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1. Introduction

Quantum degeneracy is the generic name for a set of phenomenathat play arolein
a system of particles when their deBroglie wavelength is of the order of or larger than
the mean interparticle spacing:

AdB i n71/3. (1)

For a given density this regime is reached for low enough temperatures. Quantum de-
generacy can be found in a variety of systems. Perhaps the most familiar example can
be found in atoms. There the dynamics of electrons is strongly restricted by the Pauli
exclusion principle, which in turn makes matter stable against collapse. Another exam-
ple is nuclear matter where the picture of independent particle motion (the nuclear shell
model) owes its validity to the fact that changes of particle state in collisions are highly
suppressed due to the unavailability of already occupied statisahstates [1]. An
extreme form of (quantum degenerate) nuclear matter can be found in neutron stars [2].
The previous examples deal with fermions, where due to the quantum degeneracy
the particles effectively repel each other. This is in strong contrast with the case of
bosons. Instead of obeying an exclusion principle for particles to be in the same state,
bosons move preferably to states which are already occupied, which expresses itself in
the form of boson stimulation factors. Photons, massless bosons, can thus be emitted in
a stimulated way tdill a mode of a cavity in large humbers, giving rise to lasers and
masers [3]. Massive bosons can become Bose-Einstein condensed. In this way helium-4
undergoes a transition to a sufbeid state below tha point at 2.17 K. Superconductiv-
ity is another such phenomenon, caused by Bose-Einstein condensation of Cooper pairs
of electrons, behaving as charged bosons.

1.1 Bose-Einstein condensation (BEC) in dilute
ultracold atomic gases

From atheoretical point of view the massive boson systems have the disadvantage that
the bosons have complicated interactions in the liquid or solid state, making it very hard
to understand the BEC phenomenon on the basis of first principles. The observation of
BEC in dilute atomic gases of rubidium[4, 5], sodium [6], lithium [7], and hydrogen [8]
has opened up an exciting new field of research. To produce a condensate of akali
atoms, a temperature typically below 500 nK is reached at densities of around 10'3
atoms per cubic centimeter. For hydrogen 40 1K turned out to be sufficient at 10
atoms/cm?. These experiments have provided the first realizations of a Bose condensate
initsnearly ideal form, that does alow for treatments from first principles. Thisis not
to say that interactions are unimportant in these systems. A striking exampleis the spin
domain structure recently observed in a spinor condensate [9], an amazing and counter-
intuitive phenomenon for an extremely dilute system.

One of the reasons that a treatment of the new condensatedifgirprinciples
is possible is that, at sfifiently low density, two-body interaction processes in s
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a gas are dominant. Such processes are in addition greatly simplified due to the low
temperatures. The deBrogliewavel ength of the atomsismuch larger than the interaction
range, causing just the spherically symmetric s wave, with orbital angular momentum

I = 0, to contribute. For swave scattering near zero energy the radial wavefunction
u(r) tends to a sine form at long range:

w ~ sin(kr + 8) =~ sink(r — a), 2
whereéy is thel = 0 phase shift and

is the scattering length [10]. This is illustrated in Fig. 1, which shows the wavefunction
for the triplet scattering of twéLi and of two??Na ground state atoms. The wavefunc-
tion undergoes a large number of radial oscillations due to the strong short range part of
the potential. However, at long range the wavefunction tends to a constanttimes

which is just the low-energy limit of Eq. (2). The effect of the potential is simply to
shift the sine function over fixed distance:. For positivea it is the same as the shift

for a hard wall atr = « and the interaction is effectively repulsive. When the scattering
length is negative the atoms effectively attract each other. Itis illustrative to consider the
behavior ofe when one gradually increases the depth of the potential well. The number
of bound states contained in the well then increases. At the depth where a new bound
state is addedy goes from large negative values througbo and comes back again at
+o00. Subsequently it decreases again to large negative values until a new bound state
enters the potential well. The wave functions presented in Fig. 1 are actual examples
for triplet scattering with positive (2*Na) and negative ("Li).

1.2 Roleof interactionsin BEC

Both for the formation of a condensate and for its properties, the scattering lemgth

of crucial importance. In fact, in current setups the stimulated processes which cause
the atoms to go into the macroscopically occupied state, are elastic two-body collisions
with the low-energy cross section

o = 8na’. 4)

This implies that has to be large enough in absolute magnitude to lead to a formation
rate dominating the decay rates due to competing processes.

Next, most of the properties of a condensate depend stronglylorthe meartield
approximation the time-independent and time-dependent behavior of the condensate
wavefunctionp(x, ¢) is described by the Gross-Pitaevskii equation [11]:

2 2
it — ( 02 4y (x) + 20 “|¢|2) " 5)

" 2m m
with Vi, the trap potential. This is a nonlinear Schrédinger equation containing a
condensate self-energy term

darhla, 5
ol ®)

proportional toa. The self-energy plays an important role in determining many prop-
erties of a condensate, including its size, shape, and excitation spectrum [11]. In par-

U=
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Figure 1. Zero-energy scattering wavefunctions for tHa and 2*Na triplet interaction
and the interaction-less (V=0) situation (straight line). The scattering length can be
found by extrapolating the solution at large distances to the r-axis.

ticular, the sign of « is crucial. As pointed out above, for positive a the interactions

are effectively repulsive and tend to stabilize the BEC. For negative a the interactions

are effectively attractive, and BEC will not be stable unless stabilization is provided by

the trapping potential [12]. Energetically the most favorable solution then is to have all

atoms close together. In this situation three- and many-body collisions are certain to
produce molecules, with the gas being fully on its way towards the real ground state, a
solid. At zero scattering length the atoms effectively do not interact and the solution of
the Gross-Pitaevskii equation equals the single-atom ground state in the trap potential.
The self-energy is one of the 'coherent’ collisional effects, which are proportioral to
rather than to its square. Other effects of this type are the refraction of matter waves [13]
and atomic clock frequency shifts [14].

1.3 Spin statesand collisions
Although low-energy elastic two-body collisions are characterized by a single number

relevant for BEC, the collision physics itself is sometimes quite rich. Ground state alkali
atoms have a (valence) electron spand a nuclear spihand the atoms in a condensate
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—————— High field seeking and decaying (by exchange)
------- Low field seeking, but decaying

— No decay, but high field seeking

No decay and low field seeking
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Figure 2: Hypexfine diagram of an ®°Rb atom, which has a nuclear spini = 3. States
which are high field seeking are indicated by thin lines. States which are decaying in
collisions due to the exchange interaction are dotted. Only three states can thus be used
to produce a condensate in a magnetic trap, of which only the two f = i — 1 states
possibly have Feshbach resonances. In fact, the f = 2, m; = —2 dtate has three
resonances.
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can be in one of saveral hyperfine states. We use lower case symbols for single atom
spins s, i, f = s + i, and capital symbols for the corresponding two-atom spins. Fig. 2
shows the example of tf&Rb ground state hypgne diagram for a single atom.

The most common type of trap presently used for stablérement of a condensate
is a magnetic trap. For a hygere state to be kept in such a trap it has to be 'fosid
seeking’, since a static magnefield maximum cannot be realized in free space. This
leaves the = z’+§,mf > —fandthef = z’—%,mf < O states as possible candidates,
as shown in théigure where also théeld ranges in which they are lofield seeking
are indicated.

There is, however, another requirement on a hiyperstate to be appropriate for
trapping. This requirement relates to what may happen when two atoms collide. In
such a collision the exchange interaction, proportional to the difference between the
interatomic interactions in th& = 1 (triplet) and theS = 0 (singlet) spin states, can
induce transitions between different two-atom hyjmer spin states. In this way one
of the atoms or both can go to an untrapped hfgperstate. Whether this will occur
is determined by selection rules and by the availability of energetically accefiniile
states. Without externéleld the total spir¥F' is conserved, leading to the selection rules
AF = 0, Amp = 0. In the magnetidield of a magnetic trap only the component
F, along the local magnetifield survives as a rigorously conserved quantity with the
associated selection rulem = 0.

One state that can thus be used is the 'doubly spin-polarized’ statefwithi +
s=1+ % andm; = +f, where the two-atom system is in the simple quantum state
F =2i+1,mp = 2i+ 1. Since there is no other two-atom spin state with this value of
mp, the system is stable against decay via the exchange interaction. Since the electron
spins are parallel, the collision proceeds purely along the doubly polarized, pure triplet
potential. In Fig. 2 the doubly polarized single atom state fias m; = +3. The
possibility of decay via the exchange interaction virtually prohibits using taei + 1,
|my| < f states in a condensate (but not absolutely [15]).

A second single-atom state suitable for magnetic trapping of a condensate is the
state withf = ¢ — % andms = —f. In this case we have a two-atomy value
equal to—2: 4 1 and there are no other energetically accessible states with that value of
mp. Also the otherf =i — % states turn out to fdll this requirement. In Fig. 2 the
single-atom states relevant for BEC in a magnetic trap are indicated.

Optical traps have the advantage that the above requirement with respect to the low-
field seeking property does not play a role. As a consequence, both doubly polarized
statesf =i + 4, m; = £ and all state§’ =7 — 1 can then be used [16].

An attractive feature of the choicgé = ¢ — % is that it may be possible to realize
a situation where the scattering length can be magnetically tuned to arbitrary positive,
negative and zero values, in a single experiment. This is possible in case of a Feshbach
resonance at zero collision energy [17].

1.4 Feshbach resonances
Feshbach resonances [10] wérst introduced as a concept in the nuclear physics lit-

erature at the end of th#ties. It is of importance to distinguish this concept from that
of a shape resonance, also referred to as potential resonance. As the name suggest
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Figure 3: a) Field dependent threshold energy and two field dependent bound states for
a pair of 2Na atoms with mr = +2. The T' = 0 collision takes place at the | f; = 1,
ms = 1, fo = 1, mgo = 1) threshold, which consists of high field seekers; Thiswasno
problem since the experiment happened in an optical trap. Therising bound states have
the approximate spin structures | f1 = 2, my; = 1, fo = 2, mye = 1) and | f1 = 2,
mep = 2, fa = 2, myo = 0) respectively. b) Scattering length at threshold of atoms
collidingat | fi = 1, mg1 = 1, fo = 1, mye = 1) threshold. For the 907 G resonance
the atoms have a negative scattering length when the externally applied field iswithin a
rangeof 1 G
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latter occur in potential scattering, i.e. only the external, spatial, dynamics of the scat-
tering partners in their interaction potential is involved. In practice they arise for partial
waves! > 0 when a quasibound state occurs inside the centrifugal barrier.

For Feshbach resonances the interplay between the external and internal dynamics
of the scattering partners is essential, i.e. they occur in multichannel scattering. In this
case the quasibound state has an internal structure orthogonal to that of the combined
scattering partners in the initial state. Such quasibound states can arise &lso (or
We will not go into their detailed mathematical description [10], flyisummarized by
Moerdijk et al. [18]. Rather, we will describe the basic aspects.

One starts by splitting the Hilbert space of the total system describing both the exter-
nal and internal dynamics into two orthogonal subspaces. One subspace, denBted by
contains all possible states in which the internal dynamics corresponds to the scattering
channels that are open at the total enetggonsidered. The orthogonal complemént
is associated with all closed channels. Whereas for a shape resonance the quasibound
state turns into a rigorously bound state in the approximation where the centrifugal po-
tential is changed into an impenetrable barrier, the Feshbach quasibound state becomes
a bound eigenstate in the isolat@dspace in the approximation where the coupling to
the P space is left out. In both cases, relaxing the approximation results in the discrete
bound state acquiringfiite width. This width occurs via the well-known Breit-Wigner
denominator in the diagonal and non-diagonal scattering amplitudespace for the
various channels open at enerfjy

As an example, the situation of a Feshbach resonance occurring in the scattering of
two ground state Na atoms is illustrated in Fig. 3. Tasire shows théeld-dependent
threshold energy where the = 0 collision takes place for twg,m; = 1,41 atoms,
and thefield-dependent energies of two bound states with= +2, which according
to theoretical calculations turn out to have the approximate spin strudtfires 2,
myg1 = 1, f2 =2, My = 1> and|f1 =2, myy = 0, f2 =2, My = 2> TheP Space
consists of states in which the atoms are in the collision spin statel) Bpace contains
in particular the two bound states shown. Above threshold Feshbach resonances occur
when £ is approximately equal to a value on the dotted extrapolation of one of the
bound states.

Expressions for the elastic scattering amplitude in the single open spin channel avail-
able in these circumstances can be derived by considering solutions of the Schrédinger
equation for any” > 0 in the separate isolatdd and( spaces and subsequently intro-
ducing theP@ coupling [10, 18]. For the cold collisions studied in this thesis we are
interested in the elastic scattering amplitutle, = exp(2i6,—) for F close to thresh-
old. Specializing the general expression to that limit we tave ~ —ka wherea(B)
displays a dispersive feature:

AB

a(B) = 6 <1—|—B_B0>. ©
At the resonancéeld strengthB,, defined by the crossing of a bound state with the
threshold in Fig. 3, the scattering lengtfs infinite. Thefield widthA B is proportional
to the strength of thé’) coupling squared and inversely proportional to the difference
in effective magnetic moments of the free two-atom system and of the bound state con-
sidered, i.e. inversely proportional to the difference in slope of the crossing lines i
Fig. 3 (see Ref. [18]). It spelies the range ifield for which the scattering length has a
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different sign. Off-resonance the scattering length is not affected byréecoupling,

so that it is determined by the interatomic potential diagonal in the open spin channel.
In the applications we have in mind the distinction betweenlend(@ subspaces

corresponds directly with a selection of pairs of hyjper states for the two atoms.

The PQ coupling then comes only from the part of the interatomic interaction that

is non-diagonal in the hypfne states. Apart from the much weaker magnetic dipole

interaction, this is the exchange interaction mentioned in the previous subsection.

1.5 Observation of Feshbach resonances

Feshbach resonances enable an experimenter to change the scattering length in a con-
densate in a single experiment in sign and magnitude by just changirfigglithén the

trap. So on the wish-list are resonances which arise in collisions between atoms in mag-
netically trappable states. Since theld range wher¢’ = i — 1, my < 0 states can

be trapped is limited (Sefég. 2), they do not occur for all alkali species. In fact, since

light pairs of atoms do not feature many bound states, it is a coincidence when such a
resonance occurs. THast three Feshbach resonances ifieéd range accessible for
magnetic trapping were predictedRb by Vogels et al. [19]. One of these has been
observed in the meantime by two groups [20, 21]. To our knowledge, BEC has not been
reached for this isotope due to cooling problems and three body decay.

Experimentally, thdirst resonances, including the dispersive shape of the scattering
length, have been observed by Ketterle's group at MIT [16J%Na in a BEC in an
optical trap. Predictions for Feshbach resonancétiiand 2>Na observable in optical
traps were made by Moerdijk et al. [18]. The accuracy of these predictions was much
improved by Van Abeelen et al. [22, 23]. Unexpectedly, extremely strong loss processes
occurred experimentally when the resonancéSia were approached in an attempt to
increase the observed rangeao¥alues, so negative values could not be reached [24].

A nice alternative might bé’K, which seems to feature [25] a very broad resonance
covering almost the entirgeld range available for magnetic trapping.

1.6 How to predict Feshbach resonances

An important goal of this thesis work is the prediction of Feshbach resonances and their
properties. For atomic hydrogen and to a lesser extent lithium one can use ab-initio
interaction potentials to reliably predict collision processes in general and Feshbach
resonances in particular. For heavier atoms these potentials can be expected to be in-
creasingly inaccurate, but more importantly they are required to be much more accurate.
The number of bound states in these potentials increases up to more than 135 in the case
of the S = 0 (S = s; + s2 is the total two-atom electron spin) Cs - Cs potential [26],

and to determine a scattering length the precise energy position of the last bound state
is particularly important.

Hence, to reliably predict Feshbach resonances, one has to rely on experiments,
measuring the properties and behavior of pairs of atoms. A reliable way is to determine
the energy position of bound two-atom states, which occur as closely as possible to the
collision threshold, preferably the ones causing the resonances. The various collision
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parameters can then be extracted.
Types of measurements and their role which have contributed to the knowledge of
collision parameters for collisions of cold atoms are

e  Measurements of the field position and field width of Feshbach resonances, en-
abling accurate prediction of others [27, 20, 21]. The width of a Feshbach reso-
nance is directly related to the difference between the singlet and triplet scattering
length. The position gives very accurate and reliable information about the shape
of the potentials and the scattering lengths.

e Measurements of lifetimes of shape resonances, i.e. quasi-bound states behind a
centrifugal barrier [28, 29, 30]. This information is crucial fording the scattering
length and the long range shape of the potential.

e Measurements of collisional frequency-shifts in atomic clocks [31, 32, 33]. Fre-
guency shifts are related to the fact that different states experience different mean
field energies due to differences in cross sections.

e  Observations of coexisting condensates in different Hypestates [34, 15]. Such
condensates would normally decay in collision processes. Due to the fact that the
singlet and triplet scattering lengths are approximately equ¥Rb, this decay is
suppressed. This also enabled the use of'thei + %, my=1— % states in [15].
Observations of the decay of condensates by inelastic processes [35]
Measurements of cross-dimensional thermalization, allowing for the determination
of elastic cross sections of cold atoms, including their energy dependence (exam-
ple: Ref. [36])

e Measurements of photoassociation spectra (line positions and line shapes) [37, 38].
The latest attempt to understand potassium collisions [25] is another beautiful ex-
ample of this method.

1.7 Organization of chapters

The goal of the investigations presented in this thesis is to obtain a better understanding
of cold collisions and to obtain new or more accurate information on interactions con-
trolling cold collisions. In turn, this information is crucial for applications such as BEC
and atomic clocks.

In Chapter 2 we start with a description of a simple picture for weakly bound and
colliding pairs of atoms. It enables one to understand a large variety of phenomena en-
countered in thdield of cold atoms, ranging from interactions between condensates to
the characteristics of Feshbach resonances and bound states. Three two-atom parame-
ters turn out to be critical: the tripleb(= 1) scattering lengtlar, the singlet § = 0)
scattering lengtls and theC's dispersion parameter, determining the long range inter-
action.

Chapter 3 deals with a two-color photoassociation experiment on a tréiRedjas
sample and its analysis, yielding information on the most weakly b8tiRt + 3°Rb
states, as well as on the corresponding cold collisions.

In Chapter 4 a general method is presented to determine interaction parameters from
a two-atom bound state spectrum. It is based on a coupled form of an inverse perturk
tion approach, including the use of accumulated phases.
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The results of Chapters 3 and 4 culminate in Chapter 5, which describes the predic-
tion of Feshbach resonances*#Rb and®”Rb.

Finally, in Chapter 6 we treat a rigorous method to calculate the stationary collision
state of a three-body collision between three ultracold double polarized ground state
alkali atoms. The method is based on the Faddeev formalism. The circumstances of
the collision correspond to Bose-Einstein condensed and other ultracold gases. The
method combines a pair-correlated expansion in hyperspherical harmonics in 6D with
the accumulated phase for the pair interactions. It allows us to calculate the complex 6D
elastic scattering length and the three-particle recombination rate. The work described in
this chapter has been realized with roughly equal contributions from Frank van Abeelen
and myself.
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Abstract

We apply a simplified description to weakly-bound states and cold-
collision continuum states of pairs of ground-state alkali atoms, which
complements the usual more elaborate coupled-channels treatment.
It is based on a diabatic treatment of the transition region between
the exchange-dominated interatomic distance range at small r and the
hyperfine-dominated range at large r. The models contain the Degen-
erate Internal States approximation for H atoms as a special case.

Ultracold collisions of alkali atoms play a key role in applications of laser cooling,
such as Bose-Einstein condensation and atomic clocks. For that reason a number of
groups are collecting information on interactions between cold alkali atoms, like scat-
tering lengths and dispersion chiefents, from a suitable set of collision processes and
weakly-bound states of pairs of ground-state atoms. The analysis of such experiments is
commonly based on the coupled-channels method [1, 2], i.e. numerically solving a set
of coupled differential equations for the amplitudes of the various spin modes as they
vary with interatomic distance. Such calculations have the advantage of being rig-
orous. They are elaborate and time-consuming, however, so that the development of a
simplified description would be very helpful as a complement to the coupled-channels
method.

During the collision the atoms experience besides the lfiyygemteractiont’, ;,
which is also encountered in separate atoms, an interattioh It depends on the
total electron spirb and is equal td’s (r) for a singlet § = 0) state and equal t&r(r)
for atriplet (5 = 1) state:

V = PsVs+ PrVp, Q)

with Ps and Pr projection operators on the singlet and triplet subspaces of Hilbert
space. A relatively innocent part of is the average (Vs + V) of the singlet and
triplet potentials. An aspect that does complicate the dynamics of colliding cold alkali
atoms is the incompatibility of the spin coupling schemes associated with two other
parts of the Hamiltonian. One is the remaining, exchange part, @orresponding to
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the difference of the singlet and triplet potentials:
1
Vewen = i(PS — Pr)(Vs — Vr). 2

In classical terms it gives rise to the precession of the electronic spins s; and s; of the
two atoms about their vector sum S. Another part isthe sum

a
Vhf = %(Sl - iy +Sg'ig) (3)

of the two single-atom hypefine (hf) interactions. Classically, it gives rise to the inde-
pendent single-atom precessionspfndi, about their sum vectdi;, (k = 1,2). The
simultaneous occurrence of the exchange and hf precessions in the gaterwal, is

the classical counterpart of the incompatible spin coupling schemes in the quantum col-
lision problem. Although in many applications an external magritid is present, for

the sake of simplicity we leave it aside for a moment, since it is irrelevant for most of
our discussion.

In previous work a simpfied description was shown to be very useful for cold H
atoms: the Degenerate-Internal-States (DIS) approximation [2], which neglects the en-
ergy splittings due td&}, ;. Leaving it out reduces the collision to separate much simpler
S = 0andS = 1 potential scattering problems. The combination of single-atom
hf states in the incident channel is considered as a superposition of singlet and triplet
states, that are flected from their respective potentials. Theeted waves in turn can
be written as a superposition of outgoing hf states, thus determiningj-thatrix in a
basis of hf channels [3].

Thefirst attempt to apply this picture to alkali atoms [4] showed convincingly that
the DIS is not a suitable approximation for these systems. The picture to be presented
here extends it to a more generally applicable approacHirg¥égoint out that the exact
collision problem is simple in a range of small interatomic distancesry, where the
exchange interactiol. ., dominates ovel’,; so that the problem reduces to potential
scattering in a set of channels with puse= 0 or 1, associated with the exchange
spin-coupling scheme. It is easy to include in this range the&ggrt: Lans/1?S -1
of V;,; that is diagonal inS, with I the total two-atom nuclear spin. It turns out that
th} can have a sigficant irfluence on the oscillations of the individual triplet radial
wavefunctions, in contrast to the remaining paft = Tang /TP (s1 — s2) - (i — 12),
which is negligible since it couples the more widely spaced singlet and triplet potentials.
The collision problem is also simple in a range of largealues,» > r{, whereV,y
dominates oveV,,.,. Here, the problem reduces again to potential scattering, this turn
in a set of hf channels associated with eigenstatés pfi.e. with the hf spin-coupling
scheme. In the intermediate range< r < r1, Vegen IS comparable td7,; so that a
more complicated coupled-channels problem results that can be formulated in either of
the two bases. The simplest version of our new description results from the assumption
that the atoms traverse an intermediate distance range so rapidly that any relatively slow
spin precession due td.,., andV;; can be neglected. Neglecting,., andV}; in
this range, the Hamiltonian becomes a scalar in spin space and all local wave numbers
inthe S = 0, 1 and hf channels are equal. We thus end up in a situation where the most
complicated part of the collision problem reduces to the most simple part: an interval
where nothing happens with the spin degrees of freedom.

Actually, the above assumption can be relaxed somewhat withoufisiagrithe
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Figure 1. B-dependent scattering length for elastic scattering of f¥8b atoms

in the |f,ms) = |2,—2) state (part a) and highest part aB-dependent’Rby,
bound-state spectrum fonr = my + my2 = —4, together with threshold of
(fi,mp1, f2, mp2) = (2,—2,2,—2) channel (part b). Phase values and other parame-
ters are taken from Ref8].

-21 -



numerical simplicity. First, the range where both V., and V,,; need to be neglected
can be arbitrarily small. In the extreme case, where it is a single point r,, it is till
possible to solve the uncoupled problem in the region » < r. inthe S = 0,1 basis
and beyond .. in the hf basis. The possibility arises, however, to directly connect the
r < r.and r > r. solutions, without the intermediate step based on assuming equal
local wave numbers; a simple continuity requirement can be imposed at 7. on the total
wave function in either basis. The simple model that results resembles the Lane model
[5] and also relatesto the MQDT [6].

Another way [7] of introducing the above simple pictures startsfrom the pure S = 0
and 5 = 1 eigenstates defined over the full » range without V, .. Then taking v, into
account mixes these states in a narrow energy band to form perturbed el genstates near
E = 0. The mixing matrix elements receive contributions only from large r, where
the atoms move slowly, introducing the freedom to shift . even to distances where the
potentia is determined by Cj.

A second element of our description is the assumption that the detailed shape of
the triplet and singlet potentials in the inner region is not relevant for the bound state
and cold collision properties that are to be calculated. We summarize the history of the
atoms in this range by means of the accumulated phases of the rapidly oscillating ra-
dial wavefunctions of the uncoupled singlet/triplet channels at the boundary point [7].
To very good approximation these phases vary linearly witand (I + 1) over the
small £ and! ranges to be considered for the cold collisions and bound states of inter-
est. Consistently, they also vary linearly with Mg} spin energies of the triplet states.
Introducing a magnetifield does not fundamentally change our foregoing discussion:
the Zeeman interactio¥i; is diagonal in the exchange coupling scheme and can there-
fore be simply considered in combination with,..,, + V}j} for » < r.. On the other
hand, sincéd’z is a sum of twar-independent single-atom terms, for- r.. it can also
be combined with}, s, thus redéning the threshold energies of the various collision
channels. Itis of interest to point out that the DIS approximation is an extreme limit of
our simpliied descriptions: one then even negldgs at larger.

The above simple models can be applied to both bound-state and continuum prob-
lems. As an example Fig. 1 shows the scattering length for the elastic scattering of
two ®°Rb atoms in thdf,m;) = |2, —2) state as a function of the strength of a mag-
neticfield B (part a) and the highest part of tiizdependent®Rb, bound-state spec-
trum (part b). Part a displays the three Feshbach resonances predicted in a recent pa-
per, using interactions extracted from experiment [8]. In part b for simplicity we only
show themp = my + myo = —4 states, associated with tg;, m ¢, fo,mye) =
(2,—2,2,—2) incident channel. Thégure also shows the threshold of the continuum
in this channel. Note that the Feshbach resonances occur at the intersection points of
the bound-state energy curves with threshold, where during a cold collision a transition
can occur from the incident channel to a quasi-bound state and back without change of
energy.

The scattering length and bound-state spectrum presented in Fig. 1 have rather spe-
cial features resulting from the approximate equality of the singlet and triplet phases,
bs =2 ¢p(mod.T), which explains the phenomenon of the coexistifigb Bose con-
densates [9, 10]. Moreover, for the actual values of the phases a bound state is very
close to threshold in both the singlet and triplet potentials. To test our simple descrip-
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Figure 2. Same as Fig. 1 for more general choice of singlet and triplet phases, cor-

responding tovps(mod.1) = 0.42, vpr(mod.1) = 0.20, wherevp stands for the
(generally fractional) s-wave vibrational quantum number at dissociaid). Bold

solid lines: rigorous coupled-channels calculation. Dashed lines: least gietplie-
scription forr, = 25 a¢. Thin solid lines: simpler diabatic description in whith,.»,

Viy, andVyz are left out for25 < r < 30 ao.

tions more generally, we therefore turn to a less specific choice of phases. For such
a choice, Fig. 2 shows a comparison between the rigorously calculated spectrum and
scattering length (bold solid lines) and our least simplified description for . = 25 ag
(dashed lines). Clearly, the agreement is excellent. In particular, the model calculation
displays the three Feshbach resonances. The resonance field values are reproduced to
within 16 G. We repest that no coupled radial differential equations have to be solved
for this description, whereas the full problem for B # 0 comprises a set of coupled
equations for five channels: one singlet and four triplet.
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The thin solid linesin Fig. 2 result from the simpler diabatic description in which
we leave out Vecp,, Vip, and Vz intherange 25 < r < 30 ag. Although less accurate,
this diabatic picture apparently still leads to a semi-quantitative description. Clearly, a
diabatic assumption can also be introduced over a smaller interval with correspondingly
better agreement, but still allowing for the simple description in terms of phases to be
presented now.

Neglecting all spin-dependence of the collision problem over a certain interval im-
plies the equality of the local radial wave numbky&-) = k() for all channels, both in
theS = 0, 1 basis and in the hf basis. As a consequence, the continuity requirement for
the wave function can be formulated in terms of 'interior’ and 'exterior’ phases that are
effectively independent of over the interval: shifting by Ar changes all phases by the
same amouritAr, leaving the continuity requirement unchanged since only differences
of phases come in. We emphasize, however, that we do not neglect the dependence of
the phases on the ener@y nor the differences in kinetic energy further inside among
triplet channels: in general there are sfgrant phase differences for the various triplet
states, resulting from the diagonalization‘/(;bﬁ + Vz, accumulated over the full inter-
val starting at the repulsive wall at smal[11]. We denote the accumulated phases as
g, dr1, P2, ... INthe extreme case of a single pure triplet channel, which actually oc-
curs for the fully spin-polarized system, the continuity requirement for a bound state to
occur at the energy considered can be formulated in terms of an equality of a single in-
terior phase to a single exterior phase resulting from the integration of the Schrodinger
equation starting from large, assuming a wavefunction that goes to zero fnity.
This equality can be imposed equivalently at any point of the interval considered. Due
to the spin-independence the same holds for more than one channel. In the general case
we therefore introduce new interior phases, independent of the choicénftine inter-
val, by reddining their valuesnod.7 to be 0 in the case that an s-wave bound state is
precisely at the singlet or triplet threshold. Correspondingly, wimde-independent
exterior phases by assigning the valuer»{.7) to a hf channel, when the energy”
of the system coincides with the threshelg ; where this channel opens:

Dngi = Ong(E — €ngi) (4)

with ¢, (0) = 0 by definition. Fig. 3 shows the hf phass; (¢) as calculated by solving
the s-wave Schrédinger equation for< ¢ ; (solid line). Except for a part very close
to threshold where quantum effects are important at the outer turning point, it shows
the typical(—e)% behavior, to be expected on the basis of a semiclassical consideration
[12] using a pure’s potential. For the actudl value the latter behavior is given by
the dashed line. The dotted line shows the cubic root expression with di@cadi
value and a slight shift along thieaxis to compensate for an offset caused by the above
guantum effects. Clearly, after these adjustments we obtain excellent agreement with
the rigorously calculated hf phase. Note that an external madietsimply shifts the
hf energies by the Zeeman shift. It does not affect the funetigric), the interaction
V(r) being unchanged. Note also that in our simple descriptions the Zeeman shift of
the hf energies is the main mechanism responsible for the Feshbach resonances.

For I > ¢y, the wavefunction does not need to go to zero fihity. Instead,
it depends on the asymptotic phase shift at large the hf channel involved. The
treatment with one open channel, which is the most common situation experimentally,
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Figure 3: Hyperfine phase ¢,,;(¢) calculated by solving swave Schrodinger equation
for £ < ey, (solid line). Dashed line: semiclassicak¢)s behavior for actual value
of Cs. Dotted line: cubic root expression with m@dd Cs and vertical shift, adjusted
to rigorous hf phase for actual potential.

isgtill relatively smple. In that case we have for the open channdl, say ¢ = 1:

Py = ¢hf(E —€nf,1;0), ®)
with § the asymptotic phase-shift. Again, we point out that the DIS approximation is
a special case, in which the differences of the hf shifts; in Egs. (4) and (5) are
neglected [3].

With the above conventions the continuity requirement for the wave function can
be formulated as a set of homogeneous linear equations in the sines and cosines of the
phases. For giveps and¢,; phases, the solution of the coupled bound-state or colli-
sion problem can thus be reduceditaling the zeros of the corresponding determinant
as a function offs for bound states and as a functionéofor an arbitrary continuum
energy for collisions.

Summarizing, we have formulated two sinfigd approaches that may be used to
avoid a cumbersome coupled-channels calculation. In one approach, one neglects the
simultaneous spin precessions due to the exchange interaction and due to the incompat-
ible part of the hf interaction, by neglecting one type of precession up to a certain radius
r. and the other type beyond. This approximation has been shown to be very accu-
rate. A second approach is based on the more far-reaching assumption of a radial range
where the Hamiltonian is a scalar in spin space, thus leading to a diabatic picture.
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results are not as accurate, but this description is very helpful for physical insight, asit
enables atreatment of the continuity requirement in terms of local interior and exterior
phases.

This work is part of a research program of the 'Stichting voor Fundamenteel On-
derzoek der Materie’ (FOM) which &nancially supported by the 'Nederlandse Organ-
isatie voor Wetenschappelijk Onderzoek’ (NWO).
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Abstract

We determine the energies of twelve vibrational levels lying within 20
GHz of the lowest dissociation limit of 35 Rby with two-color photoas-
sociation spectroscopy of ultracold 8°Rb atoms. The levels lie in an
energy range for which singlet and triplet states are mixed by the hy-
perfine interaction. We carry out a coupled channels bound state anal-
ysis of the level energies, and derive accurate values for %5 Rb; inter-
action parameters. The information obtained is sufficient to allow for
quantitative calculations of arbitrary Rb ultracold collision properties.

An important reason for the interest in Bose-condensed, magnetically trapped alkali
vapors [1, 2, 3] is that it is possible to understand many of their propertiesfiretn
principles, starting with known atomic interactions. This close contact between theory
and experiment requires accurate atomic interaction parameters such as elastic scatter-
ing lengths and inelastic collision cross sections. In principle these quantities can be
computed from the atomic interaction potentials. Substantial progress has been made,
for example, in the determination of Li [4, 5, 6], Na [7, 8, 9], and Rb [10, 11, 12, 13]
scattering lengths. Unfortunately, it has still not been possible to calculate many impor-
tant collision properties because of uncertainties in the potential parameters.

In this paper, we present new results that eliminate most of these uncertainties for
Rb. We measure the energies of twelve of the highest bound vibrational levels of ground
state®®Rb, with two-color ultracold atom photoassociation spectroscopy. As illustrated
in Fig. 1, ultracold®>Rb atoms collide in the presence of two laietds of frequency
v1 andvs. Resonances observed at sfiecvalues of the frequency differencg —
vy directly provide the level energies. We analyze the level energies with an inverse
perturbation approach with coupled channels bound states, and obtain both singlet and
triplet parameters. Two-color photoassociation spectroscopy has previously been used
to obtain a single ground state level o};1[b], and evidence for ground state levels of
Na [14]. Our work differs from this in that we obtain a much more complete spectrum,
assignment, and analysis.

A unique aspect of our work is that we obtain a molecular spectrum for levels wi
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Figure 1: Two-color photoassociation spectroscopy®Rb;. Colliding, trapped, ul-
tracold ®>Rb atoms are irradiated by lasgields of frequency; andv,. Spontaneous
emission from the excited level at frequengyeads to loss of the atoms from the trap.
Optical double resonance (free-bound-bound) signals occur when the frequency differ-
encers — 1 coincides with the binding energy of a ground state vibrational level.
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Figure 2: Diagram showing the adiabatic molecular potentials for ground state 3°Rb,
with the pure triplet, /' = 6 potential energy subtracted off. The potentials are labeled

at short range by their molecular quantum numbers and at long range by their atomic
guantum numbers.
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binding energies comparable to the atomic hyperfine splitting. In this range singlet
(S = 0) and triplet (S = 1) states are strongly mixed by the hyperfine interaction
Vihs = a(iy - 81 +12 - s2), S0 that molecular quantum numbers (S, I) are not good. Here
S =s; +s9, I =iy +1ig, and s; and i; are the electronic and nuclear spins of the two
atoms (i = 1, 2), respectively. Atomic quantum numbers (f;, fo, withf; = s; +i;) are
not good either, since these states are mixed at short range by the exchange interaction.
Only the total spin quantum number F', with ¥ = f; +f, = S + 1, isgood a al
internuclear distances. Adiabatic molecular potentials for ®°Rb, with the pure triplet
(F' = 6) potential subtracted off are shown in Fig. 2. The change between molecular
and atomic (hyperfine) coupling occurs at about 24 a¢. Molecular vibrations on these
potentials are are not perfectly adiabatic, so that curves with the same F must be treated
with a coupled channels approach.

The experiment is an extension of our previous one-color photoassociation experi-
ments [10, 11, 12]. About *daser-cooled®Rb atoms, at a temperature of several hun-
dred microKelvin and a density of about¥@m~32, are spin-polarized in theirf = 3,
my = 3 state and held in a far-off resonance optical dipole force trap (FORT) [15].
These atoms are irradiated for 200 ms with two Ididds of frequencies; andve,
which have intensities of 1.6 kW/cimand 30-200 W/cr respectively. Thesgelds
are alternated at 200 kHz with the FORT laser. The laser frequenisyfixed on a pho-
toassociation resonance between the collision state 0(a, 7)) excited state near
the5251/2 + 52P1/2 dissociation limit, where is the vibrational quantum number and
J the rotational quantum number. This induces substantial trap loss, since the excited
states decay mostly to high kinetic energy atoms which escape from the trap. At the
end of each 200 ms period, we measure the number of atoms remaining in the trap with
laser-induced atomifiuorescence. We produce a two-color spectrum by stepping
through a succession of values.

A typical two-color photoassociation spectrum is shown in Fig. 3. We observe a
decrease in the loss of atoms from the trap wheneyés tuned to a resonance between
the intermediate level and a ground state level. This is due to to power broadening of the
excited state, which reduces the absorption rate of photons @ingh&tep and therefore
the trap loss. We took spectra with three different valuesiofthe intermediate state,
and with./ = 2. The positions of the lines depended only:en— /1, and their widths
varied from 0.060 GHz to 0.30 GHz. We observed a total of twelve levels with the
energies listed in Table 1. In addition we supplemented the data with the energy of a
g-wave shape resonance [12]. We estimated the errors from the differences between the
positions of the same level in different spectra. We also took them to be atHéast
of the linewidths, to allow for possible lineshape effects [16], which we did not attempt
to model. The highest level is bound by only 0.16 GHz. To our knowledge, this is the
most weakly bound level that has been spectroscopically observed in any molecule.

We assign the spectrum as follows. With a two-photon transition from the initial
Mp = 6 state, onlyF' = 4, 5, or 6 levels should appear in the spectrum. Fhe- 6
and I’ = 5 states are isolated, pure triplet channels, separated from each other by one
unit of atomic hypeiine energy (3.036 GHz). (See Fig. 2.) Therefore, we may assign
the vibrational progressions converging to {lfe, f2) = (3,3) and(2, 3) limits to the
F'= 6 andF" = 5 vibrational levels, respectively. The remaining levels must arise from
the three coupledl’ = 4 potentials, and have mixed singlet and triplet character. As
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[FI1] EewpGH2) [ Eu(GH2) [ v—vp] | (fi,F2) ]
6| 4] +0.015+£0002 | +0.013 -1 (3.3
62| —0.16=+0.03 -0.15 -1 (3.3)
52 -3.18 -1 2.3)
42| —6.23+£006 -6.22 -1 2.,2)
6|2 —1.52+£003 -1.50 -2 (3.3
52| —4.58+0.06 -4.53 -2 2.3)
42| —7.61+£003 757 2 2.,2)
6|2 —520+£003 -5.16 -3 (3,3)
512 -8.20 -3 2,3)
4 12| —834+0.06 -8.36 -3 (2,3
42| —11.27+003 -11.24 3 2.,2)
6| 2| —12.22+0.06 -12.21 -4 (3.3)
42 -12.51 -4 (3.3)
5|2 —15.24+£0.06 -15.25 -4 2.3)
42| —15.67+0.06 -15.68 -4 2.3)
42| —18.39+0.06 -18.34 -4 2.2)

Table 1: Experimental energy levels included in analysis and theoretical energy levels
calculated with coupled-channel bound-states code, together Wifh, f2) progression
and integer part obb — vp. Thel = 4 level included in the table is a shape resonance
state observed in Ref. 12.

discussed previously [10], with the 0, (~5*S; /»+5*P; ») intermediate state, we probe
ground rotational stateswith! = J = 2.

To carry out an analysis of these spectra, we have developed an inverse perturba
tion approach for coupled bound states (coupled IPA). The usual (uncoupled) IPA [17]
is a systematic approach to improve an approximate interaction poteffial on the
basis of a comparison of its bound-state energy eigenvaiflesith experimental val-
uesk,. Changing the potential t&°(r) + AV (r) changes the energies finst-order
perturbation theory by

By — EQ = (¢0|AV(r)|e2), @)

with known unperturbed eigenfunctiog§. Writing the correctiomV (r) as a linear
combination of suitably chosen basis functighg-),
AV(r) = cifilr), @)
?
turns Eg. (1) into a set of linear equations which allows one to determine optimal ex-
pansion codfcientsc;.

Our method differs in two aspects from this approach. First, we incorporate coupled
channels bound states, extending the expectation value (1) to a multichannel state. Sec-
ond, we replace the atomic interaction inside-= r¢ with a boundary condition aty
on the phaseg. and¢ of the singlet and triplet radial wavefunctions [4]. We choose
ro = 20ag, small enough that singlet-triplet mixing insidg is negligible, but large
enough that the potentials outsidghave a simple description involving few parame-
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Figure 3: Two-color photoassociation spectrum®Rb;, with v, tuned into resonance

with a level at 1863.1 cnr!'. Double resonance signals are observable as a decrease
in the trap loss. The positions and quantum numbers of the levels inferred from the
analysis are also indicated. The inset at the lower left shows the highest level observed,
with a binding energy of only 0.16 GHz.

ters. In our version of 1PA, we supplement the equation for the perturbation of the outer
solution due to a change AV by an equation for the perturbation due to a changein ¢4
and ¢, making use of boundary perturbation theory [18]. An advantage of our method
compared to the conventional | PA isthat the set of parameters to be determined is more
unique than in Eq. (2), where a subtle choice of basis functions is needed to avoid un-
realistic adaptations of the potential. Our method also has the advantage that it treats
singlet and triplet states simultaneously. A separate construction of singlet and triplet
potentials from measured levels may lead to inconsistencies, as pointed out bgt Zhao
al. [19]. As in conventional IPA we apply our method in an iterative way. In each step
we solve the equations for tH@st-order perturbations tfind new parameter values.
These then dime the new unperturbed solution of Schrédinger’'s equation for the next
step. The perturbation equations are also used to estimate error bars for the parameter
values extracted from the coupled IPA analysis.

We write the long-ranger(>> r¢) interaction part of the two-atom Hamiltonian in
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theform
V:—%—%—%‘F‘/@mch"_vh]“ (3)

Cg istaken to be 4550 £ 100 au. [12], the exchange part is from Smirnov and Chibisov
[20], and Cs and Cyo from Marinescu et al. [21]. We neglect the long range spin-
dipolar interaction between the atoms, because its contribution to the level energies is
small compared to the experimental accuracy. The inner part of the singlet potential
has been determined by Amiot [22] by means of a conventional IPA. We adjust the
zero of Amiot’s energy scale to agree with a new, precise value of theliRbociation
energyD. = 3993.53 4 0.06 cm™! [23]. From this adjusted singlet potential, we
calculatep s (F, ) for arbitrary energys and relative orbital angular momentumwe
treato(0,0) as afit parameter in the analysis, and the calculated variatia, 0F, 1)
with F/ and as boundary conditions for the> ry IPA problem. For the triplet state no
accurate potential is available, so we trea(0, 0) and itsfirst derivatives with respect
to F andi(i+ 1) at ¥ = [ = 0 as variable parameters.

We begin by analyzing the pure triplet' (= 5, 6) states. The optimal phase param-
eters allow us to calculate tiféRb +35Rb triplet scattering length to ber (%5 Rb) =
—440 + 140 a9, consistent with the value 400 + 100 a¢ from Ref. [12]. Uncertainties
of 2% in Cs and4% in Cs andC are accounted for in thiénal error limits. The corre-
sponding non-integral s-wave vibrational quantum number at dissoctatipfmod.1)
has the valu®.95 £ 0.01, where the integer part ef,r is 37 £ 1 [12].

Next we analyze the complete set of levels. Varyingo, 0) alone, the six measured
F = 4 levels fall in place within their experimental bounds. All of the theoretical
F > 4,1 = 2 eigenvalues in the last 20 GHz resulting from the combined optimization
are presented in Table 1. We obtain satisfactory agreement with the experimental levels.
The triplet scattering length from the combined analysis is identical with the value given
above. For the singlet scattering length fired +4500 ap < as(**Rb) < +oo or
—00 < as(®®Rb) < —1200 ag. The correspondingps is 122.994 4 0.012, where in
this case the integer part is quite certain. Our value shows a small discrepancy with the
value123.45(0.20) determined by Amiot [22].

A remarkable property of four of the observet= 4 levels is their rather accurate
triplet progression asymptotic to ttig; , f2) = (2, 2) collision threshold. This results
from an approximate equality between singlet and triplet phaséSRix, in the cou-
pling region. Because of this, the highest parts of the uncoupled triplet and singlet bound
state spectra approximately coincide, and the triplet and singlet interaction potentials are
effectively interchangeable. The hyfiee mixing, which takes place almost exclusively
at long range where the atoms are almost all of the time, then leads to a spin structure
of the coupled states that is almost identical to that in the three asymptotidihgper
channels. The calculation also shows simifae= 4 level progressions asymptotic to
the (f1, f2) = (2,3) and (3, 3) thresholds, and some of these levels are observed ex-
perimentally. In Table 1 we present for each predicted level fhefz) combination
characterizing the progression it belongs to and its vibrational quantum number relative
tovp. F = 4 levels above thé¢fq, f2) = (2,2) limit are not given since they are not
bound. A very similar phase coincidence has been found to be responsible for the sta-
bility of a Bose-condensed mixture of two state§dRb [24, 25]. Considering the mass
scaling of the wavefunction phases betw&&Rb and®**Rb, it turns out that an approx-
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imate equality of ¢4 and ¢, (mod.w) in one isotope implies a similar equality in the
other.

In combination with other recent results, our measurements have now determined
Rb interaction parameters to sufficient accuracy to allow quantitative cal culations of Rb
cold collision cross sections to be carried out. Calculations based on these parameters
[26] are in agreement with al known properties of cold Rb atom scattering [10, 11, 12,
13, 24, 25]. The strong consistency among these measurements provides confirmation
for their validity. In addition, it is now possible to precisely cal culate other important
cold collision properties such as the scattering lengths for arbitrary Rb sublevels, the
location of magnetically tunable Feshbach resonances [26], inelastic collision rates, and
the collisiona frequency shift of a Rb atomic fountain clock [27]. We anticipate that
future studies of ultracold Rb collisionswill rest on a quantitative footing that is unusual
in cold collision physics.

Work at the University of Texas was supported by the R.A. Welch Foundation, the
National Science Foundation, and the NASA Microgravity Scienceand Applications Di-
vision, and work at Eindhoven by the Stichting FOlhéncially supported by NWO).
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Abstract

We describe a new inverse perturbation method that is well suited to
the analysis of the bound states of the alkali dimers near their dissoci-
ation limit. The method combines inverse perturbation theory, coupled
channels bound state theory, and an accumulated phase method to
treat the short range part of the molecular potentials. We apply this
method to analyze the bound-state energies measured in a two-color
photoassociation experiment in an ultracold 8°Rb gas. This analysis
yields information on the interactions between ultracold 8°Rb atoms
that is important to the understanding of ultracold Rb collisions and
Bose-Einstein condensation.

4.1 Introduction

The techniques of laser cooling and evaporative cooling have opened the new field of
ultracold atom physicsfor alkali atoms, with spectacular research subjects such asBose-
Einstein condensation, laser-cooled atomic clocks, and atom lasers. It is generally real-
ized that atom interaction processes play a key role in many of these experiments. Itis
therefore important to obtain a complete, consistent picture of these interactions. In this
paper we describe and apply a new theoretical method to obtain information on the inter-
actions between cold atoms, making use of measured energies of bound diatomic states
close to the dissociation threshold. The method is an extension of Inverse Perturbation
Analysis (IPA) [1], previously used to obtain a single adiabatic Born-Oppenheimer inter-
action potential curve from bound-state energies of that potential. The coupled inverse
perturbation analysis (CIPA) that we propose generalizes this method to cases where
different electronic states are strongly coupled, so that the Born-Oppenheimer approxi-
mation breaks down. We apply this method to the analysis of the highest bound states
of 85Rb,, which have recently been measured with two-color photoassociation spec-
troscopy [2]. In this case the molecular singlet and triplet states are strongly coup!
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by the hyperfine interaction. We also use the information obtained from this analysisto
determine interaction parameters that are important to the physics of collisions of ultra-
cold®Rb atoms. A brief report of this work has been given previouslyif2lhis paper

we give a more extensive description of the experimental and theoretical method and of
the results.

In the case of ground-state alkali atoms there are two short range adiabatic Born-
Oppenheimer potentials, corresponding to total $pia O (singlet potential) o5 = 1
(triplet potential). Along the lines of our previous work, at small interatomic distances
we do not describe the singlet and triplet potentials in detail, but summarize that infor-
mation in the form of the phases accumulated [3] by the associated rapidly oscillating
S = 0andS = 1 radial wavefunctions up to a radiug, which is chosen between
16 and 2(0zy depending on the alkali atom considered. It is well-known that both cold
collision properties and the precise positions of the highest molecular bound states are
extremely sensitive to very small changes ofithe r, potentials. Except for the lighest
alkali species, potentials in this range are not known witficgeht accuracy to allow
for reliable application to cold collisions. Fortunately, it is possible to avoid this dif-
ficulty using boundary conditions ag in the form of accumulated singlet and triplet
phases that summarize the short-range collisional information. In our coupled IPA we
search for optimal values of the interaction parameters in the range, and of the
accumulated phases.

The main advantage of our generalized approach is that it can cope with bound states
close to the continuum, which often show strong singlet-triplet mixing by the fipper
interaction. In contrast, the conventional IPA can be used only for analyzing pure triplet
and singlet bound diatomic states. Clearly, the higher mixed states can be expected to
bear a greater resemblance to the nearby states in the continuum and can therefore more
profitably be used for obtaining information on cold collisions by extrapolation through
the dissociation threshold. Even for analyzing lower states withoutfgignt mixing,
however, our approach has afidée advantage in that it naturally allows for a simul-
taneous analysis of singlet and triplet levels. This is important in view of the fact that
the singlet and triplet potentials have certain parameters in common, such as the posi-
tion of the dissociation threshold and the dispersion fodehts. A separate analysis
may therefore lead to inconsistencies, such as a crossing of the singlet and triplet poten-
tials at long range [4]. A further advantage of our method is that the potential variations
searched for extend over longer radial intervals. This applies to both the interactions in
the range- < ry, since they are effectively described via accumulated phases, and for
ther > ry interactions which are described by analytic expressions for dispersion and
exchange contributions. In this way one does not run into the pitfalls associated with ap-
plications of the conventional IPA where non-physitattuations in the local potentials
over short distances, of the order of the distance between outer turning points of suc-
cessive ro-vibrational levels, are figult to avoid in the search for improved potentials.

One-color cold atom photoassociation experiments have yielded a great deal of infor-
mation on the interactions between alkali atoms [5, 6]. In these experiments, a tunable
laser excites transitions between the intially free state of a pair of colliding, laser-cooled
ground state atoms and excited bound molecular levels of those atoms. These exper-
iments directly yield the level structure of the electronically excited states. The line-
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Figure 1: Two-color photoassociation spectroscopy®Rb;. Colliding, trapped, ul-
tracold ®>Rb atoms are irradiated by lasgields of frequency; andv,. Spontaneous
emission from the excited level at frequengyeads to loss of the atoms from the trap.
Optical double resonance (free-bound-bound) signals occur when the frequiéfecy d
encevs — v coincides with the binding energy of a ground state vibrational level.
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shapes and strengths of one-color photoassociation spectra have also provided informa-
tion on the properties of the collisional ground state for ultracold Rb [7, 8, 9, 10, 11], Na
[12], and Li [13]. More direct information on ground state cold collision properties can
be obtained through the direct measurement and analysis of the highest bound levels of
the electronic ground state. This can be accomplished through two-color photoassocia-
tion spectroscopy, as shown in Fig. 1. A laser fikad frequency/; excites transitions

from the collisional ground state to a particular excited level. A second tunable laser of
frequencyv, couples this excited level back to the vibrational levels of the electronic
ground state. This yields a spectrum of these high lying bound levels. Experiments of
this kind have been completed for Rb [2], Na [14], and Li [15].

In our Rb two-color photoassociation experiments, we select afgpetial two-
atom spin state by carrying out the experiment on a doubly-polarized gas sample, i.e.
with maximum projections of electronic and nuclear spins of an atom along a quanti-
zation directionz. The atoms occupy the highest hyfiee state of thé>Rb atomic
Breit-Rabi diagram (see Fig. 2). As the excited electronic state we sele@f thtate
asymptotically connected to th&S, /5 +52 P, ;» dissociation limit [16]. In this way we
avoid a complex hypéne 'spaghetti’ of excited states [17], since the nuclear spins in
this €2 = O state are decoupled in very good approximation from the remaining molecu-
lar degrees of freedom. Moreover, thge(S + P, 2) electronic state has the advantage
that the twol/2 angular momenta of thé; ,, and P, ,, atomic states turn out to be
coupled to give a vanishing two-atom electronic angular momentam0. The total
molecular angular momentuthin the exited state (excluding the nuclear spins) thus
equals the orbital angular momenturaf the collision. The resulting = [ selection
rule has been of considerable help in the past to simplify the analysis of our previous
one-color photoassociation experiments [7, 8, 9]. We note that this is not a general prop-
erty of (2 = O states. For example, for il "pure long range state” connecting to the
52512 4+ 5% Py limit [16, 18], the atomic angular momentg2 and3/2 do not cou-
ple toj = 0. Selecting th®, (S + P /2) state, we do not only dme the partial wave
channell = J from which the excitation occurs, but also the rotatioh@hlue of the
final Rb, bound states formed.

Even with this simpliication the observed bound state spectrum should be expected
to be rather complex. In particular, the complexity arises from the fact that the total
spins f; and fy (= 2 or 3, see Fig. 2) of the separated atoms are not conserved during
a collision. These quantum numbers are only good at long range. At smaller distances
the exchange interaction mixes thg (f2) quantum numbers. At short range where it
dominates, the molecular quantum numbefs/j with S = s; + sy the total electron
spin and = i; +i, the total nuclear spin, are good quantum numbers. For not too strong
B fields the total angular momentufh= f; + £, is conserved at all distances. Figure
2 of Ref. [2] shows adiabatic molecular potentials¥tRb, with the pure triplett’ = 6
potential subtracted off. The change between molecular and atomic fimg)eoupling
occurs between 19 and 24 for the®5Rb +3°Rb system. The above-mentioned radius
ro IS chosen at the left-hand boundary of this range, because weSmanbe a good
guantum number up to this point. Starting frag) the radial motion on the potentials
is not perfectly adiabatic, so that curves with the sa@mmust be treated as a coupled
channels problem. Often, arindependent diabatic basis of pufg {) or pure (1, fo)
states is the most convenient choice for coupled channels calculations. By selecting an
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Figure 2: Breit-Rabi diagram of>Rb atomic ground state.
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initial |F,mp) = |6,+6) two-atom state with the two electronic and the two nuclear
spins fully oriented, only' = 4, 5, or 6 bound levels should appear in the spectrum,
the change ¥’ being at most 1 in each of the optical transitions. Together, the above
choices for the initial and intermediate states lead to a considerable reduction of the
complexity of the observed bound state spectrum.

This paper is organized as follows. In Section 4.2 we describe our coupled IPA
method, starting from the conventional IPA and including internal degrees of freedom
and accumulated phases. Section 4.3 describes the two-color photoassociation experi-
ment. Section 4.4 is devoted to the application of our method of analysis to this experi-
ment. In Section 4.5 we formulate some conclusions.

4.2 Coupled Inverse Perturbation Approach (Coupled
IPA)

We extract optimal values for the interaction parameters from the bound-state data by
an extension of the existing Inverse Perturbation Approach (IPA) [1] to a situation of
coupled channels. The conventional IPA is a method to improve a potential, in such a
way that the corresponding Schrddinger equation reproduces as well as possible a set of
experimental bound-state energiés:

h2
[‘ZLA T vm} b = Euit, W

with ¢ the reduced mass, equal to half the atomic mass in the present application. One
makes a comparison with theoretical eigenvalfisassociated with an approximate
potentialV’(r) and its eigenfunctiong?:

Yo = By, )

Usindfirst-order perturbation theory and an expansion of the difference potArifiat
V — V% in a set of suitable basis functiopgr), the energy differences are expressed
as

12 0

AB, = Ep — By = (0| AV|e0) = ci(vnloi(r)|4f). ®)
?
This set of linear equations for the unknown expansionfamehtse; is solved generally
as a least-squares problem to construct a new theoretical potettigl + AV (r) and
the whole procedure is restarted until one reaches convergence.

The conventional IPA can only be applied to singlet and triplet potentials separately,
since it assumes the absence of coupling. It therefore needs unmixed experimental sin-
glet and triplet states as input. To formulate our coupled IPA, both Eq. (1) and (2) are
considered as coupled equations in the singlet-triplet or ffiygebasis, or any other
basis. The IPA equation (3) can be carried over to the multi-channel case essentially
without change;p% now standing for a coupled state:

AB, = (W |AVIE)) = [eis(@n|Psgis (1) [00) + cir (W3] Prase (r)|en)] . (4)

[
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with AV an operator in spin space,
AV = PsAVS(T) + PrAVyp (7")7 (5)

and Pg and Pr projection operators on the singlet and triplet spin subspaces, respec-
tively.

The extension of the IPA to include coupling requires the complex task of introduc-
ing a coupled-channels matrix structure into the previous equations. This is not the only
modification we introduce. As pointed out in Section 4.1 a further ingredient of our ap-
proach is the replacement of the short-range parsry of the potentiald/s(r) and
Vr(r) by a boundary condition ab, the largest interatomic distance where the radial
motion with S as a good quantum number is still adiabatic. This takes the form of an
accumulated phases, of the corresponding rapidly oscillating radial wave functions
¥s,r(r) in each of the adiabatic channelsfided by the WKB expression

sin( " k(r)dr) _ 45 é(ro)

P(ro) = A 1 = 1 ’ (6)
(ro) k3 (o) k3 (ro)
k(r) being the local radial wave number:
2 RA(1+1)
k2(7“)=§ E-V(r)—— —5— @)

In these equations we have omitted the subséfipt 7" for simplicity. Differentiating
Eq. (6) wefind that¢ is related to the local logarithmic derivative by
v
kcotp = — + —.
cot ¢ v + o7 8)

The validity of the WKB approximation is not a prerequisite for this approach: we
could have spefied the boundary condition by means of a logarithmic derivative of the
radial wave function. We come back to this later in this section. The accumulated phase
may be considered as a convenient parametrization of the logarithmic derivative. Its
convenience stems from its accurate linearity,

¢=¢" + Eo¥ +1(1+1)¢', ©)
over the relatively small and! ranges nea¥; = [ = 0, relevant for cold collisions,
making it possible tdit experimental data with three parametes$;#”, ¢'. In contrast,
the logarithmic derivative shows the typical tangent-shaped excursions thrdirgtyin
each time aradial node passes the poiatry. Figure 3 shows g and¢ as a function
of ¥ for I = 0 (part a) and as a function &f + 1) for £ = 0 (part b), in both cases
over ranges much larger than needed for the analysis in Section 4.£& @hel(l + 1)
ranges covered by the actual measurement are indicated by the double-sided arrows in
the graphs. Over this range tiiedependence is linear to withig g = 4-6.10~> and
A¢p = £11.1075, and thel(I + 1) dependence even to withikgg = +1.10¢ and
A¢p = £3.107°, The graph foks was calculated using Amiot’s IPA singlet potential
[19], that for ¢ using the Krauss and Stevens triplet potential [20]. In some of our
previous analyses we also included higher-order derivative terms to extefAdahe!
ranges. Note that
¢

d _ E
5 = 200 (10)

T =2h—
d
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Figure 3: (a) Accumulated phases ¢4 (F,1 = 0) and ¢ (F, 1 = 0) vs. E for IPAsinglet
and ab-initio triplet potentials. (b) Accumulated phasgs(Z = 0,1) and¢r(F = 0,1)
vs.I(l + 1) for same potentials.

isthe classical time interval needed for the atoms to move from r¢ inward and back to
0. Indeed, for the shallower triplet potential the phaseis seen to be a steeper function of
energy. Furthermore, the second derivative of ¢, (F) with respect to £ is seen to be
negative, in agreement with the decreasing sojourn time | ft of ry for increasing energy.

A refinement that we introduce to increase the accuracy of our approach, isto sub-
tract not onlyV’ () and the angular kinetic enerdy!(l + 1)/mr? from the total energy
F to obtain the radial wave number (7) in the range ry, but also the spin Zeeman
energyV; and the par;; = gas,;/”S - 1 of the total two-atom hypéne interaction
operatoVy, s = ayz/h(s;y - i; + sg - i), which is diagonal irf.

The fact that we generally include a search for the above phase parameters in our
coupled IPA implies that Eq. (4) has to be mivelil, since we want to derive a different
set of parameters characterizing the nfiodtions of the potentials, from the discrep-
anciesAF,, between theoretical and experimental eigenvalues. To include potential
corrections in the interior region < ry via changes of the accumulated phases, we
have tofind a solution for the following complications:

1) The normalization of the statfz?L is tacitly assumed in the perturbation theory
expression (4), although the phase description for-thery dynamics implies that the
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part of ng in theinterior region is not explicitly dealt with. Rewriting Eq. (4) as
ABn(Ynlvn) = (U] AV Iv), (11)

we need to deal with the part (¢ [¢/0),.—..., of the normalization integral. This difficulty
plays a role independent of whether a potential correction extends over r» < rg, over
7 > 10, Or Over both.

2) Vs(r) and Vr(r) are continuous functions of r. When a potential correction in
the exterior region extends up to rg, this has consequences for the inner potentials, i.e.
for the phase parameters.

Complication 1) is easily solved starting from the WKB expression (6) for the ac-
cumulated phase in one particular adiabatic channel to be denoted by the abbreviated
notationa (« includes in particular the quantum numtf€y. Differentiating with re-
spect toF’ we have

06y _ 24 / 1 2 7 sin® g (r)

24 0,,0
%dr ~ ﬁ kja dr = EQAg‘ <wn|wn>a,’r<’r0'

oK h2
Writing i nearrg in the form (6), wefind A,. Eq. (12) then allows us to express
the part(v?|¢°), ., of the normalization integral in terms of the derivativés:. In
connection with complication 2) we also need to express the part (2 |AV]42), ., in
changes of the phase parameters. We use the WKB expression

2u {71

(12)

Agba == _ﬁ A %AVadr ~
2u (" sin? ¢, (r) 2 o o
_ﬁ /0 ka AVadT == EQAa <wn|AVa|wn>aﬂ“<To' (13)

With these relations, the main equation of our coupled IPA method is found to be

2 9%a
“OF

h2
AB, [w%lw%»m o >4

h2
Z [cis (0| Psgis ()W) + cir (W0 | Prair ()40 ) rsro] — ﬂAiAgbou (14

where A¢,, iswrittenin the form

Ao, = MY+ BRAGy + ¢ AE, +1(1+1)Ady,, (15)
following from Eq. (9). Like the IPA equations (4) we started from, (14) is a set of
linear equations for the unknown parameters (in this case ¢;s, cir, AdY, A2, Agl)
in terms of the energy differences AF,,. Again, we solve it as a least-squares problem.
Clearly, in case some of the parameters are already known withisaf accuracy from
other sources, the corresponding terms in Egs. (14) and (15) are replaced by 0.

At this point we emphasize again that our CIPA method avoids the intricate insta-
bility and convergence problems of the IPA by replacing the non-unique 'mathematical’
basis functiong; (r) (or ¢;s(r) andg;r(r)) by accumulated phases and by long-range
interaction terms. Two further remarks are in place. Titst relates to the channels
The labela distinguishes the various spin eigenstate$ of- Vg}, so that the dynam-
ical problem is diagonal i for » < rg. For a vanishing or weak magnetield, «
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corresponds to the combination of quantum numbers S, 7, F,mp. For astrong B field
each « contains a combination S, I, mpg, but a mixture of I’ values. The second re-
mark relates to the use of the WKB approximation in the foregoing formulation. Our
approach is most easily explained using the WKB approximation. We note, however,
that the WKB approximation is not essential for the validity of the coupled IPA. To see
this we start from an equation for the Wronskian of the unperturbed and perturbed states
[¥5) andjy,,):

a o O d

E Z(wnaawna - wnaawna) =

26/ P (AViara — ABpbaro)¥na, (16)

following from the time-independent Schrédinger equationd4dp and|v,,). Here,
the channel components, ,(r) and«? (r) are chosen to be real. Integrating over
from rg to oo, we find tofirst order in the modicationsAV andAF,:

Z I:w?wz (TO)] ’ AAQ = 2M/h2 Z/ w?w/ (AVO/O& - AEnéa/a)w?LadT7 (17)
a a’a VT

with A, the logarithmic derivative of the radial wave function in chanmelt 9. This
equation enables us to formulate the coupled IPA in terms of logarithmic derivatives.
As pointed out above, however, the convenient properties of accumulated phases lead
us to reformulate the approach by parametrizing the logarithmic derivative for each of
the channels: via

_ klro) _ K(ro). a8)
tang  2k(ro)
This ddinition of the accumulated phase has been used in all our previous work [3, 7, 8,
9, 2]. It corresponds to the integrél® k(r)dr when the WKB approximation applies.
Starting from equation (17), equations similar to Eqg. (14) can be derived by expressing
the differentialsAA,, in the variationsA¢, andAFE,,. In Section 4.4 we describe the
application of our coupled IPA method to the measutRb, bound-state spectrum

making use of the foregoing formalism.

4.3 Two-color photoassociation experiment

We have measured the energies of the highest bound states of 3°Rb, with two-color
photoassociation spectroscopy [2]. The experiment is very similar to our previous one-
color photoassociation experiments [7, 8, 9, 18]. About ¥Rb atoms are trans-
ferred from a magneto-optic trap (MOT) to a far off resonance optical dipole force trap
(FORT) [21]. The atomic density is about¥acm~2 and the temperature is a few hun-
dred microKelvin. The FORT is created from a 1.7 W, linearly polarized laser detuned
35 nm from the rubidium Bline, focused to a 1@m gaussian waist. This creates a trap
with 12 mK depth. The atoms are doubly spin polarized inthe 3, m; = 3 state by

a repumper beam tuned to theRb 525, 5 (f = 2) to 52 P ,2(f = 3) transition and an
optical pumping beam tuned to tRéRb 525y o(f = 3) to 52 Py »(f = 3) transition.

The optical pumping beam is circularly polarized with an intensity of 2/00cn?. A 3
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G magnetic field isapplied parallel to the FORT and optical pumping beam propagation
direction.

Once the FORT has been loaded, the FORT laser beam is aternated with two pho-
toassociation laser beams and the optical pumping and repumper beams ay&es
for a total of 200 ms. This is done to avoid the effect of the AC Stark shift of the trap
laser on the photoassociation spectra and the optical pumping process. At the start of
each cycle, only the FORT beam is applied for 2& After this, the FORT beam is
turned off, and only the optical pumping and repumper beams irradiate the atoms for
0.5 us. For the last stage of each cycle, only the photoassociation beams are applied
for 2.0 us. Photoassociation laser beam 1, at frequencys ordinarily kept at a con-
stant frequency that excites transitions tm;t(v, J)) state near th&2S,; /2 + 52P, /2
dissociation limit. Photoassociation laser beam 2, at frequescig tuned to the blue
of 1 (Fig. 1). Both photoassociation laser beams are colinear with the FORT beam,
and are focused to a waist of 20n. Photoassociation beam 1 is supplied by a tempera-
ture and current tuned SDL-5401-G1 diode laser with an intensity of 1.6 kW#/emd
a linewidth of less than 20 MHz. Photoassociation beam 2 is supplied by a Ti:Sapphire
ring laser with an intensity of 30-200 W/cth and linewidth less than 2 MHz. After the
200 ms cycling process is complete, the number of atoms in the trap is measured with
laser-inducediuorescence. This process is repeated for a succession of laser frequen-
clesvsy.

As in the one-color experiments, the photoassociation beam 1 promotes trap loss
when resonant with a free-bound transition. A pair of free atoms absorbs a photon
from beam 1 to create a short-lived excited molecular state, which then spontaneously
decays to a pair of free atoms with a kinetic energy high enough to escape from the
trap. Figure 4 shows the one-color photoassociation spectrum obtained by scanning
only one of the photoassociation beams across a single vibrational level at 12573.1
cm~'. The upward going peaks are associated with the trap loss induced by this laser.
The J = 0, 2 and 4 rotational levels are visible in this spectrum. For the two color
spectra, photoassociation beam 1 is tuned to the maximum of the?2 peak, and
induces a constant loss of aboutZ®f the atoms in the absence of the second laser.

Figures 5a and 5b show the two-color photoassociation spectrawitined to the
J = 2 rotational levels of two different vibrational levels at 12563.1 ¢nand 12573.1
cm~ ', respectively. Az becomes resonant with a bound-bound transition between the
excited state and a ground molecular state, the trap loss decreases. The positions of the
ground state vibrational levels are thus visible as downward going peaks in the two-color
spectra. This occurs because the excited state is power broadened by photoassociation
laser 2. This reduces thefiefency of excitation of the colliding atoms by photoasso-
ciation laser 1, and therefore reduces the trap loss. A theory of these two-color trap
loss lineshapes has been given by Bohn and Julienne [22]. Figure 6 shows &edagni
view of the two-color photoassociation spectrum for very small positive and negative
frequency differences; — ;. For zero and negative frequency differences, upward
going peaks are observed which are due to one-color trap loss induced by photoasso-
ciation laser 2 by transitions & = 0, 1, and 2. (For this spectrumh = 1 is visible
because the atoms were not polarized.) For a positive frequency difference of about 160
MHz, the spectrum shows a downward going peak associated with the highest bound
level observed in this experiment.
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Figure 4: One-color photoassociation spectrum &fRb,. A single vibrational level
near 12573.1 cm' is shown, with/ =0, 2, and 4 rotational levels visible.

We investigated the first 20 GHz below the 525, 5(f = 3) + 525} 2(f = 3) dis-
sociation limit. The intermediate state at 12563.1 ¢mesulted in a spectrum showing
more ground molecular states than the state at 12573:1.cwe also observed a few of
these same levels with an intermediate state at 12561.8.cAtom these photoassoci-
ation spectra, the binding energies of 12 ground state levels were measured, as shown in
Table 1. We searched for but did rfitd molecular states with binding energies greater
than 20 GHz, presumably due to small Franck Condon factors.

The frequency scan of photoassociation laser 2 was calibrated to an accut#tfy of
MHz with a scanning Michelson interferometer wavemeter and a 300 MHz free spectral
range etalon. The zero of the frequency difference vo was determined by the point
at which the second laser induced one-color trap loss of thé = 2) line, as in Fig.

7. Photoassociation laser 1 was passively stabilized and demonstrated drift below 20
MHz over the course of a scan.

The widths of the observed lines varied from about 60 MHz to about 300 MHz. The
widths of the broadest lines were probably dominated by power broadening, whereas for
the narrowest lines the thermal width of the initial continuum state plays disignt
role. To our knowledge there are no explicit calculations for thermally averaged two-
color photoassociation lineshapes in the literature. However, one-color thermally aver-
aged photoassociation lineshapes have been calculated previously [7, 8, 9, 23]. These
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Figure 5: Two-color photoassociation spectra with tuned to intermediate vibrational
levels states near 12563.1 ch{a) and 12573.1 cm!(b). The two-color spectrum is
obtained by setting; to the intermediate stat¢ = 2 rotational level, and scanning
to the blue o/, . (c) Assignments of the observed levels.
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Figure 6: High resolution two-color photoassociation spectra for very small laser fre-
quency differencévs — v/1). v is tuned to theJ = 2 intermediate state near 12563.1
cm 1. The data shows three upward going peaks indicating further one-color trap loss
as|0, (v,J = 0,1,2)) states are excited. The downward going peak shows the most
weakly bound ground molecular state observed in this experiment, with a binding en-
ergy of 160 MHz.

cal culations show that the photoassociation peaks can easily be shifted by 1-2 kT rel-

ative to the peak position in the absence of thermal broadening effects, where T is the
temperature of the gas ang; ks Boltzmann'’s constant. For our conditions this shift
would be in the range from about 6 to 20 MHz. Similar shifts should occur for our
two-color spectra, and they should occur in both the calibration spectrum (as in Fig. 7),
which determines the zero of the laser difference frequency, as well as in the observed
lines. In addition, line pulling due to drifts in the frequency of laser 1 and AC Stark
shifts could also play a role in the position of these lines. These shifts dieutfifo
evaluate accurately since the tuning of laser 1 and the gas temperature are not accurately
known, and since we did not attempt to model the lineshapes. However, in our judge-
ment these shifts could easily amount to 30 MHz for all lines and perhaps be as large as
100 MHz for the broadest lines. These lineshape effects are the dominant error in our
experiment, and we also note that they are a systematic egorall levels may dis-
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| Fl 1] FEep(GHz) | Eni(GHz2) | Ena2(GHz) | v—vp] | (fi./fe) |
6 [ 4] +0.015 £ 0.002 +0.014 +0.015 -1 (3,3)
62| —0.16+0.06 -0.14 -0.14 -1 (3,3)
5|2 -3.18 -3.18 -1 (2,3)
4 12| —6.23+0.06 -6.22 -6.22 -1 (2,2)
6|2 —1.524+0.06 -1.48 -1.46 -2 (3,3)
52| —4.58+0.06 -4.51 -4.50 -2 (2,3)
4 12| —7.61+0.06 -7.56 -7.54 -2 (2,2)
62| —520+0.06 -5.13 -5.09 -3 (3,3)
5|2 -8.17 -8.12 -3 (2,3)
4 12| —8.344+0.06 -8.35 -8.33 -3 (2,3)
42| —11.27+0.06 -11.23 -11.18 -3 (2,2)
62| —12.22+0.06 -12.24 -12.14 -4 (3,3)
4|2 -12.50 -12.43 -4 (3,3)
52| —15.24+0.06 -15.28 -15.18 -4 (2,3)
42| —15.67+£0.06 -15.67 -15.61 -4 (2,3)
42| —18.39+0.06 -18.38 -18.29 -4 (2,2)

Table 1: Spectrumof 35Rb, I = 2, F' = 4,5, 6 levels observed experimentally, including
assignmentsof (f1, f2) progressionsand integer parts of the v quantum number relative

to the dissociation limit v, for the progression involved. Theoretically predicted levels
without (E¢s,1) and with (£, 2) Feshbach resonance data taken into account. The

l = 4, F = 6 g-wave shape resonance state observed by one-color spectroscopy is also
included.

play ashift in a common direction. In our first report on these results [2] we quoted an

overall error of £30 MHz to +60 MHz on the level energies, depending on the narrow-

est linewidth observed for each level. In the present paper we prefer to quote a more
conservative error limit o£60 MHz for all experimental energies.

4.4 Application of Coupled IPA to two-color
photoassociation experiment

We assign the quantum numbers of the observed bound states as follows. As pointed

out earlier, due to the above-mentioned selection rule= J, which is valid also in the
downward transition, we produde= 2 bound ground-state BHevels only, since a

J = 2 rotational level of the lowef, electronic state is excited as an intermediate
state. Also, with a two-photon transition from the initj&, mpr) = |6, +6) state of
two doubly-polarized atoms, onlff = 4, 5, or 6 levels can be formed withp > 4.
Note furthermore that for alB, f; and f; are good quantum numbersif = 5 or 6.

In addition, for! = even Bose symmetry excludés = 5 for (f1, f2) = (3,3). We
should therefore expect to see two mutually shifted pure triplet vibrational progressions
converging to the f1, f2) = (3,3) hypeffine threshold forF" = 6 and to the(2,3)
hypefine threshold for/" = 5, respectively. These are the two sequences indicat
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as (3,3;6) and (2,3;5) above the spectrum in Fig. 5¢c. The energy differences between

pairs of corresponding levels in the progressions indeed correspond to the single-atom
hypeifine splitting 3.04 GHz. The remaining levels must be assigried 4 and have
mixed singlet-triplet character. In view of this one would expect these levels to display
a less regular pattern than thé=5 and 6 levels. Anticipating our further analysis we
note, however, thaf; and f, continue to be approximately good quantum numbers [24]
for the mixed singlet-triplet states because of an approximate equality of singlet and
triplet phases fof®Rb. (see also Tsai et al. [2]). This equality is similar to that which
has been discovered f&fRb [25, 26, 27], and in fact follows from it by mass scaling

of the wavefunction phases. We note that this scaling of small phase differences is
not expected in general, but just happens to occur for the particular case of Rb. As a
consequence, the = 4 states display a pattern almost as regular asithe 5 and

6 states. Table 1 shows the spectrumi ot 2, ' = 4,5,6 levels observed in our
experiment, including the assignments of {lfig, f2) progressions and the integer parts

of the difference® — vp, with v the vibrational quantum number ang its generally
non-integral value at the dissociation limit for the progression involved. We also include
thel = 4, I’ = 6 g-wave shape resonance state observed by one-color spectroscopy [9],
which will also be used in the following analysis.

We analyze the energy spectrum as follows. Referring to Section 4.2, we charac-
terize the singlet potential in the internv@dl< r < 19 a¢ by the singlet accumulated
phases%, which we take as fit parameter, and by its derivative§ andek, calculated
on the basis of the above-mentioned IPA potential of Amiot [19]. In the same interval
the triplet interaction is characterized by three similar parameterds taken as dit
parameter, Whereaﬁg andgblT are taken from the Krauss and Stevens ab-initio triplet
potential [20]. For > 19 ag we write the interaction operator as

V(T) = —% — % — % + Vezen +Vhf. (19)
For C we consider values in a range that includes at the lower end the interval 4550
4+ 100 a.u., determined in a previous one-color photoassociation experiment [9], and at
the higher end the interval 47@050 a.u. from the analysis in Ref. [28]. Values fdg
and (g are taken from Marinescu et al. [29]. The exchange interaction is taken from
G. Hadinger and G. Hadinger [30].

The actual application of our coupled IPA consists of a number of iterations, in each
of which Eq. (17) is solved as a least-squares problem. At the beginning of an iteration
step, eigenfunctions? and eigenvalue&? (i = 1....M) are calculated for certain phase
and potential parametets (j = 1.....N, N < M). This gives us a vectah £’ having
the set of differences with the experimental enerdigs; as components, from which
the vectorAz with the changes\z; as components is to be determined. Writing Eq.
(17) in the form

AE = M Az, (20)
we use the same wavefunction$ to calculate theM x N matrix M. To take into
account the experimental error bars we divide the comporeatsand M;; by theith

error bar without changing our notation. The least-squares solution is found by solving
Eq. (20) for the parameter changs using the pseudo-inverse 8f (see Ref. [31]):

Az =M 'AE. (21)
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Thisiteration step isrepeated until convergence hasbeen reached. It turnsout that highly
accurate values of the elements of M are needed for correct and rapid convergence.
Thisis especially true for directions in parameter space for which the least-squares sum
varies slowly. We have paid special attention to this aspect by studying theN = 1
case. In our coupled IPA procedure th&ave shape resonance is included as a quasi-
bound state, by assuming its wave function to vanish at a radius far inside the centrifugal
barrier. Generally, the CIPA method converges after 3 to 4 iterations.

Parenthetically, we note that our method is easily extended to cases where (part
of) the measured data consist of enedifferences between states without information
on absolute positions with respect to the dissociation threshold, for instance. In such
cases the differences between element& bfand between elements &f are used in
equations (20) and (21) instead of the elements themselves. o

Since we have normalized the componentg\df to the measured energy uncer-
tainty intervals, the covariance matrix for theally obtained parameter values is given

by
2 wman (22)
M-N—= =~
the diagonal elements of which give the square offthal parameter errors. In this
expressiony? is the least-squares sum.

In view of the large discrepancy of the results of our previous paper [2] with the
later results obtained by Roberts et al. [28], we here repeat the analysis of Ref. [2] but
now without a restriction or’s. Also, as noted above, we keeg fixed to the ab-
initio value. We thus trea€s, ¢%, and¢% as parameters in fit to the two-photon
data in combination with the energy position of the g-wave shape resonance. While the
triplet parameters are primarily determined by tHie= 5 and 6 levels including the
g-wave shape resonance, the singlet phase paragfeisrmostly determined by the
mixed singlet-tripletF” = 4 states, in particular those witlf;, f2) = (2,3). Wefind
Cs = 4650 £+ 50 a.u., a range with a considerable overlap with the interval 4760
a.u. from Ref. [28]. Considering th&; range4550 £ 100 a.u. found by Boesten et
al. [9], which is based on independent information, i.e. a Franck-Condon oscillation in
the photoassociation spectrum, one would conclude that our centralGglae4650
a.u. may be considered as the optimal overall result, if the Franck-Condon oscillation is
taken into account. The theoretical level energies that follow from this analysis are given
in the fourth column £, ;) of Table 1. For varying’s near the above central valGg
we subsequently derive optimal values@ and qs‘%. The corresponding vibrational
guantum numbers at dissociatiops(mod.1) andypr(mod.1) are

vps = +0.0050 + 1.8(10"*)(Cs — Cg) £ 0.0095,
vpr = —0.0518 4+ 1.0(10"*)(Cs — Cs) £0.0032, (23)

with the (s values in a.u.

The analysis of Ref. [28] included the parameters of a magfiefitinduced Fes-
hbach resonance that has been observed if°Rie +3°Rb elastic scattering channel
by two groups [10, 28] since the experimental two-color photoassociation work that we
analyzed above. As a following step therefore we supplement the foregoing analysis by
including the extremely accurate values of the resonfiet®B,c., = 155.2+04 G
and the resonance 'widtl = 11.6 0.5 G, measured by the JILA group [28] as addi-
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tional experimental data in our parameter search with corresponding coupled-channels
M matrix elements. We thund ax? minimum atCs = 4700 & 50 a.u., in agree-
ment with Ref. [28] and consistent with the abaVg = 4650 a.u. value. The set of
theoretical energy levels obtained in the ovefialkre included in Table Tifth column:
Eip 2).

We also give the optimalp s, vpr values for varyinds near the central value 4700
a.u. of the lattefit:

vps = +0.0090 4+ 0.8(10*)(Cs — Cs) £ 0.0009,
vpr = —0.0568 4 1.4(10~*)(Cs — Cg) £ 0.0011. (24)
The corresponding scattering lengths are (in a.u.):
as = +2650 — 12.93(C — Cg) & 250,
ap = —361 — 1.17(Cs — Cg) £ 10. (25)

The agreement between the experimental and theoretical energies is quite good. Rel-
ative to the theoretical energié¢s;, 1, the measured level energies show a small sys-
tematic difference of -20 MHz, and a random scatter of akeB® MHz, within our
measurement error. For the set of theoretical enegigs, the systematic difference
increases to -63 MHz, and the scatter remains att@0tMHz. The systematic differ-
ence is probably due to lineshape effects, as discussed in the experimental section 4.3.
For completeness we point out that the above analysis following Eq. (23), including
only the bound state data, yields the valiigs,, = 148 £ 10G,A =9+4G.

The analysis of the two-color photoassociation experiment presented in this sec-
tion illustrates how our coupled IPA method is applied in practice. We believe that the
method will be useful also for further work on the extraction of interactions between
cold atoms from highly excited bound diatomic states.

Parenthetically, we note that the sensitivitywefs andvpr to Cs, described by the
second terms on the right-hand side of Egs. (23), can be determined either by complet-
ing the coupled IPA iteration successively for various choiceSgbr, more easily, by
making use of our coupled IPA method. The formalism presented in Section 4.2 allows
us to considet’s or other parameters formally as parametersind to translate their
variationsAz into variationsAFE by means of the correspondidd matrix elements
calculated in our coupled IPA method. The latter in turn can be translated into variations
of vpg andvp or any other parameters determined in the coupled IPA search, using
the inverse equation (21). This procedure is applicable generally in the case of param-
eters for which one wants to indicate the dependence dirtaéresults explicitly as in
equations (23) instead of including them in the parameter search.

45 Conclusions

We have described a coupled inverse perturbation approach for extracting information
on interactions between cold atoms from energies of bound diatomic states. It is a
generalization of the conventional IPA to situations where external and internal (spin)
degrees of freedom of the two bound atoms are coupled. Basically the approach has the
purpose to extrapolate interaction properties from just below the dissociation threshold
to just above, i.e. the cold-collision regime. Although the method is applied here to
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bound states of two identical ground state alkali atoms, it is applicableto any pair of cold

atoms where the short-range interactions are taken into account in terms of a boundary
condition on the radial wavefunctions at a certain interatomic distagicin our case

of two alkali atoms the boundary condition takes the form of an accumulated phase for
the wavefunction in the singlet and triplet spin channels. The latter description derives
its usefulness from the fact that cold collisions together with the considered highest part
of the bound state spectrum comprise an energy range small compared to the typical
relative kinetic energies of the two atoms in the distance rangerg. We have made

clear that the validity of the WKB approximation for< ry is not essential.

We illustrated the coupled IPA by an application to the botiRb, states measured
in a two-color photoassociation experiment and a g-wave shape resonance observed in
a one-color photoassociation experiment. We also performed a combined parameter
search by including the measured resonaiielel and resonance width of a recently
observed Feshbach resonance.
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Abstract

On the basis of recently measured Rbs bound-state energies and con-
tinuum properties, we predict magnetically-induced Feshbach reso-
nances in collisions of ultracold rubidium atoms. The resonances make
it possible to control the sign and magnitude of the effective particle-
particle interaction in a Rb Bose condensate by tuning a bias magnetic
field.

For the case of ®5Rb they occur at field values in the range where these atoms can
be magnetostatically trapped. For 87Rb they are predicted to occur at negative field
values.The observation of Bose Eingtein condensation (BEC) in dilute ultracold gas
samples of rubidium [1], lithium [2] and sodium atoms [3] has made it possible for
the first time to study this macroscopic quantum phenomenon in its pure form with-
out complicated modiications due to strong interactions. A variety of new experiments
has been proposed or already carried out, fascinating examples being the observation of
collective shape oscillations and the observation of the relative phase of two Bose con-
densates [4, 5]. A rich variety of other experiments would come into reach if one could
alter arbitrarily, possibly even in real time, the sign and magnitude of the atom-atom
scattering lengtle. The scattering length occurs as the foéfnt of the condensate
self-interaction term in the condensate wave equation and has a profound effect on the
stability and other properties of the condensate. An opportunity to change this param-
eter would arise if it were possible to tune the scattering length by means of external
fields, i.e. either a static magnefield [6] or a time-dependent optical [7] orfiéld [8].

A situation wherea can be changed between positive and negative values either
through 0 or+oco by tuning a dc magnetifield is that of a Feshbach-type resonance
between the initial two-atom continuum state and a quasibound molecular state at a
common value of the energy [9]. Due to their different spin structures these states have
different g-factors, so that the continuum and bound state energies can be tunedi
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resonance at specific values of B. If we can find a resonance at a field value for which

the atoms can be magnetostatically trapped, the above situation of a tunable scattering

length should be readily achievable experimentally. In particular, changing the sign of

a from positive to negative would turn a stable condensate into a collapsing unstable

one, of which the time-development can be studied. A variety of other experiments
would become possible too. For instaneesould be changed on the time scale of the
resonance lifetime or the particle interaction could be made repulsive in one part of
space and attractive in an other.

Rubidium atoms were thiérst atomic species for which BEC has been realized. The
purpose of this paper is to point out that they may also be the atomic species for which
B-field tuning of the scattering lengthfigst achieved. For rubidium atoms the infor-
mation available on the atom-atom interaction has long beerficigumt for a prediction
of the kind we envisage. This situation has drastically changed by the observation of
two coexisting®”Rb condensates [10] and by the results of a two-color photoassocia-
tion (PA) experiment on a cofPRb gas sample [11]. In the latter experiment the last
20 GHz of bound levels in the lowest molecular singlet and triplet states was measured,
allowing us to precisely determine a complete set of Rberaction parameters.

Before these developments, important information on the low-energy triplet1)
collisional wavefunction had been obtained from cold-atom photoassociation work in
our two groups on rubidium atoms, leading to the observation of its node structure [12]
and the observation of shape resonances [13, 14]. Due to thdimgpiateraction pure
singlet incident collision channels do not exist. As a consequence, information on the
singlet interaction properties can only be obtained by studying mixed singlet-triplet col-
lision channels. Very useful, but still indidient, information of this kind came avail-
able [15] via a measurement of the absolute value of the scattering lengthfor
elastic collisions of cold”Rb atoms in théf, m;) = |1,—1) hypefine state (see Fig.

1 for the ground-state hypme diagrams of”Rb and®>Rb). As pointed out above,

very important additional information came from the recent observation of overlapping
|2,2) and|1, —1) Bose condensates [10]. Three groups have independently pointed out
that the extremely small rate constént, 2, (1,—1) for decay due to collisions between
atoms in the two different states, implied by the stability of the double Bose conden-
sates, should be a strongly constraining factor in the determination of the remaining cold
collision properties [16, 17, 18]. In the following we will show that this and all other
available®>Rb +8Rb and® Rb + 87Rb cold-collision observationkt into a consis-

tent picture, which can be derived from the bound states of the two-color PA experiment
[11]. This allows us to make a reliable and accurate prediction of Feshbach resonances.

In order to calculate bound or continuum state wavefunctions, we write the Rb
long-range interaction potentials in the form

Cs Csg C
VS(T) :_T_g _T_SS _TTI(;) +‘/e;rch7 (1)

with the exchange part taken from Smirnov and Chibisov [19], the dispersiofi-coef
cientsCg andC'yy from a calculation by Marinescu et al. [20], an@ from previous
photoassociation work [14]. We do not need the full information on the short-range
singlet (& = 0) and triplet & = 1) interaction potentials. Rather, this information is
summarized in a boundary condition on the= 0 andS = 1 radial wave functions

at the interatomic distanoce= ry = 20 &, on the basis of which Schrédinger’s equa-
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Figure 1: Hyperfine diagrams for eectronic ground state of a) 87Rb, b) 3°Rb.
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Figure 2: Rate constant G5 21,1 for decay due to collisions between *"Rb atoms
in different hyperfine states as a function of the singlet scattering length. The horizon-
tal lines indicate the experimental range. The two-sided arrow indicatesghange
following from the two-color PA experiment.

tion issolved for r > ro. The boundary condition takes the form of a specific choice of
the phases ¢4, ¢, of the oscillating singlet and triplet radial wavefunctions in a small
region of energy £ and interatomic angular momentum I near £ = I = 0 [21]. This
phase information was extracted from an analysis of the energies of the highest 5Rb;
bound states [11], and of the g-wave shape resonance observed in Ref. [14]. We also
used available information on the total number of,RImglet and triplet bound states in
this analysis [22, 23, 14].

With the parameters thus determined we can calculate the continuum quantities
of interest. For thé®Rb + #5Rb triplet and singlet scattering lengths, \ad [11]
ar(8°Rb) = —4404:140 a¢ (corresponding fractional s-wave vibrational quantum num-
bervp at dissociation (modulo 2 0.9540.01) and+-4500 a¢ < as(3°Rb) < 400 oOr
—o0 < as(®®Rb) < —1200 ao (vp = 122.994 + 0.012). A coupled-channel calcula-
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tion allows us to predict a value for the scattering length of a pair of ®°Rb atoms in the

|2, —2) state. Wefind ag,_2 = —450 + 140 ay. Mass-scaling the phases tRb en-

ables us to predict bound-state and ultracold scattering properties for this isotope too, in
particular the mixed hypéne decay rate constat 5y, (; —1)- In this mass-scaling
transformation we correct for the different local de Broglie wavelengths, multiplying
¢s,7(F,1) by a square root of the atomic mass ratio and taking into account the total
phase change from the inner turning point4o Wefind excellent agreement between

the bound-state and continuum properties. As an illustration Fig. 2 shows the calculated
G2,2)+(1,-1) as a function of thé”Rb singlet scattering length, which corresponds di-
rectly with the singlet phase. The two-sided arrow indicates the maximurange+5

& obtained from the two-color PA bound-state energies, including the uncertainty in the
dispersion coditients. The position of thé&'-curve along theis axis is uncertain by

+6 ag, with the error bart-3 ¢ due to the uncertainty in the number of bound triplet
states §84 1 for 3°Rb, [14]) as an important contribution. Clearly, there is a preference
for the as interval along the right-hand slope of theminimum. Good agreement is
obtained between the calculated and measured rate constant (horizontal lines) with the
same set of parameters determined above.

On the basis of this consistency we are now able to predidigltedependent scat-
tering lengths for a further comparison with experiment and to search for Feshbach
resonances. Figure 3 shows the calculaedependence of, _, for 8’Rb in the
range—By < B < By, where By is the maximumfield for which an atom in the
|f =i—13,my = —(i— 1)) hypefine state, with the nuclear spin, is wealkeld seek-
ing and thus trappable. Thigure is extrapolated to negatifields to include collisions
of ultracold|1, +1) atoms [24]. Note that reversing tfield direction for constant. is
equivalent to reversing:; for afixedfield. Four Feshbach resonances are found at neg-
ativefield values (383, 643, 850, 1018 G) and none at podidtds smaller than 1250
G. The latter as well as thigat B-dependence in this range is consistent with the re-
sults of Newbury et al. [15], in particular with the absence of Feshbach resonances with
magneticfield width> 2 G over thefield range 15-540 G. Also, the calculated_,
value 106 £ 6 aq in this range agrees with the measured absolute magrtude21
ao. Wefind a; _; to be positive, in agreement with the apparent stability of a large
condensate 6f'Rb |1, —1) atoms [10, 15]. The occurrence of Feshbach resonances at
negativefields is also consistent with tifield dependence of the highd$Rb, s-wave
bound-state energies, calculated by means of our coupled channels method. The thresh-
old of the elastid1, —1) + |1, —1) collision channel intersects with bound-state energy
curves at four negativ8 values, which agree with the four values given above.

Figure 4 shows similar results f6?Rb. This time wefind two broad Feshbach
resonances at positiiields 142 G and 524 G, and a very narrow one at 198 G, all
three in the wealfield seekingB range. From the shape of the excursions through
+oo it appears that the resonances are due to molecular states crossing the threshold
of the incoming channel from above with increasifig Again this is consistent with
a calculation of coupled-channels bound-state energies. An interesting phenomenon in
both Fig. 3 and 4 is the occurrence of a very narrow resonance. It arises from a molecular
state with the electronic spins and the nuclear spins adding up to the maximum possible
F'value atB = 0. Their narrow width is due to the selection rule”’ = 0, by which
the transition from the incoming channel withlower by 2 can only take place via the
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Figure 3: Predicted field-dependent scattering length for collisions®6Rb atoms in
|1,—1) state. Three broad Feshbach resonances occur for negégids at 383, 643,
and 1018 G. A narrow resonance occurs at 850 G.
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Figure 4: Predicted field-dependent scattering length for collisions®6Rb atoms in
|2, —2) state. Two broad Feshbach resonances occur in the Welkseeking range at
142 and 524 G, and a narrow one at 198 G.
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Figure 5: Resonance structure of elastic cross section in ®°Rb |2, —2) + |2, —2) channel
as a function of B for three collision energies. For each energy o increases from a
background value to the quantum limit 8 /42, then decreases to 0 and finally returnsto
background value.

Zeeman interaction in second order.

Wefinally givethevalues of the singlet/tripl et scattering lengths deduced in the anal-
ysis, including error bars on the various experimental and theoretical input parameters.
We find: a7 (3"Rb) = 102 & 6 ag andas(*"Rb) = 93 £ 5 ao. We alsofind that the
predictedfield positions of the Feshbach resonances are reliable to within about 10 G
for 3Rb and 40 G fo"Rb. To give an impression of the resonance behavior to be
expected foP>Rb +35Rb scattering, Fig. 5 shows the elastic cross section for three col-
lision energies as a function &f in the range of thdirst resonance at 142 G. For the
lowest energies the background value is almost equatag ,. For each energy in-
creases to the quantum lingit-/ &2 close to the resonandeld value and subsequently
decreases to 0 before returning to the background value. Apparently, although the max-
imum gradually disappears with increasing energy, the resonance shapiécis iy
pronounced to be observable in an experiment similar to that of Ref. [15].
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An important conclusion of our work isthat we can account for al presently known
properties of Rby, bound and continuum states with asingle set of parameters. Thesein-
clude the triplet scattering lengths from earlier experiments [13, 14], the highest bound
85RDb, states measured in the two-color PA experiment [11], the double condensate sta-
bility [10], the measured scattering length_; (¥”Rb) and the absence of resonances
in that quantity wider than 2 G in the range 15-540 G [15]. This enables us to de-
duce scattering lengths and positions of Feshbach resonances. The prediction of such
resonances in an interestifigld range should be readily v&&ble experimentally. If
corfirmed, they will give rise to a variety of fascinating new possibilities for studying
Bose condensates.

We gratefully acknowledge the support of work at Austin by the A.P. Welch Founda-
tion, the National Science Foundation and the NASA Microgravity Sciences and Appli-
cations Division. The work at Eindhoven is part of the research program of the Stichting
FOM, financially supported by NWO. We thank Hugo Boesten for helpful discussions
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Abstract

We formulate a rigorous method to calculate the stationary scattering
wave function for a three-body collision between three ultracold doubly-
polarized ground-state alkali atoms, based on the Faddeev formalism.
The circumstances of the collision correspond to the conditions pre-
vailing in Bose-Einstein condensed and other ultracold gas samples.
The method combines a pair-correlated hyperspherical expansion in
6D with the accumulated phase approach for the pair interactions. It
enables us to calculate the complex 6D elastic scattering length and
the three-body recombination constant.

The redlization of Bose-Einstein condensation [1, 2, 3, 4] in ultracold dilute atomic
hydrogen and alkali gases has been the starting point for a great variety of experimen-
tal and theoretical studies. An attractive aspect of these systems is the ability to perform
rigorous calculations of properties of these systems. At the low densities of the ultra-
cold atomic samples used in most of the experimental studies single-atom and two-atom
processes dominate the properties, and these can generally be calculated rigorously. In
a subset of experiments at higher densities, however, three-body collisions are impor-
tant, both in atomic hydrogen [5] and in atomic alkali [6] gas clouds, as they give rise to
recombination losses (dimerization). Understandably, with the exception of a publica-
tion on atomic hydrogen [7], all existing theoretical treatments of three-body collisions
of ultracold atoms are based on (possibly crude) approximations.

A first category of such calculations applies to resonance recombination. This pro-
cess proceeds in two sequential stages. First, two atoms collide and are trapped into a
long-lived quasi-bound state. Subsequently, this quasi-molecule is stabilized in a col-
lision with a third atom in which it undergoes a transition into a bound state. The
importance of such a process was recognized in 1976 by Stwalley in connection with
the stability of spin-polarized atomic hydrogen [8]. Reynolds et al. presented a theo-
retical treatment for the case of cold atomic hydrogen [9], based on an earlier treatment
for thermal atoms [10]. Recently, a similar mechanism was studied [11] for three-
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(Feshbach) resonance recombination losses in a sodium optical trap [12].

Studies of non-resonant (or direct) recombination processes were made by Greben
et al. [13] and by Kagan et al. [14] using various approximations. Three-body recombi-
nation calculations for alkali atoms were carried out on the basis of a Jastrow approx-
imation by Moerdijk et al. [15] and, using a different approximation, by Fedichev et
al. [16].

A rigorous calculation describing a three-body collision for doubly polarized H
atoms has been carried out in 1986 by de Goey et al. [7]. This was a calculation in
the momentum representation based on the Faddeev formalism [17]. Until now, an ex-
tension to other spin states for H atoms or to alkali atoms for even the simplest, doubly
polarized, spin state has proven to beidiflt, primarily due to the strongly attractive
pair interactions, i.e., the large number of bound states in the two-body subsystems.

In this paper we propose a method that should make it possible to cope with this last
problem. The method combines aspects of several previous approaches. Like the 1986
calculation for doubly polarized H atoms, it is based on the Faddeev scheme, but in con-
trast it is a coordinate space approach. The motivation for turning to coordinate space
is the great advantage of using accumulated phases [18] to 'summarize’ the net effect
of the, often insdiciently known, short range potentials in the two-atom subsystems.
To implement these, a division in short range and long range problems in coordinate
space is essential. Also, our approach bears some analogy with the earlier approximate
Jastrow approach of Moerdijk et al. [15]. Our three-body wave function contains sim-
ilarly a product of three zero-energy s-wave two-body pair scattering wave functions
(subject to a modication discussed below), inspired by the approximate Jastrow form
of the rigorous H + H + H wave function in Ref. [7]. In our case, however, the Jastrow
product is turned into a rigorous expression by multiplying it by a series of hyperspher-
ical harmonic terms in the 6D relative coordinate spREeresulting from splitting off
the trivial total center of mass motion of the three atom system. Building in the radial
node structure of the pair wave functions from the outset is a rather essential ingredient
of any successful approach. Any attempt to account for the complicated node structure
- the number of nodes in the Cs-Cs triplet s-wave radial wave function is more than 50
within an interatomic distance of = 20 a¢ - via a hyperspherical expansion alone, is
deemed to fail because of slow convergence. The idea of combining a Jastrow ansatz
with a hyperspherical expansion in a 'pair-correlated hyperspherical harmonic’ basis has
been investigated previously for the three-nucleon problem by Kievsky et al. [19, 20].
In that problem the pair-correlated hyperspherical basis hafiritdadvantage relative
to a pure hyperspherical harmonic expansion in that the strongly repulsive short range
core of the nucleon-nucleon interaction is automatically taken care of by the Jastrow
functions. Atom-atom interactions have this feature in common with nucleon-nucleon
potentials. In the context of cold atoms an even stronger motivation for splitting off
a Jastrow part from the hyperspherical harmonic expansion is to be found in the fact
that it appears to be the only way to implement the accumulated phase approach in a
three-body theory. In the spirit of the accumulated phase method each of the Jastrow
factors coincides with the pair scattering wave function only up to a certain interatomic
distance. Beyond that distance the atom pair becomes increasingly susceptible to pertur-
bations by the third atom so that it becomes less meaningful to incorporate the structure
of the wave function of the unperturbed pair. We thereforiéngethe Jastrow function
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Figure 1: Thethree sets of Jacobi coordinates.

to tend smoothly to a constant value of unity in an r interval of roughly 10 to 30 ag
beyond the |ast but one node of the zero-energy scattering wave function.

Since we expect thfinite (see Ref. [21]Y" — 0 limit of the three-body recombi-
nation constant to apply at the relevant low temperatures of the BEC experiments, we
consider an initial state with three atoms approaching one another with zero energy in
relative s-waves. The magnetic dipolar interaction playing a negligible role, we have
to consider a central pure-triplet atom-pair interaction and a total angular momentum
L = My = 0for the three-body state. As the total spin state has a wéltet to-
tally polarized characte$ = Mg = %,I = my = 3t, with ¢ the nuclear spin, we leave
out the spin part of the total wave function, so that the three-body wave funitooriy
describes the geometry of the triangldided by the atom positions, the orientation of
the triangle iNR? space being isotropic. IR® we describe the triangular geometry by
the 6D radiusp, corresponding to the linear dimensions of the triangle, supplemented
with two angles varying on the hypersphere of constead characterizing the shape
of the triangle. For. # 0 the total wave function would also depend on three other (Eu-
ler) angles on the hypersphere, characterizing the orientation of the triangle. The former
two angles are usually chosen in one of three different ways depending on the choice
1 =1, 2,3 of the Jacobi coordinated, i/; (see Ref. [22] and Fig. 1). For instanag,is
the radius vector from atom 3 to atom 2, whiigis -(%‘)% times the radius vector from
the center-of-mass of the pair (23) to atom 1. One of the above anglesharacter-
izes the relative magnitude @f andy;: x; = pcos¢;,y; = psing;, ¢; € [0, 5]. The
other anglef);, is the angle between; andy;. A surface element of the hypersphere
with radiusp is then given by

p°dQ = 872 p° sin 0,d0; sin? ¢, cos? ¢, d;. (1)

We write the total collisional wave function as a sum of three Faddeev components,
U = (T, 91) + ¥ (T2, 92) + (&3, 43), with a hyperspherical part of the form

WS = f(ri2) f(ras)f(r31) Y Y Uka(p)| (K, 1)a). @

i=1 K,l
The superscript HS serves to distinguish the hyperspherical part (2) of the total wave
function from an additional, asymptotic contributi@ to be considered below. For
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each i the states
|(K,1);) = Nk Py(cos ;) Pk i(¢;)- 3

form an orthonormal set of eigenstates of the 6D 'angular momentum’ operatdi® on

the hypersphere with eigenvalugg K + 4). The coeficient Ng; is a normalization
constantF; is a Legendre polynomial @bs 6; = 2;.3; and Px ;(¢;) is proportional to

a Jacobi polynomial [23]. The expressions (2) and (3) are special cases of more com-
plicated expressions valid without thé — 0 limit: the angular momentum quantum
numberg and\ associated with the degrees of freedoyrandy;, respectively, are in

our case coupled t@., M1) = (0,0) and therefore equal. We ha#é= 2(n + 1) with
n=01,2,...

The expression (2) alone would in principle fscé to describe a zero-energy three-
atom collision. With one or more atom + di-atom decay channels open at that energy,
however, it would also have to describe the outgoing wave states in these channels with
a large separation between a single atom and an atom paifyiles |Z;|. Such con-
tributions are concentrated in an increasingly smaller part of the hypersphere surface
close top; = Z, requiring increasingly larg&” values in the hyperspherical part' *.

It is therefore advantageous to include in the total wave function explicit terms describ-
ing outgoing wave state8,,;,,, for the open decay channelsl,m; in the asymptotic
region of space:

U= U LA
3
\I/A = - Z Z A’Ul'mz Q’Ulmz (fh gl) (4)
1=1 vim,

Here,v,1,m; denote the vibrational and rotational quantum numbers of a rovibrational
di-atom state, whiled,;,,, is the amplitude for the transition from the free three-body
channel 0 to the atom + di-atom decay channém,.

The function§2,;,,, is ddined by

Quim, (i, 73) = Xt (@) Yim, (@)Y "Ou(koryi) Y, @) f (25) f (@) C(yi).  (5)
In this equationy denotes a rovibrational pair wave function &fgi) is a cyclic per-
mutation of (123). Furthermoré); is an outgoing wave solution for the relative motion
of the atom + di-atom system including a long-range atom + di-atom van der Waals po-
tential with twice the atom-ator@’s dispersion codicient. For largey;, O, tends to
the Riccati-Hankel function;” (k,;y;) — exp(ikyy;). Here,k,, is related to the total
initial 6D kinetic energyF by energy conservation:
— h2 2 __ h2 2 6
E:2—Mﬁ _Evl+ﬂkvl7 (6)
with i = %m , E,1(< 0) the di-atom internal energy, andthe initial 6D wave vector.
Finally, C(y;) is a smooth damping function equal to 1 for largeand 0 for smally;
with a transition region between roughly 40 and&0 With this factor includedy
contributes only for large atom + di-atom distances.

For reasons of symmett,;.,, (= A,;) is independent ofn;, so that the sum over
my in EqQ. (4) is anL, = 0 state, i.e., invariant under 3D rotations via the combination
of spherical harmonics in Eq. (5). The recombination amplitdgeis proportional to
the S-matrix elemen$, i, o (= S.1,0), connecting the initial free three-atom channel
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with the v, 1, m; recombination channel: when W5 is normalized such that its free
three-atom part equalexp(ix.p) ~ 1 inthe &/ — 0 limit, A,; is given by [24]

237T]€% Svl,O(E)
vl .

Ay = I 12 (7)

The matrix element,, o is related to the elasti&x’ = 0 — K = 0 (free — free)
S-matrix elemensty ¢ by unitarity:

[S0,0% + Y21+ D] Surof” = 1. ®)
vl
FurthermoreS, o can be expressed [25] in the complex 6D elastic scattering phase shift
400 and, fort> — 0, the complex 6D elastic scattering length

SO 0 — 621'(50’07
32 1
t & N ——— 4+ 0(—=). 9
cot 00 0 7T(I€CL)4+ (KQ) ©)
In terms ofA,; the I/ — 0 recombination rate constahtis given by
33
L= 20+ 1)L, Ly = — Rkyi|Aui]?, 10
%:(ﬂL)u V= 1} Aui] (10)
which describes the decrease in the numildeof condensate atoms:
dNy 1,
—— = —=3Lng N 11
dt 6 Ny LV, (11)

whereny is the density of condensate atoms. The factor 3 arises from the disappearance
of all three atoms from the condensate, the fagt@ due to the fact that the atoms are
condensed and not thermal. This conventionZds similar to the convention being
used for two-body decay. Finally, for large enoygtihe 6D isotropic part of the total
is given by
2

Wi =0) = (2 ) U300)+ Sootiatep)) = 1= () (E—0). (12

whereH, is an outgoing and{; an ingoing Hankel function [26].
In view of different conventions used in the literature, it is of interest to specify the

definition of  on which the above equation (10) is based. Wéngd. as an intrinsic
recombination event rate via the loss rate equation

dn 3

i —3Ln (13)

for an uncondensed gas sample, with the factor 3 denoting the number of atoms lostin a
three-body recombination event. (The corresponding rate equation for a condensed gas
contains an additional factor 1/6 on the right-hand side). Thigitien is in line with

the usual convention for two-body decays where the ratdicasits are also daed via

event rates. It has the advantage that the number of atoms lost in a single event occurs
as an explicit factor in the equation, while the remaining ficieint has a meaning
independent of the experimental circumstances. Often, the analysis of experimental
data is based on an effective rate equation:

dn
— = —Leppn. 14
7 Frmn (14)
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In fact, Moerdijk et al. [15] calculate a coeffcient L.y ; = 3L for an uncondensed gas
and Dalibard et al. [27] report an experimental value L.;; = % - 3L for a condensed
gas.
Our approach to determine the total wave function is based on a Kohn variational
principle [28]. We consider the functional
4

s K
So.0[¥] = So0 — 612

Here, £ = 2£(E — H) and ¥ is defined by equations similar to (2), (4), and (12),
with trial quantities Sy o, 4., U replacing the analogous quantitiesin ¥. We impose
the requirement that the functional be stationary under variations of the trial quantities.
Under square-integrable variations of the hyperradial wave functibhand variations
of 5’070 this requirement leads to the following set of coupled equations:

(| L] W), (15)

2
Al + Blo)s +Clo)+ 5 EX(0) | L) =S ARalp) 9

in which U is a column vector with componentsx -, Whl|eé B, C, and N ae
matrices with rows /7 and columns K1’ [19, 23]. The (K1, K'l’) element of the total
matrix between the square brackets is defined asan €2 integrdl :

3

3
[ ki = <f(7“12)f(7“23)f(7“31)Z(K DI L]f (r12) f(r23) f(ra1 Z

1=1 /=1

17

Each column vector D, has components

3
D)k =Y (f(ri2)f(r2s) f (rss) (K, 1)il £1Qui (i, Tir) e, (18)
i,4'=1
inwhich

vl xz 7yz ZQvlml xz 7yz (19)

Numerically, inthe 7' = 0 limit we determine a homogeneous solution U™ (p) of
Eq. (16), regular for small p and satisfying boundary conditions

vk, 140 (5) = oo,
vl 0( Ij) (K1) # (00), (20)

p—00
for large p. For each separate combination v, ! on the right-hand side of Eq. (16) we
also determine the (unique) solutigﬁl(p) of the inhomogeneous equation with only
—D,; on the right-hand side, that is regular for sma#ind obeys boundary conditions

1
i), .0 (%) 21
p—00 pt
for all (K1), including (00). Note that only the homogeneous part {éf, ) = (0,0)
contains an incoming wave, corresponding to the term 1 in Eq. (20). In terms of the
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above sol utions we woul d thus dispose of the total hyperspherica part % in Eq. (4):
\IIHS — lIIHS7hOm _ ZAvllIIHS7Ul7 (22)

v,l
with

wHShom = fri2) f(res) f(ra ZZUhOm K, 1)),
WHSYE = f(r19) fres) f(ra ZZ Di), (23)

if the decay amplitudes A,; were known. R
We determine the latter by considering variations of the trial decay amplitudes A,;
in the above functional, leading to

ZQUZ xuyz |‘C|\IIHS - ZZAU’Z’QU’Z’(fi’7gi’)> =0. (24)

o vl
Equation (24) has the form of aset of algebraic equations
ZXUZ,U’I’AU’Z’ - }/vh (25)

vl!

with the X and Y coefficients defined by
Koo = O Q@ G5y + 070 (@, 5)1L) Y Qo (Far, 7))

Yo = O Qu(E,7)cwdsrom), (26)

In summary, a calculation aong the lines of the above method might run asfollows.
Assuming cut-off values K.z, Lnazs Pmae TOr £, I, p, and cotfining oneself to a
restricted set of two-body bound state$ asfinal states close to the dissociation limit,
elements of the matriced, B, C, N, and of the column vector®,, are calculated
in a grid of p values. Then Eq. (16) is solved for homogeneous and inhomogeneous
solutionsU"*™ (p) andU"!(p). This deines®*’* via Egs. (22) and (23), and therefore
the X andY coeficients in the algebraic equations (25) via Eqgs. (26). Solving Egs. (25)
finally gives the decay amplitudes. The calculation is repeated for increasing values of
Krnazs lmaz, andp,, ..., until convergence is obtained.

We believe that a rigorous calculation using the above method is practically feasible
with present-day computer facilities. In practice, most of the computer time is needed
for the accurate calculation of the integrals o¢einvolved in calculatingd4, B, C, N,

D,, as well asX andY. To calculate these an adaptive integration scheme is chosen
which guarantees that from integration point to integration point the step in each inter-
atomic distance is restricted within a certain range near 0 depending@ma modern
processor, this results in a total calculation time of about two days. This calculation time
can be reduced dramatically on a parallel processing system because the calculation of
the matrices/vectors can be carried out independently for each vajlueltie tempo-

rary storage used in the integration algorithm oferaises the memory requirements
from 100 MB on a single processor to 50 MB per processor on a massively parallel
machine.

Calculations along these lines should be very important for understanding the
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perimental data concerning three-body recombination which are becoming available.
Additionaly, they should be able to provide guidance in judging the feasibility of further
experiments.
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Summary

The achievement of the critical phase density in agas of alkali atoms has stimulated
a breakthrough in the research field of Bose-Einstein condensation. The most impor-
tant interaction in such a gas is the s-wave scattering of two colliding atoms: The sign
of the scattering length determines whether the atoms effectively repel or attract each
other. This results in a mutual meéieid effect of the atoms, which expresses itself for
instance in frequency shifts of atomic clocks based on cold atoms. In a condensate the
effects of the meafield are very diverse. When the scattering length is negative, only a
small metastable condensate can be formed: A larger condensate collapses under the at-
tractive interactions. When the atoms repel each other the freddrenergy generally
dominates the kinetic energy, and the condensate is in the Thomas-Fermi regime.

It is therefore interesting that collisions, and thus also the scattering length, can be
controlled by the magnetield in which collisions take place. This results from reso-
nance behavior arising from the coupling of the collision channel with other figper
channels in which a (quasi-)bound state occurs. These so-called Feshbach resonances
are the main subject of this thesis.

After an introduction in chapter 1, a simple model is presented in chapter 2 by which
the structure and the properties of bound states and collision states of pairs of identical
alkali atoms in the electronic ground state can be understood. The states involved are
the very weakly bound states on the one hand and the ultracold collisions on the other
hand, both very close to the dissociation limit. As a consequence the two types of
states are closely related. Essentially, the simple picture comes down to dividing the
total interatomic distance range in two regions, in each of which a part of the total
Hamiltonian is neglected. In the separation point the total multichannel wave function
is subjected to a requirement of continuity. The model accounts for a whole range
of features present in the system. In particular it gives a description of the coupling
mechanism between hygere states which causes the Feshbach resonances, as well as
the approximate positions and the widths of the resonances.

In chapter 3 we discuss an experiment that has led to a prediction of Feshbach res-
onances fof°Rb en®’Rb (see chapter 5). This two-color photoassociation experiment
has been analyzed by an approach developed in this thesis work. The energies of mul-
tichannel bound states &fRb, molecules are measured in an optical trap by coupling
these states to an electronically excité®b, state with a laser. Using a second laser,
the latter state is coupled to a low-temperature collisional state of two trapped ground
state atoms. Via the latter coupling atoms can escape from the trap: an atom pair in
the electronically excited state can spontaneously emit a photon as a result of which the
atoms leave each other with large speed. When the frequency 6fghkaser corre-
sponds to the energy difference of the excited state and the ground state which is to be
measured, the above-mentioned coupling suppresses the spontaneous decay by decreas-
ing the population of the excited state. Thifliences the measured loss of atoms from
the trap. From the energies determined in this way parameters have been extracted that
characterize the atom-atom interactions.

To analyze the levels obtained in the experiment in chapter 3, a new method has
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been developed in chapter 4. These levels are strongly coupled and very close to the
collision threshold. The method is based on Inverse Perturbation Analysis (IPA) which

enables to use observed bound statesin a potential to derive properties of that potential .

Our Coupled Inverse Perturbation Anaysis (CIPA) is a generalization which allows to
analyze levels in which coupling occurs between internal states of different electronic

and nuclear spin. Secondly, we can combine this approach with a description of the
short-range interaction in terms of accumulated phases. Even when the short-range
behavior is not yet sfitiently known, this enables the use of levels close to threshold.

In chapter 5 the results of the CIPA analysis lead to predictions of three Feshbach
resonances in ultracofdRb +3°Rb collisions and four resonances’frRb +37Rb col-
lisions. Thesé®Rb resonances are tifiest that were predicted to occur faelds at
which the atoms can be trapped in a static magrigtid. One of thé”®Rb resonances
has in the meantime been observed by the group of Heinzen and also in the groups of
Cornell and Wieman. The observation of the resonance by the groups of Cornell and
Wieman in Boulder has subsequently made it possible to pin down in very great preci-
sion the interaction parameters for cold Rb atoms (chapter 4). Currently, these groups
are trying to use this resonance to makeé#Rb condensate in a magnetic trap: Away
from resonances the scattering length is negativé¥8b, so that a large condensate
cannot be made. A three body decay process seems to hamper this, however.

In chapter 6 we treat a rigorous method to reconstruct the stationary collision state
of a three-body collision between three ultracold, double-polarized ground-state alkali
atoms. The method is based on the Faddeev formalism. The circumstances of the col-
lision correspond to Bose-Einstein condensed and other ultracold gases. The method
combines a pair-correlated expansion in hyperspherical harmonics in 6D with the accu-
mulated phase for the pair interactions. It allows us to calculate the complex 6D elastic
scattering length and the three-particle recombination rate.
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Samenvatting

Het bereiken van de kritische fase-dichtheid in een gas van alkali-atomen heeft een
stroomversnelling teweeggebracht in het onderzoek naar Bose-Einstein condensatie.
Het belangrijkste wisselwerkingsproces in zo’n gas is de s-golf verstrooiing van twee
botsende atomen: het teken van de verstrooiingslengte bepaalt of de atomen elkaar
effectief afstoten dan wel aantrekken. Dit resulteert in een nfiestheffect van de
atomen op elkaar, wat zich bijvoorbeeld uit in frequentieverschuivingen van atomaire
klokken gebaseerd op koude atomen. In een condensaat zijn de effecten van het mean
field zeer divers. Indien de verstrooiingslengte negatief is, kan er slechts een klein
metastabiel condensaat gevormd worden. Een te groot condensaat valt in elkaar on-
der de aantrekkende interacties. Indien de atomen elkaar afstoten gaat dabdean-
energie al snel overheersen ten opzichte van de bewegingsenergie, en het condensaat
bevindt zich in het Thomas-Fermi regiem.

Interessant is daarom dat de botsingen, en derhalve de verstrooiingslengte, gestuurd
kunnen worden door het magneetveld waar de botsingen zich in afspelen. Dit is een
gevolg van resonantiegedrag, dat ontstaat door koppeling van het botsingskanaal met
andere hypdijnkanalen waarin zich een (quasi-)gebonden toestand bevindt. Deze zgn.
Feshbach-resonanties vormen het hoofdonderwerp van het proefschrift.

Na een inleiding in hoofdstuk 1 is in hoofdstuk 2 een simpel model gepresenteerd
waarmee de structuur en de eigenschappen kunnen worden begrepen van gebonden toe-
standen en botsingstoestanden van paren identieke alkali-atomen in de electronische
grondtoestand. Het betreft de zeer zwak gebonden toestanden enerzijds en de ultrakoude
botsingen anderzijds, beide zeer dicht bij de dissociatie limiet. Daardoor zijn die twee
onderling nauw gerelateerd. In essentie komt het eenvoudige beeld neer op het verdelen
van de totale range van interatomaire afstanden in twee gebieden, in elk waarvan een
deel van de totale Hamiltoniaan verwaarloosd wordt. In het scheidingspunt wordt con-
tinuiteit opgelegd aan de multikanaals-golffunctie. Het model verklaart een spectrum
aan eigenschappen in het systeem. In het bijzonder geeft het een beschrijving van het
koppelingsmechanisme tussen de hfipgoestanden dat de resonantie veroorzaakt, als
ook de globale posities en de breedten van de resonanties.

In hoofdstuk 3 komt een experiment aan de orde dat geleid heeft tot een voorspelling
van Feshbach resonanties v&tRb en®”Rb (zie hoofdstuk 5). Dit twee-kleuren fotoas-
sociatie experiment is geanalyseerd met een in dit promotiewerk ontwikkelde aanpak.
De bindingsenergieén van multikanaals gebonden toestandéRianmolekulen wor-
den gemeten in een optische val door deze toestanden met een laser te koppelen aan een
elektronisch aangeslagétRb, toestand. Met een tweede laser wordt deze laatste toe-
stand gekoppeld aan lage-temperatuurs botsingstoestanden van grondtoestand atomen
in de optische val. Via deze laatste koppeling kunnen atomen uit de val ontsnappen:
een atoompaar in een elektronisch aangeslagen toestand kan spontaan een foton uitzen-
den waarbij de atomen elkaar met grote snelheid verlaten. Wanneer de frequentie van
de eerste laser overeenkomt met het energieverschil tussen de aangeslagen toestand en
de te meten grondtoestand verijdelt de betreffende koppeling dit verval door de popu-
latie van de aangeslagen toestand te verminderen. Dit beinvloedt het gemeten verlies
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van atomen uit de trap. Uit de zo bepaa de energieén worden vervolgens parameters
geéxtraheerd die de atoom-atoom interacties karakteriseren.

Om de toestanden verkregen in het experiment in hoofdstuk 3 te analyseren is een
nieuwe methode ontwikkeld in hoofdstuk 4. Deze toestanden zijn sterk gekoppeld en
liggen erg dicht bij de botsingdrempel. De methode is gebaseerd op Inverse Perturbation
Analysis (IPA), welke het mogelijk maakt om gemeten gebonden in een potentiaal te ge-
bruiken om de eigenschappen van die potentiaal af te leiden. Onze gekoppelde Inverse
Perturbation Analysis (CIPA) is een generalisatie die het mogelijk maakt toestanden te
analyseren waarin zich koppeling afspeelt tussen interne toestanden met verschillende
elektronische en nucleaire spin. Ten tweede is het mogelijk de aanpak te combineren
met een beschrijving van het korte-afstands gedrag in termen van geaccumuleerde fasen.
Zelfs indien het korte-afstands gedrag nog niet voldoende bekend is, maakt dit het mo-
gelijk toestanden dicht bij de drempel te gebruiken.

In hoofdstuk 5 leiden de resultaten van de CIPA analyse tot de voorspelling van
drie Feshbach resonanties in ultrakoddRb + 8°Rb en vier resonanties #fRb +
87Rb botsingen. Dez&Rb resonanties zijn de eerste resonanties die voorspeld zijn
bij velden waarbij de atomen te vangen zijn in een statisch magnetisch veld. Een van
de®Rb resonanties is intussen waargenomen door de groep van Heinzen en ook in de
groepen van Cornell en Wieman. De meting van de resonantie door de groepen van
Cornell en Wieman in Boulder heeft het vervolgens mogelijk gemaakt om de wissel-
werkingsparameters voor koude Rb atomen met zeer grote nauwkeurigheid vast te leggen
(hoofdstuk 4). Op dit moment wordt er een poging gedaan in de laatste groepen om
deze resonantie te gebruiken om &8Rb condensaat in een magnetische val te maken:
buiten de resonanties is de verstroooiingslengte negatief*v&dr, zodat het niet mo-
gelijk is een groot condensaat te maken. Een drie-deeltjes vervals proces lijkt dit te
bemoeilijken, zowel in als buiten de resonantie.

In hoofdstuk 6 behandelen we een rigoureuze methode om de stationaire toestand
van een drie-deeltjes botsing tussen drie ultrakoude dubbel gepolariseerde grondtoe-
stand alkali atomen te reconstrueren. De methode is gebaseerd op het Faddeev forma-
lisme. De botsingsomstandigheden corresponderen met Bose-Einstein gecondenseerde
en andere ultrakoude gassen. De methode combineert een paar-gekorreleerde ontwikke-
ling in hypersferische harmonischen in 6D met een geaccumuleerde fase voor de paar-
wisselwerkingen. Dit staat ons toe om de complexe 6D elastische verstrooiingslengte
en de drie-deeltjes vervalssnelheid te berekenen.
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STELLINGEN
behorende bij het proefschrift
Feshbach resonancesin Bose Einstein Condensates
van
Johnny Vogels
Eindhoven, 29 juni 1999

Voor velden waarbij ®Rb atomen magnetisch opgesloten kunnen worden zijn er drie
(door de exchange wisselwerking geinduceerde) Feshbachresonanties die de weg naar een
instelbaar Bose Einstein condensaat openen.

* Dit proefschrift, hoofdstuk 5

[
Ondanks de positieve uitspraken van Kievsky et al. houdt hun formalisme voor drie-
deeltjes verstrooiing geen stand bij hard-core potentialen.
* A. Kievsky, M. Viviani and S. Rosati, Nucl. Phys. A 577, 511 (1994)

De Landau-Zener theorie wordt ver buiten zijn geldigheidsgebied het meest toegepast.
e L. D. Landau, Phys. Z. Sow. 1, 89 (1932); 2, 46 (1932)
» C. Zener, Proc. Roy. Soc. A 137, 696 (1932)
* Dit proefschrift, hoofdstuk 2

v
Hoe groot de exchange wisselwerking ook is, indien zij dezelfde singlet- en triplet
verstrooiingslengte veroorzaakt, koppelt zij geen hyperfijnkanalen.
* Dit proefschrift, Hoofdstuk 2

* S.JJM.F. Kokkelmans et al., Phys. Rev. A 55, R1589 (1997); P.S. Julienne et al., Phys. Rev.
Lett. 78, 1880 (1997); J.P. Burke, Jr. et a., Phys. Rev. A 55, R2511 (1997)

» C.J Myatt, E.A. Burt, RW. Ghrist, E.A. Cornell, and C.E. Wieman, Phys. Rev. Lett. 78, 586
(1997)



\%

Gezien het reversibele karakter van de quantummechanica zou het bestaan van "one-way"
berekeningen voor encryptie eenillusie kunnen zijn.

* P.W. Shor, Polynomia-Time Algorithms for Prime Factorization and Discrete Logarithms on a
Quantum Computer, SIAM Journa on Computing 26, 1484 (1997)

VI

Met een spinor-condensaat kan men fase-diffusie meten zonder referentiecondensaat.

* C.K. Law, H. Pu, N.P. Bigelow, Quantum Spin Mixing in Spinor Bose-Einstein Condensates,
Physical Review Letters 81, 5257 (1998)

VII

Mulders en Engelen hebben zich visueel laten misleiden door de rood-antirood
combinatie van quarks “kleur”-neutraal te noemen.

* P.J Muldersen J. Engelen, Ned. Tijdschrift voor Natuurkunde 65, 142 (1999)

VIl

De snelle voortgang van de wetenschap vereist dat én de preprints én de uiteindelijke
versie van publicaties vrij toegankelijk moeten zijn. De kosten van het “referee”-proces
kunnen het meest effectief door de auteurs gedragen worden.

* http://publish.aps.org/PRL/disc.html

IX

De huidige zoekmogelijkheden maken het moeilijker om originele stellingen te
verzinnen.

Ik bel, dus ik ben.
* Vrij naar Descartes
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