the algebraic equations, a total amount of 48 matrix equations has to be 
solved. Here, it is efficient to re-use the decomposition of the Jacobian matrix .Pq. 
On the contrary, the adjoint method starts from Equation (4.21) with w a column 
of zeros, except for the sixth element that is equal to 1. Now, only 8 linear matrix 
equations need to be solved, followed by 48 column multiplications according to 
Equation (4.22) to finally obtain the required sensitivities. 

A position and sensitivity analysis is carried out with the following initial guess 
for the first crank rotation t.. y = 0: 

q0 r = [3 4 2 -2 2 -1 20 -4 0 3 4 o]. (4.148) 

For each subsequent crank rotation the new initial guess is equal to the generalized 
coordinates computed for the previous rotation. Then, the computational cost to 
calculate the sensitivities of e2 for all crank rotations is less than half the cost of the 
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complete position analysis if the direct method is applied. The cost of the adjoint 
method is even less than a tenth. Compare this with an overall finite difference 
method, which would require a multitude of the computational cost of the position 
analysis. 

For this example all design variables are linearly present in the algebraic con­
straint equations. Therefore, Pb can be calculated semi-analytically without dif­
ficulty provided that the finite difference step is not too small. If the angle of the 
sliding axis is defined as a design variable, then Equation ( 4.142) is replaced by an 
algebraic relation that includes cosine and sine terms of this variable, (see Haug, 
1989). In that case the magnitude of the difference step should be selected more 
carefully for this variable. 

4.8 Conclusion and Discussion 

Three different approaches have been presented to compute the design sensitivi­
ties: finite differencing, the direct differentiation method, and the adjoint variable 
method. Finite differencing is more or less an external loop around the multibody 
analysis. This means that the computational cost is proportional to the number of 
design variables. This also accounts for the direct differentiation method, which 
requires the solution of additional sensitivity equations for each design variable. 
However, direct differentiation is usually more accurate. Furthermore, it is often 
much cheaper than finite differencing when numerical analysis and sensitivity anal­
ysis can be combined in a computationally efficient way. The computational cost 
of the adjoint method is directly related to the number of response sensitivities that 
have to be calculated. The adjoint equations arise independent of the number of 
design variables. 

If a multibody analysis program is to be extended with a design sensitivity 
analysis either the direct or the adjoint method should be implemented. Finite 
differencing may suffer from inaccuracies and problems with step size selection. 
Therefore, it should only be used if, from a practical point of view, no other option 
is available. The choice between the direct and the adjoint method is less straight­
forward. Additionally to the number of design variables, responses and computer 
processors, one also has to consider the number of load cases. In many engineering 
applications the multibody system design is subjected to multiple load cases. The 
computational cost of the direct differentiation approach is, besides the number of 
design variables, proportional to the number of load cases as welL This in contrary 
to the adjoint method that can compute sensitivities just for selected responses of 
each load case. 
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The approximate optimization process as proposed in Chapter 3 has conse­
quences for the design sensitivity analysis of multibody systems. Two main ele­
ments are the constraint deletion, and the intermediate design variables and inter­
mediate response quantities. The constraint deletion marks the responses that are 
included in the approximate optimization problem. The intermediate variables and 
responses allow the design engineer to improve the approximations by introduc­
ing nonlinear functional behavior that is explicitly known. Both aspects influence 
the design sensitivity analysis: the constraint screening limits the number of sen­
sitivities that is actually needed; the intermediate responses suggest to calculate 
the sensitivities not directly for objective function and constraints, but for the more 
fundamental multibody responses instead such as positions, velocities, accelera­
tions and Lagrange multipliers. 

Suppose a kinematic or dynamic analysis is carried out, and the constraint 
screening reveals that the design sensitivities are needed for only part of the multi­
body responses at a fraction of all time points. For kinematically driven systems, 
direct differentiation is able to calculate the sensitivities at the marked time points, 
but cannot distinguish between the individual generalized coordinates. The adjoint 
variable method, however, can. For dynamically driven systems, differential or 
differential-algebraic equations occur. As a consequence, sensitivity equations ob­
tained by direct differentiation have to be integrated forward in time to compute the 
derivatives at a specific time point. Now only the adjoint method benefits from the 
constraint screening, since the adjoint equations can be assembled for each time 
point response separately. 

Roughly speaking, for one computer processor the adjoint method is favorable 
if the number of responses for which sensitivities are needed is substantially smaller 
than the number of design variables times the number of load cases. Therefore, the 
adjoint method requires the number of responses to be minimized. Preferably, the 
constraint screening would mark only one time point for each critical or poten­
tially critical local maximum of a time dependent response. This is in contradiction 
with Chapter 3, where multiple points at a local maximum appeared to be benefi­
cial to avoid oscillations if the approximations lack correct curvature. Possibly, an 
approximation concept with adjustable conservativeness may be able to overcome 
this difficulty. 

Integral type of functions limit the number of objective function and constraints 
in the optimization problem, which is advantageous for the adjoint variable method. 
However, in Section 2.4 it has already been remarked that equivalent integral func­
tions of time dependent constraints may raise numerical difficulties during the op­
timization. Apart from that, the combination with the adjoint variable method hin­
ders the utilization of intermediate response variables. Take for example the inte-
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gral response function: 

i
t! 

r = p(q, t)dt. 
to 

(4.149) 

Any nonlinearity present in p returns in the sensitivity: 

(4.150) 

via the term pq. The adjoint method treats pq ~2 as one scalar term, and actually 
never calculates the vector product itself. As a consequence, explicit nonlinear 
behavior embedded in pis lost since it is accumulated in Pq· It cannot be used any­
more to improve the approximations. This in contrary to the direct method, where 
~2 is explicitly calculated and multiplied by pq to obtain the sensitivity values. 

Summarizing, design sensitivity analysis by means of direct differentiation is 
probably the most appropriate approach if approximate optimization with time dis­
cretization is applied. It is most suited to utilize intermediate response variables. 
Furthermore, using multiple time points at a local maximum, the total number of 
critical and potentially critical time points will often be too large to benefit from the 
adjoint method, even for multiple load cases. Only if the number of objective func­
tion and constraints is small and sufficient disk space is available for data storage, 
the adjoint method may be preferable. 



Chapter 5 

Stress Constrained Design of a 
Four-Bar Mechanism 

5.1 Introduction 

The stress constrained four-bar mechanism is a nice (academic) test problem toil­
lustrate the effect of intermediate design variables and intermediate response quan­
tities. Additionally, the influence of dynamics on the design optimization can be 
studied. Originally, the four-bar mechanism was used for optimization purpose by 
Sohoni and Haug (1982) in the context of kinematically driven multibody systems. 
In this chapter, the mechanism is optimized starting from a dynamic analysis. So, 
vibrations can be present, induced by the motion of the system. 

Figure 5.1 shows the four-bar mechanism. It consists of three solid but flex­
ible links, connected to each other and the ground by revolute joints. The three 
mobile links have a constant circular cross section, and a mass density of 2757 
kg·m-3. The lengths of the bars are 11 0.3048 m, h = 0.9144 m, 13 = 0.762 
m, and 14 = 0.9144 m, respectively. The input crank rotates at a constant angular 
velocity of lOrr rad·s- 1. Due to the motion, bending stresses occur in the mobile 
links. Stresses arising from axial forces are assumed to be negligible. The opti­
mum design problem is now to minimize the mass of the mechanism by varying 
the cross sectional areas, with the bending stresses constrained to a maximum of 
aa = 2.758 · 107 Pa. 

Each link is modeled by six beam elements. The multibody analysis package 
MECANO (Samtech, 1994) is used to compute the bending moments Mf in every 
k-th node of link i as a function of time. The bending stresses can then be calculated 

77 
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Figure 5.1: Stress constrained four-bar mechanism. 

from: 

(l 
l 

(5.1) 

with Ai the cross sectional area of body i. This relation suggests to use the bending 
moments as intermediate response quantities, as mentioned in Section 3.3. A time 
interval of 0.3 to 0.5 s is considered, which exactly covers one period of steady 
state motion after the transient has died away. 

MECANO has been coupled with the design optimization tool described in 
Chapter 3, using a local approximation concept. However, MECANO cannot cal­
culate the required design sensitivities. Therefore, the derivatives with respect to 
the design variables are computed by means of a forward finite difference sensitiv­
ity analysis. To begin with, the four-bar mechanism is optimized with cross sec­
tional areas and bending moments as intermediate design variables and responses. 
Vibrations appear to affect the optimization process. Their influence will be dimin­
ished by increasing the original Young's modulus value of the mobile links from 
6.895 · 1010 Pa to 6.895 · 1011 Pa (imaginary experiment). For these two cases, the 
effect of the intermediate variables and responses will be visualized. 

5.2 Design Optimization 

The optimization problem of the four-bar mechanism is formulated as follows: find 
the diameters of the mobile links hi = di (i = 1, 2, 3) that will minimize the total 
mass: 

(5.2) 
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subject to the stress constraints: 

k cri (b, t) ::S era V t E [0.3, 0.5], (5.3) 

i= 1,2,3, k= 1, ... ,7, 

in the design space: bi 2: 0 (i = 1, 2, 3). The time interval of 0.3 to 0.5 s is dis­
cretized into 201 time points. For the approximate optimization problem, the cross 
sectional areas are taken as intermediate design variables: 

I 1 2 
b· =A~· = -nd· 

l 4 l' 
i = 1, 2, 3. (5.4) 

The bending moments Mf are used as intermediate response quantities. 
The optimization is started from initial diameter values of 356.8 mm (Sohoni 

and Haug, 1982). The initial mechanism design has a total mass of 546 kg and is 
far from the maximum allowed stress. During the optimization, constraints above 
50% of the constraint bound are considered as critical or potentially critical. Fur­
thermore, constraint regionalization is applied, with two neighboring time points 
added before and after local maxima. The integration accuracy of a MECANO 
analysis is set to w-6 , and the relative finite difference step size f3 at 10-3 in Equa­
tion (4.10). The initial move limit factors are taken 40% for all design variables. 
The move limit and convergence parameter settings correspond with Section 3.5.4. 

In Figure 5 .2, the optimization history of the stress constrained four-bar mecha­
nism is visualized. The design variable values steadily decrease, and within fifteen 
cycles optimum design I of Table 5.1 is found. For each link one stress constraint 
is active. Move limits were active during the first twelve cycles. For other opti­
mization runs optimum design II was found as well. The latter optimum equals the 
design mentioned in Etman et al. (1996b). Apparently, multiple local optima are 
present. Deviations with the final design of Sohoni and Haug (1982) are caused by 
the discretization of the mobile links and the different method of stress analysis. 

A quite typical optimization history is found. During the first two cycles, none 
of the constraints is active or potentially active. For these cycles the maximum 
bending stress is indeed smaller than 50% of the stress bound. As a result, no ap­
proximation errors have been calculated. Next, the error increases from 1.8% in 
cycle 3 to 121% in cycle 5. Such a large approximation error is not accepted, and 
the search subregion of cycle 5 had to be two times reduced, until an approximate 
optimum design was obtained with an acceptable approximation error. This is rep­
resented by the vertical lines in Figures 5.2(a) and 5.2(b). Afterwards, the move 
limit factors stay at relatively small values of about 10% or smaller. Cycle 8 was 
repeated with halved move limits as well to keep the approximation error below 
40%. 
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Figure 5.2: Optimization history of the stress constrained four-bar mechanism for a 
Young's modulus of 6.895 · 1010 Pa, using cross sectional areas and bending 
moments as intermediate design variables and responses. 

band Initial Optimum design Optimum reported by 
F(b) design I II III Sohoni and Haug (1982) 

dt [mm] 356.8 38.5 37.3 35.5 36.2 

dz [mm] 356.8 25.2 23.6 23.0 28.1 

d3 [mm] 356.8 20.0 19.8 18.0 12.2 
F 546 2.89 2.67 2.42 2.69 

Table 5.1: Initial and optimum design of the stress constrained four-bar mechanism. Opti­
mum designs I and II have been calculated for the original Young's modulus of 
6.895 · 1010 Pa. Optimum III corresponds with the increased Young's modulus 
of 6.895 · lOll Pa. 

5.3 Influence of Dynamics 

The cause of the move limit reductions is revealed by plotting some of the bending 
stresses for both initial and optimum design L In Figure 5.3 the bending stresses at 

the driving node of link 1, and halfway link 2 and link 3 are plotted as a function of 
time. At these nodes the maximum stresses occur determining the final optimum 
design. Figures 5.3(a) and 5.3(b) show the bending stresses of the initial and opti­
mum design, respectively (remark the different y-axis scaling). The initial design 
is clearly overweighted, while at the optimum for each link one stress constraint is 

active at the maximum stress bound. Additionally, the bending stresses of the opti­
mum design show a dynamic behavior, that is (almost) absent for the initial design. 
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(b) Optimum design I. 

Figure 5.3: Bending stresses of the stress constrained four-bar mechanism at the driving 
node of link 1 (dotted), and the nodes halfway link 2 (dash dotted) and link 3 
(solid), for a Young's modulus of 6.895 . 1010 Pa. 

The vibrations show up along with the increase of the approximation errors in the 
early stage of the optimization, as shown in Figure 5.2(b ). 

The influence of vibrations on the optimization is diminished by increasing the 
Young's modulus of the three mobile links. In Figure 5.4 the optimization has been 
repeated for a ten times magnified Young's modulus. Instead of fifteen, only eight 
design cycles are necessary to obtain the final optimum design. The approximation 
errors are very small compared with the errors obtained for the normal elasticity 
modulus. As a result, the move limit factors increase until a severe constraint vio­
lation occurs and the search subregion needs to be halved. For the last three cycles, 
the move limits are not active anymore, and convergence is automatically reached. 
Figure 5.5 shows the bending stresses of the corresponding initial and optimum 
design. Due to the small vibration amplitudes the diameters of the mobile links 
could be further minimized to d1 = 35.5 mm, d2 23.0 mm, and d3 = 18.0, with 
a corresponding total mass of 2.42 kg (design III in Table 5.1). 

The fundamental difficulty with respect to the dynamics of the mechanism is 
that the vibration frequency varies if the diameters of the links are changed. Ac­
cording to beam theory, the frequency of vibration will decrease if the diameter of 
a beam becomes smaller. This effect is indeed observed for the bending stresses 
of the mobile links. Approximations, however, are built at fixed time points. For 
such a fixed time point, the true response values at the approximate optimum design 
are compared with the approximate responses to obtain the approximation·errors in 
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Figure 5.4: Optimization history of the stress constrained four-bar mechanism for a 
Young's modulus of 6.895 · 1011 Pa, using cross sectional areas and bending 
moments as intermediate design variables and responses . 
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(b) Optimum design (III). 

Figure 5.5: Bending stresses of the stress constrained four-bar mechanism at the driving 
node of link 1 (dotted), and the nodes halfway link 2 (dash dotted) and link 3 
(solid), for a Young's modulus of 6.895 · 1011 Pa. 
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Equations (3.15) and (3.17). For large steps in the design space, the approximation 
errors may rise, since the approximations do not predict the shift in time. If the 
errors become too large, a move limit reduction is applied according to the move 
limit strategy of Section 3.5.4. 

5.4 Effect of Intermediate Variables and Responses 

The benefit of the intermediate design variables and intermediate responses defined 
in Section 5.2 can be confused by the dynamic behavior. To illustrate this, some 
additional optimizations have been carried out without any intermediate variables 
or responses. The original problem formulation of Sohoni and Haug (1982) is 
used, with cross sectional areas as design variables. The bending stresses are lin­
early approximated with respect to the cross sectional areas. A sequence of linear 
programming problems follows. 

Again the two cases of normal and increased Young's modulus are studied. 
Firstly, mobile links with the original value of elasticity are considered. Optimum 
design II is obtained after nineteen cycles, of which four have been repeated with 
reduced search subregion. The optimization history is plotted in Figure 5.6. The 
corresponding case with intermediate design variables and responses required fif­
teen cycles, which is only slightly better (compare Figures 5.2 and 5.6). So, the 
effect of the intermediate design variables and intermediate responses seems to be 
marginal. The same problem was noticed in Etman et al. (1996b), who expected 
a significant improvement in comparison with sequential linear programming re­
ported in Etman et al. (1994), but did not find it. 

Next, the Young's modulus is increased towards 6.895 ·lOll Pa, which reduces 
the contribution of the dynamic behavior. Now the optimization converges towards 
the same optimum design that was calculated when using intermediate variables 
and responses. However, fourteen cycles are necessary instead of eight. Further­
more, the errors of Figure 5.7 are larger than the errors of Figure 5.4. These ob­
servations confirm that the intermediate design variables and intermediate response 
quantities do yield better approximations. 

5.5 Conclusion and Discussion 

Intermediate design variables and intermediate response quantities can improve the 
approximate optimization problem. For the stress constrained four-bar mechanism 
the selected cross sectional areas and bending moments enhance the optimization 
process, alike the analytical examples of Chapter 3. However, the improvement 
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Figure 5.6: Optimization history of the stress constrained four-bar mechanism for a 
Young's modulus of 6.895 · 1010 Pa, without intermediate variables and re­
sponses. 
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Figure 5.7: Optimization history of the stress constrained four-bar mechanism for a 
Young's modulus of 6.895 · 1011 Pa, without intermediate variables andre­
sponses. 
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clearly differs for the original and the increased Young's modulus. In the latter case, 
the vibrations are far less outstanding, and the approximation errors can be much 
more suppressed, yielding a fast convergence of the optimization. The mechanism 
with original Young's modulus shows much more difficulties. The vibrations have 
such an amplitude that a shift of the vibration frequency affects the quality of the 
approximations adversely. 

Possibly, new intermediate design variables and intermediate responses may be 
defined that include the change of dynamic behavior. A linear dependency between 
the lowest eigenfrequencies of a link and the corresponding diameter seems to be 
present. The mass effect of one link on the bending stresses of the other links is less 
trivial. It is worthwhile to investigate whether effective intermediate variables and 
responses can be identified, not just because of the mechanism itself, but mainly to 
gain insight in a broader perspective of multi body systems. 

Besides, the improved behavior for excluded dynamics suggests to divide the 
optimization of mechanisms with flexible bodies into two phases. During the first 
phase the optimization is carried out for rigid bodies. Next, the calculated optimum 
design can be used as a high quality initial design for an optimization with flexible 
bodies. The new optimum will probably be only slightly different. For the stress 
constrained four-bar mechanism design III of Table 5.1 lies fairly close to designs 
I and II. 



Chapter 6 

Optimum Crashworthiness 
Design of a Vehicle Restraint 

System* 

6.1 Introduction 

Safety measures like airbags and safety belts are nowadays commonly applied to 
improve the crashworthiness of road vehicles. Many governments stimulate or 
oblige by law car producers to include these devices in the vehicle design. Maxi­
mum values are imposed on parameters that quantitatively describe the severity of 
injuries. Examples are the Head Injury Criterion (HIC) and the chest 3 MilliSec­
onds criterion (chest 3MS). Physical crash tests of newly designed vehicles are used 
to determine the vehicle's crashworthiness. However, these physical tests are very 
cost expensive, and therefore car producers generally use crash simulation software 
in the design stage instead. 

Computer crash simulation enables numerical design optimization. However, 
only a few applications of design optimization to crashworthiness analysis have 
been published. Due to the impact situation usually large displacements and ex­
treme material deformations are present. Furthermore, contacts may occur in the 
deforming material and between occupant and vehicle interior (e.g. airbag or steer­
ing wheel). As a result, the behavior of injury parameters as a function of the design 
variables may be highly nonlinear or even discontinuous, especially for compli­
cated crash models. This hinders the numerical optimization. 

*This chapter has been partly reproduced from Etman eta/. ( 1996a). The research was carried out 
in close cooperation with TNO Road-Vehicles Research Institute, Delft (see also Section 3.6). 
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In literature two different optimization approaches can be identified for crash­
worthiness optimum design. The first approach is to model the vehicle and restraint 
system by means of a simplified mechanical model such that a smooth optimization 
problem is obtained. Dias and Pereira ( 1994) can be classified in this category. The 
second approach starts from a complex, usually finite element, crash model and 
an optimization strategy that can handle non-smooth functional behavior. Bennett 
and Park (1995), for example, used sequential linear programming with somewhat 
larger finite difference steps to calculate the sensitivities, as well as Vanderplaats' 
multi-point optimization method (Vanderplaats, 1979). 

In this chapter the multi-point approximate optimization tool of Section 3.6 is 
applied to the crash simulation package MADYMO (TNO, 1994). MADYMO is 
a combined multibody finite element program, which has been developed at TNO 
Crash-Safety Research Center in The Netherlands. Large-scale MADYMO simula­
tions indeed show a noisy functional behavior of the injury criteria. Moreover, these 
crash analyses are often computationally expensive. It is expected that a sequence 
of multi-point approximations can solve the noisy crash optimization problem in a 
computationally efficient way. 

Firstly, the crashworthiness optimization problem is described in more de­
tail, and some important injury criteria are introduced. Next, a short overview 
is given of other strategies that were previously used for design optimization using 
MADYMO. Within this context the multi-point approach is explained. Finally, the 
vehicle restraint system is presented that will be optimized using the multi-point 
approximate optimization tool. Optimizations are carried out for both two and six 
design variables. In both cases good convergence is found. 

6.2 Crashworthiness Optimization Problem 

Crashworthiness design is characterized by a variety of objective functions, con­
straints and design variables. Typical crashworthiness responses are occupant in­
jury criteria, as well as structural displacements and accelerations. For example, 
the objective may be to minimize a weighted composite injury criterion subject to 
constraints on individual injury criteria and structural constraints. An other option 
is to select the total mass or some production cost as objective function. Design 
variables are directly related to the specific restraint system. For an airbag one 
can think of variables defining the geometry, or variables related to the gas flow. 
Probably needless to say, but the choice for design variables, objective function 
and constraints should be carefully considered, since it has a large influence on the 
design optimization results. 
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A well-known and commonly applied injury parameter is the Head Injury Cri­
terion (HIC). It is a measure for the severity of the linear (i.e. no rotational) accel­
eration on the human head, and is quantitatively formulated as (see Hardy et al., 
1994, for a literature review of injury biomechanics): 

[ 
1 112 ]2.5 

HIC = max (tz- tJ) -- a(t)dt 
to:c:t~:~'S!2:'St1 tz- t1 11 

(6.1) 

Herein, to and t f are the start and final time of the numerical simulation, respec­
tively. The response a(t) is the linear head acceleration in g, measured at the head's 
center of gravity. A time interval [t1, tz] is searched for that will maximize the in­
tegral function of the acceleration. For the HIC, this time interval is restricted to a 
maximum of 36 milliseconds. 

Several other injury parameters are used as well. The 3 MilliSeconds criterion 
(3MS) is defined as the highest acceleration level with a duration of at least 3 mil­
liseconds. It can be applied to several parts of the human body, like the head and the 
chest. Examples of injury criteria that are not related to accelerations are the chest 
deflection criterion and the maximum femur compression load. MADYMO can 
automatically calculate the values of these injury criteria for any impact situation. 

For large-scale MADYMO crash simulations the behavior of the injury param­
eters as a function of the design variables may show a band of noise added to the 
global response. This is illustrated by a crash simulation example of a full-scale 
frontal impact. The interaction between occupant and airbag is investigated by 
considering a range of vent diameters of 30 to 70 millimeters. In Figure 6.1 the 
calculated HIC values have been plotted as a function of the vent diameter. Clearly, 
an optimum diameter is present. However, the noise is quite disturbing, and if it 
is present for one or more injury parameters, a sensitivity based optimization algo­
rithm will probably fail. Therefore, the optimization strategy to be selected should 
be able to handle this kind of non-smooth behaving design problems using as least 
numerical crash simulations as possible. 

6.3 Optimization using MADYMO 

Approximate optimization strategies are able to overcome the difficulties encoun­
tered in optimum crashworthiness design. Especially, multi-point approximations 
that do not use sensitivities are suitable to deal with both the computationally ex­
pensive numerical analysis and the non-smooth optimization problem. The basic 
principle is to generate approximations of objective function and constraints in a 
certain part of the design space, and to solve the optimum point for this approxi-
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Figure 6.1: Noise on global HIC response. 

mate optimization problem. The approximate optimization problem is smooth and 
explicitly known, and can be easily solved using a standard mathematical program­
ming algorithm. 

In Section 3.2 a classification of approximation concepts has been given. Two 
basic multi-point approximation concepts can be distinguished: global and mid­
range approximations. Using the global concept, approximation models of objec­
tive function and constraints are built that create an explicitly known approximate 
optimization problem in the complete design space or a large part of it. To gen­
erate global approximations, often response-surface techniques are used (Schoofs, 
1987). Response-surface model building starts with postulating the approximate 
model functions. Then, an experimental design is selected defining the set of the 
design points for which computer experiments are carried out. Finally, regression 
analysis is used to estimate the unknown parameters of the approximate models by 
fitting the numerical response data. 

Both Bosio and Lupker (1991) and Schoofs et al. (1992) constructed global 
response-surface models for MADYMO crashworthiness design problems. Bosio 
and Lupker ( 1991) used Taguchi 's method to build a global linear response-surface 
model including interaction terms, and studied the influence of several seat belt and 
airbag design variables on the HIC in a frontal crash situation. Schoofs et al. (1992) 
constructed linear and quadratic response-surface models from a set of MADYMO 
analyses. An objective function built from several neck injury parameters was for­
mulated to optimize a child seat. 

However, response-surface model building is a highly user-interactive and iter­
ative process. The selection of appropriate model functions is often rather difficult. 
Additionally, the number of analyses increases exponentially for a growing number 
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of design variables or more elaborate model functions. These disadvantages are not 
present for multi-point mid-range approximations. The region in which mid-range 
approximations are built is restricted. The model functions can remain simple, and, 
as a consequence, the number of analysis points in the experimental design will be 
much smaller. The final optimum solution has to be obtained from a sequence of 
design cycles of approximate model building and optimization. 

Instead of global response-surface modeling, the multi-point approximate op­
timization tool of Section 3.6 has been coupled with MADYMO for optimization 
purpose. Linear approximations of objective function and constraints are gener­
ated, yielding a multi-point sequential linear programming process. Move limit 
and convergence parameters have to be set according to the noise amplitude that 
is expected to be present. The impact-absorber example of Section 3.7.1 showed 
that an under estimation may lead to oscillations, and an over estimation to a pre­
mature convergence. Goualou et al. (1996) also developed an optimization tool 
for MADYMO. However, they did not use approximation concepts, but made a di­
rect coupling with the Neider and Mead simplex algorithm, that is rather robust for 
discontinuities since it does not use gradients. 

6.4 Restraint System for Frontal Impact 

The optimization tool is used to design a combined airbag and belt restraint sys­
tem for optimum crash safety. The driver side of a typical sedan is modeled for 
frontal collision at 50 km·h- 1 using the multibody and finite element capabilities 
of MADYMO (see Figure 6.2). Key elements are a collapsible steering column, a 
seat, a three-point belt system, an airbag, and a dummy. The dummy represents an 
average adult male occupant. Initially, the airbag is stowed away in the 14 by 10 
centimeter container on the steering wheel. At impact, the airbag is inflated and a 
retractor mechanism pretensions the belt. Airbag and belt should reduce head and 
chest accelerations and prevent contact with the steering wheel. 

Six design variables have been assigned. For the airbag restraint system the 
airbag diameter, the airbag hole diameter, and the inflator gas mass are considered. 
Increasing the airbag diameter means that a larger part of the body of the occupant is 
covered. Though, at the same time, the airbag will become much softer for constant 
inflator gas mass. The airbag hole diameter directly influences the damping. For 
a small hole hardly any damping is present: the airbag behaves more or less like a 
pure elastic ball. Design variables of the belt restraint system are the belt webbing, 
the belt load limiter and the pretensioner distance. The webbing determines the 
stiffness of the belt, whereas the load limiter confines the forces imposed upon the 
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Figure 6.2: MADYMO restraint system model for frontal impact. The situations before 
and 7 5 milliseconds after impact are plotted. 
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chest. 
The optimization problem is to find the design variable values that will min­

imize the head injury criterion subject to injury constraints on head, chest, and 
shoulder. For the head, the 3MS acceleration criterion should not exceed 50 g. Fur­
thermore, contact with the steering wheel should be avoided. This is represented by 
a constraint on the distance between head and hub of the steering wheel. The max­
imum chest 3MS acceleration and chest deflection are 35 g and 42.4 mm, respec­
tively. Finally, the shoulder belt load is constrained to a maximum of 7 kN. These 
constraint bounds are more restrictive than the demands made by most govern­
ments. The lower and upper bounds of the design variables are given in Table 6.1. 
Objective function and constraints are summarized in Table 6.2. 

bi Design variable bl 
t 

btl 
I 

bl Airbag diameter [m] 0.5 0.9 
b2 Airbag hole diameter [m] 0.03 0.07 
b3 Inflator gas mass [kg] 0.02 0.06 
b4 Belt webbing [% strain at 10 kN] 0.03 0.18 
b5 Pretensioner distance [m] 0.0 0.15 

Belt load limiter 2.0 8.0 

Table 6.1: Design variables and design space of the restraint system. 

gl Head-hub distance [m] >0 
g2 Head 3MS [g] ::;50 
g3 Chest 3MS [g] s 35 
g4 Belt load [kN] :::;7 
g5 Chest deflection [mm] :::;42.5 

Table 6.2: Objective function and constraints of the restraint system. 

6.5 Optimization Results 

To begin with, just two design variables are studied in the optimization: the airbag 
diameter b1 and the airbag hole diameter b2• All other variables are fixed at a 
constant value corresponding to the initial design given in Table 6.3. A grid of de­
sign points has been analyzed to visualize the optimization problem. Figure 6.3(a) 
shows the different constraints together with the feasible domain. The noisy func­
tional behavior is clearly present. Contours of the objective function are plotted in 
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Figure 6.3: Two dimensional restraint optimization problem. The feasible domain is white. 
Initial and calculated optimum design are marked with x and *• respectively. 

Figure 6.3(b ), together with the feasible domain. The optimum region is near the 
upper left part of the feasible area. This region is bounded by constraints g 1, g3 and 
gs. 

The optimization is started from b1 = 0.6 m and b2 = 0.04 m, with search 
direction d(I) = [1, 1], and extrapolation factor a 0.1. The initial search subre­
gion dimensions s~l) are set to 20% of the design space b£ bf, and the noise is 
estimated at about 5%. Starting from the infeasible initial design, the optimum is 
found at b1 0.684 m and b2 = 0.06 m after four cycles (13 MADYMO analyses). 
This optimum design corresponds quite well with Figure 6.3(b ). The final objective 
function value is 218. 

Next, all design variables are included. The initial design of Table 6.3 is used. 
Extrapolation factor and initial subregion size stay the same. The start search direc­
tion is again forward for all design variables. An optimum design is obtained after 
seven cycles. Note that both airbag diameter and airbag hole diameter converge to­
wards the optimum of the two-design-variables case. The objective function values 
of 206 is comparable as well. The design variables b3, b4 and b6 hardly change, 
which may indicate that their initial values are already near the optimum solution. 

To investigate this, the sequential approximate optimization is re-started at the 
optimum design of cycle 7. Both move limit values and start search direction are 
re-set at the initial values of the first run. Now, the inflator gas mass b3 starts to 
increase significantly, together with an additional increase of the airbag diameter 
and the airbag hole diameter. So the loss of stiffness and damping due to changes in 
b1 and b2 is compensated. During the second optimization run the objective func-
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Design Initial Optimum Optimum 
variable design first run second run 

b, 0.6 0.673 0.753 
b2 0.04 0.0604 0.0690 
b3 0.04 0.0381 0.0568 
b4 0.09 0.0753 0.0703 
bs 0.05 0.0847 0.0796 
b6 4.0 4.0 3.6 
F 533 206 111 

8 82, 83.85 81· 83.85 81 
violated active active 

Cycles 7 8 

Table 6.3: Initial and optimum design of the restraint system. 

tion is minimized towards a HIC of 111. Only constraint g1 is active. The design 
variables corresponding to the belt restraint system stay near their start positions in 
the design space. 

6.6 Conclusion and Discussion 

Design optimization using MADYMO is complicated by a band of noise present on 
the global response of objective function and constraints. An optimization method 
is necessary that does not use design sensitivities. Some references showed that 
good results were obtained by global response-surface model building. However, 
this approach is highly user-interactive and becomes impractical for increasing 
number of design variables. A more manageable approach follows with multi­
point mid-range approximations. The multi-point approximate optimization tool 
has successfully solved optimization problems that combine non-smooth functional 
behavior with a computationally expensive numerical analysis. 

For the restraint system a good convergence was found. The objective function 
value could be significantly reduced. Even more important, the calculated optimum 
design satisfies all imposed constraints, in contrary to the initial design that violates 
three constraints. The selected move limit and convergence parameters performed 
reasonably well, although the premature convergence of the optimization during 
the first run may indicate that the noise is actually less than expected. Probably this 
is not the case, but multiple local optima are present. For multi dimensions it is dif­
ficult to know which of both cases is true. Some experimentation and engineering 
experience is required to properly select the move limit parameters. 
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Furthermore, the restraint problem showed that the design variables cannot be 
treated independently. Loss of damping due to an increase of the airbag hole diam­
eter can be partly compensated by an increase of the inflator gas mass. For large 
number of design variables it is really difficult to survey the individual effects, not 
to mention the interaction effects. Fortunately, the optimization tool takes this work 
off the designer's hands, so that he can concentrate on the interpretation of the op­
timization results. 

The optimizations of the restraint system have been carried out using multi­
point sequential linear programming. In Chapter 3 it has been remarked that both 
single-point and multi-point approximations can be improved by inclusion of suit­
able intermediate design variables and responses. Lust ( 1992), for example, showed 
that for structural crash worthiness constraints, such as the vehicle crash severity in­
dex, intermediate design variables and responses can be defined that yield more 
robust constraint approximations. Probably many more can be found, reflecting the 
mathematical and physical background of the crashworthiness responses. 
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Design of a Stroke Dependent 
Damper for the Front Axle 

Suspension of a Truck* 

7.1 Introduction 

Comfort is becoming increasingly important in truck design. Truck designers tend 
to lower the stiffness of the axle suspensions for the benefit of comfort of both driver 
and cargo. Stiffness reduction, however, comes at the expense of increased suspen­
sion deflections. This is not favorable since an increase of the suspension working 
space means a decrease of the available payload volume. Therefore, several ad­
vanced suspension systems have been introduced during the last decade to improve 
the compromise between conflicting measures such as comfort and suspension de­
flection working space (see Elbeheiry et al., 1995, for a classified bibliography). 
Well-known examples are semi-active and active suspensions. A semi-active sus­
pension can rapidly adjust its settings (usually a damping characteristic), whereas 
an active suspension can both dissipate and supply energy by means of an actuator. 

Reduction of extreme suspension deflections may be also obtained by inclu­
sion of a stroke dependent damper in the axle suspensions. This is a very simple 
suspension system that may prove to be a cost-effective alternative for semi-active 
or active suspensions. For normal operating conditions only small suspension de­
flections will occur. However, when the truck comes across an incidental big road 

*The results presented in this chapter were obtained during the master's thesis work of Vermeulen 
(1996) at Eindhoven University of Technology. The research was carried out in close cooperation 
with DAF Trucks N.Y., Eindhoven. 
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anti-roll bar e 
axle 

Figure 7.1: Schematic representation of the front axle suspension of a truck. 

disturbance, like a pothole or a traffic hump, extra damping may be applied to com­
pensate for the negative effects of a low stiff suspension. 

Generally, the basic axle suspension consists of a spring, a damper, and an anti­
roll bar (see Figure 7.1). Various types of dampers are commercially available. 
Within certain constraints, the design engineer can freely select the damper char­
acteristic. A stroke dependent variant can, for example, be obtained by means of 
extra bypass channels and valves. To optimize the characteristics of such a new 
damper, vehicle model simulation and numerical optimization is used. The stroke 
dependent damping is modeled by adding an extra damper parallel to the original 
axle suspension, which will only contribute during large deflections. The optimiza­
tion problem is then to find the damping curve of the added nonlinear damper that 
will give the best performance. 

Some researchers already applied design optimization in the context of nonlin­
ear damper characteristics. Demit (1989) used a modified Nelder-Mead method to 
optimize the parameters of elasto-damping elements in a 4-DOF (degree of free­
dom) vehicle model subjected to micro-roughness of asphalt road. Spentzas ( 1993) 
applied Box's method on a 7-DOF model with deterministic road irregularities alike 
a traffic hump. The paper of Eberhard et al. ( 1996) comes near the design problem 
described in the previous paragraph. However, they did not consider a stroke de­
pendent damper, but optimized the damping curve of the original shock-absorber 
itself. The damping curve was parameterized by Hermite-splines, and an SQP al­
gorithm was used to solve the optimization problem when driving over a bump. 
Finally, Tamis (1994) did indeed study and optimize a stroke dependent damper for 
the rear axle suspension of a truck. Global response-surface models were built of 
the maximum suspension deflection and the maximum vertical chassis acceleration 
as a function of four parameters defining the nonlinear damping curve. 

In the current study, the design optimization tool described in Chapter 3 is used 
to obtain the optimum damping curve of the extra damping for the front axle sus­
pension of a truck. Objective is to reduce the large inward suspension deflections. 
A local approximation concept is chosen with design sensitivities calculated by fi-
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nite differences. At first, the truck is modeled by means of a two degree of freedom 
system, which is often called a quarter car modeL The multi body software package 
DADS (CADSi, 1995) is used to predict the dynamic displacements and accel­
erations. Three typical road undulations are studied, leading to an optimization 
problem with multiple loading cases. Afterwards, a full-scale three-dimensional 
DADS model is used in the optimization. This model has 34 degrees of freedom 
and is a quite realistic representation of a DAF FT95 tractor-semitrailer combina­
tion (Bekkers, 1995). 

7.2 Design Problem 

Dampers with a characteristic alike Figure 7 .2(a) are commonly used in vehicle axle 
suspensions. For the design problem considered here, the original nonlinear damper 
of the axle suspension is supposed to have exactly the relation between damper 
force F D and relative velocity v D as plotted in Figure 7 .2(b ). Although the rebound 
stage (outward relative velocity v D > 0) differs from the compression stage (inward 
relative velocity v D < 0), the fundamental damper force characteristics resemble. 
For low velocities the damping force shows a quadratic functional behavior caused 
by the turbulent oil flow through small orifices or between piston and cylinder. 
This part of the curve is called bleed. Then a spring controlled valve opens, and a 
transition towards a flatter part of the curve follows (blow-off). Finally, the curve 
may rise again quadratically at higher velocities (port) due to the turbulent flow 
resistance of the total valving. 

The generic shape of the damping curve can, to some extend, be adapted to 
meet the specifications of the designer. The steepness of the quadratic parts, the 
moment of transition and the slope of the linear part can be realized for a range of 
values. The damper producer just has to change the diameters of the orifices, or 
adapt the spring controlled valve with respect to preload and stiffness. This can be 
separately done for rebound and compression stage. 

The rebound and compression stage of the damping curve are parametrized 
using the following empirical relation: 

(7.1) 

For small velocities this curve approaches f:3o v'i, assumed that f:3 3 v'i does not yet 
contribute (f:3o > > f:33). Increasing v D yields the much flatter blow-off phase of the 
curve, provided that f:3o v'i is substantially larger than /:31 + /:32 v D· Finally, the mag­
nitude of f:33 determines when f:33 v'b comes into play. The solid line in Figure 7 .2(b) 
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Figure 7.2: Nonlinear damper characteristic. 

Parameter 

Bleed 
Blow-off preload 
Blow-off stiffness 
Port 

Compression ( v D < 0) 

{30 = -26.0 · 106 Ns2m-2 

{Jj -8.73 · 103 N 
f32 = 7.11 · 103 Nsm- 1 

= 0.0276 · 103 Ns2m-2 

Rebound ( v D > 0) 

{30 = 11.2 · 106 Ns2m-2 

fJ! 18.3 · 103 N 
fJ2 9.62 · 103 Nsm·' 

3.52 · 1oJ Ns2m-2 

Table 7.1: Estimated curve parameters of the original nonlinear damper. 

3 

represents the fit of (7 .1) onto the damping data, which has been calculated by non­
linear regression. The damping curve resembles the data remarkably well. The 
estimated parameters for rebound and compression stage are shown in Table 7 .1. 

Under normal driving conditions the suspension deflections remain small and 
the extra damping is not needed. To this end, the stroke dependent damping does 
not contribute until the inward suspension deflection (compression) comes above 
0.04 m, and linearly increases towards full damping force at 0.05 m. For compres­
sions larger than 0.05 m the additional stroke dependent damping force directly 
follows from the nonlinear damping curve. The objective is to find the most effec­
tive stroke dependent damping curve. 

The optimization problem is to minimize the maximum inward suspension de­
flection subject to constraints on the vertical acceleration of the chassis for three 
road undulations. The design variables correspond with the parameters of the 
damping curve: bleed bt = - {Jg, blow-off preload b2 = - {Jj, and blow-off stiffness 
b3 {3~ for compression, and bleed b4 = {30, blow-off preload b5 = f31, and blow­
off stiffness b6 = f32 for rebound. They are summarized in Table 7.2, together with 
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the un-sealed lower and upper bounds. Parameters f33 and f33 are not included as 
design variables, but kept fixed at the values of Table 7 .1. Preliminary calculations 
showed that their contribution is small in the operating range. 

Design variables Lower Upper 
bounds bounds 

bt = -13'0 [106 Ns2m-2] 0.3 22 
bz = -131 [103 N] 2 200 

b3 = 132 [103 Nsm-1] 0.7 70 

b4 = 13'0 [106 Ns2m-2] 0.3 22 
bs 13! [103 N] 2 200 
b6 = [103 Nsm-1] 0.7 70 

Table 7.2: Design variables with lower and upper bounds. 

The following incidental road undulations have been selected: a traffic hump, a 
wave and a railway crossing (see Figure 7 .3). The traffic hump is crossed at a speed 
of 15 km·h-1. It lasts 4.25 m and has a maximum height of 0.25 m for 2.25 m of 
the total width. The wave corresponds with a squared sinus of 25 m long and 0.5 m 
high. The corresponding driving speed is 80 km·h- 1. Finally, the third road profile 
is represented by data measured at a railway crossing somewhere near Eindhoven. 
It is crossed at a speed of 25 km·h-1• Both traffic hump and railway crossing are 
built from piece-wise linear interpolations, with a slight rounding of the comers 
using digital filtering techniques. 

7.3 Quarter Car Model 

7 .3.1 Problem Description 

A very simple model of the front side of the truck is the two-DOF system as de­
picted in Figure 7.4(a). The sprung mass (chassis) and unsprung mass (wheel axle) 
are denoted by me and ma, respectively. The corresponding vertical displacements 
are Yc and Ya· The tire is modeled by a linear spring with stiffness kt. In verti­
cal direction it is 'attached' to the road which means that tire lift off cannot occur. 
The axle suspension consists of a linear spring ks and a nonlinear damper Cs with a 
damping characteristic as plotted in Figure 7 .2(b). The mass and stiffness parame­
ter values are given in the table next to the quarter car modeL 

Numerical analysis ofthis two-DOF system using DADS (CADSi, 1995) yields 
the displacement and acceleration responses presented in Figure 7.5. The three 
road undulations give rise to quite different responses. Compared with the traffic 
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Figure 7.3: Road undulations. 

Yc 

Ya 
Parameter Value 
m, [kg] 5076 
rna [kg] 748 

Yr ks [kNm-1] 600 
kt [kNm-1] 2000 
Cs [Nsm-1] Figure 7 .2(b) 

(a) Model. (b) Parameter values. 

Figure 7.4: Quarter car model. 
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Figure 7.5: Displacement and acceleration responses of the quarter car model for the traffic 
hump (solid), wave (dashed), and railway crossing (dotted). 

hump and the wave, the railway crossing is rather innocent: the amplitudes of both 
deflection and acceleration are much smaller. The maximum negative suspension 
deflection is 0.11 m, and occurs for the traffic hump after 1.25 s. The maximum 
acceleration is near 15 ms-2, reached for both the traffic hump and the wave at 
different moments in time. 

The stroke dependent damper is placed parallel to spring ks and damper c5 

of the original axle suspension. Now, the optimization problem is to determine 
the parameters b describing the curve of the extra damper that will minimize the 
maximum inward (i.e negative) suspension deflection : 

F(b) max {Yc (b, t) Ya (b, t)} 
tE[0.3] 

subject to a maximum chassis acceleration a';: of 20 ms-2: 

gl (b, t) (b, t)l < 1 
m -ac 

'</ t E [0, 3), 

a maximum outward (i.e. positive) suspension deflection d~ of 0.14 m: 

(b t) = Yc(b, t) Ya(b, t) < l v [O 3) 
g2 , dm _ v t E , , 

so 

and a maximum tire deflection d'; of 0.09 m: 

g3(b, t) = d'; (t)i _:::: 1 '</ t E [0, 3). 

The corresponding side-constraints have been given in Table 7 .2. 

(7.2) 

(7.3) 

(7.4) 

(7.5) 
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7.3.2 Optimization Results 

The optimum design problem is solved using the sequential approximate optimiza­
tion tool of Chapter 3. To begin with, the max-value operator is removed from 
the objective function by an artificial design variable, alike Section 2.3. Further­
more, every time dependent constraint is replaced by 601 time point constraints, 
equally distributed on the time interval of 0 to 3 s. Time point accelerations and 
displacements are linearly approximated with respect to the design variables. No 
intermediate design variables or intermediate response quantities are introduced, 
resulting in a series of linear programming problems. The required gradients of 
the displacements and accelerations are obtained by finite differencing, with a rela­
tive step size f3 of w-3 in Equation (4.10). The integration accuracy of the DADS 
analysis is set to 1 o-7 . The convergence parameter values for the optimization are 
obj ace = 0.1% and vioacc = 0.1% (see Section 3.5.4 and Appendix A). 

Within eleven cycles the approximate optimization process converges, using 
initial move limit factors of 30% for all design variables. The optimization his­
tory is visualized in Figure 7 .6. Clearly, the traffic hump is decisive. The initial 
and optimum design variable values are given in Table 7 .3. For compression, the 
bleed b1 moves towards a small value, while the preload b2 increases to its upper 
bound value. The stiffness of the compression blow-off b3 remains relatively small. 
The design variables of the rebound stage behave different, except for the rebound 
blow-off b6 which stays at the lower bound value. The rebound bleed b4 is set 
at the upper bound level, whereas the preload b5 hardly changes. In Figure 7.7, 
the suspension deflection and chassis acceleration corresponding to the optimum 
design are plotted. They can be compared with the responses of the initial design 
(see Figure 7 .5). The maximum negative suspension deflection has been minimized 
from 0.102 m to 0.0795 m with the maximum acceleration bounded to 20 ms-2. 

The constraint on the tire deflection has never become active. 

Design variable Initial Optimum 
design design 

bJ [106 Ns2m-2] 10.0 0.563 
bz [I<P N] 20.0 200 
b3 [103 Nsm- 1] 0.700 1.35 
b4 [106 Ns2m-2] 10.0 22.0 
bs [103 N] 20.0 28.6 

0.700 0.700 

Table 7.3: Initial and optimum design of the quarter car model with stroke dependent 
damping for a maximum acceleration of 20 ms-2. 
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Figure 7.6: Optimization history of the quarter car model with stroke dependent damping 
for a maximum acceleration of 20 ms-2• 
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Figure 7.8: Optimum designs of the quarter car model with stroke dependent damping for 
several acceleration bounds. The plus sign marks the original axle suspension 
without extra damping. 

It is quite difficult to preselect the maximum acceleration bound beforehand. 
To judge the suspension capability, the design engineer would probably prefer a 
compromise plot of the maximum attainable suspension deflection versus the max­
imum chassis acceleration. Optimizations have been carried out for a range of 
acceleration bounds varying from 15.5 ms-2 to 25 ms-2 . A design with a maxi­
mum acceleration lower than 15 ms-2 was not found. Accelerations did not exceed 
25 ms-2 , whatever the curve of the stroke dependent damping. Furthermore, opti­
mizations have been restarted from some different initial designs. The calculated 
optima are plotted in Figure 7.8(a). The solid line connects the designs with the 
smallest negative suspension deflection. Designs below this line can probably not 
be realized. Though, one hundred percent guarantee cannot be given since the 
global optima may not yet have been found. 

Figure 7 .8(a) shows that the additional stroke dependent damping can hardly re­
duce the maximum suspension deflection if the maximum acceleration is limited to 
the level of the original axle suspension. The original design without extra damper 
is marked with a plus sign and nearly lies on the compromise line. The stroke de­
pendent damper can reduce the maximum negative suspension deflection, but only 
at the expense of increased maximum accelerations for the incidental road undu­
lations. Remark that the comfort for (stochastic) road conditions with suspension 
deflections above -0.04 m is not affected. 

Some trends in the optimum design variable values are present (see Figure 7 .8). 
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Figure 7.9: Impression of the full-scale DADS model of a DAF FT95 tractor-semitrailer 
combination. 

All optimum damping curves tend towards a rather fiat blow-off for the rebound 
stage, and, to a less extent, for the compression stage as well (small b6 and b3). 

Furthermore, the bleed on the rebound side (b4 ) is usually near its upper bound 
value. The other optimum design variable values show a much larger variation. 
The bleed (hi) and preload (b2) of the compression stage tend to increase for higher 
maximum allowed acceleration. This corresponds with what one would expect to 
happen. They also seem slightly correlated: lowering b1 can partly compensate the 
effect of enlarging b2, and vice versa. The same sort of correlation can be observed 
for b4 and hs. This confirms the existence of multiple local optima. Finally, the 
design variable values of the compression stage (hi. b2 , and b3 ) are much more 
determined by the maximum allowed acceleration than the design variables of the 
rebound stage. 

7.4 Full-Scale Model 

7.4.1 Problem Description 

The quarter car model presented in the previous section is the most simple model 
incorporating the compromise between suspension working space and comfort. It 
requires only few computer time, and numerical optimization can be carried out 
without great difficulty. However, due to its simplicity, the quarter car model is 
not highly accurate. A great deal of the dynamic behavior of the truck is not in­
cluded. More complex models show a better correspondence with the actual be­
havior. Bekkers ( 1995), for example, developed a full-scale (3-D) DADS model of 
a OAF FT95 tractor-semitrailer combination (see Figure 7.9). 

The 3-D DADS multibody model is a quite close reproduction of the truck 
tractor and semitrailer. The main model components of the tractor are chassis, 
front and rear axles, axle suspensions, tires, engine, steering system, cabin, and 
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cabin suspension. Even the fuel tank has been included. The semitrailer consists of 
a frame, three axles, and axle suspensions. Each component is modeled by one or 
more rigid bodies and couplings. Parameter values of nonlinear damper and spring 
characteristics are based on experimentally determined behavior. The complete 
model has 34 degrees of freedom, and is used in the optimization like the quarter 
car model in the previous section. 

The full-scale model has been slightly adapted for optimization purpose. The 
main adjustment is the removal of bump stops. The bump stops represent rubber 
stops that restrict the suspension deflection working space. Contact with a bump is 
more or less an impact situation, leading to a series of peak accelerations added to 
the global response. These peak accelerations are of no interest for the design of 
the stroke dependent damper. The damper should reduce the suspension deflections 
to avoid the bump contacts. Besides, peak accelerations raise serious difficulties 
for the numerical optimization, and give rise to high computational cost of the 
numerical analysis. 

Two road surfaces are considered: the traffic hump and the wave. Calculations 
for the quarter car model showed that the railway crossing does not significantly 
contribute. The truck follows a straight line such that both left and right wheels 
meet the road undulation at exactly the same time. So, left and right side of the 
truck behave identically, apart from small differences due to asymmetrical mass 
distribution (left and right are defined from the driver's point of view). 

The suspension deflection and vertical chassis acceleration at the front left side 
of the truck are shown in Figure 7.10 for traffic hump and wave. During the first 
five seconds the truck drives on a flat road. At t = 5 s the front wheels meet the road 
undulation. The wave causes a maximum negative suspension deflection of about 
0.12 m and a maximum acceleration of 20 ms-2• The global behavior of rela­
tive displacements and accelerations shows a good resemblance with the responses 
calculated for the quarter car model (cf. Figure 7.5). The timing of maxima and 
minima corresponds reasonably well. However, the amplitudes show larger dis­
crepancies. Differences of a factor two are present for some of the extrema. Such 
large differences are possible since the quarter car model does not include all vehi­
cle dynamics. 

The front axle suspensions on both sides of the truck model are extended with 
an extra nonlinear damping that has to supply the stroke dependent damping for 
negative suspension deflections below -0.04 m. The optimization problem is ex­
actly the same as mentioned in Section 7.3, except for the constraints on the max­
imum tire deflection which are removed. So, only the suspension deflection and 
vertical chassis acceleration at the front left side of the truck are included in the 
optimization problem. 
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Figure 7.10: Displacement and acceleration responses of the full-scale model for the traffic 
hump (solid), and wave (dashed). 

Figure 7.1 O(b) shows higher frequencies in the calculated accelerations com­
pared with the quarter car model. Therefore, the density of the time point distri­
bution is increased to 801 points on a smaller interval of 5 to 7 s. The integration 
accuracy is reduced to w-4

, together with the finite difference step fJ = w-2, and 
the convergence parameters obj ace = 1% and vioacc = 1%. This is much 
cheaper in computational cost compared with an accuracy of w-7 . Even then, a 
numerical analysis of the full-scale model is still two hundred times more expensive 

· than a quarter car analysis. Therefore, the number of design variables is reduced 
as well. Design variables b3 , b4 and b6 are kept fixed at 0.7 · 103 Nsm-1, 22 · 106 

Ns2m-2 and 0.7 · 103 Nsm- 1, respectively. Optimizations in the previous section 
have shown that these design variables tend to go to their upper or lower bounds. 

7.4.2 Optimization Results 

For a maximum allowed chassis acceleration of 20 ms-2 the optimization history 
is shown in Figure 7 .11. The initial design equals the optimum parameter values as 
found for the quarter car model in Table 7.3. Convergence occurred after fourteen 
cycles. The bleed during compression b1 increases about a factor ten to 5.8 · 106 

Ns2m-2. Preload hz is halved towards: 10 · lif N. The rebound stiffness b5 hardly 
changes, 33 · 103 N instead of 29 · 103 N. So, the first two design variables show a 
significantly different value compared with the optimum design of the quarter car 
modeL Furthermore, the wave is decisive instead of the traffic hump. 

The suspension deflection and vertical chassis acceleration of the calculated 
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Figure 7.11: Optimization history of the full-scale model with stroke dependent damping 
for a maximum acceleration of 20 ms-2 . 
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Figure 7.12: Displacement and acceleration responses of the full-scale model with op­
timized stroke dependent damping for the traffic hump (solid), and wave 
(dashed). 
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Figure 7.13: Optimum designs of the full-scale model with stroke dependent damping for 
several acceleration bounds. The plus sign marks the original axle suspension 
without extra damping. 

optimum design are plotted in Figure 7.12. It is clearly visible that the negative 
suspension deflections below -0.04 m have been suppressed. For the traffic hump, 
this comes at the expense of an increase of the maximum acceleration. It is striking 
that this seems to be mainly caused by a more pronounced presence of the high 
frequent vibrations on the acceleration response. The global response stays at about 
the same magnitude. The same effect can be observed for the wave, but to a far less 
extent. Here the maximum acceleration is hardly affected by the amplification of 
the vibration. 

Some additional optimizations have been carried out for other acceleration 
bounds than 20 ms-2• Optimum designs with accelerations lower than 17.5 ms-2, 

and higher than 21 ms-2 have not been found. Figure 7.13(a) shows the compro­
mise plot, based on optimizations with acceleration bounds 17.5, 19, 20, and 22.5 
ms-2. The optimization runs for the former two bounds did not converge. The de­
sired accuracy could not be reached, which is probably caused by the combination 
of inaccurate sensitivities and high frequencies in the acceleration responses. For 
each of these two bounds, the plotted optimum design corresponds with the design 
nearest to the constraint bound. 

The compromise plot now clearly lies below the original full-scale model de­
sign without stroke dependent damping (plus sign). So, in contrary to the quarter 
car model, the maximum negative suspension deflection can be reduced without 



112 Chapter 7 

increasing the maximum acceleration. However, it should be noted that this is 
mainly caused by the fact that the maximum acceleration due to the wave is hardly 
affected by the damping curve. Similar to the quarter car problem, the optimum 
design variable values of b1, b and hs are influenced by the acceleration bound. 
Figure 7.13(b) shows that the compression bleed b1 increases if a higher maximum 
acceleration i~ allowed. The preload b2 tends to increase as well. Parameter b5 

shows a completely different behavior compared with the quarter car model (com­
pare Figure 7 .13(b) and Figure 7 .8(b)). The rebound preload decreases instead of 
increases as a function of the maximum acceleration. 

7.5 Conclusion and Discussion 

Inclusion of stroke dependent damping in the front axle suspension of a truck can 
reduce large (inward) deflections appearing at incidental road disturbances. In this 
way the increase of suspension deflections due to stiffness reduction can be com­
pensated. At the same time, it may lead to increased chassis accelerations the mo­
ment the extra damping comes into play. This possible loss of comfort is preferable 
above contact with bump stops that restrict the suspension working space. The most 
important impediment, however, is the required stroke dependent damping force. 
In the current study, the damper force may rise to 200 [kN], which is about two and 
a half times as high as the damper force of the original absorber. The question is 
whether this is an cost-effective solution. Possibly, the optimization problem defi­
nition should be reconsidered, e.g. by decreasing the design space or by including 
the damper force as objective function or constraint. 

No single optimum damping curve has been found that generally yields the best 
stroke dependent damping. The shape of the curve depends upon the maximum 
allowed acceleration. Still, the optimization results point towards the following de­
sign rules for the stroke dependent damping. First of all, the blow-off stiffness can 
remain small. Furthermore, the bleed and blow-off preload are the most important 
variables influencing the compromise between suspension deflection and chassis 
acceleration. To reduce inward suspension deflections, the compression side of the 
damping curve is of main interest. Choose the compression bleed and preload as 
high as possible until the selected acceleration bound is reached. Most attention 
should be paid to the preload since this parameter defines the magnitude of the 
damping force that can be generated. One may be tempted to apply the high bleed 
and preload levels to the rebound side as well. However, high rebound damping can 
cause the axle suspension to show a bad recovery and to stay at large negative de­
flections. This means that bump contacts may occur for a second road disturbance 
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or steer maneuver shortly after the first one. 
The design optimization was first applied to the quarter car model before the 

full-scale model was considered. The basic idea is that a rather simple model gives 
the opportunity to do several optimizations runs and to get a feeling for the design 
problem. If necessary, the optimization problem can be reformulated or the me­
chanical model can be adapted. Hopefully, trends become visible, and the designer 
starts to form an idea of what is actually searched for. The latter is often far from a 
foregone conclusion. Then the step can be made towards a more complex analysis 
model. Starting point is that the basic response behavior corresponds for both mod­
els. The design engineer should now be able to do the optimization of the complex 
model in a structured way without too much experimentation. 

For a well phased optimization the step from quarter car model to full-scale 
model has been pretty large. A reasonable resemblance of the global response be­
havior is present. Though, the discrepancies cause the compromise lines to deviate. 
Large differences are especially present for the chassis acceleration. A more de­
tailed confrontation of quarter car and full-scale model is desired to find out the pre­
cise cause of the deviation, and to determine which parts of the tractor-semitrailer 
behavior can en which parts cannot be neglected for the design optimization. Pos­
sibly, the quarter car model should be replaced by, for example, a six-DOF vehicle 
model. If the model can be kept simple the number of road excitation inputs in the 
optimization problem can be increased without difficulty. 

Anyway, the design optimization tool has proven its value. For the quarter car 
model reasonable to good convergence was found. The moment the extra damping 
comes in, a sharp acceleration peak may be present, especially for the traffic hump. 
This suggests to let the integration procedure define which time points are included 
in the optimization, instead of an equal distribution on the time interval. However, 
since an external multibody software package was used, equally distributed time 
points were the only option that could be realized. Difficulties observed for the 
full-scale model are mainly due to inaccurate finite difference sensitivities. This 
underlines the necessity of an integrated multibody analysis and design sensitivity 
analysis. If, from a practical point of view, sensitivities can only be obtained by 
finite differences with a poor accuracy, a multi-point approach may be considered 
instead. 



8.1 Problem Description 

Chapter 8 

Conclusions and 
Recommendations 

Well-established software is available for multibody system analysis as well as for 
numerical optimization. The ultimate goal is to integrate multibody analysis and 
optimization into one general purpose design tool. This requires the analysis and 
optimization modules to work for a variety of multibody design problems, ranging 
from mechanism kinematics to vehicle system dynamics. The resulting optimiza­
tion problems may combine nonlinear, time dependent or non-smooth objective 
function and constraints with a computationally expensive numerical multibody 
analysis. 

The design engineer plays an important role in the optimization process. He 
is responsible for the mathematical formulation of the optimization problem. This 
should be carefully considered since it largely determines whether a satisfactory 
optimum design is found. A serious difficulty is that the designer often does not 
precisely know how to mathematically formulate the multibody design problem 
beforehand. It is very likely that during the optimization he wants to remove or 
change objective function, constraints and design variables. Therefore, graphical 
means have to be available, not only for modeling, but for optimization purpose as 
well. Haug et al. ( 1986) and Erdman ( 1995) stress the importance of an interactive 
computer aided design tool for a successful design optimization. 

Both the computational complexity as well as the demand for user-interaction 
hinders the success of a direct coupling between multi body analysis and optimiza­
tion algorithm. The same sort of problems occurs for finite element structural anal-
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ysis. In this field of application, the incorporation of approximation techniques in 
the optimization has proven to be an effective approach. However, within the con­
text of multi body systems these techniques are hardly used. The objective of this 
thesis is to investigate whether approximation concepts are valuable for the design 
optimization of multibody systems. 

8.2 How Approximation Concepts can help 

Approximation concepts quite naturally provide an interface in between numerical 
multibody analysis and optimization. Within a certain search subregion, an approx­
imate optimization problem is built based on multibody calculations for a single or 
multiple design points. The approximate optimization problem can be solved by 
the optimizer without any call to the analysis routines, which is computationally 
advantageous. Usually a sequence of approximate optimization cycles follows to 
arrive at the final optimum design. For each new cycle the optimization problem 
can be reformulated. Furthermore, the approximations can be improved, for ex­
ample by introduction of intermediate design variables and intermediate response 
variables that represent explicit or physical nonlinear behavior. 

The multibody responses calculated from the equations of motion are often 
time dependent. They can be included in the approximate optimization problem by 
means of time discretization. As a result, a large number of time point constraints 
may arise, which is disadvantageous for the optimization cost. Therefore, several 
researchers remove time by equivalent integral constraint formulations, despite po­
tential numerical difficulties. However, constraint deletion can greatly reduce the 
number of time point constraints in the approximate optimization problem. Only 
the most important constraints that are near or violate their constraint bound need 
to be retained. In this way, it is usually possible to obtain an approximate optimiza­
tion problem of manageable proportions, even for complex multibody systems with 
many time points and responses. 

Two classes of approximation concepts have been identified that are especially 
suitable for the design optimization of multibody systems. Multibody optimum 
design problems may have ten or more design variables and a large number of 
constraints. Local and mid-range approximation concepts can handle this type of 
problems. For smooth objective function and constraints single-point local approx­
imations are most suited. Numerical methods are available to efficiently and accu­
rately compute the required design sensitivities with respect to the design variables. 
Whenever noisy functional behavior occurs, a multi-point mid-range concept that 
does not use gradient information is appropriate. In that case for each cycle a small 
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experimental design of multibody analyses is carried out to build the approxima­
tions. Both the local and mid-range concepts allow a constraint deletion and the 
introduction of intermediate design variables and intermediate response quantities. 

8.3 Approximate Optimization Tool 

Multibody design optimization software has been developed based on the local 
and multi-point mid-range concepts. The software uses time discretization and 
constraint deletion to generate the approximate optimization problems. Basically, 
it starts from linear approximations of objective function and constraints. However, 
intermediate design variables and intermediate responses can be defined to improve 
the single-point linear approximations. The multi-point approximations can benefit 
from intermediate variables and responses as well, but this option has not yet been 
implemented. Finally, a move limit strategy is present to adapt the size of the search 
subregion during the sequential approximate optimization process according to the 
approximation errors and the convergence behavior. 

Several multibody optimum design problems have been successfully solved by 
means of the developed optimization tools. Two analytical examples were studied 
first: a single degree of freedom impact-absorber and a slider-crank mechanism. 
They illustrated the beneficial effect of intermediate response quantities, and the 
ability of the multi-point approach to solve non-smooth functional behavior pro­
vided that a reasonable estimation of the magnitude of the noise is given. Fur­
thermore, the impact-absorber example showed that oscillations may occur in the 
convergence stage of the optimization if the constraint deletion only retains a sin­
gle time point constraint for each local maximum. Multiple time point resolved 
this problem, which comes, however, at the expense of an increased number of 
time point constraints in the approximate optimization problem. An approxima­
tion concept with adjustable conservativeness may be able to include only one time 
point constraint for each maximum, and still avoid oscillations. 

Three larger design applications were studied. To this end, the optimization 
software was coupled with the commercial multi body analysis packages MECANO 
(Samtech, 1994), MADYMO (TNO, 1994) and DADS (CADSi, 1995). The first 
application concerned the stress constrained design of a four-bar mechanism us­
ing local approximations. It proved that the selected intermediate design variables 
and responses yielded better function approximations, but that vibrations affected 
the quality of the approximations adversely. In the second application, multi-point 
approximations were used to optimize a vehicle restraint system. The safety cri­
teria appeared to have a non-smooth behavior as function of the design variables. 
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Finally, a stroke dependent damper for the front axle suspension of a truck was 
optimized. Various optimization runs were carried out for a two degree of freedom 
and a full-scale truck model using single-point linear approximations. This appli­
cation clearly showed that the final optimum design heavily relies on the choices 
made by the designer. 

8.4 Intermediate Variables and Responses 

High quality objective function and constraint approximations yield a fast and ro­
bust optimization process. The search subregions can be large and there is no need 
for (repeated) move limit reduction. In the optimization tool the basic approxi­
mation is linear. Therefore, it is important to search for intermediate design vari­
ables and intermediate response quantities that yield the best linear approximations. 
Often explicit or easily computable relations are present between intermediate re­
sponses and objective function and constraints on the one hand, and between design 
variables and intermediate design variables on the other. As a result, any nonlinear­
ity present in these relationships will be included in the approximate optimization 
problem and improve the approximations. 

For multibody systems several intermediate design variables and intermediate 
response quantities can be identified. Linkages design, for example, often aims 
at the realization of some desired path of motion. The corresponding objective 
function may have a nonlinear functional relation, such as the sum of squared dis­
tances between the desired and generated positions for the slider-crank mechanism 
example. Also many comfort criteria incorporate explicit nonlinear behavior, as 
illustrated by the impact-absorber. For both slider-crank mechanism and impact­
absorber a significant reduction of the number of multibody analyses during op­
timization was found compared to a direct coupling with an SQP-algorithm. The 
stress constrained four-bar mechanism showed that for beam elements it is con­
venient to use cross sectional areas and bending moments as intermediate design 
variables and intermediate responses. However, vibrations induced by the motion 
of the system spoiled their beneficial effect. Possibly, intermediate variables and 
responses may be found that predict the change of the vibration frequencies. 

8.5 Design Sensitivity Analysis 

Design sensitivities can be obtained in three different ways. Finite differencing is 
probably the most simple method, but it is computationally expensive and suffers 
from numerical inaccuracies. A better approach is to analytically differentiate the 
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governing equations of motion with respect to the design variables. Sensitivities 
can then be calculated by solving the sensitivity equations for each design variable. 
This is called the direct differentiation approach. In cases where sensitivities are 
required just for a few (time point) responses, it may be computationally more ef­
ficient to first rewrite the sensitivity equations by means of adjoint variables. This 
adjoint variable method requires the solution of sensitivity equations for each re­
sponse instead of each design variable. 

The governing equations of multibody systems are either algebraic, ordinary 
differential, or differential-algebraic equations. The same type of sensitivity equa­
tions follow using the direct or the adjoint method. However, the adjoint differen­
tial and differential-algebraic sensitivity equations have to be integrated backward 
in time, instead of forward. As a consequence, during forward integration of the 
equations of motion all responses required for the sensitivity calculations have to 
be stored, and interpolated during backward integration. Therefore, the adjoint 
method is much more difficult to implement compared with direct differentiation, 
and requires a lot of input and output operations as well as data storage. 

For differential and differential-algebraic equations, only the adjoint method 
can truly benefit from the constraint deletion. Adjoint sensitivity equations can be 
assembled for each time point response that is included in the approximate opti­
mization problem. Then it is important that the constraint deletion retains as few 
constraints as possible. Multiple time points at local response maxima will usually 
spoil the computational advantage of the adjoint method in comparison with the 
direct method. So the adjoint strategy really needs a constraint screening that in­
cludes only the most critical maximum time points, and an approximation concept 
that can overcome potential oscillations. 

Intermediate variables and responses also point towards direct differentiation 
as the most appropriate sensitivity method if approximate optimization with time 
discretization is applied. The direct method calculates the design sensitivities along 
with positions, velocities, accelerations and Lagrange multipliers of the equations 
of motion. Objective function and constraints are related to these multibody re­
sponses. So there is a clear distinction between, on the one hand, the multibody 
responses arising from the equations of motion, and, on the other hand, the ob­
jective function and constraints present in the optimization problem formulation. 
Any nonlinearity present in their mutual relations can be defined as an intermedi­
ate response quantity. On the contrary, the adjoint variable approach starts from 
a summation or integral function of multibody responses. This relation is used to 
avoid the explicit calculation of the sensitivities for all responses and time points. 
However, it may as well hinder the utilization of intermediate design variables and 
intermediate response quantities. 
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8.6 Further Recommendations 

Approximation concepts can be effectively applied for the design optimization of 
multibody systems. They will prove to be a valuable part in a general purpose 
multibody design tool. Other important elements are the multibody analysis and 
sensitivity analysis, the graphical user-interface, a database combined with for ex­
ample an expert system, and a control program to manage the complete design 
process. An important future step is to put all parts together and build a completely 
integrated and interactive design tool. This will put a different complexion on each 
of the individual elements. 

The objective to develop a general purpose multibody design tool raises sev­
eral new questions. For example, is symbolic computation the only practical way 
to assemble the sensitivity equations of motion, or can numerically oriented multi­
body packages be extended with a design sensitivity analysis as well without an 
immense burden of programming work? Can a design sensitivity analysis mod­
ule be developed that efficiently and accurately computes sensitivities for a broad 
range of multibody systems? Is the optimization module able to deal with the great 
variety of multibody optimum design problems, or is it necessary to distinguish 
branches of applications and develop separate optimization strategies? And, how 
should the graphical interface look alike for a fast and robust optimization? 

Other research topics can be identified as welL As an example, the basic but 
challenging problem to define constraints on lock-up and bifurcation is mentioned. 
The difficulty is that there are actually just two alternatives: a mechanism locks or 
doesn't, with no alternative in between. The moment of transition cannot be easily 
predicted by a simple mathematical function. Another interesting research area is 
topology optimization ofmultibody systems. This thesis primarily concentrated on 
dimensional optimization. The optimization problem becomes far more complex if 
the number as well as the placement of bodies and couplings may vary. 
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Move Limit Strategy 

The choice of the move limits has a great influence on the behavior of the sequential 
approximate optimization process. Especially if the approximations are less accu­
rate, the move limit strategy usually is of vital importance. Only approximation 
concepts like convex linearization (Fleury and Braibant, 1986) and the method of 
moving asymptotes (Svanberg, 1987, 1996) do not need move limits due to their 
conservative nature. In this appendix the move limit strategy is described that has 
been implemented in the developed optimization software. 

The move limit strategy determines new search subregions on the basis of max­
imum approximation errors, maximum constraint violations and convergence be­
havior of the design variables. It is executed after an approximate optimization 
cycle has been completed, including the analysis of the approximate optimum so­
lution. Then, it adjusts the move limit factors of Equations (3.22) and (3.27) for the 
next approximate optimization cycle. In the sequel, it is assumed that design cycle 
q has been finished, and that the corresponding approximation errors and constraint 
violations have been calculated. Objective function and design variable values of 
of the previous cycle are used as well. 

The move limit strategy is presented by a program text containing conditionally 
execute statements (syntax: if-elseif-else-endif) and repeat statements 
(for-endfor). In this text some abbreviations are used. The objective function 
approximation error, the maximum constraint approximation error, and the overall 
maximum approximation error are denoted by Ef, Eg, and E, respectively. The 
maximum constraint violation is written as V. They follow from Equations (3.15), 
(3.16) and (3.18). The objective function values of the cycle start design F(bbq)) 

and the approximate optimum solution F(b~q)) are represented by FO and Fopt, 

respectively. The percentage of change of the objective function value during the 
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current cycle is given by: 

(A.l) 

Furthermore, a boolean is used to identify whether or not a direction change of 
the objective function value has occurred compared with the previous approximate 
optimization cycle: 

Fdrchg 
{

true 

false 

if (F(b~q))- F(bbq))) (F(bbq))- F(b~q-1))) < 0, 

if (F(b~q))- F(b~q))) (F(b~q)) F(b~q-ll));::: 0. 

(A.2) 

The same type of booleans can be defined for the design variable changes: 

(A.3) 

A true value of bdrchg ( i) means that the corresponding design variable value 
has changed in opposite direction compared with the previous design cycle. This 
may indicate the start of oscillations. Using these abbreviations the move limit 
strategy is described below. 

First of all, the approximation errors and the maximum constraint violation are 
checked. The approximate optimum design of the current design cycle is not ac­
cepted if the maximum approximation error is too large, or too high an infeasibility 
occurs starting from a feasible or nearly feasible solution. The latter precondition 
is met by an approximate optimization problem without constraint relaxation (see 
Section 3.4). In the case of rejection, the current design cycle is repeated with re­
duced move limits (usually be tal = 0.5 has been selected). These statements are 
represented by the following program text: 

if {E > errmax) or ({V > viomax) and (not relax)) then 
accept : false 
for i : 1, n 

m(i) .- betal * m(i) 
endfor 

After the proposed optimum solution has been accepted, the convergence criteria 
are checked. The objective function value, the constraint violation, as well as the 
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objective function and constraint approximation errors should have the requested 
accuracy, as given by obj ace and vioacc, respectively. The corresponding pro­
gram text is: 

else 
accept := true 
if (Fchg < objacc) and (V < vioacc) and 

(Ef < objacc) and (Eg < vioacc) then 
convrg := true 

If no convergence has occurred, the move limit factors of the next approximate 
optimization cycle are determined, for each design variable separately. Starting 
point is to halve the move limits (beta3 = 0.5) of a design variable if it starts 
to oscillate together with an oscillating or highly accurate objective function value 
(beta2 = 4). If this is not the case, but the objective function increases, a less 
rigorous move limit reduction is applied (beta4 = 0.75). However, this may only 
happen if no constraint relaxation is present. 

else 
convrg := false 
for i := l,n 

if (bdrchg(i)) and 
( (Fdrchg) or (Fchg < beta2 * objacc)) and 
(not relax) then 
m(i) := beta3 * m(i) 

elseif (Fopt > FO) and (not relax) then 
m(i) := beta4 * m(i) 

In all other cases the optimization process is not assumed to be near the final op­
timum solution. The move limits are enlarged or decreased just to keep a steady 
course of the optimization. Whenever the maximum approximation error or the 
maximum constraint violation tends to become too large, move limits are reduced. 
On the other hand, very small values may indicate that a much faster optimization 
process can be obtained by increasing the move limits. Two cases are distinguished: 
1) the design variable of the approximate optimum solution of the current cycle has 
been bounded by the corresponding move limit, or 2) the move limit is not active 
at alL In the former case, move limits can be either increased (beta5 = 4/3) or 
decreased (beta4 = 3/4), while in the latter case only move limit reduction can 
occur, since an increase is expected to have no effect. 
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else 
if {mvlact{i)) and {not bndact{i)) then 

if {E < errsml) and {not E = 0) and 
({V < viosml) or {relax)) and 
{not bdrchg(i)) then 
m(i) := betaS * m(i) 

elseif {E > errlrg) or 
((V > violrg) and {not relax)) then 
m(i) beta4 * m(i) 

end 
else 

if (E > errlrg) or 
{{V > violrg) and (not relax)) then 
m{i) .- beta4 * m{i) 

endif 
endif 

endif 
endfor 

endif 
endif 

Booleans mvlact ( i) and bndact { i) are true when the move limits and the 
design variable bounds are active, respectively. Move limit enlargement is notal­
lowed if no approximations of objective function or constraint are included in the 
approximate optimization problem (represented by not E = 0). This may, for 
example, occur if none of the constraints is active or potentially active, because the 
cycle start design is far away from the constraint boundaries. 

Eight parameters have to be set before the start of the optimization: obj ace, 
vioacc, errsml, errlrg, errmax, viosml, violrg, and viomax. They 
are summarized on page xvii. The user has to select these parameters according 
to his experience and the accuracies of the responses that are obtained from the 
numerical analysis. Finally, it is remarked that this algorithm will not converge if 
no feasible solution is present at all: the condition maxg < viomax will never 
be satisfied. For convergence, one may replace the maximum constraint violation 
maxg by the maximum constraint violation change in the convergence criterion. 
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Samenvatting 

Veel werktuigkundige constructies kunnen gemodelleerd worden als een multibody­
systeem dat bestaat uit een eindig aantal starre of flexibele lichamen. Bekende 
voorbeelden zijn voertuigen, mechanismen en robots. In de loop der jaren zijn 
computerprogramma's ontwikkeld die automatisch de bijbehorende bewegingsver­
gelijkingen kunnen opstellen en oplossen, en tevens zorg dragen voor een goede 
grafische visualisatie van de rekenresultaten. Dit soort programmatuur maakt het 
mogelijk om reeds vroegtijdig in het ontwerpproces het werktuigkundig ontwerp te 
analyseren en te verbeteren. Onwerpparameters, zoals massa's en veerstijfheden, 
kunnen eenvoudig worden gewijzigd om op die manier de gestelde ontwerpdoelen 
te realiseren met betrekking tot het kinematisch en dynamisch gedrag. 

Numerieke optimaliseringsmethoden stellen de werktuigkundig ontwerper in 
staat om ontwerpverbeteringen op een systematische manier door te voeren. Bij 
meer dan twee ontwerpvariabelen verliest een ontwerper al gauw het overzicht, 
en wordt veelal ad hoc naar verbeteringen gezocht. Numerieke optimaliseringsal­
goritmen kunnen daarentegen goed optimaliseringsproblemen met een groter aan­
tal ontwerpvariabelen oplossen. Het is daarom wenselijk de programmatuur voor 
multibody-analyse zodanig uit te breiden dat ontwerpvariabelen, doelfunctie en be­
perkingen gedefinieerd kunnen worden, en dat een systematische oplossing van dit 
optimaliseringsprobleem mogelijk wordt. 

Tot dusver zijn optimaliseringsmethoden nog nauwelijks gei:mplementeerd in 
multibody-analyse-software. Een belangrijke reden hiervoor is dat een evaluatie 
van doelfunctie en beperkingen meestal om een nieuwe oplossing van de bewe­
gingsvergelijkingen vraagt. De koppeling tussen numerieke analyse en optimalise­
ring wordt met name bemoeilijkt door het niet-lineaire en tijdsafhankelijke gedrag 
van de multibody-vergelijkingen. Voor grotere industriele toepassingen gaat dit 
vaak gepaard met hoge rekenkosten, hetgeen het aantal analyses dat door het op­
timaliseringsalgoritme uitgevoerd kan worden aan banden legt. Daamaast wil een 
ontwerper ook niet graag geheel buiten het optimaliseringsproces gezet worden, 
hetgeen wei gebeurt als de multibody-analyse direct gekoppeld wordt aan het op-
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timaliseringsalgoritme. Voor een succesvolle optimalisering is interactie met de 
ontwerper van belang, zodat ervaring en rekenkracht op een effectieve manier ge­
combineerd kunnen worden. 

In dit proefschrift wordt voorgesteld om de koppeling tussen multi body-analyse 
en optimaliseringsalgoritme te realiseren door middel van benaderingsconcepten. 
Het benaderingsconcept dient dan als interface tussen numerieke analyse en op­
timalisering. Het principe is om benaderingsmodellen voor doelfunctie en beper­
kingen te genereren op basis van rekenresultaten in een of meerdere ontwerppun­
ten. Het benaderend optimaliseringsprobleem kan vervolgens worden opgelost 
door het optimaliseringsalgoritme zonder dat een beroep gedaan hoeft te worden 
op de multibody-analyse. Br is aldus een scheiding aangebracht tussen analyse 
en optimalisering, waarbij de ontwerper mede zijn invloed kan laten gelden via 
de benaderingsmodellen. Aangetoond wordt dat deze manier van werken, die oor­
spronkelijk ontwikkeld is voor statische constructies, ook voor multibody-systemen 
goede mogelijkheden biedt om de numerieke optimalisering zowel toegankelijk als 
rekentechnisch beheersbaar te maken. 

Het eerste deel van dit proefschrift beschrijft de optimaliseringsmethode. Uit­
gangspunt is de forrnulering van het optimaliseringsprobleem, met als karakteris­
tiek element voor multibody-systemen de tijdsafhankelijkheid. Vervolgens wordt 
aangegeven hoe benaderingsconcepten hier kunnen worden ingepast. Ben optima­
liseringsgereedschap is ontwikkeld dat een benaderend optimaliseringsprobleem 
opstelt en oplost in een deelgebiedje van de ontwerpruimte, en vervolgens het 
zoekgebied verschuift in de richting van het berekende optimum. Dit leidt in het 
algemeen tot een herhaald benaderend optimaliseringsproces. Hierbij wordt onder­
scheid gemaakt tussen eenpuntsconcepten die naast de multibody-analyse ook een 
gevoeligheidsanalyse nodig hebben, en meerpuntsconcepten die geen afgeleiden 
naar de ontwerpvariabelen gebruiken. Voor de eenpuntsconcepten spelen nauwkeu­
righeid en efficientie waarrnee de afgeleiden worden berekend een belangrijke rol. 
Daarom wordt met betrekking tot deze twee aspecten een overzicht gegeven van 
verschillende manieren waarop de gevoeligheidsanalyse voor multibody-systemen 
gei'mplementeerd kan worden. 

In het tweede deel wordt de praktische toepasbaarheid van de herhaald be­
naderende optimaliseringsmethode gei'llustreerd aan de hand van drie ontwerp­
problemen. Het meest eenvoudige probleem betreft een vierstangenmechanisme 
met ftexibele staven. Uit dit voorbeeld blijkt dat dynamica de kwaliteit van de 
benaderingen kan be'invloeden, en dat een geschikte keuze van de benaderings­
modelfuncties de convergentie van de optimalisering kan verbeteren. Ben ander 
voorbeeld is de optimalisering van een gecombineerd airbag-gordel veiligheidssys­
teem. Kenmerkend is dat de veiligheidscriteria zich niet glad gedragen als func-
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tie van de ontwerpvariabelen. Een meerpuntsconcept bewijst goed met deze ex­
tra ruis overweg te kunnen. Als derde applicatie wordt gezocht naar de optimale 
dempingskarakteristiek van een slagafhankelijke demper voor de voor-as van een 
truck. Verscheidene optimaliseringen zijn uitgevoerd gebruik makend van lineaire 
eenpuntsbenaderingen. Hier komt duidelijk naar voren dat ontwerp-optimalisering 
niet opgevat kan worden als een black-boxproces. De keuzes en sturing van de 
ontwerper zijn sterk bepalend voor het uiteindelijke resultaat. 

Benaderingsconcepten zijn een bruikbaar hulpmiddel voor de numerieke op­
timalisering van multibody-systemen. Ze vormen een goede interface tussen de 
multibody-analyse en het optimaliseringsalgoritme, die de ontwerper een ingang 
geeft op het optimaliseringsproces. Dit biedt perspectieven om tot een interactief 
ontwerpgereedschap voor multibody-systemen te komen, waarin analyse en opti­
malisering ge!ntegreerd aanwezig zijn. 
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Stellingen 
behorende bij het proefschrift 

Optimization of Multi body Systems 
using Approximation Concepts 

1. Haug et al. (1984) alsmede Bestle en Eberhard (1992) stellen ten onrechte dat 
de gevoeligheidsanalyse de ontbrekende schakel is tussen numerieke multibody­
analyse en optimalisering. 

• Bestle, D. and Eberhard, P. (1992). Analyzing and optimizing multibody 
systems. Mechanics of Structures and Machines, 20, 67-92. 

• Haug, E. J., Wehage, R. A., and Mani, N. K. (1984). Design sensitivity 
analysis of large-scale constrained dynamic mechanical systems. ASME 
Journal of Mechanisms, Transmissions, and Automation in Design, 106, 
156-162. 

• Dit proefschrift, hoofdstuk 8. 

2. Grootschalige computer-crash-modellen kunnen goed geoptimaliseerd worden 
met behulp van herhaalde meerpuntsbenaderingen van doelfunctie ep beperkin­
gen. 

• Dit proefschrift, hoofdstuk 6. 

3. Als de gevoeligheidsanalyse locaal een goede voorspellende waarde heeft, con­
vergeert herhaald benaderend optimaliseren op basis van een eenpuntsconcept 
met afgeleiden beter dan op basis van een meerpuntsconcept zonder afgeleiden. 

• Dit proefschrift, hoofdstuk 3. 

4. Het feit dat hulpvariabelen en hulpresponsvariabelen probleemspecifiek zijn, is 
juist voordelig, in plaats van nadelig zoals gesteld wordt door Barthelemy en 
Haftka (1993). 

• Barthelemy, J.-F. M. and Haftka, R. T. (1993). Approximation concepts 
for optimum structural design- a review. Structural Optimization, 5, 129-
144. 

• Dit proefschrift, hoofdstukken 3 en 5. 



5. Het effect van de formulering van bet optimaliseringsprobleem op bet optima­
liseringsproces en bet uiteindelijk verkregen optimum wordt vaak onvoldoende 
onderkend. 

6. Door te optimaliseren leer je een antwerp pas echt goed kennen. 

7. Onderzoek met betrekking tot evaluatie van bestaande methoden verdient meer 
aandacht. 

• Haftka, R. T. and Sobieski, J. (1992). Editorial: The case for helping 
consumers of research. Structural Optimization, 4, 63-64. 

8. Het maken van een goede instructie- of tentamenopdracht kost meer moeite dan 
bet oplossen ervan. 

9. Motivatie is de op een na belangrijkste factor die leren bei:nvloedt. 

• The most important single factor influencing learning is what the learner 
already knows {Ausubel). 

10. Wie altijd overal een mening over wil hebben, zal nooit tijd vinden zich echt 
een mening te vormen. 

Pascal Etman 
Eindhoven, 18 juni 1997 




