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Modelling of Industrial Processes for Polymer

Melts�

Extrusion and Injection Moulding

Fons van de Ven

Eindhoven University of Technology
P�O�Box ���� ���� MB Eindhoven	 The Netherlands

Abstract� In this chapter	 a survey is presented of the research on polymers per

formed by a unit of the mathematics faculty of Eindhoven University of Technology
�EUT� during the years �� to ����� Special attention is given to the mathematical
modelling of industrial processes for polymers� An outline of a set of projects con

cerned with polymer processes as extrusion	 injection moulding	 polymer blending	
blow moulding	 cable coating and �ber spinning is given� Finally	 injection mould

ing between two parallel plates is considered� The mechanical and thermal features
of this process are modelled� A project on the instability ��wobbling�� of the free
�ow front is discussed�

� Introduction to the Research Unit

��� Description of the Research Unit

Our research unit is part of the�

Section� Applied Analysis�Continuum Mechanics�
Faculty� Mathematics and Computing Science�
Eindhoven University of Technology �EUT�

Our main activities within the research on polymers is in the mathemati�
cal modelling of industrial processes for polymer products� such as	 
bers�
sheets� compact discs� etc� Examples of these processes are� extrusion� injec�
tion moulding� blow moulding and 
ber spinning� From the mathematical
models we try to derive both analytical and numerical simulations of the
processes� These simulations can serve us to suggest ways for improving the
processes �better 
nal products� shorter production times�� A special point
of attention for us is in the investigation of the �in�stability of the processes�
Industrial contacts �a�o� for experimental data� are essential in these research
topics�

��� Members of the Unit

The research unit� as far as research in the 
eld of polymers concerns� consists
of�
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� Senior academic sta��
� Dr�A�A�F�van de Ven
� Dr� J� Molenaar

� PhD�
� Dr� A�C�T� Aarts �till ��������
� Dr� C�F�J�den Doelder �from ��������� till ���������
� H�H�J� Gramberg �from ���������
� A�Y� Gunawan �from ��������� till ��������� and from ���������
� S�M�P� Smolders �from ����������

� Twaio �trainees from Mathematics for Industry��
� I�I� Ptitchkina �from �������� till ���������
� C�F�J� den Doelder �from ������� till ����������
� Dr� Y�M�M� Knops �from �������� till ���������
� R� Klein Meulenkamp �from �������� till ���������
� S�M�P� Smolders �from �������� till ���������

� MsC�student�
� R�den Adel �from �������� till ���������
� H�H�J� Gramberg �from �������� till ���������
� D� Bekers �from �������� till ���������
� J� Kroot �from �������� till ����������
� V� Lemmen �from ������� till ����������

Industrial contacts are�

� DOW Benelux� Terneuzen� The Netherlands
� DSM Research� Geleen� The Netherlands
� Axxicon Moulds Eindhoven� The Netherlands

��� Overview of Research Topics

The research projects on polymers executed by our group during the last 
ve
years can be divided into the following main groups�

�� Extrusion
In extrusion of for instance plastic 
bers� �ow instabilities can occur�
when increasing the rate of production� The distortions due to these
instabilities make the 
nal product worthless� So� it is of great importance
for industries to know how these instabilities can be prevented� or at least
how the critical rate of production can be increased� This can be done by
adapting the geometry of the apparatus and�or the constitution of the
polymer� In order to 
nd out how this is best achieved� a simulation of the
processes under consideration is needed� In two ways� such a simulation
is searched for�
�a� On the basis of a full �dimensional theory using a nonlinear vis�
coelastic constitutive model for the polymer �Aarts� ����	
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�b� On the basis of a ��dimensional� discrete model incorporating either
stick�slip or spurt��ow �Den Doelder� �����

Instabilities in extrusion are classi
ed in� sharkskin� spurt and gross melt
fracture� The �dimensional model showed the existence of persistent pe�
riodic oscillations related to �ow instabilities� For spurt� a discrete model
is constructed� describing relaxation oscillations in good correspondence
with experimental results �performed at DOW��

Incorporated Industries
DOW� DSM�
Incorporated sta��students
Van de Ven� Molenaar� Aarts� Den Doelder� Den Adel�
For further results see Sect� ��

�� Injection Moulding

Injection moulding is considered especially with regard to the produc�
tion of compact discs �CD�s�� This process shows two di�erent types of
problems�

� a �macroscopic� problem� the 
lling of the mould	
� a �microscopic� problem� the 
lling of the pits�
Relevant e�ects are the in�uence of temperature and pressure on the

lling of the pits� and that of the elastic properties of the viscoelastic
melt on residual stresses and deformations in the CD �� PhD�project
Smolders��
A speci
c e�ect of interest is the so called front instability that can occur
in the 
lling phase of an injection moulding process �� PhD�project
Gramberg�� For this project� see also Sect� 
Further aspects that have been under study are�

� Modelling and numerical simulation of the temperature and pressure
in the 
lling phase of an injection moulding process�

� Calculation of the temperature distribution on microscopic scale at
the pits�

� Thermal shrinkage at microscopic level�

Incorporated Industries
Axxicon� DSM�
Incorporated sta��students
Van de Ven� Gramberg� Klein Meulekamp� Hinterk�orner �Leonardo�� Smol�
ders� Bekers� Kroot�

Results

�a� Klein Meulekamp� R�� The Injection Moulding of Compact Discs�
Eindhoven University of Technology� Final report of postgraduate
programme Mathematics for Industry� ����� Eindhoven	 con�dential�
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�b� Hinterk�orner� R�� Injection Moulding of Compact Discs� Report for
an industrial placement at Axxicon Moulds� Eindhoven� ����	 con��
dential�

�c� Bekers� D�� Microscopic Flow Behaviour in the Injection Moulding of
Compact Discs� Master�s Thesis� Eindhoven University of Technology�
February ����� Eindhoven	 con�dential�

�d� Smolders� S�M�P�� A Viscoelastic Model of the Injection Moulding
of Compact Discs� Eindhoven University of Technology� Final report
of postgraduate programme Mathematics for Industry� ����� Eind�
hoven	 con�dential�

�e� Kroot� J�� Shrinkage on Microscopic Level During the Injection Mould�
ing of Compact Discs� Master�s Thesis� Eindhoven University of Tech�
nology� December ����� Eindhoven	 con�dential�

� Morphology of Polymer Blends

DSM develops new synthetic materials by blending several polymers� The
material properties of a polymer blend are closely connected with the
morphology of the blend� This morphology is highly determined by the
blending process in an extruder� The material properties can be predicted
better� if we obtain a better understanding of these blending processes�
The morphology problem concerns the breaking�up of polymer threads
immersed in another polymeric �uid� A solution for the breaking�up of
two parallel threads is derived� This breaking�up occurs either in�phase
or out of phase� The solution predicts when these types of breaking�up
occur� This depends on�
� the distance between the threads	
� the viscosity ratio of the two �uids�
The analytical solution found is in agreement with experiments �per�
formed at DSM�Research�� This research is continued as a PhD�project
�supported by Scienti
c Cooperation Netherlands�Indonesia� by Gunawan
�delegated from�Institut Teknologi Bandung� Indonesia�� to start at ����
�����

Incorporated Industries
DSM�
Incorporated sta��students
Van de Ven� Molenaar� Knops� Gunawan�

Results

�a� Knops� Y�M�M�� Morphology Developments in Polymer Blends	 The
Hydrodynamical Interaction between Disintegrating Threads� Final
report of postgraduate programme Mathematics for Industry� �����
Eindhoven	 con�dential�

�b� Gunawan� A�Y�� The Breaking�up Process of Two Polymer Threads�
Report IWDE ������ Eindhoven University of Technology� January
����� Eindhoven�
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�� Some Smaller Projects

All of these projects are performed at and supported by DSM�Research�
Geleen� DSM�Research constitutes a 
rm basis for the maintenance and
improvement of the company�s technological position� In its organisa�
tional structure� close working conditions exist between specialists with
di�erent backgrounds� One of their functions is to improve existing mate�
rials and develop new ones� and to analyse the �ow behaviour of polymer
melts and blends�
The following projects were considered�
� Blow moulding modelling� the in�uence of sag and die swell�
Blow moulding is an industrial process in which di�erent hollow prod�
ucts can be made� e�g� bottles� cans� air ducts and so called Car Veloc�
ity Joints Boots� In blow moulding a polymer melt is forced through
an annular die in order to produce a hollow cylindrical tube called
a parison� The length of the parison and its thickness distribution
are of central importance for the quality of the 
nal product� Two
competitive e�ects are observed� commonly known as sag and swell�
Sag� a time dependent stretching of the extrudate� is caused by grav�
itational forces� Swell� de
ned as the increase in cross�sectional area
of the extrudate as it comes out of the die� appears due to rearrange�
ment of the velocity pro
le from die��ow to free�space �ow� to elastic
properties of the viscoelastic melt� and to temperature e�ects� Both
sag and swell lead to a non�uniform thickness distribution of the pari�
son� To be able to control the shape of the parison� one has to know
how the parameters of the geometry� the material and the extrusion
process in�uence sag and swell�
A simple mathematical model describing the process of parison for�
mation is constructed� The model is developed for two types of �uids�
Newtonian and Maxwell� respectively� Analytical results are obtained
by use of Mathematica� The results are compared with numerical
results from the 
nite element program Poly�ow and experimental
results from DSM�

� Cable coating� surface instabilities�
In a cable coating process� a solid �e�g� copper� wire is covered with a
thin shield of polymer �e�g� for electrical insulation�� At DSM� surface
distortions of a very special kind were observed� these distortions
of the extrudate showed up as two sets of spirals running in two
directions making angles of approximately ��o with the axis of the
wire� The goal of this project was to 
nd a possible explanation for
this type of distortions�

� Fiber spinning� non�uniform elongation and die swell�
DSM�Research wants to gain insight in the stretching behaviour of
LDPE�polymers during a 
ber spinning process� This project aims at
the analysis of the melt spinning behaviour of polymer melts in the
isothermal melt spinning �Rheotens� test�
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In a number of melt processing techniques such as extrusion� coating�

lm casting and 
lm blowing� the deformation of the polymer melt
is governed by elongation� For a rheological characterisation� it is
needed to test the materials at very high strain rates� In the so called
Rheotens test a melt 
lament is extruded by a capillary rheometer
followed by a stretching under nearly isothermal conditions and with
increasing draw�down ratio �i�e the ratio between extrusion speed
and uptake velocity�� This set�up makes it possible to reach high
strain rates� but is hampered with non�uniform deformation along the
spinline� The Rheotens test gives important information regarding the
melt spinning behaviour of a polymer melt� Therefore� a modelling of
the Rheotens test is required� This modelling should include
� pre�history in the reservoir� the contraction unit and the die	
� die swell at the exit	
� stretching of the 
lament�

Incorporated Industries
DSM�
Incorporated sta��students�
Van de Ven� Molenaar� Ptitchkina� Gramberg� Lemmen�

Results

�a� Ptitchkina� I�I�� Blow Moulding Modelling� Final report of post�
graduate programme Mathematics for Industry� ����� Eindhoven�

�b� Gramberg� H�H�J�� Stability of an Annular Poiseuille Flow� Mas�
ter�s thesis� Eindhoven University of Technology� June ����� Eind�
hoven�

�c� Lemmen� V�� Analysis of the Isothermal Spinning Behaviour of
Polymer Melts� Master�s thesis� Eindhoven University of Technol�
ogy� December ����� Eindhoven�

� Flow Instabilities in the Extrusion of Polymer Melts

��� Introduction

Extrusion of polymeric melts is employed to produce� e�g�� plastic wires� pipes�
sheets and plates� The principle of extrusion is that the polymeric melt is
forced to �ow through a die� e�g�� by the action of a driving pressure gradient
or a moving piston� In extrusion of plastic 
bers �ow instabilities can occur
when increasing the rate of production� Instabilities in extrusion are classi
ed
in� sharkskin� spurt and gross melt fracture� The distortions due to these
instabilities make the 
nal product worthless� So� it is of great importance
for industries to know how these instabilities can be prevented� or at least how
the critical rate of production can be increased� This can be done by adapting
the geometry of the apparatus and�or the constitution of the polymer� In
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order to 
nd out how this is best achieved� a simulation of the processes
under consideration is needed� In two ways� such a simulation is searched for�

�� On the basis of a full �dimensional theory using a nonlinear viscoelastic
constitutive model for the polymer �constitutive instabilities	 Aarts ����	

�� On the basis of a ��dimensional� discrete model incorporating either stick�
slip or spurt��ow �discrete melt fracture models	 Den Doelder �����

The �dimensional model shows the existence of persistent periodic oscilla�
tions related to �ow instabilities�
The discrete model describes relaxation or spurt oscillations in good corre�
spondence with experimental results �performed at DOW��

� Incorporated Industries
DOW� DSM�

��� Problem Description

This section deals with the modelling of the extrusion process� The extruder
consists of a wide cylindrical barrel connected to a narrow cylindrical cap�
illary	 see Fig� �� Thus� the radius R of the capillary is small compared to
the radius Rb of the barrel� The centerlines of the barrel and the capillary
coincide� Cylindrical coordinates �r� �� z� are introduced with the z�axis along
the centerline of the extruder� and z � � corresponding to the position where
the barrel is connected to the capillary�

Qi

l�t�

Q�t�

L

P �t�

Fig� �� The extruder which consists of a wide barrel and a narrow cylindrical capil

lary� The melt in the barrel is compressed by a plunger moving with constant speed
V� in the positive z
direction

The polymeric melt in the barrel is compressed by a plunger� moving at
constant speed V� in the positive z�direction� Due to the plunger movement
a pressure P is built up inside the barrel� and the melt is forced to leave the
barrel at z � � and to �ow into the capillary� with volumetric �ow rate Q� At
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the end of the capillary� i�e� at z � L where L denotes the capillary length�
the melt leaves the capillary and the extrudate is formed� Since the �ow in
the barrel and in the capillary are of essentially di�erent types� the two �ows
are also modelled in di�erent ways� In the main part of the barrel the �ow is
aligned along the z�axis� and the �ow is an almost uniform compression �ow�
The pressure becomes very high here due to the narrow inlet of the capillary�
but the velocity is rather low because the barrel is very wide �as compared
to the capillary�� Hence� in the barrel the �ow is compression dominated�
and shear is negligible here� Thus� the compressibility of the melt inside
the barrel must be taken into account� and the melt density � is variable�
Since the �ow in the barrel is uniform� P and � are only time�dependent�
i�e� P � P �t� and � � ��t�� On the other hand� the �ow in the capillary
is strongly shear dominated �due to the no�slip condition at the wall and
the relatively high velocity compared to that in the barrel� and then the
in�uence of compressibility is small� and in fact negligible� Therefore� the
melt �owing through the capillary is assumed incompressible� Hence� the
melt �ows through the whole capillary with volumetric �ow rate Q � Q�t��
We 
rst consider the �ow inside the barrel� Taking into account the global

mass balance in the barrel� together with a linearly elastic compressibility law
for the pressure� one can derive the following relation between the pressure
in the barrel and the volumetric �ow rate �owing into the capillary �cf� ���
����

dP �t�

dt
� � K �Q�t��Qi�

Al�t�
� t � �� ���

where K is the compression or bulk modulus of the polymeric melt�
Next we consider the �ow in the capillary� where the polymeric melt may

be considered incompressible� This �ow is governed by the equation of motion�
and the incompressibility condition�

r � v � �� ���

where v is the �uid velocity�
For the strongly viscous shear �ow we consider here the inertia terms in the
equations of motion may be neglected� Moreover� body forces are absent here�
so the equation of motion reduces to

r � T � �� ��

where T is the total stress tensor� With the �ow aligned along the z�axis�
the �ow parameters in the capillary are independent of the axial coordinate
z and the azimuthal coordinate �� Under the condition that the �ow starts
from rest at time t � �� the velocity takes the form

v � v�r� t�H�t�ez � ���

whereH is the �Heaviside� step function and ez is a unit vector in the positive
z�direction� The conservation of mass is now automatically satis
ed�
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The no�slip boundary condition at the wall of the capillary and the regularity
of the velocity at the axis require

v�R� t� � �� ���

and
�v

�r
��� t� � �� ���

respectively�
The characteristic response of the material to a deformation is described

by the constitutive equation for the stress� For viscoelastic �uids with fading
memory� the stress depends on the deformation history� If a polymer solution
contains a small�molecule solvent� this solvent will generally respond in a
viscous manner to any applied force or deformation� separately from the
elastic response due to the dissolved polymer� Therefore� it is assumed that
the extra stress tensor S �� T � pI in the �uid consists of a Newtonian
viscous component and an isotropic elastic one� namely

S � ��sD � Sp� � T � �pI � ��sD � Sp� ���

Here� p is the pressure� I the unit tensor� and �s the solvent viscosity� The
rate�of�deformation tensor D is de
ned by

D � �
�
�L� LT �� L � gradv � �v

�x
�� �rv�T �� ���

With ���� we see that the only non�zero components of L and D are Lrz and
Drz � Dzr� where

Drz � Dzr �
�

�
Lrz �

�

�

�v

�r
� ���

The elastic part Sp� which characterizes the polymer contribution� is assumed
to be described by the constitutive model �KBKZ or JSO�� For the consti�
tutive models we consider� S is related to D� and then� just as D� Sp only
depends on r and t� In that case the axial component of the equation of
motion ���� reads

�Trz
�r
�
Trz
r
� �p

�z
� �� ����

Since Trz is independent of z� the solution for the pressure p takes the form

p�r� z� t� � �f�t�z � p��r� t�� ����

Here� f is the pressure gradient driving the �ow� and p� is a further irrelevant
pressure term� Coupling between the �ow in the capillary and the �ow in the
barrel is achieved by equating the pressure terms in the barrel and in the
capillary at r � �� z � �� We assume that the pressure outside the capillary
is at level zero� so that p��� L� t� � �� Then it follows that

P �t� � Lf�t�� � f�t� �
P �t�

L
� ����
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Integration of ���� with use of ���� leads to the following expression for the
shear stress

Trz � �s
�v

�r
�r� t� � Srz�r� t� � ��

�
rf�t�� � � r � R� t � �� ���

Finally� the volumetric �ow rate Q in the capillary is de
ned by

Q�t� � �	

Z R

�

v�r� t�rdr� ����

��� Models for Constitutive Instabilities

The aim of the theory presented in this section is to get a better insight into
the relation between the characteristic behaviour of polymeric melts and the
�ow instabilities�
The results presented here are mainly from the PhD�thesis of Aarts� ����
�performed at EUT��

Analysis of the Flow Instabilities in the Extrusion of Polymeric

Melts�

by� A�C�T�Aarts�

In this thesis� especially the �ow instability �spurt� is investigated� Spurt
in pressure�driven �ows is experimentally observed through a substantial
increase of the volumetric �ow rate at a slight increase of the pressure gradient
beyond a critical value� while spurt in piston�driven �ows is accompanied by
persistent oscillations in the pressure�
Spurt is explained here in terms of constitutive instabilities �mechanical

failure of the polymeric �uid itself�� while the no�slip boundary condition at
the wall of the die is maintained� The explanation is based on balance laws
combined with either of two constitutive models� ��� KBKZ or ��� JSO� To
account for the response of a small�molecule solvent� an extra Newtonian
viscous term is added to the constitutive model employed�

Pressure�driven Extrusion

For a pressure�driven �ow of a KBKZ��uid through a cylindrical capillary�
the occurrence of spurt is demonstrated� It is shown that the steady state
solution is not unique if the steady state pressure gradient exceeds a critical
value� The asymptotic stability of the possible steady states is established�
Numerical computations determine which speci
c steady state the �uid at�
tains� Phenomena like shape memory and hysteresis are explained �see also
��� and �����
The axisymmetric laminar �ow of an incompressible �uid through a cylin�

drical tube� radius R� is considered� The �ow starts from rest at t � �� driven
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by a prescribed constant pressure gradient f � Under the neglect of inertia
forces the balance of linear momentum for the shear stress Trz yields �see
����

Trz � ��
�
rf� ����

The characteristic response of the material is described by a constitutive
equation for Sp according to the KBKZ�model� The total shear stress Trz is
given by

Trz�r� t� � �s
�v

�r
�r� t�� 
�

Z t

��

��r� t� �

c�  � ���r� t� �
e���t���d� ����

where �s is the solvent viscosity� 
 and c are elastic constants and � is the
relaxation rate� The shear strain � is de
ned by

��r� t� � � � �r� t�� � �r� �� where � �r� t� � �
Z t

�

�v

�r
�r� s�ds� ����

After the substitution of ���� into ���� and making the resulting equation di�
mensionless� we arrive at the following integrodi�erential equation for � �r� t�

�
��

�t
�r� t� � h�� �r� t��e�t �

Z t

�

h���r� t� ��e��t���d �
�

�
rf� ����

where the function h is de
ned by h�x� � x��� � x��� Once � �r� t� for each
radial coordinate r���� �� is solved from ����� the �dimensionless� volumetric
�ow rate Q�t� can be calculated from ����

Q�t� �

Z �

�

r�
��

�t
�r� t�dr� ����

The latter result is derived after one integration by parts with the aid of the
no�slip condition ��� and the de
nition �����

Steady state �ow The steady state velocity gradient� de
ned by

��r� � lim
t��

� �v

�r
�r� t�� ���� � �� ����

satis
es the steady state equation �for each r���� ���

F���r�� �� ���r� �

Z �

�

h���r�s�e�sds �
�

�
rf �� F �r�� ����

For � � � � ������ the function F��� is nonmonotonous �see Fig� ��� In that
case equation ���� has three solutions if Fm � F � FM � Stability analysis
reveals that the steady state in which �M � � � �m is unstable� whereas the
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other two� � � �M and � � �m� are asymptotically stable� If f � fcrit ��
�FM �supercritical �ow� then � su�ers a jump	 if � � r � rM �� �FM�f then
� � ��r� � �M � whereas if rM � r � � then ��r� � ��M �� �M � �see Fig�
��� Hence� the velocity gradient has a jump at r � rM � resulting in a kink in
the steady state velocity pro
le v�r�� as shown in Fig� �� This phenomenon
is called spurt�

�a�

�M �m ��M��m

Fm

FM

� �

�F

�b�

�

v�r�

�r
�rM�

Fig� �� The function F��� if � � � � ������ The dashed line represents the possible
�
solution in supercritical �ow �a�	 resulting in a steady state velocity pro�le	 where
the spurt layer is located in rM � r � � �b�

In the spurt layer �i�e� rM � r � �� the magnitude of the velocity gradient
is very large� in fact

��r� �
fr

��

�
�� ��

�fr��
log�

fr

��
� �O���

�
� �� �� ����

These enormous shearing rates near the wall give rise to a dramatic increase in
the stationary volumetric �ow rate Q �� limt��Q�t� if the pressure gradient
f exceeds the critical value fcrit �see also Fig� ��

Loading and unloading� hysteresis and shape memory Consider an
experiment in which the �ow is initially in a steady state� corresponding
to a forcing f�� and the forcing is suddenly changed to f � f� � �f � If
�f � � we call this process loading and if �f � � unloading� Which steady
state eventually will be reached after the forcing is changed� depends on
the initial state f� and follows from numerical calculations performed on
the integrodi�erential equation ����� If the load is gradually increased from
f � � up to f � fcrit � �FM �subcritical �ow� the entire �ow is classical� The
velocity gradient satis
es ��r� � �M and is continuous in r for all r���� ���
As soon as f � fcrit �supercritical �ow� a kink in the velocity pro
le at
r � rM � fcrit�f turns up and spurt occurs� This spurt causes an enormous
increase of the volumetric rate Q� as depicted in Fig�  �trajectory BC�� Let
the loading trajectory 
nish at f � fmax�� fcrit�	 the spurt layer r

� � r � ��
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where r� � fcrit�fmax� is of maximum thickness then� From this point the
unloading is started� At 
rst the spurt layer remains 
xed between r � r�

and r � �� This phenomenon is called shape memory �trajectory CD in Fig�
�� During this unloading the magnitude of the shear stress jTrzj � F at r�

decreases according to F � �� F �r�� � r�f��� If F � falls below Fm� that is if
f � �Fm�FM �fmax� the boundary r � rm �� �Fm�f of the spurt layer moves
back to the wall for further decreasing f �trajectory DE in Fig� �� The spurt
layer disappears for f � �Fm and in the 
nal unloading path EA the �ow
is classical again� The phenomenon that no part of the loading curve in Fig�
 is retraced until the �ow has become entirely classical again� is typical for
the occurrence of hysteresis in this process�
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Fig� �� The �ow rate Q as function of the forcing f in a loading
unloading process�
AB� subcritical loading �classical �ow�	 BC� supercritical loading �with thickening
spurt layer�� CD unloading under shape memory� DE unloading with diminishing
spurt layer� EA� subcritical unloading �classical �ow�

Newtonian	 latency and spurt phase In computing the time dependent
velocity gradient� we observe distinct time phases before the steady state is
reached� These phases are clearly distinguishable in a �S�N��plane� where S
is de
ned by �see �����

S�r� t� � h�� �r� t��e�t �

Z t

�

h���r� t� ��e��t���d� ���
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and N � which corresponds to the 
rst normal stress di�erence Tzz � Trr� is
de
ned by

N�r� t� � g�� �r� t��e�t �

Z t

�

g���r� t� ��e��t���d� ����

where g��� � �h���� From ���� with ���� it follows that

S�r� t� � F �r� � �
�v

�r
�r� t�� ����

For t�� these two functions tend to their stationary values S�r� � J���r��
and N�r� � �� L���r��� where ��r� is a solution of ���� and

J��� �

Z �

�

h��s�e�sds and L��� � ��
Z �

�

g��s�e�sds� ����

According to ����� S � F � ��� implying that

N � �� L�
F � S

�
�� ����

For a supercritical �ow such that F � FM � there exist three distinct time
phases	 an initial phase� a pseudo steady state and the spurt phase in which
the �ow becomes stationary� At t � �� S � N � � and �v��r � �F���
Hence� the solution starts in the origin of the �S�N��plane and changes on
an O����time scale until S � F �O���� The period of time during which this
occurs is referred to as the Newtonian phase �� � t � tN �� During this phase
the following relation holds

N �
�

�
���

p
�� �S�� �O���� �� �� ����

At t � tN the velocity gradient �v��r has become O���� and this remains so
for some time t � tN � Then ���� implies that S � F � O��� and hence S is
almost constant� This pseudo steady state that precedes spurt is called the
latency phase� During this phase� N steadily increases until it is su�ciently
close to the line N � ��L��F�S����� After that point� S suddenly decreases
and spurt ensues� until the steady state �S�N� is reached� Asymptotics for
small � reveal that the stationary values in the spurt phase satisfy �cf� ����

S �
�

F
log

F

�
� �C

F
� o���� N � �� �	

�F
�O��� log ��� ����

where C � ���������� is Euler�s constant�

Conclusions The KBKZ �model supplied with an extra viscous term has
been used to describe the �ow of a viscoelastic polymeric �uid through a
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capillary of an extruder� Internal material properties of the �uid itself account
here for the spurt phenomenon and not a global external e�ect as wall slip� In
this section only the �ow in the capillary is described� A formulation� in which
also the process in the barrel �from which the polymer melt is extrudated into
the capillary� is considered� is presented in the next section�

Piston�driven Extrusion

For a piston�driven �ow of a JSO��uid through a cylindrical capillary� spurt
accompanied by persistent oscillations in the pressure gradient is found for
a bounded range of prescribed �ow rates� The in�uence of compression on
the onset of spurt is investigated for an extrusion process that is modelled
by the �ow of a JSO��uid through a contraction from a wide barrel into a
narrow cylindrical capillary� The �uid in the barrel is compressed by a moving
plunger� Numerical computations disclose that persistent oscillations in the
pressure as well as in the volumetric �ow rate occur for a bounded range of
prescribed plunger speeds �see also ��� or �����

The elastic part Sp is described by the constitutive JSO�model� In the
JSO�model� Sp is determined by the following nonlinear di�erential equation
�see Tanner ��� p� ������

dSp
dt

�LSp � SpLT � ��� a��DSp � SpD� � �Sp � �
D� ���

where d�dt denotes the material derivative� The relaxation rate �� the slip
parameter a 	 ���� ��� and the shear modulus 
 are material parameters�
With the velocity given by ���� Lzr � �v��r is the only non�zero compo�

nent of L and the components Sij of Sp are functions of r and t only� As a
result� the material derivative dSp�dt is equal to the partial time derivative
�Sp��t� and the components Sr�� S�� and S�z are identically zero here� Then�
the JSO�model transforms into the following equations�

�Srr
�t
� ��� a�Srz

�v

�r
� �Srr � ��

�Szz
�t

� �� � a�Srz
�v

�r
� �Szz � ��

�Srz
�t

� �
� �� � a�Srr

�v

�r
� �

� ��� a�Szz
�v

�r
� �Srz � 


�v

�r
�

���

From the 
rst two equations of ��� it follows that ���a�Srr����a�Szz � ��
Introduction of the new variables

S �� �Srz� Z �� �� � a�Srr � ���� a�Szz � ���
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in ��� yields for S and Z the di�erential equations

�Z

�t
� ��� a��S

�v

�r
� �Z � ��

�S

�t
� Z

�v

�r
� �S � �
�v

�r
�

��

In terms of S and Z� the stress components Tij of T according to ��� become

Trr � �p� �

� � a
Z�r� t�� T�� � �p�

Tzz � �p� �

�� a
Z�r� t�� Trz � �s

�v

�r
�r� t�� S�r� t��

Tr� � T�z � ��

���

where p � p�r� z� t�� The 
rst and second normal stress di�erence N� ��
Tzz � Trr� and N� �� �T�� � Trr are determined by

N� � � �

�� a�
Z�r� t��

N�

N�
� � �� a

�
� ���

Hence� Z is related to the 
rst normal stress di�erence� and the ratio of the
two normal stress di�erences is constant�
The equations describing the extrusion process are made dimensionless

by appropriate scaling� Then ���� governing the �ow in the barrel� transforms
into its dimensionless form�

dP �t�

dt
� � �

�

Q�t��Qi

l�t�
� t � �� ���

where the dimensionless parameter � is given by

� �
�Al�
L

K	R	
� ���

Furthermore� ���� transforms into its dimensionless form

f�t� � �P �t�� ���

Equations �� and ���� governing the �ow in the capillary� transform into

�S

�t
� �S � w�� � Z��

�Z

�t
� �Z � wS� � � r � �� t � �� ���

and

�w�r� t� � S�r� t� �
�

�
rf�t�� � � r � �� t 
 �� ����
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Here� the velocity gradient� or shear rate� w is de
ned by

w�r� t� � � �v

�r
�r� t�� ����

and the dimensionless parameter � is given by

� �
�s�



� ����

Finally� the volumetric �ow rate passes into its dimensionless form

Q�t� � �

Z �

�

v�r� t�rdr� ���

The boundary conditions ��� and ��� read in dimensionless form

v��� t� � �� w��� t� � �� t � �� ����

After one integration by parts with the aid of the no�slip boundary condition
at the wall� the volumetric �ow rate Q can be expressed in terms of the
velocity gradient w by

Q�t� �

Z �

�

r�w�r� t�dr� ����

Elimination of w by means of ����� transforms ���� into the following �im�
plicit� relation between the pressure P and the volumetric �ow rate Q�

P �t� � �Q�t� �

Z �

�

r�S�r� t�dr� ����

Thus� the extrusion process driven by a plunger moving at constant speed�
is described by the following system of equations�

�S

�t
� �S � w�� � Z��

�Z

�t
� �Z � wS�

�w�r� t� � S�r� t� � �rP �t�� P �t� � �Q�t� �

Z �

�

r�S�r� t�dr�

dP �t�

dt
� � �

�
�Q�t��Qi�� � � r � �� t � ��

����

For t � � the �uid is at rest� and at t � � the �ow is suddenly started up
by letting the plunger move at constant speed V�� The plunger movement
induces the constant inlet �ow rate Qi� The initial conditions for P � S and
Z� which are supposed to be continuous at t � �� are given by

P ��� � �� S�r� �� � �� Z�r� �� � �� � � r � �� ����
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Substitution of ���� into ���� yields the initial values

Q��� � �� w�r� �� � �� � � r � �� ����

Equations ����� governing the �ow in the extruder� can be viewed as a con�
tinuous family of quadratic ordinary di�erential equations coupled by the
non�local constraint that determines the �ow rate� and the non�local ordi�
nary di�erential equation that describes the compression in the barrel� The
material parameters of the polymeric melt� the plunger speed V�� and the
dimensions of the extruder are included in the three dimensionless parame�
ters �� � and Qi� Notice that � contains only the material parameters of the
polymeric melt� whereas Qi and � depend on both the material parameters
and the geometry of the extruder� The parameter � is proportional to the
melt compressibility ��K�

Steady state �ow In this section we investigate the steady state reached
by the �ow as t � �� The steady state �ow� driven by the constant inlet
�ow rate Qi� is described in terms of the steady state variables

P � lim
t��

P �t�� f � lim
t��

f�t�� Q � lim
t��

Q�t��

��r� � lim
t��

w�r� t�� S�r� � lim
t��

S�r� t�� Z�r� � lim
t��

Z�r� t��
����

under the assumption that these limits exist� For t��� the equations ���
and ���� reduce to

� � �S � ��� � Z�� � � �Z � �S� Q�Qi � ��

���r� � S�r� � �rP � P � �Q�

Z �

�

r�S�r�dr� f � �P�
����

Hence� Q � Qi and the solutions of ����
��� expressed in terms of � read

S�r� �
��r�

� � ���r�
� Z�r� � � ���r�

� � ���r�
� ����

On substitution of ����� into ����	� we 
nd that the steady state velocity
gradient can be determined for each r 	 ��� �� by solving � � ��r� from the
equation

F���r�� � F �r�� ���

where the steady state shear stress F is de
ned by

F �r� � �rP �
�

�
rf� ����

and the function F is de
ned by

F��� � �� �
�

� � ��
� ����
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For a given inlet �ow rate Qi� the velocity gradient � must satisfy the con�
straint

Qi �

Z �

�

r���r�dr� ����

obtained by letting t � � in ����� The steady state velocity pro
le v�r�
is obtained by integration of v��r� � ���r� using the boundary condition
v��� � � at the wall�
For � � ��� the function F is nonmonotone in �� In Fig� � the function

F��� is plotted for a speci
c value of � with � � � � ���� Since the Newto�
nian viscosity �s is small in comparison to the shear viscosity 
��� we will
henceforth assume that � � � � �s��
 � ����

�M �m

s

s

��M��m

FW

Fm

FM

� �

�

F

Fig� �� The function F��� � �� � ���� � ���	 when � � � � ���� In steady state
�ow the velocity gradient � satis�es F��� � F 	 where F � �rP is the steady state
shear stress

The steady state shear stress F is linear in r and has its maximum at
the wall r � �� If this maximum� denoted by FW � �P � remains below
the minimum Fm� then ��� has a unique solution ��r� � ��m for each radial
coordinate r� Clearly� ��r� is continuous in r� leading to a smooth steady state
velocity pro
le v�r�� and the �ow is referred to as classical� If the maximum
FW � �P exceeds the minimum Fm� equation ��� has

� one solution if � � F � Fm	
� three solutions if Fm � F � FM 	
� one solution if FM � F � FW �

If F ��� � FM � i�e� if P � FM�� �� P crit �supercritical�� the steady state
velocity gradient ��r� has at least one jump at some radial coordinate r� In
case of exactly one jump we denote the radial coordinate at which the jump
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occurs by r� �r� � ��� and we refer to the �ow as spurt �ow� Hence� in spurt
�ow ��r� � ��� for � � r � r�� whereas ��r� � ��
 for r

� � r � �� with
��� � �M and �

�

 
 �m� The jump in � results in a kink in the steady state

velocity pro
le v�r� at r � r�� and a spurt layer with large velocity gradients
forms near the wall�
In conclusion� for a prescribed constant inlet �ow rate Qi we have for a

possible steady state�

� If � � Qi � Q�� the steady state is unique	 classical �ow occurs �

� If Q� � Qi � Qcrit� the steady state is not unique	 either classical �ow
or spurt �ow occurs�

� If Qi � Qcrit� the steady state is not unique	 spurt �ow occurs�

Notice that the results derived in this section are only valid in case the steady
state does indeed exist�Results of numerical computations as presented in the
next section will show whether or not the �ow tends to a steady state as
t���

Transient �ow behaviour In this section we compute for t � � the tran�
sient�index�ow�transient � �ow� starting from rest at time t � � and driven
by the constant inlet �ow rate Qi due to the plunger movement� The �ow
is governed by the system of equations ����� with initial conditions ���� and
����� From the numerical results we infer whether the �ow reaches a steady
state� and we determine the steady state variables� The main interest goes
to the relationship between Qi and the steady state pressure P � In the case
of a classical steady state this relationship is one�to�one �whereas in the case
of a spurt steady state� P is not uniquely determined by just Qi� Whether
the �ow tends to a steady state� is found to depend on the values of Qi and
the dimensionless parameters � and �� For example� for � � ������ in case
� � � or � � � we 
nd a range of Qi�values for which the �ow shows so�called
persistent oscillations that do not die out� so that no steady state is attained�
For � � ����� � � � and Qi � ��� �subcritical �ow� we observe that P �t�
and Q�t� are monotone and smooth functions of t� After su�cient time the
�ow reaches a classical steady state with a continuous steady state velocity
gradient�
To investigate supercritical �ow �Qi � Qcrit � ������� for � � ���� and

� � �� we take Qi � ���� In Fig� �� the pressure P �t� and the volumetric �ow
rate Q�t� are plotted as functions of time t� We observe that oscillations in
P �t� and Q�t� appear� These oscillations die out and after su�cient time a
steady state is reached� The computations for Qi � ��� reveal that the steady
state shows a discontinuous velocity gradient ��r� with exactly one jump� To
investigate whether for � � ����� � � � and a given �ow rate Qi the �ow
starting from rest reaches a steady state� we compute the transient �ow for
several �ow rates� varying from Qi � � to Qi � ���� The result is that for all
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Fig� �� The pressure P �t� and the volumetric �ow rate Q�t� as functions of time t	
for � � ����	 � � � and Qi � ���� The dotted lines correspond to the steady state
values

values of Qi considered� a steady state is reached� In Fig� �a� the steady state
pressure P attained is plotted versus Qi� for � � ���� and � � �	 the plot is
drawn as a solid curve� The P versus Qi curve is called the �ow curve� The
�ow curve shows a kink at Qi � Qcrit and is S�shaped�
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Fig� �� The �ow curves of the steady state pressure P versus the inlet �ow rate
Qi	 for� a� � � ���� and � � � �solid curve�	 � � � �dashed curve� and � � �
�dashed�dotted curve�� The dotted curves correspond to P � Pclas�Qi� �classical
�ow�	 P � Pbottom�Qi� �bottom
jumping� and P � Ptop�Qi� �top
jumping�� The
�ow curves show a kink at Qi � Qcrit � ������	 and� b� � � ����� and � � �	 �	
�� The points �Qi� P � marked by the crosses ��� correspond to computed steady
states� The gaps in the �ow curves for � � � and � � � correspond to �ow rates
Qi for which persistent oscillations occur

To investigate the in�uence of the parameter �� we compute the transient
�ow for � � � and � � �� keeping � � ����� and we compare the numerical
results to those obtained in the case � � �� � � ����� The numerical compu�
tations disclose that for all values of Qi considered� a steady state is reached�
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In Fig� �a� the �ow curves are plotted for � � ���� and � � � �dashed curve��
and for � � ���� and � � � �dashed�dotted curve�� We observe that the �ow
curves for � � � and � � � are S�shaped� just like the �ow curve for � � ��
Furthermore� the �ow curves show a kink at Qi � Qcrit independent of ��
Notice that for Qi � Qcrit the three �ow curves for � � �� � and � coincide�
whereas at a 
xed supercritical �ow rate Qi � Qcrit� the steady state pres�
sure P becomes smaller if � is changed from � � � to the larger values � � �
or � � ��
Next� we investigate the in�uence of the parameters � and � on the tran�

sient �ow behaviour and the steady state values attained� To that end� we
compute the transient �ow for several values of Qi� when � � ����� and
� � �� � and �� In Fig� �� Fig� � and Fig� � the pressure P �t� and the volu�
metric �ow rate Q�t� are plotted as functions of time t� for � � ������ � � ��
and Qi � ���� ��� and ���� respectively� We observe that oscillations in Q�t�
appear� For Qi � ��� and Qi � ���� also oscillations in P �t� appear� For
Qi � ��� and Qi � ���� the amplitudes of these oscillations decay� and the
oscillations damp out� Hence� after su�cient time a steady state is reached�
if Qi � ��� or Qi � ���� The steady state variables ��r�� S�r� and Z�r� are
found to be discontinuous at r � r��
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Fig� 	� The pressure P �t� and the volumetric �ow rate Q�t� as functions of time t	
for � � �����	 � � � and Qi � ���� The dotted lines correspond to the steady state
values

For Qi � ���� however� we observe in Fig� � that the amplitude of the os�
cillations in P �t� and Q�t� fails to decay and remains constant after a certain
instant� Hence� for Qi � ���� the functions P �t� and Q�t� do not settle to a
stationary value within the time interval of computation� indicating that no
steady state is attained� Instead� P �t� and Q�t� show so�called persistent os�
cillations� To establish for which inlet �ow rates Qi a steady state is attained
when � � ����� and � � �� �� �� we compute the transient �ow for several �ow
rates� varying from Qi � � to Qi � ��� The outcome of the computations
for � � � is that a steady state is reached for Qi � ��� and for Qi 
 �����
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Fig� �� The pressure P �t� and the volumetric �ow rate Q�t� as functions of time t	
for � � �����	 � � � and Qi � ���� The dotted lines correspond to the steady state
values P � limt�� P �t� and Q � limt��Q�t�

This steady state is classical when Qi � Qcrit � ������� and corresponds to
spurt �ow when Qcrit � Qi � ��� or Qi 
 ����� For values of Qi close to
��� or ����� the time interval within which the �ow settles to a steady state�
becomes very large� For ���� � Qi � ����� however� the functions P �t�� Q�t��
w�r� t�� S�r� t� and Z�r� t� show persistent oscillations and fail to settle to
stationary values within the time interval of computation� The computations
for � � ����� and � � � disclose that the transient �ow behaviour is similar
to that observed when � � ����� and � � �� For ���� � Qi � ���� persistent
oscillations occur� and the �ow fails to settle to a steady state� For � � �����
and � � �� the numerical computations reveal that a steady state is reached
after su�cient time� for each value of the inlet �ow rate Qi considered�

In Fig� �b� the �ow curve of the steady state pressure P versus Qi is
plotted for � � ����� and � � �� �� �� The computed points �Qi� P � are
marked by a cross ���� The gaps in the �ow curves for � � � and � � �
correspond to �ow rates Qi for which persistent oscillations occur and no
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steady state is attained� We observe that the gap becomes smaller if � is
changed from � � � to the larger value � � �� and has disappeared when
� � ��

Conclusions

We have considered �dimensional constitutive models for polymeric �uids�
We have found that the stationary shear curve can be nonmonotone� yielding
a non�unique solution for the stationary shear rate ��r�� This nonmonotony
is crucial for the existence of

� a sudden increase in the �ow rate in pressure�driven extrusion at a certain
critical pressure gradient	

� persistent oscillations in pressure and �ow rate in piston�driven extrusion�
Both phenomena are typical for the �ow instability called spurt� Here� we
have maintained the no�slip boundary condition at the wall of the capillary�
Accordingly� spurt �ow is associated with internal properties of the polymeric
melt� and is therefore referred to as a constitutive instability�
From the numerical results presented here we infer that a bounded range

R � �Qm� QM � of inlet �ow rates Qi exists� for which persistent oscillations
occur and no steady state is attained� At Qi � Qm and Qi � QM � the
transition from a steady state to a state of persistent oscillations and vice
versa takes place� The size of R depends on the value of � as well as on the
value of �� for � � ���� and � � �� �� �� and for � � ����� and � � �� the range
R is empty� whereas for � � ����� and � � �� �� the range R � �Qm� QM �
is not empty� For � � ����� and � � �� the range R has transition points
Qm between ��� and ����� and QM between ���� and ����� For � � �����
and � � �� the range R has transition points Qm between ��� and ����� and
QM between ���� and ����� Hence� we conclude that the range R becomes
smaller with increasing ��
Finally� we mention some further results from the thesis of Aarts� ����

� Based on the numerical results presented in Fig� ��� the frequency of
the persistent oscillations is calculated by means of a Fourier spectral
analysis� These frequencies are compared with the frequencies that come
up as a solution of a linear stability analysis of the steady state solution�
This comparison shows a perfect correspondence between the numerical
and the analytical results�

� The in�uence of the deformation history has been elucidated by numerical
simulations of loading and unloading processes� The following peculiari�
ties are observed�
� the boundary of the spurt layer remains 
xed also after unloading
�shape memory�	

� persistent oscillations may occur after unloading to supercritical as
well as to subcritical �ow rates	
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� the deformation history of the melt a�ects the transient �ow be�
haviour and the steady state attained�

� The models with one relaxation rate and supplied by a Newtonian term
as considered here� are compared with models having two� su�ciently
widely spaced� relaxation rates� Similar results are obtained for these
latter models �Den Adel��

Results in connection with this project

�� Aarts� A�C�T�� Analysis of the Flow Instabilities in the Extrusion of Poly�
meric Melts� Ph�D�Thesis� Eindhoven University of Technology �������

�� Aarts� A�C�T�� and A�A�F�van de Ven� Transient Behaviour and Stability
Points of the Poiseuille Flow of a KBKZ��uid� J� Eng� Math�� �� �������
������

� Aarts� A�C�T�� and A�A�F�van de Ven� Instabilities in the Extrusion of
Polymers due to Spurt� In� Progress in Industrial Mathematics at ECMI���
Kaiserslautern	 ed� H� Neunzert� Wiley�Teubner� Chichester� ����� pp�
�������

�� Aarts� A�C�T�� and A�A�F�van de Ven� The Occurrence of Periodic Dis�
tortions in the Extrusion of Polymeric Melts� Continuum Mechanics and
Thermodynamics� �� ������� ������

�� Adel� R�den� Di�erences and Equivalences between one Relaxation Rate
and a Relaxation Spectrum� Master�s Thesis� Eindhoven University of
Technology� Eindhoven� August �����

��
 Discrete Melt Fracture Models

The results presented here are mainly from the PhD�thesis of Den Doelder�
���� �performed at EUT��

Design and Implementation of Polymeric Melt Fracture Models�

by� C�F�J�den Doelder�

The main types of melt fracture� showing up as extrudate distortions� can be
related to a speci
c region in the processing geometry�

� surface distortions� initiated near the die exit region�
� spurt distortions� initiated near the die land region�
� volume distortions� initiated near the die entry region�
A simple mathematical model for spurt is presented� Spurt is a type of insta�
bility occurring in the extrusion of polymer melts� It shows up by periodical
jumps in the volumetric �ow rate and by relaxation oscillations in the pres�
sure� In capillary �ow� spurt is characterized by the occurrence of a thin layer
of very high shear rates near the capillary wall �the spurt zone�� By split�
ting up the �ow region in a �narrow� spurt zone� where the viscosity is very
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small� and a kernel� with O����viscosity� a discrete model for spurt �ow is
constructed� At the wall a no�slip condition is maintained �cf ����� The model
is compared with a model allowing slip� and a complete equivalence is shown
�cf ����� On the basis of the model� spurt or relaxation oscillations are found�
which are� qualitatively� in correspondence with experimental observations�
When an extrusion process is in the spurt regime� the extrudate shows alter�
nating smooth and distorted regions� In this stage� the volumetric �ow rate Q
periodically jumps between a lower value �� smooth surface� classical �ow�
and a much higher value �� distorted surface� spurt �ow�� Also the pressure
gradient� driving the capillary �ow� shows oscillations� These oscillations are
many times observed in experiments� and look like relaxation oscillations�
Therefore� we shall refer to them as spurt or relaxation oscillations� In spurt�
as it is to be understood here� the �ow pro
le looks strongly di�erent in two
regions�

� in the inner region �the kernel� the velocity gradient is small and the �ow
pro
le is �at� looking very much like cork �ow	 in this inner region the
�ow is similar to classical Poiseuille �ow	

� in a very small region close to the wall the velocity pro
le is very steep�
yielding very large values for the velocity gradient	 this region is called
the spurt zone�

The extrusion device we consider consists of a huge barrel 
lled with poly�
meric melt� closed at one side by a movable plunger� and on the other side
connected to a narrow cylindrical capillary �see Fig� ��� The moving plunger
compresses the polymeric melt in the barrel and forces it to �ow into the
capillary� In the barrel a uniform state is assumed� and the polymeric melt
in it is taken to be compressible� The unknowns here are the pressure P �t�
and the volumetric �ow rate Q�t� �owing from the barrel into the capillary�
The relations to be used here are�

� a global balance law for the total mass of the melt in the barrel	
� a constitutive �linearly elastic� compressibility law� relating the pressure
to the density�

This results in the following relation� in dimensionless form� �see ����

dP �t�

dt
� ��Q�t��Qi�� ����

For the shear dominated �ow in the capillary we assume�

� laminar incompressible �ow	
� pressure linear in the axial coordinate z	
� inertia term negligible�
The axial component of the equation of motion then yields the following
relation for the� dimensionless� shear stress  �see ��� and ���	 Trz � ��

�r� t� � �rP �t�� � � r � �� ����
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These relations must be supplemented by

� a constitutive equation for the shear stress  	
� a relation for the volumetric �ow rate �see �����

Q�t� �

Z �

�

r�w�r� t�dr� ����

Two results of the theory for constitutive instabilities motivated us to propose
a discrete model consisting of two distinct Newtonian �uids in concentric die
regions� These results are

� The non�monotony of the stationary shear curve �total shear stress at
the wall versus shear rate�� having as a consequence that the apparent
viscosity in the spurt zone is much smaller than the one in the kernel�

� The shape memory� implying that the thickness of the spurt layer remains
constant during spurt�

Discrete model

Our model is based on the possible existence of a spurt zone in capillary
�ow� The existence of such a spurt zone is regulated by a switch function�
During spurt� the spurt zone reaches from r � r� � �� to r � �� ��� r� � ���
whereas in classical �ow no spurt zone exists �r� � ��� The discrete model
consists of a set of three equations for the pressure P �t�� the volumetric �ow
rate Q�t� and the thickness of the spurt zone �� � r��t��� This set can be
solved analytically� The analytical calculations make use of asymptotics that
are based on di�erent typical time scales during distinct phases of the pro�
cess �spurt �ow versus classical �ow�� The obtained analytical results clearly
predict relaxation oscillations�
The di�erence between classical �ow and spurt �ow is essentially ex�

pressed in  � Both in the classical region as well as in the spurt zone a linear
�Newtonian� relation for the shear stress is assumed� however� with di�erent
values for the viscosity�

�� In classical �ow we take �the normalized viscosity is one� here�  � w�
yielding

�r� t� � w�r� t� � �rP �t�� ����

�� In the spurt zone� due to the very high shear rate� the viscosity is much
smaller	 so there

�r� t� � �w�r� t� � �rP �t�� � � �� �� ����

� Transitions from classical to spurt �ow� and vice versa� are very fast�
�� Shape memory causes the thickness of the spurt zone to remain constant
during spurt�
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Our discrete model is formulated in the following three sets of equations�
A� The spurt zone reaches from r � r� � � to r � � � where ��� r��� ��
If r� � �� no spurt zone exists �classical �ow�� Hence�

w�r� t� � �rP �t�� � � r � r� 	 w�r� t� �
�rP �t�

�
� r� � r � �� ����

B� The volumetric �ow rate� ����� can be evaluated into

Q�t� � P �t�

�
�r��	 �

��� �r��	�
�

�
 P �t�

�
� �
�

�
��� r��

�
� ���

since ��� r��� ��
We de
ne the normalized thickness of the spurt zone by

R�t� � ��� r����� � Q�t� � P �t� � �R�t�P �t�� ����

C� Finally� we propose an evolution equation for R�t� as

dR

dt
� ���R�t�� �H�P �B�Q���� ����

with � and � material parameters� H the Heaviside function� and B�Q� a
switch curve� as de
ned in Fig� ��� Since� by assumption� the transition from
classical to spurt �ow� and vice versa� is very fast� we have �� ��

B

Q�

����

Q�

Q� Q� Q

phase ��

phase ��

phase ��

phase ��

Fig� ��� The switch curve B�Q� �bold line�� Dashed line is relaxation loop

Recapitulating� we have the following discrete model�

� Unknowns� P �t�� Q�t�� R�t� �
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� Equations
dP �t�

dt
� Qi �Q�t�� ����

Q�t� � �� � �R�t��P �t�� ����

dR�t�

dt
� �R�t� � ��H�P �B�Q��� ����

� Initial conditions� P ��� � R��� � ��

Comparison spurt and slip model

The results of the theory of constitutive instability are compared to those for
a stick�slip model� based on a model for slip at the wall� in agreement with
a slip law �cf� ��� or ����� In this slip model� v��� t� can be either larger than
zero or equal to zero� depending on whether slip occurs or not� When slip
starts� the �ow rate suddenly increases� The slip velocity at the wall is taken
proportional to the maximum shear stress at the wall� which at its turn is
proportional to the pressure P �t�� The appearance of slip is governed by an
evolution equation of the same type as the one for R�t�� Thus� in this model�
the velocity at the wall is governed by the relation

v��� t� � G�t�P �t�� ����

where G�t� satis
es a similar evolution equation as R�t� in ����� Stick or slip
occurs accordingly to G�t� � �� or G�t� � �� respectively�
Here� everywhere in the �ow  � w � �rP �t�� yielding for the �ow rate

Q�t� � �

Z �

�

rv�r� t�dr � v��� t� �

Z �

�

r�w�r� t�dr � �� �G�t��P �t�� ����

Hence� when G�t�� �R�t� exactly the same model as ����!���� follows�
For both models relaxation oscillations of similar type in both the pressure
P �t� and the volumetric �ow rateQ�t� are found� Hence� from a mathematical
point of view� the two models are equivalent�

Analysis discrete model

The nonlinear system ����!���� can be solved analytically if we make use of
asymptotics that are based on � � � �fast transitions�� For this� we distin�
guish four phases� of which phase �� represents classical �ow� phase � spurt
�ow �or slip�� while the phases �� and �� are transition phases from classical
to spurt �ow �stick to slip� and vice versa� respectively� Hence� in phase ���
R�t� � �� whereas in phase �� R�t� � �� During the very short �O������
phases �� and ��� R�t� jumps from � � �� and from � � �� respectively�
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Since R�t� is constant during the phases �� and � �shape memory�� the sys�
tem ����!���� is linear then and can easily be solved� At the other hand� the
transition phases are so short �O������ that the changes in P �t� according
to ���� are also of �O������ and� hence� negligible in an approximation for
�� �� Thus� P �t� may be taken constant during these phases� and again the
system ����!���� is linear then and easy to solve�
Therefore� we distinguish the following four phases�

Phase �� � � t � t� 	 classical �ow�

In this initial phase P � B�Q� and� hence� H�P � B�Q�� � �� Then �����
with R��� � �� yields R�t� � �� This reduces ����!���� to

dP

dt
� Qi �Q�t�� P ��� � ��

Q�t� � P �t�� ����

the solution of which reads

P �t� � Q�t� � Qi��� e�t�� ����

The end of phase �� is at t � t�� where t� is the time where P �t� reaches
for the 
rst time the switch curve B�Q�� Hence �see Fig� ���� P �t�� � Q��
yielding

t� � ln�
Qi

Qi �Q�
�� ���

provided Qi � Q� �
We note that t� � O���� which justi
es our time scaling�

Phase �� t� � t � t�� transition from classical to spurt �ow�

Since P �t� crosses B�Q� from below at t � t�� we assume that during this
phase P � B�Q�� so H�P �B�Q�� � ��
For this phase we introduce a new time scale�  � ��t � t�� � such that
����!���� becomes �R � R��� etc��

dR

d
�R�� � �� R��� � ��

dP

d
�
�

�
�Qi �Q����� O������� P ��� � Q��

Q�� � �� � �R���P ��� ����

The solution of this system reads

P �� � P ����� �O������  Q��

R�� � ���� e�� � �� ���

Q�� � �� � ����� e�� ��Q� �� �� � ���Q��� ����
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We de
ne the end of phase �� as  � � � such that e��� � ���� This yields

� � ln�� or t� � t� �
ln�

�
� t��� �O������� ����

So� indeed � � O���� implying that the time that phase �� lasts is very short
�O������ compared to phase ��

Phase �� t� � t � t�	 spurt �ow�

In this phase we assume P � B�Q� �see Fig� ���� so H�P � B�Q�� � ��
Since ����� yields R�t�� � ��� � O������  � � for ��� � � � ���� renders
R�t� � � � for all t 	 �t�� t�� �
With the new time scale  � �t� t��� ����!���� reduces to �P � P �� � etc��

dP

d
� Qi �Q��� P ��� � Q��

Q�� � �� � ���P ��� ����

The solution of this system reads

P �� �
Q��

� � ��
�

Qi

� � ��
�

�
Q� � Qi

� � ��

�
e���
	��� � ����

Since phase � always runs along the line P � Q������� in a P�Q�diagram�
it must be so that if this line crosses the switch curve B�Q� this happens in
the point P � B�Q�� � Q���� � ���� According to ����� Q�� � Qi� for
 ��� As Q� Qi� there are now two possibilities�

�� If Qi � Q� �

then P �� � Qi��� � ��� � B�Qi� � Q���� � ���
In this case no transition takes place� and phase � tends to a 
nal station�
ary spurt state� in which �P ��� Q��� � �Qi��� � ���� Qi��� for  ���

�� If Qi � Q��� �� � ���Q� �

then a transition to classical �ow takes place when Q�t� reachesQ� � Qi �
and then phase �� starts at t � t����� � Here� t� is such that Q�t�� � Q��
yielding

t� � t� �
�

�� � ���
ln

�
�� � ���Q� �Qi

Q� �Qi

�
� ����

We assume case �� to hold� and we proceed with phase �� We shall see that
in this case relaxation oscillations occur�

Phase 
� t� � t � t	 	 transition from spurt to classical �ow�

At t � t�� P �t� crosses the switch curve coming from above� so during this
phase we assume P � B�Q�� and thus H�P �B�Q�� � �
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With the new time scale  � ��t � t��� ����!���� reduces to �R � R�� �
etc��

dR

d
�R�� � �� R��� � ��

dP

d
�
�

�
�Qi �Q����� O������� P ��� � Q���� � ����

Q�� � �� � �R���P ��� ����

The solution of this system reads

P �� �
Q�

�� � ���
�� �O����� �

R�� � �e�� �� �� �
Q�� �

Q�

�� � ���
�� � ��e�� � � ����

Analogous to phase ��� phase �� ends at t � t	 � t��� �O�������
At t � t	� phase �� starts anew� but now not from P ��� � Q��� � �� but from

P � Q � Q���� � ����

This brings us to�

Phase �� t	 � t � t� 	 classical �ow�

Analogous to Phase ��� the solution now reads

P �t� � Q�t� � Qi �

�
Q�

� � ��
�Qi

�
e��t�t��� ����

This phase ends at t � t� when Q�t�� � Q�� yielding

t� � t	 � ln

�
Qi �Q���� � ���

Qi �Q�

�
� ���

after which a phase identical to phase �� follows�

Thus� a loop is followed as depicted by the dashed line in Fig� ��� Since
this dashed line is a closed loop� it represents a periodic phenomenon� Its be�
haviour is of relaxation type� because the phases �� and �� are extremely short�
Therefore� we call this a relaxation oscillation� The period of one oscillation
is �t� � t�� � �t� � t	�� or

Tos � ln
��� � ���Q� �Qi���� � ���Qi �Q��

�� � ����Q� �Qi��Qi �Q��
� ����

for ���  �� The behaviour of the pressure P �t� and the volumetric �ow rate
Q�t� during these relaxation oscillations is depicted in Fig� ���
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Fig� ��� Relaxation oscillations for the pressure P �t� and the volumetric �ow rate
Q�t� �Q� � �� Q� � �� Qi � �� 	 � �� and 
 � �����
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��

� � � �O

Fig� ��� The pressure P �t� and the �ow rate Q�t� as function of time t for Qi �
��� � Q� �classical �ow�

Results

Our model described by the system ����!���� is characterized by the pa�
rameter set fQ�� Q�� �� �g plus the prescribed inlet �ow rate Qi � In the
preceding section we have seen that dependent on the value of Qi di�erent



�� Fons van de Ven

types of capillary �ow can occur� We distinguish three regimes for Qi� know�
ing Qi � Q�� Q� � Q� � Q�� and Qi � Q� � For the numerical results in
this section� the following 
xed values for the parameters are used�

Q� � � � Q� �  � � � � � � � ���� �

We 
nd�

� In the 
rst regime�Qi � Q�� the �ow is classical� just like a Poiseuille �ow�
Since there is no spurt zone� the velocity pro
le is smooth� The pressure
and the �ow rate tend monotone to their stationary values� according to
����� This behaviour is depicted in Fig� ���

� In the second regime Q� � Qi � Q� � persistent relaxation oscillations
occur� The �ow periodically jumps from classical to spurt and vice versa�
and large jumps in the pressure and� especially� the �ow rate are found�
The value of the �ow rate is relatively high during spurt� and low during
classical �ow� Typical relaxation oscillations in P �t� and Q�t� in case
Qi � � are depicted in Fig� ���

� In the third regime Qi � Q� � the �ow again tends to a stationary state�
but now to one in which spurt occurs� The spurt zone is 
xed to R � ��
and pressure and �ow reach the stationary values "P � Qi��� � ���� and
"Q � Qi� respectively� according to ����� In this regime we can further
distinguish between Qi � �� � ��� and Qi � �� � ���� In case Qi �
�� � ���� an overshoot in both P �t� and Q�t� occurs� before they reach
their 
nal state� This overshoot at t � t� is depicted in Fig��� for the
case that Qi � �� If Qi � �� � ��� � no overshoot occurs	 in this case the
steady state is reached in a monotone way�

A 
nite range of prescribed inlet �ow rates Qi can be found for which relax�
ation oscillations can occur� This is illustrated by the simulation of a realistic
loading process� depicted in Fig� ��� in which only for a restricted range
of Qi�values spurt oscillations show up� For Qi�values below this range
�Qi � Q�� the �ow tends to a stationary classical �Poiseuille� �ow� whereas
for values beyond this range �Qi � Q�� the �ow tends to a stationary spurt
�ow �having a 
xed spurt layer��

Improvement of the Model

A lot of experimental data on especially extrusion instabilities are known �in
literature and from internal experiments at DOW�� Comparison of our ana�
lytical results as depicted in Figs� �� !�� with experimental results indicates
a good qualitative agreement� However� for a quantitative agreement� some
further modi
cations of the model presented here are needed� This is done by
Den Doelder in his PhD�thesis �see also ������ These modi
cations concern�

� A nonlinear evolution equation� emanating from a nonlinear slip law� This
nonlinear slip law relates the slip velocity to the square of the wall shear
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Fig� ��� The pressure P �t� and the �ow rate Q�t� as function of time t for Qi �
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P

t

�

��

��

��

��

� ��T �T �T �T �T �T �TO

Fig� ��� The pressure P �t� as function of time t for a loading process in which
Qi is stepwise increased at time steps T 	 with T � ���	 according to the sequence
f���� ���� ���� ���� ���� ���� ���g

stress� Translated to our model� this would imply that relation ���� must
become nonlinear in so far that P �t� must be replaced by P ��t��
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� An improved constitutive model for the polymer �uid� The Newtonian
model is replaced by a power law �shear thinning� model �generalised
Newtonian 	 no elasticity��

� Elastic e�ects in the die exit and entry region are incorporated in a pres�
sure correction term �Bagley correction��

� The time dependence of the length l of the barrel �l � l�t� � l���� V�t�
is taken into account�

The numerical results of this improved model are compared with experimen�
tal data from experiments performed at DOW� The calculated relaxation
oscillations of the pressure are in very good quantitative correspondence with
these data� The absolute pressure values� the amplitudes of the oscillations
and the period of the oscillations compare very well with the experimental
values �cf� ������

Conclusions

We state the following conclusions�

� The discrete models� either with no�slip and spurt zone or with a stick�slip
law� explain relaxation oscillations in P �t� and Q�t��

� Comparison with experimental results indicates a good qualitative and
quantitative agreement with experimentally observed relaxation oscilla�
tions in P �t��

Results in connection with this project

�� Molenaar� J� and R�J� Koopmans� Modeling Polymer Melt��ow Instabil�
ities� Journal of Rheology� � ������� �������

�� Doelder� C�F�J� den� Sharkskin and Spurt in JSO Modelled Polymer Ex�
trusion� Eindhoven University of Technology� Final report of the post�
graduate programme Mathematics for Industry� ISBN �� ���� ��� 
������� Eindhoven�

� Doelder� C�F�J� den� Design and Implementation of Polymeric Melt Frac�
ture Models� Ph�D�Thesis� Eindhoven University of Technology �������

�� Doelder� C�F�J� den� R�J� Koopmans� J� Molenaar and A�A�F� van de
Ven� Comparison of Wall Slip and Constitutive Instability Spurt Models�
Journal of Non�Newtonian Fluid Mechanics� �� ������� ������

�� Doelder� C�F�J� den� R�J� Koopmans and J� Molenaar� Quantitative Mod�
elling of HDPE Spurt Experiments Using Wall Slip and Generalised New�
tonian Flow� Journal of Non�Newtonian Fluid Mechanics� �� ������� ���
����

�� Ven� A�A�F� van de� Comparing Stick and Slip Models for Spurt in the
Extrusion of Polymeric Melts� In� Progress in Industrial Mathematics
at ECMI��� eds� L� Ackeryd� J� Bergh� P� Brenner� R� Petterson �Pro�
ceedings of ��th ECMI�Conference� ECMI ��� G�oteborg�� pp� ��������
Teubner� Stuttgart� �����
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�� Ven� A�A�F� van de� Spurt in the Extrusion of Polymeric Melts	 Discrete
Models for Relaxation Oscillations� In� Complex Flows in Industrial Pro�
cesses	 ed� A� Fasano� �����

� Injection Moulding

��� Introduction

The 
lling phase of an injection moulding process in a straight cavity� con�
sisting of the narrow space between two adjacent parallel circular plates�
inclusive the front motion at the free boundary of the �ow� should be anal�
ysed� The cavity is thin� meaning that the distance between the plates is much
smaller than their radius� The injection inlet is at the center of the plate and
the resulting �ow is rotationally symmetric� For some applications� the �ow
will be considered as being two�dimensional� Besides the �ow 
elds �velocity�
stresses� also the temperature and pressure 
elds must be calculated� Ther�
mal e�ects are due to cooling at the walls and to viscous dissipation	 pressure
e�ects are due to compressibility and to interactions with thermal 
elds� The
material coe�cients of the melt �especially the viscosity� are strongly tem�
perature and�or pressure dependent� The melt can be modelled as either a
generalised Newtonian �uid or� if necessary� as a nonlinear viscoelastic �uid�
In any case� the viscosity should be dependent on both shear rate �shear
thinning� as well as temperature�
The possibility of thermally induced instabilities of the front �ow will be

studied� An asymmetric �ow front causes di�erences in temperature� and thus
also in viscosity� due to di�erent thermal contacts at upper and lower wall of
the cavity� These di�erences in viscosities can induce an ongoing asymmetry
of the �ow front� which can result into instability�
One speci
c application of injection moulding is in the production of

compact discs �CD�s�� For an adequate description of this process� a ther�
moviscoelastic model is needed� Essential in this modelling is a simulation of
the cooling of the hot polymer melt in the mould or cavity� Another point of
utmost practical importance is the calculation of residual stresses and defor�
mations in the 
nal product�
The latter two points mentioned above are the subject of two PhD�

projects to be performed at EUT in co�operation with industry� These projects
are

�� H�J�J� Gramberg�
Front Instabilities in Injection Moulding�

�� S�M�P� Smolders�
A Thermoviscoelastic Model for Injection Moulding�

However� since the second project started only very recently� and as this
is mainly con
dential research� we shall discuss here only the 
rst project�
Because also this project is still in an initial state� we shall present only the
results obtained up to now� together with prospects for further research�
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��� Problem Description

The cylindrical cavity we consider here has height �h and radiusR� where h�
R� The rotationally symmetric �ow in the cavity is described in cylindrical
coordinates �r� z�� In the �lling phase when the �uid is entering the cavity�
the �ow has a front which is an unknown free surface� The �uid occupies
the �ow region � behind the front �see Fig� ���� Let r � Rf �z� t� denote the
radial position of a point on the �ow front on height z� Then the �ow region
is given by

��t� � f�r� z� j Rn � Ri � r � Rf �z� t� � R� � h � z � h g � ����

nozzle

�ow front

Rn

Ri

Rf

R

�h
er

ez
n

�

Fig� ��� The �ow region G in the cavity�

To model the viscoelastic �ow in the 
lling phase �see also ������ we start
with

Local balance equations� The fundamental unknowns in the injection
process to be considered here are the velocity v�r� z� t� � vrer � vzez� the
pressure p�r� z� t� and the temperature T �r� z� t�� They are governed by the
balance laws of continuum mechanics� here written as

� Equation of continuity

#�� �r � v � � � ����

where � is the density� and #� is its material derivative�
� Equation of motion

�v � r � T � ����

in the absence of body forces� where T � T �r� z� t� is the total stress
tensor�
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� Balance of energy

� #u � T � D �r � q � ����

where u is the internal energy density� D the rate�of�deformation tensor
�see ����� q the heat �ux vector� while the heat source is assumed zero�

Constitutive equations� The balance equations should be supplemented
by constitutive equations for the stresses and the heat �ux together with an
explicit expression for the internal energy density and� 
nally� especially for
compressible melts a constitutive equation for � as function of T and p�

� Stresses�

The total stress tensor is decomposed into a pressure part and an extra
stress according to

T � �pI � S � ����

The extra stress will be described by either a generalised Newtonian
model or by a nonlinear viscoelastic model �e�g� Leonov model��

� For the generalised Newtonian model we have

S � ��Dd � ����

where Dd is the deviatoric part of D� i�e�

Dd � D � �

tr�D�I � ����

and where the viscosity � is a function of the shear rate #� de
ned by

#� �
p
�Dd � Dd � ����

and the temperature �� � �� #�� T ���

� For the Leonov model we have

S � ��rDd �

KX
k��

k � ���

where �r is the so called retardation viscosity and k are the sub�
stresses� having K modes�

� Heat �ux�

We use Fourier�s law

q � ��rT � ����

where the heat conduction coe�cient � still can depend on temperature
and pressure�
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� Internal energy density�

Using some relations from thermodynamics �a�o� Gibbs law�� we can de�
rive

#u � cp #T � �T

�
#p�

p

��
#� � ����

where � is the coe�cient of thermal expansion ��� � ����T � and cp is
the heat capacity at constant pressure �cp � �u�T� p���T ��

� Density

Considering for a compressible melt � � ��T� p�� we 
nd

#� � �� #p� �� #T � ����

where � is the isothermal compressibility ��� � ����p��
In case of an incompressible medium� we have � � ��� and then the
pressure p � p�x� z� t� is an unknown 
eld variable	 as an extra equation�
we then have the incompressibility condition div v � r � v � ��

All the material coe�cients appearing in the above relations are in general
functions of temperature� pressure and shear rate�

Final equations� Substituting the constitutive equations listed above into
the local balance equations� we arrive at the following set of equations for
the fundamental unknowns p�v and T �

�� #p� �� #T � �r � v � � � ����

� #v �rp � r � S � ����

�cp #T � �T #p � S � D �r � ��rT � � ����

Boundary conditions� We proceed with the boundary conditions on ���
The boundary �� of � consists of the following three segments�

�� Inlet� r � Ri � Rn 	 � h � z � h �
Here� Ri is chosen a few times h larger than Rn �see Fig� ���� in order to
get rid of inlet disturbances� At r � Ri the �ow is assumed fully developed
and the pressure and the temperature are taken equal to their inlet values�
This leads to the boundary conditions �pi� V �z� and Ti prescribed�

p�Ri� z� t� � pi �

v�Ri� z� t� � V �z�ez �

T �Ri� z� t� � Ti � �����

�� Walls of the cavity� z � �h 	 Ri � r � Rf ��h� t� �
At these walls no�slip is assumed and the walls are cooled at a prescribed
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temperature Tw� which� in general� can still be a function of r and di�erent
at the upper and lower wall �T�w �r� prescribed�

v�r��h� t� � � �

T �r��h� t� � T�w �r� � �����

� Flow front� r � Rf �z� t� 	 � h � z � h �
The �ow front is a free boundary� which is assumed free of stress �the
pressure in the environment is scaled to zero� and thermally insulated�
Moreover� the front moves with a velocity Vf in z�direction� This leads
to�

T n � � �

��v � Vfez��n� � � �

�T

�n
� � � at r � Rf �z� t� � �����

The equations and boundary conditions presented above form a complete
and consistent system for the simulation of an injection moulding process in
a cylindrical cavity between two parallel plates� However� before analysing
this system� the equations must be made dimensionless and normalized� This
will be done for a speci
c application in the next section�

��� Front Instabilities in Injection Moulding

Aim� General approach

The ultimate aim of this project is to 
nd by analytical means an explanation
for the �ow front instability� observed in injection moulding� This instability
can be either due to thermal e�ects or to elasticity e�ects� or to combinations
of both� We focus here purely on thermal e�ects� In order to be able to 
nd
analytical solutions� we have to make the model as simple as possible� though
keeping the essential features� In our view� the most important feature is the
coupling between the viscosity and the temperature of the �uid� as the latter
is strongly in�uenced by the cooling at the walls of the cavity� To explain our
view� let us assume there is initially an asymmetric �ow front �for instance
due to the asymmetric inlet of the mould� which is 
lled from above� and
that at certain time t the contact point of the �ow front with the upper
wall is farther �in the r�direction� than the corresponding point at the lower
wall �i�e� Rf ��h� t� � Rf ��h� t��� In that case� the �uid near the upper wall
will cool more than the �uid below� and so the �uid will be sti�er �higher
viscosity� at the upper wall than at the lower one� Consequently� the �uid
will be retarded at the upper wall with respect to the �uid at the lower wall
and� thus� the asymmetry will �ip� This means that at a somewhat later time
the �ow front is farther at z � �h than at z � �h� This cyclus will repeat
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itself and then the front is wobbling� We adhere to this phenomenon the front
instability we are looking for�
To model the problem described above� we make the following simpli
ca�

tions�

� We assume the �uid to be incompressible �� � � � r � v � �� and
Newtonian� however with a temperature dependent viscosity� i�e�

S � ���T �D � ��T � � �� e
�cT � ����

with c a positive constant�
� We assume all material coe�cients occurring in ����� ���� and ���� to be
constant�

� We neglect the inertia term in the equation of motion with respect to the
viscous term �quasi�static approximation��

� We neglect the viscous dissipation term in the energy equation�
� We consider the cavity to be a two�dimensional slit �this means that we
have to replace er and r by ex and x� respectively��

� We take the prescribed temperature at the upper and lower wall equal
and uniform�

� We assume that the changes in temperature remain small �we are only
aiming at the 
rst order e�ect��

Based on the latter assumption� we split up our problem in a basic problem
in which the velocity 
eld and the temperature are uncoupled� plus a pertur�
bation problem in which these 
elds become coupled in 
rst order�

This results in two separate basic problems�

�� The velocity problem� unknowns v � v�x� z� t� � uex � wez� and
p � p�x� z� t�� �the temperature is here taken equal to the uniform refer�
ence temperature� governed by

r � v � �u

�x
�
�w

�z
� � �

��p

�x
� ���u � � �

��p
�z
� ���w � � � �����

for �x� z� 	 �� t � �� together with the boundary conditions �here� x � �
corresponds to r � Ri�

u��� z� t� � V �z� �


�

�
��

� z
h

���
�

u�x��h� t� � � �
Sn � p n � ��v � Vfez� � n� � � � at the front � �����
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From this problem not only the velocity and the pressure can be solved�
but also a zeroth order version for the shape of the �ow front� yielding a
symmetric �ow front�

�� The temperature problem� unknown T �x� z� t� �v is known from ���� with
governing equation

�T

�t
� �v � rT � � ��T � �����

where � � ���cp � the thermal di�usion constant�
The boundary conditions are

T ��� z� t� � Ti �

T �x��h� t� � Tw �

�T

�n
� � � at the front � �����

From this problem the basic temperature distribution can be solved�

To obtain the perturbed problem� we must substitute the perturbed 
elds�
i�e�

v � v � �v � p� p� �p � T � T � �T �

into the original equations ����!���� and linearise the thus obtained set with
respect to the perturbations� Moreover� we must also introduce the perturbed
�ow front� assumed in an asymmetric shape� and linearise the free�boundary
conditions at the front�

Zeroed order velocity problem

As shown by Van Vroonhoven and Kuijpers� ����� the velocity problem for�
mulated in ����� and ����� can be solved by use of complex function theory�
For this the velocity and the pressure are expressed in holomorphic functions
of a complex variable �z� x � iz�� By a conformal mapping z� m���� the
�ow region � is mapped onto the unit circle in the ��plane� The problem
in the ��plane is then reformulated as a Hilbert problem� which is solved
analytically� The� still unknown� mapping function m��� is determined by
the free�boundary conditions at the �ow front� This function is then approx�
imated by a polynomial of degree N �

m���  mN ��� �

NX
k��


k�
k � �����

It turns out that already for small values of N �i�e� N � � or � this poly�
nomial renders a very good approximation of the mapping function in the
vicinity of the free boundary �i�e� in the right half of the unit circle�� With
m���� also the shape of the �ow front is determined� From the expressions
for the velocity� the �ow lines can be calculated�



�� Fons van de Ven

A reasonable assumption for m��� turns out to be m��� � �� yielding
a purely semi�circular �ow front� Especially near the �ow front this gives
good results for the velocity directly behind that �ow front� These results are
needed in the next section�

Zeroed order temperature problem

In this section we present a solution of the temperature problem ����� and
������ This solution is quite di�erent in di�erent regions in � �e�g� far behind
the �ow front	 near the walls	 near the �ow front�� We 
rst make the equations
dimensionless by introducing the dimensionless variables $t� $x� $z� $v and $T by

t �
L

Vf
$t � x � L$x � z � h$z � v � Vf $v � and $T �

T � Tw
Ti � Tw

� �����

where L is a characteristic measure of length in the x�direction� to be speci
ed
further on� The speci
c choice for L depends on which region in � we are
considering�
In these new variables ����� becomes

� $T

�$t
� $u

� $T

�$x
� $w

� $T

�$z
� $�

�
�� $T

�$z�
�

�
h

L

��
�� $T

�$x�

	
� �����

with

$� �
�L

Vfh�
� �����

while the boundary conditions ����� become

$T ��� $z� $t� � � �
$T �$x���� $t� � � �

� $T

�n
� � � at the front � �����

We consider 
rst the�

Region far behind the �ow front

�x� z� 	 ��� where �� � f�x� z� j � � x � xf � kh� � h � z � h g�
with kh a few times h� and xf � Vf t � Rf �h� t��Rn �see Fig� ����
Here� we choose L � R� where R� h� Moreover� we assume the temperature
to be stationary �T � T �x� z�� and the �ow fully developed� The latter means
that

$u �


�
��� $z�� � $w � � � ����

The factor �� in ���� is due to the normalisation� which is such that the
dimensionless �ow rate pertinent to $u should be � �note that the dimensionful
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�ow rate Q equals �hVf ��
Finally� we use the fact that h � L � R� implying that the di�usion in
x�direction can be neglected in the heat equation ������ All this leads to the
thin�layer approximation for the heat di�usion equation� i�e� �omitting the
hats	 the factor �� is incorporated in �� i�e � � �$���

��� z��
�T

�x
� �

��T

�z�
�

T ��� z� � � �

T �x���� � � � at the front � �����

In practice� the dimensionless di�usion constant � �� $�� shows up to be
rather small �� � O�������� Therefore� we use asymptotics based on �� ��
For the inner solution �i�e� z not too close to ��� we then get

�T

�x
� � � and T ��� z� � � � �����

yielding

T �x� z� � � � �����

�in fact� of course� T �x� z� � � � O����� Since this solution does not satisfy
the boundary conditions at z � ��� we expect that there is a boundary layer
in the vicinity of z � ��� Since the problem is symmetric with respect to z�
we only have to consider the boundary layer near z � ��
For the outer solution� holding for z in a boundary layer at z � � �or

z � ���� where the gradient �T��z becomes large� we replace z by

z � �� �� �� � �
�� z

�
� �����

where the small parameter � �� � � � ��� representing the thickness of the
boundary layer� needs still to be determined�
Substitution of ����� into ����� yields

����� ���
�T

�x
�

�

��
��T

���
� �����

Since we want the left�hand side of ����� to be of the same order as the
right�hand side� � must satisfy the following equation

�� � � �� � � �
p
� � �����

With this choice for �� ����� can be rewritten as follows

��
�T

�x
� ��T

���
� ���

�T

�x
 �� �����
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The boundary conditions are given by

T ��� �� � ��

T �x� �� � ��

T �� ��� � �� �����

We try as a solution of ����� and �����

T��x� �� � �T ��� � �����

where � � � x� for some value of �� Substitution of ����� into ����� shows
that � � ��� must hold� and consequently the solution can be found as

T �x� �� � T��x� �� � C

Z �
�px

�

e�
�

�
s�ds � ����

where C is given by

C �

�Z �

�

e�
�

�
s�ds

���
� �����

We can proceed in a completely analogous way to derive second and higher
order �in �� terms in this asymptotic solution� The second order term is given
by

T���� �� � �C�
��

�Z �

�

e�
�

�
s�ds� �e�

�

�
��
�
� �����

The total solution for the temperature in �� is now

T �x� �� � T��x� �� � �T��x� �� �O���� � �����

We compare the asymptotic solution of ����� with a numerical solution
obtained by means of a 
nite di�erence method� In Table � the results are
shown for the case that � � ����� The results for T �x� z� at x � � are shown
�in dimensionful variables� x � � corresponds to x � � �����m�� In this table�
T as
� � T

as
� � �T

as
� and �T

as
� are de
ned by

T as
� �x� z� � T�

�
x�
�� z

�

�
�

T as
� �x� z� � �T� � �T��

�
x�
�� z

�

�
�

�T as
� �

T as
� � Tnum

Tnum
�

�T as
� �

T as
� � Tnum

Tnum
� �����

From Table � it follows that the asymptotic solution and the numerical solu�
tion are in good agreement with each other� despite the fact that � � �

p
� �

����� which is not really very small�

Next� we consider the�
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Table �� Comparison between asymptotic and numerical results at x � �

z value Asympt� sol� Num� sol� Relative di�erence

T as
� T as

� Tnum T as
� T as

�

��� ����� ����� ����� ���� � ���� ���� � ����

��� ����� ����� ����� ���� � ���� ���� � ����

��� ����� ����� ����� ���� � ���� ���� � ����

��� ����� ����� ����� ��� � ���� ���� � ����

��� �� ��� ��� ��� � ���� ��� � ����

��� ��� ���� ���� ���� � ���� ���� � ����

��� ���� ���� ���� ���� � ���� ���� � ����

��� ����� ����� ��� ���� � ���� ���� � ����

��� ����� ����� ����� ���� � ���� ���� � ����

�� ����� ����� ���� ���� � ���� ��� � ����

��� ����� ����� �����

Flow front region

�x� z� 	 �f � where �f � f�x� z� j xf � x � xf�� � h � z � h g�

with xf� � xf �Rf ��� t��Rf �h� t� � Rf ��� t��Rn �see Fig� ����
In this region� x � xf and z are of the same order of magnitude� implying
the choice L � h� and moreover also �vx � Vf � and vz are of the same order�
Therefore� we introduce new variables �x� �z and �t as

�x �
x� xf
h

� �z �
z

h
� �t �

Vf
h

t � �����

write the velocity as �note that u and w are known from the preceding zeroth
order velocity problem�

v � Vf

��


�
��� �z�� � �u��x� �z�

�
ex � �w��x� �z�ez

�
� �����

and consider the temperature in the moving frame ��x� �z�� i�e�

T �x� z� t�� Tw
Ti � Tw

� �T ��x� �z� �t� � ����

With all this� the convective�di�usive heat equation ����� turns into

� �T

��t
�

�
�

�
��� �z�� � �u

�
� �T

��x
� �w

� �T

��z
� ��� �T � ����
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where

�� �
�

Vfh
�

h

R
$� � ����

Since $� itself is already small� we thus have �� � �� and therefore we may
neglect the di�usive term in ����� Moreover� because

�v �

�
�

�
��� �z�� � �u

�
ex � �wez � ���

is precisely the velocity of a material particle with respect to the �ow front�
we may write

� �T

��t
� ��v � r �T � � � � ����

expressing that the change in time of �T is purely due to convection� Conse�
quently� the temperature of each material particle moving in the front region
remains equal to the temperature with which it enters this region� Because
�from the beginning of the 
lling of the cavity on� this temperature is always
equal to Ti� this implies that the temperature in the whole front region will
be uniform and equal to Ti� However� this solution then leads to two evident
contradictions�

� the temperature at the tips of the �ow region ��z � ��� should be Tw in
stead of Ti �� �T � �� at �z � ���	

� the temperature in the boundary layer in �� directly behind the straight
�ow front boundary x � xf of �f is smaller than Ti� causing the tem�
perature across this boundary to become discontinuous�

From these discrepancies we conclude that there should also exist a boundary
layer within �f � extending behind �f � and continuously merging into the
boundary layer in ��� In this boundary layer� the di�usion must again be
taken into account� However� as ��� $�� the boundary layer in�f will be much
�O�h�R�� narrower than the one in ��� A sketch of the expected temperature
distribution in the cavity at a certain position of the �ow front is given in
Fig� ��� The analysis of the latter boundary layer can be done in a way
analogous to the one dealt with in the preceding subsection� However� at
this stage in the project� this point is still under study� In fact� this is the
stage in the project reached by now� Knowing the zeroth order unperturbed
solution� we hope to proceed with a study of the perturbed problem� The
perturbation will be assumed due to an initial asymmetry in the �ow front�
We will examine how this asymmetry in�uences the �ow� This in�uence will
be most manifest in the boundary layers� Our main focus will be the evolution
in time of the �asymmetric� shape of the �ow front�
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ex

ez

xf � Vf t

�h

�x

�z�� �f

Fig� ��� Sketch of the temperature distribution in the cavity	 behind and in the
�ow front region� in the gray part the temperature is Ti�

� Closing Remarks

In this contribution� a survey is presented of the research on polymers per�
formed by a unit of the mathematics faculty of Eindhoven University of Tech�
nology �EUT� during the years ���� to ����� Special attention is given to
the mathematical modelling of industrial processes for polymers� and to the
analytical and numerical evaluation of the models thus obtained� In Sect ��
we presented some results of two projects investigating the �in�stability of the
extrusion process for polymer melts� The instability considered here is the
so called spurt phenomenon� A �dimensional model describes spurt either
as a sudden huge increase in �ow rate at a slight increase in pressure or as
the onset of persistent oscillations in both the pressure and the �ow rate� A
discrete stick�slip model describes spurt in terms of relaxation oscillations in
the pressure and the �ow rate� The latter model is at one hand mathemat�
ically simple� but on the other hand it yields a good correspondence� both
qualitatively and quantitatively� with existing experimental results�
In Sect � injection moulding between two parallel plates is considered�

A general model for the mechanical ��ow� pressure� stresses� and thermal
features �temperature� heat �ux� of this process is presented� A project �still
in an initial state� on the instability ��wobbling�� of the free �ow front is
discussed� Based on the expectation that the wobbling could be driven by
asymmetric temperature distributions� a possible solution for this stability
problem is presented� Hence� the source for the wobbling of the front is sought
in 
rst instance in thermal e�ects �and not in elasticity e�ects��
To close the survey of ���������� we would like to indicate some future

projects within our unit� First there is the PhD�project of Gramberg� already
mentioned above� This project runs till the end of ����� We are now focussing
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on analytical methods� but in the second part of the project also numerical
simulations will come into sight� Secondly� there is the PhD�project of Smol�
ders on the thermoviscoelastic modelling of injection moulding �mentioned in
Sect� ���� Besides a complete numerical simulation of the process� this project
especially aims at calculations of residual stresses and deformations� specif�
ically in connection with birefringence �e�g� in compact discs�� This project
runs till the end of ���� Finally� we mention the PhD�project of Gunawan on
the morphology of polymeric blends �see Sect� ���� This project is especially
concerned with the disintegration of polymer threads in a polymer matrix�
and with the material features of the resulting polymer blend� This project
runs till the end of �����
All these projects are supervised by Molenaar and Van de Ven� and are

in cooperation with industrial companies as DSM� DOW and Axxicon�
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Index

asymptotic solution	 ��

Bagley correction	 ��
balance of energy	 �
balance of linear momentum	 ��
balance of mass	 �	 ��
birefringence	 ��
blow moulding	 �
boundary layer	 ��	 ��

cable coating	 �
compressibility	 �	 ��	 ��
� isothermal	 ��
compression	 ��
conformal mapping	 ��
constitutive equation
� compressibility law	 �	 ��
� for �	 �
� heat �ux	 �
� � Fourier�s law	 �
� stress	 	 �
� � generalised Newtonian	 ��
� � JSO	 ��	 ��
� � KBKZ	 ��	 ��	 ��
� � Leonov	 �

density	 �	 ��
die swell	 �

equation of continuity	 ��
equation of motion	 �	 	 ��	 ��
extrusion	 �	 �	 �	 �	 ��	 ��

�ber spinning	 �
�lling phase	 ��	 ��
�ow
� capillary	 ��
� classical	 ��	 �	 ��	 ��	 ��	 �	 ��
� compression �ow	 �
� curve	 ��	 ��
� front	 ��
� fully developed	 ��
� incompressible	 �	 ��
� piston
driven	 ��	 ��
� pressure
driven	 ��

� pro�le	 ��
� shear dominated	 �	 ��
� spurt	 ��	 ��	 ��	 �	 ��
� subcritical	 ��	 ��
� supercritical	 ��	 ��	 �	 ��	 ��
� transient	 ��
�ow front
� shape of	 ��
�uid
� compressible	 ��
� generalised Newtonian	 ��	 �
� incompressible	 ��
� Newtonian	 ��	 ��
� thermoviscoelastic	 ��
free boundary	 ��
front	 ��
� free boundary of	 ��	 ��
� free surface	 ��
� motion	 ��

Gibbs law	 ��

heat capacity	 ��
heat �ux	 �
� heat conduction coe�cient	 �
� heat di�usion equation	 ��
Hilbert problem	 ��
hysteresis	 ��	 ��	 ��

incompressibility conditi	 �
incompressibility condition	 ��
injection moulding	 �	 ��	 ��	 �
instability
� constitutive	 �	 ��
� extrusion	 �
� �ow front	 �	 ��
� �ow instabilities	 ��
� in extrusion	 ��	 ��
� spurt	 ��	 �
� thermally induced	 ��
internal energy density	 �

latency	 ��
� phase	 ��



�� Fons van de Ven

melt fracture	 ��
modulus
� bulk	 �
� compression	 �
� shear	 ��
morphology	 �

Newtonian
� phase	 ��
� viscous term	 ��
no
slip	 ����	 ��	 ��	 ��

oscillations
� persistent	 ��	 ��

polymer blend	 �	 ��
pressure	 �	 	 ��	 ��	 ��	 ��	 ��
pressure gradient	 ���	 ��

rate
of
deformation	 	 �
relaxation oscillations	 �	 ��	 ��	 �	 ��	
��

relaxation rate	 ��	 ��

sag	 �
shape memory	 ��	 ��	 ��	 ��	 ��
shear rate	 ��	 �
shear strain	 ��
shear thinning	 ��
slip	 �
� law	 �
� model	 �
� velocity	 �
slip parameter	 ��
solvent viscosity	 	 ��
spurt	 ��	 ��	 ��	 ��	 ��	 ��	 ��

� �ow	 ��
� layer	 ��	 ��
� phase	 ��
� zone	 �����
steady state	 ��	 ��	 ��
stick
slip	 �	 �
stress
� elastic part	 	 ��
� extra stress tensor	 	 �
� �rst normal stress di�erence	 ��	 ��
� residual stresses	 �	 ��	 ��
� second normal stress di�erence	 ��
� shear stress	 ��	 ��	 �	 ��
� total stress tensor	 �	 ��
switch curve	 ��

temperature	 ��	 ��	 ��	 ��	 ��
thermal
� convection	 ��
� di�usion	 ��	 ��
� di�usion constant	 ��
� e�ects	 ��
� expansion	 ��
� �elds	 ��
� shrinkage	 �

velocity	 �	 ��	 ��	 ��
� gradient	 �����	 ��	 ��	 ��
� pro�le	 ��	 �
viscosity	 ��	 �
� Newtonian viscosity	 �
� shear viscosity	 �
� temperature dependent	 ��
volumetric �ow rate	 �	 �	 ��	 ��	 ��	
��	 ��	 ��


