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1. Introduction

Quantum degeneracy is the generic name for a set of phenomena that play a role in
a system of particles when their deBroglie wavelength is of the order of or larger than
the mean interparticle spacing:

�gE
A
�
q�4@6= (1)

For a given density this regime is reached for low enough temperatures. Quantum de-
generacy can be found in a variety of systems. Perhaps the most familiar example can
be found in atoms. There the dynamics of electrons is strongly restricted by the Pauli
exclusion principle, which in turn makes matter stable against collapse. Another exam-
ple is nuclear matter where the picture of independent particle motion (the nuclear shell
model) owes its validity to the fact that changes of particle state in collisions are highly
suppressed due to the unavailability of already occupied states as¿nal states [1]. An
extreme form of (quantum degenerate) nuclear matter can be found in neutron stars [2].

The previous examples deal with fermions, where due to the quantum degeneracy
the particles effectively repel each other. This is in strong contrast with the case of
bosons. Instead of obeying an exclusion principle for particles to be in the same state,
bosons move preferably to states which are already occupied, which expresses itself in
the form of boson stimulation factors. Photons, massless bosons, can thus be emitted in
a stimulated way to¿ll a mode of a cavity in large numbers, giving rise to lasers and
masers [3]. Massive bosons can become Bose-Einstein condensed. In this way helium-4
undergoes a transition to a superÀuid state below the� point at 2.17 K. Superconductiv-
ity is another such phenomenon, caused by Bose-Einstein condensation of Cooper pairs
of electrons, behaving as charged bosons.

1.1 Bose-Einstein condensation (BEC) in dilute
ultracold atomic gases

From a theoretical point of view the massive boson systems have the disadvantage that
the bosons have complicated interactions in the liquid or solid state, making it very hard
to understand the BEC phenomenon on the basis of ¿rst principles. The observation of
BEC in dilute atomic gases of rubidium [4, 5], sodium [6], lithium [7], and hydrogen [8]
has opened up an exciting new ¿eld of research. To produce a condensate of alkali
atoms, a temperature typically below 500 nK is reached at densities of around 1046

atoms per cubic centimeter. For hydrogen 40 �K turned out to be suf¿cient at 1047

atoms/cm6. These experiments have provided the ¿rst realizations of a Bose condensate
in its nearly ideal form, that does allow for treatments from ¿rst principles. This is not
to say that interactions are unimportant in these systems. A striking example is the spin
domain structure recently observed in a spinor condensate [9], an amazing and counter-
intuitive phenomenon for an extremely dilute system.

One of the reasons that a treatment of the new condensates from¿rst principles
is possible is that, at suf¿ciently low density, two-body interaction processes in such
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a gas are dominant. Such processes are in addition greatly simpli¿ed due to the low
temperatures. The deBroglie wavelength of the atoms is much larger than the interaction
range, causing just the spherically symmetric s wave, with orbital angular momentum
o @ 3, to contribute. For s-wave scattering near zero energy the radial wavefunction
x+u, tends to a sine form at long range:

x � vlq+nu . �3, � vlq n+u � d,> (2)

where�3 is theo @ 3 phase shift and

d @ �olpn$3+�3+n,@n, (3)

is the scattering length [10]. This is illustrated in Fig. 1, which shows the wavefunction
for the triplet scattering of two:Li and of two56Na ground state atoms. The wavefunc-
tion undergoes a large number of radial oscillations due to the strong short range part of
the potential. However, at long range the wavefunction tends to a constant timesu � d,
which is just the low-energy limit of Eq. (2). The effect of the potential is simply to
shift the sine function over a¿xed distanced. For positived it is the same as the shift
for a hard wall atu @ d and the interaction is effectively repulsive. When the scattering
length is negative the atoms effectively attract each other. It is illustrative to consider the
behavior ofd when one gradually increases the depth of the potential well. The number
of bound states contained in the well then increases. At the depth where a new bound
state is added,d goes from large negative values through�4 and comes back again at
.4. Subsequently it decreases again to large negative values until a new bound state
enters the potential well. The wave functions presented in Fig. 1 are actual examples
for triplet scattering with positived (56Na) and negatived (:Li).

1.2 Role of interactions in BEC

Both for the formation of a condensate and for its properties, the scattering lengthd is
of crucial importance. In fact, in current setups the stimulated processes which cause
the atoms to go into the macroscopically occupied state, are elastic two-body collisions
with the low-energy cross section

� @ ;�d5= (4)

This implies thatd has to be large enough in absolute magnitude to lead to a formation
rate dominating the decay rates due to competing processes.

Next, most of the properties of a condensate depend strongly ond. In the mean-¿eld
approximation the time-independent and time-dependent behavior of the condensate
wavefunction!+{> w, is described by the Gross-Pitaevskii equation [11]:

l| b! @

�
�
|
5

5p
u5 . Ywuds+{, .

7�|5d

p
m!m5

�
!> (5)

with Ywuds the trap potential. This is a nonlinear Schrödinger equation containing a
condensate self-energy term

X @
7�|5d

p
m!m5 (6)

proportional tod. The self-energy plays an important role in determining many prop-
erties of a condensate, including its size, shape, and excitation spectrum [11]. In par-
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Figure 1: Zero-energy scattering wavefunctions for the:Li and 56Na triplet interaction
and the interaction-less (V=0) situation (straight line). The scattering length can be
found by extrapolating the solution at large distances to the r-axis.

ticular, the sign of d is crucial. As pointed out above, for positive d the interactions
are effectively repulsive and tend to stabilize the BEC. For negative d the interactions
are effectively attractive, and BEC will not be stable unless stabilization is provided by
the trapping potential [12]. Energetically the most favorable solution then is to have all
atoms close together. In this situation three- and many-body collisions are certain to
produce molecules, with the gas being fully on its way towards the real ground state, a
solid. At zero scattering length the atoms effectively do not interact and the solution of
the Gross-Pitaevskii equation equals the single-atom ground state in the trap potential.
The self-energy is one of the ’coherent’ collisional effects, which are proportional tod
rather than to its square. Other effects of this type are the refraction of matter waves [13]
and atomic clock frequency shifts [14].

1.3 Spin states and collisions

Although low-energy elastic two-body collisions are characterized by a single number
relevant for BEC, the collision physics itself is sometimes quite rich. Ground state alkali
atoms have a (valence) electron spinv and a nuclear spinl and the atoms in a condensate
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Figure 2: Hyper¿ne diagram of an ;8Rb atom, which has a nuclear spin l @ 8

5
= States

which are high ¿eld seeking are indicated by thin lines. States which are decaying in
collisions due to the exchange interaction are dotted. Only three states can thus be used
to produce a condensate in a magnetic trap, of which only the two i @ l � 4

5
states

possibly have Feshbach resonances. In fact, the i @ 5, pi @ �5 state has three
resonances.
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can be in one of several hyper¿ne states. We use lower case symbols for single atom
spins v, l, i @ v . l, and capital symbols for the corresponding two-atom spins. Fig. 2
shows the example of the;8Rb ground state hyper¿ne diagram for a single atom.

The most common type of trap presently used for stable con¿nement of a condensate
is a magnetic trap. For a hyper¿ne state to be kept in such a trap it has to be ’low-¿eld
seeking’, since a static magnetic¿eld maximum cannot be realized in free space. This
leaves thei @ l. 4

5
,pi A �i and thei @ l� 4

5
,pi ? 3 states as possible candidates,

as shown in the¿gure where also the¿eld ranges in which they are low¿eld seeking
are indicated.

There is, however, another requirement on a hyper¿ne state to be appropriate for
trapping. This requirement relates to what may happen when two atoms collide. In
such a collision the exchange interaction, proportional to the difference between the
interatomic interactions in theV @ 4 (triplet) and theV @ 3 (singlet) spin states, can
induce transitions between different two-atom hyper¿ne spin states. In this way one
of the atoms or both can go to an untrapped hyper¿ne state. Whether this will occur
is determined by selection rules and by the availability of energetically accessible¿nal
states. Without external¿eld the total spinI is conserved, leading to the selection rules
�I @ 3, �pI @ 3. In the magnetic¿eld of a magnetic trap only the component
I} along the local magnetic¿eld survives as a rigorously conserved quantity with the
associated selection rule�pI @ 3.

One state that can thus be used is the ’doubly spin-polarized’ state withi @ l .
v @ l . 4

5
, andpi @ .i , where the two-atom system is in the simple quantum state

I @ 5l.4>pI @ 5l.4. Since there is no other two-atom spin state with this value of
pI , the system is stable against decay via the exchange interaction. Since the electron
spins are parallel, the collision proceeds purely along the doubly polarized, pure triplet
potential. In Fig. 2 the doubly polarized single atom state hasi @ pi @ .6. The
possibility of decay via the exchange interaction virtually prohibits using thei @ l. 4

5
,

mpi m ? i states in a condensate (but not absolutely [15]).
A second single-atom state suitable for magnetic trapping of a condensate is the

state withi @ l � 4

5
, andpi @ �i. In this case we have a two-atompI value

equal to�5l.4 and there are no other energetically accessible states with that value of
pI . Also the otheri @ l � 4

5
states turn out to ful¿ll this requirement. In Fig. 2 the

single-atom states relevant for BEC in a magnetic trap are indicated.
Optical traps have the advantage that the above requirement with respect to the low-

¿eld seeking property does not play a role. As a consequence, both doubly polarized
statesi @ l. 4

5
, pi @ 	i and all statesi @ l� 4

5
can then be used [16].

An attractive feature of the choicei @ l � 4

5
is that it may be possible to realize

a situation where the scattering length can be magnetically tuned to arbitrary positive,
negative and zero values, in a single experiment. This is possible in case of a Feshbach
resonance at zero collision energy [17].

1.4 Feshbach resonances

Feshbach resonances [10] were¿rst introduced as a concept in the nuclear physics lit-
erature at the end of the¿fties. It is of importance to distinguish this concept from that
of a shape resonance, also referred to as potential resonance. As the name suggests, the
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Figure 3: a) Field dependent threshold energy and two ¿eld dependent bound states for
a pair of 56Na atoms with pI @ .5= The W @ 3 collision takes place at the mi4 @ 4>
pi4 @ 4> i5 @ 4> pi5 @ 4l threshold, which consists of high ¿eld seekers� This was no
problem since the experiment happened in an optical trap. The rising bound states have
the approximate spin structures mi4 @ 5> pi4 @ 4> i5 @ 5> pi5 @ 4l and mi4 @ 5>
pi4 @ 5> i5 @ 5> pi5 @ 3l respectively. b) Scattering length at threshold of atoms
colliding at mi4 @ 4> pi4 @ 4> i5 @ 4> pi5 @ 4l threshold. For the 907 G resonance
the atoms have a negative scattering length when the externally applied ¿eld is within a
range of 1 G
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latter occur in potential scattering, i.e. only the external, spatial, dynamics of the scat-
tering partners in their interaction potential is involved. In practice they arise for partial
waveso A 3 when a quasibound state occurs inside the centrifugal barrier.

For Feshbach resonances the interplay between the external and internal dynamics
of the scattering partners is essential, i.e. they occur in multichannel scattering. In this
case the quasibound state has an internal structure orthogonal to that of the combined
scattering partners in the initial state. Such quasibound states can arise also foro @ 3.
We will not go into their detailed mathematical description [10], brieÀy summarized by
Moerdijk et al. [18]. Rather, we will describe the basic aspects.

One starts by splitting the Hilbert space of the total system describing both the exter-
nal and internal dynamics into two orthogonal subspaces. One subspace, denoted byS ,
contains all possible states in which the internal dynamics corresponds to the scattering
channels that are open at the total energyH considered. The orthogonal complementT
is associated with all closed channels. Whereas for a shape resonance the quasibound
state turns into a rigorously bound state in the approximation where the centrifugal po-
tential is changed into an impenetrable barrier, the Feshbach quasibound state becomes
a bound eigenstate in the isolatedT space in the approximation where the coupling to
theS space is left out. In both cases, relaxing the approximation results in the discrete
bound state acquiring a¿nite width. This width occurs via the well-known Breit-Wigner
denominator in the diagonal and non-diagonal scattering amplitudes inS space for the
various channels open at energyH.

As an example, the situation of a Feshbach resonance occurring in the scattering of
two ground state Na atoms is illustrated in Fig. 3. This¿gure shows the¿eld-dependent
threshold energy where theH @ 3 collision takes place for twoi>pi @ 4>.4 atoms,
and the¿eld-dependent energies of two bound states withpI @ .5, which according
to theoretical calculations turn out to have the approximate spin structuresmi4 @ 5>
pi4 @ 4> i5 @ 5> pi5 @ 4l andmi4 @ 5> pi4 @ 3> i5 @ 5> pi5 @ 5l. TheS space
consists of states in which the atoms are in the collision spin state. TheT space contains
in particular the two bound states shown. Above threshold Feshbach resonances occur
whenH is approximately equal to a value on the dotted extrapolation of one of the
bound states.

Expressions for the elastic scattering amplitude in the single open spin channel avail-
able in these circumstances can be derived by considering solutions of the Schrödinger
equation for anyH A 3 in the separate isolatedS andT spaces and subsequently intro-
ducing theST coupling [10, 18]. For the cold collisions studied in this thesis we are
interested in the elastic scattering amplitudeVo@3 @ h{s+5l�o@3, for H close to thresh-
old. Specializing the general expression to that limit we have�o@3 � �nd whered+E,
displays a dispersive feature:

d+E, @ d4

�
4 .

�E

E �E3

�
= (7)

At the resonance¿eld strengthE3, de¿ned by the crossing of a bound state with the
threshold in Fig. 3, the scattering lengthd is in¿nite. The¿eld width�E is proportional
to the strength of theST coupling squared and inversely proportional to the difference
in effective magnetic moments of the free two-atom system and of the bound state con-
sidered, i.e. inversely proportional to the difference in slope of the crossing lines in
Fig. 3 (see Ref. [18]). It speci¿es the range in¿eld for which the scattering length has a
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different sign. Off-resonance the scattering length is not affected by theST coupling,
so that it is determined by the interatomic potential diagonal in the open spin channel.

In the applications we have in mind the distinction between theS andT subspaces
corresponds directly with a selection of pairs of hyper¿ne states for the two atoms.
The ST coupling then comes only from the part of the interatomic interaction that
is non-diagonal in the hyper¿ne states. Apart from the much weaker magnetic dipole
interaction, this is the exchange interaction mentioned in the previous subsection.

1.5 Observation of Feshbach resonances

Feshbach resonances enable an experimenter to change the scattering length in a con-
densate in a single experiment in sign and magnitude by just changing the¿eld in the
trap. So on the wish-list are resonances which arise in collisions between atoms in mag-
netically trappable states. Since the¿eld range wherei @ l � 4

5
, pi ? 3 states can

be trapped is limited (See¿g. 2), they do not occur for all alkali species. In fact, since
light pairs of atoms do not feature many bound states, it is a coincidence when such a
resonance occurs. The¿rst three Feshbach resonances in a¿eld range accessible for
magnetic trapping were predicted in;8Rb by Vogels et al. [19]. One of these has been
observed in the meantime by two groups [20, 21]. To our knowledge, BEC has not been
reached for this isotope due to cooling problems and three body decay.

Experimentally, the¿rst resonances, including the dispersive shape of the scattering
length, have been observed by Ketterle’s group at MIT [16] in56Na in a BEC in an
optical trap. Predictions for Feshbach resonances in:Li and 56Na observable in optical
traps were made by Moerdijk et al. [18]. The accuracy of these predictions was much
improved by Van Abeelen et al. [22, 23]. Unexpectedly, extremely strong loss processes
occurred experimentally when the resonances in56Na were approached in an attempt to
increase the observed range ofd values, so negative values could not be reached [24].
A nice alternative might be6<K, which seems to feature [25] a very broad resonance
covering almost the entire¿eld range available for magnetic trapping.

1.6 How to predict Feshbach resonances

An important goal of this thesis work is the prediction of Feshbach resonances and their
properties. For atomic hydrogen and to a lesser extent lithium one can use ab-initio
interaction potentials to reliably predict collision processes in general and Feshbach
resonances in particular. For heavier atoms these potentials can be expected to be in-
creasingly inaccurate, but more importantly they are required to be much more accurate.
The number of bound states in these potentials increases up to more than 135 in the case
of theV @ 3 (V @ v4 . v5 is the total two-atom electron spin) Cs - Cs potential [26],
and to determine a scattering length the precise energy position of the last bound state
is particularly important.

Hence, to reliably predict Feshbach resonances, one has to rely on experiments,
measuring the properties and behavior of pairs of atoms. A reliable way is to determine
the energy position of bound two-atom states, which occur as closely as possible to the
collision threshold, preferably the ones causing the resonances. The various collision
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parameters can then be extracted.
Types of measurements and their role which have contributed to the knowledge of

collision parameters for collisions of cold atoms are

� Measurements of the ¿eld position and ¿eld width of Feshbach resonances, en-
abling accurate prediction of others [27, 20, 21]. The width of a Feshbach reso-
nance is directly related to the difference between the singlet and triplet scattering
length. The position gives very accurate and reliable information about the shape
of the potentials and the scattering lengths.

� Measurements of lifetimes of shape resonances, i.e. quasi-bound states behind a
centrifugal barrier [28, 29, 30]. This information is crucial for¿nding the scattering
length and the long range shape of the potential.

� Measurements of collisional frequency-shifts in atomic clocks [31, 32, 33]. Fre-
quency shifts are related to the fact that different states experience different mean
¿eld energies due to differences in cross sections.

� Observations of coexisting condensates in different hyper¿ne states [34, 15]. Such
condensates would normally decay in collision processes. Due to the fact that the
singlet and triplet scattering lengths are approximately equal in;:Rb, this decay is
suppressed. This also enabled the use of thei @ l. 4

5
> pi @ l� 4

5
states in [15].

� Observations of the decay of condensates by inelastic processes [35]
� Measurements of cross-dimensional thermalization, allowing for the determination

of elastic cross sections of cold atoms, including their energy dependence (exam-
ple: Ref. [36])

� Measurements of photoassociation spectra (line positions and line shapes) [37, 38].
The latest attempt to understand potassium collisions [25] is another beautiful ex-
ample of this method.

1.7 Organization of chapters

The goal of the investigations presented in this thesis is to obtain a better understanding
of cold collisions and to obtain new or more accurate information on interactions con-
trolling cold collisions. In turn, this information is crucial for applications such as BEC
and atomic clocks.

In Chapter 2 we start with a description of a simple picture for weakly bound and
colliding pairs of atoms. It enables one to understand a large variety of phenomena en-
countered in the¿eld of cold atoms, ranging from interactions between condensates to
the characteristics of Feshbach resonances and bound states. Three two-atom parame-
ters turn out to be critical: the triplet (V @ 4) scattering lengthdW , the singlet (V @ 3)
scattering lengthdV and theF9 dispersion parameter, determining the long range inter-
action.

Chapter 3 deals with a two-color photoassociation experiment on a trapped;8Rb gas
sample and its analysis, yielding information on the most weakly bound;8Rb + ;8Rb
states, as well as on the corresponding cold collisions.

In Chapter 4 a general method is presented to determine interaction parameters from
a two-atom bound state spectrum. It is based on a coupled form of an inverse perturba-
tion approach, including the use of accumulated phases.
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The results of Chapters 3 and 4 culminate in Chapter 5, which describes the predic-
tion of Feshbach resonances in;8Rb and;:Rb.

Finally, in Chapter 6 we treat a rigorous method to calculate the stationary collision
state of a three-body collision between three ultracold double polarized ground state
alkali atoms. The method is based on the Faddeev formalism. The circumstances of
the collision correspond to Bose-Einstein condensed and other ultracold gases. The
method combines a pair-correlated expansion in hyperspherical harmonics in 6D with
the accumulated phase for the pair interactions. It allows us to calculate the complex 6D
elastic scattering length and the three-particle recombination rate. The work described in
this chapter has been realized with roughly equal contributions from Frank van Abeelen
and myself.
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Abstract

We apply a simpli¿ed description to weakly-bound states and cold-
collision continuum states of pairs of ground-state alkali atoms, which
complements the usual more elaborate coupled-channels treatment.
It is based on a diabatic treatment of the transition region between
the exchange-dominated interatomic distance range at small u and the
hyper¿ne-dominated range at large u. The models contain the Degen-
erate Internal States approximation for H atoms as a special case.

Ultracold collisions of alkali atoms play a key role in applications of laser cooling,
such as Bose-Einstein condensation and atomic clocks. For that reason a number of
groups are collecting information on interactions between cold alkali atoms, like scat-
tering lengths and dispersion coef¿cients, from a suitable set of collision processes and
weakly-bound states of pairs of ground-state atoms. The analysis of such experiments is
commonly based on the coupled-channels method [1, 2], i.e. numerically solving a set
of coupled differential equations for the amplitudes of the various spin modes as they
vary with interatomic distanceu. Such calculations have the advantage of being rig-
orous. They are elaborate and time-consuming, however, so that the development of a
simpli¿ed description would be very helpful as a complement to the coupled-channels
method.

During the collision the atoms experience besides the hyper¿ne interactionYki ,
which is also encountered in separate atoms, an interactionY +u,. It depends on the
total electron spinV and is equal toYV +u, for a singlet (V @ 3) state and equal toYW +u,
for a triplet (V @ 4) state:

Y @ SVYV .SWYW > (1)

with SV andSW projection operators on the singlet and triplet subspaces of Hilbert
space. A relatively innocent part ofY is the average4

5
+YV . YW , of the singlet and

triplet potentials. An aspect that does complicate the dynamics of colliding cold alkali
atoms is the incompatibility of the spin coupling schemes associated with two other
parts of the Hamiltonian. One is the remaining, exchange part ofY , corresponding to
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the difference of the singlet and triplet potentials:

Yh{fk @
4

5
+SV � SW ,+YV � YW ,= (2)

In classical terms it gives rise to the precession of the electronic spins v4 and v5 of the
two atoms about their vector sum V. Another part is the sum

Yki @
dki
|5

+v4 � l4 . v5 � l5, (3)

of the two single-atom hyper¿ne (hf) interactions. Classically, it gives rise to the inde-
pendent single-atom precessions ofvn andln about their sum vectorin (n @ 4> 5). The
simultaneous occurrence of the exchange and hf precessions in the sameu interval, is
the classical counterpart of the incompatible spin coupling schemes in the quantum col-
lision problem. Although in many applications an external magnetic¿eld is present, for
the sake of simplicity we leave it aside for a moment, since it is irrelevant for most of
our discussion.

In previous work a simpli¿ed description was shown to be very useful for cold H
atoms: the Degenerate-Internal-States (DIS) approximation [2], which neglects the en-
ergy splittings due toYki . Leaving it out reduces the collision to separate much simpler
V @ 3 andV @ 4 potential scattering problems. The combination of single-atom
hf states in the incident channel is considered as a superposition of singlet and triplet
states, that are reÀected from their respective potentials. The reÀected waves in turn can
be written as a superposition of outgoing hf states, thus determining theV-matrix in a
basis of hf channels [3].

The¿rst attempt to apply this picture to alkali atoms [4] showed convincingly that
the DIS is not a suitable approximation for these systems. The picture to be presented
here extends it to a more generally applicable approach. We¿rst point out that the exact
collision problem is simple in a range of small interatomic distancesu ? u3, where the
exchange interactionYh{fk dominates overYki so that the problem reduces to potential
scattering in a set of channels with pureV @ 3 or 1, associated with the exchange
spin-coupling scheme. It is easy to include in this range the partY .

ki @ 4

5
dki@|

5
V � L

of Yki that is diagonal inV, with L the total two-atom nuclear spin. It turns out that
Y .

ki can have a signi¿cant inÀuence on the oscillations of the individual triplet radial
wavefunctions, in contrast to the remaining partY �ki @ 4

5
dki@|

5+v4 � v5, � +l5 � l5,,
which is negligible since it couples the more widely spaced singlet and triplet potentials.
The collision problem is also simple in a range of largeu values,u A u4, whereYki
dominates overYh{fk. Here, the problem reduces again to potential scattering, this turn
in a set of hf channels associated with eigenstates ofYki , i.e. with the hf spin-coupling
scheme. In the intermediate rangeu3 ? u ? u4, Yh{fk is comparable toYki so that a
more complicated coupled-channels problem results that can be formulated in either of
the two bases. The simplest version of our new description results from the assumption
that the atoms traverse an intermediate distance range so rapidly that any relatively slow
spin precession due toYh{fk andYki can be neglected. NeglectingYh{fk andYki in
this range, the Hamiltonian becomes a scalar in spin space and all local wave numbers
in theV @ 3> 4 and hf channels are equal. We thus end up in a situation where the most
complicated part of the collision problem reduces to the most simple part: an interval
where nothing happens with the spin degrees of freedom.

Actually, the above assumption can be relaxed somewhat without sacri¿cing the
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Figure 1: E-dependent scattering length for elastic scattering of two;8Rb atoms
in the mi>pi l @ m5>�5l state (part a) and highest part ofE-dependent;:Rb5
bound-state spectrum forpI @ pi4 . pi5 @ �7, together with threshold of
+i4>pi4> i5>pi5, @ +5>�5>5>�5, channel (part b). Phase values and other parame-
ters are taken from Ref.[8].
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numerical simplicity. First, the range where both Yh{fk and Yki need to be neglected
can be arbitrarily small. In the extreme case, where it is a single point uf, it is still
possible to solve the uncoupled problem in the region u ? uf in the V @ 3> 4 basis
and beyond uf in the hf basis. The possibility arises, however, to directly connect the
u ? uf and u A uf solutions, without the intermediate step based on assuming equal
local wave numbers: a simple continuity requirement can be imposed at uf on the total
wave function in either basis. The simple model that results resembles the Lane model
[5] and also relates to the MQDT [6].

Another way [7] of introducing the above simple pictures starts from the pure V @ 3
and V @ 4 eigenstates de¿ned over the full u range without Y �ki . Then taking Y �ki into
account mixes these states in a narrow energy band to form perturbed eigenstates near
H @ 3. The mixing matrix elements receive contributions only from large u, where
the atoms move slowly, introducing the freedom to shift uf even to distances where the
potential is determined by F9.

A second element of our description is the assumption that the detailed shape of
the triplet and singlet potentials in the inner region is not relevant for the bound state
and cold collision properties that are to be calculated. We summarize the history of the
atoms in this range by means of the accumulated phases of the rapidly oscillating ra-
dial wavefunctions of the uncoupled singlet/triplet channels at the boundary point [7].
To very good approximation these phases vary linearly withH and o+o . 4, over the
smallH ando ranges to be considered for the cold collisions and bound states of inter-
est. Consistently, they also vary linearly with theY .

ki spin energies of the triplet states.
Introducing a magnetic¿eld does not fundamentally change our foregoing discussion:
the Zeeman interactionY] is diagonal in the exchange coupling scheme and can there-
fore be simply considered in combination withYh{fk . Y .

ki for u ? uf. On the other
hand, sinceY] is a sum of twou-independent single-atom terms, foru A uf it can also
be combined withYki , thus rede¿ning the threshold energies of the various collision
channels. It is of interest to point out that the DIS approximation is an extreme limit of
our simpli¿ed descriptions: one then even neglectsYki at largeu.

The above simple models can be applied to both bound-state and continuum prob-
lems. As an example Fig. 1 shows the scattering length for the elastic scattering of
two ;8Rb atoms in themi>pi l @ m5>�5l state as a function of the strength of a mag-
netic¿eldE (part a) and the highest part of theE-dependent;8Rb5 bound-state spec-
trum (part b). Part a displays the three Feshbach resonances predicted in a recent pa-
per, using interactions extracted from experiment [8]. In part b for simplicity we only
show thepI @ pi4 .pi5 @ �7 states, associated with the+i4>pi4> i5>pi5, @
+5>�5>5>�5, incident channel. The¿gure also shows the threshold of the continuum
in this channel. Note that the Feshbach resonances occur at the intersection points of
the bound-state energy curves with threshold, where during a cold collision a transition
can occur from the incident channel to a quasi-bound state and back without change of
energy.

The scattering length and bound-state spectrum presented in Fig. 1 have rather spe-
cial features resulting from the approximate equality of the singlet and triplet phases,
!V � !W +prg=�,, which explains the phenomenon of the coexisting;:Rb Bose con-
densates [9, 10]. Moreover, for the actual values of the phases a bound state is very
close to threshold in both the singlet and triplet potentials. To test our simple descrip-
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Figure 2: Same as Fig. 1 for more general choice of singlet and triplet phases, cor-
responding toyGV+prg=4, @ 3=75, yGW +prg=4, @ 3=53, whereyG stands for the
(generally fractional) s-wave vibrational quantum number at dissociation[12]. Bold
solid lines: rigorous coupled-channels calculation. Dashed lines: least simpli¿ed de-
scription foruf @ 58 d3. Thin solid lines: simpler diabatic description in whichYh{fk,
Yki , andY] are left out for58 ? u ? 63 d3.

tions more generally, we therefore turn to a less speci¿c choice of phases. For such
a choice, Fig. 2 shows a comparison between the rigorously calculated spectrum and
scattering length (bold solid lines) and our least simpli¿ed description for uf @ 58 d3
(dashed lines). Clearly, the agreement is excellent. In particular, the model calculation
displays the three Feshbach resonances. The resonance ¿eld values are reproduced to
within 16 G. We repeat that no coupled radial differential equations have to be solved
for this description, whereas the full problem for E 9@ 3 comprises a set of coupled
equations for ¿ve channels: one singlet and four triplet.
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The thin solid lines in Fig. 2 result from the simpler diabatic description in which
we leave out Yh{fk, Yki , and Y] in the range 58 ? u ? 63 d3. Although less accurate,
this diabatic picture apparently still leads to a semi-quantitative description. Clearly, a
diabatic assumption can also be introduced over a smaller interval with correspondingly
better agreement, but still allowing for the simple description in terms of phases to be
presented now.

Neglecting all spin-dependence of the collision problem over a certain interval im-
plies the equality of the local radial wave numbersnl+u, @ �n+u, for all channels, both in
theV @ 3> 4 basis and in the hf basis. As a consequence, the continuity requirement for
the wave function can be formulated in terms of ’interior’ and ’exterior’ phases that are
effectively independent ofu over the interval: shiftingu by�u changes all phases by the
same amount�n�u, leaving the continuity requirement unchanged since only differences
of phases come in. We emphasize, however, that we do not neglect the dependence of
the phases on the energyH, nor the differences in kinetic energy further inside among
triplet channels: in general there are signi¿cant phase differences for the various triplet
states, resulting from the diagonalization ofY .

ki . Y], accumulated over the full inter-
val starting at the repulsive wall at smallu [11]. We denote the accumulated phases as
!V , !W4, !W5, .... In the extreme case of a single pure triplet channel, which actually oc-
curs for the fully spin-polarized system, the continuity requirement for a bound state to
occur at the energy considered can be formulated in terms of an equality of a single in-
terior phase to a single exterior phase resulting from the integration of the Schrödinger
equation starting from largeu, assuming a wavefunction that goes to zero at in¿nity.
This equality can be imposed equivalently at any point of the interval considered. Due
to the spin-independence the same holds for more than one channel. In the general case
we therefore introduce new interior phases, independent of the choice foru in the inter-
val, by rede¿ning their valuesprg=� to be 0 in the case that an s-wave bound state is
precisely at the singlet or triplet threshold. Correspondingly, we de¿neu-independent
exterior phases by assigning the value 0 (prg=�) to a hf channell, when the energyH
of the system coincides with the threshold�ki>l where this channel opens:

!ki>l @ !ki +H � �ki>l, (4)

with !ki +3, @ 3 by de¿nition. Fig. 3 shows the hf phase!ki +�, as calculated by solving
the s-wave Schrödinger equation forH ? �ki>l (solid line). Except for a part very close
to threshold where quantum effects are important at the outer turning point, it shows
the typical+��,

4

6 behavior, to be expected on the basis of a semiclassical consideration
[12] using a pureF9 potential. For the actualF9 value the latter behavior is given by
the dashed line. The dotted line shows the cubic root expression with a modi¿edF9

value and a slight shift along the! axis to compensate for an offset caused by the above
quantum effects. Clearly, after these adjustments we obtain excellent agreement with
the rigorously calculated hf phase. Note that an external magnetic¿eld simply shifts the
hf energies by the Zeeman shift. It does not affect the function!ki +�,, the interaction
Y +u, being unchanged. Note also that in our simple descriptions the Zeeman shift of
the hf energies is the main mechanism responsible for the Feshbach resonances.

ForH A �ki>l, the wavefunction does not need to go to zero at in¿nity. Instead,
it depends on the asymptotic phase shift at largeu in the hf channel involved. The
treatment with one open channel, which is the most common situation experimentally,
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is still relatively simple. In that case we have for the open channel, say l @ 4:

!ki>4 @ !ki +H � �ki>4> �,> (5)

with � the asymptotic phase-shift. Again, we point out that the DIS approximation is
a special case, in which the differences of the hf shifts�ki>l in Eqs. (4) and (5) are
neglected [3].

With the above conventions the continuity requirement for the wave function can
be formulated as a set of homogeneous linear equations in the sines and cosines of the
phases. For given!V and!Wm phases, the solution of the coupled bound-state or colli-
sion problem can thus be reduced to¿nding the zeros of the corresponding determinant
as a function ofH for bound states and as a function of� for an arbitrary continuum
energy for collisions.

Summarizing, we have formulated two simpli¿ed approaches that may be used to
avoid a cumbersome coupled-channels calculation. In one approach, one neglects the
simultaneous spin precessions due to the exchange interaction and due to the incompat-
ible part of the hf interaction, by neglecting one type of precession up to a certain radius
uf and the other type beyonduf. This approximation has been shown to be very accu-
rate. A second approach is based on the more far-reaching assumption of a radial range
where the Hamiltonian is a scalar in spin space, thus leading to a diabatic picture. The
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results are not as accurate, but this description is very helpful for physical insight, as it
enables a treatment of the continuity requirement in terms of local interior and exterior
phases.

This work is part of a research program of the ’Stichting voor Fundamenteel On-
derzoek der Materie’ (FOM) which is¿nancially supported by the ’Nederlandse Organ-
isatie voor Wetenschappelijk Onderzoek’ (NWO).
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Abstract

We determine the energies of twelve vibrational levels lying within 20
GHz of the lowest dissociation limit of ;8Rb5 with two-color photoas-
sociation spectroscopy of ultracold ;8Rb atoms. The levels lie in an
energy range for which singlet and triplet states are mixed by the hy-
per¿ne interaction. We carry out a coupled channels bound state anal-
ysis of the level energies, and derive accurate values for ;8Rb5 inter-
action parameters. The information obtained is suf¿cient to allow for
quantitative calculations of arbitrary Rb ultracold collision properties.

An important reason for the interest in Bose-condensed, magnetically trapped alkali
vapors [1, 2, 3] is that it is possible to understand many of their properties from¿rst
principles, starting with known atomic interactions. This close contact between theory
and experiment requires accurate atomic interaction parameters such as elastic scatter-
ing lengths and inelastic collision cross sections. In principle these quantities can be
computed from the atomic interaction potentials. Substantial progress has been made,
for example, in the determination of Li [4, 5, 6], Na [7, 8, 9], and Rb [10, 11, 12, 13]
scattering lengths. Unfortunately, it has still not been possible to calculate many impor-
tant collision properties because of uncertainties in the potential parameters.

In this paper, we present new results that eliminate most of these uncertainties for
Rb. We measure the energies of twelve of the highest bound vibrational levels of ground
state;8Rb5 with two-color ultracold atom photoassociation spectroscopy. As illustrated
in Fig. 1, ultracold;8Rb atoms collide in the presence of two laser¿elds of frequency
�4 and�5. Resonances observed at speci¿c values of the frequency difference�5 �
�4 directly provide the level energies. We analyze the level energies with an inverse
perturbation approach with coupled channels bound states, and obtain both singlet and
triplet parameters. Two-color photoassociation spectroscopy has previously been used
to obtain a single ground state level of Li5 [5], and evidence for ground state levels of
Na5 [14]. Our work differs from this in that we obtain a much more complete spectrum,
assignment, and analysis.

A unique aspect of our work is that we obtain a molecular spectrum for levels with
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Figure 1: Two-color photoassociation spectroscopy of;8Rb5. Colliding, trapped, ul-
tracold ;8Rb atoms are irradiated by laser¿elds of frequency�4 and�5. Spontaneous
emission from the excited level at frequency�v leads to loss of the atoms from the trap.
Optical double resonance (free-bound-bound) signals occur when the frequency differ-
ence�5 � �4 coincides with the binding energy of a ground state vibrational level.
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binding energies comparable to the atomic hyper¿ne splitting. In this range singlet
(V @ 3) and triplet (V @ 4) states are strongly mixed by the hyper¿ne interaction
Yki @ d+l4 � v4. l5 � v5,, so that molecular quantum numbers (V> L) are not good. Here
V @ v4 . v5, L @ l4 . l5, and vl and ll are the electronic and nuclear spins of the two
atoms (l @ 4> 5), respectively. Atomic quantum numbers (i4, i5, with il @ vl . ll) are
not good either, since these states are mixed at short range by the exchange interaction.
Only the total spin quantum number I , with I @ i4 . i5 @ V . L, is good at all
internuclear distances. Adiabatic molecular potentials for ;8Rb5 with the pure triplet
(I @ 9) potential subtracted off are shown in Fig. 2. The change between molecular
and atomic (hyper¿ne) coupling occurs at about 24 d3. Molecular vibrations on these
potentials are are not perfectly adiabatic, so that curves with the same F must be treated
with a coupled channels approach.

The experiment is an extension of our previous one-color photoassociation experi-
ments [10, 11, 12]. About 107 laser-cooled;8Rb atoms, at a temperature of several hun-
dred microKelvin and a density of about 1045 cm�6, are spin-polarized in theiri @ 6,
pi @ 6 state and held in a far-off resonance optical dipole force trap (FORT) [15].
These atoms are irradiated for 200 ms with two laser¿elds of frequencies�4 and�5,
which have intensities of 1.6 kW/cm5, and 30-200 W/cm5, respectively. These¿elds
are alternated at 200 kHz with the FORT laser. The laser frequency�4 is ¿xed on a pho-
toassociation resonance between the collision state and am3�j +y> M,l excited state near
the85V4@5 .85S4@5 dissociation limit, wherey is the vibrational quantum number and
M the rotational quantum number. This induces substantial trap loss, since the excited
states decay mostly to high kinetic energy atoms which escape from the trap. At the
end of each 200 ms period, we measure the number of atoms remaining in the trap with
laser-induced atomicÀuorescence. We produce a two-color spectrum by stepping�5
through a succession of values.

A typical two-color photoassociation spectrum is shown in Fig. 3. We observe a
decrease in the loss of atoms from the trap whenever�5 is tuned to a resonance between
the intermediate level and a ground state level. This is due to to power broadening of the
excited state, which reduces the absorption rate of photons on the¿rst step and therefore
the trap loss. We took spectra with three different values ofy in the intermediate state,
and withM @ 5. The positions of the lines depended only on�5 � �4, and their widths
varied from 0.060 GHz to 0.30 GHz. We observed a total of twelve levels with the
energies listed in Table 1. In addition we supplemented the data with the energy of a
g-wave shape resonance [12]. We estimated the errors from the differences between the
positions of the same level in different spectra. We also took them to be at least	4@7
of the linewidths, to allow for possible lineshape effects [16], which we did not attempt
to model. The highest level is bound by only 0.16 GHz. To our knowledge, this is the
most weakly bound level that has been spectroscopically observed in any molecule.

We assign the spectrum as follows. With a two-photon transition from the initial
PI @ 9 state, onlyI @ 7, 5, or 6 levels should appear in the spectrum. TheI @ 9
andI @ 8 states are isolated, pure triplet channels, separated from each other by one
unit of atomic hyper¿ne energy (3.036 GHz). (See Fig. 2.) Therefore, we may assign
the vibrational progressions converging to the+i4> i5, @ +6> 6, and+5>6, limits to the
I @ 9 andI @ 8 vibrational levels, respectively. The remaining levels must arise from
the three coupled,I @ 7 potentials, and have mixed singlet and triplet character. As
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I o Hh{s+JK}, Hwk+JK}, ^y � yG` +i4> i5,

6 4 .3=348	 3=335 +0.013 -1 (3,3)
6 2 �3=49	 3=36 -0.15 -1 (3,3)
5 2 -3.18 -1 (2,3)
4 2 �9=56	 3=39 -6.22 -1 (2,2)
6 2 �4=85	 3=36 -1.50 -2 (3,3)
5 2 �7=8;	 3=39 -4.53 -2 (2,3)
4 2 �:=94	 3=36 -7.57 -2 (2,2)
6 2 �8=53	 3=36 -5.16 -3 (3,3)
5 2 -8.20 -3 (2,3)
4 2 �;=67	 3=39 -8.36 -3 (2,3)
4 2 �44=5:	 3=36 -11.24 -3 (2,2)
6 2 �45=55	 3=39 -12.21 -4 (3,3)
4 2 -12.51 -4 (3,3)
5 2 �48=57	 3=39 -15.25 -4 (2,3)
4 2 �48=9:	 3=39 -15.68 -4 (2,3)
4 2 �4;=6<	 3=39 -18.34 -4 (2,2)

Table 1: Experimental energy levels included in analysis and theoretical energy levels
calculated with coupled-channel bound-states code, together with+i4> i5, progression
and integer part ofy � yG . Theo @ 7 level included in the table is a shape resonance
state observed in Ref. 12.

discussed previously [10], with the 3�j (�55S4@5+55P4@5) intermediate state, we probe
ground rotational states with o @ M @ 5.

To carry out an analysis of these spectra, we have developed an inverse perturba-
tion approach for coupled bound states (coupled IPA). The usual (uncoupled) IPA [17]
is a systematic approach to improve an approximate interaction potentialY 3+u, on the
basis of a comparison of its bound-state energy eigenvaluesH3

q with experimental val-
uesHq. Changing the potential toY 3+u, . �Y +u, changes the energies in¿rst-order
perturbation theory by

Hq �H3
q @ k!3qm�Y +u,m!

3

ql> (1)

with known unperturbed eigenfunctions!3q. Writing the correction�Y +u, as a linear
combination of suitably chosen basis functionsil+u,,

�Y +u, @
[
l

flil+u,> (2)

turns Eq. (1) into a set of linear equations which allows one to determine optimal ex-
pansion coef¿cientsfl.

Our method differs in two aspects from this approach. First, we incorporate coupled
channels bound states, extending the expectation value (1) to a multichannel state. Sec-
ond, we replace the atomic interaction insideu @ u3 with a boundary condition atu3
on the phases!V and!W of the singlet and triplet radial wavefunctions [4]. We choose
u3 @ 53d3, small enough that singlet-triplet mixing insideu3 is negligible, but large
enough that the potentials outsideu3 have a simple description involving few parame-
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Figure 3: Two-color photoassociation spectrum of;8Rb5, with �4 tuned into resonance
with a level at 12563.1 cm�4. Double resonance signals are observable as a decrease
in the trap loss. The positions and quantum numbers of the levels inferred from the
analysis are also indicated. The inset at the lower left shows the highest level observed,
with a binding energy of only 0.16 GHz.

ters. In our version of IPA, we supplement the equation for the perturbation of the outer
solution due to a change �Y by an equation for the perturbation due to a change in !V
and !W , making use of boundary perturbation theory [18]. An advantage of our method
compared to the conventional IPA is that the set of parameters to be determined is more
unique than in Eq. (2), where a subtle choice of basis functions is needed to avoid un-
realistic adaptations of the potential. Our method also has the advantage that it treats
singlet and triplet states simultaneously. A separate construction of singlet and triplet
potentials from measured levels may lead to inconsistencies, as pointed out by Zhaoet
al. [19]. As in conventional IPA we apply our method in an iterative way. In each step
we solve the equations for the¿rst-order perturbations to¿nd new parameter values.
These then de¿ne the new unperturbed solution of Schrödinger’s equation for the next
step. The perturbation equations are also used to estimate error bars for the parameter
values extracted from the coupled IPA analysis.

We write the long-range (u A u3) interaction part of the two-atom Hamiltonian in
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the form

Y @ �
F9

u9
�
F;

u;
�
F43

u43
. Yh{fk . Yki = (3)

F9 is taken to be 7883	 433 a.u. [12], the exchange part is from Smirnov and Chibisov
[20], and F; and F43 from Marinescu et al. [21]. We neglect the long range spin-
dipolar interaction between the atoms, because its contribution to the level energies is
small compared to the experimental accuracy. The inner part of the singlet potential
has been determined by Amiot [22] by means of a conventional IPA. We adjust the
zero of Amiot’s energy scale to agree with a new, precise value of the Rb5 dissociation
energyGh @ 6<<6=86 	 3=39 cm�4 [23]. From this adjusted singlet potential, we
calculate!V+H> , for arbitrary energyH and relative orbital angular momentumo. We
treat!V+3>3, as a¿t parameter in the analysis, and the calculated variation of!V+H> o,
withH ando as boundary conditions for theu A u3 IPA problem. For the triplet state no
accurate potential is available, so we treat!W +3> 3, and its¿rst derivatives with respect
toH ando+o. 4, atH @ o @ 3 as variable parameters.

We begin by analyzing the pure triplet (I @ 8> 9) states. The optimal phase param-
eters allow us to calculate the;8Rb + ;8Rb triplet scattering length to bedW +;8Ue, @
�773	 473 d3, consistent with the value�733	 433 d3 from Ref. [12]. Uncertainties
of 5( in F9 and7( in F; andF43 are accounted for in the¿nal error limits. The corre-
sponding non-integral s-wave vibrational quantum number at dissociationyGW (mod.1)
has the value3=<8	 3=34, where the integer part ofyGW is 6:	 4 [12].

Next we analyze the complete set of levels. Varying!V+3> 3, alone, the six measured
I @ 7 levels fall in place within their experimental bounds. All of the theoretical
I � 7, o @ 5 eigenvalues in the last 20 GHz resulting from the combined optimization
are presented in Table 1. We obtain satisfactory agreement with the experimental levels.
The triplet scattering length from the combined analysis is identical with the value given
above. For the singlet scattering length we¿nd .7833 d3 ? dV+

;8Rb, ? .4 or
�4 ? dV +

;8Rb, ? �4533 d3. The correspondingyGV is 455=<<7 	 3=345, where in
this case the integer part is quite certain. Our value shows a small discrepancy with the
value456=78+3=53, determined by Amiot [22].

A remarkable property of four of the observedI @ 7 levels is their rather accurate
triplet progression asymptotic to the+i4> i5, @ +5> 5, collision threshold. This results
from an approximate equality between singlet and triplet phases for;8Rb5 in the cou-
pling region. Because of this, the highest parts of the uncoupled triplet and singlet bound
state spectra approximately coincide, and the triplet and singlet interaction potentials are
effectively interchangeable. The hyper¿ne mixing, which takes place almost exclusively
at long range where the atoms are almost all of the time, then leads to a spin structure
of the coupled states that is almost identical to that in the three asymptotic hyper¿ne
channels. The calculation also shows similarI @ 7 level progressions asymptotic to
the +i4> i5, @ +5> 6, and+6> 6, thresholds, and some of these levels are observed ex-
perimentally. In Table 1 we present for each predicted level the+i4> i5, combination
characterizing the progression it belongs to and its vibrational quantum number relative
to yG. I @ 7 levels above the+i4> i5, @ +5> 5, limit are not given since they are not
bound. A very similar phase coincidence has been found to be responsible for the sta-
bility of a Bose-condensed mixture of two states of;:Rb [24, 25]. Considering the mass
scaling of the wavefunction phases between;:Rb and;8Rb, it turns out that an approx-
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imate equality of !V and !W (mod.�) in one isotope implies a similar equality in the
other.

In combination with other recent results, our measurements have now determined
Rb interaction parameters to suf¿cient accuracy to allow quantitative calculations of Rb
cold collision cross sections to be carried out. Calculations based on these parameters
[26] are in agreement with all known properties of cold Rb atom scattering [10, 11, 12,
13, 24, 25]. The strong consistency among these measurements provides con¿rmation
for their validity. In addition, it is now possible to precisely calculate other important
cold collision properties such as the scattering lengths for arbitrary Rb sublevels, the
location of magnetically tunable Feshbach resonances [26], inelastic collision rates, and
the collisional frequency shift of a Rb atomic fountain clock [27]. We anticipate that
future studies of ultracold Rb collisions will rest on a quantitative footing that is unusual
in cold collision physics.

Work at the University of Texas was supported by the R.A. Welch Foundation, the
National Science Foundation, and the NASA Microgravity Science and Applications Di-
vision, and work at Eindhoven by the Stichting FOM (¿nancially supported by NWO).
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Abstract

We describe a new inverse perturbation method that is well suited to
the analysis of the bound states of the alkali dimers near their dissoci-
ation limit. The method combines inverse perturbation theory, coupled
channels bound state theory, and an accumulated phase method to
treat the short range part of the molecular potentials. We apply this
method to analyze the bound-state energies measured in a two-color
photoassociation experiment in an ultracold ;8Rb gas. This analysis
yields information on the interactions between ultracold ;8Rb atoms
that is important to the understanding of ultracold Rb collisions and
Bose-Einstein condensation.

4.1 Introduction

The techniques of laser cooling and evaporative cooling have opened the new ¿eld of
ultracold atom physics for alkali atoms, with spectacular research subjects such as Bose-
Einstein condensation, laser-cooled atomic clocks, and atom lasers. It is generally real-
ized that atom interaction processes play a key role in many of these experiments. It is
therefore important to obtain a complete, consistent picture of these interactions. In this
paper we describe and apply a new theoretical method to obtain information on the inter-
actions between cold atoms, making use of measured energies of bound diatomic states
close to the dissociation threshold. The method is an extension of Inverse Perturbation
Analysis (IPA) [1], previously used to obtain a single adiabatic Born-Oppenheimer inter-
action potential curve from bound-state energies of that potential. The coupled inverse
perturbation analysis (CIPA) that we propose generalizes this method to cases where
different electronic states are strongly coupled, so that the Born-Oppenheimer approxi-
mation breaks down. We apply this method to the analysis of the highest bound states
of ;8Rb5, which have recently been measured with two-color photoassociation spec-
troscopy [2]. In this case the molecular singlet and triplet states are strongly coupled
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by the hyper¿ne interaction. We also use the information obtained from this analysis to
determine interaction parameters that are important to the physics of collisions of ultra-
cold;8Rb atoms. A brief report of this work has been given previously [2]� in this paper
we give a more extensive description of the experimental and theoretical method and of
the results.

In the case of ground-state alkali atoms there are two short range adiabatic Born-
Oppenheimer potentials, corresponding to total spinV @ 3 (singlet potential) orV @ 4
(triplet potential). Along the lines of our previous work, at small interatomic distances
we do not describe the singlet and triplet potentials in detail, but summarize that infor-
mation in the form of the phases accumulated [3] by the associated rapidly oscillating
V @ 3 andV @ 4 radial wavefunctions up to a radiusu3, which is chosen between
16 and 20d3 depending on the alkali atom considered. It is well-known that both cold
collision properties and the precise positions of the highest molecular bound states are
extremely sensitive to very small changes of theu ? u3 potentials. Except for the lighest
alkali species, potentials in this range are not known with suf¿cient accuracy to allow
for reliable application to cold collisions. Fortunately, it is possible to avoid this dif-
¿culty using boundary conditions atu3 in the form of accumulated singlet and triplet
phases that summarize the short-range collisional information. In our coupled IPA we
search for optimal values of the interaction parameters in the rangeu A u3 and of the
accumulated phases.

The main advantage of our generalized approach is that it can cope with bound states
close to the continuum, which often show strong singlet-triplet mixing by the hyper¿ne
interaction. In contrast, the conventional IPA can be used only for analyzing pure triplet
and singlet bound diatomic states. Clearly, the higher mixed states can be expected to
bear a greater resemblance to the nearby states in the continuum and can therefore more
pro¿tably be used for obtaining information on cold collisions by extrapolation through
the dissociation threshold. Even for analyzing lower states without signi¿cant mixing,
however, our approach has a de¿nite advantage in that it naturally allows for a simul-
taneous analysis of singlet and triplet levels. This is important in view of the fact that
the singlet and triplet potentials have certain parameters in common, such as the posi-
tion of the dissociation threshold and the dispersion coef¿cients. A separate analysis
may therefore lead to inconsistencies, such as a crossing of the singlet and triplet poten-
tials at long range [4]. A further advantage of our method is that the potential variations
searched for extend over longer radial intervals. This applies to both the interactions in
the rangeu ? u3, since they are effectively described via accumulated phases, and for
theu A u3 interactions which are described by analytic expressions for dispersion and
exchange contributions. In this way one does not run into the pitfalls associated with ap-
plications of the conventional IPA where non-physicalÀuctuations in the local potentials
over short distances, of the order of the distance between outer turning points of suc-
cessive ro-vibrational levels, are dif¿cult to avoid in the search for improved potentials.

One-color cold atom photoassociation experiments have yielded a great deal of infor-
mation on the interactions between alkali atoms [5, 6]. In these experiments, a tunable
laser excites transitions between the intially free state of a pair of colliding, laser-cooled
ground state atoms and excited bound molecular levels of those atoms. These exper-
iments directly yield the level structure of the electronically excited states. The line-
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Figure 1: Two-color photoassociation spectroscopy of;8Rb5. Colliding, trapped, ul-
tracold ;8Rb atoms are irradiated by laser¿elds of frequency�4 and�5. Spontaneous
emission from the excited level at frequency�v leads to loss of the atoms from the trap.
Optical double resonance (free-bound-bound) signals occur when the frequency differ-
ence�5 � �4 coincides with the binding energy of a ground state vibrational level.
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shapes and strengths of one-color photoassociation spectra have also provided informa-
tion on the properties of the collisional ground state for ultracold Rb [7, 8, 9, 10, 11], Na
[12], and Li [13]. More direct information on ground state cold collision properties can
be obtained through the direct measurement and analysis of the highest bound levels of
the electronic ground state. This can be accomplished through two-color photoassocia-
tion spectroscopy, as shown in Fig. 1. A laser at a¿xed frequency�4 excites transitions
from the collisional ground state to a particular excited level. A second tunable laser of
frequency�5 couples this excited level back to the vibrational levels of the electronic
ground state. This yields a spectrum of these high lying bound levels. Experiments of
this kind have been completed for Rb [2], Na [14], and Li [15].

In our Rb two-color photoassociation experiments, we select a speci¿c intial two-
atom spin state by carrying out the experiment on a doubly-polarized gas sample, i.e.
with maximum projections of electronic and nuclear spins of an atom along a quanti-
zation direction}. The atoms occupy the highest hyper¿ne state of the;8Rb atomic
Breit-Rabi diagram (see Fig. 2). As the excited electronic state we select the3�j state
asymptotically connected to the85V4@5.85S4@5 dissociation limit [16]. In this way we
avoid a complex hyper¿ne ’spaghetti’ of excited states [17], since the nuclear spins in
this = 0 state are decoupled in very good approximation from the remaining molecu-
lar degrees of freedom. Moreover, the3�j +V . S4@5, electronic state has the advantage
that the two4@5 angular momenta of theV4@5 andS4@5 atomic states turn out to be
coupled to give a vanishing two-atom electronic angular momentumm @ 3. The total
molecular angular momentumM in the exited state (excluding the nuclear spins) thus
equals the orbital angular momentumo of the collision. The resultingM @ o selection
rule has been of considerable help in the past to simplify the analysis of our previous
one-color photoassociation experiments [7, 8, 9]. We note that this is not a general prop-
erty of @ 3 states. For example, for the3�j ”pure long range state” connecting to the
85V4@5 . 85S6@5 limit [16, 18], the atomic angular momenta4@5 and6@5 do not cou-
ple tom @ 3. Selecting the3�j +V . S4@5, state, we do not only de¿ne the partial wave
channelo @ M from which the excitation occurs, but also the rotationalo value of the
¿nal Rb5 bound states formed.

Even with this simpli¿cation the observed bound state spectrum should be expected
to be rather complex. In particular, the complexity arises from the fact that the total
spinsi4 andi5 (@ 5 or 3, see Fig. 2) of the separated atoms are not conserved during
a collision. These quantum numbers are only good at long range. At smaller distances
the exchange interaction mixes the (i4> i5) quantum numbers. At short range where it
dominates, the molecular quantum numbers (V> L) with V @ v4 . v5 the total electron
spin andL @ l4.l5 the total nuclear spin, are good quantum numbers. For not too strong
E ¿elds the total angular momentumI @ i4 . i5 is conserved at all distances. Figure
2 of Ref. [2] shows adiabatic molecular potentials for;8Rb5 with the pure tripletI @ 9
potential subtracted off. The change between molecular and atomic (hyper¿ne) coupling
occurs between 19 and 26d3 for the;8Rb +;8Rb system. The above-mentioned radius
u3 is chosen at the left-hand boundary of this range, because we wantV to be a good
quantum number up to this point. Starting fromu3, the radial motion on the potentials
is not perfectly adiabatic, so that curves with the sameI must be treated as a coupled
channels problem. Often, anu independent diabatic basis of pure (V> L) or pure (i4> i5)
states is the most convenient choice for coupled channels calculations. By selecting an
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Figure 2: Breit-Rabi diagram of;8Rb atomic ground state.
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initial mI>pI l @ m9>.9l two-atom state with the two electronic and the two nuclear
spins fully oriented, onlyI @ 7, 5, or 6 bound levels should appear in the spectrum,
the change inI being at most 1 in each of the optical transitions. Together, the above
choices for the initial and intermediate states lead to a considerable reduction of the
complexity of the observed bound state spectrum.

This paper is organized as follows. In Section 4.2 we describe our coupled IPA
method, starting from the conventional IPA and including internal degrees of freedom
and accumulated phases. Section 4.3 describes the two-color photoassociation experi-
ment. Section 4.4 is devoted to the application of our method of analysis to this experi-
ment. In Section 4.5 we formulate some conclusions.

4.2 Coupled Inverse Perturbation Approach (Coupled
IPA)

We extract optimal values for the interaction parameters from the bound-state data by
an extension of the existing Inverse Perturbation Approach (IPA) [1] to a situation of
coupled channels. The conventional IPA is a method to improve a potential, in such a
way that the corresponding Schrödinger equation reproduces as well as possible a set of
experimental bound-state energiesHq:�

�
|
5

5�
�. Y +u,

�
#q @ Hq#q> (1)

with � the reduced mass, equal to half the atomic mass in the present application. One
makes a comparison with theoretical eigenvaluesH3

q associated with an approximate
potentialY 3+u, and its eigenfunctions#3

q:�
�
|
5

5�
�. Y 3+u,

�
#3

q @ H3
q#

3

q= (2)

Using¿rst-order perturbation theory and an expansion of the difference potential�Y @
Y � Y 3 in a set of suitable basis functionsjl+u,, the energy differences are expressed
as

�Hq � Hq �H3
q @ k#3

qm�Y m#
3
ql @

[
l

flk#
3
qmjl+u,m#

3
ql= (3)

This set of linear equations for the unknown expansion coef¿cientsfl is solved generally
as a least-squares problem to construct a new theoretical potentialY 3+u, . �Y +u, and
the whole procedure is restarted until one reaches convergence.

The conventional IPA can only be applied to singlet and triplet potentials separately,
since it assumes the absence of coupling. It therefore needs unmixed experimental sin-
glet and triplet states as input. To formulate our coupled IPA, both Eq. (1) and (2) are
considered as coupled equations in the singlet-triplet or hyper¿ne basis, or any other
basis. The IPA equation (3) can be carried over to the multi-channel case essentially
without change,#3

q now standing for a coupled state:

�Hq @ k#3

qm�Y m#
3

ql @
[
l

�
flVk#

3

qmSVjlV+u,m#
3

ql . flW k#
3

qmSW jlW +u,m#
3

ql
�
> (4)
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with �Y an operator in spin space,

�Y @ SV�YV+u, . SW�YW +u,> (5)

and SV and SW projection operators on the singlet and triplet spin subspaces, respec-
tively.

The extension of the IPA to include coupling requires the complex task of introduc-
ing a coupled-channels matrix structure into the previous equations. This is not the only
modi¿cation we introduce. As pointed out in Section 4.1 a further ingredient of our ap-
proach is the replacement of the short-range partsu ? u3 of the potentialsYV+u, and
YW +u, by a boundary condition atu3, the largest interatomic distance where the radial
motion withV as a good quantum number is still adiabatic. This takes the form of an
accumulated phase!V@W of the corresponding rapidly oscillating radial wave functions
#V@W +u, in each of the adiabatic channels, de¿ned by the WKB expression

#+u3, @ D
vlq+

U u3 n+u,gu,
n

4

5 +u3,
� D

vlq!+u3,

n
4

5 +u3,
> (6)

n+u, being the local radial wave number:

n5+u, @
5�

|5

�
H � Y +u, �

|
5o+o.4,

pu5

�
= (7)

In these equations we have omitted the subscriptV or W for simplicity. Differentiating
Eq. (6) we¿nd that! is related to the local logarithmic derivative by

n frw! @
#3

#
.

n3

5n
= (8)

The validity of the WKB approximation is not a prerequisite for this approach: we
could have speci¿ed the boundary condition by means of a logarithmic derivative of the
radial wave function. We come back to this later in this section. The accumulated phase
may be considered as a convenient parametrization of the logarithmic derivative. Its
convenience stems from its accurate linearity,

! @ !3 .H!H . o+o. 4,!o> (9)

over the relatively smallH ando ranges nearH @ o @ 3, relevant for cold collisions,
making it possible to¿t experimental data with three parameters:!3,!H ,!o. In contrast,
the logarithmic derivative shows the typical tangent-shaped excursions through in¿nity
each time a radial node passes the pointu @ u3. Figure 3 shows!V and!W as a function
of H for o @ 3 (part a) and as a function ofo+o . 4, for H @ 3 (part b), in both cases
over ranges much larger than needed for the analysis in Section 4.4. TheH ando+o.4,
ranges covered by the actual measurement are indicated by the double-sided arrows in
the graphs. Over this range theH dependence is linear to within�!V @ 	9=43�8 and
�!W @ 	44=43�8, and theo+o . 4, dependence even to within�!V @ 	4=43�9 and
�!W @ 	6=43�9. The graph for!V was calculated using Amiot’s IPA singlet potential
[19], that for!W using the Krauss and Stevens triplet potential [20]. In some of our
previous analyses we also included higher-order derivative terms to extend theH ando
ranges. Note that

� @ 5|
g!

gH
� 5|!H (10)
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Figure 3: (a) Accumulated phases !V+H> o @ 3, and !W +H> o @ 3, vs. H for IPA singlet
and ab-initio triplet potentials. (b) Accumulated phases!V+H @ 3> o, and!W +H @ 3> o,
vs. o+o .4, for same potentials.

is the classical time interval needed for the atoms to move from u3 inward and back to
u3. Indeed, for the shallower triplet potential the phase is seen to be a steeper function of
energy. Furthermore, the second derivative of !V@W +H, with respect to H is seen to be
negative, in agreement with the decreasing sojourn time left of u3 for increasing energy.

A re¿nement that we introduce to increase the accuracy of our approach, is to sub-
tract not onlyY +u, and the angular kinetic energy|5o+o.4,@pu5 from the total energy
H to obtain the radial wave number (7) in the rangeu ? u3, but also the spin Zeeman
energyY] and the partY .

ki @ 4

5
dki@|

5
V � L of the total two-atom hyper¿ne interaction

operatorYki @ dki@|
5+v4 � l4 . v5 � l5,, which is diagonal inV.

The fact that we generally include a search for the above phase parameters in our
coupled IPA implies that Eq. (4) has to be modi¿ed, since we want to derive a different
set of parameters characterizing the modi¿cations of the potentials, from the discrep-
ancies�Hq between theoretical and experimental eigenvalues. To include potential
corrections in the interior regionu ? u3 via changes of the accumulated phases, we
have to¿nd a solution for the following complications:

1) The normalization of the state#3

q is tacitly assumed in the perturbation theory
expression (4), although the phase description for theu ? u3 dynamics implies that the
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part of #3

q in the interior region is not explicitly dealt with. Rewriting Eq. (4) as

�Hqk#
3

qm#
3

ql @ k#3

qm�Y m#
3

ql> (11)

we need to deal with the part k#3

qm#
3

qlu?u3 of the normalization integral. This dif¿culty
plays a role independent of whether a potential correction extends over u ? u3, over
u A u3, or over both.

2) YV+u, and YW +u, are continuous functions of u. When a potential correction in
the exterior region extends up to u3, this has consequences for the inner potentials, i.e.
for the phase parameters.

Complication 1) is easily solved starting from the WKB expression (6) for the ac-
cumulated phase in one particular adiabatic channel to be denoted by the abbreviated
notation� (� includes in particular the quantum numberV). Differentiating with re-
spect toH we have

C!�
CH

@
5�

|5

] u3 4

5n�
gu �

5�

|5

] u3 vlq5 !�+u,

n�
gu @

5�

|5D5
�

k#3

qm#
3

ql�>u?u3 = (12)

Writing # nearu3 in the form (6), we¿nd D�. Eq. (12) then allows us to express
the partk#3

qm#
3

qlu?u3 of the normalization integral in terms of the derivativesC!
�

CH . In
connection with complication 2) we also need to express the part k#3

qm�Y m#
3

qlu?u3 in
changes of the phase parameters. We use the WKB expression

�!� @ �
5�
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] u

3
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3

vlq5 !�+u,
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�Y�gu @ �

5�

|5D5
�

k#3

qm�Y�m#
3

ql�>u?u3 = (13)

With these relations, the main equation of our coupled IPA method is found to be

�Hq

%
k#3

qm#
3

qluAu3 .
|
5

5�

[
�

D5
�

C!�
CH

&
@

[
l

�
flVk#

3

qmSVjlV+u,m#
3

ql. flW k#
3

qmSWjlW +u,m#
3

qluAu3
�
�

|
5

5�
D5
��!�> (14)

where �!� is written in the form

�!� @ �!3� .H3
q�!

H
� . !H��Hq . o+o. 4,�!o�> (15)

following from Eq. (9). Like the IPA equations (4) we started from, (14) is a set of
linear equations for the unknown parameters (in this case flV , flW , �!3�, �!H� , �!o�)
in terms of the energy differences �Hq. Again, we solve it as a least-squares problem.
Clearly, in case some of the parameters are already known with suf¿cient accuracy from
other sources, the corresponding terms in Eqs. (14) and (15) are replaced by 0.

At this point we emphasize again that our CIPA method avoids the intricate insta-
bility and convergence problems of the IPA by replacing the non-unique ’mathematical’
basis functionsjl+u, (or jlV+u, andjlW +u,) by accumulated phases and by long-range
interaction terms. Two further remarks are in place. The¿rst relates to the channels�.
The label� distinguishes the various spin eigenstates ofY] . Y .

ki , so that the dynam-
ical problem is diagonal in� for u ? u3. For a vanishing or weak magnetic¿eld, �

- 45 -



corresponds to the combination of quantum numbers V> L> I>pI . For a strong E ¿eld
each � contains a combination V> L>pI , but a mixture of I values. The second re-
mark relates to the use of the WKB approximation in the foregoing formulation. Our
approach is most easily explained using the WKB approximation. We note, however,
that the WKB approximation is not essential for the validity of the coupled IPA. To see
this we start from an equation for the Wronskian of the unperturbed and perturbed states
m#3

ql andm#ql:

C

Cu

[
�

+#3

q�

C

Cu
#q� �#q�

C

Cu
#3

q�, @

5�@|5
[
�3�

#3

q�3+�Y�3� ��Hq��3�,#q�> (16)

following from the time-independent Schrödinger equations form#3

ql andm#ql. Here,
the channel components#q�+u, and#3

q�+u, are chosen to be real. Integrating overu
from u3 to4, we¿nd to¿rst order in the modi¿cations�Y and�Hq:[

�

�
#3

q�+u3,
�5
��� @ 5�@|5

[
�3�

]
4

u3

#3

q�3 +�Y�3� ��Hq��3�,#
3

q�gu> (17)

with �� the logarithmic derivative of the radial wave function in channel� at u3. This
equation enables us to formulate the coupled IPA in terms of logarithmic derivatives.
As pointed out above, however, the convenient properties of accumulated phases lead
us to reformulate the approach by parametrizing the logarithmic derivative for each of
the channels� via

� @
n+u3,

wdq!
�

n3+u3,

5n+u3,
= (18)

This de¿nition of the accumulated phase has been used in all our previous work [3, 7, 8,
9, 2]. It corresponds to the integral

U u3 n+u,gu when the WKB approximation applies.
Starting from equation (17), equations similar to Eq. (14) can be derived by expressing
the differentials��� in the variations�!� and�Hq. In Section 4.4 we describe the
application of our coupled IPA method to the measured;8Rb5 bound-state spectrum
making use of the foregoing formalism.

4.3 Two-color photoassociation experiment

We have measured the energies of the highest bound states of ;8Rb5 with two-color
photoassociation spectroscopy [2]. The experiment is very similar to our previous one-
color photoassociation experiments [7, 8, 9, 18]. About 107 ;8Rb atoms are trans-
ferred from a magneto-optic trap (MOT) to a far off resonance optical dipole force trap
(FORT) [21]. The atomic density is about 1045 cm�6 and the temperature is a few hun-
dred microKelvin. The FORT is created from a 1.7 W, linearly polarized laser detuned
35 nm from the rubidium D5 line, focused to a 10�m gaussian waist. This creates a trap
with 12 mK depth. The atoms are doubly spin polarized in thei @ 6>pi @ 6 state by
a repumper beam tuned to the;8Rb 85V4@5+i @ 5, to 85S6@5+i @ 6, transition and an
optical pumping beam tuned to the;8Rb 85V4@5+i @ 6, to 85S6@5+i @ 6, transition.
The optical pumping beam is circularly polarized with an intensity of 100�W/cm5. A 3
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G magnetic ¿eld is applied parallel to the FORT and optical pumping beam propagation
direction.

Once the FORT has been loaded, the FORT laser beam is alternated with two pho-
toassociation laser beams and the optical pumping and repumper beams in 5�s cycles
for a total of 200 ms. This is done to avoid the effect of the AC Stark shift of the trap
laser on the photoassociation spectra and the optical pumping process. At the start of
each cycle, only the FORT beam is applied for 2.5�s. After this, the FORT beam is
turned off, and only the optical pumping and repumper beams irradiate the atoms for
0.5 �s. For the last stage of each cycle, only the photoassociation beams are applied
for 2.0�s. Photoassociation laser beam 1, at frequency�4, is ordinarily kept at a con-
stant frequency that excites transitions to am3�j +y> M,l state near the85V4@5 . 85S4@5
dissociation limit. Photoassociation laser beam 2, at frequency�5, is tuned to the blue
of �4 (Fig. 1). Both photoassociation laser beams are colinear with the FORT beam,
and are focused to a waist of 20�m. Photoassociation beam 1 is supplied by a tempera-
ture and current tuned SDL-5401-G1 diode laser with an intensity of 1.6 kW/cm�5 and
a linewidth of less than 20 MHz. Photoassociation beam 2 is supplied by a Ti:Sapphire
ring laser with an intensity of 30-200 W/cm�5 and linewidth less than 2 MHz. After the
200 ms cycling process is complete, the number of atoms in the trap is measured with
laser-inducedÀuorescence. This process is repeated for a succession of laser frequen-
cies�5.

As in the one-color experiments, the photoassociation beam 1 promotes trap loss
when resonant with a free-bound transition. A pair of free atoms absorbs a photon
from beam 1 to create a short-lived excited molecular state, which then spontaneously
decays to a pair of free atoms with a kinetic energy high enough to escape from the
trap. Figure 4 shows the one-color photoassociation spectrum obtained by scanning
only one of the photoassociation beams across a single vibrational level at 12573.1
cm�4. The upward going peaks are associated with the trap loss induced by this laser.
The M @ 3, 2 and 4 rotational levels are visible in this spectrum. For the two color
spectra, photoassociation beam 1 is tuned to the maximum of theM @ 5 peak, and
induces a constant loss of about 20( of the atoms in the absence of the second laser.

Figures 5a and 5b show the two-color photoassociation spectra with�4 tuned to the
M @ 5 rotational levels of two different vibrational levels at 12563.1 cm�4 and 12573.1
cm�4, respectively. As�5 becomes resonant with a bound-bound transition between the
excited state and a ground molecular state, the trap loss decreases. The positions of the
ground state vibrational levels are thus visible as downward going peaks in the two-color
spectra. This occurs because the excited state is power broadened by photoassociation
laser 2. This reduces the ef¿ciency of excitation of the colliding atoms by photoasso-
ciation laser 1, and therefore reduces the trap loss. A theory of these two-color trap
loss lineshapes has been given by Bohn and Julienne [22]. Figure 6 shows a magni¿ed
view of the two-color photoassociation spectrum for very small positive and negative
frequency differences�4 � �5. For zero and negative frequency differences, upward
going peaks are observed which are due to one-color trap loss induced by photoasso-
ciation laser 2 by transitions toM @ 3, 1, and 2. (For this spectrumM @ 4 is visible
because the atoms were not polarized.) For a positive frequency difference of about 160
MHz, the spectrum shows a downward going peak associated with the highest bound
level observed in this experiment.
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Figure 4: One-color photoassociation spectrum of;8Rb5. A single vibrational level
near 12573.1 cm�4 is shown, withM @0, 2, and 4 rotational levels visible.

We investigated the ¿rst 20 GHz below the 85V4@5+i @ 6, . 85V4@5+i @ 6, dis-
sociation limit. The intermediate state at 12563.1 cm�4 resulted in a spectrum showing
more ground molecular states than the state at 12573.1 cm�4. We also observed a few of
these same levels with an intermediate state at 12561.8 cm�4. From these photoassoci-
ation spectra, the binding energies of 12 ground state levels were measured, as shown in
Table 1. We searched for but did not¿nd molecular states with binding energies greater
than 20 GHz, presumably due to small Franck Condon factors.

The frequency scan of photoassociation laser 2 was calibrated to an accuracy of	20
MHz with a scanning Michelson interferometer wavemeter and a 300 MHz free spectral
range etalon. The zero of the frequency difference�4 � �5 was determined by the point
at which the second laser induced one-color trap loss on the3�j +M @ 5, line, as in Fig.
7. Photoassociation laser 1 was passively stabilized and demonstrated drift below 20
MHz over the course of a scan.

The widths of the observed lines varied from about 60 MHz to about 300 MHz. The
widths of the broadest lines were probably dominated by power broadening, whereas for
the narrowest lines the thermal width of the initial continuum state plays a signi¿cant
role. To our knowledge there are no explicit calculations for thermally averaged two-
color photoassociation lineshapes in the literature. However, one-color thermally aver-
aged photoassociation lineshapes have been calculated previously [7, 8, 9, 23]. These
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Figure 5: Two-color photoassociation spectra with�4 tuned to intermediate vibrational
levels states near 12563.1 cm�4(a) and 12573.1 cm�4(b). The two-color spectrum is
obtained by setting�4 to the intermediate stateM @ 5 rotational level, and scanning�5
to the blue of�4. (c) Assignments of the observed levels.
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Figure 6: High resolution two-color photoassociation spectra for very small laser fre-
quency difference+�5 � �4,. �4 is tuned to theM @ 5 intermediate state near 12563.1
cm�4. The data shows three upward going peaks indicating further one-color trap loss
as m3�j +y> M @ 3>4> 5,l states are excited. The downward going peak shows the most
weakly bound ground molecular state observed in this experiment, with a binding en-
ergy of 160 MHz.

calculations show that the photoassociation peaks can easily be shifted by 1-2 kET rel-
ative to the peak position in the absence of thermal broadening effects, where T is the
temperature of the gas and kE is Boltzmann’s constant. For our conditions this shift
would be in the range from about 6 to 20 MHz. Similar shifts should occur for our
two-color spectra, and they should occur in both the calibration spectrum (as in Fig. 7),
which determines the zero of the laser difference frequency, as well as in the observed
lines. In addition, line pulling due to drifts in the frequency of laser 1 and AC Stark
shifts could also play a role in the position of these lines. These shifts are dif¿cult to
evaluate accurately since the tuning of laser 1 and the gas temperature are not accurately
known, and since we did not attempt to model the lineshapes. However, in our judge-
ment these shifts could easily amount to 30 MHz for all lines and perhaps be as large as
100 MHz for the broadest lines. These lineshape effects are the dominant error in our
experiment, and we also note that they are a systematic error� i.e. all levels may dis-
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I o Hh{s+JK}, Hwk>4+JK}, Hwk>5+JK}, ^y � yG` +i4> i5,

6 4 .3=348	 3=335 +0.014 +0.015 -1 (3,3)
6 2 �3=49	 3=39 -0.14 -0.14 -1 (3,3)
5 2 -3.18 -3.18 -1 (2,3)
4 2 �9=56	 3=39 -6.22 -6.22 -1 (2,2)
6 2 �4=85	 3=39 -1.48 -1.46 -2 (3,3)
5 2 �7=8;	 3=39 -4.51 -4.50 -2 (2,3)
4 2 �:=94	 3=39 -7.56 -7.54 -2 (2,2)
6 2 �8=53	 3=39 -5.13 -5.09 -3 (3,3)
5 2 -8.17 -8.12 -3 (2,3)
4 2 �;=67	 3=39 -8.35 -8.33 -3 (2,3)
4 2 �44=5:	 3=39 -11.23 -11.18 -3 (2,2)
6 2 �45=55	 3=39 -12.24 -12.14 -4 (3,3)
4 2 -12.50 -12.43 -4 (3,3)
5 2 �48=57	 3=39 -15.28 -15.18 -4 (2,3)
4 2 �48=9:	 3=39 -15.67 -15.61 -4 (2,3)
4 2 �4;=6<	 3=39 -18.38 -18.29 -4 (2,2)

Table 1: Spectrum of ;8Rb5 o @ 5> I @ 7>8>9 levels observed experimentally, including
assignments of +i4> i5, progressions and integer parts of the y quantum number relative
to the dissociation limit yG for the progression involved. Theoretically predicted levels
without (Hwk>4) and with (Hwk>5) Feshbach resonance data taken into account. The
o @ 7> I @ 9 g-wave shape resonance state observed by one-color spectroscopy is also
included.

play a shift in a common direction. In our ¿rst report on these results [2] we quoted an
overall error of 	30 MHz to 	60 MHz on the level energies, depending on the narrow-
est linewidth observed for each level. In the present paper we prefer to quote a more
conservative error limit of	60 MHz for all experimental energies.

4.4 Application of Coupled IPA to two-color
photoassociation experiment

We assign the quantum numbers of the observed bound states as follows. As pointed
out earlier, due to the above-mentioned selection ruleo @ M , which is valid also in the
downward transition, we produceo @ 5 bound ground-state Rb5 levels only, since a
M @ 5 rotational level of the lower3�j electronic state is excited as an intermediate
state. Also, with a two-photon transition from the initialmI>pI l @ m9>.9l state of
two doubly-polarized atoms, onlyI @ 7, 5, or 6 levels can be formed withpI � 7.
Note furthermore that for allE, i4 andi5 are good quantum numbers ifI @ 8 or 6.
In addition, for o = even Bose symmetry excludesI @ 8 for +i4> i5, @ +6> 6,. We
should therefore expect to see two mutually shifted pure triplet vibrational progressions
converging to the+i4> i5, @ +6>6, hyper¿ne threshold forI @ 9 and to the+5>6,
hyper¿ne threshold forI @ 8, respectively. These are the two sequences indicated
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as (3,3�6) and (2,3�5) above the spectrum in Fig. 5c. The energy differences between
pairs of corresponding levels in the progressions indeed correspond to the single-atom
hyper¿ne splitting 3.04 GHz. The remaining levels must be assignedI @ 7 and have
mixed singlet-triplet character. In view of this one would expect these levels to display
a less regular pattern than theI = 5 and 6 levels. Anticipating our further analysis we
note, however, thati4 andi5 continue to be approximately good quantum numbers [24]
for the mixed singlet-triplet states because of an approximate equality of singlet and
triplet phases for;8Rb. (see also Tsai et al. [2]). This equality is similar to that which
has been discovered for;:Rb [25, 26, 27], and in fact follows from it by mass scaling
of the wavefunction phases. We note that this scaling of small phase differences is
not expected in general, but just happens to occur for the particular case of Rb. As a
consequence, theI @ 7 states display a pattern almost as regular as theI @ 8 and
6 states. Table 1 shows the spectrum ofo @ 5> I @ 7> 8> 9 levels observed in our
experiment, including the assignments of the+i4> i5, progressions and the integer parts
of the differencesy � yG , with y the vibrational quantum number andyG its generally
non-integral value at the dissociation limit for the progression involved. We also include
theo @ 7> I @ 9 g-wave shape resonance state observed by one-color spectroscopy [9],
which will also be used in the following analysis.

We analyze the energy spectrum as follows. Referring to Section 4.2, we charac-
terize the singlet potential in the interval3 ? u ? 4< d3 by the singlet accumulated
phase!3V , which we take as a¿t parameter, and by its derivatives!HV and!oV , calculated
on the basis of the above-mentioned IPA potential of Amiot [19]. In the same interval
the triplet interaction is characterized by three similar parameters:!3W is taken as a¿t
parameter, whereas!HW and!oW are taken from the Krauss and Stevens ab-initio triplet
potential [20]. Foru A 4< d3 we write the interaction operator as

Y +u, @ �
F9

u9
�
F;

u;
�
F43

u43
. Yh{fk . Yki = (19)

For F9 we consider values in a range that includes at the lower end the interval 4550
	 100 a.u., determined in a previous one-color photoassociation experiment [9], and at
the higher end the interval 4700	 50 a.u. from the analysis in Ref. [28]. Values forF;

andF43 are taken from Marinescu et al. [29]. The exchange interaction is taken from
G. Hadinger and G. Hadinger [30].

The actual application of our coupled IPA consists of a number of iterations, in each
of which Eq. (17) is solved as a least-squares problem. At the beginning of an iteration
step, eigenfunctions#3

l and eigenvaluesH3
l (l @ 4====P) are calculated for certain phase

and potential parameters{m (m @ 4====Q , Q ? P). This gives us a vector�H having
the set of differences with the experimental energies�Hl as components, from which
the vector�{ with the changes�{m as components is to be determined. Writing Eq.
(17) in the form

�H @P �{> (20)

we use the same wavefunctions#3
l to calculate theP � Q matrix P . To take into

account the experimental error bars we divide the components�Hl andPlm by thelth
error bar without changing our notation. The least-squares solution is found by solving
Eq. (20) for the parameter changes�{ using the pseudo-inverse ofP (see Ref. [31]):

�{ @P�4�H= (21)
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This iteration step is repeated until convergence has been reached. It turns out that highly
accurate values of the elements of P are needed for correct and rapid convergence.
This is especially true for directions in parameter space for which the least-squares sum
varies slowly. We have paid special attention to this aspect by studying theP @ Q @ 4
case. In our coupled IPA procedure thej-wave shape resonance is included as a quasi-
bound state, by assuming its wave function to vanish at a radius far inside the centrifugal
barrier. Generally, the CIPA method converges after 3 to 4 iterations.

Parenthetically, we note that our method is easily extended to cases where (part
of) the measured data consist of energydifferences between states without information
on absolute positions with respect to the dissociation threshold, for instance. In such
cases the differences between elements of�H and between elements ofP are used in
equations (20) and (21) instead of the elements themselves.

Since we have normalized the components of�H to the measured energy uncer-
tainty intervals, the covariance matrix for the¿nally obtained parameter values is given
by

"5

P �Q
+PWP,�4> (22)

the diagonal elements of which give the square of the¿nal parameter errors. In this
expression"5 is the least-squares sum.

In view of the large discrepancy of the results of our previous paper [2] with the
later results obtained by Roberts et al. [28], we here repeat the analysis of Ref. [2] but
now without a restriction onF9. Also, as noted above, we keep!HW ¿xed to the ab-
initio value. We thus treatF9, !

3

V , and!3W as parameters in a¿t to the two-photon
data in combination with the energy position of the g-wave shape resonance. While the
triplet parameters are primarily determined by theI @ 8 and 6 levels including the
g-wave shape resonance, the singlet phase parameter!3V is mostly determined by the
mixed singlet-tripletI @ 7 states, in particular those with+i4> i5, @ +5>6,. We¿nd
F9 @ 7983 	 83 a.u., a range with a considerable overlap with the interval 4700	 50
a.u. from Ref. [28]. Considering theF9 range7883 	 433 a.u. found by Boesten et
al. [9], which is based on independent information, i.e. a Franck-Condon oscillation in
the photoassociation spectrum, one would conclude that our central valueF9 @ 7983
a.u. may be considered as the optimal overall result, if the Franck-Condon oscillation is
taken into account. The theoretical level energies that follow from this analysis are given
in the fourth column (Hwk>4) of Table 1. For varyingF9 near the above central valueF9

we subsequently derive optimal values of!3V and!3W . The corresponding vibrational
quantum numbers at dissociationyGV(mod.1) andyGW (mod.1) are

yGV @ .3=3383 . 4=;+43�7,+F9 �F9,	 3=33<8>

yGW @ �3=384; . 4=3+43�7,+F9 �F9,	 3=3365> (23)

with theF9 values in a.u.
The analysis of Ref. [28] included the parameters of a magnetic-¿eld induced Fes-

hbach resonance that has been observed in the;8Rb + ;8Rb elastic scattering channel
by two groups [10, 28] since the experimental two-color photoassociation work that we
analyzed above. As a following step therefore we supplement the foregoing analysis by
including the extremely accurate values of the resonance¿eldEshdn @ 488=5 	 3=7 G
and the resonance ’width’� @ 44=9	3=8 G, measured by the JILA group [28] as addi-
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tional experimental data in our parameter search with corresponding coupled-channels
P matrix elements. We thus¿nd a"5 minimum atF9 @ 7:33 	 83 a.u., in agree-
ment with Ref. [28] and consistent with the aboveF9 @ 7983 a.u. value. The set of
theoretical energy levels obtained in the overall¿t are included in Table 1 (¿fth column:
Hwk>5).

We also give the optimalyGV , yGW values for varyingF9 near the central value 4700
a.u. of the latter¿t:

yGV @ .3=33<3 . 3=;+43�7,+F9 � F9,	 3=333<>

yGW @ �3=389; . 4=7+43�7,+F9 �F9, 	 3=3344= (24)

The corresponding scattering lengths are (in a.u.):

dV @ .5983� 45=<6+F9 �F9,	 583>

dW @ �694� 4=4:+F9 � F9,	 43= (25)

The agreement between the experimental and theoretical energies is quite good. Rel-
ative to the theoretical energiesHwk>4, the measured level energies show a small sys-
tematic difference of -20 MHz, and a random scatter of about	30 MHz, within our
measurement error. For the set of theoretical energiesHwk>5, the systematic difference
increases to -63 MHz, and the scatter remains about	63 MHz. The systematic differ-
ence is probably due to lineshape effects, as discussed in the experimental section 4.3.
For completeness we point out that the above analysis following Eq. (23), including
only the bound state data, yields the valuesEshdn @ 47;	 43 G,� @ <	 7 G.

The analysis of the two-color photoassociation experiment presented in this sec-
tion illustrates how our coupled IPA method is applied in practice. We believe that the
method will be useful also for further work on the extraction of interactions between
cold atoms from highly excited bound diatomic states.

Parenthetically, we note that the sensitivity ofyGV andyGW toF9, described by the
second terms on the right-hand side of Eqs. (23), can be determined either by complet-
ing the coupled IPA iteration successively for various choices ofF9 or, more easily, by
making use of our coupled IPA method. The formalism presented in Section 4.2 allows
us to considerF9 or other parameters formally as parameters{m and to translate their
variations�{ into variations�H by means of the correspondingP matrix elements
calculated in our coupled IPA method. The latter in turn can be translated into variations
of yGV andyGW or any other parameters determined in the coupled IPA search, using
the inverse equation (21). This procedure is applicable generally in the case of param-
eters for which one wants to indicate the dependence of the¿nal results explicitly as in
equations (23) instead of including them in the parameter search.

4.5 Conclusions

We have described a coupled inverse perturbation approach for extracting information
on interactions between cold atoms from energies of bound diatomic states. It is a
generalization of the conventional IPA to situations where external and internal (spin)
degrees of freedom of the two bound atoms are coupled. Basically the approach has the
purpose to extrapolate interaction properties from just below the dissociation threshold
to just above, i.e. the cold-collision regime. Although the method is applied here to
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bound states of two identical ground state alkali atoms, it is applicable to any pair of cold
atoms where the short-range interactions are taken into account in terms of a boundary
condition on the radial wavefunctions at a certain interatomic distanceu3. In our case
of two alkali atoms the boundary condition takes the form of an accumulated phase for
the wavefunction in the singlet and triplet spin channels. The latter description derives
its usefulness from the fact that cold collisions together with the considered highest part
of the bound state spectrum comprise an energy range small compared to the typical
relative kinetic energies of the two atoms in the distance rangeu ? u3. We have made
clear that the validity of the WKB approximation foru ? u3 is not essential.

We illustrated the coupled IPA by an application to the bound;8Rb5 states measured
in a two-color photoassociation experiment and a g-wave shape resonance observed in
a one-color photoassociation experiment. We also performed a combined parameter
search by including the measured resonance¿eld and resonance width of a recently
observed Feshbach resonance.

We gratefully acknowledge the support of the work at Texas by the R. A. Welch
Foundation, the U.S. National Science Foundation, and the NASA Microgravity Re-
search Division. The work at Eindhoven is part of the research program of the Stichting
FOM, which is¿nancially supported by NWO.
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Abstract

On the basis of recently measured Rb5 bound-state energies and con-
tinuum properties, we predict magnetically-induced Feshbach reso-
nances in collisions of ultracold rubidium atoms. The resonances make
it possible to control the sign and magnitude of the effective particle-
particle interaction in a Rb Bose condensate by tuning a bias magnetic
¿eld.

For the case of ;8Rb they occur at ¿eld values in the range where these atoms can
be magnetostatically trapped. For ;:Rb they are predicted to occur at negative ¿eld
values.The observation of Bose Einstein condensation (BEC) in dilute ultracold gas
samples of rubidium [1], lithium [2] and sodium atoms [3] has made it possible for
the ¿rst time to study this macroscopic quantum phenomenon in its pure form with-
out complicated modi¿cations due to strong interactions. A variety of new experiments
has been proposed or already carried out, fascinating examples being the observation of
collective shape oscillations and the observation of the relative phase of two Bose con-
densates [4, 5]. A rich variety of other experiments would come into reach if one could
alter arbitrarily, possibly even in real time, the sign and magnitude of the atom-atom
scattering lengthd. The scattering length occurs as the coef¿cient of the condensate
self-interaction term in the condensate wave equation and has a profound effect on the
stability and other properties of the condensate. An opportunity to change this param-
eter would arise if it were possible to tune the scattering length by means of external
¿elds, i.e. either a static magnetic¿eld [6] or a time-dependent optical [7] or rf¿eld [8].

A situation whered can be changed between positive and negative values either
through 0 or	4 by tuning a dc magnetic¿eld is that of a Feshbach-type resonance
between the initial two-atom continuum state and a quasibound molecular state at a
common value of the energy [9]. Due to their different spin structures these states have
different g-factors, so that the continuum and bound state energies can be tuned into
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resonance at speci¿c values of E. If we can ¿nd a resonance at a ¿eld value for which
the atoms can be magnetostatically trapped, the above situation of a tunable scattering
length should be readily achievable experimentally. In particular, changing the sign of
d from positive to negative would turn a stable condensate into a collapsing unstable
one, of which the time-development can be studied. A variety of other experiments
would become possible too. For instance,d could be changed on the time scale of the
resonance lifetime or the particle interaction could be made repulsive in one part of
space and attractive in an other.

Rubidium atoms were the¿rst atomic species for which BEC has been realized. The
purpose of this paper is to point out that they may also be the atomic species for which
E-¿eld tuning of the scattering length is¿rst achieved. For rubidium atoms the infor-
mation available on the atom-atom interaction has long been insuf¿cient for a prediction
of the kind we envisage. This situation has drastically changed by the observation of
two coexisting;:Rb condensates [10] and by the results of a two-color photoassocia-
tion (PA) experiment on a cold;8Rb gas sample [11]. In the latter experiment the last
20 GHz of bound levels in the lowest molecular singlet and triplet states was measured,
allowing us to precisely determine a complete set of Rb5 interaction parameters.

Before these developments, important information on the low-energy triplet (V @ 4)
collisional wavefunction had been obtained from cold-atom photoassociation work in
our two groups on rubidium atoms, leading to the observation of its node structure [12]
and the observation of shape resonances [13, 14]. Due to the hyper¿ne interaction pure
singlet incident collision channels do not exist. As a consequence, information on the
singlet interaction properties can only be obtained by studying mixed singlet-triplet col-
lision channels. Very useful, but still insuf¿cient, information of this kind came avail-
able [15] via a measurement of the absolute value of the scattering lengthd4>�4 for
elastic collisions of cold;:Rb atoms in themi>pi l @ m4>�4l hyper¿ne state (see Fig.
1 for the ground-state hyper¿ne diagrams of;:Rb and;8Rb). As pointed out above,
very important additional information came from the recent observation of overlapping
m5>5l andm4>�4l Bose condensates [10]. Three groups have independently pointed out
that the extremely small rate constantJ+5>5,.+4>�4, for decay due to collisions between
atoms in the two different states, implied by the stability of the double Bose conden-
sates, should be a strongly constraining factor in the determination of the remaining cold
collision properties [16, 17, 18]. In the following we will show that this and all other
available;8Rb + ;8Rb and;:Rb + ;:Rb cold-collision observations¿t into a consis-
tent picture, which can be derived from the bound states of the two-color PA experiment
[11]. This allows us to make a reliable and accurate prediction of Feshbach resonances.

In order to calculate bound or continuum state wavefunctions, we write the Rb5

long-range interaction potentials in the form

YV+u, @ �
F9

u9
�
F;

u;
�
F43

u43
. Yh{fk> (1)

with the exchange part taken from Smirnov and Chibisov [19], the dispersion coef¿-
cientsF; andF43 from a calculation by Marinescu et al. [20], andF9 from previous
photoassociation work [14]. We do not need the full information on the short-range
singlet (V @ 3) and triplet (V @ 4) interaction potentials. Rather, this information is
summarized in a boundary condition on theV @ 3 andV @ 4 radial wave functions
at the interatomic distanceu @ u3 @ 53 a3, on the basis of which Schrödinger’s equa-
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Figure 1: Hyper¿ne diagrams for electronic ground state of a) ;:Rb, b) ;8Rb.
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Figure 2: Rate constant J+5>5,.+4>�4, for decay due to collisions between ;:Rb atoms
in different hyper¿ne states as a function of the singlet scattering length. The horizon-
tal lines indicate the experimental range. The two-sided arrow indicates thedV range
following from the two-color PA experiment.

tion is solved for u A u3. The boundary condition takes the form of a speci¿c choice of
the phases !V , !W of the oscillating singlet and triplet radial wavefunctions in a small
region of energy H and interatomic angular momentum o near H @ o @ 3 [21]. This
phase information was extracted from an analysis of the energies of the highest ;8Rb5
bound states [11], and of the g-wave shape resonance observed in Ref. [14]. We also
used available information on the total number of Rb5 singlet and triplet bound states in
this analysis [22, 23, 14].

With the parameters thus determined we can calculate the continuum quantities
of interest. For the;8Rb + ;8Rb triplet and singlet scattering lengths, we¿nd [11]
dW +

;8Rb, @ �773	473 d3 (corresponding fractional s-wave vibrational quantum num-
beryG at dissociation (modulo 1)@ 3=<8	3=34) and.7833 d3 ? dV+

;8Rb, ? .4 or
�4 ? dV+

;8Rb, ? �4533 d3 (yG @ 455=<<7 	 3=345). A coupled-channel calcula-
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tion allows us to predict a value for the scattering length of a pair of ;8Rb atoms in the
m5>�5l state. We ¿nd d5>�5 @ �783 	 473 d3. Mass-scaling the phases to;:Rb en-
ables us to predict bound-state and ultracold scattering properties for this isotope too, in
particular the mixed hyper¿ne decay rate constantJ+5>5,.+4>�4,. In this mass-scaling
transformation we correct for the different local de Broglie wavelengths, multiplying
!V@W +H> o, by a square root of the atomic mass ratio and taking into account the total
phase change from the inner turning point tou3. We¿nd excellent agreement between
the bound-state and continuum properties. As an illustration Fig. 2 shows the calculated
J+5>5,.+4>�4, as a function of the;:Rb singlet scattering length, which corresponds di-
rectly with the singlet phase. The two-sided arrow indicates the maximumdV range	8
a3 obtained from the two-color PA bound-state energies, including the uncertainty in the
dispersion coef¿cients. The position of theJ-curve along thedV axis is uncertain by
	9 d3, with the error bar	6 d3 due to the uncertainty in the number of bound triplet
states (6;	4 for ;8Rb5 [14]) as an important contribution. Clearly, there is a preference
for thedV interval along the right-hand slope of theJ-minimum. Good agreement is
obtained between the calculated and measured rate constant (horizontal lines) with the
same set of parameters determined above.

On the basis of this consistency we are now able to predict the¿eld-dependent scat-
tering lengths for a further comparison with experiment and to search for Feshbach
resonances. Figure 3 shows the calculatedE-dependence ofd4>�4 for ;:Rb in the
range�E3 ? E ? E3, whereE3 is the maximum¿eld for which an atom in the
mi @ l� 4

5 >pi @ �+l� 4
5 ,l hyper¿ne state, withl the nuclear spin, is weak-¿eld seek-

ing and thus trappable. The¿gure is extrapolated to negative¿elds to include collisions
of ultracoldm4>.4l atoms [24]. Note that reversing the¿eld direction for constantpi is
equivalent to reversingpi for a¿xed¿eld. Four Feshbach resonances are found at neg-
ative¿eld values (383, 643, 850, 1018 G) and none at positive¿elds smaller than 1250
G. The latter as well as theÀatE-dependence in this range is consistent with the re-
sults of Newbury et al. [15], in particular with the absence of Feshbach resonances with
magnetic¿eld width� 5 G over the¿eld range 15-540 G. Also, the calculatedd4>�4
value439 	 9 d3 in this range agrees with the measured absolute magnitude;: 	 54
d3. We ¿nd d4>�4 to be positive, in agreement with the apparent stability of a large
condensate of;:Rb m4>�4l atoms [10, 15]. The occurrence of Feshbach resonances at
negative¿elds is also consistent with the¿eld dependence of the highest;:Rb5 s-wave
bound-state energies, calculated by means of our coupled channels method. The thresh-
old of the elasticm4>�4l. m4>�4l collision channel intersects with bound-state energy
curves at four negativeE values, which agree with the four values given above.

Figure 4 shows similar results for;8Rb. This time we¿nd two broad Feshbach
resonances at positive¿elds 142 G and 524 G, and a very narrow one at 198 G, all
three in the weak-¿eld seekingE range. From the shape of the excursions through
	4 it appears that the resonances are due to molecular states crossing the threshold
of the incoming channel from above with increasingE. Again this is consistent with
a calculation of coupled-channels bound-state energies. An interesting phenomenon in
both Fig. 3 and 4 is the occurrence of a very narrow resonance. It arises from a molecular
state with the electronic spins and the nuclear spins adding up to the maximum possible
I value atE @ 3. Their narrow width is due to the selection rule�I @ 3, by which
the transition from the incoming channel withI lower by 2 can only take place via the
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Figure 3: Predicted ¿eld-dependent scattering length for collisions of;:Rb atoms in
m4>�4l state. Three broad Feshbach resonances occur for negative¿elds at 383, 643,
and 1018 G. A narrow resonance occurs at 850 G.
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Figure 4: Predicted ¿eld-dependent scattering length for collisions of;8Rb atoms in
m5>�5l state. Two broad Feshbach resonances occur in the weak-¿eld seeking range at
142 and 524 G, and a narrow one at 198 G.
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Figure 5: Resonance structure of elastic cross section in ;8Rb m5>�5l. m5>�5l channel
as a function of E for three collision energies. For each energy � increases from a
background value to the quantum limit ;�@n5, then decreases to 0 and ¿nally returns to
background value.

Zeeman interaction in second order.
We ¿nally give the values of the singlet/triplet scattering lengths deduced in the anal-

ysis, including error bars on the various experimental and theoretical input parameters.
We ¿nd: dW +;:Rb, @ 435 	 9 d3 anddV+;:Rb, @ <6 	 8 d3. We also¿nd that the
predicted¿eld positions of the Feshbach resonances are reliable to within about 10 G
for ;8Rb and 40 G for;:Rb. To give an impression of the resonance behavior to be
expected for;8Rb +;8Rb scattering, Fig. 5 shows the elastic cross section for three col-
lision energies as a function ofE in the range of the¿rst resonance at 142 G. For the
lowest energies the background value is almost equal to;�d55>�5. For each energy� in-
creases to the quantum limit;�@n5 close to the resonance¿eld value and subsequently
decreases to 0 before returning to the background value. Apparently, although the max-
imum gradually disappears with increasing energy, the resonance shape is suf¿ciently
pronounced to be observable in an experiment similar to that of Ref. [15].

- 64 -



An important conclusion of our work is that we can account for all presently known
properties of Rb5 bound and continuum states with a single set of parameters. These in-
clude the triplet scattering lengths from earlier experiments [13, 14], the highest bound
;8Rb5 states measured in the two-color PA experiment [11], the double condensate sta-
bility [10], the measured scattering lengthd4>�4+;:Rb, and the absence of resonances
in that quantity wider than 2 G in the range 15-540 G [15]. This enables us to de-
duce scattering lengths and positions of Feshbach resonances. The prediction of such
resonances in an interesting¿eld range should be readily veri¿able experimentally. If
con¿rmed, they will give rise to a variety of fascinating new possibilities for studying
Bose condensates.

We gratefully acknowledge the support of work at Austin by the A.P. Welch Founda-
tion, the National Science Foundation and the NASA Microgravity Sciences and Appli-
cations Division. The work at Eindhoven is part of the research program of the Stichting
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Abstract

We formulate a rigorous method to calculate the stationary scattering
wave function for a three-body collision between three ultracold doubly-
polarized ground-state alkali atoms, based on the Faddeev formalism.
The circumstances of the collision correspond to the conditions pre-
vailing in Bose-Einstein condensed and other ultracold gas samples.
The method combines a pair-correlated hyperspherical expansion in
6D with the accumulated phase approach for the pair interactions. It
enables us to calculate the complex 6D elastic scattering length and
the three-body recombination constant.

The realization of Bose-Einstein condensation [1, 2, 3, 4] in ultracold dilute atomic
hydrogen and alkali gases has been the starting point for a great variety of experimen-
tal and theoretical studies. An attractive aspect of these systems is the ability to perform
rigorous calculations of properties of these systems. At the low densities of the ultra-
cold atomic samples used in most of the experimental studies single-atom and two-atom
processes dominate the properties, and these can generally be calculated rigorously. In
a subset of experiments at higher densities, however, three-body collisions are impor-
tant, both in atomic hydrogen [5] and in atomic alkali [6] gas clouds, as they give rise to
recombination losses (dimerization). Understandably, with the exception of a publica-
tion on atomic hydrogen [7], all existing theoretical treatments of three-body collisions
of ultracold atoms are based on (possibly crude) approximations.

A ¿rst category of such calculations applies to resonance recombination. This pro-
cess proceeds in two sequential stages. First, two atoms collide and are trapped into a
long-lived quasi-bound state. Subsequently, this quasi-molecule is stabilized in a col-
lision with a third atom in which it undergoes a transition into a bound state. The
importance of such a process was recognized in 1976 by Stwalley in connection with
the stability of spin-polarized atomic hydrogen [8]. Reynolds et al. presented a theo-
retical treatment for the case of cold atomic hydrogen [9], based on an earlier treatment
for thermal atoms [10]. Recently, a similar mechanism was studied [11] for three-body
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(Feshbach) resonance recombination losses in a sodium optical trap [12].

Studies of non-resonant (or direct) recombination processes were made by Greben
et al. [13] and by Kagan et al. [14] using various approximations. Three-body recombi-
nation calculations for alkali atoms were carried out on the basis of a Jastrow approx-
imation by Moerdijk et al. [15] and, using a different approximation, by Fedichev et
al. [16].

A rigorous calculation describing a three-body collision for doubly polarized H
atoms has been carried out in 1986 by de Goey et al. [7]. This was a calculation in
the momentum representation based on the Faddeev formalism [17]. Until now, an ex-
tension to other spin states for H atoms or to alkali atoms for even the simplest, doubly
polarized, spin state has proven to be dif¿cult, primarily due to the strongly attractive
pair interactions, i.e., the large number of bound states in the two-body subsystems.

In this paper we propose a method that should make it possible to cope with this last
problem. The method combines aspects of several previous approaches. Like the 1986
calculation for doubly polarized H atoms, it is based on the Faddeev scheme, but in con-
trast it is a coordinate space approach. The motivation for turning to coordinate space
is the great advantage of using accumulated phases [18] to ’summarize’ the net effect
of the, often insuf¿ciently known, short range potentials in the two-atom subsystems.
To implement these, a division in short range and long range problems in coordinate
space is essential. Also, our approach bears some analogy with the earlier approximate
Jastrow approach of Moerdijk et al. [15]. Our three-body wave function contains sim-
ilarly a product of three zero-energy s-wave two-body pair scattering wave functions
(subject to a modi¿cation discussed below), inspired by the approximate Jastrow form
of the rigorous H + H + H wave function in Ref. [7]. In our case, however, the Jastrow
product is turned into a rigorous expression by multiplying it by a series of hyperspher-
ical harmonic terms in the 6D relative coordinate spaceU9 resulting from splitting off
the trivial total center of mass motion of the three atom system. Building in the radial
node structure of the pair wave functions from the outset is a rather essential ingredient
of any successful approach. Any attempt to account for the complicated node structure
- the number of nodes in the Cs-Cs triplet s-wave radial wave function is more than 50
within an interatomic distance ofu @ 53 d3 - via a hyperspherical expansion alone, is
deemed to fail because of slow convergence. The idea of combining a Jastrow ansatz
with a hyperspherical expansion in a ’pair-correlated hyperspherical harmonic’ basis has
been investigated previously for the three-nucleon problem by Kievsky et al. [19, 20].
In that problem the pair-correlated hyperspherical basis has a de¿nite advantage relative
to a pure hyperspherical harmonic expansion in that the strongly repulsive short range
core of the nucleon-nucleon interaction is automatically taken care of by the Jastrow
functions. Atom-atom interactions have this feature in common with nucleon-nucleon
potentials. In the context of cold atoms an even stronger motivation for splitting off
a Jastrow part from the hyperspherical harmonic expansion is to be found in the fact
that it appears to be the only way to implement the accumulated phase approach in a
three-body theory. In the spirit of the accumulated phase method each of the Jastrow
factors coincides with the pair scattering wave function only up to a certain interatomic
distance. Beyond that distance the atom pair becomes increasingly susceptible to pertur-
bations by the third atom so that it becomes less meaningful to incorporate the structure
of the wave function of the unperturbed pair. We therefore de¿ne the Jastrow function
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Figure 1: The three sets of Jacobi coordinates.

to tend smoothly to a constant value of unity in an u interval of roughly 10 to 30 d3
beyond the last but one node of the zero-energy scattering wave function.

Since we expect the¿nite (see Ref. [21])W $ 3 limit of the three-body recombi-
nation constant to apply at the relevant low temperatures of the BEC experiments, we
consider an initial state with three atoms approaching one another with zero energy in
relative s-waves. The magnetic dipolar interaction playing a negligible role, we have
to consider a central pure-triplet atom-pair interaction and a total angular momentum
O @ PO @ 3 for the three-body state. As the total spin state has a well-de¿ned to-
tally polarized characterV @ PV @ 6

5
> L @ pL @ 6l, with l the nuclear spin, we leave

out the spin part of the total wave function, so that the three-body wave function� only
describes the geometry of the triangle de¿ned by the atom positions, the orientation of
the triangle inU6 space being isotropic. InU9 we describe the triangular geometry by
the 6D radius�, corresponding to the linear dimensions of the triangle, supplemented
with two angles varying on the hypersphere of constant� and characterizing the shape
of the triangle. ForO 9@ 3 the total wave function would also depend on three other (Eu-
ler) angles on the hypersphere, characterizing the orientation of the triangle. The former
two angles are usually chosen in one of three different ways depending on the choice
l @ 4> 5>6 of the Jacobi coordinates�{l> �|l (see Ref. [22] and Fig. 1). For instance,�{4 is
the radius vector from atom 3 to atom 2, while�|4 is -+ 7

6
,
4

5 times the radius vector from
the center-of-mass of the pair (23) to atom 1. One of the above angles,!l, character-
izes the relative magnitude of�{l and�|l: {l @ � frv!l> |l @ � vlq!l, !l 5 ^3> �5 `. The
other angle,�l, is the angle between�{l and�|l. A surface element of the hypersphere
with radius� is then given by

�8g @ ;�5�8 vlq �lg�l vlq
5 !l frv

5 !lg!l= (1)

We write the total collisional wave function as a sum of three Faddeev components,
� @ #+�{4> �|4, . #+�{5> �|5, .#+�{6> �|6,, with a hyperspherical part of the form

�KV @ i+u45,i+u56,i+u64,
6[

l@4

[

N>o

XNo+�,m+N> o,ll= (2)

The superscript HS serves to distinguish the hyperspherical part (2) of the total wave
function from an additional, asymptotic contribution�D to be considered below. For
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each l the states

m+N> o,ll @QNoSo+frv �l,SN>o+!l,= (3)

form an orthonormal set of eigenstates of the 6D ’angular momentum’ operatorN5 on
the hypersphere with eigenvaluesN+N . 7,. The coef¿cientQNo is a normalization
constant,So is a Legendre polynomial offrv �l @ a{l=a|l andSN>o+!l, is proportional to
a Jacobi polynomial [23]. The expressions (2) and (3) are special cases of more com-
plicated expressions valid without theW $ 3 limit: the angular momentum quantum
numberso and� associated with the degrees of freedoma{l anda|l, respectively, are in
our case coupled to+O>PO, @ +3> 3, and therefore equal. We haveN @ 5+q. o, with
q @ 3> 4> 5> ====.

The expression (2) alone would in principle suf¿ce to describe a zero-energy three-
atom collision. With one or more atom + di-atom decay channels open at that energy,
however, it would also have to describe the outgoing wave states in these channels with
a large separation between a single atom and an atom pair, i.e.,m�|lm  m�{lm. Such con-
tributions are concentrated in an increasingly smaller part of the hypersphere surface
close to!l @

�
5
, requiring increasingly largeN values in the hyperspherical part#KV .

It is therefore advantageous to include in the total wave function explicit terms describ-
ing outgoing wave statesyopo

for the open decay channelsy> o>po in the asymptotic
region of space:

� @ �KV .�D>

�D @ �
6[

l@4

[

yopo

Dyopo
yopo

+�{l> �|l,= (4)

Here,y> o>po denote the vibrational and rotational quantum numbers of a rovibrational
di-atom state, whileDyopo

is the amplitude for the transition from the free three-body
channel 0 to the atom + di-atom decay channely> o>po.

The functionyopo
is de¿ned by

yopo
+�{l> �|l, @ "yo+{l,\opo

+a{l,|
�4
l Ro+nyo|l,\

�

opo
+a|l,i+{m,i+{n,F+|l,= (5)

In this equation" denotes a rovibrational pair wave function and+lmn, is a cyclic per-
mutation of (123). Furthermore,Ro is an outgoing wave solution for the relative motion
of the atom + di-atom system including a long-range atom + di-atom van der Waals po-
tential with twice the atom-atomF9 dispersion coef¿cient. For large|l, Ro tends to
the Riccati-Hankel functionak.o +nyo|l, $ h{s+lnyo|l,. Here,nyo is related to the total
initial 6D kinetic energyH by energy conservation:

H �
|
5

5�
�5 @ Hyo .

|
5

5�
n5yo> (6)

with � @ 4

5
p , Hyo+? 3, the di-atom internal energy, and� the initial 6D wave vector.

Finally,F+|l, is a smooth damping function equal to 1 for large|l and 0 for small|l
with a transition region between roughly 40 and 60d3. With this factor included,�D

contributes only for large atom + di-atom distances.
For reasons of symmetryDyopo

(� Dyo) is independent ofpo, so that the sum over
po in Eq. (4) is anO @ 3 state, i.e., invariant under 3D rotations via the combination
of spherical harmonics in Eq. (5). The recombination amplitudeDyo is proportional to
the S-matrix elementVyopo>3 (� Vyo>3), connecting the initial free three-atom channel
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with the y> o>po recombination channel: when �KV is normalized such that its free
three-atom part equalsh{s+l�=�, � 4 in theH $ 3 limit, Dyo is given by [24]

Dyo @
56�

9
4

5

n
4

5

yo

Vyo>3+H,

�5
= (7)

The matrix elementVyo>3 is related to the elasticN @ 3 $ N @ 3 (free$ free)
S-matrix elementV3>3 by unitarity:

mV3>3m
5 .
[

yo

+5o. 4,mVyo>3m
5 @ 4= (8)

Furthermore,V3>3 can be expressed [25] in the complex 6D elastic scattering phase shift
�3>3 and, forH $ 3, the complex 6D elastic scattering lengthd:

V3>3 @ h5l�3>3 >

frw �3>3 � �
65

�+�d,7
.R+

4

�5
,= (9)

In terms ofDyo theH $ 3 recombination rate constantO is given by

O @
[

yo

+5o .4,Oyo> Oyo @
6
8

5

7p
|nyomDyom

5> (10)

which describes the decrease in the numberQ3 of condensate atoms:
gQ3

gw
@ �

4

9
6Oq53Q3> (11)

whereq3 is the density of condensate atoms. The factor 3 arises from the disappearance
of all three atoms from the condensate, the factor4

9
is due to the fact that the atoms are

condensed and not thermal. This convention forO is similar to the convention being
used for two-body decay. Finally, for large enough� the 6D isotropic part of the total�
is given by

�+N @ 3, @

�
5

��

�5

^K�

5 +��, . V3>3K5+��,` � 4� +
d

�
,7 +H $ 3,> (12)

whereK5 is an outgoing andK�

5
an ingoing Hankel function [26].

In view of different conventions used in the literature, it is of interest to specify the
de¿nition of O on which the above equation (10) is based. We de¿neO as an intrinsic
recombination event rate via the loss rate equation

gq

gw
@ �6Oq6 (13)

for an uncondensed gas sample, with the factor 3 denoting the number of atoms lost in a
three-body recombination event. (The corresponding rate equation for a condensed gas
contains an additional factor 1/6 on the right-hand side). This de¿nition is in line with
the usual convention for two-body decays where the rate coef¿cients are also de¿ned via
event rates. It has the advantage that the number of atoms lost in a single event occurs
as an explicit factor in the equation, while the remaining coef¿cient has a meaning
independent of the experimental circumstances. Often, the analysis of experimental
data is based on an effective rate equation:

gq

gw
@ �Ohiiq

6= (14)
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In fact, Moerdijk et al. [15] calculate a coeffcient Ohii @ 6O for an uncondensed gas
and Dalibard et al. [27] report an experimental value Ohii @ 4

9
� 6O for a condensed

gas.
Our approach to determine the total wave function is based on a Kohn variational

principle [28]. We consider the functional

V3>3^ ��` @ �V3>3 �
�7

97�5
lk���mOm��l= (15)

Here, O @ 5�
|5
+H � K, and �� is de¿ned by equations similar to (2), (4), and (12),

with trial quantities �V3>3, �Dyo, �X replacing the analogous quantities in �. We impose
the requirement that the functional be stationary under variations of the trial quantities.
Under square-integrable variations of the hyperradial wave functions�X and variations
of �V3>3 this requirement leads to the following set of coupled equations:�

D+�,
g5

g�5
.E+�,

g

g�
.F+�, .

5�

|5
HQ+�,

�
X+�, @

[
yo

DyoGyo+�,> (16)

in which X is a column vector with componentsXN3o3 , while D, E, F, and Q are
matrices with rows No and columns N3o3 [19, 23]. The +No>N 3o3, element of the total
matrix between the square brackets is de¿ned as an  integral:

^ `No>N3 o3 @ ki+u45,i+u56,i+u64,
6[

l@4

+N> o,lmOmi+u45,i+u56,i+u64,
6[

l3@4

+N3> o3,l3 l=

(17)

Each column vector Gyo has components

+Gyo,No @
6[

l>l3@4

ki+u45,i+u56,i+u64,+N> o,lmOmyo+�{l3 > �|l3,l> (18)

in which

yo+�{l3 > �|l3, @
[

po

yopo
+�{l3 > �|l3 ,= (19)

Numerically, in the W @ 3 limit we determine a homogeneous solution Xkrp+�, of
Eq. (16), regular for small � and satisfying boundary conditions

Xkrp
No +�, �

�$4
4 .R

�
4

�7

�
+No, @ +33,>

Xkrp
No +�, �

�$4
R

�
4

�7

�
+No, 9@ +33,> (20)

for large �. For each separate combination y> o on the right-hand side of Eq. (16) we
also determine the (unique) solutionXyo+�, of the inhomogeneous equation with only
�Gyo on the right-hand side, that is regular for small� and obeys boundary conditions

Xyo
No+�, �

�$4
R

�
4

�7

�
(21)

for all +No,, including+33,. Note that only the homogeneous part for+N> o, = +3>3,
contains an incoming wave, corresponding to the term 1 in Eq. (20). In terms of the
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above solutions we would thus dispose of the total hyperspherical part �KV in Eq. (4):

�KV @ �KV>krp �
[
y>o

Dyo�
KV>yo> (22)

with

�KV>krp @ i+u45,i+u56,i+u64,
[
l

[
No

Xkrp
No +�,m+N> o,ll>

�KV>yo @ i+u45,i+u56,i+u64,
[
l

[
No

Xyo
No+�,m+N> o,ll> (23)

if the decay amplitudes Dyo were known.
We determine the latter by considering variations of the trial decay amplitudes �Dyo

in the above functional, leading to

k
[
l

�yo+�{l> �|l,mOm�
KV �

[
l3

[
y3o3

Dy3o3y3o3+�{l3 > �|l3 ,l @ 3= (24)

Equation (24) has the form of a set of algebraic equations[
yo3

[yo>y3o3Dy3o3 @ \yo> (25)

with the [ and \ coef¿cients de¿ned by

[yo>y3o3 @ k
[
l

�yo+�{l> �|l,mOm�
KV>y3o3l . k

[
l

�yo+�{l> �|l,mOm
[
l3

y3o3+�{l3 > �|l3,l>

\yo @ k
[
l

�yo+�{l> �|l,mOm�
KV>krpl= (26)

In summary, a calculation along the lines of the above method might run as follows.
Assuming cut-off valuesNpd{, opd{, �pd{ for N, o, �, and con¿ning oneself to a
restricted set of two-body bound statesy> o as¿nal states close to the dissociation limit,
elements of the matricesD, E, F, Q , and of the column vectorsGyo are calculated
in a grid of � values. Then Eq. (16) is solved for homogeneous and inhomogeneous
solutionsXkrp+�, andXyo+�,. This de¿nes�KV via Eqs. (22) and (23), and therefore
the[ and\ coef¿cients in the algebraic equations (25) via Eqs. (26). Solving Eqs. (25)
¿nally gives the decay amplitudes. The calculation is repeated for increasing values of
Npd{, opd{, and�pd{, until convergence is obtained.

We believe that a rigorous calculation using the above method is practically feasible
with present-day computer facilities. In practice, most of the computer time is needed
for the accurate calculation of the integrals over involved in calculatingD, E, F, Q ,
Gyo as well as[ and\ . To calculate these an adaptive integration scheme is chosen
which guarantees that from integration point to integration point the step in each inter-
atomic distance is restricted within a certain range near 0 depending onu. On a modern
processor, this results in a total calculation time of about two days. This calculation time
can be reduced dramatically on a parallel processing system because the calculation of
the matrices/vectors can be carried out independently for each value of�. The tempo-
rary storage used in the integration algorithm over raises the memory requirements
from 100 MB on a single processor to 50 MB per processor on a massively parallel
machine.

Calculations along these lines should be very important for understanding the ex-
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perimental data concerning three-body recombination which are becoming available.
Additionaly, they should be able to provide guidance in judging the feasibility of further
experiments.
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Summary

The achievement of the critical phase density in a gas of alkali atoms has stimulated
a breakthrough in the research ¿eld of Bose-Einstein condensation. The most impor-
tant interaction in such a gas is the s-wave scattering of two colliding atoms: The sign
of the scattering length determines whether the atoms effectively repel or attract each
other. This results in a mutual mean-¿eld effect of the atoms, which expresses itself for
instance in frequency shifts of atomic clocks based on cold atoms. In a condensate the
effects of the mean¿eld are very diverse. When the scattering length is negative, only a
small metastable condensate can be formed: A larger condensate collapses under the at-
tractive interactions. When the atoms repel each other the mean¿eld energy generally
dominates the kinetic energy, and the condensate is in the Thomas-Fermi regime.

It is therefore interesting that collisions, and thus also the scattering length, can be
controlled by the magnetic¿eld in which collisions take place. This results from reso-
nance behavior arising from the coupling of the collision channel with other hyper¿ne
channels in which a (quasi-)bound state occurs. These so-called Feshbach resonances
are the main subject of this thesis.

After an introduction in chapter 1, a simple model is presented in chapter 2 by which
the structure and the properties of bound states and collision states of pairs of identical
alkali atoms in the electronic ground state can be understood. The states involved are
the very weakly bound states on the one hand and the ultracold collisions on the other
hand, both very close to the dissociation limit. As a consequence the two types of
states are closely related. Essentially, the simple picture comes down to dividing the
total interatomic distance range in two regions, in each of which a part of the total
Hamiltonian is neglected. In the separation point the total multichannel wave function
is subjected to a requirement of continuity. The model accounts for a whole range
of features present in the system. In particular it gives a description of the coupling
mechanism between hyper¿ne states which causes the Feshbach resonances, as well as
the approximate positions and the widths of the resonances.

In chapter 3 we discuss an experiment that has led to a prediction of Feshbach res-
onances for;8Rb en;:Rb (see chapter 5). This two-color photoassociation experiment
has been analyzed by an approach developed in this thesis work. The energies of mul-
tichannel bound states of;8Rb5 molecules are measured in an optical trap by coupling
these states to an electronically excited;8Rb5 state with a laser. Using a second laser,
the latter state is coupled to a low-temperature collisional state of two trapped ground
state atoms. Via the latter coupling atoms can escape from the trap: an atom pair in
the electronically excited state can spontaneously emit a photon as a result of which the
atoms leave each other with large speed. When the frequency of the¿rst laser corre-
sponds to the energy difference of the excited state and the ground state which is to be
measured, the above-mentioned coupling suppresses the spontaneous decay by decreas-
ing the population of the excited state. This inÀuences the measured loss of atoms from
the trap. From the energies determined in this way parameters have been extracted that
characterize the atom-atom interactions.

To analyze the levels obtained in the experiment in chapter 3, a new method has
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been developed in chapter 4. These levels are strongly coupled and very close to the
collision threshold. The method is based on Inverse Perturbation Analysis (IPA) which
enables to use observed bound states in a potential to derive properties of that potential.
Our Coupled Inverse Perturbation Analysis (CIPA) is a generalization which allows to
analyze levels in which coupling occurs between internal states of different electronic
and nuclear spin. Secondly, we can combine this approach with a description of the
short-range interaction in terms of accumulated phases. Even when the short-range
behavior is not yet suf¿ciently known, this enables the use of levels close to threshold.

In chapter 5 the results of the CIPA analysis lead to predictions of three Feshbach
resonances in ultracold;8Rb +;8Rb collisions and four resonances in;:Rb +;:Rb col-
lisions. These;8Rb resonances are the¿rst that were predicted to occur at¿elds at
which the atoms can be trapped in a static magnetic¿eld. One of the;8Rb resonances
has in the meantime been observed by the group of Heinzen and also in the groups of
Cornell and Wieman. The observation of the resonance by the groups of Cornell and
Wieman in Boulder has subsequently made it possible to pin down in very great preci-
sion the interaction parameters for cold Rb atoms (chapter 4). Currently, these groups
are trying to use this resonance to make an;8Rb condensate in a magnetic trap: Away
from resonances the scattering length is negative for;8Rb, so that a large condensate
cannot be made. A three body decay process seems to hamper this, however.

In chapter 6 we treat a rigorous method to reconstruct the stationary collision state
of a three-body collision between three ultracold, double-polarized ground-state alkali
atoms. The method is based on the Faddeev formalism. The circumstances of the col-
lision correspond to Bose-Einstein condensed and other ultracold gases. The method
combines a pair-correlated expansion in hyperspherical harmonics in 6D with the accu-
mulated phase for the pair interactions. It allows us to calculate the complex 6D elastic
scattering length and the three-particle recombination rate.
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Samenvatting

Het bereiken van de kritische fase-dichtheid in een gas van alkali-atomen heeft een
stroomversnelling teweeggebracht in het onderzoek naar Bose-Einstein condensatie.
Het belangrijkste wisselwerkingsproces in zo’n gas is de s-golf verstrooiing van twee
botsende atomen: het teken van de verstrooiingslengte bepaalt of de atomen elkaar
effectief afstoten dan wel aantrekken. Dit resulteert in een mean-¿eld effect van de
atomen op elkaar, wat zich bijvoorbeeld uit in frequentieverschuivingen van atomaire
klokken gebaseerd op koude atomen. In een condensaat zijn de effecten van het mean
¿eld zeer divers. Indien de verstrooiingslengte negatief is, kan er slechts een klein
metastabiel condensaat gevormd worden. Een te groot condensaat valt in elkaar on-
der de aantrekkende interacties. Indien de atomen elkaar afstoten gaat de mean-¿eld
energie al snel overheersen ten opzichte van de bewegingsenergie, en het condensaat
bevindt zich in het Thomas-Fermi regiem.

Interessant is daarom dat de botsingen, en derhalve de verstrooiingslengte, gestuurd
kunnen worden door het magneetveld waar de botsingen zich in afspelen. Dit is een
gevolg van resonantiegedrag, dat ontstaat door koppeling van het botsingskanaal met
andere hyper¿jnkanalen waarin zich een (quasi-)gebonden toestand bevindt. Deze zgn.
Feshbach-resonanties vormen het hoofdonderwerp van het proefschrift.

Na een inleiding in hoofdstuk 1 is in hoofdstuk 2 een simpel model gepresenteerd
waarmee de structuur en de eigenschappen kunnen worden begrepen van gebonden toe-
standen en botsingstoestanden van paren identieke alkali-atomen in de electronische
grondtoestand. Het betreft de zeer zwak gebonden toestanden enerzijds en de ultrakoude
botsingen anderzijds, beide zeer dicht bij de dissociatie limiet. Daardoor zijn die twee
onderling nauw gerelateerd. In essentie komt het eenvoudige beeld neer op het verdelen
van de totale range van interatomaire afstanden in twee gebieden, in elk waarvan een
deel van de totale Hamiltoniaan verwaarloosd wordt. In het scheidingspunt wordt con-
tinuïteit opgelegd aan de multikanaals-golffunctie. Het model verklaart een spectrum
aan eigenschappen in het systeem. In het bijzonder geeft het een beschrijving van het
koppelingsmechanisme tussen de hyper¿jntoestanden dat de resonantie veroorzaakt, als
ook de globale posities en de breedten van de resonanties.

In hoofdstuk 3 komt een experiment aan de orde dat geleid heeft tot een voorspelling
van Feshbach resonanties voor;8Rb en;:Rb (zie hoofdstuk 5). Dit twee-kleuren fotoas-
sociatie experiment is geanalyseerd met een in dit promotiewerk ontwikkelde aanpak.
De bindingsenergieën van multikanaals gebonden toestanden van;8Rb5 molekulen wor-
den gemeten in een optische val door deze toestanden met een laser te koppelen aan een
elektronisch aangeslagen;8Rb5 toestand. Met een tweede laser wordt deze laatste toe-
stand gekoppeld aan lage-temperatuurs botsingstoestanden van grondtoestand atomen
in de optische val. Via deze laatste koppeling kunnen atomen uit de val ontsnappen:
een atoompaar in een elektronisch aangeslagen toestand kan spontaan een foton uitzen-
den waarbij de atomen elkaar met grote snelheid verlaten. Wanneer de frequentie van
de eerste laser overeenkomt met het energieverschil tussen de aangeslagen toestand en
de te meten grondtoestand verijdelt de betreffende koppeling dit verval door de popu-
latie van de aangeslagen toestand te verminderen. Dit beïnvloedt het gemeten verlies
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van atomen uit de trap. Uit de zo bepaalde energieën worden vervolgens parameters
geëxtraheerd die de atoom-atoom interacties karakteriseren.

Om de toestanden verkregen in het experiment in hoofdstuk 3 te analyseren is een
nieuwe methode ontwikkeld in hoofdstuk 4. Deze toestanden zijn sterk gekoppeld en
liggen erg dicht bij de botsingdrempel. De methode is gebaseerd op Inverse Perturbation
Analysis (IPA), welke het mogelijk maakt om gemeten gebonden in een potentiaal te ge-
bruiken om de eigenschappen van die potentiaal af te leiden. Onze gekoppelde Inverse
Perturbation Analysis (CIPA) is een generalisatie die het mogelijk maakt toestanden te
analyseren waarin zich koppeling afspeelt tussen interne toestanden met verschillende
elektronische en nucleaire spin. Ten tweede is het mogelijk de aanpak te combineren
met een beschrijving van het korte-afstands gedrag in termen van geaccumuleerde fasen.
Zelfs indien het korte-afstands gedrag nog niet voldoende bekend is, maakt dit het mo-
gelijk toestanden dicht bij de drempel te gebruiken.

In hoofdstuk 5 leiden de resultaten van de CIPA analyse tot de voorspelling van
drie Feshbach resonanties in ultrakoude;8Rb + ;8Rb en vier resonanties in;:Rb +
;:Rb botsingen. Deze;8Rb resonanties zijn de eerste resonanties die voorspeld zijn
bij velden waarbij de atomen te vangen zijn in een statisch magnetisch veld. Een van
de;8Rb resonanties is intussen waargenomen door de groep van Heinzen en ook in de
groepen van Cornell en Wieman. De meting van de resonantie door de groepen van
Cornell en Wieman in Boulder heeft het vervolgens mogelijk gemaakt om de wissel-
werkingsparameters voor koude Rb atomen met zeer grote nauwkeurigheid vast te leggen
(hoofdstuk 4). Op dit moment wordt er een poging gedaan in de laatste groepen om
deze resonantie te gebruiken om een;8Rb condensaat in een magnetische val te maken:
buiten de resonanties is de verstroooiingslengte negatief voor;8Rb, zodat het niet mo-
gelijk is een groot condensaat te maken. Een drie-deeltjes vervals proces lijkt dit te
bemoeilijken, zowel in als buiten de resonantie.

In hoofdstuk 6 behandelen we een rigoureuze methode om de stationaire toestand
van een drie-deeltjes botsing tussen drie ultrakoude dubbel gepolariseerde grondtoe-
stand alkali atomen te reconstrueren. De methode is gebaseerd op het Faddeev forma-
lisme. De botsingsomstandigheden corresponderen met Bose-Einstein gecondenseerde
en andere ultrakoude gassen. De methode combineert een paar-gekorreleerde ontwikke-
ling in hypersferische harmonischen in 6D met een geaccumuleerde fase voor de paar-
wisselwerkingen. Dit staat ons toe om de complexe 6D elastische verstrooiingslengte
en de drie-deeltjes vervalssnelheid te berekenen.
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STELLINGEN
behorende bij het proefschrift

Feshbach resonances in Bose Einstein Condensates
van

Johnny Vogels
Eindhoven, 29 juni 1999

I

Voor velden waarbij 85Rb atomen magnetisch opgesloten kunnen worden zijn er drie
(door de exchange wisselwerking geïnduceerde) Feshbachresonanties die de weg naar een
instelbaar Bose Einstein condensaat openen.

• Dit proefschrift, hoofdstuk 5

II

Ondanks de positieve uitspraken van Kievsky et al. houdt hun formalisme voor drie-
deeltjes verstrooiing geen stand bij hard-core potentialen.

• A. Kievsky, M. Viviani and S. Rosati, Nucl. Phys. A 577, 511 (1994)

III

De Landau-Zener theorie wordt ver buiten zijn geldigheidsgebied het meest toegepast.
• L. D. Landau, Phys. Z. Sow. 1, 89 (1932); 2, 46 (1932)

• C. Zener, Proc. Roy. Soc. A 137, 696 (1932)

• Dit proefschrift, hoofdstuk 2

IV

Hoe groot de exchange wisselwerking ook is, indien zij dezelfde singlet- en triplet
verstrooiingslengte veroorzaakt, koppelt zij geen hyperfijnkanalen.

• Dit proefschrift, Hoofdstuk 2

• S.J.J.M.F. Kokkelmans et al., Phys. Rev. A 55, R1589 (1997); P.S. Julienne et al., Phys. Rev.
Lett. 78, 1880 (1997); J.P. Burke, Jr. et al., Phys. Rev. A 55, R2511 (1997)

• C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, and C.E. Wieman, Phys. Rev. Lett. 78, 586
(1997)



V

Gezien het reversibele karakter van de quantummechanica zou het bestaan van "one-way"
berekeningen voor encryptie een illusie kunnen zijn.

• P.W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a
Quantum Computer, SIAM Journal on Computing 26, 1484 (1997)

VI

Met een spinor-condensaat kan men fase-diffusie meten zònder referentiecondensaat.
• C.K. Law, H. Pu, N.P. Bigelow, Quantum Spin Mixing in Spinor Bose-Einstein Condensates,

Physical Review Letters 81, 5257 (1998)

VII

Mulders en Engelen hebben zich visueel laten misleiden door de rood-antirood
combinatie van quarks “kleur”-neutraal te noemen.

• P.J. Mulders en J. Engelen, Ned. Tijdschrift voor Natuurkunde 65, 142 (1999)

VIII

De snelle voortgang van de wetenschap vereist dat èn de preprints èn de uiteindelijke
versie van publicaties vrij toegankelijk moeten zijn. De kosten van het “referee”-proces
kunnen het meest effectief door de auteurs gedragen worden.

• http://publish.aps.org/PRL/disc.html

IX

De huidige zoekmogelijkheden maken het moeilijker om originele stellingen te
verzinnen.

X

Ik bel, dus ik ben.
• Vrij naar Descartes
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