EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Mathematical modelling of some glass problems

Citation for published version (APA):
Laevsky, K., & Mattheij, R. M. M. (1998). Mathematical modelling of some glass problems. (RANA : reports on
applied and numerical analysis; Vol. 9827). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1998

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://research.tue.nl/en/publications/d551def1-a5fa-410d-b276-332aa6f214ce

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

RANA 98-27
December1998

Mathematical Modelling of some Glass problems
by

K. Laevsky and R.M.M. Mattheij




Reports on Applied and Numerical Analysis
Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O.Box 513

5600 MB Eindhoven, The Netherlands

ISSN: 0926-4507



Mathematical Modelling of some Glass
Problems

K.Laevsky, R.M.M. Matthei
Department of Mathematics and Computer Science,

Eindhoven University of Technology,
PO Box 513, 500 MB The Netherlands

Abstract

In studying glass morphology one often uses models, which describe it
it as a strongly viscous Newtonian fluid. In this paper we shall study two
types of problems encountered in glass technology. One is dealing with so
called sintering, as plays a role in e.g. producing high quality glasses and
the other with producing packing glass by the so called pressing. We give a
Stokes model for describing these processes and discuss various aspects of
the evolution of both forming problems. The sintering problem is solved by
a boundary element method, for which an interesting analytical tool is em-
ployed in order to avoid numerical instabilities. The pressing problem actu-
ally deals with the morphology of a bottle or jar. Here we focus on simulating
the glass flow. We first show how to deal with the temperature separately, by
a suitable dimension analysis. Then we consider the flow of the glass in a
domain with partially free, partially moving boundary. We give a number of
numerical examples to sustain our result.

1 Introduction

For many years glass technology has been a craft based on expertise and experi-
mental knowledge, reasonably sufficient to keep the products and the production
competitive. Over the last twenty years mathematical modelling of the various as-
pects of the production has become increasingly decisive, however. This is induced
in part by fierce competition from other materials, notably polymers, which e.g.



have found their way in the food packing industry. For another part this is a con-
sequence of environmental concerns. It is not so much the waste (glass is 100 %
recyclable, a strong advantage to most competitors) as well as the energy consump-
tion. One should realise that the melting process of sand to liquid glass makes up
for the largest cost factor of the product. To give an idea of the relative importance
of the present industry some figures: In the European Union about 25 Megaton of
glass is being produced, which represents 30 billion ECU worth. The industry em-
ploys over 200,000 people. Two thirds of the glass production is meant for packing
("jars and bottles”). Float glass (as used for panes) makes up for one quarter. The
rest is for special products like CRTs and fibres.

Production of glass forms goes more or less along the following lines: First
grains and additives, like soda, are being heated in a tank. This can be a device
several tens of metres long and a few metres high and wide (width being larger
than height). Here gas burners or electric heaters provide for the heat necessary to
warm up the material till some 1400 °C. At one end the liquid glass comes out
and is e.g. led to a pressing or blowing machine, or it ends up on a bed of liquid
tin, where it spreads out to become float glass (for pane, wind shields etc.). In the
latter case the major problems are to have a smooth flow from the oven on the bed
and to control the spreading and flattening. The pressing and blowing process is
used in producing packing glass. To obtain a glass form often a two-stage process
is being used: first a blob of hot glass is pressed into a mould to form a so called
parison. Here it is cooled down (the mould is kept at 500 °C) such that a small
skin of solid glass is formed. This parison is then blown into its final shape. Such a
pressing/blowing machinery can produce a number of products at the same time; as
aresult a more or less steady flow of glass products is coming out on a belt, which
then have to be cooled down further in a controlled way such that the remaining
stresses are as small as possible (and thus the strength is optimal).

Sometimes only pressing is needed. This is the case in the production of CRTs.
Here a stamp is pressed into liquid glass and after lifting it again a certain morphol-
ogy should have been transferred onto the glass screen.

As a final application of glass we may mention fibres. Glass fibres are e.g.
used to produce insulation material. A modern application is for transmitting op-
tical signals. These optical fibres need to consist of very pure glass and have alow
porosity. One of the processes to produce this is through a so called sol-gel process
which amounts to chemical purification. The result of this are pure, though strong,
glass particles. Through heating they melt together to a larger compact, a process
which is called sintering. The eventual outcome of this is should be a dense glass
compact [9].



All these processes involve the flow of the (viscous) glass in combination with
heat exchange. Although these two are closely intertwined we shall show in this
paper that they can often be decoupled, thus effectively leading to isothermal flow
problems on one hand and temperature problems on the other. For some overviews,
see e.g. [2] [14] [10] [13].

This paper is built up as follows. In Section 2 we shall derive the basic flow
equations that will play a role in our models. Then Section 3 is devoted to the sin-
tering problem. We shall explain how we can describe the sintering of two cylin-
ders (circles) numerically. This is typical for a more general compact of glass par-
ticles, which, however, is too complicated to deal with. The subsequent section,
Section 4, also gives an analytical method which can even handle the touching of
two such cylinders. Then in Section 5 we discuss the second problem, the press-
ing of glass in a mould. We describe the model and pay special attention to the
heat exchange problem. In Section 6 the evolutionary process of the glass flow
is considered numerically. An important practical problem here is the numerical
conservation of mass. This is discussed in Section 7.

2 Modeling

Glass may be viewed as a frozen liquid, i.e. it has an amorfic structure. At suf-
ficiently high temperatures (say above 600 °C) it behaves like an incompressible
Newtonian fluid, which means that for a given dynamic viscosity n, a velocity v
and a pressure p, the stress tensor 7 is given by

T = —pl + n(grad v + grad v7) 2.1

This constitutive relation should be used to close the equations that actually de-
scribe the motion of glass blob, the momentum equation (2.2) and the continuity
equation (2.3):

0
P (—% + (grad V)TV> = pf +div T, (2.2)
where p denotes the mass density and f the volume forces on the blob,

divv = 0. (2.3)
Using (2.1) in (2.2) we obtain

d
p (5; + (grad V)TV) = pf — grad p + div (n(grad v + grad v"))
2.4)



In the two problems we shall study in this paper we anticipate the viscous forces
(div 7) to dominate in (2.2). To see this we shall reformulate our equations in di-
mensionless form, for which we need some characteristic quantities.

First we remark that the only acting volume force in the process is gravity, so
£l =~ 10m/s?. We define

Fm g 2.5)
B ( ’

The viscosity 1 is assumed to be constant, say o ~ 10* kg/ms. Normally there is
no need to introduce a dimensionless viscosity, but we shall nevertheless do this.
Thus, let since it may be highly temperature dependent

. 1
fji=—n. (2.6)
No
A typical average velocity V, (which is 10! m /s or much smaller), say V, =~
10~!m/s, can be used as a characteristic velocity. As a characteristic length scale
we take L(~ 1072 m, or smaller ). We now define the dimensionless quantities

X = — 2.7
X:= T (2.7a)
v
V.= -, 2.7b
v 7 (2.7b)
L
pi=——p. 2.7¢)
UoVOP

A proper choice as characteristic time scale is the ratio L/ V, (& 1071s). So, let
us finally define

. W
[:=—t. 2.7d
2 (2.7d)
Substituting all dimensionless quantities into (2.3), (2.4) yields
av ~
Re (—Y + (grad ¥)7 V) = &f — grad j + div (7} (grad ¥ + grad ¥7)),,
at Fr
(2.8a)
div¥ = 0. (2.8b)

All spatial derivatives in (2.8) have to be taken with respect to the dimensionless
variable X. In (2.8a) two dimensionless numbers appear, namely the Reynolds num-
ber (Re) and the quotient of the Reynolds number and the Froude number (Re/Fr),
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defined by

VoLlp  Re  p|fIL?
Re := =

m - Fr T mVo
The Reynolds number indicates the ratio between inertial forces and viscous forces
and the quotient of the Reynolds number and the Froude number indicates the ra-

tio between volume forces (i.e. gravity) and viscous forces. The two numbers are
estimated by

R
Re~ 10 X x1072 (2.9)
Fr
From this we conclude that the viscous forces dominate indeed. Thus, the flow

describing the equations are (rewritten in its dimensionless form)

grad p = div (n (grad v + gradv’)), (2.10a)
divv = 0. (2.10b)

These equations of course the Stokes creeping flow equations. These Stokes equa-

tions require further boundary conditions in order to be able to solve the vector v.
Actually they will be kinematic constraints, changing with time ¢, describing the
evolution of the blob. We shall specify these BC for the two situations in the subse-
quent section. They have in common that at least one part of the boundary is free.
Hence, besides finding the velocity v(¢) we then need to find this free boundary.
The actual displacements x satisfy the ODE

— = ) 2.11

- =Y (2.11)
Numerically we shall deal with these problems in a two stage sweep: Suppose we
have a domain G(¢), describing the glass blob. Then solve (2.10) (approximately)
and use velocity field on the boundary to compute a new domain G (¢ + At), using
(2.11) and the BC.

3 Viscous sintering
Sintering is the process of bringing a powder of metals, ionic crystals, or glasses
(a compact) to such a high temperature that sufficient mobility is present to release

the excess free energy of the surface of the powder , thereby joining the particles
together. The driving force arises from the excess free energy of the surface of the
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powder over that of the solid material. For a survey of the most important papers
about sintering we refer to the book edited by Somiya and Moriyoshi [12].

We are interested in the case of sintering glasses, see also [11] [9]. There the
material transport can be modelled as a viscous incompressible Newtonian volume
flow, driven solely by surface tension (viscous sintering), i.e. the Stokes creeping
flow equations hold. The geometry of such a sintering compact is usually very
complex. Because of this it is impossible to give a deterministic description of the
flow in such a compact as a whole. We shall therefore investigate simple geome-
tries in 2-D only. For more general compacts see e.g. [15] [16] [8].

Let us denote the compact (blob) at time ¢ by €2, and its boundary by I';, see fig.
1 Then the driving force of the boundary movement is a tension in the direction of
the normal n; the latter being proportional to the local curvature, x of the boundary.
Thus we obtain

7n = (divn)n = kn. 3.1)

Our only interest is the movement of the boundary I', i.e. only the velocity
at the boundary is required (from which we can calculate the shape evolution of
the body directly). Therefore this problem is ideally suited to be solved numeri-
cally by a Boundary Element Method (BEM). To do this, we have to reformulate
the problem as an integral equation over the boundary. This is done in terms of a
boundary distribution of hydrodynamical single- and double-layer potentials, see
also Ladyzhenskaya [7].

When the boundary is sufficiently smooth”, the integral formulation that can
be derived for the Stokes equations at a point, say X, reads in matrix notation (see
also [6])

Cv(x)-i—/ Q(x, y)vdr‘y:/ U(x, y)bdT,. (3.2)
r r

Here C, Q(x, y) and U(x, y) are 2x2 matrices with coefficients c¢;;, g;; and u;;, i, j
1, 2 respectively:

8i; Q
=17 *€ (3.3)
55,']' X €& F,
rir;
qij J g, (3'4)

- 7'r(r12 + r22)2
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1 1 5 ) rirj
Ltij = 4—7[[—5,']'5l0g[r1 +r2]+r12+r22 , (35)
where §;; is the Kronecker delta, r; := x; — y;, i, j = 1, 2, and the vector b is the
boundary curvature in the normal direction, i.e.

b =«n. (3.6)

The integral equation (3.2) (or, equivalently, the equations (1.3), (1.4) and (3.1))
which has to be solved for a fixed boundary, does not ensure a unique solution v.
Clearly, we need to add three extra conditions (equations) to account for the de-
grees of freedom with respect to translation and rotation.

We follow the approach of Hsiao, Kopp and Wendland [5], for making the inte-
gral equation (3.2) uniquely solvable for a fixed boundary. This is done by adding
three additional variables w; to this integral equation which prescribe the transla-
tion and rotation, i.e.

Cv(x) +/ QEX, y)vdl'y + V(x)w = f U(x, y)bdT,, 3.7
r r
where V' is a2 x 3 matrix defined by
_ 1 0 X2
V= [ 0 1 —x ] (3.8)

Now, three additional equations have to be given to ensure that the boundary
velocity is defined uniquely. In order to prescribe the translation freedom, we for-
mulate the problem to be stationary at a (reference) point in the fluid, say x". With
regard to this reference point the velocity of the boundary points is computed. The
most natural choice for this reference point is the centre of mass: the point where
the gravity forces would grip the body, thus:

v(ix') =0. (3.9)

Using this, we derive from the integral formulation (3.2) and x = X" the following
two equations

fQ(x’,y)vdﬁ:/ U', y)bdrl,. (3.10)
r r

Furthermore we assume the tangential component of the velocity at the boundary
to be zero, i.e.

/(v, 7)dl' =0, (3.11)
r
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Figure 3.1: Two sintering cylinders with equal diameters. The same mesh is used
through the simulation

where 7 is the tangential vector of the boundary. Combining this with Stokes for-
mula it follows from equation (3.11) that the flow in 2 is irrotational.

In a practical implementation we have to determine the grid on I' in an appro-
priate way; for more see [16]. Special care has to be taken with respect to the com-
putation of the curvature. Indeed, if we use finite differences to approximate dif-
ferential quotients we are facing problems when the distance between gridpoints is
too small. In fig.3.1 we have illustrated this for the coalescence of two circles (ac-
tually cylinders in a 3-D setting) the time after the actual touching took place. At
this touching point a so called neck is developing at which the curvature is still ex-
tremely high. The results show numerical instability. In order to cure this problem
we shall invoke some analytical tools first.



4 The Analytical Solution for the coalescence of two
equal circles

In this section we give the analytical solution for the coalescence of two equal cir-
cles and we introduce some notation for the main properties of this solution. These
are the initial radius R of both circles, the measure of contact between both circles
and the boundary curvature at the contact.

The analytical solution for the evolution of two equal coalescing circles has
been derived by Hopper [4]. He described the evolution of these circles in terms
of a time-dependent mapping function z = x + iy = Q(§, t) of the unit circle,
conformal on |§| < 1. The time evolution of the map was given in parametric
form. In these papers, the equations derived are valid for the coalescence of two
circles with initial radius %ﬁ Here it turns out that we may take

2y .0
7= V2(1 = Vet , @.1)
1 — veti® /1 + V2

where €' describes the contour of the unit circle and v = v(¢) is a function with
values € [0, 1]. For v — 1 we have a touching of the two circles.

Following Hopper [3], we can derive parametric equations for the evolution of
two coalescing circles both with initial radius R and centres (R, 0) and (—R, 0)
each

(1= v)(1 —v)RV2 cos 6

x(@,v) =
(1 —2v cos 26 + v2)/1 + v?
4.2)
JO.v) = (1 — v¥)(1 4+ v)RA/2 sin 6
’ B (1 —2v cos 20 + v¥)/1 + v?
and for the time ¢ (as function of v)
mR (! dk
tW=— | ————. 4.3)
V2 )y kT FREK(K)
Here K (k) is the complete elliptic integral of the first kind defined by
7 _1
Kk) = f (1 —K*sin*¢) *d¢. (4.4)
0



The degree of coalescence is specified by the parameter v, which decreases from
1 to O if time increases (¢ is going to infinity as v — 0), and the boundary curve is
specified by the parameter 6, which is varifying from O to 2. Of course, at t = 0,
both circles are making contact at the origin.

Of special interest is the region where the circles are touching. In our example,
the line of contact is the y-axis during the evolution. Let r be the contact radius
between both circles, and denote the point on the boundary at the line of contact
in the positive direction by x", i.e. X" = (0, r). Recall that we called this point the
neck.

In the analytical solution (4.2) the neck is occurring at & = 7 /2 during the evo-
lution. Thus for the contact radius r, as a function of the parameter v, the following
holds

T (1= v)RV2
r(\)) =Yy (5‘, l)) = _1\/_{__7 (45)

Note that as v — 0, i.e. t = oo, thenr — R+/2, which is the radius of the circle
the shape evolution is approaching as time increases.

By solving for the parameter v as function of the contact radius r, we obtain
from (4.5)

2 _ /AR2 __ 2
b= () = 2R VAR (4.6)
2R?2 — 2

For the curvature of the neck, say «,, we can derive from the parametric equations
(4.2)

Xe9Yo — XoYoo __(d-6v+ V)1 + 12

4.7
o2 +yhi |, (1-v)3RV2 @

Kn (V) =

=z
-2

Remark that as v — 0,ie. t — oo, thenk, — —l/Rﬁ, as assumed. The
derived neck curvature (4.7) can be written as a function of the contact radius r;
from equations (4.6) and (4.7), we obtain
4R* 3
Ka(r) = — - (4.8)
r r
Using this formula, rather than a numerical derivation of the curvature gives satis-
factory results, see fig.4.1.
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Figure 4.1: Two sintering cylinders with equal diameters. A mesh verification is
done at each time step.

We can now also analyze the effect of a small perturbation of the initial con-
tact radius r, I 4- ¢, say, both circles having initial radius R (see fig.4.2). Although
depicted in one graph they may represent the boundaries at different time points.
So consider the parametric equations (4.2) as function of R and ¢ (i.e. v). A mea-
sure for the difference between both shapes is given by the derivative of x, y with
respect to R.

-R R

Figure 4.2: The coalescence of two equal circles.
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Using (4.5), the parametric equations (4.2) can be written as

r(1 —v?) cos6
1 +v2 —2v cos20

x(0,v)
4.9)
r(1 4+ v?) sin6
1 4+ v2 —2v cos26

y(0,v)

We have to consider the equations (4.2) as a function of r (and ). The deriva-
tive of x and y with respect to r will then be a measure for the deviation between
the two curves.

For the derivative of v with respect to r, we obtain after squaring, taking the
derivative of equation (4.5) and using the relation (4.6)

v 2R%(1 —v)?

ar 2 JART—r2 @1
Now define a normalized radius
7:=r/(RV?2),
then we derive the following relation between v and 7 (so r)
-y _ T (4.11)

1+v J2-72

If we moreover write
& = cosH,

we find, by taking the derivatives of (4.8) with respect to r, and restricting ourselves
to the first quadrant, using (4.9),

8x _ (1-vhHE 21 =P+ ) —2(1 +v)E%E
ar (14 v)? —4vg? /2 — F2((1 + v)2 — 4vE2)2

3y (1=vA/1-8 40+v0-v)°8V/1-§ (4.12)
ar (L +v)2—4vE2 72— 2((1 + v)? — 4pE2)?

Again our interest is mainly the neck region, i.e. £ is small. Using (4.8) and (4.10)

12



we derive for (4.1)

ax 3 | YEV2LA + ) =201+ vDEY
or ~ R20-EH2-7) RO —&)(1 +v)2@Q— )}
or  r  rRQ-#)}

Using 0 < 7 < 1, one may check that maximum absolute values in (4.13) are given

by
sL(H 2 ) 51(1+2ﬁx5).
RV20-8)\ J1-8 r R @9

In the neck region y is O(r) and x small, i.e. from (4.14) we conclude that a small
change of the contact radius r of the coalescing circles will not perturb the shape
of the neck region, even when r is small.

The relation (4.8) for the (exact) neck curvature gives also information about
the effect of a change of the contact radius r on this curvature. From (4.8) it follows
that the derivative of the neck curvature, with respect to r, is given by

ox

dy
or

or

oK 12R? 3
" =y 4.15
or r4 + r2 ( )

Thus a small change of the radius 7 has an O () effect on the neck curvature, i.e.
when the contact radius is small the curvature is changed dramatically. Conversely,
we also have,

ar r*

dk,  12R2 +3r2’

i.e. achange of the neck curvature gives only an O(r*) effect on the contact radius
r.

A measure for the time difference between the shapes at time ¢ and 7 is given
by the derivative of ¢ with respect to r, i.e. taking the derivative of equation (4.3)
and using (4.5), (4.9), we derive

ot VAT

— = . 4.16
0R  2WK(W)/2 -7 (*+.16)
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Figure 5.1: The pressing phase.

Using asymptotic expansions for K (v) one can show that ‘;‘)%| is small, when the

time ¢ is not too large. We conclude that the neck evolution is a smooth function
of the time.

The above analysis shows that a small change of the contact radius is hardly
perturbing the global shape of the neck region. Only the curvature of the neck (a
local effect) is changed dramatically when r is small.

We finally remark that the curvature approximations here can be used more
generally in the computation of rather complicated blobs. For more details see
[16].

5 Pressing of glass

As stated in Section 1 there is a large variety of application of glass products. The
previous sections dealt with particles of milimeter size. In this section we consider
viscous flows arising in the production of packing glass, such as bottles and jars
which are of order of 10 cm size. Typically this is a two stage process. First a blob
of glass is pressed in a mould, by a plunger, to a certain preform, the so called
parison (see fig 5.1), which then is blown into the finally desired shape (see fig.5.2).
We shall only consider the first stage, i.e. the pressing, here. Since the mould
and the plunger are axisymmetric we shall assume the entire problem to be so. In
practice the initial form of the glass blob may not be axisymmetric, but will not
deviate too much from this form in a well controlled production process.

We thus can study an essential 2-D flow/energy problem in a time varyfying
domain €2, as depicted in fig.5.3

14



Figure 5.2: The blowing phase.
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In cylindrical coordinates the Stokes equations (2.10) can be written as
op [azu %u 1 Bu]

oz~ "oz T T rar
(5.1a)
op 2v  3*v  1dv v
=gttt
or 9z2  or?  ror r?
d d
0=, 270 (5.1b)

T 9z + az r
Here u and v are the velocities in the z and the r directions respectively.

In contrast to the sintering problem we do not have an isothermal situation here,
at least not in principle. As a consequence the viscosity n may not be constant,
and in fact may vary quite wildly, as a function of the temperature. Note that the
temperature 7 and the viscosity n of glass are related through the Vogel-Fulcher-
Tamman relation [10]

n = Kexp(E,/(T —Tp)). .1

Here K is some constant, Ey the viscosity activation energy and 7 a fixed temper-
ature.

In dimensionless quantities (Section 2) the velocity and the temperature are
coupled through the energy equation, written for the axisymmetric case for an in-
compressible stationary flow with constant heat conductivity and heat capacity as

cf [1]

8T+ oT 1 32T+ 18T+32T n (5.2)

V4 u— = — [ — + — 4+ — )
or 9z Pe \ 3r?2 " r ar az?

Ec [, (du 2+2 o) (v, , (v 2+ v 2+ au\>
Re 0z ar /) \ 9z ar 0z or '
Here Ec is the Eckhard number, defined as (cf Section 2)
2
Ec .= U—,
c, AT

where ¢, is the specific heat and AT the temperature drop. Pe is the Peclet num-
ber, defined as

(5.3)

__ pULk

pe=2"8 (5.4)
ncp

16
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Figure 5.4: 2-D domain.

where k is the thermal conductivity. For glass we obtain

E

—=62-107 ——=12-10"
e Re

Both are very small, so we can ignore the heat conduction and thermal production

terms (the second and third term in equation (5.3)) and thus the energy equation

simplifies to:

oT oT
_ —~ 0. 5.5
. 0z v or (5-3)
This equation is solved by the system
dz _ dr ar

Z=u, —=v, — =0, 5.6
=" AT ar (.6)
from which we see that the temperature remains constant along the streamlines. If
we start with a uniform temperature field, it will remain uniform everywhere.
Now if we include the cooling of the wall we can do the following: Let €2,
2,, 2, denote the plunger (p), glass (g) and mould () domains respectively (see

17



fig.5.4). Then the energy equation is simply given by

19T;
— -t _ ] ; 57
L ot AT, ie{p,g m} (5.7)

where k; is the thermal conductivity. One can estimate the numerical values of
these to find

kn =k, = 6.2 - 1077 [m?/s], thermal diffusivity.
k, = ky = 1.7 - 10~°[m?/s], thermal diffusivity.

We observe that o, = a,, > «,, and this implies that when the heat process of
the glass starts, the heat processes of the plunger and the mould are already in the
steady state. This means that the temperature T, = T},(0) and 7,, = T,,(0). Hence
the three heat processes are not coupled.

Now we have for the glass process the following boundary value problem

1 0T, .
o T AT, in Q.

The boundary conditions are given by %—Tf =0onTl, Ul

kg 5 = hyp(T, = Top) on Ty,

koSl = By (Ty — Tom) 00 T,

where h,, is the contact conductance between the glass and the plunger and Ay,
is the contact conductance between the glass and the mould. The contact conduc-
tance depends on the surface roughness, the interface pressure and temperature,
the thermal conductivities of the contacting materials and the type of fluids or gas
in the gap, and is about &, = h,, = 2 - 10°[W/m?/.c].

On the two boundaries €2,, and £2,, we have a temperature drop, depending
on the contact conductances, and a boundary layer, depending on the thermal dif-
fusivity of the glass. One can prove that the asymptotic behaviour of the boundary
layer is the errorfunction erfc(r//4kgt).

6 Computation of the flow
Since we now may assume the flow to be isothermal after all we can concentrate

on solving the Stokes equation, subject to kinematic boundary conditions. So con-
sider the configuration in fig.6.1 Let I';, = 3£, be the boundary of €2,. It is easy to

18



PN

'S

Figure 6.1: 2-D domain.

see that T, consists of four parts:
r=r,ur;,ur,ur;,

corresponding to the mould, free boundary, plunger, and symmetric part respec-
tively. As glass during the process is assumed to be a fluid, no-slip boundary con-
ditions can be assumed for correspondent parts of boundary I',:

V = vV,
6.1)
v = 0,
where v, is the velocity of the plunger.
A symmetry boundary condition is required for I';:
Vn = 09
AL
= = 0, (6.2)
on
dp
— = 0.
an
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At the free boundary the normal stress must be equal to the external pressure
Po, which is assumed to be constant. The tangential stress must be equal to zero.
Hence:

v,
p=2uo - = po
n
(6.3)
av, v
A/ v Y
at an

One should note that (6.1) provides for kinematic boundary conditions. Indeed,
the domain 2,, corresponding to the region occupied by the glass at time #, is time-
dependent and changes during the process. The method of solution is now to use
a Stokes solver (we actually use a finite element method) on the domain €2, and
employ the thus found velocity field to simulate the evolution.

Letx : [0, T] x £, — R? be such a mapping that:

x(0) = Q0, x(1) = L,

where €2, is the problem domain as defined before. Then the relation between the
velocity field and the domain geometry can be described by the initial value prob-
lem:

dx(t)
- v(x(t)), tel0,T],

(6.4)
x(0) =

The velocity field v(x(#)) can be obtained by solving Stokes equations in £2,. How-
ever, one should realize that the geometry of €2, depends on that velocity field.
In order to overcome this problem we will use the following strategy. Let us
define
t,=nAt, n=1,...,N,

such that tp = 0, ty = T. After discretization and solving Stokes equations with
correspondent boundary conditions in €2, (which are assumed to be defined) we
obtain the velocity field v". Instead of (6.4) we solve the initial value problem:

dax(t
d(t) = Vns l e [tn, tn+l]»
(6.5)
X(t,,) = S-zt,,-
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At a particular for any point X} on the free boundary Iy we may consider this
as a Lagrangian displacement, which we may e.g. discretize by the explicit Euler
method:

Xit = x! + Arv]. (6.6)

The local error for this algorithm is of the first order in At.

The geometry of 2, ,, can be obtained now, and hence the boundary conditions
required for solving the flow equations at #,..; can be defined. The same procedure
is repeated then until the final geometry €2,, and corresponding flow quantities will
have been computed. Instead of Euler explicit it is possible to use more sophisti-
cated integration schemes. For our problem it turns out to be one of the most im-
portant aspects.

Consider first in more detail the deformation of the free boundary during a time
step. Applying formula (6.6) for a point x; at the boundary I'} (i.e. the boundary
I"; at time #,) with corresponding velocities v, we see that some of the points X!
don’t belong to the domain as defined by the mould and the plunger. Let us denote
the latter by ©,,,,. This configuration is changed explicitly by moving the plunger
at each time iteration. We now simply clip displacement outside this ©, ,,, see

fig.6.2. So the position of x'™ is defined now by intersection of x!*! + span{v"}
and ®,

X =x" oAV, ;€ (0,1]. (6.7)
Here «; is chose such that
Qtn+l C ®tn+l'

We shall call this algorithm the clip algorithm. Note that for the local error in (6.7)
we have

1 .
I%i (B ) = X770 IXit0) + Arki(2,) — X} — o AV} |

O(At) =
At At + 0

Ix; (2,) + Arx;(2,) — x;(t,) — a; Atx;(8,) ||
At

+O(Al) =

(I — )l (@)l + O(A?).

For the velocities that must be clipped (o; < 1) the error is apparently O(1), al-
though their contribution to the global error is still O (h).The actual values of «;
depend on the characteristics of the process, At and the mesh size 4. In a practical
implementation the term (1 — «;)||X;(z,)|| should be of order At.
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Figure 6.2: Clip algorithm.

7 Mass conservation

In the previous section we described one step of the actual solution process, 1.e.
solving Stokes, doing one Euler step, and clipping “non physical” values. Clearly
the latter procedure leads to the question whether mass is still conserved. The finite
volume of glass (which can be associated with the mass because of incompressibil-
ity) is given a priori and equal to ©,,, i.e. the volume of mould-plunger system in
its final position, when the final domain is filled with glass. Numerically we may
find the mass decreasing or increasing. If this is significant (say more than 1 %)
the simulation process is useless. For example, in the case of mass decreasing we
can see that there is space left in ®,, and ®,,\,, # {4}

In order to solve this problem we can perform the process with a smaller time
step, which requires more computational time for solving the flow equations, or
increase accuracy of numerical integration by using scheme of higher order. In-
creasing of mass (fig.7.1) arises because of Euler explicit, as it is not a conservative
scheme. Instead of (6.3) we shall use the following trapezoidal like algorithm:

i = X,

yito= x4 AV, (71.1)
At

xth = xf‘—f-?(v:‘-}—vf“),
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Figure 7.1: Volume graph using Euler explicit and different time steps.
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Figure 7.2: Volume graph for second order scheme and different time steps.

where v} now is the velocity at y?. The advantage of this explicit predictor-corrector
scheme is that the velocity field has to be calculated only once each time step. It is
still not conservative but at least of higher order. With respect to mass conservation,
simulation using the combination of the clip algorithm and (6.6) is illustrated by
fig.7.2. The mass still increases for At = 0.01 because the scheme is still explicit.
The local error in (6.6) is of second order with respect to Az, the discretization er-
ror in clip algorithm is of lower order; hence, for a smaller time step (At = 0.0025)
we can see that the clip algorithm, which decreases mass by clipping the velocities,
dominates. The graph for At = 0.005, which gives almost mass conservation, is
a case where Euler explicit and clip algorithms errors cancel more or less.

Using a FEM method to solve the Stokes equations and (7.1) to obtain the chang-
ing geometry of €2, we can run numerical simulations up to the final stage. The
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final results are depicted in fig.7.3.
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