
 

A test method for analog circuits : using sensitivity analysis
and the singular value decomposition
Citation for published version (APA):
Spaandonk, van, J. (1996). A test method for analog circuits : using sensitivity analysis and the singular value
decomposition. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische
Universiteit Eindhoven. https://doi.org/10.6100/IR463325

DOI:
10.6100/IR463325

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR463325
https://doi.org/10.6100/IR463325
https://research.tue.nl/en/publications/26a791f6-de6a-4783-b5d0-6001bcea9edf


A Test Method for Analog Circuits 

using Sensitivity Analysis 

and the Singular Value Decomposition 

PROEFSCHRIFT 

ter verkrijging van de graad van doctor aan de 
Technische Universiteit Eindhoven, op gezag van 
de Rector Magnificus, prof. dr. M. Rem, voor een 
commissie aangewezen door het College van 
Dekanen in het openbaar te verdedigen op 
donderdag 5 september 1996 am 16.00 uur 

door 

Johannes van Spaandonk 

geboren te Goirle 



Oit proefschrift is goedgekeurd 
door de promotoren 

prof. dr. ir. W.M.G. van Bokhoven 
prof. dr. ir. R.H.1.M. Otten 

en de copromotor 

dr. ir. D.M.W. Leenaerts 

© Copyright 1996 J. van Spaandonk. 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any form or by any means, electronic, mechanical, photo­
copying, recording, or othelWise, without the prior written permission of the copyright 
owner. 

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN 

Spaandonk, Johannes van 

A test method f()r analog circuits: using sensitivity analysis and the singular value 
decomposition / by Johannes van Spaandonk. - Eindhoven: 
Tcchnische Univcrsitcit Eindhovcn, 1996. - XVI, 162 p. 
Procfschrift. - ISBN 90-386-0160-3 
NUGI832 
Trefw.: analoge schakelingcn / gC'integrccrde sChakelingen ; testen ! 
automatischc testmethoden / clektronischc foutendiagnose. 



aan Antoinette 



Summary 

This thesis presents a method for testing analog circuits that is useful for diagnostic 

testing as well as verification of high-level circuit behavior. The method is based on a 

first-order approximation (i.e., a linear model) of non linear circuit behavior. Therefore 

it is applicable if deviations in the circuit parameters (caused by manufacturing process 

deviations) are relatively small, which is often the case in analog circuits. 

Linearized circuit behavior is described by a model matrix, which is obtained by 

computing first-order parameter sensitivities, for example. A complete orthogonal 

decomposition of the model matrix is found by computing its Singular Value 

Decomposition (SVD). This decomposition forms the basis of the methods presented 

in this thesis. 

A circuit's limited accessibility for measurements causes redundant factors to be 

present in the mentioned linear model. These are eliminated by retaining only the most 

important orthogonal components of the SVD of the model matrix. A direct method is 

presented that selects one measurement for each of these components. To determine 

the number of necessary measurements, the accessibility for measurements as well as 

the magnitude of random measurement errors are taken into account. The direct 

approach may also be used to select testable circuit components, to analyze a circuit's 

testability. 

In addition, an iterative algorithm is presented that tries to select measurements that 

minimize the influence of random measurement errors. The algorithm is based on the 
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D-optimality criterion. The performance of the iterative algorithm is better than that of 

the direct approach. This is mainly due to the fact that it optimizes a complete set of 

measurements. In contrast, the mentioned direct approach selects measurements one 

by one, each time optimizing only the last selected measurement. The iterative 

algorithm also adjusts the number of test points, taking into account the expected 

magnitude of random measurement errors. An example shows that the iterative method 

also obtains better results than an existing method which is based on the OR 

decomposition. 

The discussed concepts were implemented in a computer program, which can perform 

a testability analysis and/or verify the functional behavior for a variety of circuits. This 

thesis presents examples that demonstrate the use for diagnostic testing as well as 

pass/fail production testing. 

It may be concluded that the combination of the SVD of a linear circuit model and the 

mentioned iterative algorithm results in a method that optimally deals with a circuit's 

limited accessibility for measurements. Furthermore the method selects the smallest 

number of measurements, while maximally reducing the influence of random 

measurement errors. Thus it allows the behavior of a circuit to be verified with just a 

few measurements. The method is applicable even in the case of large measurement 

errors, because the selected measurements are of high quality, and their number is 

optimized. 

VIII 



Samenvatting 

Dit proefschrift presenteert een methode voor het testen van analoge circuits die 

bruikbaar is voor zowel diagnostisch testen als de verificatie van hoog-niveau circuit­

gedrag. De methode is gebaseerd op een benadering van de eerste orde (i.e., een lineair 

model) van het niet-lineaire circuitgedrag. Zodoende is de methode bruikbaar als de 

deviaties van de circuitparameters (veroorzaakt door deviaties in het produktieproces) 

relatief klein zijn, hetgeen vaak het geval is bij analoge circuits. 

Het gelineariseerd circuitgedrag wordt beschreven door een model matri x , die wordt 

verkregen door, bijvoorbeeld, het berekenen van eerste orde gevoeligheden. Een 

complete orthogonale decompositie van de model matrix wordt gevonden door het 

berekenen van zijn Singuliere Waarde Ontbinding (SWO). Deze decompositie vormt 

de basis van de in dit proefschrift gepresenteerde methoden. 

Een beperkte toegankelijkheid voor metingen van een circuit geeft aanleiding tot 

redundante factoren in het genoemde Iineaire model. Deze worden geelimineerd door 

aileen de meest belangrijke orthogonale componenten van de SWO van de 

modelmatrix te behouden. Een directe methode wordt gepresenteerd, die een meting 

kiesl voor elk van deze orthogonale componenten. am het aantal benodigde metingen 

te bepalcn wordt lowel de toegankelijkheid voor metingen als de grootte van random 

meetfouten in acht genomen. De directe methode kan ook gebruikt worden om 

testbare circuitcomponenten Ie selecteren, om de testbaarheid van een circuit Ie 

analyseren. 
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Verder wordt een iteratief algoritme gepresenteerd dat metingen probeert te selecteren 

die de invloed van random mcetfouten minimaliseren. Het algoritme is gebaseerd op 

het D-optimaliteitscriterium. Het iteratieve algoritme bereikt betere resultaten dan de 

directe aanpak. Dit is voornamelijk te danken aan het feit dat het een complete set 

metingen optimaliseert. Daarentegen selecteert de genoemde directe aanpak de 

metingen een voor een, waarbij telkens slechts de laatst geselecteerde meting 

geoptimaliseerd wordt. Het iteratief algoritme past ook het aantal metingen aan, 

waarbij rekening wordt gehouden met de verwachte grootte van de random 

meetfouten. Aan de hand van een voorbeeld wordt gedemonstreerd dat de iterative 

methode betere resultaten behaald dan een reeds bestaande methode die gebaseerd is 

op de OR decompositie. 

De besproken methodieken werden gei'mplementeerd in een computerprogramma, 

hetwelk een testbaarheidsanalyse en/of selectie van metingen kan uitvoeren voor een 

verscheidenheid aan circuits. Dit proefschrift presenteert verschillende voorbeelden die 

het gebruik van de methode voor zowel diagnostisch testen als pass/fail productie­

testen demonstreren. 

Geconcludeerd mag worden dat de combinatie van de SWO van een lineair 

circuitmodel met het geooemde iteratief algoritme resulteert in eeo methode die 

optimaal omgaat met de beperkte toegankelijkheid voor metingen van een circuit. 

Bovendien selecteert de methode het kleinste aantal metingen en reduceert ze 

maximaal de invloed van random meetfouten. Zodoende staat de methode een 

verificatie van het circuitgedrag toe met slechts enkele metingen. De methode is zelfs 

toepasbaar in het geval van grote meetfouten, omdat de geselecteerde metingen van 

hoge kwaliteit zijn en bovendien hun aantal geoptimaliseerd wordt. 
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Notational Conventions 

real or complex number 

largest integer not larger than a 

complex conjugate of a 

vector 

matrix 

element (i, j) of A 

complex conjugate of A 

statistical variable; x denotes an observed value of X 

mean value of X 

variance of X 

covariance of X and Y 

vector of statistical variables; x denotes an observed value of X 

least squares approximation of Aa = b 

row reduced matrix (some rows of A are ommitted) 

column reduced matrix 

row and column reduced matrix 

transposed matrix or vector 

Hermitian (conjugate transpose) matrix or vector 

a'b 

Inverse of A 

Pseudo inverse (Moore-Penrose inverse) of A 

Left inverse of A 
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rank(A) 

c(A) 

R(A) 

N(A) 
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a» b 

a = b 

L1 
a = ... 

Right inverse of A 

Rank k approximation of A 

12 norm of matrix or vector 

determinant of A 

rank of A 

condition number of A 

range of A 

null space of A 

r: 
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diag(l, ... ,l) 

a is much larger than b 

a is about equal to b 

a is defined as ... 
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Symbols and Abbreviations 

Least -Squares 

Piecewise Linear 

Singular Value Decomposition 

i'h circuit parameter 

vector of circuit parameters 

vector of circuit outputs 

network function 

differential sensitivity of F to Pi 

normalized differential sensitivity of F to Pi 

incremental sensitivity of F to Pi 

normalized incremental sensitivity of F to Pi 

sensitivity matrix 

part of the SVD (UWVT) of S 

part of the SVD (UWVT) of S 

part of the SVD (UWyT) of S 

covariance matrix of variables X 
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1 Introduction 

In recent years, the cost of testing has become an increasingly large part of the total 

cost associated with the design and production of integrated circuits (ICs). This is 

mainly caused by continuing miniaturization of devices, which leads to complex ICs 

with a high functionality and many specifications that must be verified. This is true for 

digital as well as analog devices; in both cases it is important to reduce as much as 

possible the contribution of the testing overhead to the total production cost. Hence, 

efficient test techniques are called for in the various stages of the development cycle of 

an integrated circuit. 

According to Figure 1.1 (based on [Huer93]) , the Ie development cycle can be 

divided into four distinct stages. First of all, before a circuit goes into production its 

design is verified. In this stage, circuit simulations are used to assess if a design is 

functionally correct. Also it should be verified that the design is not excessively 

sensitive to slight fluctuations of some characteristic of its elements. Furthermore, 

layout extraction assesses the influence of layout-specific effects like parasitic 

capacitors or wiring resistances. 

After design verification is completed, a prototype is manufactured and characterized, 

often using time-consuming (hence expensive) diagnostic techniques. Evaluation costs 

may be very high in this stage. After errors (e.g., layout errors) are fixed and possible 
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design changes are incorporated an initial production run is made, which consists of a 

relatively small batch of wafers. A spread of process parameters is often enforced in 

this initial run, to evaluate the influence of these parameters on Ie performance and to 

obtain a yield estimate. 

Design 
Verification 

Pmto1ypc 
Characterization 

Figure 1.1. Testing techniques in various stages of a circuit's development cycle. 

Yield may be improved by tolerance design and design centering. The process is 

illustrated in Figure 1.2 (based on [SwarS7]), which depicts the two-dimensional 

parameter space of a circuit with parameters PI and pz. For example, PI and pz are 

geometrical parameters like transistor length and width. The worst-case tolerances of 

the parameters define the boundaries of a rectangular tolerance region RI • The center 

po of this region corresponds to the nominal parameter values. In addition, the 

parameter values that result in devices with acceptable performance define in 

parameter space a region Rr, called the feasible region. Because the relation between 

the circuit performance and the parameter values is complex, Rr is often irregularly 

shaped. The center of this region is do. 

In Figure 1.2, acceptable produced circuits correspond with region RI n RJ- Yield is 

defined as the ratio of the number of acceptable circuits to the total number of 

produced circuits. It follows that 100 % yield can be obtained only if R, ~ Rr, as in 
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Figure 1.2 b. In contrast, Figure 1.2 a depicts a situation where a circuit with nominal 

parameter values is acceptable, but yield is less than 100 % due to the parameter 

tolerances. 

R, 

a. h. 

Figure 1.2. Feasihle region and w{erance region. 

To improve yield, the tolerances on selected parameters can be reduced (tolerance 

design). This increases the relative size of region R, n Rr- In this manner tolerance 

design increases the relative amount of acceptable circuits. A possible result of this 

procedure is indicated with a dotted rectangle in Figure 1.2 a. In principle, 100 % yield 

can be obtained by just assigning smaller tolerances to some (possibly all) parameters, 

without changing the nominal values Po. However, tightening parameter tolerances will 

generally increase production cost. In addition, in an integrated circuit the parameter 

tolerances often cannot be directly controlled. Therefore design centering is used. The 

idea behind this approach is to center R, on do by adjusting the nominal parameter 

values PII. In many cases design centering can be combined with a relaxation of some 

paramett:r tolerances. As indicated in Figure 1.2, design centering allowed the 

tolerance on both parameters to be increased. Thus design centering improves yield 

while tht: increased parameter tolerances minimize production cost. One problem in 

design centering is to find the feasible region R[. For a discussion of several 

approaches, see [Swar87]. 
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Once a design is verified and approved for mass production, the goal of testing 

changes: now it is often sufficient to detect deviations that arc too large: The fault that 

causes an unacceptable circuit need not be traced because in most cases repair or 

calibration of a mass-produced IC is unfeasible. Therefore production testing is often a 

pass/fail (or go/no-go) testing. Note that time spent in production testing should be 

kept to a minimum to decrease production cost. Therefore the number of applied test 

stimuli must be minimized, so they should be carefully selected to maximize the 

likelihood of detecting a possible fault. In addition, the selected measurements should 

be easy to perform. 

To meet these requirements, the first production tests are often performed through a 

bed of needles (test probes) on the naked die, before a device is cut from the wafer. It 

is often not possible to test the device at its normal (i.e., high) operating speed due to 

the probes' loading effects. Therefore mostly static DC measurements are used at this 

stage. Such tests cannot verify dynamic circuit behavior. However, they are justified 

because the incremental cost of detecting a fault rises approximately with a factor of 10 

with each stage of the production process [Huer93]. Thus every effort is made to 

detected faults in an early stage of the production process. The final test checks the 

functional behavior of the packaged device under normal or extreme operating 

conditions, using only external pins. 

Circuit calibration optimizes the performance of a produced IC by adjusting some 

circuit parameters. For example, the value of an on-chip resistor may be modified by 

laser trimming until IC performance is adequate. Because of its high cost, such off-line 

cal ibration is mostly limited to high-performance ICs. An alternative is to use on-line 

calibration, where the circuit design is enhanced to allow a form of compensation (e.g., 

an off-set compensated opamp) or auto-calibration during normal device operation. 

Ultimately, an IC is integrated into a larger system, for example by mounting it on a 

printed circuit board. It is difficult to perform an external test (i.e., using external 

testing equipment) of the mounted Ie. To case the problem, specialized Built-In Self-
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Test (BlST) circuitry can be added to the IC in the design stage. This circuitry 

monitors the internal operation of the IC, during its normal operation or in a special 

test mode. BIST techniques may also detect faults caused by aging or environmental 

conditions. 

The general classification of development stages and testing techniques that is 

illustrated in Figure 1.1 applies to both analog and digital circuits. However, it is 

noteworthy that techniques like automatic design, design verification and test are much 

more mature for digital circuits than for analog circuits. Chapter 2 investigates in more 

detail the causes for the relative lack of progress in the analog field. It also addresses 

the main difficulties in analog circuits testing. 

Due to the properties of analog circuits and signals there exists a wide diversity of 

approaches to testing analog circuits. To illustrate, Chapter 2 presents a brief overview 

of test methodologies. This overview shows that the focus on analog testing has been 

shifting from diagnostic testing to production testing and the implementation of BlST 

structures. This is caused by the continuing miniaturization of rcs, which often cannot 

be repaired and which are relatively inaccessible for measurements. As a result there is 

a need for test methods that detect faulty circuits by evaluating the effect of a fault. 

Determination of the fault cause is considered less important in production testing. 

Many approaches to production testing maximize fault coverage. Such approaches 

select those measurements that detect the highest possible percentage of faults. It is 

often necessary to add extra test nodes or BlST circuitry to take into account the faults 

that are not detectable on the functional leveL Such faults appear in additional circuitry 

like BIST or calibration circuitry, for example. Although these faults do not 

instantaneously influence IC functionality, they may decrease circuit reliability. Thus, 

maximizing fault coverage implicitly tests circuit reliability. 

If reliability issues are not a concern, production testing could as be well based on a 

functional test, which may be considerably cheaper than exhaustively testing for all 
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possible faults. Functional testing assumes that in a properly designed circuit, 

parameter deviations are either discernible at the functional level, or taken into account 

by the circuit design. Thus only deviations of functional circuit behavior need be taken 

into account. 

A very important issue in analog testing is the selection of measurements. The reason is 

that an IC offers relatively few nodes where voltages or currents can be measured. In 

addition, measuring internal currents often is impossible because connections cannot 

be broken. Because of the resulting limited accessibility for measurements, the selected 

measurements must be revealing. This means that the measurements should have a 

high probability of detecting a deviation from nominal circuit behavior. Although many 

current approaches to production testing focus on obtaining a high fault coverage, 

often little attention is paid to the effectiveness of the selected measurements. 

Another important issue in analog testing is the influence of measurement noise. It is in 

general not possible to distinguish the signal information content from the 

measurement noise, due to the continuity of analog signals. Thus, the measurements 

must not only be revealing, but also they should be selected so that the influence of 

measurement noise is minimized. In addition quantitative estimates should be provided 

that assess the influence of measurement noise. 

This thesis presents a method that is mainly intended for production testing. It 

accurately predicts the effect of small parameter deviations on circuit functionality. To 

accomplish this, it first predicts circuit behavior (e.g., DC response, frequency 

response) from a few carefully selected measurements. Next, performance parameters 

are derived from the predicted behavior to determine whether or not a circuit is at 

fault. For example, the maximum linearity error of a D/A converter is determined from 

the linearity error that is predicted at all code words. 

In its current form the presented method does not provide accurate predictions in the 

presence of large parameter deviations. However, in analog circuits already small 
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deviations from nominal circuit behavior can be unacceptable. Thus the method has 

many practical applications. In addition, it is shown how some principles used in the 

method may be applied to cope with larger parameter deviations. 

The method assesses the influence of small parameter deviations on circuit 

functionality by linearizing circuit behavior at a bias point. The first-order gradients 

that are obtained at the bias point describe the cumulative influence of small parameter 

deviations on circuit behavior. These gradients, called differential sensitivities, arc 

collected in a matrix to obtain a linear circuit model. This linear model is then analyzed 

by a combination of numerical and statistical techniques. 

First, the singular value decomposition (SVD) of the model is computed to decompose 

the linear model into orthogonal components. Rank-deficiency of the linear model is 

dealt with in an optimal manner by retaining only the largest orthogonal components 

(such rank deficiency is caused by a circuit's limited accessibility for measurements.) 

The advantage of the SVD is that it exists for a large class of matrices. In addition, it 

copes with rank-deficiency in an optimal manner. Also, it provides a criterion for the 

selection of measurements: a single measurement is selected for each of the orthogonal 

components. It is shown that such selection of measurements also takes into account 

the influence of random measurement errors. 

In addition to this direct approach, an iteratIve approach is presented. Here 

measurements are selected on the basis of the D-optimality criterion, also used in the 

design of experiments. It will be demonstrated that this criterion minimizes the 

influence of random measurement errors. The result is a reliable complete test method 

that selects measurements of high quality. 

The organization of the rest of this thesis is as follows. 
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Chapter 2 summarizes the specific properties of analog circuits that hamper the 

development of test methods for analog. In addition, it provides an overview of 

existing analog test methods. 

The first part of Chapter 3 treats differential sensitivities. Their usefulness is evaluated, 

and a comparison is made with other types of sensitivities. Also efficient computation 

of sensitivities is discussed. The second part of Chapter 3 introduces the SVD, and 

several of its applications. 

Chapter 4 presents the already discussed method that selects measurements on the 

basis of the SVD of the linear model. The iterative method is discussed in Chapter 5. 

Chapter 6 discusses the application of piecewise-linear techniques and interval analysis 

to analog testing. It will be shown that the combination of these teChniques offer some 

specific advantages. The concepts presented in Chapter 6 do not constitute a complete 

test method. For example, the selection of measurements has not yet been fully 

researched. However the discussed approach may serve as the basis of a more 

complete analog test method. 

Chapter 7 present examples that demonstrate the applicability of the methodologies 

presented in Chapters 4 and 5. Direct comparisons between the direct and iterative 

methods for test-point selection will be made, on the basis of a realistic example. Also 

it is shown that the iterative method selects better test points than some existing 

methods. A final example demonstrates the application of the SVD to a different kind 

of functional testing, here called black-box testing. 

Finally, Chapter 8 briefly summarizes the main results and provides some 

recommendations for future research. 



2 Introduction to Testing Analog Circuits 

This chapter summarizes the main difficulties encountered in testing analog circuits. 

In addition it reviews some existing approaches to analog testing. This creates a 

context for the new approaches that will be discussed in the following chapters. 

Section 2.1 explains the difficulties caused by specific properties of analog devices 

and signals. These give rise to a diversification of test methods, as becomes clear 

from the overview of Section 2.2. Section 2.3 presents a brief concluding discussion. 

2.1 Problems with Testing Analog Circuits 

As discussed in Chapter 1, analog test method have advanced at a less rapid rate than 

digital test mehods. The main cause is the relative immunity (in comparison with 

analog signals) of digital signals to deviations in digital circuitry or disturbances of 

physical signals. Predefined thresholds separate the different levels of a digital signal. 

Therefore the information contained in the signal is relatively immune to disturbances 

such as thermal noise or cross talk. Furthermore a digital circuit is built from a limited 

library of devices with well-defined properties, like fan-in, fan-out and gate delay. 

2.1 
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Therefore a digital test method can accurately represent signals and devices by 

relatively simple (i.e., abstract) models. 

Naturally, testing digital circuits also presents problems. Increasing integration, higher 

clock speeds and lower supply voltages cause problems like reduced fan-out of gates, 

increased loading effects of (built-in) test circuitry (interfering with device operation), 

and decreased noise margins. 

To illustrate, consider the timing behavior of logic circuits. Due to aggressive 

optimization of clock rates, many paths in optimized large combinatorial circuits have a 

delay that is close to the maximum circuit delay. Therefore delay fault testing becomes 

increasingly important [Crem96]. In addition, increasing use of non-conventional 

digital circuits requires error models more elaborate than stuck-at models (for example, 

see [WohI96]). This is necessary because otherwise there will be too many un modelled 

(hence undetectable) faults. Finally, due to sheer circuit complexity I it becomes very 

difficult to test all possible states of a sequential circuit. The problem is that some 

faults can only be detected by reaching these states [Raja96]. 

Due to such difficulties, the analog nature of digital signals and devices grows more 

and more pronounced. Consequently some recent approaches to digital testing apply 

non-traditional" techniques. For example, [Chat96] detects stuck-at faults in 

combinatorial circuits by using signal waveform analysis. [Chan96], uses a very low 

supply voltage (2 to 2.5 times the transistor threshold voltage) to detect "weak" 

CMOS chips. Such chips contain tlaws that cause intermittent or early-life failures, 

which are otherwise not dctectable. 

Notwithstanding the discussed problems with digital, the situation with analog has 

been even more complex. The causes for this situation may be summarized as follows. 

I In the next few ye~rs iI single digital circuit may contain scvcr~1 million gales. 

'In contrast to the eSI,lblishcd "traditional" techni4llcs for digital testing. 
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First, analog signals are continuous in nature. For example, in many analog circuits the 

signal information is represented by the precise amplitude of voltages and currents at 

any time instance. Even a small disturbance of signal magnitudes may cause a serious 

degradation in signal quality, which amounts to loss of information. This becomes 

especially clear when one considers the large dynamic range (up to 120 dB) of some 

analog circuits. A source of signal disturbances is noise, e.g. thermal noise, or 1/[ 

noise. Another source is mismatch and unbalance between parts of the circuit. In a 

mixed-signal device, crosstalk and clock feed-through from the digital circuitry may 

interfere with analog signals. In the digital domain signals are not so easily affected by 

such disturbances, as long as it is ensured that their common influence is below a well­

defined threshold. Of course, timing problems (which may be considered a form of 

signal-degradation) in current-day digital chips pose serious challenges. However, it is 

safe to conclude that in digital circuits a relatively high immunity to disturbances is 

acquired at the expense of a lower signal information content. 

Second, the behavior of many analog devices is inherently non linear. Many circuits 

composed of such devices (e.g., analog multipliers) are designed to exhibit a non linear 

input-output characteristic. As a result, sophisticated techniques are necessary to solve 

the (non linear) equations that describe circuit behavior. In contrast, within well­

defined limits, non linearities in a digital device do not influence its behavior because 

only its "digitized" behavior is of interest. 

Third, analog signals may be described in several domains, e.g., DC, frequency, time 

continuous and time discrete. In principle, each domain needs its own methodology to 

describe device and circuit behavior. However, sometimes it is possible to usc 

interrelations between different domains. For example, an analog filter may be 

characterized in terms of its poles, zeros and DC gain. This defines the filter's behavior 

in three domains: the DC domain (DC gain), frequency domain (Bode plots of 

amplitude and phase) and time domain (impulse response). This implies that its impulse 
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response can be used to implicitly test its frequency behavior, saving valuable test time. 

However, such an approach is not always possible. 

The three discussed items result in the following problems in analog testing: 

I. A test method for analog must take into account the influence of measurement 

errors as an inherent part of the method. For analog signals it is in general not 

possible to define discrete levels that allow the signal information content to be 

distinguished from measurement noise. Therefore, methods for analog testing 

should carefully select measurements that minimize the influence of random or 

systematic measurement errors. 

For example, consider the case where the value of some device parameter (e.g., 

input impedance) must be checked. In order to detect a high percentage of faulty 

devices\ the parameter of interest must be computed from the measurements to at 

least a certain precision. To estimate whether this precision is actually obtained with 

a certain set of measurements, the measurement errors must be translated into an 

uncertainty on the computed parameter. This translation may be problematic, since 

the relation between measurements and a computed parameter is in general non 

linear. To simplify the situation, it is often necessary to make certain assumptions 

about the measurement errors (for example, that they are uncorrelated). However 

the resulting statistical model of measurement errors does not necessarily accurately 

describe measurements made in an actual test environment. 

2. Even a relatively simple analog circuit is characterized by a diversity of 

specifications. Consider a four-transistor Operational Transconductance Amplifier, 

for example. This simple circuit is characterized by performance parameters like 

gain, bandwidth, risc time, (complex) input impedance and output impedance. 

Furthermore, the relation between such parameters is generally non linear. 

.' And also to ensure that good device~ arc not rejected. 
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Therefore it is common practice to measure all performance parameters separately. 

This introduces a redundancy in the measurements that is in principle unnecessary. 

Additionally, due to the complex behavior of analog circuit, it is much more difficult 

to define macro models for analog than for digital circuits. 

3. Accurate analog fault models are not always available [Soma91J. The basic problem 

is to find a circuit description that models the behavior of a good as well as a 

deviating circuit, for all types of faults that occur in practice. In contrast, for digital 

circuits, simple models like stuck-at and short have been very successful, due to the 

mentioned abstract nature of digital signals. 

4. Due to the continuing miniaturization of integrated circuits, some fundamental 

problems arise. First, properties of analog devices change with increasing down­

scaling. For example, due to shorter channel lengths of a MOS device its voltage 

gain decreases [Host90]. Such trends result in new circuit techniques and more 

complicated descriptions of analog devices. Second, the influence of thermal noise, 

crosstalk and parasitic capacitors increases, decreasing the relative precision of 

measurements of analog signals. Third, the accessibility for measurements decreases 

because the complexity of the circuits rises faster than the number of pins through 

which it is accessible. 

5. There are problems with the implementation of a BIST structure for analog circuits 

[Chin90]. In digital circuits, a BIST structure can verify circuit behavior by applying 

a number of input vectors generated by (for example) a relatively cheap on-chip 

pseudo-random generator. Output vectors may be read from internal nodes through 

added scan-elements. An output vector can be evaluated on-chip by some extra 

logic. Also test vectors may be stored in a shift register and transferred serially to 

the outside world, using only a single extra pin. 

These principles cannot be directly applied to analog circuits, because there it is 

very difficult to accurately store or transfer signals without losing some of the 
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information content (e.g., magnitude, phase). The solution seems to be to design 

specialized (and difficult to design) testable analog subcircuits, instead of just 

adding some BIST circuitry to off-shelf 5ubcircuits, as is more common in digital. 

For example, designs for configurable opamps are proposed that are capable of 

operating in a normal configuration and a special test configuration [Vasq96}, 

[Reno96]. In its test configuration the function of the circuit is modified to increase 

the controllability and observability of internal nodes. Special care has to be taken in 

the design of such analog BIST structures. Switches should not be introduced in the 

signal path, and loading of internal nodes by test circuitry should be kept to a 

minimum. 

Not surprising, most of the discussed problems in analog test also hamper automatic 

design of analog circuits. Although some successful approaches are reported (a 

summary is given in [Rute93}), major breakthroughs are needed before the automatic 

design of an arbitrary analog circuit becomes feasible. 

The mentioned problems result in a variety of analog test methods, each tailored to a 

specific application. The next section reviews some existing approaches. 

2.2 Review of Test Methods for Analog Circuits 

This section review some existing approaches to testing analog circuits. The outline of 

this section is based on Figure 1.1. In addition to fault location techniques (which can 

be used for diagnostic testing), production testing and tolerance analysis will be briefly 

treated. The discussion of these subjects provides a context for the techniques 

presented in Chapter 3. 

Several comprehensive reviews of test methods for analog can be found in the 

literature. For example, [Band85] classifies fault location methods according to the 

tree of Figure 2.1. A first distinction is made according to the stage in the testing 
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process at which some form of simulation of the tested circuit occurs. Simulation 

before test has the advantage that most of the work is performed off-line, which 

reduces testing cost. 

Figure 2.1. Classification of fault location techniques. according to (BandS5!. 

The fault dictionary technique has been widely applied in the digital world. Early 

applications tested digital circuits implemented on printed circuit boards. A system wa,> 

tested by comparing failed-board output levels with a set of pre-stored outputs on the 

automatic test equipment, under the application of selected input vectors. 

An early application of the fault dictionary technique to analog testing is described in 

[Hoch79J, which presents a method that uses DC input stimuli to test a non linear 

analog circuit. The approach may be outlined as follows. First, a test engineer decides 

which type of faults are taken into account. This includes opens, shorts, and low-gain 

devices, for example. The faults are modeled at the circuit level. Then they are 

introduced one by one, and their effect on a number of test nodes is evaluated with the 

use of a circuit simulator. In this process the circuit's input stimuli arc selected to 

exercise the "on," "off," and "linear" state of its semiconductors. Each simulation 
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obtains a fault signature. This is a set of circuit responses, corresponding to certain 

input stimuli and a certain fault. A fault dictionary is built by storing the output 

signatures. 

After this stage of fault simulation is completed, an algorithm is used to divide faults 

into disjunct ambiguity groups. The faults in an ambiguity group generate 

approximately the same output levels, causing these levels to be in a certain fault band. 

Thus the fault dictionary associates with each ambiguity group a fault band and specific 

input stimuli. Next the most useful input stimuli are obtained by manipulating the 

ambiguity groups. This process determines what faults can be isolated and what input 

stimuli provide the highest degree of isolation. 

To test a circuit, the preselected input stimuli are applied, and the circuits output 

signature is measured. Now an ambiguity group is selected by comparison of the 

output signature with the fault signatures stored in the fault dictionary. Like this, 

output deviations are traced to the smallest group of faults whose influence is 

indistinguishable. 

The advantage of dictionary-based approaches is that they generally have a low on-line 

computational requirement: most of the work is associated with building the 

dictionary. However, for very large circuits an excessive amount of time may be spent 

in dictionary construction, as well as in post-test location of faulty elements. In 

addition, small deviations from the clements' nominal values arc hard to detect because 

they arc unlikely to Cause the measured outputs to deviate out of a certain fault band. 

Therefore the dictionary approach is most suitable for catastrophic and large deviation 

faults. 

Approximation techniques try to locate the most likely faulty elements with a limited 

number of measurements. Of these approaches, probabilistic techniques resemble the 

fault dictionary approach. For example, the inverse probability technique [BrowS1], is 

a technique that is primarily applied to locate single faults. In the pre-test phase a 
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statistical diagnostic database is constructed from Monte-Carlo simulations. In the 

post-test stage, extensive on-line computations are necessary to calculate from a 

limited number of measurements for each network clement the probability that it is at 

fault. 

Optimization-based techniques use some form of optimization criteria, like the 12 (least 

squares) criterion [Rans73]. That approach determines the deviations of faulty 

elements from nominal that would cause output deviations that most closely match the 

actually measured output deviations. 

Parameter identification techniques try to solve all network element values, for which 

generally a large number of test nodes and measurements are needed. After the values 

are computed, the faulty elements arc identified by checking what element values arc 

outside the design toJcrance margins. There exist techniques for linear as well as non 

linear networks, in the DC, frequency and time domain. Also theoretic results are 

derived that give conditions under which the values of elements of a specific network 

are computable. For instance, [Navi79] derives the necessary and sufficient conditions 

for element-solvability of linear resistive networks. 

Finally, fault verification techniques determine the values of faulty clements or try to 

localize faults to a small sub network. 

The mentioned methods for fault location may be denoted as fault-driven tests, since 

they evaluate the influence of specific faults on circuit behavior, with the help of analog 

fault models. Specifically, deviations of circuit behavior are traced to one or several 

faulty circuit elements. This property is shared by many early methods, for example 

[Saek72], [John79], [Navi79], [Bier81]. Such methods are useful when a circuit needs 

to be diagnosed in a design process, or repaired at a test facility. 

To properly diagnose the cause of a failed circuit, the number of accessible 

(controllable and/or observable) test nodes must be large. For example, to illustrate the 
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effectiveness of the dictionary approach discussed above, [Hoch79] presents an 

example of a video amplifier that is implemented on a printed circuit board. In such an 

application the available number of test nodes is large, so the accessibility of the circuit 

under test is excellent. Furthermore repair of a faulty circuit is entirely feasible. 

However, over the years the relative number of accessible circuit nodes has steadily 

decreased due to increasing circuit miniaturization. This seriously limits an integrated 

circuit's accessibility for measurements. Furthermore, repair or adjustment of a mass­

produced integrated circuit is often not feasible, and therefore it is common practice to 

discard faulty devices. As a result, currently much attention is given to pass/fail 

production testing. 

Apart from its use in diagnostic testing, fault simulation can also be successfully 

applied to production testing. However, in this application it is not important to locate 

a fault; instead, only the influence of faults on circuit behavior or reliability is of 

interest. One approach uses analog fault models to simulate various fault conditions in 

a circuit model [Be1l95]. Then the effect of these faults on the circuit output is 

evaluated and the fault coverage is assessed. A disadvantage of such a circuit-level 

approach is that a large number of possible faults must be simulated, while it is not 

certain whether or not the simulated faults accurately represent the faults that occur in 

a device that is produced with a certain process. This last disadvantage can be 

remedied by using a defect-oriented approach. 

A defect-oriented approach evaluates the influence of physical defects on an integrated 

circuit. Such an approach uses information about the manufacturing process to assess 

the types and magnitude of physical errors that may occur. For example, [Harv95] 

simulates a large number of defects, such as oxide pin holes and extra metal, using a 

kind of physical simulator. These defects arc translated to faults at the circuit level, 

using a fault model consisting of a range of resistances. Some defects do not result in 

faults, for example defects that appear in an unused region of the layout. After the 

faults are available at the circuit level, a fault simulation approach is used to asses the 
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influence of the faults, and to estimate the fault coverage. The advantage of the 

discussed defect-oriented method is that specific inf{lrmation about the production 

process may be taken into account to derive realistic circuit-level fault models. A 

disadvantage is that a lot of time may be involved with the simulation of defects. 

To obtain a higher fault coverage it is possible to include Built-In Self-Test (BIST) 

circuitry on the chip that performs checks on-chip [Olbr95]. Also it is possible to 

increase the number of test nodes to improve the circuit's accessibility for testing. For 

example, measurements at internal test nodes may be stored in a built-in analog shift 

register [Chin90] and accessed externally in a later stage through a few pins. This 

approach is borrowed from digital testing. However, the disadvantages that were 

discussed in Section 2.1 still apply. 

The various forms of fault-driven testing, including various BIST structures, can result 

in a very high fault coverage. This may be of advantage, because also faults arc 

detected that are not apparent from measurements at the circuit outputs. For example, 

such faults may decrease a circuit's reliability. 

An interesting time domain approach to BIST uses the impulse response of a linear 

time invariant analog circuit as a signature to determine whether or not it is at fault 

[Pan96]. It is very difficult to measure the impulse response of a circuit directly. For 

example, the energy in a pulse is so small that the output response would be corrupted 

by the noise. Increasing the energy level (height) of the pulse will drive the circuit into 

non linear operation. Therefore the following approach is used. The circuit is enclosed 

by a D/A converter (DAC) and an NO converter (ADC). A digital pseudo-random 

generator is then used to drive the circuit input through the DAC. The digital circuit 

input (delayed by m cycles) and digitized circuit output are used to calculate the cross­

correlation between the circuit's input and output signals. This is a good estimate of 

the impulse response at time point m, if the number of samples is large enough. To 

obtain the impulse response at N time points, the above procedure is repeated N times, 

each time with a different delay m. 



2.12 

In the pre-testing phase a large number of good and faulty circuits is generated by 

randomly varying device parameters (like gate width and length, and threshold 

voltage) that are assumed to be normally distributed. This Monte-Carlo simulation 

obtains a large number (1000) circuits, which may be good or faulty. By using SPICE 

simulations of the circuits their performance parameters (like DC gain) are obtained. 

Comparison of the performance parameters with their allowed range allows the circuits 

to be classified as good or faulty. Then the signatures (impulse responses at a certain 

time point) of the circuits are calculated. Thus, a lot of points in the signature space are 

obtained, and for each point it is known if it corresponds to a good or a faulty circuit. 

Now the optimal signature set (time points at which the impulse response is 

considered) is found. This set allows the best separation in the signature space between 

the good and the faulty circuits. 

The described method uses a form of tolerance analysis, where deviations of the 

parameter tolerances are translated (in this case, using Monte-Carlo analysis) to a 

certain distribution of a circuit performance. Such an approach can also be used to 

compute the yield of a circuit, in the initial stages of manufacturing. If the yield is to 

low, some parameter tolerances can be narrowed. However this will increase the 

manufacturing cost of the circuit, as discussed in Chapter 1. 

If circuit reliability is not an issue, complete fault coverage is not all-important. Thus a 

fault-driven approach is not necessary; instead a kind of specification-driven test may 

be used. Here, faults arc considered to be deviations from a circuit's nominal functional 

behavior lHuer93]. For example, suppose that the DC behavior of a D/A converter is 

specified at a functional level by its response to all code words. Then, to decide if a 

converter is faulty (with respect to its DC behavior) it suffices to compute somehow its 

maximum linearity error. If this error is within allowed limits then the converter is 

considered functional. Such an approach may also be called a functional test: It checks 

a circuit's functionality without establishing the values of its components. This may 

lead to a considerable reduction of testing time (hence cost), because faults that do not 
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directly influence the circuit behavior are not taken into account. A disadvantage of a 

specification-driven test is the difficulty of obtaining estimates of the percentage of 

faulty circuits that is recognized by a certain test. 

Instead of using a Monte-Carlo analysis to translate parameter tolerances to variations 

in circuit performance, it is also possible to use a truncated Taylor expansion of the 

nominal circuit description [Bray80J. In particular, many methods use first-order 

approximations called differential sensitivities [StenS7], [Dai90J, [Hemi90j. 

As will be discussed in Section 3.1.1, a differential sensitivity is a first-order 

approximation of the influence of a parameter deviation on a circuit output. The 

differential sensitivities may be collected in a sensitivity matrix that models the 

cumulative influence of small parameter deviations on the circuit outputs. 

A sensitivity-based approach can be used for fault diagnosis as well as specification­

driven testing. For example, [Sten87] uses differential sensitivities to trace deviations 

of circuit behavior to certain components. A measure of component testability is 

defined that takes into account random measurement errors as well as the accessibility 

of the circuit for measurements. 

Sensitivity-based methods use various approaches to select input stimuli that sensitize 

the circuit outputs to component deviations. For example, [Hemi90] uses an ad hoc 

approach that evaluates the independence of pairs of rows or columns of the sensitivity 

matrix to select testable components and input stimuli. Alternatively, [Sten87] uses a 

OR decomposition of the sensitivity matrix. The advantage of the latter approach over 

[Hcmi90] is that it has well-known numerical properties, due to the application of a 

stable matrix decomposition technique. 

The disadvantage of first-order sensitivities is that they are only useful if the deviations 

of the circuit components are small. If this is not the case then it is possible to use 

another type of sensitivities: incremental sensitivities [Slam92], [Slam94]. A precise 

definition is given in Section 3.1.]. Incremental sensitivities accurately model the 
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influence of arbitrarily large component deviations, provided that all components are 

lim:ar. The obvious advantage is a more precise test method, in the case of linear 

circuits. A complication with the use of incremental sensitivities is that they result in a 

non linear circuit model. Therefore it is less straightforward to select test points than 

when differential sensitivities are used. Furthermore it is not easy to evaluate the 

influence of random measurement errors on the predictions of component deviations 

and high-level circuit behavior. A final limitation is that for non linear circuits 

incremental sensitivities do not provide exact predictions. Thus, for these circuits 

incremental sensitivities do not offer a larger precision than differential sensitivities, 

unless the non linearity is very modest. 

This section is concluded by some remarks on the relative merits of testing in the DC, 

frequency or time domain. As remarked in the previous section, the DC domain has the 

advantage that the measurements are very simple to make. Because parasitic 

capacitances associated with measurement probes are not a problem, DC 

measurements are often used as a pre-screening test. In such a test measurements are 

made with probes placcd directly on the wafer. A disadvantage of DC measurements is 

that they are not as revealing as, for example, frequency measurements. Therefore, DC 

measurements seem to be mainly useful when circuit accessibility is high. Another 

advantage of frequency measurements is that in most cases they are fairly easy to 

make. However it is rather time-consuming to test a device at a large number of 

frequencies. In that case time-domain measurements are an alternative. For example, 

the circuit impulse response may be used, as discussed above. The advantage of a time­

domain approach is that the testi ng time is very short. Furthermore, deviations in the 

DC and frequency domain will also show in the time domain. Thus, time domain 

testing allows a good distinction to be made between good and faulty circuits. 

2.3 Discussion 

This chapter reviewed a few common approaches to analog testing. The bottom line is 

that, at this moment, there does not seem to be a method that has decisive advantages 
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over other methods. This is caused by the fact that analog test-methods are strongly 

application-dependent, due to specific properties of analog devices and signals. 

However, it is possible to extract from the preceding discussion a few key-items that 

should be addressed by an analog test method. 

• In the production of integrated circuits, the relative cost of analog testing increases. 

Therefore the number of selected measurements should be minimized, to decrease 

testing time. This means that redundant measurements must be eliminated. 

• The influence of noise cannot be neglected in analog testing. Thus it is prudent that 

this influence is taken into account as a fundamental part of the method. The 

measurements should be selected so that the influence of measurement noise is 

reduced to a minimum. 

• It is important to keep into mind goal of testing, to prevent superfluous test. For 

instance, if circuit reliability is not important, then it is not necessary to check for 

the existence of faults that do not influence the circuit's functional behavior. In this 

case some form of functional test may be used to reduce testing cost. 

• A test method should use all available information. For example, information about 

the manufacturing process can be used to rank possible faults, so that the first 

measurements try to detect the most common faults. This enhances the probability 

that a fault is detected with only a few measurements. 

The method that is presented in this thesis addresses the first three items. Because 

information about the manufacturing process was not available, the method was not 

designed to take such information into account. 



3 Exposition of Used Techniques 

This chapter presents the techniques that will be applied to analog testing in Chapters 4 

and 5. Section 3.1 introduces various types of circuit sensitivities and summarizes some 

applications. Also the efficient computation of frequency-domain and time domain 

sensitivities is discussed. Section 3.2 derives the Singular Value Decomposition (5\11)). 

This is a well-known complete matrix decomposition whose properties will prove to be 

useful for the testing of analog circuits. Applications of the SVD to data analysis, the 

approximation of matrices and the least-squares approximation are discussed. These 

subjects are closely connected to analog testing, as will be explained in Chapter 4. 

3.1 Circuit Sensitivities 

3.1.1 Introduction and Sensitivity Definitions 

Circuit sensitivities are widely applied in circuit simulation, optimization and testing. A 

comprehensive description may be found in several text books, e.g., [Bray80], 

[Swar87], [Ogro94] and [Vlac94]. In general terms, a circuit sensitivity is a 

quantitative measure of the influence of a parameter change on (some aspect of) circuit 

behavior. Formal sensitivity definitions are given later. Several factors contribute to 

parameter changes, e.g., deviations of the manufacturing process, temperature 

variations, and component aging. The influence of parameter changes on circuit 

3.1 
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properties like voltage transfer function or delay time may be assessed by evaluating 

the corresponding circuit sensitivities. This process is commonly referred to as a 

sensitivity analysis. Section 3.1.2 presents some applications of a sensitivity analysis. 

In general, the time-dependent behavior of a circuit containing linear or non linear 

elements may be described as 

q'-Ex =- 0; qn =- q(O) 

f(q,x,w,p,t) ~ 0 
(3.1) 

This notation assumes that the terminal equations for capacitors and inductors are 

defined in terms of charges and fluxes, collected in q. The elements of matrix E are 

either 1 or 0, and x represents the circuit variables (nodal voltages or branch currents). 

All non linearities are incorporated in the algebraic system f( q, x, w, p, t) =- 0, so the 

differential equations q' - Ex =- 0 are linear. The initial conditions are represented by 

qu. Furthermore, w is a vector of excitations, and p contains the circuit parameters like 

parameters of linear or non linear components (e.g., capacitance, transistor threshold 

voltage), or parameters of circuit excitations (e.g., voltage of a voltage source). An 

element of p may also be a (non linear) function of the circuit parameters. It is assumed 

that for each p there is only one solution of x. 

Definition 3.1 A network function F(x, p, y) is defined as a non linear scalar func­

tion of the circuit variables x. In addition, F(x, p, y) is differentiable 

with respect to the circuit parameters p. In the time domain y = t, 

with t the time. In the frequency domain y :; S with s the complex 

frequency. In the DC domain y is omitted. 

Often a network function is simply defined as a circuit variable (e.g., output voltage) 

[Ogro94]. In the frequency domain, a network function is often defined as the fraction 

of two circuit variables (e.g., voltage transfer function) [BraySO]. For convenience of 
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notation, some or all arguments of F may be omitted. For example F(p) may denote a 

network function in the DC, frequency or time domain. 

Consider the second-order lowpass filter depicted in Figure 3.1. This circuit will be 

used to illustrate the concepts presented in this chapter as well as in Chapters 4 and 5. 

Only the filter's frequency domain behavior is examined, under a sinusoidal excitation 

with s = jw. The complex voltage transfer function F( jw) = v"Uw)/v; Uw) describes 

the filter's transfer behavior when it is loaded with a zero admittance: 

F('w R L C) = 1 
) , " l-w 2LC + jwRC 

(3.2) 

R L 3 

+ + R= IQ 

C

T 
v L = 7Y6!1H 
" C = 31.8/AF 

Figure 3.1. Second-order lowpass filler. 

The filter's center frequency is wI) = 1/.J LC and its quality factor is Q = .J LI C /R . 

With these definitions, (3.2) can be rewritten as 

FUw,wo,Q) = ---"-2 ---

l_(_W) +j_w..!.. 
Wo Wo Q 

(3.3) 

In (3.3) each of the circuit parameters WI) and Q is a non linear combination of the 

parameters R, Land C. Using the component values of Figure 3.1, W I) ~ 2n .10.
1 

Sl 

and Q = 5. From (3.3) it follows that IFUw )Imox = Q, and it is reached for w = WI)' 

Figure 3.2 plots IFUw)1 as a function of frequency f = w/2n. 
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Figure 3.2. Voltage transfer of the second-order lowpass filter. 

At this stage, sensitivity can be defined in a more precise manner. The literature on 

analog testing distinguishes two types of sensitivity: incremental sensitivity and 

differential sensitivity l H uer93]. 

Definition 3.2 Let !'J.Pi denote an arbitrarily large change from the nominal value Pi 

of the /h circuit parameter. AF is the resulting change of a network 

function F. The incremental sensitivity of F to a change in the /h 

circuit parameter is defined as 

Definition 3.3 Let pi, /t,.Pi, F and /t,.F be given by Definition 3.2. The differential 

sensitivity of F to a change in Pi is defined as 1 

I Henceforward, p, will be used to (knote either the ii' circuit paramctcr or its nominal value. 
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Thus incremental sensitivity is the exact (generally non linear) relation between an 

arbitrarily large deviation APi and the resulting deviation !iF. Differential sensitivity is a 

first-order approximation to the incremental sensitivity: SF = lim SF = aF , where 
1', Api -.;.0 1', api 

a denotes partial differentiation. 

Consider a circuit with a response that is non linear in n parameters. According to 

Definition 3.3, changes in the n parameters are linearly related to the resulting !iF, if 

the parameter changes are infinitesimally small: 

AF= (s~YAp, (3.4) 

where s: ~ (s;, ... ,S;y, and Ap~(Apl"" ,Ap"f. ]n practice (3.4) provides a good 

approximation of the cumulative influence on circuit behavior of small (up to about 

5 %) changes !J.PI'··· ,Ap". However, for larger deviations !J.Pl' ... ,!J.p" (3.4) is not 

val id. ]n that case there are several alternative approaches. 

Perhaps the most straightforward solution is to take into account higher-order terms of 

the infinite Taylor expansion of F: 

(3.5) 

According to (3.4), !iF = F(p) - Fo is obtained with arbitrary precision by the inclusion 

of all higher order terms. The second term of expansion (3.5) is the first-order 

approximation (3.4) of !iF. The third term incorporates second-order effects. It 

provides a first-order compensation for the fact that the differential sensitivities are 

exact only for a circuit with nominal parameter values p, whereas in fact the 

parameters deviate from nominal by the amount !J.p. H is commonly called the Hessian 
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matrix. Its elements are the second-order sensitivities hij = a 2 F(p)/api apj' Methods 

exist for the efficient calculation of such sensitivities [Bray80]. 

If more than the first two terms are included, (3.5) is a non linear relation. Then non 

linear techniques are necessary to solve dp from measurements of !J.P, and to select 

test points. The application of higher-order sensitivities is not further discussed in this 

thesis. 

The magnitude of the sensitivities conform Definitions 3.2 and 3.3 depends upon the 

unit in which F and PI'''' 'Pn are expressed. To change the sensitivities to scale-free 

quantities, normalized versions of F and PI'''' ,Pn are introduced. On the basis of 

Definition 3.3 normalized differential sensitivities are obtained as 

_FdalnF Pi aF Pi F 
S =---=--=-s . 

Pi a In Pi F api F Pi 
(3.6) 

Normalized incremental sensitivity is likewise defined as SF ~ Pi Sf. 
p, F p, 

If the nominal value of either F or Pi is zero, normalization (3.6) cannot be used. This 

thesis assumes that faults occur in circuit parameters with non-zero nominal values. 

Thus the influence of, for example, parasitic capacitances (which ideally have zero 

nominal values) is not taken into account. Under this condition, normalization to the 

nominal parameter value is not a problem. If F is always noo-zero then (3.6) may used 

without problems. Otherwise (3.6) can be replaced by the semi-normalized sensitivity 

aF F 
--=P,sp, 
a Inp, . 

Normalized sensitivities offer some advantages. For example, 51' is independent of the 
P. 

unit of P" Furthermore, normalization to F allows the sensitivity of different circuit 

designs to be compared directly, regardless of, for example, the magnitude of the 

supply voltage or the input signal. In this sense (3.6) offers a more objective estimate 
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of the influence of a parameter deviation. In general the choice for a particular type of 

normalization is application-dependent. A discussion of sensitivity normalization for 

analog testing is deferred until Section 4.1.1. For the moment it is assumed that (3.0) is 

used. 

3.1.2 Application of Sensitivities 

As discussed in the previous section, the differential sensitivities s~' provide a first­

order approximation of M / t!,.p, for example in a region around a certain frequency. 

Thus s: is a gradient vector that can be used in design optimization to iteratively 

minimize a certain objective function. For example, [Viae 1 discusses the automatic 

optimization of an analog filter by minimization of a mean-square objective function. 

Sensitivity computations can also help in judging the quality of a particular circuit 

design. A high sensitivity to a particular component parameter means that a slight 

disturbance of this parameter might cause circuit behavior to deviate outside the 

tolerance region that defines acceptable circuit behavior. This suggests that the 

component of interest should be manufactured with a high precision. If it is not 

possible to obtain the necessary precision with a certain production process then the 

circuit design may be adapted to make it less sensitive to component changes. A 

commonly used technique for integrated circuits is to let the circuit behavior be 

determined by the difference in some property of two geometrically close components. 

The motivation is that fluctuations of the manufacturing process will now introduce 

highly correlated deviations of the property of interest in both components. By 

designing the circuit such that the sensitivity to these deviations is equal in magnitude 

for the two components, but different in sign, process fluctuations practically do not 

affect the circuit behavior. Because a circuit design that uses this method may be more 

costly, it should only be applied to the components for which such measures appear 

necessary. As explained, such components may be detected by observing their 

sensitivities. 
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Finally, a sensitivity analysis may be used in circuit testing. Assume that the parameter 

sensitivities are calculated for all possible input stimuli (e.g., frequencies, voltages). 

The stimuli that sensitize one of the circuit's outputs to changes in the parameters are 

associated with the highest sensitivities. Therefore, measurements that are made at the 

output while those stimuli are applied to the circuit input are most likely to detect 

deviations of circuit behavior. How circuit sensitivities are used to select these 

measurements is discussed in detail in Chapters 4 and 5. 

3.1.3 Frequency Domain Sensitivities 

3.1.3.1 Sensitivity to Magnitude and Phase 

In the small-signal frequency domain, a network function F is in general complex­

valued. However, in the "real" world the value of F is not measured directly. In stead, 

measurements of its magnitude and phase are made. Therefore, formulas that relate the 

sensitivity of the magnitude and phase of F to its complex sensitivity are derived next. 

Because a complex (non zero) network function F can be written in terms of its 

magnitude IFI and phase ~l' as 

it follows that 

In F = InWI + JCPr· (3.7) 

Partial differentiation of both sides of (3.7) to Pi gives 

I [JF I alFI . a~F 
--=---+ j'--. 
F dp; IFI [Jp; dp; 

(3.8) 

Separating the real and imaginary parts of (3.8) results in 
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or 

(3.9) 

According to (3.9) the sensitivity to IFI and <PF may be obtained directly from the 

complex-valued differential sensitivity s:' and complex network function F. 

In the most straightforward case, Pi in (3.9) is a parameter of a circuit component. To 

illustrate, Figure 3.3 depicts sri for the three components of the low-pass filter 

example discussed in Section 3.1.1. This sensitivity plot reveals some information 

about the lowpass filter. For example, sri is negative, meaning that a small increase in 

R leads to a decrease in IVol. Furthermore, at the center frequency III = 1 kHz sri 

obtains its maximum magnitude, which is about equal to the magnitude of sri, while 

sJFI = O. Thus at 1= [,,) the simultaneous influence of Rand C may be observed. 

Finally the sensitivity plot reveals that deviations in Land C have a similar (in sign and 

magnitude) influence on the circuit behavior. This suggests that it is very hard to 

distinguish the influence of a small deviation in L from a small deviation in C by 

observing Iv,,(jw )/V, (jw )1. At high frequencies the relative influence of R is negligible, 

so there the simultaneous influence of Land C may be observed. Thus it seems that 

there are only two independent degrees of freedom for this circuit with three 

components. This hypothesis will be verified in Chapter 4, which continues the analysis 

of the low-pass filter. 
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Figure 3.3. Normalized parameter sensitivities of the lowpass filter. 

3.1.3.2 Differential/Incremental Sensitivity Relationship 

This section considers the special case of a linear circuit with a bilinear network 

function 

F(p,.) = a + bpi 4 N . 
c+ dpi D 

It is not difficult to show [Fidl72] that if (3.10) holds, then 

(3.10) 

(3.11 ) 

where the prime (') denotes partial differentiation to Pi' This formula provides a relation 

between differential and incremental sensitivity. According to (3.11), if s;,: = () at a 

particular frequency, then also _~:. = (). This renders the parameter Pi redundant at 

that frcqucncy. From (3.11) it follows that 

" 6,<,!t.PI 

!t.F(p) = -..:..:::';-'---- (3.12) 

1+ I!t.PiD'ID 
I-I 
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which is an exact relation, regardless of the magnitude of lip" ... , lip" [Slam92]. 

However, for a circuit with non linear components (3.12) is just a first-order 

approximation, like (3.4). Furthermore, also for some linear circuits (3.10) may not be 

valid (For example, when it contains a gyrator). Thus incremental sensitivities are only 

applicable for a subclass of linear circuits. A more general way of dealing with 

(multiple) large parameter deviations is an iterative calculation of differential 

sensitivities, as explained in the next chapter. 

In many situations, relatively small (less than approximately 5 %) deviations from 

nominal circuit behavior arc of interest. In these cases differential sensitivities model 

with a high precision the influence of multiple parameter deviations, even without 

iteration. This will be demonstrated with examples at a later stage. 

3.1.3.3 Efficient Computation of Sensitivities in the Frequency Domain 

In the small-signal frequency domain, circuit behavior is described by a set of linear 

complex equations 

Y(p,jw) x(p,jw) = w(p,jw), (3.13) 

with Y the complex system matrix, W the complex excitation vector and x the vector of 

circuit variables. Y may be a nodal admittance matrix, for example. 

Differential sensitivities can be computed with repeated circuit simulations, each 

evaluating the effect of a small disturbance in a single parameter. Suppose only Pi is 

disturbed by a small deviation liP! (for example, I %). To obtain the resulting deviation 

!lx, (3.13) is solved twice: once for Pi to obtain x, and then for p} + lip! to obtain 

x + lix. Next, the sensitivities arc calculated conform Definition 3.3 as 

(3.14) 

The procedure must be repeated for all parameters and all frequencies of interest. 
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There are two disadvantages to (3.14). First, for n parameters and m frequencies, a 

total of men + 1) circuit simulations must be performed. Second, Llx and LlPi are 

computed by subtracting slightly different numbers. This may result in a significant loss 

of precision. Because of these disadvantages (3.14) is not used to generate sensitivities. 

A method that computes precise differential sensitivities is based on (3.11). It uses 

parameter perturbations of arbitrary large size [FidI75]. However, also that approach is 

not efficient. Therefore the method of adjoint equations [Dire69], [Bray80], [Swar87J, 

[Ogr094] is used in this thesis. Next it is shown how this approach computes the 

sensitivity of a single circuit variable x, to all circuit parameters. 

Differentiation of (3.13) to Pi yields 

aY x+Y~= aw, 
aPj aPj aPj 

so 

(3.15) 

where the arguments of Y, x, and w have been omitted for clarity. Now 

(3.16) 

where e; is the i'h unit vector. At this stage, define Xa as the solution of 

T Y Xii = -e;, (3.17) 

which is called the adjoint system of equations. With (3.17), (3.16) can finally be 

written as 

(3.18) 
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This expression is used to calculate s'" at m frequencies. The procedure at one 
1', 

frequency can be summarized as follows: 

1. x and Xa are obtained by solving the original system (3.13) and the adjoint system 

(3.17). Because both systems are based on the nominal parameter values, these 

systems need to be solved only once for each frequency of interest. For m 

frequencies this takes 2m circuit simulations. The adjoint system (3.17) can be 

efficiently solved by using the decomposition Y = LV which is available after 

(3.13) is solved. With this LU decomposition (3.17) can be written as 

which is solved by a simple forward and backward substitution. 

2. The matrix ay/apj and the vector aw/apj are formed for every Pi' and the right­

hand side of (3.18) is evaluated. Advantage can be taken of the special zero-non 

zero structure of ay/apj and aw/apj . For example, if Pi is not a parameter of an 

excitation, then aw/api ... 0 . 

For many circuit elements, the right-hand side of (3.18) is just a mUltiplication of 

clements of x and Xa. For example, for a capacitor C, connected between nodes i 

and j, s(':, = jw(V; - ~ )(V; .• - ~.J. Vi and ~. are the voltage of nodes i and j, 

respectively. Vi .a and \0." are the corresponding adjoint voltages. The precision 

with which s;' is computed is about equal to the precision of a circuit simulation. 

Essentially no work is involved in step 2. Therefore the total work load involved in 

computing s;' at m frequencies amounts to 2m circuit simulations. 

Next, consider a sensitivity :<" where F(x, p) ... dTx, with d an arbitrary vector: 
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", s'; = aF = aed x) = dT ~. 
f, ap ap ap 

I .I ) 

F By substituting (3.15) into this expression it follows that sp} can be computed from 

(3. t 8) if (3.17) (the adjoint system) is replaced by 

T 
Y x" = -d. 

The case that F (differentiable to p) is a non linear function of circuit variables x is 

not discussed here. It is treated in [Vlac94]. 

3.1.4 Time Domain Sensitivities 

Time domain sensitivities may be computed for the general case of a non-linear, time­

dependent circuit described by (3.1). This section describes an approach that computes 

the sensitivities S;'j of all circuit variables to a single parameter Pj. These sensitivities 

are obtained in parallel with the computation of the circuit's transient response. 

First the DC solution of (3.1) is computed by solving the system 

-Exo = 0 

f( q(), xll> wo, Pi'O) = 0 ' 
(3.19) 

which is derived from (3.1) by setting q' = O. The solution (qll'XII ) of (3.19) is found 

by Newton-Raphson iteration. In general, this technique finds the solution of a non 

linear system g(x) = 0 by iteratively solving the Newton-Raphson equation [Vlac941 

(3.20) 

where J' is the Jacobian of g, with (i )ij = agJax: . Iteration starts with estimate xo. 

After !lx' is computed in the klh iteration, X'+l is found as xx+' = x' + !lx', and the next 

iteration starts. If !ll is below a certain threshold iteration stops. In the case of (3.19), 

the Newton-Raphson equation is 



o 
af 

-E 

af 
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[t\qa] = _[-EX] , 
t\x(J f 

(3.21) 

which is solved by iteration (for simplicity it is assumed that the excitations w do not 

depend onpj}. 

After the DC solution (qn,x lI ) is obtained, the DC sensitivities are computed. 

Differentiation of (3.19) with respect to Pi results in the linear system: 

o 
ar 

-E 

af [
Yo] = 
Zo 

o 
(3.22) 

where Yo = aqo/Jpj and ZII = aXo/JPj are introduced to simplify the notation. Note 

that (3.22) and (3.21) have the same system matrix. Therefore (3.22) can be solved 

efficiently by using the LU factorization of the Jacobian that was computed at the last 

iteration of (3.21). 

Now the sensitivity of (3.1) to Pi is computed. Differentiation of (3.1) to Pi gives the 

linear, time-varying system 

y'-Ez = 0; Yo = yeO) 

af af ar 
-y+-z+-=o 
aq ax aPj 

(3.23) 

where y = oq/apj and z = ax/apj . At each time point the circuit sensitivities are 

obtained by solving (3.23) after the original system (3.1) is solved. Suppose, for 

example, that a kIll order Backward Differentiation Formula (BDF) is used, with the 

corrector 

, n+k 1 k-l 

(q) =--;:-~a,qll+k_i' 
ut f:1f 

(3.24) 
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where the coefficients ai depend upon the order k of the BDF formula. After 

substituting (3.24) into (3.1), the Newton-Raphson equation is derived as 

(3.25) 

Iteration on this system provides the solution (qn+h Xn+k)' 

Substituting a kth order BDF formula in (3.23) gives the linear system 

_5L t 
1 <-I 

-E I1t 2: aiY".k_i 
/j,1 [Y"+k] = 

i-II (3.26) af af zu+k af 
aq ax api 

Thus (3.25) and (3.26) have the same system matrix. The LU factorization of this 

matrix is available after (3.25) is iteratively solved. Then a simple forward and 

backward substitution solves (3.26). For each parameter the right-hand side of (3.26) 

is different and the forward and backward substitution must be repeated. 

Time domain sensitivities can also be computed with a version of the adjoint equations 

method [Dire69), [Vlac94). This method obtains the sensitivity of a single circuit 

variable to all circuit parameters at a time point If in one pass. This is useful since in 

analog testing the number of observed circuit variables is in most cases considerably 

smaller than the number of parameters. However, the adjoint equations methods has 

distinct disadvantages when applied to the time domain, as explained next. 

For example, the adjoint network must be integrated backwards in time, so it cannot be 

solved simultaneously with the normal network. Rather, the responses of the normal 

network at all selected time points need to be stored before the adjoint network can be 

solved. The storage requirements may be prohibitive. An additional problem is that the 

time steps of the adjoint network and the normal network are in general not identical. 
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This necessitates interpolation between time steps of the stored responses of the 

original circuit. Finally, although the sensitivity at a time if is computed, the sensitivities 

at time points t < if are not available. Because of these difficulties computing time 

domain sensitivities with the adjoint method is more difficult than with the method 

described above. 

3.2 The Singular Value Decomposition 

The Singular Value Decomposition (SVD) fWilk71 J, [Dewi88], [Golu89) is a well­

known complete matrix decomposition with many applications. It is used in 

mathematical proofs [Golu89}, signal processing [Depr88], and principal component 

analysis [Jo[[86], for example. 

3.2.1 The Spectral Theorem 

According to the spectral theorem any hermitian matrix may be diagonalized. The 

theorem has applications in, for example, quadratic and bilinear forms. The spectral 

theorem is presented 2 as a preliminary step before the SVD is introduced. 

Theorem 3.1 (Spectral Theorem) Let H be a hermitian nxn matrix. Then there exist 

an nxn unitary matrix V and n real numbers 1...1' .•• ,All such that 

V'HV = A = diag{A
" 

... ,A'lL (3.27) 

where AI'''' ,All arc the eigenvalues of H, and the columns of V are 

the eigenvectors of H. 

2 Proofs of Ihe presented theorems m~y be round in standard text hooks (c.g., !RobilJll. IGolulNIl ancJ arc nol 

rcpc<ltcd here. 
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For the special case H = A' A, with A a complex mxn matrix, the 

eigenvalues of H arc positive real numbers. Hence there exists an 

ordering Al ~ ... ~ A" "'= 0, where A" > 0 iff rank(A) = n . 

If A is real-valued then H is symmetric and V is orthogonal. 

Applications of the spectral theorem to data analysis are discussed comprehensively in 

(101186J. There the theorem is used to find the important trends (principal components) 

in a data set. Next, a simple example in R2 gives a geometric interpretation of this 

application. The discussed principles are closely related to the method of test-point 

selection that will be presented in Chapter 4. 

Consider n observations of two statistical variables3 X and Y. The lh observation 

obtains a data point (x" y,). After n data points are collected the means !-lx and !-ly are 

computed (using (8.5), Appendix B). Then the data is normalized by subtracting, for 

all data points, !-lx from Xi and fly from Yi. Figure 3.4 shows a data set that is normalized 

(in fact it is translated) in this manner. Each dot represents a data point. The data set is 

centered at the origin, due to the normalization. Stacking the 7 data points gives a 7x2 

data matrix M. 

y 

0
2 = 4.67 -3 -2 , 

4 • , 
= 7.33 -2 -2 o~ • 

-1 -3 

M= 0 1 
-4 ·2 1I 2 4 X • 1 -1 

• • ·2 

• 2 3 
4 3 4 

FiUltre 3.4. Normalized data set alld correspolldillg data matrix. 

~ The physical signifiO:ilTl'.:'<! or the variable~ is not imponant here. 
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To estimate the variance and covariance of X and Y, the symmetric 2x2 covariance 

matrix e of M (conform (B.6), Appendix B) is calculated as 

e = _l_MTM = ![28 30]. 
n -1 6 30 44 

(3.28) 

The diagonal elements of e are the variances 0 ~ and 0 ~, shown Figure 3.4. Each off-

diagonal element of e is the covariance o'Y' Because 0") is comparable in magnitude 

to 0; and 0 ~, x and yare strongly correlated. The correlation is visible in Figure 3.4, 

where the data is spread approximately around the line x = y. For a more precise 

examination of the properties of the data set, the spectral decomposition is used. 

The spectral decompOSition of C is found by calculating its eigenvalues and 

eigenvectors. The eigenvalues Al and A2 are the solutions of the characteristic equation 

Ie - All = O. The eigenvectors VI and V2 are the solutions of Cv = AV for A = Al and 

A = A2, respectively. After the eigenvectors are normalized to unit length, the spectral 

decomposition of C is obtained as 

T [0.6 0.8] [11.17 0] [0.6 0.8] . C=VAV = 
0.8 -0.6 ° 0.83 0.8 -0.6 

(3.29) 

Figure 3.5 depicts decomposition (3.29). The two arrows point in the direction of v, 

and V2. The length of the arrows is made proportional to the magnitude of A, and A2. 

y 

4 

2 

X 
-4 -2 • 

• • -2 

• 
-4 

Figure 3.5. Graphicul depicliml of Ihe spec/ral decomposition ofM. 
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To determine the variance in the direction of VI and vz, M is first post-multiplied by V. 

This transforms M into a new matrix M' according to 

M'=MV. (3.30) 

Row i of M' contains the coordinates of the ith data point, with respect to the 

orthonormal base formed by V\ and V2. The covariance matrix C' of M' is 

C' = _t_(MV)TMV = VT(_l_MIM)V 
n-1 n-l 

= VTVAVTV (3.31) 

=A 

where (3.29) and the orthogonality of V were used. Because C' is a diagonal matrix, 

the columns of M' correspond with new, uncorrelated variables. These are denoted by 

x' and y'. Figure 3.6 provides a geometrical interpretation of the transformed data set. 

It is obtained by rotating and mirroring the data set of Figure 3.5. Since V is 

orthogonal, the data set is not deformed, and thus no information is lost. As a result, 

the total variance 0: + 0 ~ is equal to A\ + A2 [Jennn]. According to (3.31), a~. = AI 

and a~. = A2 • In the general case, Ai is the part of the total variance that is associated 

with Vi. Therefore Vi is said to define the i'h principal direction. Like this, the th 

principal component is defined as a vector with length A" pointing in the j'h principal 

direction. Thus the arrows in Figure 3.5 are the principal components of the original 

data sct. 

0;. = 11.17 4 
o~ = 0.83 

1 

y' 

.. • 
__ l..._ .. L. __ L __ L._ _~_..L... __ 

-4 • -2 • 2 .0..\ Xl 

• 
M' = 

-3.4 -1.2 

-2.8 -0.4 

-3.6 -1.0 

0.8 -0.6 

-0.2 1.4 

3.6 -0.2 

5.n 0.0 

Figure 3.6. Transformed daIu set and corresponding data matrix. 
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According to Theorem 3.3 AI <!: ••• 2!: A" 2!: 0, so the largest variance is in the direction 

of VI. In the example Al accounts for 93 % of the total variance. Geometrically, this 

means that the data set is spread out mainly in the direction of v" as confirmed by 

Figure 3.5. The fact that the most important information is contained in the first 

columns of M' is used as an heuristic for test-point selection in Chapter 4. 

3.2.2 The Singular Value Decomposition 

This section introduces the singular value decomposition (SVD), and summarizes some 

of its properties. 

Theorem 3.2 

As a result 

where 

(Singular value decomposition) Let A be a complex mxn matrix. 

Then there exist: 

- a unitary mxm matrix U, 

a unitary nxn matrix V, 

- p = min(m,n) real numbers WI <!: ... <!: W, > wr+1 = ... = wI' = 0, 

( 0 ~ r ~ p ), called the singular values of A, 

such that 

U'AV=W, (3.32) 

where W is the real mxn matrix 

(3.33) 

with WI = diag{ wl' ... , wr } a real rxr diagonal matrix. 

(3.34) 



3.22 

(3.35) 

and 

(3.36) 

The singular values WI' ••• , wI' are the lengths of the semi-axis of the hyper ellipsoid 

defined by y = Ax, with IIxl12 = 1. 

The SVD is closely connected to the spectral decomposition (3.27). Define the 

hermitian matrices HI ::: A'A and Hz = AA'. If the SVD of A is given by (3.32), then 

HI = V W2 V' and H2 = U W2 U'. Thus the spectral decompositions of H I and H2 are 

implicitly obtained by computing the SVD of A. The eigenvectors of HI and H2 are the 

columns of V and U, respectively. The eigenvalues of Hl and H2 are the (diagonal) 

1 2 2 elements w~ , ... , wI! of W . 

From A'V = VW it follows that (v], ... , vr ) is an orthonormal base for R(A) (the 

range of A', which is the domain of A). In terms of bases, (3.30) is an orthonormal 

transformation of the unit base (e], e2) of the domain space RZ of A. The base of R2 is 

changed to the base (VI, V2). Thesc base vectors are the eigenvectors of MTM, 

associated with the eigenvalues w~, wi of MTM (where Wi> W2 are the singular values 

of M). Most of the variance in the transformed data set of Figure 3.6 is in the direction 

of the first base vector, because VI is associated with the largest singular value. 

Similarly, from AV = UW it follows that (u], ... , u r ) is an orthonormal base for R(A). 

The SVD of a matrix A provides information about A. For example, rank(A)::: r. 

Furthermore, since U and V are unitary, the norm of A is a function of the singular 

values. For example, the .1-norm of A is 
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11 IIAxllz 
IIAI12 = max -II -II = WI' 

X ... O X 2 
(3.37) 

The condition number of A is 

(3.38) 

It follows that c(A'A) = c(AA") = {C(A)}2. This means that numerical precision is lost 

when the products A'A or AA' are formed. This results in inaccuracies when the 

eigenvectors and eigenvalues of A'A or AA' are calculated directly (in the manner of 

Section 3.2.]). Thus the SVD is not computed like this. Instead, an approach is used 

that does not explicitly form the products A'A or AA'. This is explained in Appendix 

A. 

The next section presents some applications of the SVD. The concepts presented there 

are applied to analog testing in Chapters 4 and 5. 

3.2.3 Applications of the SVD 

According to Theorem 3.2, a complex mxn matrix A of rank r may be written as 

I 11 
A = "wuv' =A(l) + ... +A(r) .LJ I I , , 

(3.39) 
j",1 

where r is the number of nonzero singular values, with r!S min(m,n). The vectors u, 

and V; are defined by (3.35) and (3.36), respectively. Furthermore, rank(A{i) = 1, for 

i=l, ... ,r. 

In (3.39), A is formed from the first r triplets (u; , Vi, Wi). This means that A can be 

completely specified by rem + n + 1) numbers. In its original, unfactored form A is 

completely specified by m . n numbers. This implies that in the case r« min(m, n), A 

is more efficiently stored in its factored form (3.39). Thus the SVD is used for losless 

data compression. 
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Suppose that A is obtained from measurements of a syst~m with a limited number of 

parameters, causing rank(A) < min(m, n) (an example is given in Section 7.3). 

However, A may have full numerical rank due to measurement noise, causing 

r = min(m,n). In this case the SVD can be used to approximate A with a matrix Ak of 

precise rank k in an optimal manner. This is formally stated by the following theorem. 

Theorem 3.3 Let the SVD of a complex mxn matrix A be given by (3.39). 

k 

Furthermore define Ak = k w, u i v; . Then for 0 s k < r = rank(A) 

and for any complex mxn matrix B 

(3.40) 

According to this theorem, the best rank-k approximation of A is obtained by including 

only the first k terms in (3.39). The t2-norm of the error matrix A - A k is Wk+ I. Thus 

Wk+1 is a measure of the precision with which Ak approximates A. For example, 

suppose that A is obtained from measurements, as discussed. If the measurements 

cause a maximum imprecision of £ in the elements of A, a good heuristic is to select k 

in order to let Wk+ 1 ". E. 

Next the SVD is used to find the least-squares solution of a system of m linear 

equations with n variables. 

Definition 3.4 Consider the system Ax "" b, where A is a complex mxn matrix of 

rank r s min(m, n), x is a complex n vector and b is a complex m 

vector. The least-squares approximation x of x minimizes 

Appendix C shows that the problem can be expressed in terms of the normal equations 
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(3A1 ) 

Substituting the SVD (3.34) of A in (3A1) gives 

x =A+b, (3A2) 

where 

(3A3) 

The inverse A+ is also called the Moore-Penrose inverse. It can be proven that (3A2) is 

the smallest minimizer of lib - Axl12 [Golu89]. In the special case where r = n < m, 

VI = V, and A+A = I. Thus (3A3) reduces to the left-inverse of A, conform (CS). 

Alternatively, when r = m > n, VI = V, and AA+ = I. Thus (3A3) reduces to the right­

inverse of A, conform (C6). Finally, if r = m = n then VI = V, WI = Wand VI = V, 

so A + = VWV· = A-I. A geometrical interpretation of the least-squares approximation 

is provided Appendix C 

Note that (3A2) obtains the least-squares solution in a numerically stable manner, 

because the normal equations (CA) are not formed. 

Finally, the advantage of the SVD for detecting near rank-deficiency will be briefly 

discussed. Let the SVD of A be given by (3.32), where r = rank(A). It can be shown 

[Golu89] that 

(3A4 ) 

where a k is the computed value of Ok, for k = 1, ... , n, and E is a small multiple of the 

machine precision. Thus all singular values are computed with a high accuracy. This 

means that near rank-deficiency of A cannot escape detection when the SVD of A is 

used. 

The rank of a complex mxn matrix A may also be detected with other decompositions, 

like for instance the OR decomposition 
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(3.45) 

where Q is unitary mxm matrix, Ril is a rxr upper-triangular matrix of rank r, and IT is 

a permutation. The OR algorithm can detect rank deficiency if, in the course of the 

computation of (3.45), a diagonal element of the completed part of Ril becomes small. 

The problem is, however, that a matrix may be nearly rank-deficient without such a 

diagonal element becoming small. The result is that OR decomposition with column 

pivoting is by itself not as reliable as the SVD for determining rank deficiency. An 

example may be found in [Golu89]. 



4 Using the SVD to TestAnalog Circuits 

This chapter presents a test method for analog circuits based on the techniques of 

Chapter 3. Section 4.1 introduces a linear circuit model that uses a normalized form 

of differential sensitivities. Also it briefly describes how selection of measurements 

and testable parameters results in a row and column reduction of the linear model. 

Section 4.2 discusses the influence of measurement errors on the predictions made 

with the linear model. Formulas are derived that relate normally distributed 

measurement errors to errors in the predictions. Section 4.3 presents a direct test­

point selection method. It will appear that the SVD offers distinct advantages, when 

applied to analog testing. For example, it is not necessary to select a subset of 

testable circuit parameters. With the SVD the method of data analysis that was 

presented in Section 3.2.1 can be extended to a direct method for test-point selection. 

4.1 Introduction 

4.1.1 The Linear Circuit Model 

Section 3.1.1 introduced differential sensitivities, which form a linear relation between 

parameter deviations ClPI"'" !::,.p" and the resulting deviation M of a network 

function, according to (3.4). For example, using normalized sensitivities (3.6), 

4.1 
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(4.1 ) 

Figure 3.3 shows the normalized sensitivities s~:'1 for the circuit of Figure 3.1, where F 

is the voltage transfer function. Consider the influence of Land C on IFI, given by 

6.1 FI -IFI M -IF! 6.C --=s -+s -IFI I. L C C 

= (~~) M + (~2lfl) 6.C . 
IFI aL L I FI ac C 

(4.2) 

Although this is not completely clear from Figure 3.3, s)FI and sri do not decrease to 

zero for high frequencies but asymptotically converge to a constant value. Thus the 

relative influence of Land C is constant for high frequencies. This suggests that it does 

not matter if the influence of these components is considered at 10kHz, or at 20 kHz, 

for example. 

Now the crucial question is: Does this imply that the deviation 6.IFI can be measured 

with equal precision at 10kHz and 20 kHz? To examine this question consider the 

deviation 6.1F1, 

6.IFI= (L alFI) M + (c alFI) 6.C 
JL L ac c' 

(4.3) 

which follows directly from (4.2). 

Of course 6.IFI cannot be measured with infinite precision, as measurement errors must 

be taken into account. Assume for the moment that the maximum measurement error is 

em",. Thus in the worst case 

6.1 iii mc", = 6.1 FI + em,,, 

= (L a I FI) M + (c a IFI) 6.C + e . ' 
AL L AC C m,", 

(4.4) 

where 6.\Flmca.< denotes the measured value of tl.\FI. It is reasonable to demand 6.1F1 > 

emax, in order to be able to measure 6.IFI with sufficient accuracy. 
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According to Figure 3.2, the nominal output voltage, and thus IFI, decreases to zero 

for high frequencies. As discussed, st(u',)i and Sl!'"("',)1 remain at a constant value for 

high frequencies. Using the definition 

,5-11"(',),)1 = Pj alF(wJ 
Pi IF(w;)! aPj 

(4.5) 

it follows that, 

(4.6) 

because Pj ;0' 0 in (4.4). Thus, according to (4.4) and (4.6), the influence of deviations 

in Land C becomes less measurable for increasing frequencies. This is not apparent 

from the sensitivities sri and sri. Thus using normalized sensitivities (3.6) to select 

measurements does not necessarily lead to useful results. It is not apparent from these 

sensitivities that measurements of the deviation .1.1F1 are more precise at 10 kHz than at 

20 kHz, for example. 

This problem may be remedied by including the limited measurement precision in the 

sensitivities. As will be discussed in Section 4.2, the measurement error at 0Jz may be 

modeled as a random variable E; , with standard deviation a E, • Thus the normalized 

standard deviation of E; is a E, /F(w;). The limited measurement precision may be 

incorporated into (4.1) by dividing the sensitivities sri by at, /F(w;). Thus (4.1) 

develops into 
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which can be written as 

M(w;) = SJ Llp, 
<J E, 

(4.7) 

The sensitivities according to (4.7) are depicted in Figure 4.1, for the circuit of Figure 

3.1. It is assumed that all measurement errors have a standard deviation of 1 mY. ]n 

contrast to Figure 3.3, in the case of Figure 4.1 the sensitivities vanish for higher 

frequencies. This means that at high frequencies LlIFI cannot be measured with 

sufficient accuracy. Furthermore (4.7) also models the situation where the 

measurement errors are different in (expected) magnitude for different measurements. 

In this case the standard deviation a E, may be different for each measurement. 

0 
J!.L aIF(f)1 
(J 1:, ap, 

(mVrl 
-5 

-10 

~u 

-15 
0.2 5 

f (kHz) 

Figure 4.1. Normalized sensitivities for the circuit of Figure 3.1, taking into 
account the measurement errors. 

Assume that the m row vectors s; ," "s: are obtained by calculating the sensitivities at 

m different frequencies. Then m relations (4.7) are obtained, which may be stacked to 

obtain the linear model 
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S~p = ~F , with S ~ ~ 
and I1F= 

(J }'I 

(4.8) 

a r~tI, 

Here S is the m x n complex sensitivity matrix. Element (i, j) of S is the normalized 

sensitivity Pj sP(,,,,) If the relative parameter deviations I1p are known then (4.8) 
a PI 

E; 

predicts the circuit behavior at m frequencies. In the rest of this chapter, the right-hand 

side of (4.8) will be referred to as output vector. 

The m frequencies are provided by a human designer before the sensitivities are 

calculated. It is common practice to select a fixed number of frequencies per decade, 

equally spaced on a logarithmic scale. The frequency range depends upon the 

frequency range in which circuit behavior must be verified. Consider the second-order 

lowpass filter of Figure 3.1, for example. According to Figure 3.2, the breakpoint is at 

1 kHz. Therefore the frequency range is centered at 1 kHz. The range of the useful 

measurement frequencies is estimated from sensitivity plots like Figure 4.1. Whether or 

not a measurement is useful depends upon the expected deviation of the output, 

relative to both the maximum expected deviation and the magnitude of the 

measurement errors. The number of frequencies per decade depends upon the rate of 

change of the circuit sensitivities as a function of frequency. This in turn depends upon 

the order of the filter: For a higher-order filter the number of sensitivities per decade 

should be higher. 

Until now only frequency behavior has been discussed. However a linear model of the 

form (4.8) is also applicable in the DC domain, as well as in the time domain [Dai90], 

[StenS7]. For DC testing of non linear circuits, the circuit behavior is linearized for 

each value of the circuit input voltage. (This is equally valid in the case of multiple 

circuit inputs.) Like this, the complete non linear behavior is described at a discrete 
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number of input stimuli, analogous to the discretization of the frequency range that 

was described above. 

A model of the form (4.8) can also describe the behavior of mixed analog/digital 

circuits. This will be demonstrated in Section 7.3, for a digital to analog converter that 

uses a ladder network of resistors. Each switch combination corresponds with a linear 

circuit, and therefore for each switch combination the DC sensitivities may be 

calculated. In this case the rows of S correspond with all possible switch combinations. 

For an r-bits converter, S consists of m = 2/' rows. 

To use a model of the form (4.8) in the time domain, time-dependent circuit behavior is 

discretized in time, and each row of S corresponds with a specific time. The result is a 

linear system of the form 

S~p = ~F , with S = 

n s F (',) 

o P, 
E, 

M(t ,) 

a 
and L'l.F~ ,£, 

M(tm) 

OF", 

Efficient computation of the sensitivities Pi sF(I,) was discussed in Section 3.1.4. 
OF P, 

" 

In principle the number of rows of S may be chosen arbitrarily large, since the test 

method will cope with possible redundancy in S. However, if the number of rows is 

very large then the selection of test points may become time consuming. If test-point 

selection must be performed on-line I then this is a problem and an effort should be 

made to limit the number of rows of S. 

, A situation where on·line lest·point selection occurs is with the detection of large parameter deviations by 

repeated application of a linear model, as will be discussed in Section 4.3.5. 
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The sensitivities depicted in Figures 3.3 and 4.1 were calculated for a frequency range 

of 0.2 kHz to 5 kHz. Per decade the sensitivities were evaluated at 100 frequencies, 

equally spaced on a logarithmic scale, producing a total of 140 sensitivities per 

component. In Figures 3.3 and 4.1 the sensitivities for each component were joined by 

line segments to obtain a continuous curve. The segmentation is hardly noticeable 

because of the large number of frequencies per decade. In Figure 4.1 each of the three 

graphs corresponds with a column of S. On the other hand, Figure 4.2 plots the 

sensitivities in a different manner. There each symbol corresponds with a row of S, 

giving a total of 140 symbols. The discretization is purposely left visible. Figure 4.2 

shows that the sensitivities are in a two-dimensional plane. This demonstrates more 

clearly the correlation between the sensitivities that was already discussed in Section 

3.1.3.1. Plots like Figure 4.2 will be used to explain test-point selection. 

10 x x x 
x .. ' x 5 ;/ 

'X 
x 

X 

N 
0 

/ x 
·5 

-10 )( XX . 
X . 

X 
x 10 

x ·10 y 

x=~.ilfl (mYr' 
Of., aR 

y =...!:..... alFI (mY)" 
01:, aL 

z=~ilfl (mY)" 
0,. .• ac 

Figure 4.2. 3-dimensional plot of the sensitivities as a junction 
of frequency, for the circuit of Figure 3. I. 

4.1.2 Introduction to Test~Point Selection 

In the presented approach, test-point selection, response prediction and the 

determination of a subset of testable circuit parameters are based on the linear model 
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(4.8). To facilitate the discussion of these topics some definitions are given. An effort 

has been made to ensure that the defined terms comply as much as possible with the 

accepted nomenclature in the testing community. 

Definition 4.1 An input stimulus is defined as a circuit variable (branch voltage or 

current) that is generated by a vOltage source or current source, thus 

serving as a circuit input. 

A circuit output is defined as a measurable network function. 

A test node is defined as any circuit node that is accessible for 

measurements. 

Test nodes are accessible through test needles on the bonding pads of an integrated 

circuit, for example. In integrated circuits it is often not possible to measure the 

currents through internal circuit branches. Thus network functions that include such 

currents do not qualify as circuit outputs. 

Definition 4.2 Consider a circuit with k input stimuli (Xl'''' ,xk ) and I outputs 

(YI' ... ,y,). 

A test-point is defined as a (k+ 1 )-tuple (Xl'"'' X., y,), with 

i E[l, ... ,I]. This should be interpreted as follows: A test-point 

specifies the measurement of a circuit output while a specific input 

stimulus is applied. Each test-point corresponds with an integer 

number: the index of the corresponding row of S. 

Note that, according to Definitions 4.1 and 4.2, a test-point has no one-to-one 

correspondence with a test node. Different test points may specify measurements at a 

single test node, but for different frequencies or time points, for example. 

Chapters 1 discussed applications of analog testing. As far as the current chapter is 

concerned, the goal of analog testing is either to verify the circuit behavior or to 
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determine the values of the testable circuit parameters. Whether or not a circuit 

parameter is testable depends upon the relative accuracy with which deviations of its 

value can be determined, as will be explained in Section 4.2. 

To accomplish the mentioned goals, an analog test method should select the input 

stimuli that sensitize the circuit outputs to possible errors in the circuit components. 

This accomplished by test-point selection. Clearly the number of test points must be 

kept to a minimum to make the test as cheap as possible. If a method is to be useful in 

a practical situation then it should take into account the influence of measurement 

errors, as will be explained in Section 4.2. 

As remarked, a test-point has a one-to-one correspondence with a row in S. Thus, as 

far as this chapter is concerned, the goal of a test method is to select a subset of the 

rows of S. Like this the set of rows of S may be considered as a set of candidate lest 

points. A test method tries to select a minimal and sufficient subset of the set of 

candidate test points. The selected test points correspond with a row reduced S, 

denoted by2 Sr.. In general it is not possible to detect changes in all the circuit 

parameters, due to a circuit's limited accessibility for measurements. Therefore a 

subset of testable parameters is selected, corresponding with a column-reduced S, 

denoted by S.,. Like this the selection of test points and testable parameters results in a 

row and column reduced sensitivity matrix Srr. In the rest of this chapter it is assumed 

that k test points and r testable parameters are selected, so Srr is a kxr matrix. 

The number of test points is not necessarily equal to the number of testable parameters. 

In fact it is often advantageous to select more test points than parameters, so k > r. 

The reason is that the parameters may be solved with higher accuracy from an 

overdetermined system in the presence of random measurement errors. In this chapter 

the situation k < r does not occur, since this would not allow the values of all the 

2 The subscript "r" in S,. is shorthand for "reduced" and should not be confused with the variable r. 
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testable parameters to be determined. Furthermore it is assumed that Srr has full 

column rank, because its columns correspond with testable parameters. 

4.2 The Influence of Measurement Errors 

Section 4.1.1 showed that a test method should take into account the influence of 

measurement errors. Such errors unavoidably occur because physical quantities like 

voltages or currents cannot be measured with infinite accuracy. Measurement errors 

may coarsely be divided into two categories: systematic errors and random errors. 

Systematic errors may be caused by equipment that is not properly calibrated, or an 

offset voltage that has not been taken into account, for example. In addition, 

systematic errors need not be constant but may change when the range of a voltage 

meter is changed, for example. However, systematic errors may be eliminated by a 

careful design and construction of the test bed and measuring equipment. Therefore it 

is assumed that no systematic errors are present. 

On the other hand, random errors are caused by limited preCision of the measurement 

equipment and random noise. Random errors will always be present, regardless of the 

quality of the measuring equipment, or the carefulness with which a test bed is 

constructed. One can only hope to reduce the influence of such errors so that the 

circuit property of interest may be measured with sufficient accuracy. Often it is 

necessary to make more measurements than strictly necessary to further reduce the 

influence of random fluctuations. 

If frequency measurements are made, the influence of random measurement errors can 

be reduced by using lock-in amplifiers. Such a device can be set to measure a circuit 

variable at a certain frequency III' At the input of the lock-in amplifier is a high-order 

bandpass filter centerd at III' In addition, the measured circuit variable is averaged in 

time. Thus, the influence of measurement noise is greatly reduced. 
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This section takes into account the random measurement errors by representing them 

as random variables. Suppose that k test points (rows of S) arc selected, corresponding 

with k measurements to be performed. The measurement errors are assumed to be 

mutually independent. Thus they are represented] by uncorrelated random variables 

E I , ••• ,Ek , where Ei has mean !LE, and a variance a;:,' Because there are no 

systematic errors !Lt· = O. Furthermore the covariance a F f = 0, for i .. j, because 
-, ","/ 

E, and Ej are uncorrelated. Thus the covariance matrix C£ (conform (8.3), Appendix 

B) of EI , ... ,Ek is 

CE = diag(l, ... , 1) = I. (4.9) 

where the normalization according to (4.7) is applied, The observed (i.e., actually 

. T measured) values of E) •... ,Ek are collected In the k-vector e = (e l , ••• ,ek ) • 

Like the measurement errors, also the observed deviations of the circuit outputs (again 

normalized according to (4.7) are represented by a vector of random variables: AY, "" 

(At; , ... , Al\)I. An observation of AY, is denoted by AYr = (AYI"'" AYk)l. Now 

define 

A 
A~ = S"Ll..p, + E , (4.10) 

Because S"Ap, is constant4 for a given Ap, it follows from (4.8) and (4.10) that, 

= S"Ll..p" 

'The used notation is defined in Appendix B. 

• The nominal parameter values ,He assumed to be constant. and the input vector is assumed to bc dClcrministic. 

and not disturbed hy fluctuations. 
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since 11 F = 0 . Furthermore a ~ = a~. , for i = 1, ... , k. It follows that the covariance 
.~ r ~ I 

matrix C y, of 1'; , ... , Y. is equal to CE : 

(4.11 ) 

From (4.10) it follows that 

(4.12) 

which is the relation between measurement errors, parameter deviations and observed 

circuit outputs. In the hypothetical case of zero measurement errors, ","Yr = S"","p,. 

Assume that ","Yr is obtained by k measurements. Now an estimate for the parameter 

deviations ","p, must be obtained. According to Definition 3.4, the least squares 

estimate "'"P r of ","pr minimizes the residual 

(4.13) 

According to (C.5), Appendix C, the least squares approximation of ","Pr is obtained as 

(4.14) 

which may be obtained using the pseudo-inverse of Srr, as explained in Section 3.2.3. 

The influence of measurement errors on the estimated parameter deviations is 

determined on the basis of (4.14). Analogous to the measured output deviations, the 

estimated parameter values may be modeled by a vector of random variables P = 

(~ , ... , P, f , where r is the number of selected testable parameters. It was explained 

that the measured output deviations in (4.14) are observations of random variables 

","Yr, with an associated covariance matrix C y given by (4.11). Thus, according to 

(4.14) 

( 4.15) 

. ... -I T 
with A=(S"Srr) Srr' Because !-lYe =0 for i=I, ... ,k also !l-j~ =0 for i=1, ... ,r. 
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Furthermore the covariance matrix C. may be determined from (BA) as 
P, 

-\< -I" :f_1 
= (SrrS,,) Srr I S,,(SrrSrr) (4.16 ) 

• -I 
~ (SrrSrr) 

This expression models the influence of measurement errors on the estimated 

parameter deviations. The magnitude of the th diagonal element of C i" indicates the 

precision with which the value of the i 1h parameter can be estimated: A large variance 

signifies a low parameter testability. Like this a parameter is considered testable if the 

variance of its estimated deviation is below a certain limit. The off-diagonal elements of 

C. contain the parameter covariances. Note that (4.16) is only valid in the case of a 
P, 

linear model of the form (4.8). Thus, the predictions (4.16) are valid only if the 

parameter deviations ~p, are sufficiently small. Chapter 7 shows an example where 

(4. t 6) is accurate for parameter deviations smaller than approximately 5 %. 

The influence of the measurement errors on the predicted circuit response can be 

determined in the same manner as shown above for the predicted parameter deviations. 

After the estimates (4.14) of the parameter deviations are obtained the complete circuit 

behavior may be predicted as 

(4.17) 

Here y is an m-vector, containing the response estimates (the predicted output vector) 

at all m candidate test points. S., is an m x r matrix that contains those columns of S 

that correspond with testable parameters, as explained in Section 4.1.2. The predicted 
~ ~ ~ T 

output (4.17) may be represented by a vector of random variables Y = (~, ... , 1';,,) . 

Thus 

t1y =S.,~. (4.18) 



4.14 

Because f.li~ =0 for i=I, ... ,r, also f.l y, =0 for i=I, ... ,m. Note that, like (4.15), 

(4.18) is a linear map between two vectors of random variables. Thus, using (A.3) and 

(4.16), the covariance matrix Cy may be determined as 

C i = S.,Cp,S:, 
(4.19) 

= S.,(S~SITrIS:, 

Note that, because of the normalization used in (4.7), the i1h row of C y is normalized 

on a~., the measurement variance at the i'h candidate test-point. Thus, if the i'h 
" 

diagonal element of Cy is 1, the output at the i 1h candidate test-point is predicted with 

a precision equal to the measurement precision. Section 4.3 will use the prediction 

(4.16) to determine the number of selected test points. 

As yet no assumptions have been made about the probability distribution of the 

measurement errors. The only assumptions were that the circuit model is linear, that 

there are no systematic measurement errors, and that the measurement errors are 

mutually independent. Next the probability distribution of the measurement errors is 

taken into account. 

The selected test points correspond with measurements of a physical quantity, like a 

voltage or current. The normal, or Gaussian distribution I Bevi69], [Walp93] is 

especially suitable to model such measurements. Lc. Y be a random variable with mean 

f.ly and variance a; .. If Y is normally distributed then its prohability density function is 

(4.20) 

Figure 4.3 dcpicts the standardized normal distribution. It has several well-known 

properties. In the context of this section the following property (which is not proven 

here) is of interest. Assume that the measurement errors arc normally distributed. 

Then, according to (4.20), the i 1h measured circuit output is normally distributed. Now 

consider the linear mapping (4.15). Because the random variables in Ll Yr arc normally 
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distributed, also the random variables in M', are normally distributed. In this sense the 

probability distribution has a reproductive property. Note that this reproductive 

property is certainly not shared by all probability distributions. Because the parameter 

estimates are normally distributed, it is now clear from the linearity of mapping (4.18) 

that also the predicted outputs are normally distributed random variables. 

Furthermore, if the parameters estimates are normally distributed then the least squares 

approximate is also the maximum likelihood estimate [Walp93]. This means that the 

likelihood of measuring the deviations /).y, is at a maximum for the least squares 

estimate /).p, of (4.14). 
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Figure 4.3. The normal probability distribution. 

4.3 Direct Test-Point Selection 

This section uses the SVD of a linear model of the form (4.8) to select test points. To 

simplify the discussion, it is assumed that a linear frequency-dependent circuit is tested. 

However the presented methods are also applicable to nonlinear circuits in the DC and 

time domain, as explained in Section 4.1.1. 

Again the lowpass filter of Figure 3.1 will be used for the purpose of illustration. For 

that example only measurements of the magnitude of the complex voltage transfer 
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function are made. The sensitivities in S are normalized as in (4.8) to take into account 

the magnitude of the measurement errors. Thus, for this example, the sensitivities are 

real numbers defined by 

(S).. = ~ Re{_l_sF(,,,,)} , 
'I a I'i F(w,) P, 

(4.21) 

where (S\) denotes element (i, j) of S, F is the complex voltage transfer function, and 

Pi is the nominal value of the l circuit parameter. Expression (4.21) is readily obtained 

from (3.9) by using the sensitivities (4.8). In this example, a i:, = 1 mV for all 

candidate tcst points. Because the input voltage has a fixed amplitude (1 V, according 

to Figure 3.1) the selected measurements of j Fj directly correspond with 

measurements of 1,<,1, normalized on the measurement errors. 

A test method uses test-point selection to select a subset of the m rows of S, 

corresponding with a set of test points. A direct method for test-point selection is 

presented in Section 4.3.2. First, the next section discusses a form of column reduction 

of S. This is a necessary preliminary step because in the general case S does not have 

fuJI column rank. 

4.3.1 Dealing with Untestable Parameters 

This section uses the SVD of the sensitivity matrix S to cope with parameters that have 

a very low testability, or are completely untestable. A parameter is considered 

untestable if, for example, its influence on the circuit behavior is so small that it Cannot 

be distinguished from the influence of the unavoidable random errors that disturb the 

measurements. It is also imaginable that, in the presence of measurement errors, it is 

not possible to detect the individual influence of the members of a group of two or 

more parameters. Such a group is called an ambiguity group [Sten89]. The usual 

approach is to consider only one parameter in an ambiguity group testable, rendering 

the other parameters in the group untcstable. 
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A common solution is to fix parameters with a low testability at their nominal values 

[Dai90], [Hemi90], [StenR7]. Correspondingly, the best estimate of the deviation of 

untestable parameters is zero. The underlying assumption is that this estimate is more 

precise than a deviation that is calculated from measurements. This effectively drops 

the columns that correspond with untestabJe parameters from the linear model (4.8). 

Like this the number of degrees of freedom of this model is reduced by excluding 

parameters that have a too low influence on the circuit behavior. 

A column reduction of S is commonly performed with a routine that resembles a 

routine for test-point selection [Dai90], [Hemi90], [StenS7]. Such an approach utilizes 

a criterion that judges the benefit of including a certain column of S. Alternatively, this 

section shows how to use the SVD to accomplish a kind of column reduction that is 

based upon the optimal approximation of matrices discussed in Section 3.2.3. 

Consider the SVD of the m x n sensitivity matrix S, given by 

S=UWy' , (4.22) 

where U, Wand Yare defined in Theorem 3.2. The SVD of S may of course be 

written as 

(4.23) 

because Y is unitary. The i'h column of Y contains the coordinates of the i'h 

eigenvector of S·S with respect to the unit base of R". According to (4.23), S is 

transformed into another m x n sensitivity matrix S' by right multiplication with the 

unitary V. By substituting into (4.22) the definition of S' it follows that S = S' Y' . 

Substitution of this last expression into the linear system (4.8) results in 

S' t\p' = LlF, with p' ~Y'p. (4.24) 

Because V has full rank, (4.24) is completely analogous to the original system (4.8). It 

describes the circuit outputs in terms of a transformed sensitivity matrix S' and 
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deviations Lip' of new parameters p' = (P,' , ... , p,,' yr. Note that there is a one-to-one 

correspondence between the rows of S and the rows of S' , so test-point selection can 

be accomplished by selecting a subset of the rows of S' . This will be discussed in a 

later stage. 

Note that the transformation (4.8) - (4.24) is analogous to the transformation that 

was used to obtain (3.30) in the data set example presented in Section 3.2.1. There the 

transformation corresponded with a rotation and mirroring of the data set of Figure 

3.4, resulting in the data set of Figure 3.6. Similarly, the transformation with V that 

obtains (4.24) corresponds with a rotation and mirroring in three dimensions of the 

circuit sensitivities depicted in Figure 4.2. The result is depicted in Figure 4.4. In this 

example, Sand S' both have three columns, corresponding with three parameters. The 

coordinate axes of Figure 4.4 correspond with the first two new parameters, P,' and 
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rn contrast to the original circuit parameters p, the new parameters p' are 

uncorrelated. This follows from the covariance matrix: 

Cpo = [(S' ). s' r 
= [(UW),UWr (4.25) 
= W-2 

d· (-2 -2) = lag w! , ... ,w" 

which has zero off-diagonal elements, and thus the covariances of the new parameters 

are zero. Furthermore, the diagonal elements of (4.25) are sorted t( increasing 

magnitude because it are the inverse squares of the singular values) of S. Thus, for the 

example of Figure 3.1, PI' has the highest testability, Pl' has second highest 

testability, and P3' has lowest testability. This shows that Figure 4.4 depicts the 

sensitivities to the two new parameters with the highest testability. For the example of 

Figure 3.1, the three singular values of S are calculated as w! = 92.33 -10\ 

w2 = 27.56 -10' , and w, = 0 within the precision with which the singular values are 

calculated. Thus rank(S) = 2, corresponding with two testable parameters. This is not 

surprising because the sensitivities in Figure 4.2 are in a two-dimensional plane. Figure 

4.4 depicts just this two-dimensional cross section from g'. 

According to Theorem 3.3, the bes{' rank k approximation of S is given by 

k 

S. = ~ WjUjV; , 
f:f 

(4.26) 

where Sk is an m x n matrix. For the transformed sensitivity matrix (4.23) the best rank 

k approximation is 

S', = UWk , with W k = [:rr I ~] and Wrr ~diag(w! , ... ,w.), 

5 The singular values of S arc sorted to decreasing magnitude, according to Theorem J.4. 

" With regard to 2'nmm, as explained in Theorem 3.5. 

(4.27) 
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where both S' A and W k are m x n matrices. Now define the m x k matrix 

S'.,~U"WIT' (4.28) 

where U., is an m x k matrix containing the first k columns of U. Then it follows that, 

if rank(S) = k, the output deviations are given by 

S'., Ap' , ~ AF , (4.29) 

where Ap', ~(Apt' , ... , I1Pk' )'1. Note that the linear system (4.29) is directly obtained 

from the SVD of S, as defined by Theorem 3.2. The matrix S'., is obtained as (4.28), 

and Ap', contains the first k new variables. If rank(S) > k (4.29) gives the output 

deviations for the best rank k approximation of S. Therefore it has now been shown 

that the mentioned column reduction may be obtained directly from the SVD of S, 

without further computational effort. Note that a rank k approximation of S that is 

obtained by selecting a subset of the columns of S is never better than the 

approximation (4.26). Therefore, (4.29) is the most accurate rank k description of the 

output deviations, in the general case of a matrix S with rank(S) :s n. 

The remaining issue is how to determine k, the number of testable parameters. For 

higher k, (4.29) more accurately describes circuit behavior, because S' k more precisely 

approximates Sk. However the influence of random measurement errors On the 

parameters increases, because the last parameter(s) will have low testability. In this 

respect, a trade-off will have to be made between the precision of the linear model and 

the intlucnce of random measurement errors. Section 4.3.3 further discusses this issue. 

For the example of Figure 3.1, rank(S) = 2, so S = S2, and the deviation of the outputs 

arc exactly described with the column reduced system 7 

] Here ny ,lenotes the exact output deviations. not taking into acc(luntlhe measurement errors. 
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As discussed above, this means that Figure 4.4 depicts all the sensitivity information 

for the circuit of Figure 3.1 in just two dimensions. 

4.3.2 A Direct Method for Test-Point Selection 

Consider functionailesting, where one is only interested in verifying whether or not a 

circuit's behavior is within agreed bounds. It is not necessary to determine the 

testability of the circuit parameters p, or their deviations ~p, as long as an accurate 

prediction of the complete circuit behavior is obtained from the selected measurements. 

Of course the effect of non testable parameters must still be incorporated. This may be 

accomplished by using (4.29) to relate the circuit outputs to k new parameters i1p'r' in 

the case of a rank k approximation to the sensitivity matrix. For functional testing it is 

not important what subset of the original circuit parameters contains testable 

parameters. Only the observed circuit behavior is of importance. 

Test points arc selected from the set of candidate test points that correspond with the 

rows of S' . For the moment, the goal of test-point selection is to select a minimum 

number of measurements with which the functionality of the circuit may be verified. A 

few observations follow directly from the discussed plots of the circuit sensitivities. 

First it seems logical to measure a circuit output at a frequency where a possible 

deviation (caused by non nominal circuit components) is distinctly noticeable. In other 

words: A measurement should be made where the sensitivity of a circuit output to 

component deviations is high. ]n that case it is more likely that the output deviation can 

be distinguished from fluctuations caused by random measurement errors. 

Second, the measurements should be as independent as possible. Loosely speaking, this 

minimizes the number of measurements by selecting one measurement per 
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independently measurable circuit property. Next a straightforward method for test­

point selection is derived on the basis of these arguments. 

Consider the sensitivities of Figure 4.4. For clarity this plot is redrawn in Figure 4.5, 

where both coordinate axes are now drawn to the same scale. A test-point is denoted 

by a symbol '0'. It was shown in the previous section that PI' has the smallest 

variance, so /t" PI' may be determined with the highest precision. This is confirmed by 

Figure 4.5, where the main axis of the sensitivity ellipsoid is almost parallel to the 

coordinate axis that corresponds with the sensitivity to PI' . Similarly, the sensitivity to 

the (uncorrelated) parameter P2' is second highest. 
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Figure 4.5. Direct test-point seiectioll for the circuit of Figure 3.1. 

Test-point selection corresponds with selecting dots in Figure 4.5. The first test-point 

is selected where the sensitivity to PI' is at a maximum. Thus the first test-point is 

selected to measure PI' with the highest possible precision. In principle, this procedure 

is repeated for the second test-point. However there is an additional criterion that 

influences the selection of the second test-point: it should be independent from the first 

test-point. 
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This is accomplished as follows. The sensitivities may be seen as endpoints of vectors 

that start from the origin. The direction of the vector associated with the first test-point 

is indicated by a grayed line a in Figure 4.5. For the second test-point only the 

components of the sensitivity vectors are considered that are orthogonal to line a. For 

the second selected test-point this orthogonal distance is indicated by a grayed line b. 

This particular test-point is selected because line b has the largest component in the 

direction of P2' (indicated by the vertical black line). Thus the second test-point is 

selected to measure deviations in P2' , while ensuring its independence from the first 

test-point. 

The algorithmic counterpart of the discussed graphical method is derived easily. The 

first test-point is selected where the sensitivity to PI' is at a maximum. Thus the first 

test-point is the row index of the largest element in the first column of S' . Next the 

remaining m - 1 rows of S' are orthogonalized to the selected row to remove 

redundant information. The second test-point is selected as the row index of the largest 

element in the second column of 8' . Then the remaining m - 2 rows of S' are 

orthogonalized to the second selected row. The process continues until k test points 

are selected, where k is the number of testable parameters. The numerical stability of 

this method is sufficient because the number of test points that is selected is in general 

much smaller that n. 

The result of the discussed method is a k x k matrix S'rr . The parameter deviations arc 

estimated as 

A, (s" S' )-IS" ~ ~p r= rr rr rr Yr , (4.30) 

in accordance with (4.14). The SVD of S' rr may be used to compute (4.30), according 

to (3.43). After the parameter deviations arc estimated, the predicted circuit output is 

obtained as 
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(4.31) 

in accordance with (4.17). 

For the example of Figure 3.1, k = rank(S' ) = 2 and therefore two test points were 

selected. They correspond with measurements of the magnitude of the voltage transfer 

function at frequencies of Y57 Hz and 1.07 kHz. To check the quality of the selected 

points, the complete circuit response was predicted from the two corresponding 

measurements. A deviating circuit was simulated by randomly setting the component 

deviations at M = -1.04 %, M? '" -4.40 % and Lle = -1.76 %. The behavior of the 

deviating circuit was then obtained with a circuit simulator. Measurements of the 

output voltage were simulated by adding to the output voltage a Gaussian distributed 

random variable with a standard deviation of 1 mY. 

The prediction (4.31) is depicted in Figure 4.6, together with the error in the 

prediction. Each continuous curve was obtained by joining the 140 calculated points 

with line segments. 
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Figure 4.6. Predicted re.lpo/lSe deviation for the circuit of Figure 3.1. 
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It appears that the deviating output was predicted with good accuracy. At all 

frequencies the error is small, relative to the predicted deviation. Also for other 

examples (presented in Chapter 7) the discussed direct method provides accurate 

predictions. Naturally, such examples do not prove that no better test points are 

possible. To be able to discuss the "quality" of a set of test points some criterion is 

necessary. This issue is further discussed in Chapter 5. It has been confirmed that, 

according to the D-optimality criterion that is discussed there, the two test-points of 

Figure 4.5 are optimal. 

4.3.3 Determination of the Number of Test Points 

The direct method that was discussed in the previous section selects test-point i to 

measure the deviation flp,'. Thus it selects one test-point per testable parameter. 

According to (4.25) the testability of p/ decreases with increasing i. Associate a 

random variable A' with each estimate p;' . Then a measure for the testability of p/ is 

the covariance 

2 (CS" S' )-1) 0/). = rr rr .. , 
, n 

(4.32) 

where S'IT is a k x k matrix, assuming that k test points are selected. Equation (4.32) is 

directly obtained from (4.16) when Srr is substituted by S'IT' Because the relation 

between the deviations 6.p'r and the circuit output deviations is linear, the estimated 

parameter deviations !lP I = (~' , ... ,~,? are normally distributed. 

The manufacturing process that is used to produce discrete parameters or integrated 

circuits will show certain fluctuations. This is the result of imperfect control of the 

process parameters, and is unavoidable. The process fluctuations cause deviations of 

the circuit parameters. These deviations are modeled as normally distributed errors that 

are added to the circuit parameters p. Thus the circuit parameters are modeled as a 

vector P of random variables, with Ill', = Pi and a covariance matrix Cpo Because 

p' ~ V· p is a linear relation, (B.4) may be used to calculate the variance of the new 
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parameters. Associate a vector P' of random variables with the parameters pi . Then 

the covariance matrix of the new parameters is 

(4.33) 

and o~. = (C p ,)", 
, " 

It seems reasonable to consider Pi untestable if 

0: 
P' • 

-2-' > Yj , WIth Yj '" 1. 
op

l
r 

(4.34) 

For Yj :::; 1, (4.34) means that the precision with which the testable parameters are 

estimated is at least equal to the expected precision, keeping into account the 

deviations of the manufacturing precision. 

It is not always possible to estimate the variances and covariances of all circuit 

parameters from available information about the production process. However, 

suppose that the maximum variance that is caused by the production process is 

estimated as O~iIIl for all circuit parameters. In that case, because V is unitary, 

07:, = o~"n' for all new parameters. In this case, a parameter is untestable if 

0: 
P' 

-, '- > Yj, with Yj ... 1. 
a~<ln 

(4.35) 

Criterion (4.35) is used to determine the number of test points. Suppose that k + 1 test 

points are selected. Then the variances (4.32) are calculated. Note that pi hI has the 

0: 
lowest testability. Therefore, if ~ > Yj, then the number of test points is determined 

a~.an 

as k and the test-point selection is completed. The effectiveness of criterion (4.34) will 

be demonstrated with examples in Chapter 7. 
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4.3.4 Selecting a Subset of Testable Parameters 

In some applications it is necessary to determine the testability of the parameters p, as 

discussed in Section 3.1.2. For example, it may be necessary to evaluate the influence 

of the parameters on the circuit behavior to obtain a robust circuit design. In this 

context it is useful to determine the testability of a parameter, because it is directly 

related to its influence on the circuit behavior. This is the goal of a testability analysis. 

A subset of the testable circuit parameters may be found with the direct method for 

test-point selection of Section 4.3.2. Since each parameter corresponds with a column 

of S, selecting a subset of parameters corresponds with selecting a subset of the 

columns of S. This may be accomplished by using the direct test-point selection 

method to select a subset of the rows of ST. Note that the SVD of the n x m matrix ST 

consists of the same matrices as the SVD of S: 

ST = (uwvT 
= (VTwUT 

¢> STU= VW 

(4.36) 

Here V denotes the matrix that is obtained from V by replacing each element of that 

matrix by its complex conjugate. Thus, analogous to (4.23), a new n x m matrix 

s"= VW (4.37) 

is defined. A subset of testable parameters may be determined by performing test-point 

selection on S". According to (4.37) this matrix is immediately obtained from the 

SVD of S. Therefore the computational effort of parameter subset selection is smalL 

After the test points and parameters have been determined, the parameter variances 

(4.16) may be calculated. 

A testability analysis was performed for the circuit of Figure 3.1. The measurement 

errors have a standard deviation of I mY. Parameters C and L are selected as testable 

parameters. Their standard deviations are computed as 7.06,1 O-J % and 7.12 .1O-J %, 
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respectively. It follows that the influence of these parameters on the circuit behavior is 

large. The high precision with which the parameters are determined is caused by the 

relatively small measurement errors. 

4.3.5 Dealing with Large Parameter Deviations 

This section discusses test-point selection and response prediction when the deviations 

of the circuit parameters are large. In that case the linear model (4.8) no longer 

accurately describes the (non linear) influence of the parameter deviations on the 

circuit output. However it is possible to repeatedly apply test-point selection to obtain 

an accurate response prediction. This may be implemented as follows. 

First the linear model (4.8) is calculated by computing the circuit sensitivities, on the 

basis of the nominal parameter values. Then test-point selection is performed and a 

group of testable circuit parameters is identified. After the measurements are made the 

estimates (4.14) are used to update the values of the circuit parameters. The resulting 

values are a first order estimate of their actual values. On the basis of this first order 

estimate an updated linear model is calculated, and test-point selection is again 

performed. This procedure may be repeated several times. It stops when the parameter 

deviations do not change in the next iteration. 

This approach is used in the literature with good results [Dai90]. Still this technique 

offers some problems. For example, it is not clear what are the convergence properties. 

Furthermore the efficiency is not very high. For example, there exist techniques that 

can efficiently update the sensitivities [8ray80] after new measurements have been 

made. Thus they do not have to be calculated from scratch in each iteration. Finally, it 

is problematic that a complete set of measurements has to be made in each iteration. 

Thus the total number of measurements can grow quite large. A possible alternative 

approach that uses the SVD is suggested in Section 7.4. 
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4.4 Discussion 

This chapter discussed the application of the SVD to analog circuits testing, on the 

basis of a linear circuit model, defined by a sensitivity matrix S. Section 4.1.] showed 

that the expected magnitude of the measurement errors must be taken into account to 

obtain a useful linear model. The resulting model uses a particular normalized form of 

differential sensitivities. Section 4.2 derived practical formulas that estimate the 

influence of random measurement errors on the precision of the predicted circuit 

response and parameter deviations. 

The examples in Chapter 7 will show that these formulas are accurate when the 

parameter deviations are less than approximately 5 %. Section 4.3.1 used the SVD of 

S to find a set of orthogonal parameters that are optimally suited to predict the circuit 

response for functional testing. This approach quite naturally lead to a new column 

reduced linear model of full rank. The obtained parameters are optimal, as was shown 

in Chapter 3. Section 4.3.2 presented a direct method of test-point selection that 

selects test points to determine one by one the deviations of the new, optimal 

parameters. A criterion was introduced in Section 4.3.3 that determines the necessary 

number of test points, based on the magnitude of the measurement errors. It appeared 

that, the number of test points is determined by the testability of the last added 

parameter, because the test points are selected one by one to determine decreasingly 

measurable parameters. 

Summarizing, the SVD is a versatile tool, with applications in several aspects of analog 

testing. It is used to obtain an optimal, new circuit model of full rank. Column 

reduction of the old model is accomplished in a simple and optimal manner. The SVD 

also leads to an effective, direct method of test-point selection. Finally, the SVD may 

be used to find the least-squares solution of the system that results from test-point 

selection and column reduction. 
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The result is a powerful and complete test method, that tackles the various problems 

encountered in analog testing, particularly the low testability of some circuit 

parameters and the influence of measurement errors. Furthermore a novel criterion was 

given that determines the optimal/necessary number of measurements, taking into 

account the magnitude of the measurement errors. 



5 Iterative Test-Point Selection with the SVD 

The direct method of Chapter 4 provides accurate response predictions for many 

examples. However there are still some remaining issues. First, it remains unclear if 

the obtained test points are optimal. To be able to determine this, Section 5.1 

introduces a criterion that can judge the quality of a particular set of test points. Then 

Section 5.2 presents an iterative method for test-point selection that can obtain better 

test points than the straightforward direct method of Section 4.3.2. Note that the latter 

method always chooses the number of test points equal to the number of testable 

parameters. However, in the presence of relatively large measurement errors it may 

be advantageous to select more measurements than testable parameters. This 

compensates for the imprecise measurements by creating an overdetermined system 

from which the parameter deviations may be solved. This is discussed in Section 5.3, 

which shows how the iterative method may be used to optimize the number of test 

points as well as the number of testable parameters. 

5.1 The D-Optimality Criterion 

The selection of test points from a set of candidate test points is closely related to the 

optimal design of experiments [Fedon]. In this field the goal is to determine the 

parameters of a linear or non linear system with a minimal set of experiments. In the 

5.1 
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case of test-point selection an experiment corresponds to a test-paint, specifying one 

measurement. Each test-point may be denoted by an integer number: the index of the 

corresponding row of the sensitivity matrix. A design is a set of k test points, denoted 

by a set of integers. An often-used criterion that judges the quality of a design is the D­

optimality criterion [Box71], [Mitc74], [Fedo72]. This criterion will be used for 

iterative test-point selection. 

Definition 5,1 Consider a set 2, of k test points. Then 2, corresponds with a k x r 

matrix 8' IT' where r = rank( 8' IT)' 2, is D-optimal if it maximizes the 

determinane D ~ 1(8' rr)' 8' rrl over all sets of k test points. 

Because 

D=I(S' rr)' 8' "I =1(8'" )'1'1 8'" 1=15' rr 12 (5.1) 

a D-optimal design maximizes 18' rr I. Geometrically, this determinant is the volume of 

the hyper-parallelepiped defined by the columns of 5' IT' Maximization of this volume 

creates a trade-off between the norm of each column, and the columns' mutual 

independence. This is similar (but not equal) to the kind of trade-off discussed in 

Section 4.3.2 (which introduced the direct method for test-point selection). 

Let the SVD of the k x r matrix 8' IT be given by 

8' rr = UrrWrrV,:, (5.2) 

where Urr is a k x k matrix, Wrr is a k x r extended diagonal matrix, and Vrr is an r x r 

matrix. Substitution of (5.2) into (5.1) acquires 

(5.3) 

Thus a D-optimal design maximizes 

I The determinant of a matrix A is denoted by 1 A I. 
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1 WIT 1 = IlW" (5.4) 
i-I 

the product of the singular values of S' IT • 

According to (4.16) the covariance matrix of the testable parameters is given by 

-2 '" 
C p,' = V"W" V"' (5.5) 

and therefore 

(5.6) 

Comparison of (5.6) with (5.4) shows that the D-optimality criterion minimizes the 

determinant of the parameter covariance matrix. Thus, by (4.19), it also minimizes the 

variance of the response prediction. 

For example, Figure 5.1 displays IW"I for all possible sets of two test points for the 

circuit of Figure 3.1. Actually it provides a zoomed view, showing in the z direction 

1 WIT 1 for all combinations of two test points in the range [50,90J (outside this range 

IWITI is negligibly small). The height of the surface is also indicated with contour lines 

that are plotted in the plane below the surface. The smoothness of the surface is caused 

by the fact that the parameter sensitivities vary only slightly from one frequency to the 

next. The resulting surface topology is used by the test-point selection algorithm that is 

presented later. 

For each set of two identical test points the two corresponding rows of S'" are equal, 

causing IW"I ::: O. This is visible in the plot: the height of the surface in the plane x = y 

is zero. Furthermore the determinant of a two-TOW matrix is identical to the 

determinant of that matrix with its rows swapped. Therefore the sets of test points (i, j) 

and 0', i) have the same value of IWITI. This causes the surface to be symmetrical 

around the line 
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since 70 is the midpoint of the complete range [0, ... ,139] of candidate test points. 

The test points selected by the direct method of Section 4.3.2 are labeled in Figure 5. I, 

with the accompanying value for IW"I. The obtained set is D.optimaf because it 

maximizes IW"I. For this example the direct method obtained a D·optimal design 

because of the obvious simplicity of the displayed surface. In fact, not taking into 

account the mentioned symmetry, a D·optimal design is found by locating the surface's 

single maximum. 

(73,66,1.12e5) 

x 

x = first test·point y = second lest·point 

Figure 5.1. IW"I for the interesting combinations of test points, for [he 

circuit of Figure 3.1. 

In the general case it is less straightforward to obtain a D·optimal set of test points. 

For example, there may be many local maxima in I WIT I that give a sub·optimal design, 

resulting in a response prediction that is less precise than possible. In this case the 

? Thi, is not entirely clear from Figure 5.1, due to slight inaccuracies in the plotting process. 
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direct method of Section 4.3.2 does not give optimal results, due to its inherent 

greediness. This may be appreciated by considering direct test-point selection with the 

help of Figure 5.1. The first test-point defines the plane x = 73. Because this test-point 

is never again changed, in the best case the direct method finds the highest value of 

[WIT [ in the plane x = 73. This is not necessarily the global maximum of [WITI. 

Continuing this argument, the first and second test-paint mutually define a line. 

Suppose that the direct method would have to select a third test-point. It follows that 

at best it obtains the maximal value of 1 WIT 1 on the mentioned line. Again, this is not 

necessarily the global maximum. This illustrates that, for more complicated surfaces 

than Figure 5.1, a direct method may easily obtain a less than optimal set of test points. 

The next section therefore discusses an iterative approach that may obtain a better set 

of test points in the general case of a more intricate function IW IT I· 

5.2 An Iterative Approach 

The previous section explained that a method for test-point selection should try to find 

the global maximum of IWITI, in order to obtain a D-optimal design. This is in fact a 

combinatorial optimization problem, where the minimum or maximum value of a cost 

function of potentially many independent variables must be found. The cost function 

gives a quantitative measure of the goodness, or quality of a certain choice of the 

variables. The optimization process changes the variables in a way that optimizes the 

cost function. In this context the test-point selection problem may be formulated as 

follows. 

The m rows of S' have indices O, ... ,m -I. Consider a set :=:/ of k test 

points. Then each element of S/ is an integer number in the range 

O, ... ,m-l. The D-value (according to Definition 5.1) that corresponds 

with S, is denoted by D j • If a row index of S' appears more than once in :=:" 

then Di = O. This renders the set S, useless, since D should be maximized. 
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Therefore the members in ::::, are chosen to be mutually different. 

Furthermore, as has been pointed out in the previous section, if ::::, consists of 

a permutation of the test points in ::::, then Di = Dj • In that case ::::, and ::::] are 

considered to be identical. Consequently there are (;) different sets of test 

points, constituting the complete search space. The maximum value (hence 

optimal) of D over the search space is denoted by D opi ' 

An iterative approach often starts with a randomly selected set ::::0. In iteration i, ::::'.1 is 

changed into ::::/. At the end of iteration i a set ::::, is selected for which D = Di• Perhaps 

several modifications of ::::'-1 were tried in iteration i. The highest value of D that has 

been obtained in any stage of the iterative process is denoted by Dmax. It is obtained for 

the set ::::max. Ultimately the iterative process is aborted when it is not possible to find a 

set for which D > Dm•x. Note that Dmax is not necessarily equal to D opt because the 

method may get stuck in a local maximum. There are several combinatorial 

optimization methods known in the literature that adhere to this general scheme. They 

differ mainly in the way ::::'.1 is changed in iteration i, and in how the change in Di is 

incorporated. 

One possible approach tries a large number I of randomly composed sets and then 

selects the set with highest D. The problem with this method is that it is not clear how 

many sets should be tried to ensure that Dm •• is close to Dopl • If I is too small then the 

global maximum is not reached and it is very likely that Dmax is less than Dorl ' Choosing 

I very large is more likely to give a good solution but results in a large computational 

overhead. 

A more effective approach is iterative refinement [KirkS3). In iteration i several 

modifications of ::::/.1 are tried until a new set ::::, is found with Di > Di • l • Then the 

procedure proceeds with the next iteration. The advantage of this technique is that, in 

contrast to the random method, the local behavior of D is taken into account. A 
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disadvantage of this approach is its potential greedy behavior, causing it to get stuck in 

a local minimum, like the direct approach of Section 4.3.2. A well-known remedy is to 

reiterate the procedure several times, each time starting with a different set =::0. 

Unfortunately this approach may quickly become very time-consuming. 

To circumvent the problems with iterative refinement, hill-climbing algorithms were 

developed which can escape from a local maximum. An example of such an approach 

is simulated annealing [KirkS3]. Hill-climbing methods every now and then accept a set 

with a lower value of the cost function, in contrast to the previously discussed 

methods. The number of down-hill steps is made to decrease when the algorithm 

proceeds. Therefore at the onset the methods behave like a random search and 

gradually turn more greedy. 

Of the mentioned methods a specific form of iterative refinement was found to have 

the most satisfactory performance. The algorithm is designed to make a trade-off 

between too greedy behavior on the one hand, and a tendency to randomly jump 

through the complete search space on the other hand. This corresponds with a trade­

off between a fast convergence and an increased possibility that Dmax is close to DoPI ' 

As mentioned, iteration i tries several modifications of 3/.1, which are implemented as 

follows. To modify a set SOld into a new set Snow, the /" member of SOld is modified, 

where p is chosen at random between 0 and k - 1. The maximum amount by which the 

plh test-point Changes is bmax, which is initialized to m - 1. Now a number b is chosen at 

random, in the range 1, ... ,b max' The plh test-point is now modified by either increasing 

or decreasing3 it by an amount b. This modification is repeated until the changed test 

points is in the range 1, ... ,m -1 and different from all test points in 3"ld' Such a 

, Whether a test-point is modified by increasing it or decreasing it is decided at random. 
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modification is called a rearrangement. By applying enough rearrangements each of 

the (7) sets of test points may be obtained. 

The starting set =:0 contains k randomly chosen unique row indices of S' . In the i 'h 

iteration, =:'~l is changed into =:, by making the explained rearrangements of =:,~ 1 until 

Di > D i - 1• In the first stages of the algorithm 6ma, is large, so the complete search space 

is quickly traversed. After each iteration 6m., is decreased by a certain amount. 

Therefore, after many iterations the algorithm searches only the immediate 

environment of a set. Thus the algorithm exhibits greedy behavior in its final stages. 

The obtained effect is similar to that of a hill-climbing algorithm. Because in the 

beginning the rearrangements are rather large, a local maximum may be skipped by 

"jumping" over it. The speed with which the algorithm starts to exhibit greedy 

behavior is determined by the speed with which Om., is decreased. An exponential 

decrease with the number of iterations gives good results. The algorithm terminates if 

it cannot increase D with a certain maximum number of rearrangements. 

Experiments showed that, if more than one test-point is changed per rearrangement, 

Dmax does not increase for a set of typical examples. Merely the convergence of the 

algorithm is slowed down. This suggests that by changing more than one test-point per 

iteration, the algorithm already starts to resemble a random search. Therefore only one 

test-point is changed in each rearrangement. 

For larger problems a major computational task is the evaluation of 1 S' " I, due to the 

large total amount of rearrangements. In this case, repeated computing of the SVD 

S'lr to obtain IWITI takes a significant amount of the total time spent. The repeated 

computation of the determinant may be accomplished more efficiently with the QR 

decomposition [Golu89] of the k x r matrix 1 SI rr I, defined as 

S'rr~QR, (5.7) 
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where Q is a unitary k x k matrix, and R is a k x r upper-Tight triangular matrix. From 

(5.7) it follows that 

,. 
IS' ,,/ = IQRj = IRj = (Jlii' (5.8) 

because Q is orthogonal and R is upper-triangular. Calculation of (5.8) is O(r\ 

However, the iterative procedure changes only one test-point per rearrangement. This 

corresponds with a dyadic (rank-I) update of S'IT . In this case the OR-decomposition 

of the new S'IT may be calculated with an efficient update procedure, which is 0(/) 

rather than 0(r3) [Golu89]. 

For the circuit of Figure 3.1, the iterative method finds the same set of test points as 

the direct method. This is caused by the obvious simplicity of the surface of Figure 5.1. 

Chapter 7 provides larger examples for which the iterative method selects better test 

points than the direct method. 

5.3 Selecting the Optimal Number of Test Points and 
Parameters 

A complication with the iterative selection of test points is that it is not so easy as with 

the direct method (presented in Section 4.3.2) to determine the necessary and/or 

sufficient number of test points. The reason is that the iterative method does not add 

test points one by one, but evaluates a full set of k lest points in each iteration. 

Therefore it is not possible to use criterion (4.35) with the iterative algorithm. This 

section presents an alternative approach. 

The number of test points and parameters is adjusted to reduce the error in the 

prediction (4.17) as much as possible. There are four sources that contribute to this 

error: 

1. The sensitivity matrix (4.8) is calculated from a circuit model composed of lumped 

passive or active circuit components, according tn Sections 3.1.1 and 3.2.4. This 
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model may not accurately represent the actual circuit. This is often the case when an 

integrated circuit is modeled. The resulting model error has its influence in any test 

method. 

2. Even if the circuit model is exact, (4.8) is still a first-order approximation of the real 

(generally non linear) circuit behavior. If the parameter deviations are not 

infinitesimally small then this approximation introduces a certain error in the 

predictions. 

3. The number of columns that is included in 8'.r corresponds to the number of 

optimal parameters, as explained in Section 4.3.2. If this number is too low then 

there are not enough model parameters (i.e., degrees of freedom) to account for the 

deviating circuit behavior. 

4. The measurement errors influence the precision of the predictions, as discussed in 

Section 4.2. 

Once the circuit model is determined it is not possible to reduce the influence of error 

source 1. Also it appears that the second error source cannot be eliminated without 

making repeated measurements, as explained in Section 4.3.5. However, items 3 and 4 

may be addressed by adjusting the number of test points and parameters as follows. 

Before test-point selection starts, a "reasonable" number of columns of S' is 

determined. A quantitative estimate follows directly from the discussion about the 

approximation of matrices in Section 3.2.3. The number of columns is determined as 

the lowest p for which 

J! 

; w. ~ y , wi th 0 < y s 1 , (5.9) 

~w. 

where Wi denotes the th singular value of S, and r = rank(S). According to (5.9), the 

number of columns is p if Sp (conform Theorem 3.5) approximates S with a relative 

precision of at least y. This translates to a certain relative precision of the response 
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predictions, taking into account the magnitude of the measurement errors, according to 

(4.8). Because criterion (5.9) is scale free with respect to the circuit parameters as well 

as to the circuit outputs, a reasonable estimate of p is obtained for many different 

examples, for the same value of y. Good results were obtained with y = 0.98. 

Next k = p test points are selected with the iterative approach discussed in the previous 

section. Next the algorithm starts to iteratively adjust k (the number of test points) and 

p (the number of columns of S'IT' or model parameters). In each stage of this process, 

one of the following changes is made. 

• Add a test-point 

This reduces the influence of measurement errors on the prediction, because it will 

cause system (4.12) to be more overdetermined. 

• Remove a test-point 

This removes redundant test points that do not contribute to the precision of the 

prediction (4.17). 

• Add a parameter 

This increases the precision of the linear model, conform item 3 above. 

• Remove a parameter 

This reduces the accuracy of the linear model. For example, if the measurement 

errors are large then the model precision does not need to be high. 

The changes are restricted by the requirement that the number of rows of S'.r must be 

larger than or equal to the number of columns4
• After a change is made, it is evaluated. 

If the change results in an increased precision of the response prediction then it is 

incorporated. When the precision cannot be further enhanced the algorithm terminates. 

• The reason is explained in Section 4.1.2. 
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The remaining issue is how to evaluate the effect of a change, without making 

measurements of an actual circuit. This is accomplished by simulated measurements of 

several deviating circuits. It is assumed that estimates of the expected parameter 

deviations and measurement errors are available. The parameter estimates are used to 

simulate the complete response of a deviating circuit. Measurements of this circuit are 

simulated by adding random measurement errors to the circuit response at the k 

selected test points. Then the response prediction is calculated from (4.14) and (4.17). 

The error in the prediction is computed by subtracting from it the simulated response 

of the deviating circuit. The RMS value of the error is a measure of the precision of the 

prediction. This procedure is repeated several times, for a number of deviating circuits. 

The mean of the RMS errors is used as a criterion for the quality of S'rr' given a 

certain number of test points and parameters. 

The procedure has been successfully used to refine the number of test points and 

parameters for a number of circuits. An example in Chapter 7 applies the procedure to 

a D/A converter to reduce the influence of large measurement errors. 

The computational expense of the presented refinement method may be high. However 

this is not important, because the computations are performed off-line. Once the 

optimal number of test points and parameters is determined, the complete response of 

a device may be predicted very efficiently from measurements, by calculating (4.14) 

and (4.17), as explained in section 4.2. This concludes the discussion of iterative test­

point selection. 

5.4 Discussion 

This section presented an iterative approach to optimal test-point selection. The 

method judges the optimality of a particular set of test points with the D-optimality 

criterion, which is widely used in the design of experiments. According to this criterion 

the determinant IS' rr 1 is maximized. It was shown that this minimizes the influence of 

random measurement errors. The discussed iterative refinement can escape from a 
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local maximum of IS'rr I while retaining its convergence properties. The resull is a 

method that selects truly D-optimal test points for many examples. 

It should be mentioned that it is not guaranteed that the discussed method obtains a D­

optimal set of test points. Unfortunately, it is in most cases not feasible to verify 

whether or not a selected set of test points is in fact D-optimal: the number of possible 

sets of test points is in general so large that it is not possible to evaluate the quality of 

each set. However, the examples demonstrate that the iterative method selects test 

points of higher quality than the direct approach discussed in Section 4.3.2. 

An extension to the iterative approach was discussed. It allows a refinement of the 

number of test points and parameters, minimizing the error in the response prediction 

that is due to some of the error sources that were identified. 

The discussed approach demonstrates that the SVD may be fruitfully combined with a 

powerful iterative algorithm to select test pOints. The result is a versatile test method 

that offers some distinct advantages over existing methods, which may be summarized 

as follows. 

• As discussed in Section 4.4, the SVD deals with rank-deficiency of the linear model 

in an optimal manner. 

• The SVD exists for a larger class of matrices than any other matrix decomposition 

[Golu89]. 

• The quality of the test points selected by the iterative algorithm will be higherS (in 

the D-optimal sense) than can be optained by a direct method. The main reason is 

that the direct approaches (like the method of Section 4.3.2, fHemi90] and 

[StenS7J) suffers from a kind of greedy behavior. 

j This will be demonstrated with an eX<lmple in Chapter 7. 
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The algorithm of Section 5.2 allows the number of test points and testable parameters 

to be determined independently. This is not possible with existing approaches as 

[Hemi90] and [SlenS7], where the number of test points always equals the number of 

parameters. 



6 Application of PL Techniques to Analog Testing 

This chapter describes an approach to analog testing that uses a combination of 

piecewise-linear (PL) modeling and interval analysis [Leen93aj, [Leen93bJ. Section 

6.1 gives an outline of the discussed approach. Section 6.2 introduces the closed-form 

PL model that is used to approximate the behavior of non linear circuit components. 

Section 6.3 describes interval analysis, illustrating with a geometrical example how 

the complete solution of a set of linear inequalities may be obtained. Also the 

corresponding matrix method is introduced there, with an outline of a very efficient 

implementation. Then Section 6.4 applies the discussed techniques to analog testing. 

The approach that is presented there is based on a solution method for non linear 

equalities with bounded parameters, discussed in [Leen91 j. J t will become clear that 

this approach may form the basis of a more complete method for analog testing. 

6.1 Introduction 

This chapter presents an application of PL techniques and interval analysis to the 

testing of analog integrated circuits. The combination of these techniques has been 

used already in the design of analog circuits [Leen90], [Leen91]. A major characteristic 

of that approach is that it deals with solution spaces, instead of solution points. The 

end result is a solution space that defines all allowable combinations of design 

parameters, taking into account user-specified constraints. An optimal choice for the 

6.1 
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design parameters may then be made by applying a certain optimization criterion on 

this solution space. 

The mentioned techniques may also be applied to analog testing. PL models are used 

to model the non linear behavior of circuit components. A PL model description by van 

Bokhoven is used, as explained in Section 6.2. Loosely speaking, this is an implicit PL 

model description, containing a collection of linear descriptions that collectively define 

the non linear component behavior. Together with certain constraints (which define, 

for example, allowable component or circuit behavior) these linear descript;ons form a 

set of linear equalities with bounded parameters. One technique for solving equalities 

of this type is used in an algorithm by Tschernikowa, which is introduced in Section 

6.3. Section 6.4 shows that by using PL modeling and interval analysis a multi­

dimensional region (solution space) is obtained that defines the behavior of a circuit 

that functions according to specifications. By making measurements, additional linear 

relations arc obtained. When these are taken into account the dimension of the solution 

space is reduced. The circuit does not work according to specifications if the solution 

space is empty after the measurements are taken into account as additional constraints. 

Note that, in contrast to the methods of Chapters 4 and 5, the principles discussed in 

this chapter do not constitute a complete test method. For example, the selection of 

measurements has not been investigated. However, the discussed principles may be 

used as the basis of a test method. 

6.2 Piecewise-Linear Modeling 

With piecewise-linear (PL) modeling, the non linear behavior of circuit components is 

approximated by a collection of affine mappings. Each mapping is valid on a certain 

polytope, a convex region bounded by hyperplanes. In principle the PL approximation 

may be made arbitrarily precise by increasing the number of polytopes. However the 

attainable precision depends on the modeling freedom that is allowed by a specific PL 

model description, as comprehensively discussed in [Keve92]. Thus the choice for a 
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specific PL model description will be determined, amongst other things, by the desired 

modeling freedom. 

A major advantage of PL modeling is that all models of a certain description are of the 

same form for all kinds of components, ranging from precisely modeled non linear 

components to macro models of digital logic. The result is that a single PL solution 

algorithm is inherently capable of mixed mode simulation, eliminating the need 10 

couple different specialized simulators [Keve91 J. A second advantage of a PL 

simulator is that the convergence behavior is better than that of a classical simulator 

that uses a particular form of the Newton-Raphson algorithm to solve the non linear 

circuit equations [Keve91]. 

A distinction can be made between explicit and implicit PL model descriptions. Explicit 

descriptions, e.g., those presented in [Chua77] and [KahI90], store the PL mapping in 

a canonical form from which the linear mapping in a specific polytope is directly 

obtained. In contrast, with implicit model descriptions an upgrade needs to be 

performed on the current mapping to obtain the mapping in a newly entered polytope. 

An advantage of implicit models is the larger class of functions that can be described, 

such as one-to-many mappings. However often this is accomplished at the cost of a 

slow and complex algorithm to calculate the mapping in a certain polytope. 

This section briefly discusses an implicit PL model [Bokh86j, henceforward referred to 

as the Bokh2 model. It defines a PL mapping, with input x E R" and output y E /(", as 

j
IY + Ax + Bu + f = 0 

Oy + Cx + lu + g = j 

uTj=O 'rI;u;,};2:0 

(6.1 ) 

(6.2) 

(6.3) 

where u, j E R: contain the so called state variables. For u = 0, (6.1) defines the 

current linear mapping as Y = -Ax - f. In this case j 2: 0 because of the 

complementarity condition (6.3). Therefore (6.2) describes the current polytope as the 

convex region defined by Oy + Cx + g 2: O. If (due to a change in the independent 
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variable x) U i > 0 and }; = 0 for 1:s; i :s; k, a pivot operation is performed. In effect 

this operation exchanges Ui and j" yielding an adapted ii and} so that again (6.3) is 

satisfied with ii = 0 and J ~ O. The pivot operation performs a rank-1 update on the 

linear mapping (6.1). After this update (6.1) is the linear mapping in the polytope 

described by (6.2) for j ~ O. This is the polytope that has been entered because of the 

change in x. To find out which u, has become positive, a modified form of the 

Katzenelson algorithm may be used [Keve91]; this is not further discussed here. 

One way of understanding the mathematical formulation (6.1) - (6.3) of the PL 

mapping is to regard it as a description of the input-output relation of some static 

system composed of several linear and PL elements. As depicted in Figure 6.1 a, such a 

system can be seen as a linear multi-port network with k of its ports connected to ideal 

diodes. The voltage/current characteristic of an ideal diode is depicted in Figure 6.1 b 

(notice the sign convention). The state vectors u and j contain the voltages and 

currents of the ports loaded with the diodes. Thus u and j satisfy (6.3). The remaining 

port variables are elements of x and y, which may be voltages or currents. The state of 

the diodes (blocking or conducting) influences the topology and thus the linear relation 

between x and y. 

f! i! 

ul 

& (A) C:u 

+ iA x, 

$ Uk 

() U (V) 

u. Multiporllerminutl'd by idl'ul diadl's. h. Ideal diode. 

Figure 6. J. The PI. nelwork description. 
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As an example of a PL component model, consider the NMOST transistor depicted in 

Figure 6.2a. Its behavior may be described l by the PL model 

id -a 0 a Vd -f:l ~ 0 

I ig + 0 () 0 Vg + 0 0 u+ {) =0 

l, a 0 -a Vs ~ -[3 0 

id 

[~ 
0 

~] + [~ 
-I 

~} v" 1 
:: + lu + [~l = j 0 

19 
-1 

( 

uTj= 0 Vj uj,jj ;e: 0 

where VI denotes the threshold voltage. The constants a and ~ are defined as 

0.= ""CO" W A 
2 L 

~ = ""C,lX W (A -1) 
2 L 

A = 1/ VA 

(6.4 ) 

(0.5) 

where Wand L denote the physical dimensions of the transistor, "" is the electron 

mobility, C" is the capacitance of the gate oxide, and VA is the Early voltage. Figure 

6.2b depicts a graph of the NMOST behavior. 

._... ~ ~ arctanQ. 

---------,f-L-------'-~ 

((1) NMOS trails is tor. (h) PL id - V,I, C/wr(1clerislics of NMOST 

Figure 6.2. Piecewise-linear model of air NMOS trallsisior. 

I The presented PL modd i~ kepi simpk for illustration purposes. Mnrc realistic models arc availabk. 
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The PL model may be made more accurate at the expense of extra segments, in which 

case there will be more elements in vectors u andj. 

6.3 Solving Sets of Linear Inequalities 

As mentioned in Section 6.1, PL modeling will be combined with a method that solves 

linear equalities. This method will be discussed in this section. The result is a method 

that obtains the solution space of a set of non linear equalities with bounded 

parameters. This method may be applied to analog testing, as will be explained in 

Section 6.4. 

This section presents a method that finds the complete solution space of a set of linear 

inequalities 

{

Ax sO 

x:<!:O 

(6.6) 

(6.7) 

where A ER"I''' and x ER" . These inequalities may be combined into a single set 

C x sO, with C ~ [~ ] , (6.8) 

where C ERu,,+II'XII and I ER'IXII . Note that rank(C) = n, due to the identity matrix. It 

will be shown that the method can also deal with linear equalities. 

S~ction 6.3.1 provides a geometrical interpretation of the solution process of (6.8). 

Then Section 6.3.2 presents (l matrix method that allows a computer to obtain this 

solution space. Note that these sections arc intended as an outline, and do not provide 

a rigid exposition of the discussed methods. A more elaborate treatment is found in 

ITseh7l1 and [SoloHOI. 
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6.3.1 A Geometrical Solution Method 

This section presents a geometrical interpretation of the solution method for sets of 

linear inequalities that is described in [Tsch71]. Historically, the geometrical approach 

precedes the matrix algorithm of [Tsch71 J. 

The inequalities (6.6) define a set HI"'" H", of hyperplanes in R" , according to 

Hi: a;rx = 0, i E[l, ... ,m J, (6.9) 

where a;r denotes the i 1h row of A. Likewise (6.7) defines a set of hyperplanes 

H;, ... ,H;' according to 

(6.10) 

where e, denotes the i 1h unit vector of R" . 

Each hyperplane divides R" into two half spaces. The solution space of the 

corresponding inequality is one of these half spaces, bounded by (and including) the 

hyperplane. Thus there are m + 11 half spaces associated with (6.8). The solution space 

of (6.8) is found as the intersection of all m + n half spaces. Because the inequalities 

are homogeneous, the bounding hyperplanes all pass through the origin. It is well 

known that in this case the intersection of the m + 11 half spaces is a convex polyhedral 

cone [SoI080]. The vertex of the cone is the origin of R". The edges, or rays, of the 

cone are called fundamental solutions, formally defined as follows. 

Definition 6.1. Let a set of inequalities (6.8) be given. For a fundamental solution 

v ER" of this set there are n - I linearly independent inequalities 

that are transformed into equalities. Thus each fundamental solution 

is in a one-dimensional subspace of R" . 

The fundamental solutions are independent in the sense that one such solution cannot 

be formed as a positive linear combination of other fundamental solutions. Because the 
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vertex of the solution space is at the origin, a fundamental solution is completely 

defined by a vector of arbitrary length. Because the solution space of (6.6) and (6.7) is 

convex, and the fundamental solutions are at the edges of the solution space, each 

solution can be formed as a positive linear combination of fundamental solutions. This 

leads to the following definition. 

Definition 6.2. Let v I"'" V k be the fundamental solutions of (6.8). Then the 

fundamental solution space X of (6.8) is 

This definition describes the interior of a convex polyhedral cone in terms of its rays. 

An example, in R" with 5 rays, is depicted in Figure 6.3. The solution space consists of 

all points on the surface or in the interior of the cone. 

O---~L_~/ 

fCif{llrl' 6.3. A convex po[yhl'dral cone in R3. 

From the preceding discussion it follows that once the fundamental solutions of (6.8) 

are computed, its solution space is obtained directly from Definition 6.2. So the 

problem is to find the fundamental solutions of (6.8), which may be accomplished as 

follows. The method generates a sct of matrices C(i) starting with CUI), satisfying 

(6.11) 
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that has fundamental solutions y(lI) ~ {viO), ••• , V;,II)}. Because of the identity matrix it 

follows directly that y(U) = {e]>' .. , e,,}. Therefore, according to Definition 6.2 V((I) 

describes the complete solution space of (6.11) as the first orthant of R". Next the 

inequalities (6.6) are added one by one to (6.11 )2. Each time the set of fundamental 

solutions is changed, as described below. After a maximum of m iterations, the 

complete solution space of (6.8) is obtained. 

To understand how a set of fundamental solutions is changed when an inequality is 

added, suppose that iteration j - 1 already obtained V(j-I) = {v~J-lI,,,., v;i-1)}, the 

solution space of 

(6.12) 

Here C(J-I) was created by adding j - 1 inequalities of (6.6) to (6.11). The i" iteration 

adds the l inequality of (6.6) to (6.12), giving a total of n + j inequalities that must be 

simultaneously satisfied. Geometrically, the cone associated with V(H) is intersected 

with hyperplane H j : a> = O. This is shown in Figure 6.4 for the example cone of 

Figure 6.3 with 5 fundamental solutions (r == 5). The new set V(J) is computed from 

V(j-l) in two steps: 

Step 1 Each V(j-L) for which a TV(j-l) ~ 0 remains a fundamental solution after the J. I" 
, J ' 

iteration. ]n Figure 6.3 this step selects v~j-L) and v~j-I): the two fundamental 

solutions under H j • 

Step 2 New fundamental solutions are created at the intersection of Hj and the 

existing cone. ]n Figure 6.4 the two new fundamental solutions are indicated 

with dotted lines. 

; The order in which the incqualitic, arc added is arbitrmy. 
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Figure 6.4. Intersecting the cone with hyperplane HI 

Each new fundamental solution in this step is formed as a linear combination 

(6.13) 

where vI' and v'I are selected from V(J-I) according to the following criteria: 

a. a~ VfI < 0 and a; v" > O. This ensures that vI' and Vq are on opposite sides 

of H j • 

b. For vI' as well as for V'I the same n - 2 linearly independent inequalities of 

(6.12) arc transformed into equalities. This ensures that v" and V'I are in 

the same two-dimensional plane. 

The choice of the multiplication factors in (6.13) ensures that the new solution 

Viii is in H
j

• This follows immediately from 

since a. I V ja TV < 0 (because v" and V'I arc selected at different sides of 
J fJ ) 'J • 

HJ. Thus the added inequality is turned into an equality for v(j). Because for 

VI' and V'I the same n - 2 inequalities of (6.12) arc transformed into equalities 
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this is also true for v(}). Furthermore the added inequality is linearly 

independent of the mentioned n - 2 inequalities'. Thus for v(j) a total of n - t 

linearly independent inequalities are transformed into equalities, and according 

to Definition 6.1 this makes v(i) a fundamental solution. With this approach 

fundamental solutions are created for all pairs VI' and V'I that satisfy the 

specified conditions. 

In Figure 6.4 the pairs {V~j-Il, v~j-I)} and {v~-I), V~-I)} are selected according to the 

two criteria. The pairs form new fundamental solutions v/1 and v~j), respectively, as 

depicted in Figure 6.5. Furthermore, according to step 1, v\j) = v~j-l) and v~j) = v~i-I) . 

Geometrically, the method omits the part of the cone that is on the wrong side of Hi' 

as shown in Figure 6.5. 

Figure 6.5. Solution space after iteration j. 

The next section presents a matrix method for the discussed approach. 

6.3.2 The Matrix Method ofTschernikowa 

The algorithm explained in the previous section is very inefficient in terms of the 

number of calculations that must be performed. The cause is the need to evaluate the 

inner product a j TV to check if vJ is above, in or under hyperplane HJ• This gives rise to 

> OthclWise it would turn into an equality for vI' and Vq which contradicts criterion a. 
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many floating point multiplications in the course of the algorithm. In 1965, 

Tschernikowa presented an efficient matrix manipulation algorithm that has a higher 

computational efficiency [Tsch71]. 

This approach expresses system (6.8) in a more efficient matrix notation. At the start 

of the algorithm a start tableau is set up as 

(6.14) 

where the superscript (-) denotes the iteration number. The rows of TiO
) are the 

coordinates of the fundamental solutions of (6.11), with respect to the orthonormal 

base of R" . The coordinates of the normals of the hyperplanes (6.9) are entered as 

columns in TiO
). The central aspect of the matrix algorithm may be loosely described 

as follows: 

After the / iteration the columns of Tij) contain the coordinates of the 

normals of the m hyperplanes (6.9). These normals are expressed as 

linear combinations of the fundamental solutions contained in the rows 

of T1(il: 

k 

'<I,d'i 1 3, = ~ c,/v(}) , with c" = (T?)), , '--l . , .. ,m ( ( ~ II 
/-

(6.15) 

where v~j) is the klh row of T1U) • Thus the coordinates of the hyperplanes are not given 

with respect to the orthonormal base of R". The advantage of storing the hyperplanes 

in this specific format is that it is now immediately clear if Vi is above, in or under 

hyperplane Hj by evaluating entry Cil of Tij). This entry will be positive, zero or 

negative respectively. Consequently the tableau method saves many calculations. 

Each iteration of the algorithm consists of the two steps explained in the previous 

section. Iteration j adds a new hyperplane by selecting an arbitrary (but not previously 
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selected) column from TF- I
) , say column I. This column is denoted as ai' because it 

contains the normal of hyperplane HI. In addition, the following notation is used: 

K(j) 4[ Tii- ') I T;()-I)], where T;U-I) contains the j - 1 already treated 

columns of Til-I) . 

• SCi) denotes the set of columns of K(j) with a zero in row i. 

• SUI' i2 ) denotes the collection of columns for which SUI' Ie) ;::: SUI) n S(i2)' 

where the ilth and i~h entry in column a, have opposite signs. 

T~i) is derived from Tii-Il in two steps: 

Step 1 Copy into T(j) all rows from TU-I) that have a non-positive entry in a,. This 

selects the fundamental solutions that are in HI, or on the correct side of HI. 

Step 2 If, for each row i, S(iI,i2) CJ. Sci) (il "d , 12 '" i), then a positive linear 

combination of rows i and j is placed in T(J) , such that the entry in a, becomes 

zero. In this case the pair (t, j) is called a valid row pair. Geometrically, this 

step selects two fundamental solutions that lie on opposite sides of HI and are 

in a single plane. In this case a new fundamental solution may be formed as a 

linear combination that lies in HI (causing a zerO in column 1 of T~i1), as 

explained in the previous section. 

When a hyperplane is added for which a l is strictly positive then the solution space is 

empty and the algorithm stops. Furthermore, if there are no positive entries in a( then 

the algorithm proceeds with the next iteration. In this case the solution space already is 

on the correct side of the added hyperplane. 

In the course of the algorithm the number of fundamental solutions may become quite 

large. This causes a large amount of time to be spent in the search for valid pairs in 
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step 2. Therefore this step should be implemented as efficiently as possible. An efficient 

implementation is based on the following observation: With regard to the search for 

valid row pairs each element of T(j-!) represents just a single bit of information. To 

explore this fact T(}-I) is translated into a binary form at the start of the l iteration. 

Non-zero elements are represented by "1" and zero elements by "0". Suppose that on a 

particular computer an integer is stored in 64 bits. Then up to 64 elements of a row of 

T(]-Il may be stored in a single integer. It follows that if the number of columns of 

Til-I) is p then the number of integers that is needed to store a row is just lp J + 1 . In 

iteration j the two steps of the algorithm use the binary representation of T(f-I) in the 

following manner. 

]n step 1 the rows with a non-positive entry in al are copied from T U- I
) to T(j). 

Furthermore sets P and N of rows are formed that have a positive or negative entry in 

a,of T(J-I) , respectively. Thus the implementation of step 1 is straightforward. 

]n step 2 the binary form of T(J-I) is used to find all valid row pairs with two sub steps 

in a computationally efficient manner: 

a. First S(il'i2 ) is determined by a bit wise OR of rows II and i 2, for all 

combinations of i l and i2 for which i l EP and i2 EN. The result of this logical 

operation is a binary representation of S(il' i2 ), where its elements are denoted 

by "0" bits. 

b. This step implements the check S(il'i2 ) IJ S(i) (i l .. i , i2 .. i). At this stage 

S(il'iJ is available in binary format. A bit wise OR is performed with S(il' i2 ) 

and each row of T(j-II. If for each row the result of the OR is identical to 

S(il' i2 ) then S(il , i2 ) IJ S(i) (il .. i ,i~ .. i). This selects a pair of rows with the 

maximum number of common zeros, ensuring that the two fundamental solutions 

that correspond with these rows are in a two-dimensional plane [Tsch71]. 
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After the row pairs are selected, the "full" representation of TU-I) is used to form new 

fundamental solutions in T(j). After T(n is derived from T{J-') it is translated into 

binary format, and the procedure is repeated for iteration j + I. 

The use of the binary version of the tableau results in reduction of used memory as 

well as an improvement· in the execution speed. This is important, since the 

Tschernikow algorithm is the limiting factor in the speed of the approach of Section 

6.4. 

It has been shown how the Tschernikowa algorithm solves homogeneous sets of linear 

inequalities of the form (6.8). However by using slack variables, a technique known 

from linear programming, any set of linear inequalities may be translated into this form. 

This also includes inequalities with bounded parameters, where a specific interval is 

defined for each of the variables x. The use of slack variables with the Tschernikowa 

algorithm is treated with an example in [Leen901 and ILeen91]. Finally, linear 

equalities are treated in much the same manner as linear inequalities. The only 

difference is in step 1 of the algorithm, where only the rows of T(j-I) that have a zero 

in the new column are transferred to T(n. 

6.4 Analog Testing with PL Modeling and Interval Analysis 

Here the discussed principles are applied to analog testing. First Section 6.4.1 shows 

how PL modeling and interval analysis may be combined to solve non linear equalities 

with bounded parameters [Leen91]. Then Section 6.4.2 applies this technique to 

analog testing. 

6.4.1 Solving Sets of Non Linear Equalities with Bounded Parameters 

This section explains how PL modeling may be used to obtain the complete solution 

space of the set of non linear equations defined by 

y = f(x), (6.16) 
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where x E J(' and y E R"'. The non linear mapping f:R" - R"' is approximated by a 

PL model of the form (6.1 )-(6.3). Furthermore, each of the elements of x and y is 

bounded by an interval. Each input Xi is bounded as 

(6.17) 

and these bounds collectively define a region S. ER". Likewise, bounds for y define a 

region Sy ER"'. In the Euclidean space S. and Sy define a hypercube C, possibly 

unbounded at one or more sides. Only the part of the solution space of (6.16) that is 

inside this hypercube is valid. This part may be obtained in essentially two steps. 

Step 1 The intersection ~d()m of the variables' domains (S. and Sy) and the model 

polytopes (6.2) is determined as a collection of convex regions. This 

collection describes the domain on which linear mappings given by (6.1) are 

valid, taking into account the bounds on the variables. 

In principle, ~d"m may be obtained by intersecting all model polytopes with S. 

and Sy. However, a PL model with k hyperplanes has a total number of i 

model polytopes. (Thus ~d()m consists of a maximum of 2" convex regions.) 

Because often many of these polytopes are inaccessible, this approach would 

be inefficient. Therefore, the following approach is used [Leen91 1. 

A hyperplane 

Hi: diy + cix + gi .. a (6.18) 

is associated with the /h inequality of (6.2). Hi is an edge of ~d"m if and only if 

there exists a set (x, y) that satisfies (6.18) within the domains Sx and Sy. This 

may be checked with the technique of Section 6.2. If no hyperplanes intersect 

with S. and Sy then ~d"m is situated inside a single polytope. However, if there 

are l hyperplanes that are a boundary of ~d"m ' then just the i corresponding 

polytopes must be intersected with S. and Sy. This obtains the domain ~dom 
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on which each mapping (6.1) is valid. Because often 1« k , this technique is 

faster than computing the intersection of each of the i model polytopes with 

Sx and Sy. 

To illustrate, Figure 6.6 depicts the results of this step for the NMOS PL 

model (6.4). The four polytopes are bounded by hyperplanes HI and H 2. In 

each polytope the operating mode of the NMOST is indicated. Because 

according to (6.4) HJ and H2 are defined in the x-region, Xdom is obtained as 

the intersection of S. and the four polytopes. In this case, only three polytopes 

intersect S •. Inside XdO'" (which is marked as a shaded area) V d, ~ 0.5 V, . 

Figure 6.6 shows that in this case Xdom is a collection of three convex areas, 

labeled I, II and III. 

Step 2 The linear mapping that is valid in each region of Xd<lm is combined with the 

description of that region, as obtained in Step 1. Again this is accomplished 

with the Tschernikowa algorithm. 

The result of the two steps is a collection of I convex spaces 

I 

X =UX t~11 ; , 

that describes the total solution space of (6.16), given certain bounds on x and y. Each 

space Xi is a fundamental solution space according to Definitio~. 6.2. 

The discussed method finds the complete solution space of a single PL model, where 

certain bounds are defined for the model variables. The next section applies the 

discussed combination of PL modeling and interval analysis to analog testing, and 

presents an example. 
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Intersection of the polytopes and the variables' domains, 
for the NMOST of Figure 6.2, defined by (6.4). 

6.4.2 Application to Analog Testing 

This section applies the principles of Section 6.4.1 to analog testing. First, the 

approach is briefly outlined. 

An analog circuit can be characterized by the values of certain parameters. These may 

be component parameters (such as the threshold voltages of the transistors in an 

opamp) but also higher level parameters. It is possible to specify the nominal behavior 

of a circuit in terms of its parameters, if a sufficient set of parameters is available. The 

circuit may then be tested by determining, for example, whether the value of each 

parameter is inside a predefined interval. 

The following approach uses preselected parameters to judge whether or not a circuit 

is at fault. To be able to apply the described combination of PL modeling and interval 

calculus, these parameters are first added to the PL models as elements of the input 

vector x or the output vector y. Also bounds on (or relations between) the elements of 

x and yare defined. The previously discussed combination of PL modeling and interval 

analysis computes the complete allowed region that defines proper circuit behavior. 
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After this region is computed, measurements arc made. These measurements 

correspond with additional relations between some elements of x and y. Thus the 

measurements reduce the dimensionality of the allowed region. If, after sufficient 

measurements are made, the allowed region is empty then the circuit is at fault. 

For example, consider as a parameter the threshold voltage VI of an NMOST 

transistor. It is possible to add VI as an extra input variable to the transistor's PL model 

(6.4), obtaining the modd 

[-a 0 ~l 
Vd 

r~ ~J+ [~l ~O 
ld a 

1 ig + 0 0 0 
Vg 

+ 0 
v, 

i, a 0 -a fJ 
v, 

(6.19) 

r 
Vd 

[~ 
0 

~l :: [0 
-1 1 

~] 
Vg 

+Iu+ [~] ~j 0 + 1 -1 0 v, 

v, 

uTj ~ a 'Vi ui,ji ~ a 

where a and fJ are again defined by (6.5). Model (6.19) offers exactly the same PL 

description as (6.4), but with VI as a variable, instead of a constant. Because of this 

difference, the method of Section 6.4.1 can now take into account bounds thaI arc 

defined for VI. Even inequalities in terms of VI and/or other variables (i.e., other 

parameters, or certain voltages or currents) may be taken into account. Such bounds 

and inequalities provide powerful criteria that define allowed circuit behavior. After the 

PL models are extended by inclusion of the parameters as elements of x and y, the 

discussed solution method for non linear equations with bounded parameters is 

applied. This will be explained by a simple example. 

'The lower case notation for the threshold voltages signifies th,ll they arc now variahles and not con,tants. 
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Figure 6.7 depicts a CMOS inverter that was designed for a 2.4 ""m process. The 

NMOS transistor (TN) is modeled according to (6.19), and the PMOS transistor (Tp) is 

modeled similarly. The inverter is tested by determining v'.P and V,.n: the threshold 

voltages of the PMOS and the NMOS transistor, respectively. For a specific 

application the inverter operates according to specifications if VI.P and VI•n are in the 

intervals 

V,.n E [0.85,0.95] V and v'.P E [-0.95, - 0.85] V. 

In addition, Vi E [0,5] V in the inverter's normal operating region. 

v.Jd '" 5V 

Y,,= OV 

W 8 
Tp: - = -, A = 0.0378 

L 2.4 

T: W = 2.4 A = 0.06 
N L 2.4' 

Figure 6.7. CMOS inverter. 

(6.20) 

It is possible to obtain a description of the inverter polytopes and linear mappings in 

the (Vi, VO, V,.n, vcp) space by using the technique outlined in [Spaa94]. This approach 

uses a hierarchical circuit description. The polytopes of the PL models at the lowest 

hierarchical level are translated to a higher level by combining PL models and using the 

topological relations (i.e., the model interconnections). This process continues until a 

behavioral description at the highest level is obtained. Each polytope at the highest 

level corresponds with a combinations of model polytopes at the lowest level. Only 

certain combinations occur, due to the circuit topology. For the inverter 5 

combinations occur out of a possible number of 3 x 3 = 9 combinations. Each such 

combination corresponds with a single polytope in the (Vi, Vo, Vcn, V1.p) space. 
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After the inverter polytopes are dctermined at the highest level they are combined with 

the bounds on v" v,.p and V,." to obtain XJ,,,n for the inverter. In this case, i'<do" is a 

collection of five convex regions. It defines the domain on which each high-level linear 

mapping is valid, analogous to step 1 of Section 6.4.1. Combining the linear mappings 

with these domains (conform step 2 of Section 6.4.2) results in a collection of five 

convex regions: 

v. 

1 

j"",t t=£ 
I 

fi = ~ ljja ji' ~r=lr~O 
v" 

J=:'i IJ 'II 

=Uf where 
i-- 1-

V
U1 

J ' f = 2 forj E{1,S} )-1 

v,.r f! = 8 for j E{2,3,4} 

(6.21) 

The allowed circuit behavior is completely described by (6.21). Apparently, three of 

the five convex regions have 8 edges (f! ;;; 8) and two regions have 2 edges (f! = 2 ). 

For example, for the third convex region (j = 3): 

a,] = (2.48,1.64, 0.8S, - 0.9S),' 3 32 = (2.39, 3.3S, 0.8S, - 0.95)" 

3:-J = (2.53,1.69, 0.9S, - 0.95)T 3'4 = (2.4S,3.38, 0.95, - 0.95)' 

a" = (2.54,1.64, 0.8S, - 0.85)T 3 36 = (2.44,3.36,0.85, - 0.85)1 

3 37 = (2.58, 1.64,0.9S,- 0.85)T a 3X = (2.49,3.3S,0.9S,- 0.85Y' 

(6.22) 

To illustrate, Figurc 6.8 plots the outlines of (6.21) in the (Vi, vo) space. The plot was 

obtained by considering only the first two coordinates of each 4-dimensional vector a/I' 

For each of the S convex regions of (6.21) this produced a number of vectors in R2. 

Only those vectors were preserved that could not be formed as a positive linear 

combination of the other vectors. The third region (j ;;; 3) corresponds with the third 

plotted segment. Note that, according to Figure 6.8, the variations in the threshold 

voltages do not influence the transfer behavior in the inverter's "high" or "low" state. 

This is logical since in those cases one of the two transistors has a low drain source 

impedance, effectively shorting the output to V"" or V". For the corresponding regions 

in Figure 6.8, e = 2 . 
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An input-output measurement (Vi' V,,) ~ (a, b) adds the equalities Vi ~ a, V() = b to 

(6.21). A recomputation of the solution space results in a new, reduced solution space 

in the (Vt.P' Vt.n) space. At this stage there are several possibilities: 

• The new solution space is empty. Apparently the solution space is on the wrong 

side of one or both of the two hyperplanes that correspond with the (Vi, VII) 

measurement. Note that this implies that a single measurement may be enough to 

decide that the inverter is faulty, although its behavior is characterized by two 

parameters. 

• A reduced, non empty solution space is calculated. In this case, more measurements 

must be made, until either the solution space is empty or a value can be computed 

for each tested parameter. In the latter case the tested circuit is functioning within 

specifications. 

5 
-+-70 ~ 

4 

Vn {V) :.~ll 

2 

u.::~ - - - - -
__ ~ __ L ___ -..L-----..L-----.L __ ~~_J 

D 2 '::51) ~ 

Figure 6.8. Allowed helluvior in the (Vi, v(») space, j()r the illwrler oj' Figure 6.7. 

For example, suppose that the measurement (Vi, V,,) = (2,50,2.50) V is made (depicted 

with dotted lines in Figure o.k). In effect this measurement adds the equalities Vi = 2.50 

and v" '" 2.50 to the description of the third convex region in (6.21). Recomputation of 

the convex region for/ '" 3 obtains the relation 

9.3v,o + t).5vl.r = 0 . (0.23) 
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Thus after the first measurement the solution space is not empty, but the parameter 

values are not completely determined. Therefore another measurement is necessary. 

Now the measurement (v" vo) = (3.00, 1.25) V is made. This measurement obtains the 

relation 

v
'
.
P 

= -0.92. (6.24) 

From (6.23) and (6.24) the threshold voltages are calculated as vLp = -0.92, 

v,." = 0.94. Thus, from the measurements it follows that the inverter is functioning 

within specifications. 

Defining bounds on parameters to decide whether or not a circuit is functioning 

according to specifications is not new. However, the technique that has been presented 

in this section has an important advantage. Instead of just allowing parameter bounds, 

any linear relation (including inequalities) between the circuit inputs, outputs and 

parameters is useable. This was illustrated by the definition of Sx in Figure 6.6. This 

results in a more powerful criterion on which to accept or reject a specific circuit. 

The issue of test point selection has not been addressed in this section, because it has 

not yet been fully researched. However some remarks can be made. Consider a single 

input-single output circuit. Then a maximum of one measurement per polytope should 

be made. The reason is that, because the PL model is linear in each polytope, one 

measurement obtains a single linear relation per polytope. Furthermore, measurements 

should be made in the polytopes where the influence of parameter deviations is highly 

measurable. In principle, the entries for the parameters in the A matrix of the PL model 

are the parameter sensitivities. For example, in the first and fifth polytopes of Figure 

6.8 the sensitivity to the threshold voltages is zero. This is indicated by a zero 

sensitivity to these parameters in the high-level PL model that describes the inverter 

operation. A zero sensitivity means that the influence of the corresponding parameter is 

zero, so it cannot be measured in the polytope in which the zero sensitivity occurs. 
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6.5 Discussion 

An approach to analog testing has been discussed that uses a combination of PL 

modeling and interval analysis. First the complete circuit behavior is calculated as a 

collection XI<>I of convex spaces, taking into account user-specified linear relations 

between the circuit's inputs, outputs and parameters. These relations define the 

circuit's valid operating region. Then input-output measurements are made to reduce 

the dimensionality of XII" . If it is possible to compute a value for the circuit parameters 

from these measurements then the circuit is testable. 

The advantage of the discussed technique is that the allowed circuit behavior may be 

specified with linear relations between the circuit's inputs, outputs and parameters. 

Thus more powerful criteria may be used than simple parameter bounds. A second 

advantage is that the method can cope with strongly non linear circuits, as 

demonstrated in the example with the CMOS inverter. Finally the method is inherently 

capable of macro-modelling, due to the use of PL models. This enables circuit testing 

at a high, behavioral level, in stead of a component level. 
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This section presents examples that demonstrate the applicability of rhe test methods of 

Chapters 4 and 5. Section 7.1 briefly discusses the practical implementation of the 

techniques discLissed in Chapters 3 - 5. Then Section 7.2 examines, a second-order 

bandpass filter. The testability of its components is analyzed, and its complete response is 

predicted from a few measurements. Section 7.3 offers a more complicated example, 

predicting the complete response of a 10 bits D/A converter from a few selected 

measurements. The examples compare the direct and iterative methods of lest-pailll 

selection. The quality of a set of test points is judged with the D-optimality criterion 

(discussed in Section 5./). It will be shown that the iterative method selects test points of 

higher quality, which may considerably reduce the influence of random measuremelll 

errors. Finally, Section 7.4 applies the SVD to a form of testing called black-box testing, 

where only the nominal circuit response i8 known. 

7.1 Practical Implementation 

Sections 7.2 and 7.3 present examples that model a physical circuit as a collection of 

lumped passive or active components. Due (0 the influence of random deviations of the 

manufacturing process, a physical circuit always shows a certain deviation from 

nominal. This deviation is assumed to be caused by deviations of component 

7.1 



7.2 

parameters. Parameter deviations are simulated by introducing normally distributed 

errors in the parameters, with zero mean and standard deviation Om"n. The result is a 

deviating circuit. 

The random errors may model a certain maximum parameter error in the following 

manner. Consider a normally distributed random variable X, with mean /-!x and standard 

deviation Ox. Then 3·ox may be considered to be the maximum deviation of x from !-lx. 

This is motivated by the fact that, according to (4.20), P(lx-/-!xl:;;30x )=O.998, 

where x is an observation of X. Thus 3·om• n may be considered to be the maximum 

parameter error caused by the manufacturing process. 

The examples determine parameter values and/or behavior of a deviating circuit from 

measurements at selected test points. To generate measurements, the response of a 

deviating circuit is simulated. Then randomly distributed measurement errors are 

introduced in this response, with zero mean and a standard deviation Orne", 

(corresponding with a maximum measurement error of 3·omc",). The resulting disturbed 

response at a selected test-point is used as a measurement. 

Next a brief description is given of the practical implementation of the various 

techniques that were discussed in this thesis. Figure 7.1 provides a global outline of the 

test program, which has been implemented in the C language. The five numbered 

blocks are globally described as follows. 

User input 
1--.---.----. 

Circuit Ta .... k - ______ 

DcfillHi{m Definition 
H 2 Calcul.te ,ensilivili", I---

~------------~ 

Read u~cr input 

5 4 3 
(~i.:n(,:ralc output ~---. SimLllall: mca",lIrcmcnls r--- SekCI le,1 points 

Figure 7.!. Program outline. 
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I . Read user input. 

The user input is read from file into an internal data structure. According to Figure 

7.1, the user input consists of two parts: a circuit definition and a task definition. 

In the circuit definition the circuit elements and topology of the circuit are 

specified in a SPICE-like manner. Most basic circuit elements are supported, 

including passive components, switches, and voltage and current controlled 

sources. With the task definition the user controls the various tasks of the 

program. For example, the user specifies the method of test-point selection (direct 

or iterative), the type of analysis (currently, DC and frequency analysis are 

supported), the circuit outputs that are accessible for measurements (e.g., nodal 

voltages), and the elements to which no sensitivities should be calculated (input 

sources, for example). Also some other aspects, like generation of deviating 

circuits and measurements are controlled through the task definition. The 

complete user input is parsed with the well-known lexical analyzer LEX and the 

grammatical analyzer YACC, and the various data are put in internal data and 

control structures. 

2. Calculate sensitivities. 

After the user input is read, sensitivities are calculated. As explained in Section 

3.1.3.3, the adjoint method is used to generate sensitivities in the DC and 

frequency domain. The calculated sensitivities are put in a sensitivity matrix. 

3. Select test points. 

This part starts by computing the SVD of the sensitivity matrix. Then test points 

are selected with either the direct method of Section 4.3.2 or the iterative method 

of Section 5.2. If necessary, a group of testable parameters is selected, as 

explained in Section 4.3.4. Also the variances (4.l 0) and (4.l9) may be computed 

in this step. 

4. Simulate measurements. 

This part simulates a deviating circuit by generating parameter deviations, on the 

basis of a user-specified value of Ollla"' Also measurements arc generated, on the 
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basis of a user-specified value of Omca,' If necessary, the standard deviations of the 

parameters that result from random measurement errors may be extracted from 

repeated measurements at the selected test points. The measurements are used to 

predict the parameter values from (4.14) or the complete response from (4.17). 

5. Generate output. 

User-specified output is generated and written to a file. Examples are frequencies, 

outputs of the nominal or deviating circuit, error in the predicted output deviation, 

sensitivities to particular components and so forth. The output can be used by a 

program like gnuplot to quickly generate a large variety of plots. In this manner, 

all the plots in this thesis were produced. 

The result is a flexible program that allows a quick evaluation of a wide range of 

circuits. The size of the program is about 6000 lines, including function headers. The 

program is fully documented. It is implemented in ANSI C, so it may be compiled for 

on any platform on which LEXX and Y ACe are available. 

7.2 2nd order Bandpass Filter 

This section tests the 2n~ order bandpass filter that is depicted in Figure 7.2. It is the 

mid-range section of a three way cross-over filter, designed by an optimization 

algorithm. The filter is designed to work with a load consisting of a loudspeaker and an 

associated impedance correction network. The resulting load is resistive to a good 

approximation; it is therefore represented by a loading resistor R L• The amplitude of 

the sinusoidal input voltage is 1 V. Figure 7.3 depicts the nominal output voltage 

Iv" """,I as a function of frequency. 

To generate a deviating circuit, maximum component deviations of 10 % are 

introduced. The resulting component deviations are listed in Table 7.1 B, column 2. 
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The filter's phase behavior is not considered, so only measurements of voltage 

amplitudes are made. The maximum measurement error is 1 mY. 

R,=O.ISQ 
R,,, 1.85 Q 

R, = 1.00 Q 

I .. 

I., 

I., = 0.56 mH C, = lti.il f,F R[ = 5.8 Q 
1.1=2.7mH C,= 1.2f1F 

Figure 7.2. 2"" order handpass filter. 

0.01 L-__ ~~-L~LL~ ____ L-~~LL~U-__ ~ 

0.1 0.2 0.5 10 20 

I (kHz) 

Fi!;lII'e 7.3. Nominul response of the bandpass filter of Fi!;ure 7.2. 

First, only measurements of hi are allowed. A 47x7 sensitivity matrix S was 

generated by evaluating sensitivities of Iv,1 at 20 frequencies per decade, equally 

spaced on a logarithmic scale from toO Hz - 20 kHz. The direct approach of Section 

4.3.2 selected the test points listed in Table 7.1 A. (The test points are listed in order 
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of selection.) Furthermore this approach identified the testable components, as 

explained in Section 4.3.4. The testability of component i is determined by computing 

its predicted standard deviation, denoted I by °1; . After test points are selected, this 

standard deviation is derived as the square root of the i1h diagonal element of (4.16). As 

explained in Section 4.2, a large value of a I' signifies a low testability of the i1h 

I 

component. For thc 5 testable components, the value of 0 1; is listed in Table 7.1 B, 

column 3. The number of testable components was determined with (4.35), using 

YJ ~ 1. For Rl and RJ , of; > 0",,,,, ~ 3.3 % and therefore these components are 

considered untestable. 

To check the accuracy of the predicted values of a i; , these were calculated from 50 

repeated measurements of hi at the five selected frequencies, using (8.6). The results 

are listed in Table 7.1 B, column 4. Comparison with the predicted standard deviations 

shows that the predictions obtained from (4.16) are rather accurate for this example. 

Table 7.1. Results of the testability analysis (node 5 accessible for 

measurements, direct tcst-point selection used). 

A: Test Points 13: Results of Testability Analysis 

Node Freq. Compo Deviation a 1; ('Oil OJ: (7,) Error (7,) 

(kHz) ('k) (predicted) (from 50 (from 50 
mcus.) melts.) 

5 0.56 I., 1. 62 0.08 0.09 0.02 

5 1. 26 ('I -3.28 0.13 0.16 -0.12 

5 1. 78 r.: 1. 75 0.27 0.26 0.45 

5 3.16 (". -7.25 0.92 0.S7 -0.15 

5 14.13 H, -1.49 2.40 2.36 2.40 

HI 3.20 

U, -0.39 

, The notal inn of Section 4.3.3 i, uscu. 
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The mean of the calculated component deviations was computed from the results of 

the 50 repeated measurements, using (B.5). This mean was used to calculate the mean 

error in each predicted component value, relative to the value of the deviating 

component. The mean errors are listed in the Table 7.1 B, column 5. For R2 the mean 

error is unacceptably large: it is even larger than the deviation in that component. The 

reason for this large error will be investigated later. 

Next, nodes 1-5 were considered accessible for measurements in an effort to increase 

component testability. To simplify interpretation of the results, the same component 

deviations were used. Again 20 test points per decade were computed in the frequency 

range 100 Hz - 20 kHz, resulting in a 235x7 sensitivity matrix. The selected test points 

are listed in Table 7.2 A. According to Table 7.2 B, column 3, all components are now 

testable. This is due to the increased accessibility for measurements. Comparison of 

columns 3 and 4 of Table 7.2 B shows that the predicted standard deviations are again 

close to the standard deviations that were extracted from 50 repeated measurements. 

Finally the mean errors in the predicted component deviations are listed in Table 7.2 8, 

column 5. Again there is a large mean error, this time in the predicted value of R I. 

Table 7.2. Results of the testability analysis (nodes 2·6 accessible for 
measurements, direct test·point selection used). 

A: Test Points B: Results of Testability Analysis 

Node Frcq. Compo Deviation ° i: (%) Oil (%) ErTlJr (%) 

(kHz) (%) (predicted) (from SO (fTlJm 50 
meas.) mcas.) 

3 1. 41 L, 1. 62 0.08 0.08 0.04 

4 0.631 C, -3.28 0.08 0.11 -0.24 

5 1. 26 L, 1. 75 0.32 0.32 0.44 

5 2.00 (" -7.25 1. 02 0.94 -0.16 

6 2.24 R, -1. 49 1. 33 1. 32 -0.43 

6 12.59 R, 3.20 2.15 2.24 1. 7 8 

7 2.24 R, -0.39 2.43 2.45 -0.03 
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Next the source of the large mean error in the predicted deviation of R2 (Table 7.1 B, 

column 5) and R I (Table 7.2 B, column 5) is investigated. To determine if perhaps 

these errors are due to a low quality of the selected test points, 7 test points were 

selected with the iterative method of Section 5.2 (Table 7.3 A). The quality of these 

test points is determined by the determinant D (conform Definition 5.1) of the 

corresponding row and column reduced sensitivity matrix. For the test points of Table 

7.3 A, D = 1.08'10-7
. In contrast, for the test-points of Table 7.2 A, D = 0.88'10-7

• 

Thus D increased by a factor of 1.23, due to iterative test-point selection. This change 

is not very large. This may be explained by the fact that the bandpass-filter is a 

relatively simple example, allowing the direct method to select relatively optimal test 

points. Thus the standard deviations of Table 7.2 B, columns 3 and 4 are very close to 

those displayed in Table 7.3 B, columns 3 and 4. Furthermore, from Table 7.3 B, 

column 5 it is apparent that the large error in Rl is still present. Therefore it seems that 

this error is not caused by poorly chosen test points. 

Table 7.3. Results of the testability analysis (nodes 2-6 accessible for measurements, 
iterative test-point selection used). 

A: Test Points B: Results of Testability Analysis 

Node Freq. Compo Deviation a i~ (%) a i~ (%) Error (Ck) 

(kHz) ('ii ) (predicted) (from 50 (from 50 
me,ls.) meas.) 

3 1. 26 I. , 1. 62 0.08 0.09 0.05 

4 0.56 C, -3.28 0.07 0.11 -0.20 

4 2.00 I., 1. 75 0.33 0.33 -0.06 

5 1. 59 C, -7.25 1. 02 1. 00 -0.35 

6 2.24 R, -1. 49 1. 02 1. 03 -0.85 

6 12.59 R, 3.20 1. 90 1. 76 1. 80 

7 2.24 R, -0.39 2.43 2.17 -0.26 

Next, the test points of Table 7.3 A were again used for a testability analysis, but now 

the component deviations of Table 7.3 B, column 2 werc decreased by 50 %. The 

resulting component deviations arc listed in Table 7.4, column 2. The measurement 
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errors were kept the same, so the standard deviations a i~ are given by Table 7.3 B, 

columns 3 and 4. The mean errors are listed in Table 7.4, column 3. Interestingly, the 

maximum mean error in the predicted component deviations was reduced from 1.80 % 

to 0.51 %: a reduction of 71 %. Thus the relative mean error decreases for decreasing 

component deviations. This can be explained by the fact that first-order sensitivities are 

used to model the influence of component deviations on the node voltages: The 

precision of these predictions that are obtained with these sensitivities decreases for 

increasing component deviations, as discussed in Section 3.1. 

Table 7.4. TGstability analy~is of Table 7.3, but with 
a 50 % reduction in component deviations. 

Compo Deviation Error (%) 

(%) (from 50 
mcas.) 

L, 0.81 0.03 

C1 -1. 64 -0.05 

i., 0.87 -0.05 

C2 -3.62 0.28 

R, -0.74 0.03 

RI 1. 60 0.51 

R, -0.20 -0.14 

Finally, Figure 7.4 shows the response deviation ~lv,,1 = Iv"I-lv".,,,,ml, predicted from 

the 5 test points of Table 7.1 A. Also the error in this predicted deviation and the 

corresponding standard deviation arc plotted". The response deviation ~!v,,1 is caused 

by the deviating component values listed in Table 7.1 B, column 2. The standard 

deviation of the predicted ~Iv" I at all candidate test points was obtained by taking the 

square TOot of the diagonal clements of (4.19)'. The maximum error in the predicted 

2 In contra~t to expression (4.17). the plots in Figure 7.4 UTC not normalizcd to o"w. 

, Not laking into account the normalization mentioned in footnote 2. 
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Illv
o
l that is displayed in Figure 7.4 is 0.38 mY. Furthermore it has been verified that 

the maximum mean error in the predicted IlIV" I is about 0.2 mY. Finally, the maximum 

standard deviation of the predicted Illv" I is 0.33 mY. 

Thus, the mean error in the predicted Illv" I is about 50 % of its maximum standard 

deviation, which is equal to the standard deviation of the measurement errors. 

Therefore, for this example measurements at just 5 selected frequencies predict the 

response with about the same precision as when measurements are made at all 47 

candidate test points (frequencies). This clearly demonstrates the benefits of careful 

test-point selection. 

-5 

t. I v .. I (mY) -10 

-15 

-20 

-25 
0.1 0.2 

Pred.i!cted deviathdr1 -
-E-rr6~'· In . p·iii(H.~·~·idr1 ----­

"~Q. Qev of ptediC<iidrl ..... 

]0 

f (kHz) 

Figure 7.4. Predicted respol1Se deviation [or the handpas.\ Jilrer of Figure 7.2. 

7.3 10 bit Digital~to-Analog Converter 

This section presents a somewhat more complicated example, depicted in Figure 7.5. It 

is a JO bits R-2R Digital-tn-Analog (D/A) converter, taken from [StenS7]. The circuit 

is based on the following simple principle: The current that flows from the voltage 

source into the ladder network is evenly divided at each R-2R junction. Half the 

current Hows through the 2R resistor and the other half flows through the R resistor to 
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the rest of the ladder network at the right of the junction. The current that flows 

through the 2R resistor in series with switch Si is ~;. ()1)'l-i . Consider a 10 bit code 

word h~ ... ho' where each bit bi is either 0 or 1, and bo is the Least Significant Bit 

(LSB). Let switch Si be closed if b, = 1 and open if bi = O. Then the total current that 

arrives at current meter A is 

(7.1) 

The current iou, is converted into a voltage by an ideal opamp (not shown), so 

(7.2) 

Thus each code word is transformed into a corresponding output voltage. The resistors 

denoted by "r" in Figure 7.5 model switch and wiring resistances4 that are due to the 

implementation of the converter in an integrated circuit [StenS7]. 

A deviating converter is simulated by adding to each resistor value a Gaussian error, 

with a maximum value of 3 %. Due to the resulting deviations of the resistors the 

converter exhibits a certain linearity error. This error is called the converter's response 

deviation: it is the difference in the response of a deviating and a nominal converter. 

The maximum measurement error is 0.2 LS8. 

Figure 7.5. 10 bits R·2R D/A converter. R = 100 kQ , r = J()".l·R. 

" The resistors "r" arc short circuits, as f~r as the explanation of the operating principle is concerned. 
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Sensitivities are generated for all 1024 possible code words, resulting in a 1024 x 49 

sensitivity matrix. The direct approach of Section 4.3.2 selected the 7 test points listed 

in Figure 7.6, where the number of test points is determined using (4.35), with 11 = 1.3. 

The complete response deviation was predicted from 7 DC measurements of the 

output voltage at the selected code words. The result is depicted in Figure 7.6, which 

also shows the error in the prediction. The maximum error in the prediction is 

approximately equal to the measurement error. Thus a relatively high precision is 

obtained by measuring the response at a small subset of the 1024 code words. 

-2 

511 
code word 

predicted deviation --_ .. 
Error ill p:redict ion -

102:3 

Selected code words (in order of selection): 0,511,767,895,959,991, 16 

Figure 7.6. Predicted response deviation for the DIA converter, 
lI.~ing the direct method for test-point selection. 

Next, 7 test points were selected with the iterative method of Section 5.2. For the 

selected code words (given in Figure 7.7) D;;;; 1.67· Hr2. In contrast, for the code 

words selected with the direct method (shown in Figure 7.6) D = 6.47'10-4
• Thus, the 

quality of the test points that were selected with the iterative method is considerably 

higher: D increased by a factor of 24.S. The quality of the new test points is confirmed 

by Figure 7.7. The error displayed there is clearly smaller than the error in Figure 7.6. 

Exact comparison showed that the maximum error decreased by a factor of 2.3, and 

the RMS error decreased by a factor of 2.1. 
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511 
.:::ode word 

pr-edicted d-e-v.lation ... n 

E["ror in p:.--e-diction ~ 

Selected code words (in arbitrary order): 112, 159,303,448,59[,672.784 

Figure 7.7. Predicted response deviation for the D/A COllverter, 
using the iterative method for test-point selection. 

To show that the displayed improvement does not depend upon the particular 

component values of the used deviating circuit, the standard deviation a y of the 

predicted response deviation was calculated from (4.19) for the sets of test points of 

Figures 7.6 and 7.7. Figure 7.8 displays the results, There is a large decrease in or' 

due to the higher quality of the test points that were selected with the iterative method. 

Thus the influence of measurement errors is reduced by a careful selection of test 

points with the iterative method. 

0, (LSB) 

oL-----------------~------------------~ 
G 511 

code word 

Figure 7.8, Comparison of a y for direct and ileralive lcst-point selection. 
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To illustrate the progress of the iterative test-point selection process, Figure 7.9 plots 

the value of D against the number of iterations, for the iterative process that selected 

the test points of Figure 7.7. The value of D that is obtained with the direct method is 

indicated in Figure 7.9 by the dotted horizontal line. 

0.1 .---,---,----r---.-------,---r----,,-----; 

O.OlY 

•. OOOl '----'----'----'---'-----'-----'--'-----' 
o lOOO 2000 :3-000 .. 000 5000 6000 7{lOO ElD-OCl' 

iteration 

Figure 7.9. Optimization of D by the iterative test-point selection process. 

According to Figure 7.9, the iterative algorithm quickly improves the quality of the test 

points in the first few iterations. In a later stage of the iterative refinement process, 

each iteration only slightly changes the current set of test points, leading to increasingly 

small improvements in D. It is noteworthy that already in the first stages of the iterative 

algorithm the value of D is higher than that obtained with direct test-point selection. 

Again this shows that the inherent greediness of the direct method may lead to a sub­

optimal selection of test points. 

The final example shows the applicability of the iterative method in the presence of 

large measurement errors. Again the D/A converter of Figure 7.5 is used, this time 

with other component deviations. The maximum component deviation is still 3 %. The 

maximum measurement error was increased to 1 LSB, while the 7 test points of Figure 

7.7 are used. Figure 7.10 a shows the predicted output deviation for this situation. Due 
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to the large measurement errors, the maximum error in the predicted response 

deviation is now about 0.8 LSB. 

Predicted deviation ~ 
Er-ror in predict ion .----

predicted deviation ~ 
Error in predictlon TT __ T 

512 
code w-ord 

a. Results with 7 measurements 
and r = 7. 

1023 

-2 

-4 

-6 

512 
code word 

b. Results with 16 measurements 
and r = 7. 

Figure 7.10. Reducing the influence of measurement errors by 
selecting more measurements than parameters. 

1023 

To reduce the influence of the large measurement errors, the number of parameters and 

test points was iteratively adjusted, as explained in Section 5.3. This resulted in 16 test 

points, while the number of parameters remained unchanged. Figure 7.1 () b shows that 

the higher number of test points significantly decreased the influence of the 

measurement errors: The maximum error in the predicted response deviation is 

reduced to 0.25 LSB. Note that this example also shows that the precision of the linear 

model is sufficient when only 7 model parameters are included. 

7.4 Application of the SVD to Black box Testing 

This section uses the SVD for "black box" testing, where a circuit is considered as a 

black box with input(s) and output(s). This example has been included to show that the 

SVD can also be used for testing in the case that a sensitivity matrix cannot be 

computed. 

In black box testing, all that is known about the circuit is its nominal behavior. Because 

a circuit description is not available, a sensitivity matrix cannot be computed. 
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Therefore, to obtain a model of deviating circuit behavior, a reference batch of 

fabricated circuits is measured. The circuits in this batch show a representative spread 

of deviating behavior, caused by the production process. 

The procedure will be shown for the two-stage fourth-order bandpass filter shown in 

Figure 7.11. The circuit is excited with a sinusoidal input voltage with amplitude 

Ivd = 1 V. Figure 7.12 depicts the nominal frequency response. The pass-band is from 1 

to 1.2 kHz, and the stop bands are below 800 Hz and above 1.5 kHz. Deviating 

circuits are generated by disturbing the nominal component values with Gaussian 

distributed errors, with a standard deviation of 1 %. Measurement errors are modeled 

by Gaussian distributed errors with a standard deviation of 0.33 mY. 

A reference batch of 25 deviating circuits was generated by introducing random 

component errors. For each of these circuits, Ivol was measured at 205 frequencies, 

evenly distributed on a logarithmic scale from 500 Hz to 2.4 kHz. The output deviation 

at one frequency is given by I1IvoI = Ivol-IVo.noml. The output deviations of the 25 

circuits at all frequencies were collected as columns in a 205x25 matrix 

A = [8 11···1 8~:> J , where 8, denotes the deviation illv,,1 of the /h circuit at all frequencies. 

c, 
"o~~in(2;cfi) ~~-.--------, 

(V) 

R, 

R.o 

R, 

R, = 26.967 k~l Rj = 226.4()~ kU R'J = lJ2.380 k~J RI>= 100 kQ C\ = 2.2 nF 
R, = 72.599 kQ R,,: I()()ki~ R'II= IS kQ R ,4 : (,0 k~J c" = 2.2 nF 
R.1 : 21UJ3 kQ R1: 42.5 kQ R" = 2IJ.682 kQ (', = 2.2 nF 

R" = 15S.4S7 kQ R<: 26.944 k~~ RIC: 149KI4 kQ c~ = 2.2 nF 

Figure 7.11. Two-stage jiiwth-ordcr active ha/ldpass filler !Take/l [rom Vlac94J. 
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0.01 

o . 00 1 '-----'_-'---'-_'--.l..-.l........l-J-..-L..L..1-'-l....1...--'-.l...L.I 
0.5 1.0 2.0 

f (kHz) 

Selected frequencies in kHz (in order of selection): 
0.9'.1, l.l'.l, 1.26, 1.04,0.931,0.712, I.I45, 1.681,0.669, 1.346 

Figure 7.]2, Nominal [ilter response. 

Next the test-point selection procedure of Section 4.3 was used to select a subset of 10 

columns of A. Figure 7,13 depicts the selected columns, denoted by x I' , •• ,x III' The 

number of selected columns was determined on the basis of Criterion 5.9, with 

y = 0,98, After column selection, the test-point selection procedure selected 10 rows of 

A. These rows correspond with 10 frequencies (given in Figure 7.12) at which 

measurements will be made in the test phase. The selection of test frequencies 

concludes the pre-test phase. 

In the test phase, the output deviation of a circuit under test was measured at the 10 

selected frequencies. The measurements are denoted by a 10-dimensional vector Credo 

The measured response at all frequencies is denoted by c. 

]n the post-test phase, the parameter vector p = (PI'''' ,PllY was determined as the 

solution of the square system 

X,.P = c r ' (7.3) 

where X r' is a lOx 10 matrix that contains the selected rows of X = [x 11 .. ·1 x 1<1]' 
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Figure 7.13. Graphical depiction of X! ' ••• , X !II' 

The deviating output response c was approximated by the linear combination 

c ~ Xp, (7.4) 

Figure 7.14 plots the approximated output deviation (7.4), and the error c - c in the 

approximation. Evidently c is approximated by (7.4)with a high precision. 
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Figure 7.14. Predicted output deviation (7.4) and error in the prediction. 

Next the standard deviation of the component errors was increased from 1 % to 3 %. 

This time a reference batch of 50 circuits was measured. The larger batch is necessary 

to account for the larger variety of deviating circuits, caused by the larger component 

deviations. On the basis of Criterion 5.9 (with y = 0.98), 14 columns of A are selected. 

]n the test-phase, measurements at 14 selected frequencies were made. Figure 7.15 

depicts the predicted output deviation and the error in the prediction. It shows that the 

relative maximum error increased. However, note that the maximum output deviation 

is large. It is even larger than the maximum nominal output voltage shown in Figure 

7.12. 

... 
" '" ... 
" o 
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Figure 7.15. Predicted output deviation (7.4) and error in the predictioll. 
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Thus the approach is capable of predicting large output deviations with reasonable 

accuracy. This accuracy is accomplished at the expense of a higher number of circuits 

in the reference batch. As discussed, the larger batch is necessary to account for the 

larger variety of deviating circuits (caused by the larger component deviations). Due to 

this larger variety, the rank estimate of A (determined with Criterion 5.9) increases. 

This means that the number of base junctions (examples of which are shown in Figure 

7.13) increases. Thus a higher number of test points is selected to account for the 

larger output deviations. 

As explained in previous examples, the predicted response deviation (7.4) may be used 

for a pass/fail test. For example, the maximum deviation in the pass-band, stop band 

and -3dB points may be checked against the specifications. 

Summarizing, the described approach provides accurate response predictions from a 

relatively small number of measurements. It does not need a description of the circuit 

under test. Large output deviations are dealt with by increasing the number of 

measurements. 

For larger output deviations, the number of circuits in the batch can become quite 

large. Therefore it takes a lot of time to measure the complete response deviation of 

thcse circuits. However, the cost of pass/fail testing is mainly determined by the on-line 

computational requirements. These are low because in the test phase the work consists 

mainly of solving the (small) system (7.3). 

A problem of the described method is that it may be difficult to estimate the proper 

size of the batch. In addition, for large output deviations, the number of measurements 

might become impracticable high. These issues need to be further researched. 
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7.5 Discussion 

Section 7.2 showed that a testability analysis may be performed with the direct method 

for test·point selection. For this example, the predicted standard deviations of the 

parameters are accurate. Thus these standard deviations may be used to assess the 

testability of circuit components, on the basis criterion (4.35). This criterion is useful to 

determine the number of testable parameters in the presence of random measurement 

errors. This was shown by accurately predicting the response deviation at 47 

frequencies from measurements at just 5 frequencies. The precision of the prediction 

was shown to be equal to the precision that would be obtained from measuring the 

response at all 47 frequencies. This illustrates the benefits of careful test·point 

selection. 

It was also shown that a relatively large mean error in a predicted component deviation 

was due to the use of first·order sensitivities. This shows that the use of a linearized 

circuit model results in errors when the component deviations are not infinitesimally 

small. Whether or not these errors are acceptable will in general depend on the 

application. 

For the 10 bits D/A converter the direct method selects sub·optimal test points. This is 

mainly caused by the fact that the direct method selects test points one·by one, each 

time optimizing only the currently selected test·point. This was explained in Section 

5.1. The iterative method selected test points of higher quality, resulting in a 

considerable reduction of the variance of the predicted response deviation. Finally, 

iterative refinement of the number of test points and parameters allowed for more 

precise predictions in the presence of large measurement errors. It was shown that the 

iterative method resulting in better test·points than the method presented in [StenS7]. 

Section 7.4 showed that the discussed principles of test·point selection and parameter 

selection may also be applied when a sensitivity matrix is not available. ]n this case a 

linear circuit model is obtained by measuring a batch of reference circuits. The 
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complete response deviation of a circuit under test is formed as a linear combination of 

the response deviations of selected circuits from the batch. 

The examples show that the SVD may be applied to diagnostic testing as well as 

pass/fail production testing. 
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Next a suggested approach for black box testing in the lime domain is discussed. The 

approach provides a direction for future research. 

According to Sections 7.3 and 7.4, pass/fail testing can be accomplished by applying 

certain criteria on the predicted output deviation. However, also the computed 

parameter vector p may be used for a pass/fail test in the following manner. Assume 

that, to characterize a reference batch of n circuits, the output deviation is measured at 

m time points. Here the output deviation is the deviation from nominal of the impulse 

response, at all time points. A circuits impulse response is also used in some existing 

pass/fail methods, e.g., [Pan96] (discussed in Section 2.2). In [Pan96] it is explained 

that deviations of performance parameters in the DC domain and frequency domain 

also cause a deviation in the impulse response. Thus the impulse response can be used 

to implicitly measure deviations of various performance parameters in other domains, 

e.g. DC gain or bandwidth. 

The results of the measurements of the reference batch are stored in a mXIl matrix A, 

where row i of A corresponds to time tj. After the SVD A = UWVT is computed, 

rank(A) can be estimated with Criterion 5.9, as in Section 7.4. If rank(A) is estimated 

as r, then 

where U'r is an mxr matrix containing the first r columns of V, V., is an nxr matrix 

containing the first r columns of V, and Wrr is an rxr diagonal matrix containing the 

first r singular values of A. After the SVD of A is computed, the pre-test phase is 

completed. 

In the test phase, c (the deviation from nominal of the impulse response) of a circuit 

under test is measured at m time points. Then a parameter vector p, is determined as 

the least-squares (LS) solution of 
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U.,W,,:i't = c. (7.5) 

The circuit under test is characterized by pc, in the sense that the response deviation c 

is approximated by 

(7.6) 

If the approximation (7.6) is precise (so lIe - cl1
2 

is small) then pc characterizes the 

circuit under test. Like this the SVD is used to map the deviation at m time points to 

an r-dimensional parameter vector, where in general r « m. 

The value of Pc is used in the following way to decide whether or not the circuit under 

test is faulty (a comparable approach is used in [Pan96]). First, the response deviations 

c 1 , ••• ,c1 of a large number I of deviating circuits are measured. Then PI'"'' PI are 

determined as the LS solutions of (7.5). In addition, each of the I circuits is 

characterized as good or faulty by making some measurements. As explained, the 

characterization may take place in other domains than the time domain. For example, 

an analog filter can be characterized by its passband gain, -3 dB points and stopband 

gains. After characterization, I points in parameter space are available, and for each 

point it is known whether it corresponds to a good Or faulty circuit. 

The I points define regions in parameter space, where each region contains (almost) 

only good or faulty circuits. Suppose that for a circuit under test pc is determined. 

Then the circuit is good if Pc is in a region containing good circuits and vice versa. 

Exactly how to determine the regions in parameter space is the subject of future 

research. 

Note that the outlined approach does not use test-point selection. While existing 

methods like [Pan96 J and [Sten90] use test-point selection to determine a few time 

points at which the output deviation is measured, the above procedure uses the output 

deviation at all time points. The advantage is that all available information is used. The 

influence of noise and clock skew may be taken into account by zeroing the smallest 



7.25 

singular values of A, as explained in Section 3.2. In addition, because approximation of 

matrices with the SVD is optimal, the number of clements in Pc is minimal. This is 

important, since if Pc has many elements then the dimensionality of the parameter space 

is high. In that case many circuits must be characterized to divide the space into 

regions corresponding with good and faulty circuits. Thus, the SVD is used to 

characterize a circuit by a minimal number of optimal parameters. The approach is 

intended for the time domain. In the frequency domain, measuring the complete 

response deviation of a circuit under test would take too much time, making the 

method impracticable. 





8 Conclusions and Discussion 

This chapter summarizes the results of the research that has been described in this 

thesis. Section 8.1 draws some conclusions. Section 8.2 summarizes the original 

contributions in this thesis. 

8.1 Summary of Results and Discussion 

The main part of the presented research focusses on test-point selection, testability 

analysis and response prediction for analog circuits. The presented methods usc the 

SVD of a linearized circuit model (from here onwards called "the linear model"). The 

linear model provides a first-order approximation of non linear circuit behavior. It may 

be obtained by computing first-order (differential) sensitivities. Section 7.4 showed 

that a linear model may also be obtained by measuring the deviating response of a 

batch of circuits. 

The main conclusion is that, within the limitations inherent to the approximation of a 

non linear system by a first-order model, the presented approach can be successfully 

applied to diagnostic testing as well as pass/fail production testing. 

8.1 
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The SVD copes with possible rank deficiency of the linear model in an optimal manner. 

This is accomplished by transforming the sensitivity matrix to a new matrix of full rank. 

The new matrix retains a maximum amount of the information originally contained in 

the sensitivity matrix. Test points are selected using the new matrix. 

A direct method for test-point selection selects independent measurements in the 

direction of highest sensitivity. These directions are found by computing the SVD of 

the sensitivity matrix. The result is an algorithmic approach that automatically selects 

mutually independent measurements. 

In addition to the direct test-point selection algorithm, an iterative algorithm was 

presented. Its advantage is that in general it selects test points of higher quality (in the 

D-optimal sense) than the direct approach that is based on the SVD. The selected test 

points minimize the influence of random measurement errors, and maximize the 

amount of information that is obtained from measurements. The number of 

measurements and parameters of the linear model are carefully optimized, taking into 

account the influence of random measurement errors. Section 7.3 showed that the 

iterative algorithm selects test points of a higher quality, resulting in more precise 

predictions of a D/A converter's linearity error. 

The discussed approach is preferable to an ad-hoc approach like (for example) 

[Boze94], where test point are selected on the basis of a visual inspection of plotted 

differential sensitivities. In [Boze94] it is not indicated how test points should be 

selected automatically. Of course, many approaches to automatic test-point selection 

are published. However, they lack a proper criterion that judges the optimality of a set 

of test points. For example, [Hemi90] uses the heuristic of removing the rows and 

column of the sensitivity matrix that are "nearly" dependent. The disadvantage is that it 

remains unclear in what sense the selected test points are optimal. Also the numerical 

properties of the presented approach remain unclear. 
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In contrast, the iterative method for test-point selection discussed in this thesis uses the 

well-established D-optimality criterion. This criterion minimizes the influence of 

measurement errors, and maximizes the independence of the measurements. It is shown 

with an example that this may lead to better test points than both the direct method of 

Section 7.2 and the approach published in {Sten90J. 

An important aspect of the discussed method is that it fully takes into account thc 

influence of random measurement errors. It gives useful estimates of the resulting 

variance of the predicted parameter deviations and circuit output deviations. In 

addition, the iterative test-point selection algorithm allows the number of 

measurements to be increased to compensate for larger measurement errors. 

The main limitation of the presented approach is the inability of a linear circuit model 

to accurately describe the influence of multiple large parameter deviation. This limits 

the applicability of the presented method to circuits that exhibit relatively small 

deviations from nominal behavior. However note that Chapter 7 demonstrated with the 

D/A converter that this may lead to precise predictions for a realistic example. 

Finally, Section 7.4 presented an application of the SVD that might be able to predict 

the influence of larger parameter deviation by composing a linear model of higher rank, 

and selecting a higher number of measurements. However, the limitations of this 

approach should be further investigated. 

8.2 Original contributions 

This section presents a brief summary of the original contributions in this thesis. 

• The Singular Value Decomposition (SVD) has not yet been applied to analog 

testing. The principles are published before as I Spaa95a], I Spaa95b]. This includes 

both the elimination of redundancy from the linear model (conform Section 4.3. t) 
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and the direct method for test-point selection (conform Section 4.3.2). Also 

determination of the necessary/sufficient number of measurements in a direcl 

approach on the basis of the measurement errors has not been done before. 

• The iterative method of lest point selection in combination with the D-optimality 

criterion (and the SVD) is original and will be published in [Spaa96]. 

• The work on the application of PL techniques to analog testing was done in 

cooperation with D.M.W. Leenacrts. This work is based on the results presented in 

[Leen91]. It was published as (Leen92aJ and {Leen92bJ. 
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Appendix A 
Efficient Calculation of the Singular Value Decomposition 

This appendix discusses the principles of an algorithm (due to Golub and Reinsch) 

that computes the Singular Value Decomposition of a matrix A. Two stages can be 

distinguished in the algorithm. First, A is transformed to bidiagonal form by two 

sequences of Householder transformations, as discussed in Section A.2. The second 

part of the SVD algorithm diagonalizes the bidiagonal form to obtain the SVD, as 

discussed in Section A.3. A brief discussion about the efficiency of this algorithm is 

found in Section A.4. First, Section A.I provides an introduction to the computation 

oJtheSVD. 

A.I. Introduction 

According to Section 3.2.2, the SVD of an m x 11 matrix A can in principle be found by 

calculating the eigenvalues and eigenvectors of A' A, and the eigenvectors of A A' 

(the eigenvalues of A A* need not be computed separately since they are identical to 

the eigenvalues of A' A). However, this is not the preferred approach because forming 

the products A A' and A' A may result in a unnecessary loss of numerical precision. 

A.I 
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To illustrate, compare c(A) and c(A* A) (the condition numbers of A and A' A, 

respectively). According to Section 3.2.2, c(A) = WI / Wk, where WI and Wk are the 

largest and smallest singular value of A, respectively. Furthermore it is easy to show 

that c(A' A) = w~ / w; = {c(A) Y . This increase in condition number corresponds with 

a numerical inaccuracy. 

To illustrate, consider the real matrix 

so 

A - [~ 
1 

o 
~ 

Exactly computing the eigenvalues of AT A and taking their square root gives the 

singular values of A: 

If I) 2 < co' the machine precision, then AlA = [~ :] and diagonalization of this 

matrix gives a I =../2, a 2 = 0 . Thus it would be better to use a method that finds the 

eigenvalues and eigenvectors of A' A without explicitly forming that product. By the 

same argument, it is not advisable to form the normal equations (cf. Appendix C) to 

find the LS solution of Ax = b. Instead the SVD of A should be used, as explained in 

Section 3.2.2. 
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A.2. Bidiagonalization 

This section shows how a complex m x n matrix A is reduced to bidiagonal form by 

the successive application of unitary transformations fGolu89). The result is 

p(n)", p(l) AQ(l) ... Q(n) = o 

o 

o 
=J, 

e" 
(AI) 

where p(i) and Q(i) are unitary matrices (so c(p(i) = C(Q(I» = 1) for i = 1, ... ,n. Thus 

c(J(O» = c(A), and no precision is lost when J is computed from A as in (A. 1 ). Because 

unitary matrices have condition number 1, they are widely used in matrix 

decompositions, for example to compute the OR decomposition of a matrix [Wilk71]. 

A unitary transformation does not affect the geometry of space. This was illustrated in 

Section 3.2.1, where Figure 3,6 shows that the orthogonal transformation that 

corresponds with V does not warp the data set of Figure 3.4. Instead it moves the set 

as a whole, in this case by rotating and mirroring. 

The advantage of the bidiagonal form (A 1) is that it can be diagonalized in a stable 

and efficient manner, as will be discussed in Section A3, To obtain a bidiagonal form 

(AI), Householder transformations are used. A Householder transformation is a rank 

I modification of the unity matrix I, according to 

p = 1- 2vv' / v' v, (A2) 

where v is a complex vector, called the Householder vector, with hermitian v', It is 

easy to show that P is hermitian and unitary. Geometrically, when a vector x is 

multiplied by P it is reflected in the hyperplane with normal v. Therefore (A2) is called 

a Householder reflection, It can be used to zero selected components of a vector in the 

following manner. If the Householder vector is defined as 
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(A3) 

then 

Thus the Householder transformation zeros all but the first component of x. In 

principle, the choice of the sign in (A3) is arbitrary. However, if x is close to a 

multiple of el then x and Ilxll" e l have about the same norm, and a loss of precision 

might occur in (A3). This is avoided by letting 

v = x + sign(x, )Ilxllz e 1, 

where sign(xl) = 1 if XI ~ 0, and sign(x,) = -1 if XI < O. 

The m x n matrix A is bidiagonalized with an iterative process. In the j'h iteration, pri) is 

constructed to zero elements i + 1, ... ,m of column i. After the premultiplicalion 

(according to (At» with p(il, Q(i) is constructed to zero elements i + 2, ... ,n of row i. 

For example, for a 5 x 5 matrix, the second iteration can be visualized as follows. 

x x 0 0 0 x x 0 0 0 x x 0 () 0 

0 x x x x 0 x x x x 0 x x 0 0 

0 
pO) Q12) 

X X X X 0 0 x x x 0 0 x x x 
--;. --;. 

0 x x x x 0 0 x x x 0 0 x x x 

() x x x x 0 0 x x x 0 0 x x x 

Because transformations P ~ p{") •.• p(l) and Q~Q(I) ... Q(") are unitary, the singular 

values of A are identical to the singular values of J. Thus, if the SVD of J is 

J = GWHT 

then the SVD of A is 

with U = PG and V = QH . 
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The discussed procedure reduces the problem of determining the SVD of A to the 

problem of finding the SVD of a bidiagonal matrix (AI). 

A.3 Diagonalization of the Bidiagonal Form 

The procedure that finds the SVD of J by diagonalization of this bidiagonal matrix is 

described in [Golu71], and is not discussed in detail here. 

According to (AI), J is a bidiagonal matrix, so t J is a tridiagonal matrix. It is well­

known that the eigenvalues of a tridiagonal matrix may be obtained by a succession of 

OR transformations (with origin shifts to improve convergence) [Bowd71]. However, 

as discussed in Section AI, explicit formation of t J in general results in a loss of 

numerical precision. Therefore the SVD of J is found by implicitly computing the 

eigenvalues of J' J, without forming this matrix product. 

The basic idea is to form in iteration i the product 

The matrix T(i) is chosen such that the product J(i)TJ(il converges to a diagonal matrix. 

The matrix SV) is chosen such that J(i. I) is again bidiagonal. Here S(i) and ril are both 

unitary matrices corresponding to Givens rotations. The successive application of 

matrices iteratively annihilates the off-diagonal elements of J, so 

J ~ J(O) --0. J(I) - ••• --0. W, 

where W contains the singular values of J and A. Convergence is obtained after k 

iterations, if the off-diagonal elements of J(k) are below a certain threshold. 



A.6 

A.4 Discussion 

The total complexity of the discussed algorithm is of the order 4m 2n + 8mn 2 + 9n 3
, 

for an mxn matrix. Because of the contribution of the second term of this sum, the 

Golub-Reinsch algorithm is not particularly efficient when applied to a matrix for 

which m > n. Note that this is often the case for a sensitivity matrix, because the 

number of frequency points, time steps, or DC points (i.e., the number of rows) is 

generally much higher than the number of parameters (Le., the number of columns). 

If m > n a computationally more efficient method, the R-SVD algorithm, can be used. 

This method, due to Chan and described in [Golu89], only differs from the discussed 

Golub-Reinsch algorithm by an extra preparatory step that transforms A into an upper 

triangular matrix R. Next, R is transformed into bidiagonal form with Householder 

transformations, in the manner described in Section A.2. The complete procedure is 

called R-bidiagonalization. After bidiagonalization, the procedure described in Section 

A.3 is applied. The total efficiency of the R-SVD algorithm is of the order 

4m 2n + 22nJ
, which is more efficient than the Golub-Reinsch algorithm if m > n. 

In test-point generation, computation of the SVD does not constitute the major part of 

the total work. Computing parameter sensitivities and iteratively selecting test points 

are often more expensive. Therefore, since the Golub-Reinsch algorithm was available, 

this algorithm is used to calculate the SVD even though it is less efficient than the R­

SVD algorithm. 



Appendix B 
Some results from statistics 

This appendix presents some results from statistics. First an expression is derived for 

the variance of a linear combination of random variables. Then some common 

formulas are given that estimate the mean and variance of a random variable from a 

limited number of observations. 

Let X be a discrete random variable that may attain one of n values X p ... , x" . 

P(X = Xi) denotes the probability that the value of X is x,, Now 

E[X1 = ~ {x;. P(X = x,>} (8.1) 

is the expected value of X. Furthermore, the expected value of a continuous statistical 

variable X is 

E[X] = IXi p(X)dx, (8.2) 

where p(X) is the probability density function of X. 

8.1 



8.2 

Let x,. be a random variable. If Xi is discrete then E[X;J is given by (8.1), else E[X;J is 

given by (8.2). The rest of this appendix uses the following definitions. 

• ~x, ~ E[Xi] is the mean of Xi. 

• (J~, ~ E[ (Xi - ~ X; )2] is the variance of x,.. Sometimes the notation (J x,x, is used 

for convenience. 

• (J X'X
i 
~ E[(Xi - ~x, )(Xj - ~Xi)] is the covariance of Xi and Xj' 

• X denotes the n-vector (Xl"'" X,,) T and Y denotes the m-vector (1';,.", Ym ) T • 

Consider the linear combination Y = alXI + ... + a"X" of the n random variables 

Xi"" ,X"' The variance (J~ is 

Thus 

(J~ = E[(aIXI + ... + a"X" - ~",X,+, +"_x,/] 

= E [(a X + ... + a X - a" - ... - a u )2 J 1 1 II I! IrX1 }I~ X/I 

= £ [(a (X - u ) + ... + a (X - II »2] 
I 1 I XI /I" rx" 

= £[ al(X] - !-!X,)al(XI - !lx) + ... + al(XI - ~x)a"(X,, - ~x) 

+ ... 

+ a"(X,, - !lX)al(XI - !lx,) + ... + a"(X,, - ~x)aJX" - !-!x")] 

a,a,E[(XI - ~X, )(XI - ~XI)J + , .. + G1G,,£[(XI - ~x)(X" - !lx,)] 

+ ... 

+ ... 



8.3 

f

ax,x, 
2 • 

a y = (ai' ... ,all )· a : 

XttX1 

... a 1 [a 1 x,x. I 

a:,x • . ~" (8.3) 

where a = (a p ... ,a.)T and Cx denotes the nxn covariance matrix of XI' ... ,X". 

Now let 1';, ... , Ym be m linear combinations of XI"" ,X"' where the /h combination is 

given by Y; = aJ X. The row vectors a;, ... ,a: may be stacked to form an mxn 

matrix A. Thus, with (B.3) the following result is obtained: 

(8A) 

where C y denotes the mx m covariance matrix of 1'; "'" Ym • 

Note that the above derivation did not make any assumptions with regard to the 

probability distribution of the variables Xl"" ,XII' 

According to (B.1) and (8.2) [lx can only be calculated if the probability distribution of 

X is known. However it is possible to obtain an estimate /.Ax of /.Ax from a limited 

number of observations of X. Assume that n observations XI"'" x" are made. Then /.Ax 

may be estimated as 

1 " 
/.Ax =-~ Xi' 

nf:f 
(8.5) 

Now suppose that there are n pairs (Xi, Yi) of observations of X and Y. Then /.Ax and /.Ay 

may be estimated with (8.5). After these estimates are obtained a xy may be estimated 

as 

1 " 
a xy = -----=-1 ~ (Xi - /.A x )(Yi - /.A) , 

n f=f 
(8.6) 

where /.Ax and f..ly denote the estimated mean of X and Y respectively. Chapter 3 uses 

(8.6). An argument based on degrees of freedom motivates the multiplication factor 

l/(n -1) instead of l/n [Walp93]. 





Appendix c 
Geometrical Interpretation of the Least-Squares Approximation 

This appendix derives an expression for the least-squares approximation, on the basis 

of the so-called normal equations. Furthermore it gives a geometrical interpretation 

of the least-squares approximation. 

Consider the system 

Ax= b, (Cl) 

where A is a real mxn matrix, x is a real n vector and b is a real m vector. According 

to Definition 3.4, the least-squares approximation (LS) x of x minimizes lib - Axll~ . 

Thus 

SSE¢J ~ (hi - a;rx)~ (C2) 

is minimized, where a,'1 denotes the i 'h row of A. When (C2) reaches its minimum, 

\fiElL ... "] A<:S£) = O. This gives the following set of fl equalities: 
Xi 

Cl 



C.2 

aSSE ~m T T 
~ = -2 (b, - a i x)a i e] = 0 

1 ,. 

(C.3) 

aSSE ~m T T 
-- = -2 (b - a x)a. e = 0 ax ,,' n 

n ,. 

where ei denotes the i-th unit vector of Rn. Rewriting (C.3) in matrix-vector notation 

obtains the normal equations 

(C.4) 

If A is complex then AT is replaced by A'. The solution of (C.4) is the LS-squares 

approximation of x. Suppose that m > n, and rank(A) = n. It can be proven that in that 

case the inverse of ATA exists, so the LS solution of (C.1) is 

(C.S) 

where A L is called the left-inversel of A. Thus the left-inverse is used instead of the 

(non existing) inverse of A to solve (C.1) if that system is overdetermined and A has 

full column rank. On the other hand, if n > m and rank(A) = m then the LS solution of 

(C.l) is 

(C.6) 

where A R is the right-inverse of A. 

By substituting the SVD (3.34) of A in (C.S) and (C.6), these expressions both reduce 

to the generalized inverse (3.43). This generalized inverse also exists for a rank­

deficient matrix A, which is not true for (C.S) and (C.6). Furthermore, note that if the 

condition number of A is c(A) = a, the condition number of ATA is a 2
• Thus (C.S) 

and (C.6) are poorly conditioned, and therefore it is better to obtain the LS solution of 

(c'1) with the SVD, as explained in section 3.2.3. 



C.3 

Next a geometrical interpretation of (CS) will be given. Consider the vector 

u ~ Ai <= AA Lb, with U ER(A). AA L is the matrix of the orthogonal projection on 

R(A), so b - u..l R(A). Figure CI depicts the situation. In this example, A is a 3x2 

matrix, so it maps each vector in R2 to a vector on R(A), which is a plane in If, 

spanned by the columns 31 and 32 of A. In this case i: is mapped to u. Because 

u <= Ai: is the orthogonal projection of b on R(A), the distance lib - ull 2 is minimal. 

This shows that indeed x is the LS solution of (CI). 

Figure C.l. Graphical interpretation of the least-squares approximation. 
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STELLINGEN 

behorende bij het proefschrift 

A test method for analog circuits 
using sensitivity analysis and the singular value decomposition 

door J. van Spaandonk 

1. De bewering "Since the QRF process chooses maximum norms for the diagonal 
elements of R, I AT A I is nearly maximized" in onderstaand artikel is onjuist. ]n 
tegenstelling tot wat de auteurs beweren zal bij een niet-triviaal circuit en een 
relatief groot aantal testpunten de geselecteerde set testpunten verre van D­
optimaal zijn. 
(G.N. Stenbakken and T.M. Souders, "Test-point selection and testability measures via 
OR factorization of linear models," 
IEEE Trans. Instrum. Meas., Vol. 36, pp. 406-410, June 1987) 

2. Aan het nut van de in onderstaand artikel gebruikte incremental sensitivities voor 
het testen van anaJoge circuits moet worden gewijfeld, daar ze slechts toepasbaar 
zijn voor een beperkte klasse van circuits. 

(M. Slamani and B. Kaminska, "Analog circuit fault diagnosis based on sensitivity 
computation and functional testing," 
IEEE Design and Test of Computers, pp. 30-39,1992) 

3. De ad-hoc aanpak die wordt beschreven in onderstaand artikel voegt weinig toe 
aan reeds bestaande methoden omdat ze geen garanties geeft m.b.t. de optimaliteit 
van de geselecteerde metingen en parameters. 

(GJ. Hemink, B.W. Meijer and H.G. Kerkhoff, "Testability analysis of analog systems," 
IEEE Trans. CAD, Vol. 9, pp. 573-583, June 1990) 

4. De in onderstaand artikel gebruikte definities van "fault masking" en "fault 
equivalence" zijn in feite equivalent. 
(M. Slamani, B. Kaminska and G. Quesnel, "An integrated approach for analog circuits 

testing with a minimum number of detected parameters," 
IEEE VLSI. Test Symposium, pp. 54-59,1994) 

5. Als circuitbetrouwbaarheid buiten beschouwing wordt gelaten is het behalen van 
een hoge "fault coverage" bij analoog testen niet zinvol, en kan worden volstaan 

met een functionele verificatie van het circuitgedrag. 
(Dit proefschrift, hoofdstukken 1 en 2) 



6. Het klakkeloos gebruik van aan het digitate domein ontleende technieken voor 
analoog testen leidt tot sub-optimate testmethoden. 
(Dit proefschrift, hoofdstukken 1 en 2) 

7. Niettegenstaande de overtuiging van Roger Penrose dat "a conscious mind cannot 
work like a computer" blijft onverkort gel dig dat aan het menselijk bewustzijn 
uitsluitend fysische processen ten grondslag liggen. Zodoende kan het in principe 
worden gemodelleerd en in een computer gesimuleerd. 
(Roger Penrose, The emperor's new mind " concerning computers, minds, and the laws 
of physics, Oxford university press, New York, 1989 

Daniel C. Dennet, Conciousness Explained, Little brown and company, Boston, 1991) 

8. Door de toenemende bezuinigingen is research steeds meer gericht op het behaIen 
van resultaten die op de korte termijn toepasbaar zijn. Net zoals bij een "greedy" 
aanpak van een optimalisatieprobleem is het gevolg dat een belangrijk deel van de 
oplossingruimte nooit wordt bereikt. Op de lange termijn zal dit nadelig 
uitwerken. 

9. In het algemeen wordt te weinig onderkend dat problemen m.b.t. het millieu in 
principe worden veroorzaakt door een te hoge concentratie mensen op een 
beperkt oppervlak. 

10. Volgens de briljante natuurkundige R.P. Feynman geldt "A scientist looking at 
nonscientific problems is as dumb as the next guy". Vanuit dit standpunt bezien 
moet in de meeste gevallen aan de laatste stellingen bij proefschriften niet al te veel 
waarde worden gehecht. 
(R.P. Feynman, What do You care what other people think, Bantam books, New York, 

1989) 
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