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� Introduction

A widely used technique to remove oil from reservoirs is water�drive� Through
injection wells water is being pumped into the reservoir� driving the oil to the
production wells� The presence of rock heterogeneities in the reservoir generally
has an unfavorable e�ect on the recovery rate� For instance� when preferential
paths �high permeability regions� exist from injection to production wells� much
oil will be by�passed and consequently the oil recovery rate will be small�

Conversely� when rock heterogeneities occur perpendicular to �ow from injection
to production wells �so�called cross�bedded or laminated structures� oil may be
trapped at the interface from high to low permeability and become inaccessible
to �ow� leading again to a reduction in recovery rate� This latter case was
studied by Kortekaas 	
��� van Duijn et al� 	
�� and more recently by van
Lingen 	��� who performed laboratory experiments using a porous column with
periodically varying permeability� see Figure 
� In the same context� steady state
solutions as well as an averaging procedure were considered by Dale et al� 	���
	
���






���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

���
���
���
���
���

����
����
����
����
����

���
���
���
���
���

����
����
����
����
����

Injection Production

Figure 
� Periodically varying porous medium with high �coarse� and low ��ne�
permeability layers�

The main purpose of this paper is to derive in a rational way the e�ective �ow
equations corresponding to Figure 
� when the ratio of micro scale �periodicity
length� and macro scale �column length� is small�

To this end we consider a one dimensional �ow of two immiscible and incom�
pressible phases �water being the wetting phase� oil the non�wetting phase�
through a heterogeneous porous medium� characterized by a constant porosity
� and a variable absolute permeability k � k�x�� The underlying equations are�
mass balance for phases

�
�S�
�t

�
�q�
�x

� � �� � o� w� � �
�
�

momentum balance for phases �Darcy law�

q� � �k�x�kr��S��
��

�p�
�x

� �
���

and the complementary conditions

So � Sw � 
 � �
��

po � pw � pc�x� Sw�� �
���

Here S�� q�� kr�� �� and p� denote� respectively� the saturation� speci�c dis�
charge� relative permeability� viscosity and pressure of phase �� Throughout
we assume that the phase saturations are normalized� i�e� � � S� � 
� Condi�
tion �
�� expresses the presence of two phases only� The phase pressures di�er
due to interface tension on the pore scale� This is expressed by �
���� where pc
denotes the induced capillary pressure� In petroleum engineering it is usually
described by the Leverett model� see Leverett 	
�� or Bear 	���

pc�x� Sw� � �

s
�

k�x�
J�Sw�� �
���

where � denotes the interfacial tension and J the Leverett function� The relative
permeabilities kr� � 	�� 
�� 	���� and the Leverett function J � ��� 
�� 	����
are assumed to be smooth generalizations of power law functions �Corey 	���
Brooks � Corey 	��� satisfying the structural properties�

�



A�� kr� strictly increasing in 	�� 
� with kr���� � ��
A�� J���� ��� J�
� � � and J � 	 � in ��� 
��
where the prime denotes di�erentiation�

Here we explicitly assume J�
� � �� Physically this means that a certain pres�
sure� the capillary entry pressure given by pc�x� 
�� has to be exerted on the oil
before it can enter a fully water saturated medium�

Equations �
�
� and condition �
�� imply that the total speci�c discharge q ��
qo � qw is constant in space� Throughout this paper we consider it constant
in time as well� With q � � given� equations �
�
�� �
��� and conditions �
���
�
��� can be combined into a single transport equation for one saturation only�
Since we are primary interested in the oil �ow� we use the oil saturation for that
purpose� In doing so� it is convenient to rede�ne krw� pc and J in terms of So�
Setting

u � So �Sw � 
� u��

we now write
krw�u� �� krw�
� u��

pc�x� u� �� pc�x� 
� u��

J�u� �� J�
� u��

In terms of u assumptions A��� become

�A� �

�
krw strictly decreasing in 	�� 
� with krw�
� � ��

kro strictly increasing in 	�� 
� with kro��� � ��

�A� � J�
�� ��� J��� � � and J � � � in 	�� 
��

Remark ��� In most cases of practical interest the blow�up of J and J � near
u � 
 is balanced by the behavior of krw near that point� in the sense that
krw�u�J

��u� � � as u � 
� The consequence of this behavior and its possible
failure is investigated by van Duijn � Floris 	
��� Though important for the
well�posedness of the mathematical formulation� no additional assumptions are
required for the purpose of this paper�

Applying the scalings

x �� x
Lx� t ��
t q

�Lx
and k �� k
K� �
���

where Lx is a characteristic macroscopic length scale and K a characteristic
permeability value� we �nd for the oil saturation the balance equation

�u

�t
�
�F

�x
� � � �
��a�





where

F � f�u��Nck�x���u�
�

�x
pc�x� u�� �
��b�

Here

f�u� �
kro�u�

kro�u� �Mkrw�u�
�
���

denotes the oil fractional �ow function� and

��u� � krw�u�f�u�� pc�x� u� � J�u�

p
k�x�� �
���

The two dimensionless numbers involved are the capillary number Nc and the
viscosity ration M � They are given by

Nc �
�
p
K�

�wqLx
and M �

�o
�w

� �
�
��

Remark ��� �i� Assumptions �A��� imply

f��� � �� f�
� � 
 and f strictly increasing in 	�� 
��

���� � ��
� � � and ��u� � � for � 	 u 	 
�

�ii� Depending on the speci�c application� the value of the capillary number may
vary considerably� For instance� adding surfactants or polymers may substan�
tially alter � or �w� Likewise the �ow rate q can have di	erent values� Therefore
we investigate in Section 
 the consequences of having a moderate and a small
value for Nc�

�iii� Petroleum engineers de�ne the capillary number ������ in the reciprocal

way� i�e� Nc �
�wqLx

�
p
K�

� Here we do not adopt this convention because we want

to emphasize the direct proportionality between the capillary number and the
interface tension ��

Two typical capillary pressures pc � pc�x� u� are shown in Figure �� They relate
to �ne �k � k�� and to coarse �k � k�� material� where k� 	 k��

We consider equation �
��� in the domain � � R and for t � �� subject to the
initial condition

u�x� �� � u��x� for x � �� �
�

�

When k is constant and u� � �� 	�� 
� is such that
R u�
� ��s�J ��s�ds is uniformly

Lipschitz continuous in �� Problem �
���� �
�

� admits a unique weak solution
u � � � 	���� � 	�� 
�� This follows from the work of Alt � Luckhaus 	
��
van Duijn � Ye 	
��� Gilding 	
��� 	
��� or Benilan � Toure 	�� This
weak solution is smooth whenever u � ��� 
� and has the usual regularity for

�



pc

u

1u*0

fine 

k = k−

coarse

k = k+

Figure �� Dimensionless capillary pressure in terms of oil saturation� top �bot�
tom� re�ects �ne �coarse� material�

degenerate equations across possible free boundaries near u � � and u � 
�
When k is piecewise constant� in particular

k�x� �

�
k�� x 	 �

k�� x � ��
�
�
��

equation �
��� cannot always be interpreted across the interface where k is dis�
continuous� This is due to a possible discontinuity in capillary pressure� Using
a regularization procedure� this was demonstrated by van Duijn et al 	
� for
equation �
���� and rigorously proven by Bertsch et al 	�� for a simpli�ed
equation� Instead one considers equation �
��� only in the sub�domains where
k is constant� together with matching conditions across k�discontinuities� For k
given by �
�
��� with k� 	 k�� the matching conditions read for all t � ��

�i� 	F �t�� � �� �
�
�

�ii� u���� t�	pc�t�� � �� 	pc�t�� � �� �
�
��

where 	F �t�� � F ���� t� � F ���� t� and 	pc�t�� likewise� The �rst condition
expresses continuity of �ux and is obvious� The second conditions tells us that
the capillary pressure is only continuous if both phases are present on both sides
of the k�discontinuity� This is to be expected from Darcy law �
��� since then
both phase pressures are continuous� If oil is absent for x � �� i�e� in the �ne
material� the entry pressure for oil leads to a discontinuous capillary pressure�

�



With reference to Figure �� the pressure condition �
�
�� can be formulated as

�ii��

���
��

u���� t� 	 u� implies u���� t� � �

u���� t� � u� implies
J�u���� t��p

k�
�

J�u���� t��p
k�

�
�
�
��

where u� is uniquely de�ned by

J�u��p
k�

�
J���p
k�

� �
�
��

The occurrence of oil trapping at the transition from coarse to �ne material is
directly explained by conditions �
�
�� �
�
��� Let k be given by �
�
�� and
consider a steady state �ow �u � u�x�� satisfying

u���� � �� �
�
��

i�e� injection and production of water� with oil possibly present near x � ��
Then� by �
����

F � constant � � on R

or

f�u�

�

�Nc

p
k�x�krw�u�J

��u�
du

dx

�
� � on Rnf�g�

with �
�
�� at x � �� Since f�u� � f��� � � for u � �� we have

u � � or
du

dx
�




Nc

p
k�x�krw �u�J

��u�
� � �
�
��

for x � Rnf�g� Since u���� � �� we �nd
u�x� � � for all x � � �
�
��

and� by �
�
���
u���� � u�� �
����

Using �
���� as initial condition for �
�
�� on ���� ��� one easily constructs a
family of non�trivial steady states describing the saturation of the trapped oil
in the coarse material� The initial condition in an actual displacement process
determines which of the steady states is selected� This is discussed by Bertsch
et al 	���

Note that the non�uniqueness results from �
�
��� Considering u���� � �u �
��� 
�� one �nds a unique steady state satisfying �
�
�� �continuity of pressure�
at x � �� Such solutions were considered by Yortsos � Chang 	��� for smooth
k�

We now turn to the problem with micro structure� as indicated in Figure 
�
where trapping occurs at all transitions from high to low permeability� As a

�



result we expect to �nd a trapping related threshold saturation �irreducible oil
saturation� below which the oil becomes immobile� We consider the case of a
periodic as well as a random medium�

In Section � we assume a periodic micro structure of coarse �k � k�� and �ne
�k � k�� material� each of length Ly 		 Lx� see Figure � This leads to a
natural choice of the small expansion parameter � � Ly
Lx� We outline the

k

0 x2Ly−Ly−2L y Ly

k
+

k
−

Figure � Periodic permeability �unscaled coordinate��

homogenization procedure� study the resulting auxiliary problems and derive
the e�ective �up�scaled or averaged� equations for the limit �	 �� In doing so�
the magnitude of the capillary number Nc is important� We work out two cases�

Capillary limit� Nc � ��
�� This case is relative straightforward because the
auxiliary problem only has constant state solutions �compare steady state solu�
tions on ���� ���� As a consequence the e�ective equation is found explicitly� It
is again of convection�di�usion type and it involves weighted harmonic means
of the fractional �ow and capillary terms� Both convection and di�usion vanish
from the equation if the averaged oil saturation drops below �

�u
��

Balance� Nc � O���� This case is much more involved� Now the di�usion term
disappears in the homogenization procedure and one is left with a �rst order
conservation law of Buckley�Leverett type� This follows from a detailed study
of the auxiliary problem� We show that the upscaled oil�fractional �ow function
is di�erent from a k�weighted version of f and contains quite surprisingly some
elements of the small scale di�usion� Again it vanishes if the averaged oil satu�

�



ration drops below a certain value� This irreducible oil saturation is related to
a speci�c solution of the auxiliary problem�

In Section  we consider the case of a random micro structure with respect to
both the location of the permeability jumps and the value of the permeability�
The e�ective oil �ux is obtained only for the capillary limit �Nc � O�
�� and
involves again the weighted harmonic means of the fractional �ow and capillary
pressure terms� The homogenized equation has coe cients depending on the
realization� but we prove that average saturation� de�ned by the homogenized
parabolic problem� is a deterministic function� Consequently� it is su cient to
solve the e�ective equation for a single realization�

Section � contains some numerical results� There we take power law relative
permeabilities and a Brooks�Corey capillary pressure� We compute the e�ective
fractional �ow and di�usivity for the capillary limit Nc � O�
�� and the e�ective
fractional �ow for the balance Nc � O����

Some concluding remarks are given in Section ��

Dale et al� 	�� studied a similar multi�phase �ow problem� They consider steady
state �ow in a periodic porous column� allowing each periodicity cell to have
more sub�layers with di�erent relative permeabilities and Leverett functions�
Without using the homogenization ansatz they derive upscaled expressions for
the relative permeabilities� In this paper we present a rigorous analysis of the
auxiliary problems� resulting in a fairly complete description of the upscaled
equations� In particular� the e�ect of microscopic trapping� as a result of the
di�erent entry pressures� is investigated explicitly�

� Homogenization procedure for periodic layers

A simpli�ed version of Problem �
���� �
�

�� involving a single permeability dis�
continuity �or trap� only� was studied by Bertsch et al 	��� They established
existence and uniqueness of a solution satisfying the usual porous�media equa�
tion regularity away from the trap� In particular the solution is nonnegative
and bounded� Moreover the corresponding �ux was shown to be continuous in
x� for almost all t � ��

In this paper we silently assume the same properties for the saturation and �ux
in the case of multiple traps at arbitrary distances� In particular � � u � 
�
In our problem we deal with two natural length scales� a macroscopic length
scale Lx and a microscopic scale �characteristic length scale of layers� Ly� This
disparity in length scales is what provides us with our expansion parameter
� � Ly
Lx� For �xed� but small characteristic layer length Ly the solutions
will in general be complicated having a di�erent behavior on the two length
scales� Closed�form solutions are unachievable and numerical solutions will be
nearly impossible to calculate� It is our object to derive a �ow equation at

�



the macro scale� keeping information about the trapping only through some
averaged quantities�

To simplify our considerations we now suppose a periodic structure of the traps
being located at the points f�i � i � Zg� The corresponding permeability k��x�
is de�ned by k��x� � k�x
��� where

k �

�
k� on ��i� 
� �i��
k� on ��i� �i� 
��

���
�

Without loss of generality we assume � 	 k� 	 k� 	 �� We distinguish two
kinds of matching conditions� one going from k� to k� and vice versa� see also
�
�
���

At x � �i� we impose�

if u��i�� �� 	 u�� then u��i�� �� � ��

if u��i�� �� � u�� then
J�u��i�� ���p

k�
�

J�u��i�� ���p
k�

�
�����

At x � ��i� 
�� we impose�

if u���i� 
��� �� � u�� then
J�u���i� 
��� ���p

k�
�

J�u���i� 
��� ���p
k�

�

if u���i� 
��� �� 	 u�� then u���i� 
��� �� � ��
����

We now replace k by k� in equation �
��a�b�� Clearly this equation holds in the
domain �� � RnT� � where T� � �

S
i�Z

i� Let u� be a solution of �
��a� satisfying

the matching conditions ����� and ����� Using the uniform L� bound for u��
we consider the following two scale asymptotic expansion

u��x� t� � u��x� y� t� � �u��x� y� t� � ��u��x� y� t� � � � � �����

where y � x
� represents the fast scale� Substituting this expansion into
equation �
��� and equating terms of the same order of �� gives equations for
u�� u� � � �� As established for many linear problems containing periodic non�
homogeneities� see for instance� Bensoussan� Lions � Papanicolaou 	�� or
Sanchez�Palencia 	��� we expect that

U�x� t� �



�

��Z
��

u��x� y� t�dy �����

is the weak limit of u� and that u��x� x� � t� is the approximation to u
� in some

norm� Proving convergence of the homogenization procedure for nonlinear �ow

�



problems in non�homogeneous geometries poses di culties as is shown in Hor�
nung 	
�� and Mikeli�c 	�
�� Given the nonlinear nature of equation in �
���
and matching conditions in ����� � ����� we shall therefore make no attempt at
proving convergence as � � �� The purpose of this paper is merely to derive
the upscaled equations and to study the corresponding auxiliary problems�

Clearly our results depend strongly on the scaling of the capillary number Nc�
The main cases of interest are Nc � O�
� and Nc � O���� We will deal with
them separately�

��� Capillary limit� N
c
� O���

Introducing the oil �ux

F � � f�u���Nc

p
k��x�D�u��

�u�

�x
� �����

where

D�u�� � krw�u
��f�u��J ��u��� �����

equation �
��a� becomes

�u�

�t
�
�F �

�x
� � in �� � ������ �����

We now apply expansion ����� to F �� which gives

F � � �NcD�u
��
�u�

�y

p
k���

�f�u���Nc

p
k

�
D�u��

	
�u�

�y
�
�u�

�x



�D��u��u�

�u�

�y

�

�

�
f ��u��u� �Nc

p
k

�
D�u��

	
�u�

�y
�
�u�

�x




�D��u��u�
	
�u�

�y
�
�u�

�x




�

	
D���u��

�u���

�
�D��u��u�



�u�

�y

��
��O����

�� F ���� � F � � F ���O�����

�����

Using this in ����� results in the following equations�

��� � �Nc
�

�y

	p
kD�u��

�u�

�y



� ��

thus� by continuity of F ��

�Nc

p
kD�u��

�u�

�y
� F � � F ��x� t�� ���
��


�



which holds for every x� y�� R and for all t � �� Note that this observation is
expected because of the continuity of the �ux�

��� � � �
�F �

�x
�
�F �

�y
�

�

�x

�
�Nc

p
kD�u��

�u�

�y

�
�

�

�y

�
f�u���Nc

p
k

�
D�u��

	
�u�

�y
�
�u�

�x



�D��u��u�

�u�

�y

��
���

�

�� �
�u�

�t
�
�F �

�y
�
�F �

�x
� �� ���
��

We look for y�periodic solutions of ���
�� satisfying ����� and ����� with x
and t as given parameters� Our goal is to prove that F � � �� We argue by
contradiction�

Suppose F � 	 �� Let

w�y� �� J�u��y��� ��w� �� krw�J
���w��f�J���w��

and

!�w� �

wZ
J���

��s�ds�

the last function being strictly increasing� Then ���
�� reads

��w�
p
k
dw

dy
� �F �

Nc
�� F � ��

Hence� for �
 	 y 	 ��

!�w������ !�w��
 � ��� � Fp
k�

�

giving

w���� � w��
 � �� � Fp
k�




jj�jj� � ���
�

Similarly� for � 	 y 	 
�

w�
� �� � w���� �
Fp
k�




jj�jj� � ���
��

Now we apply matching conditions ����� and ���� in terms of w� First� suppose
w���� � J�u��� Then w���� � J��� and� by ���
��� w�
 � �� � J���� Hence
w��
 � �� � J�u�� giving � by ���
� � w���� � J�u��� which contradicts the
assumption� Next suppose w���� � J�u��� In this case we obtain w���� �







p
k�
k� w���� 	 w����� By ���
�� and ���
� we have

w�
� �� �
r
k�

k�
w���� � Fp

k�



jj�jj�

�
r
k�

k�
w��
 � �� � F

jj�jj�

�p
k�

k�
�


p
k�


� ���
��

If w��
 � �� � J�u��� then w��
 � �� �
q

k�

k�w�
 � ��� Substituting this
into ���
�� yields w�
 � �� � w��
 � ��� which contradicts the periodicity� If
w��
 � �� � J�u��� then w�
 � �� � J���� which contradicts ���
��� Hence
F � � �� A similar argument gives F � � �� implying

F � � ��

This conclusion allows us to solve equation in ���
�� with the matching condi�
tions� We �nd

u��y� �

�
C � u� for � 
 	 y 	 ��

C for � 	 y 	 
�
���
��

where C � J��
	q

k�

k� J�C�



� or

u��y� �

�
C � u� for � 
 	 y 	 ��

� for � 	 y 	 
�
���
��

Now we consider the ����equation ���

�� Since F � � � and the �ux is contin�
uous we �nd

F � � F ��x� t��

Using ���
�� and ���
��� the local form of F � is

F � � f�C��Nc

p
k�D�C�

�
�C

�x
�
�u�

�y

�
� ���
��

for �
 	 y 	 �� and

F � �

��
� f�C��Nc

p
k�D�C�

�
�C

�x
�
�u�

�y

�
for C � u��

� for C � u��
���
��

for � 	 y 	 
� Clearly we only have to consider the non�trivial case C � u��
From ���
�� and ���
�� we deduce

�u�

�y
�

����
���

f�C�� F �

p
k�NcD�C�

��C

�x
�� B��x� t� for � 
 	 y 	 ��

f�C�� F �

p
k�NcD�C�

��C

�x
�� B��x� t� for � 	 y 	 
�


�



After integration we observe that B� � B� � �� Hence we can solve for F
� to

�nd

F � �

f�C�p
k�D�C�

�
f�C�p
k�D�C�


p
k�D�C�

�

p

k�D�C�

�Nc

�C

�x
�
�C

�x

p

k�D�C�
�


p
k�D�C�

�

Finally we use the �� � equation in ���
��� Since F � is continuous in the fast scale�
we �nd for the averaged oil saturation U � �

� �C � C� the e�ective convection�
di�usion equation

�U

�t
�

�

�x

�
F�U��NcD�U��U

�x

�
� �� ������

where �� 	 x 	� and t � �� One easily veri�es

F�U� �

�����
����
� for � � U � 


�
u��

strictly increasing for



�
u� 	 U 	 
�


 for U � 
�

and

D�U� �

�����
����
� for � � U � 


�
u��

� � for



�
u� 	 U 	 
�

� for U � 
�

In Section � we show the graphs of F and D based on power law relative per�
meabilities and a Brooks�Corey capillary pressure�

��� Balance� N
c
� O���

Writing Nc �� Nc�� the oil �ux ����� becomes

F � � f�u���Nc�
p
k��x�D�u��

�u�

�x
� ����
�

Clearly expansion ����� changes due to the additional � factor� It now takes the
form

F � � f�u���Nc

p
kD�u��

�u�

�y
�
�
f ��u��u�

�Nc

p
k

�
D�u��

	
�u�

�x
�
�u�

�y



�D��u��u�

�u�

�y

��
��O����

�� F � � F ���O�����

������

Using this expansion in ����� gives

�u�

�t
�



�

�F �

�y
�
�F �

�x
�
�F �

�y
� O����






resulting in the equations�

��� �
�F �

�y
� ��

or� by the continuity of F ��

f�u���Nc

p
kD�u��

�u�

�y
� F � � F ��x� t� �����

which holds for every x� y � R and for all t � ��

�� �
�u�

�t
�
�F �

�x
�
�F �

�y
� �� ������

First equation ����� needs to be considered� It leads to the following auxiliary
problem�

Problem Au� Given F � R� �nd u � 	�
� �� 
 ��� 
�� 	�� 
� satisfying

f�u��Nc

p
kkrw�u�f�u�J

��u�
du

dy
� F in ��
� �� 
 ��� 
� ������

subject to the matching condition �y � �����
��
if u���� 	 u�� then u���� � ��

if u���� � u�� then
J�u�����p

k�
�

J�u�����p
k�

�
������

and the periodicity condition �y � �
����
��
if u��
 � �� 	 u� then u�
� �� � ��

if u��
 � �� � u� then
J�u��
 � ���p

k�
�

J�u�
� ���p
k�

�
������

This problem is considered in detail in the next sections� We prove existence
for � � F � 
 and uniqueness for F � �� Moreover� we show monotone depen�
dence and di�erentiability of u with respect to F � After that equation ������
is averaged over the cell ��
� �� 
 ��� 
� to obtain the upscaled �macroscopic�
transport equation� This equation turns out to be of Buckley�Leverett type�

��� Auxiliary problem

To simplify the analysis we introduce� as in Section ��
� the function w � J�u�
and set

�w� � krw�J
���w�� and ��w� � f�J���w���

In terms of w� the auxiliary problem Au becomes


�



Problem Aw� Given F � R� �nd w � 	�
� �� 
 ��� 
�� 	J������ satisfying

��w�

�

�Nc

p
k�w�

dw

dy

�
� F in ��
� �� 
 ��� 
� ������

such that �at y � �����
��
if w���� 	 J�u��� then w���� � J����

if w���� � J�u��� then w���� �

r
k�

k�
w�����

������

and �at y � �
����
��
if w��
 � �� 	 J�u��� then w�
� �� � J����

if w��
 � �� � J�u��� then w�
� �� �
r
k�

k�
w��
 � ���

�����

We �rst demonstrate existence and some qualitative properties for � � f��� �
F � f�
� � 
�

Lemma ��� Let F � 
� Then there are no solutions to Problem Aw�

Proof� Since f is strictly increasing we have

F

��w�
� 
 � F

f�
�
� 
 � ��

and consequently� by ������� dw
dy 	 � on ��
� �� 
 ��� 
�� Now suppose
w���� 	 J�u��� Then w���� � J��� and thus w 	 J��� on ��� 
�� con�
tradicting w � J��� from the de�nition� If w���� � J�u��� then clearly
w��
 � �� � w���� � J�u�� yielding

w���� �

r
k�

k�
w����� w�
� �� �

r
k�

k�
w��
 � ���

This implies w�
� �� � w����� contradicting dw
dy 	 � on ��� 
�� �

Lemma ��� Let F 	 �� Then there are no solutions to Problem Aw�

Proof� Equation ������ now gives dw
dy � � on ��
� �� 
 ��� 
�� Now suppose
w���� � J�u��� Then w���� � J��� and w�
� �� � J���� Hence w��
 � �� �
J�u��� contradicting w���� � J�u��� Next let w���� � J�u��� Then w���� �q

k�

k�w���� and w�
 � �� � w���� �
q

k�

k�w���� �
q

k�

k� J�u
�� � J���� Thus

w��
��� � J�u�� and� from the w�monotonicity�
q

k�

k�w���� �
q

k�

k�w��
���
or w���� � w�
� ��� contradicting dw
dy � � on ��� 
�� �


�



Corollary ��� Let F � 
� Then u � 
 uniquely solves Problem Au�

Proof� We use the u�formulation in Problem Au� Clearly u � 
 is a solution�
To show uniqueness� suppose there exists a solution u such that u�y�� 	 

for some y� � ��
� �� 
 ��� 
�� Since du
dy 	 � whenever u 	 
� we have
the following two possibilities� Either we have u 	 
 everywhere and strictly
decreasing� or there exists y� 	 y� such that u�y�� � 
� The �rst possibility
leads to a contradiction using the monotone relations imposed by the matching
conditions� since u���� � u�
� implies u���� � u��
�� The second possibility
implies u�y� � 
 for all y � y�� in particular u��
� � 
� which contradicts the
periodicity� �

Lemma ��� Let F � �� Then Problem Au admits the family of solutions �for
all � � l � u��

��u�y�� �

��
�
�

y

Nc

p
k�
� ��l�

�
�

for � 
 	 y 	 ��

� for � 	 y 	 
�

where

��s� �

sZ
�

krw�v�J
��v�dv�

Proof� Equation ������ implies that any solution must be a combination of

u � � and d

dy
��u�y�� �




Nc

p
k
� ���
�

One immediately deduces that u�y� � � for � 	 y 	 
 is the only possibility�
Any other choice contradicts the periodicity� Then clearly u���� � u� and
���
� provides the required structure� �

Now we consider the case � 	 F 	 
� To understand the structure of the
solutions of Problem Aw we �rst introduce

De�nition ��� Given F � ��� 
�� let ���F � � �J���� ����F �� be the unique root
of

���F �Z
J���

V �s� F �ds �



Nc

p
k�

� �����

where V ��� F � � �J���� ����F �� 
 �����F ����� R
� is given by

V �s� F � �
�s���s�

jF � ��s�j � ����


�
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Figure �� Sketch of behavior of solution w�

Clearly ������ � J���� �� � C����� 
�� and d��
dF � � for F � �� We are now
in a position to prove the following structure for solutions of Problem Aw� see
also Figure ��

Proposition ��	 Let � 	 F 	 
� Then any solution of Problem Aw satis�es

�i�
dw

dy
	 � on ��� 
�� with ���F � � w���� 	 ����F ��

�ii�
dw

dy
� �� w � ����F � on ��
� ���

Proof� By a uniqueness argument for equation ������ we note that either
w � ����F � or w � ����F � on the intervals ��
� �� and ��� 
�� Furthermore
w � ����F � implies dw
dy � �� Using this monotonicity and conditions �������
������ the result w���� 	 ����F � follows directly� giving dw
dy 	 � on ��� 
��
Integrating equation ������ on ��� 
� gives

w����Z
w���

V �s� F �ds �



Nc

p
k�

�


�



Since w�
� � J��� we �nd

w����Z
J���

V �s� F �ds � 


Nc

p
k�

�

implying w���� � ���F �� Since w���� � w�
�� conditions ������� ����� give
w���� � w��
�� proving the second statement of the proposition� �

We shall now demonstrate the solvability for Problem Aw� We start with the
simplest case where a solution satis�es w�
� � J��� and w���� � ���F �� By
De�nition ���� such local solutions exist on ��� 
�� Using again ������� ����� we
�nd for the left interval

w��
� � J�u�� and w���� �
r
k�

k�
���F �� �����

By �ii� of Proposition ��� we need ����F � 	 J�u��� or

F 	 f�u���

for such solutions to exist� Integrating ������ over ��
� �� and using ����� once
more yields the nonlinear algebraic equation

q
k�

k�
���F �Z

w����

V �s� F �ds �



Nc

p
k�

� �����

where
q

k�

k� ���F � �
q

k�

k� J��� � J�u���

If this equation can be solved for w��
� � �����F �� J�u��� we have found a
solution of Problem Aw satisfying w�
� � J���� To investigate the solvability
we de�ne� for � � F 	 f�u���

G�F � �

q
k�

k�
���F �Z

J�u��

V �s� F �ds� ����a�

One easily veri�es

G��� � �� G�f�u��� �� and dG
dF � � on ��� f�u����

Hence there exists a unique F � � ��� f�u��� such that

G�F �� �



Nc

p
k�

� ����b�


�



As a consequence� integral equation ����� can be uniquely solved� provided
� 	 F � F �� the left hand side in ����� decreases monotonically in w��
��
becomes unbounded when w��
�	 ��F � and attains a value � 


Nc

p
k�

when

w��
�� J�u��� Thus we have shown� see also Figure ��

Theorem ��
 Let � 	 F � F � 	 f�u��� where F � is de�ned by �
���b�� Fur�
ther� let ���F � be given by De�nition 
��� Then Problem Aw admits a solution
w satisfying

w�
� � J���� w���� � ���F � and w���� �
r
k�

k�
���F ��

−1 0 1 y
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0

ξ(F)
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−1 0 1 y

w

J(0)

−1 0 1 y

w

f(u ) < F < 1*F < F < f(u )* *

ϕ−1
(F)

J(u )*

ϕ−1
(F)

Figure �� Sketch of behavior of w for the three ranges of F �

Next we consider F � 	 F 	 
� Since now G�F � �



Nc

p
k�

� there are no

solutions possible in the class w�
� � J���� For convenience we introduce

� �� w�
� � �b� ����F ��� �����


�



where b � max
n
J����

p
k�
k�����F �

o
and z �� w���� � ��� ����F ��� Below

we construct solutions satisfying w�
� � b and w��
� � J�u��� Then the
problem of existence for Problem Aw is reduced to the system of algebraic
equations �integrating ������ on ��
� �� and ��� 
�� and using ������� ����� and
������

zZ
�

V �s� F �ds �



Nc

p
k�

� ����a�

q
k�

k�
zZ

q
k�

k�
�

V �s� F �ds �



Nc

p
k�

� ����b�

To study the solvability of this system we introduce

� � �b� ����F �� 

�
����F ��

r
k�

k�
����F �

�
� R

by

��v� �

�����
����

vR
b

V �s� F �ds for b 	 v 	 ����F ��
q

k�

k�
����F �R
v

V �s� F �ds for ����F � 	 v 	
q

k�

k��
���F ��

Note that � is strictly increasing on
�
b� ����F �

�
and strictly decreasing on	

����F ��
q

k�

k��
���F �



� see Figure �� By the monotonicity of �� the function

z � z��� � ���
	
���� �




Nc

p
k�



����a�

is well�de�ned on �b� ����F ��� satisfying dz
d� � �� Now system ����a�b�
reduces to study the map W � �b� ����F ��� R� given by

W ��� � �

�r
k�

k�
�

�
� �

�r
k�

k�
z

�
� 


Nc

p
k�

� ����b�

We �rst formulate the theorem�

Theorem ��� For F � 	 F 	 
� there exists a solution to �
���a�b�� i�e� the
auxiliary Problem Aw admits a solution�

��



 b vζ

Ψ

ϕ−1
(F) ϕ−1

(F)
k+

k−
 z

k−Nc

1 {
Figure �� Sketch of � and construction of z � z����

Proof� Since z�����F ��� � ����F � we have

W �����F ��� � � 


Nc

p
k�

	 ��

To investigate the behavior near � � b� we use z � ���F � and consider

q
k�

k�
���F �Z

q
k�

k�
b

V �s� F �ds �

�
�� for f�u�� � F 	 
�

� �

Nc

p
k�

for F � 	 F 	 f�u���

The �rst follows from
q

k�

k� b � ����F � for F � f�u��� the second from
q

k�

k� b �

J�u�� and ����a� for F � 	 F 	 f�u��� As a consequence we �nd W ��� � �
for � close to b� Since W is continuous� the equation W ��� � � has at least one
root� which provides the existence for ����a�b�� �

��� Continuity� monotonicity and uniqueness

To construct the e�ective equation for U � we need to show that the solution
of the auxiliary problem is unique� continuous and monotone in F for � 	

�




F � 
� The F �dependence is denoted by u � u�y� F �� w � w�y� F �� or simply
u�F �� w�F �� We treat F � ��� F �� and F � �F �� 
� �rst� and then consider the
behavior near F � ��� F � F � and F � 
�

F � ��� F ��
Since uniqueness has not yet been demonstrated� we consider here the solution
w�F � given by Theorem ���� It satis�es

w�y�F �Z
J���

V �s� F �ds �

� y

Nc

p
k�

for � 	 y � 
� �����a�

q
k�

k�
���F �Z

w�y�F �

V �s� F �ds � � y

Nc

p
k�
for � 
 � y 	 �� �����b�

The smoothness of �� and V �s� �� implies w�y� �� � C����� F ��� for each y �
	�
� �� 
 ��� 
�� Let ��F � � dw
dF � Di�erentiating �����a� with respect to F
yields

�
w�y�F �Z
J���

�s���s�

�F � ��s���
ds� V �w�y� F �� F ���y� F � � ��

Hence

��y� F � � � for � 	 y 	 
 ����
�

and

����� F � �
d��
dF

� �� ��
� F � � ��

From �����b� we �nd

q
k�

k�
���F �R

w�y�F �

�s���s�

���s� � F ��
ds� V

�r
k�

k�
���F �� F

�r
k�

k�
d��
dF

� V �w�y� F �� F ���y� F ��

implying

��y� F � � � for � 
 � y 	 � ������

with

����� F � �
r
k�

k�
d��
dF

� ��

��



F � �F �� 
�
Then any solution of Problem Aw satis�es

w�y�F �Z
w���F �

V �s� F �ds �

� y

Nc

p
k�

for � 	 y � 
�

with w�
� F � � J���� Hence

�
w�y�F �R
w���F �

��s��s�

�F � ��s���
ds� V �w�y� F �� F ���y� F �

� V �w�
� F �� F ���
� F ��

�����

implying the statements�

if ��
� F � � �� then ��y� F � � � for � 	 y 	 
�

if ����� F � 	 �� then ��
� F � 	 ��
�����a�

Similarly we deduce on ��
� ���

if ����� F � � �� then ��y� F � � � for � 
 	 y 	 ��

if ���
� F � � �� then ����� F � 	 ��
�����b�

The conditions at y � �� and y � �
 translate into

����� F � �
r
k�

k�
����� F �

���
� F � �
r
k�

k�
��
� F �

������

Next we combine �����a� and ������� Suppose there exists �F � �F �� 
� such that
��
� �F � � �� Then ���
� �F � � �� ����� �F � 	 �� ����� �F � 	 � giving ��
� �F � 	 ��
a contradiction�

Hence either ��
� F � � � or ��
� F � 	 � for all F � �F �� 
�� We rule out
the second possibility� By ������� ��
� F � 	 � gives ���
� F � 	 �� implying
that w��
� F � is strictly decreasing in �F �� 
�� However Proposition ��� gives
w��
� F � � ����F ��� as F � 
� a contradiction� Hence ��
� F � � � and by
�����a�

��y� F � � � for y � 	�
� �� 
 ��� 
�� ������

Remark ��� Note that the monotonicity result �
���� applies to any solution
of Problem Aw satisfying w�
� F � � J���� We use this to show uniqueness for
Problem Aw and hence for Problem Au�

�



Theorem ��� The auxiliary problem �Au� has a unique solution u�F � for each
F � ��� 
�� We have

i� u�
� � 
�

ii� u�F � � J���w�F ��� where w�F � is given by

w�y�F �Z
w���F �

V �s� F �ds �

� y

Nc

p
k�

for � 	 y � 
�

q
k�

k�
w����F �Z

w�y�F �

V �s� F �ds � � y

Nc

p
k�

for � 
 � y 	 ��

with w�
� F � � J���� w���� F � � ���F � for � 	 F � F �� and w�
� F � � J���
satisfying W �w�
� F �� F � � � for F � 	 F 	 
�

Proof� In Section �� we have shown that for F � 	 F 	 
 no solutions are
possible with w�
� F � � J���� Furthermore for � 	 F � F �� Problem Aw is
uniquely solvable in the class w�
� F � � J���� What remains is to rule out
solutions satisfying w�
� F � � J��� for � 	 F � F � and to show uniqueness for
F � 	 F 	 
 in the class w�
� F � � J����

With W given by ����b�� et us consider the equation

W ���F �� F � � � with ��F � � w�
� F � � J����

Di�erentiating with respect to F and denoting �
�� by a prime gives

W � d�
dF
�
�W

�F
� ��

Since ��
�F � �� as explained in Remark ���� we have

W ����F �� F � 	 � ������

whenever �W
�F � �� The de�nition of W involves z � z��� F �� given by

��z� F � � ���� F � �



Nc

p
k�

�

Hence

���z� F �
�z

�F
�

�

�F
����� F � � ��z� F ���

implying �z
�F � �� Using this we �nd directly

�W

�F
�

�

�F

�
�

�r
k�

k�
�� F

�
� �

�r
k�

k�
z� F

��

�
r
k�

k�
��
�r

k�

k�
z� F

�
�z

�F
� ��

��



Thus ������ holds for any solution of �Aw� with ��F � � w�
� F � � J����

Next we consider W �b� F �� In Section �� we showed W �b� F � � � for F � F �

and W �����F �� F � � � �

Nc

p
k�

	 �� In fact� for F 	 f�u�� we have

W �b� F � �

q
k�

k�
���F �R

J�u��

V �s� F �ds� 


Nc

p
k�

� G�F � � 


Nc

p
k�

�see ���a��

������

Hence

W �b� F � �

����
���

� � for F � F ��

� for F � F ��

	 � for F 	 F ��

Combining these inequalities with ������ gives uniqueness for F � F � and non�
existence for F � F �� �

Let u � 	�
� �� 
 ��� 
�� 	�� 
�� de�ned by �see Lemma ����

��u�y�� �

��
�
�

y

Nc

p
k�
� ��u��

�
�

for � 
 � y 	 ��

� for � 	 y � 
�

denote the maximal solution corresponding to F � ��

We are now in a position to formulate the following continuity and monotonicity
results�

Theorem ���� The solution u�F � satis�es

�i� u��� � C����� F ��
 �F �� 
�� and �u

�F
��� F � � � on 	�
� ��
 ��� 
�� except for

� 	 F 	 F � where
�u

�F
�
� F � � ��

�ii� lim
F��

u�y� F � � 
�

�iii� lim
F�F�

u�y� F � � lim
F�F�

u�y� F � � u�y� F ���

�iv� lim
F��

u�y� F � � u�y��

The convergence in �ii���iv� is uniform in the subintervals 	�
� �� and ��� 
��

��



Proof� Monotonicity follows directly from the previous results� Therefore we
only need to demonstrate the continuity properties �ii���iv��
�ii� By Proposition ��� we have

w�y� F � � ����F � for � 
 � y 	 �

and consequently

w�y� F � � w�
� F � �

r
k�

k�
w��
� F � �

r
k�

k�
����F �

for � 	 y � 
 and F � F �� Since ����F � � � as F � 
� the uniform
convergence of u��� F � follows�
�iii�� The result for F � F � is a direct consequence of the continuity of ���F ��
To establish the result for F 	 F �� we consider the function W ��� F � for F
near F � and � near b � J���� Direct computation shows

W ��b� F � � �
r
k�

k�
f�u��krw�u��
f�u��� F

	 �� ������

Since W ��� F � and W ���� F � are uniformly continuous in f��� F � � b � � �
b� �� F � � F � F �� �g for � su ciently small� we use ������ and ������ to �nd

��F � � w�
� F �	 J��� as F 	 F ��

The uniform convergence on both intervals now follows from the w�y� F � ex�
pressions in Theorem ��
��
�iv�� The uniform convergence in ��� 
� results from ���F � 	 � as F 	 �� To
establish the result in 	�
� �� we note that monotonicity and boundedness of
u��� F � imply

lim
F��

u�y� F � � �u�y�� pointwise in 	�
� ���

with �u���� � u�� Moreover� since

� 	 Nc

p
k�krw�u�f�u�J

��u�
du

dy
� f�u�� F 	 


on 	�
� ��� u��� F � is uniformly continuous in F � Hence� by Dini�s Theorem� the
convergence is uniform in 	�
� �� and �u � C�	�
� ���� Let y� � 	�
� �� with
�u�y�� � �� For F � �� the integral equation for u�F � can be written as

��u���� F ��� ��u�y� F �� � F
u����F �R
u�y�F �

krw�s�J
��s�

f�s�� F
ds � � y

Nc

p
k�

�

Let y � y�� Then� for F su ciently small�

� 	 F

u����F �Z
u�y��F �

krw�s�J
��s�

f�s�� F
ds 	 F Const

u����F �Z
�u�y��




f�s�� F
ds� �

��



as F 	 �� Hence

��u��� ���u�y��� � � y

Nc

p
k�

�

implying �u�y�� � u�y��� �

��� The e	ective equation

Let u � u�F � denote the unique solution of Problem Au� As in Section ��� we
write F � � F ��x� t� and set

u��x� y� t� � u�y� F ��x� t��

for x � R� y � 	�
� ��
��� 
� and t � �� The equation for the averaged saturation

U�x� t� �



�

�Z
��

u��x� y� t�dy

results from ������� Integrating this equation in y and using the continuity of
F ��x� �� t� we �nd

�U

�t
�
�F �

�x
� � for x � R� t � �� ������

From here on we drop the superscript and write F � F �� As a consequence of
Theorem ��

 we note that the cell�averaged saturation U � U�F � satis�es

U � C�	�� 
�� � C����� F �� 
 �F �� 
��

with
dU

dF
� � on ��� F �� 
 �F �� 
��

Moreover�

U���� � U� U�
� � 
�

where

U �



�

�Z
��

u�y�dy�

The continuity and monotonicity allows us to de�ne the inverse F � 	�� 
�� 	�� 
�
satisfying� with F �U�� � F ��

F � C�	�� 
�� � C���U�U�� 
 �U�� 
��

and
dF

dU
� � on �U�U�� 
 �U�� 
��

��



Further�
F �U� � � for � � U � U and F �
� � 
�

Taking F � F �U� as nonlinear �ux function in ������� results in an e�ective
equation which is a �rst order conservation law for U � with U as macroscopic
irreducible oil saturation�

Under additional �but usual� assumptions on kro� krw and J we show that equa�
tion ������ is of Buckley�Leverett type in the following sense�

Theorem ���� For �o� �w � 
 and � � �� let

kro�s�

s�o
� O�
��

krw�s�

�
� s��w
� O�
�

and
�
� s��J�s� � O�
��

Then F � C��	�� 
�� �implying F ��U� � �� and F ��
� � ��

Proof� We �rst consider the behavior near U � U � Writing equation �����a�
in terms of u � J���w� and di�erentiating with respect to F yields

�u

�F
�

F � f�u�

krw�u�f�u�J ��u�

uZ
�

krw�s�f�s�J
��s�

�F � f�s���
ds�

We now use equation ������ twice to rewrite this expression into

�u

�F
� ��u

�y

�Z
y




F � f�u�s� F ��
ds�

Next we integrate in y� Setting U��F � �
R �
� u�y� F �dy and a�F � � J������F ��

we �nd

dU�

dF
�

�Z
�

a�F �� u�s� F �

F � f�u�s� F ��
ds �




F
�a�F �� U��F ���

Thus
d

dF
�F U��F �� � a�F ��

implying

U��F � �



F

FZ
�

a�s�ds for � 	 F � F ��

Since

U�F � � U �



�
U��F ��

��



we have

U�F � � U �



�F

FZ
�

a�s�ds for � 	 F � F �� ����
�

We need to estimate a�F � � u���� F � from below� For this we use De�nition
���� i�e�

a�F �Z
�

krw�s�f�s�J
��s�

F � f�s�
ds �




Nc

p
k�

�

which gives




F � f�a�F ��

a�F �Z
�

krw�s�f�s�J
��s�ds �




Nc

p
k�

�

and further

� 	 F � f�a�F �� 	 Ca�F �f�u�F �� for � 	 F 	 F ��

where C �here and below� denotes a suitably chosen positive constant�

Now using f�s�
s�� � O�
� �implied by the asymptotic behavior of kro� we
�nd� for small F�

a�F � � CF ���� �

Combining this with ����
� gives

F �U� 	 C�U � U���

in a right neighbourhood of U �

Next we consider the di�erentiability of F �U� at U � U�� For F 	 F � we
use �����a�b�� Di�erentiating the equations with respect to F and using the
continuity of w�y� F � gives directly the existence of ��y� F ��� for each y �
	�
� �� 
 ��� 
�� For F � F � we �rst observe that ��
� F � is bounded in a right
neighbourhood of F �� This follows from the proof of Theorem ��

 �iii�� Hence�
in equation �����

V �w�
� F �� F ���
� F � � � as F 	 F �

and thus� again using ������ ��y� F ��� � ��y� F ��� for y � ��� 
�� A similar
argument holds in ��
� ��� As a consequence� F is di�erentiable at U��

To prove F ��
� � �� we construct an upper bound for U�F � near F � 
� For
�
 	 y 	 � we have� as in ������

w����F �Z
w�y�F �

�s���s�

���s�� F ��
ds �V �w���� F �� F ����� F � �

V �w�y� F �� F ���y� F ��

��



Hence

�u

�F
�

f�u�� F

krw�u�f�u�J ��u�

u����F �Z
u�y�F �

krw�s�f�s�J
��s�

�f�s�� F ��
ds�

which can be written as

�u

�F
�

�u

�y

�Z
y




f�u�s� F ��� F
ds

Consequently� U��F � �
R �
�� u�y� F �dy satis�es

dU�

dF
�

�Z
��

u�s� F �� u��
� F �
f�u�s� F �� F

ds �




� F
fU� � u��
� F �g

which implies

U��F � 	




� F

�Z
F

u��
� s�ds� ������

Next we estimate u��
� F � from above near F � 
� Since u�
� F � 	 f���F ��
the periodicity condition implies

u��
� F � 	 J��
�r

k�

k�
J�f���F ��

�
�

Using

� f�s�

�
� s��w
� O�
� and �
� s��J�s� � O�
� we �nd

u��
� F � 	 
� C�
� F �
�
�w near F � 
�

Substituting this estimate into ������ and using U��F � 	 
� we deduce

F �U� � 
� C�
� U��w

in a left neighbourhood of U � 
� �

� Randomly layered media in the capillary limit

In this section we drop the periodicity assumption and suppose a stationary
ergodic geometrical structure� It is characterized by a probability space �"� ���
with an ergodic dynamical system T �x�� x � R �see� e�g� 	��� or 	

� for details��
For a ��measurable subset P � " we introduce P � P ��� � R by

P ��� � fx � R � T �x�� � Pg� ��
�

�



and we call it a random stationary set�

In our application we suppose that P ��� has the following form

P ��� �
�
i�Z
�y�i��� y�i�� ����

where the random variables yi � R are strictly increasing with respect to i�

A representative example is a Poisson process # in R with constant rate  � ��
In this case the number of points of # in an interval A � �a� b� has expectation
�b� a�� The number of points of # in any bounded interval is then �nite with
probability 
 and # has no �nite limit points� On the other hand the number
in ������ is in�nite so that the points in ������ can be written in order as

� 	 y� 	 y� 	 y� 	 � � �

Similarly the points in ���� �� can be written in order as

� � � y�� 	 y�� 	 y�� 	 ��

These exhaust the points of # since the probability that � � # is equal to ��
yn are random variables and the subsequences fyn� n � �
g and fyn� n � 
g
are independent� with the same joint distributions� Furthermore� the random
variables �� � y�� �n � yn�yn�� �n � ��� ��� � �y��� l�n � y�n���y�n �n �
�� are independent and each has probability density g�y� � e�	jyj� The number
of points N��� t� of # in ��� t� satis�es the law of large numbers

lim
t���




t
N��� t� �  with probability 
�

Finally� the process of Poisson is ergodic� Another example are hardcore pro�
cesses �Gibbs processes� Mat$ern processes� � � ��� We construct them from a
Poisson point process by eliminating all points having a distance to its neigh�
bors smaller than a prescribed value� They satisfy the mixing property and the
ergodicity is assured�

By Birkho��s Ergodic Theorem there exists a density �fraction of high perme�
ability layers� of P � given by

�� �� ��P � � lim
N�M��




y�M�� � y��N��

MX
�N

jy�i���� y�i�����j ���

for almost all � � "� satisfying
� � �� � 
�

The corresponding random permeability is given by

k�x� �� � k�T �x��� �

�
k���� if x � P

k���� if x � RnP
����
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Figure �� Random distribution of layers

and it is a stationary random variable� Then

k��x� �� � k�T �x
����� ����

As a consequence u� � u���� through �
�
���

Next we turn to the two scale expansion for the saturation and the �ux� adapted
to the stochastic case� We write

F � � ���F � � ��F � � �F � � � � � � ����

where F k are stationary ergodic random �elds and

u� � u� � �u� � ��u� � � � � � ����

From these expansions and ����� we obtain directly

dF �

dy
� �� implying F � � F ��x� t�� ����

with the random variable u� satisfying ���
��� We reconsider this equation for a
given realization �� see Figure �� As before we want to show F � � �� Suppose
F � 	 �� Introducing w and � as in Section ��
 we obtain again

��w�
p
k
dw

dy
� �F �

Nc
�� F � �� ����

We argue below that this inequality does not permit us to construct a global
non�negative solution satisfying the matching conditions at the interfaces� Sup�
pose w�y�i � �� � J�u��� By ����� implying strict monotonicity of w� we
have w�y�i�� � �� 	 J�u�� giving w�y�i�� � �� � J���� This contradicts the
monotonicity of w in �y�i��� y�i���� Next suppose w�y�i � �� � J�u��� Then

w �y�i � �� �

r
k�

k�
w�y�i��� and w�y�i����� � w�y�i����

F

jj�jj�

p
k�

jy�i���

y�ij� Therefore we have w�y�i�� � �� �
r
k�

k�
w�y�i�� � �� � w�y�i�� � �� �

F

jj�jj�

�p
k�

k�
jy�i�� � y�ij� 
p

k�
jy�i � y�i��j


�

�



Repeating this reasoning backwards in i shows that w will drop below J�u��
at the right side of a certain transition� yielding again a contradiction� Hence
F � � �� A similar argument gives F � � �� so F � � ��

This implies for u�� with i � Z�

u��y� �� �

���
��

C��� � u� for y�i����� 	 y 	 y�i���

J��
	q

k�

k� J�C����



for y�i��� 	 y 	 y�i�����

or

u��y� �� �

�
C��� � u� for y�i����� 	 y 	 y�i���

� for y�i��� 	 y 	 y�i�����
�

Now consider the ����equation ���

�� Since F � � �� the ergodicity of F �

implies F � � F ��x� t� which is given by

F � � f�u���Nc

p
k���D�u��

	
�u�

�y
�
�u�

�x



�

Suppose C��� � u�� Then F � � � on �y�i������ y�i���� implies F � � � for all
x � R and t � �� If C��� � u�� then we have on �y�i������ y�i����

�u�

�y
�

f�C����� F �p
k����NcD�C����

� �C���

�x
�� B�����

On �y�i���� y�i������ we have

�u�

�y
�

f�C����� F �p
k����D�C����

� �C���

�x
�� B�����

with C as in ���
��� Since
�u�

�y
is the local representation of a stationary random

variable with zero mean� we have that the mean value of

�fk	k�gB���� � �fk	k�gB����

is zero� Here � denotes the characteristic function� Hence

��p
k����

f�C���� � F �

NcD�C����
�

� ��p
k����

f�C����� F �

NcD�C����
�

��
�C���

�x
� �
� ���

�C����

�x
�

Solving for F � gives �dropping the ��dependence� � for C��� � u��

F � �

��p
k�

f�C�

D�C�
�

� ��p

k�
f�C�

D�C�

��p
k�




D�C�
�

� ��p

k�



D�C�

�Nc

��
�C

�x
� �
� ���

�C

�x
��p
k�




D�C�
�

� ��p

k�



D�C�

� ��
��





Averaging ���
�� and using the ergodicity of F � yields the e�ective transport
equation

�U

�t
�
�F �

�x
� � for �� 	 x 	�� t � �� ��

�

where U denotes the averaged oil saturation

U � ��C � �
� ���C�

We note that for ��u� � U � �� F � � �� In the periodic case �� � �
� � Hence

for each realization � we obtain an equation of the %periodic� form �������

We stress that the averaged saturation U is deterministic� This is implied by
equation ��

� and by the deterministic initial condition� Consequently� it
su ces to consider only one realization to determine U and its corresponding
�ux F ��

Remark ��� In the case of the balance Nc � O���� we could proceed analo�
gously� Now we should solve the problem �
�
�� � �
�
�� on the real line� for
every realization� The periodicity condition �
�
�� is replaced by the condition
that u takes values between � and 
 on R� We note that the matching condition
is now posed at every point yi� i � Z� Solving the auxiliary problem Au in the
stochastic case is much more complicate than in the periodic case� The analysis
of the periodic case was already quite lengthy and in the proofs of Proposition

�� and Theorem 
�� periodicity was essential� Also unboundedness of J com�
plicates proofs� Using arguments from this section we are able to conclude that
F � 	�� 
�� but the complete construction is still an open problem� We expect to
consider randomly layered media in the limit Nc � O��� in a future publication�

� Numerical results

Since we have no convergence proof� we are going to verify the homogenization
procedure numerically for the periodic case� Both the capillary limit and the
balance will be considered� We will use the Leverett model with Corey relative
permeabilities and Brooks�Corey capillary pressure �	��� 	���� Speci�cally� the
following functions and parameters are used�

kro�u� � u�� krw�u� � �
�u��� J�u� � �
�u�� �
� � M � 
� k� � 
� k� � ����

with Nc being either 
 or �� depending on the case�

Tests are done on the interval ��
� 
�� i�e Lx � 
� For both cases we compute the
full problem with a periodic micro�structure as shown in Figure � i�e� k�x� � k�

in the coarse layers and k�x� � k� in the �ne layers� The thickness Ly of the
layers is related to the number of cells and determines the expansion parameter
� � Ly
Lx� The matching conditions de�ned in �
�
� and �
�
�� or �
�
�� are
imposed at the interfaces separating the two types of materials� The resulting

�



solution is averaged on each micro cell consisting of two adjacent layers� This
average is compared with the numerical solution of the e�ective equations�

In the tests we consider a medium originally saturated by oil �u�x� �� � 
� x �
��
� 
��� with water injection from the left �u��
� t� � ��� At x � 
 the Neu�
mann condition is chosen not to a�ect the �ow� For the full problem �� micro�
structure cells are considered� implying � � 

���

��� Capillary limit 
N
c
� O����

In this case we take Nc � 
� Inside each layer of constant permeability we apply
a �rst order explicit discretization scheme with upwind �nite volumes� With uni
denoting the approximate oil saturation at tn � n� inside the volume centered
at xi � �i � 

��h �� being the time step and h the grid size�� the solution at
the next time�step follows from

un��i � uni �
�

h

�
Fn
i���� � Fn

i����
�
� ���
�

Here Fn
i���� approximates the �ux at t � tn and x � xi � h
� � ih� the edge

between the volumes centered in xi and xi��� Likewise� F
n
i���� approximates

the �ux at t � tn and x � xi � h
� � �i� 
�h�

If i is such that x � ih lies inside a homogeneous micro�layer� the computation
of Fn

i���� is straightforward� Recalling the notation introduced in �
��� and

�
���� we have

Fn
i���� � f�uni ��Nc

p
k�xi�D

	
uni � uni��

�



uni�� � uni

h
� �����

where the permeability k�xi� is either k
� or k�� depending on the type of the

material� The di�usion coe cient is given byD�u� � ��u�J ��u� and is calculated
at the mean of uni and u

n
i���

Computing the �ux at a position where the permeability and saturation are
discontinuous requires more attention� Let us assume that this position is lo�
cated at x � ih� thus separating the control volumes centered in xi and xi���
Moreover� let k�xi� � k� and k�xi��� � k�� As in 	�� and 	
� we introduce two
sets of dummy variables at xi� u

n
i� and u

n
i� for all n � �� 
� �� � � �� They satisfy

the pressure condition in �
�
���

uni� 	 u� implies uni� � �� or

uni� � u� implies
J�uni��p

k�
�

J�uni��p
k�

�
����

and they are chosen such that the numerical �ux is continuous at xi�����

�



Given a pair uni	 satisfying ����� we show below how to obtain u
n��
i	 and Fn

i�����

Once Fn
i���� is known� we use ���
� at i and at i � 
 to determine u

n��
i and

un��i�� �

In terms of Fn
i���� we �rst write

un��i� � uni� �
�

h

�
Fn
i���� � Fn

i����
�
�

un��i� � uni� �
�

h

�
Fn
i���� � Fn

i����

�
�

�����

from which we uniquely determine Fn
i���� and u

n��
i	 satisfying ����� To do so

we �rst elliminate Fn
i����� Summing up the equalities ����� yields

un��i� � A� un��i� � �����

with A de�ned as

A � uni� � uni� �
�

h

�
Fn
i���� � Fn

i����
�
�

Note that the CFL restriction implies � � A � ��
pc
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Figure �� Finding un��i� � A � u� �left� and A 	 u� �right��

Now we check which of the two situations in ���� applies� Let us assume �rst
that A � u�� By contradictiction� since un��i	 satisfy the matching conditions�

we get un��i� � u�� Obviously� un��i� � u� also implies A � u�� Therefore
pressure is continuous in ���� i� A � u�� In this case ����� gives

J�un��i� �p
k�

�
J�A� un��i� �p

k�
�

J�un��i� �p
k�

�

�



Monotonicity of J guarantees the existence of a unique un��i� � u� satisfying
the last equality above �see also Figure ���

If A 	 u�� since un��i� � �� we have un��i� 	 u� and� due to the matching
conditions� un��i� � �� As above� un��i� 	 u� also implies A 	 u�� Therefore in
this case we uniquely obtain un��i� � A 	 u��

A similar procedure is used at a transition from �ne to coarse material� Details
are omitted�

As explained in Section ��
� the e�ective equation is known explicitly in the cap�
illary limit� Figure � shows the e�ective di�usivity D and convection F in terms
of the cell averaged oil saturation U � Here we use the relative permeabilities and
Leverett function as proposed for this section� This equation is of degenerate
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Figure �� E�ective di�usion �left� and convection �right� for the Brooks�Corey
model� Note that D�U� � F�U� � � for � � U � 

�u� � �����

parabolic type� since the e�ective di�usion D�U� vanishes for � � U � �
�u
� and

at U � 
� Several numerical methods can be applied to such kind of problems�
Here we use the explicit upwind scheme �see 	��� for the convergence analysis��

Un��
i � Un

i �
�

h

�
Fn
i���� � Fn

i����
�
�

Fn
i���� � F�Un

i ��D
	
Un
i � Un

i��

�



Un
i�� � Un

i

h
�

Figure 
� shows the solution of the e�ective equation �solid line� and the av�
erage of the solution of the full problem �dashed line� at t � �� and t � ����
Since oil is being displaced from the column� both solutions are approaching the
macroscopic irreducible oil saturation corresponding to the maximum amount
of trapped oil� U � 

�u� � ����� The transition region travels with the same
speed in both cases�

The solution of the original problem is shown in Figure 

� together with its
average� The leftmost part of the interval is enlarged in the picture on the

�
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Figure 
�� Averaged and e�ective solution oil saturation at t � �� and t � ����
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Figure 

� Full problem� averaged and oscillatory oil saturation at t � ���� full
�left� and zoomed view �right��

right� Note the good agreement with the theoretical results� the pro�le is
highly oscillatory on the macro scale and quite �at within the micro structure�
Further note that even though the original problem is of degenerate type� free
boundaries seldomly occur inside the homogeneous sub�layers� As a consequence
the solution behaves fairly nondegenerate and thus smoothly� Therefore there
is no need to consider many points inside the sub�cells� In our computations an
interior grid size of h � Ly

� � �Lx

� was su cient to produce good results�
However� since the numerical method is explicit� the time step � is subject to a
CFL condition�

��� Balance 
N
c
� O����

With Nc � �� computations for the full problem are done exactly in the same
way as for the capillary limit� However� the e�ective equation requires more
attention� As shown in Section ���� this equation is of Buckley�Leverett type�
but the fractional �ow function is not known explicitly� In this case a table
of values for the pairs �U�F� has to be constructed� where F ranges from � to

� For a given F value from this table we compute the solution u�F� of the

�



auxiliary problem �Au� de�ned in Section ���� and calculate its cell�average as
the corresponding U value in the table� For the purpose of this paper we took
Fi � i&F � with &F � 
��� and i � �� 
��� As stated in Lemma ��� we take
F�U� � � for all U � 	�� 'U �� 'U being the average of the maximal steady state
solution �corresponding to l � u���

To �nd accurate solutions of Problem Au we modify the di�erential equation
through the Kirchhof transform

��u� �

Z u

�

krw�v�f�v�J
��v�dv� �����

Note that � is strictly increasing and smooth due to the properties of krw� f
and J � In general� the integration cannot be carried out explicitly� Therefore�
again we need to construct a table of pairs �u� ��u��� Here we have applied an
adaptive quadrature method�

Thus� instead of solving Problem Au� we consider the equivalent

Problem A
� Given Fi� �nd � � 	�
� �� 
 ��� 
�� R satisfying

f���������Nc

p
k
d�

dy
� Fi in ��
� �� 
 ��� 
� �����

together with the corresponding matching and periodicity conditions de�ned in
������ and �������

The matching and periodicity conditions can be viewed as boundary conditions
for equation ����� on the two subintervals� To �nd a solution u�Fi� we have
applied the following shooting procedure� Choose ��
� � � and use this value as
initial condition for equation ����� on ��� 
�� This yields the corresponding �����
and� by the matching conditions� ������ Use this value as initial condition for
����� on ��
� ��� Then adjust ��
� so that ��
� and ���
� satisfy the periodicity
condition� In carrying out this shooting procedure several technical di culties
had to be resolved� We omit the details in this paper�

Figure 
� shows the e�ective oil fractional �ow function for the speci�c model
considered in this section� Observe that indeed we have recovered Buckley�
Leverett model in which the fractional �ow has only one in�ection point� Note
that the theoretical analysis only resulted in F ��U� � F ��
� � �� No statements
about the in�ection points could be given� Also note that the upscaled frac�
tional �ow contains details of the small scale capillary forces� This e�ect does
not appear explicitly� but it is present due to Problem Au �or� equivalently�
equation ����� with the matching and periodicity conditions�� Finally notice
that the macroscopic irreducible oil saturation U for the model considered is
much smaller than in the capillary limit case� This is to be expected because
the capillary forces are now much smaller �O�����

�
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Figure 
�� E�ective oil fractional �ow for the Brooks�Corey model� Note that
F�U� � � for � � U � U � ���� � 
����

Once the e�ective convection is known� the oil saturation equation is solved by
the �rst order explicit upwind scheme

Un��
i � Un

i �
�

h
�F�Un

i ��F�Ui���� �
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Figure 
� Averaged and e�ective solution oil saturation at t � 
�� and t � 
���

Figure 
 shows the solution of the e�ective equation �solid line� and the average
of the solution of the full problem �dashed line� at t � 
�� and t � 
��� For both
solutions we see �rst a rarefaction wave� where the oil saturation approaches the
maximum amount of trapped oil� U � U � This is followed by a shock� Note the
good agreement of the two solutions in the rarefaction part� The small di�erence
in the shock location can be explained by numerical errors which occur in the
computation of the e�ective fractional �ow function�

The solution of the full problem together with its average is shown in Figure

�� with a zoomed view in the picture on the right� Note the highly oscillatory
pro�le on both scales� Free boundaries and large gradients occur inside almost

��



0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

oscillatory
averaged

0

0.1

0.2

0.3

0.4

0.5

0.6

-1 -0.98 -0.96 -0.94 -0.92 -0.9 -0.88 -0.86 -0.84 -0.82 -0.8

oscillatory
averaged

Figure 
�� Full problem� averaged and oscillatory oil saturation at t � 
��� full
�left� and zoomed view �right��

every homogeneous sub�layer� this being a consequence of the smallness of dif�
fusion �O����� In this case the computational grid has to be quite �ne to locate
the free boundaries accurately and to compute the macroscopic irreducible oil
saturation� In contrast to the capillary limit� we need here many gridpoints
inside each sub�layer �h � Ly
�� � �Lx
���� but under a less restrictive CFL
condition�

� Conclusions

The results of this paper lead to the following conclusions�

� For Nc � O�
� �capillary limit� the e�ective equation is of degenerate
parabolic type� The di�usion and convection vanish up to the macroscopic
irreducible oil saturation � ��u

���

� For Nc � O��� �balance� the upscaled equation is of Buckley�Leverett
type� with e�ects of the local capillary forces in the fractional �ow function�

� The macroscopic irreducible oil saturation depends strongly on the value
of the capillary number�

� The solution of the auxiliary problem in the capillary limit has two con�
stant states connected by the pressure condition at the interface�

� The solution of the auxiliary problem in the balance is unique and can be
classi�ed completely�

� The choice of the characteristic values in �
��� is important for deciding
which of the two cases �capillary limit or balance� applies in a real situa�
tion�

� Random layers are considered only in the capillary limit� The e�ective
equation is similar to the periodic one�

�




� The method used in this paper can be applied to heterogeneous media
in which the porosity� relative permeabilities and Leverett function are
periodic as well�
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