EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Interaction processes in cold gases of alkali atoms

Citation for published version (APA):

Abeelen, van, F. A. (1999). Interaction processes in cold gases of alkali atoms. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Applied Physics and Science Education]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR528499

DOI:
10.6100/IR528499

Document status and date:
Published: 01/01/1999

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.6100/IR528499
https://doi.org/10.6100/IR528499
https://research.tue.nl/en/publications/b99d5df2-4825-4d18-88a2-e1051b3099bc

Interaction Processes
in Cold Gases
of Alkali Atoms

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr. M. Rem, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen

op donderdag 16 december 1999 om 16.00 uur

door

Frank Anton van Abeelen

geboren te Son en Breugel



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. B.J. Verhaar
en
prof.dr. H.C.W. Beijerinck

Druk: Universiteitsdrukkerij Technische Universiteit Eindhoven

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Abeelen, Frank Anton van

Interaction Processes in Cold Gases of Alkali Atoms / by Frank Anton van Abeelen. -
Eindhoven: Technische Universiteit Eindhoven, 1999. - Proefschrift. -

ISBN 90-386-0937-X

NUGI 812

Trefw: atoombotsingen / Bose-Einstein-condensatie / atomen; wisselwerkingen /
alkalimetalen / laserspectroscopie

Subject Headings: optical cooling of atoms; trapping / scattering of atoms, molecules,
and ions / phase coherent atomic ensembles; quantum condensation phenomena /

interatomic potentials and forces / laser-modified scattering and reactions



aan myn ouders



Frank van Abeelen

Group for Theoretical and Experimental Atomic Physics and Quantum Electronics
Department of Physics

Eindhoven University of Technology

P.O. Box 513

5600 MB Eindhoven

The Netherlands

Cover Alkali atoms with electron cloud, nuclear spin, and electronic spin; the two atoms
on the left are colliding and temporarily in different internal states than the noninteracting
atoms on the right and at the back. Some formulas used in the description of cold collisions

between alkali atoms are visible in the background.



Contents

Introduction

1.1 Atoms in Cold Dilute Gases . . . . . . . . . .. ...,
1.2 Cold-Atom Interaction Processes . . . . . .. .. ... ... .......
1.3 This Thesis . . . . . . . o o i e e e e e e e e

Basic Concepts

2.1 The Effective Hamiltonian . . . . . . . .. ... .. .. ... .......
2.2 Coupled Channels and Rate Coefficients . . . . . .. .. ... ... ...
2.3 Scattering Properties in the Ultracold Limit . . . . . . . ... ... ...
2.4 The Accumulated Phase Method . . . .. ... .. ... .........
2.5 Feshbach Resonances . . . . . . ... ... ... ... ... ... ... .

2.6 Photoassociation . . . . . . .. .. ...

Time-Dependent Feshbach Resonance Scattering and Anomalous
Decay of a Na Bose-Einstein Condensate

3.1 Imtroduction . . . . . . . . . . . ..
3.2 Anomalous Decay in Type 2 Runs . . . . ... ... ... ... .. ...
3.3 Two-State Model . . . . . . . . . . .. . o
34 Results. . . . .
3.5 Two-Step Three-body Decay in Type 1 Runs . . . . . . ... ... ...

3.6 Conclusions . . . . . . . . . . . ..

Photoassociation as a Probe of Feshbach Resonances in

Cold-Atom Scattering

4.1 Introduction . . . . . . . . . . . . e e
4.2 Photoassociation as a Probe of Feshbach Resonances . . . . . ... ...
4.3 Numerical Calculation of the Signal . . . ... ... ... ... .. ...
4.4 An Analytical Model . . . . . . . . .. ... ..o

4.5 Conclusions . . . . . . . . . e

Observation of a Feshbach Resonance in Cold-Atom Scattering

5.1 Imtroduction. . . . . . . . . . .o
5.2 Experimental Method . . ... ... ... .. ... . 0.
5.3 Observation of a Feshbach Resonance . . ... .. ... ... ... ...

5.4 Determination of 8°Rb Interaction Parameters . . . . . .. .. ... ..

14
19
22
24
28

33
33
34
36
38
39
40

43
43
44
45
47
50



2 Contents

5.5 Conclusions . . . . . . . i i e e e e e e e e e e e 60
6 Sympathetic Cooling of °Li Atoms 63
6.1 Introduction. . . . . . . . . . . .. ... 63
6.2 Reexamination of the Li + Li Accumulated Phases . . . . ... ... .. 64
6.3 TLi-SLi Collisions . . . . . v v v v it e e 67
6.4 Collisions between Identical Isotopes . . . . . . ... .. ... ... ... 70
6.5 Conclusions . . . . . . . . . . .. e e 72

7 Determination of Collisional Properties of Cold Na Atoms from

Analysis of Experimental Data 75
7.1 Introduction. . . . . . . . . . . . . . . 75
7.2 Method . . . . . . . . 77
7.3 Bound-States Analysis . . . . . . ... ... 78
7.4 Photoassociation Data . . . . . . ... ... ... o o 00000 83
7.5 Feshbach Resonances . . . . . . . . . . . . . ... . . ... ... .. ... 85
7.6 Predictions and Conclusions . . . . . . . . . .. ... ... 87
Summary 91
Samenvatting 93
Dankwoord 96

Curriculum Vitae 97



Introduction

1.1 Atoms in Cold Dilute Gases

One of the most fascinating new developments in atomic, molecular and optical physics
is the realization of Bose-Einstein condensation (BEC) in dilute atomic gases. First in
gases of the alkali atoms rubidium [1,2] sodium [3], and lithium [4], and later hydrogen
[5]. BEC occurs when the de Broglie wavelength of the atoms in a bosonic gas becomes
comparable to or larger than the mean interparticle separation. This calls for a very
low temperature of the gas: typically below 500 nK at densities of around 10'® atoms
per cubic centimeter. For hydrogen, the transition temperature turned out to be near
50 pK for a density of 1014 atoms/cm3. A condensate is characterized by a macroscopic
number of particles in the same quantum mechanical state described by a field function
that depends on only one position vector. It is probably the most striking manifestation
of the quantum nature of matter.

Quantum statistical effects that are essentially identical to BEC in gases have been
observed and studied before in the superfluidity of liquid helium and the phenomenon
of superconductivity. These effects are, however, difficult to study at a fundamental
level because the particles are in a liquid or solid and strongly interacting. Observation
of weakly interacting dilute gases relates much more to BEC in its ideal form (BEC
in an ideal gas for which the concept was originally formulated by Einstein [6]) and
allows a theoretical description from first principles. In analogy to lasers where large
numbers of photons — massless bosons — are emitted in the same mode, Bose-Einstein
condensates could be used as a source of coherent matter waves. The first steps toward
this goal have been taken [7,8].

Besides BEC the interest in Fermi degeneracy in cold dilute alkali gases has rapidly
grown [9-11]. Fermi degeneracy is the generic name for all quantum statistical effects
that occur in a system of fermionic particles when their de Broglie wavelength becomes
of the order of the interparticle distance. A gas of fermionic lithium atoms is predicted
to become superfluid at temperatures and densities comparable to those at which the
BEC experiments are performed [9,11].

Although all the above phenomena occur in dilute gases, atomic interactions play
a crucial role in them. For example, they determine the shape and stability of Bose-
Einstein condensates and set limits on the experimental possibilities. Due to the low
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densities binary collisions nevertheless dominate, facilitating a detailed theoretical de-
scription. But interactions between cold atoms have become the subject of intensive
study not only because of their importance to the above new areas of cold-atom physics,
but also because it is possible to manipulate them with radiative or static magnetic
fields and because cold-atom interaction processes have proved to be a powerful tool
for measuring atomic and molecular parameters. This thesis contains theoretical con-
tributions to the investigation of cold-atom interaction processes that address each of
these three aspects.

1.2 Cold-Atom Interaction Processes

The low-temperature regime for atomic interaction processes in usually devided into
the cold (roughly 1 mK to 1 pK) and ultracold ( 5 1 pK) regime. Light forces are
used to cool gas samples to temperatures in the cold regime (laser cooling [12]). In
this regime a few partial waves contribute to collisions. In the ultracold regime only s-
waves contribute and elastic collisions between the atoms can be characterized by only
one parameter: the scattering length a. The sign of the scattering length indicates
whether the atomic interaction is effectively repulsive (¢ > 0) or attractive (a < 0).
Bose-Einstein condensates in dilute gases are in the ultracold regime.

Below about 1 pK, the mean translational kinetic energy of the atoms lies below the
recoil energy from a photon scattering event and cooling with light forces is no longer
possible. Instead, evaporative cooling in a magnetic trap is used. This kind of trap is
based on the shift in the internal energy of the atoms under the influence of a magnetic
field. Alkali atoms can exist in one of several hyperfine states that are associated with
different orientations of their magnetic dipole moment. Depending on this orientation,
there are states with increasing energy and with decreasing energy with increasing field
strength. These are called low-field and high-field seeking, respectively. Thus, atoms
polarized in a low-field seeking state can be confined in a static magnetic field with a
local minimum in field strength. A magnetic field maximum cannot exist in free space,
so that high-field seeking states cannot be trapped in this way.

The basic idea of evaporative cooling is a gradual lowering of the potential walls
enclosing the atom (for technical details see [13]). This leads to the escape of atoms
with the highest translational energies. The atoms with lower energies that cannot
escape rethermalize through elastic collisions and the Maxwell-Boltzmann distribution
is continuously changed to that for a much lower temperature. This cooling method
is a good example of the important role that atomic interactions play in cold-atom
physics: the rethermalization rate, and therefore the evaporative cooling rate, depends
on the elastic scattering cross section proportional to a?.

A second example is formed by inelastic collisions: collisions that change the internal
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state of the colliding atoms. If low-field seeking atoms are converted to high-field
seeking in a magnetic trap, trap loss will result. The most important cause of trap loss,
however, is exothermal collisons where one or both colliding atoms make a transition
to a state with a lower internal energy; the excess internal energy is converted into
translational energy. Energy differences between the internal states are often of the
order of 1 K and thus much larger than the depth of traps for ultracold atoms. With
knowledge of inelastic collision rates one can predict which (combinations of) internal
states can be confined in which trap for how long.

Thirdly, the properties of a condensate strongly depend on the scattering length
a. The behavior of an ultracold dilute atomic gas is conveniently described in a field-
theory formalism where the actual interactions between the atoms have been replaced
by a delta-function pseudopotential proportional to a. A condensate that has formed
in the gas is described by a coherent field ¢ (#,t). In the mean-field approximation the
behavior of ¢ is governed by the Gross-Pitaevskii equation [14]

. h2
ihd = (——vz + Virap () + U |(/>|2> ¢ (1.1)
2m
with
2
U— drhca 7 (1.2)
m

where m is the atomic mass and Vi, is the trap potential. The mean-field or self-
energy term U |¢\2 results from a Hartree-Fock average of the above delta-function
pseudopotential. It is an example of a “coherent” collisional effect proportional to a
rather than to its square. Other examples are the refraction of matter waves [15] and
atomic clock frequency shifts [16].

The sign of the scattering length plays a pivotal role in the stability of Bose-Einstein
condensates. The repulsive interaction associated with positive a tends to stabilize a
condensate. For negative a, Eq. (1.1) with Vi, = 0 does not have a stationary
solution. In practice, this probably means that the repulsive interactions will bring all
atoms close together, three- and many-body collisions will produce molecules and the
gas may even condense to a solid. With a harmonic trap potential the Gross-Pitaevskii
equation does have a stable solution, but only if the mean-field energy is less than
the spacing of the trap levels [17]. This sets a maximum to the number of atoms in
the condensate. When a = 0 the atoms effectively do not interact and the stationary
solution of the Gross-Pitaevskii equation equals the single-atom ground-state wave
function in the trap potential (except for normalization).

In order to more fully understand the effect of atomic interactions on condensates,
it would clearly be desirable to be able to tune the scattering length to an arbitrary
value. This would allow for studies of BEC in very strong or weak interaction limits,
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and it might also be possible to study the dynamics of the collapse of a condensate
induced by a sudden switch of the sign of a, all in a single experiment. One promising
method to realize this, proposed by Tiesinga et al. [18], employs magnetically tunable
Feshbach resonances. Feshbach resonances are scattering resonances that arise when
the total energy (internal + translational) of a pair of colliding atoms matches the
energy of a quasibound two-atom state, leading to the resonant formation of this state
during the collision. Magnetic tuning is possible if the magnetic moments of the free
and quasibound states are different, and this allows for the tuning of the scattering
length. In collaboration with Heinzen and his group at the University of Texas, Austin,
a part of the work reported in this thesis was devoted to observing and analyzing such
a resonance for the first time in 3°Rb. Almost simultaneously, Ketterle’s group at MIT
observed a Feshbach resonance in a sodium condensate.

Finally, we return to the cold regime and mention photoassociation spectroscopy
as a powerful tool to measure atomic interaction parameters and to gain insight in
scattering processes. In fact, we demonstrated that photoassociation is a good probe for
observing Feshbach resonances and our colleagues in Austin indeed used this method.
In the photoassociation process a laser optically excites two colliding ground-state
atoms into a bound electronically excited molecular state, which then decays back to
free atoms with translational energy large enough to leave the trap. The resulting
decrease in the number of trapped atoms is measured. The potential of this method
lies in the fact that the transition rate to the molecular state is very sensitive to the

shape of the ground-state radial wave function.

1.3 This Thesis

This thesis is based on five papers, published in the literature, that address different
topics related to interactions between cold and ultracold alkali atoms. Before we pro-
ceed to these research contributions, however, we want to introduce the reader to some
fundamental concepts of cold collision physics and methods of calculation that we use.
This is done in chapter 2. It describes the different interaction terms that appear in
the Schrodinger equation for interaction processes between alkali atoms and how we
calculate collision rates and scattering lengths. Special attention is given to scattering
properties in the ultracold limit and a useful parametrization of the interactions valid
in the entire relevant energy range. At the end of this chapter, Feshbach resonances
and photoassociation are treated in more detail.

Chapter 3, which contains the first published paper, deals with Feshbach resonances
in a time-dependent magnetic field. We explain the extremely rapid decay that was
observed in an experiment investigating these resonances in a Na Bose-Einstein con-
densate. Chapters 4 and 5 describe our work on the 8°Rb Feshbach resonance, leading
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to a prediction for 8°Rb interaction parameters that are crucial for the actual appli-
cation of this resonance to change the sign and strength of the atomic interactions
in a 8Rb condensate. In chapter 6 we redirect our attention to Fermi degeneracy.
Its realization is complicated by the fact that evaporative cooling does not work for
spin-polarized fermions at very low temperatures. We show, through analysis of pho-
toassociation data and measured bound-state binding energies, and via calculation of
scattering properties, that there are two possible solutions in the case of °Li: sympa-
thetic cooling (cooling 6Li with evaporatively cooled bosonic "Li atoms) or using 6Li
atoms in different internal states. The thesis is concluded with a chapter in which we
present a thorough simultaneous analysis of three different experiments on Na that we
have used to determine with high precision all parameters describing the interactions
between cold Na atoms. This has enabled us to make accurate predictions for all Na
cold-atom scattering properties. These predictions have been of great help to exper-
imental groups, especially Ketterle’s group at MIT. Moreover, our results have been

used to confirm the reliability of ab initio calculations of van der Waals interactions.
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Basic Concepts

2.1 The Effective Hamiltonian

In a quantum mechanical description of interaction processes between alkali atoms
(without external forces), one should in principle take into account the electric and
magnetic forces between all electrons and nuclei involved in the process. A large part
of a collision between cold alkali atoms, however, takes place at large interatomic sepa-
rations (r > 15 Bohr radii), where a picture of separated atoms is a good starting point.
At smaller separations the interaction between the atoms is completely dominated by
Coulomb forces that can relatively easily be fully taken into account. These observa-
tions suggests that a simplified description is possible. This is confirmed by previous
experience, gathered to a large extent in our group. It shows that the problem can be
reformulated in terms of an effective Hamiltonian [1,2] that depends only on the inter-
nuclear separation(s) and the total nuclear and electron spins of the individual atoms.
It is essentially based on the well-known Born-Oppenheimer approximation and the
Shizgal [3] approximation, which assumes that all spins are located at the position of
their respective nucleus.

For collisions of two ground-state alkali atoms we have used the Hamiltonian
7 2
_ hf Z c
H_Z+Z(Vj +V7)+ Ve, (2.1)
j=1

comprising the relative kinetic energy operator with reduced mass u, a single-atom
hyperfine and Zeeman term for each atom, and a central two-atom interaction term
V€. The hyperfine terms thf are given by

"

Vi

] (22)

where 5; and 7; are the electron and nuclear spin operators of atom j and a?f a
constant related to the hyperfine splitting. We will use lower case letters for single-
atom spin operators and quantum numbers and reserve capital letters for two-atom
spins. Since alkali atoms have only one valence electron, s; = so = % In ground-state
atoms the hyperfine splitting originates from the Fermi-contact term. The Zeeman
interaction terms are included to account for the magnetic field present in many cold-
atom scattering experiments. Choosing the z-axis of the laboratory frame along the
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Figure 2.1 Hyperfine diagram for ground-state Na atoms (a"/ = 42.51 mK). The hyperfine
diagrams for ground-state atoms of other alkali species with nuclear spin quantum number

i = % can be obtained by scaling to the appropriate value of a"¥. For "Li, a"f = 19.28 mK.

magnetic field B=B 2, they have the familiar form
V# = (Veszj — Ynvizj) B- (2.3)

We assume that variations in the magnetic field are negligible over distances of the
order of the interaction range (~ 50 nm).

Asymptotically, where the two-atom interaction V¢ can be neglected, the system is
described by separate atoms, each in an eigenstate of its own hyperfine and Zeeman
operators. These are the magnetic-field dependent hyperfine states | f,my), where
f = §+ 17 and the quantization axis is parallel to B. For larger magnetic fields f is not
a good quantum number, but it is still used to label the one-atom eigenstates. Figure
2.1 shows the hyperfine diagram for 2?Na with i = % The states with f =i + % and
my = = f are called the doubly polarized states. Here, the electron and nuclear spins
are fully stretched in the same direction parallel or antiparallel to the magnetic field.
Consequently, their spin structure does not depend on the magnetic field strength,
contrary to that of the other hyperfine states. The differences in field dependence
between the hyperfine states are responsible for Feshbach resonances. Tensor products
of the one-atom hyperfine states will form the basis for the description of ground-state

collisions.
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The central interaction V¢ represents all Coulomb interactions between the electrons
and the nuclei of both atoms. It depends only on the quantum number S associated
with the magnitude of the total electron spin S=a+ 83, which can be 0 or 1 for alkali

atoms, and the internuclear distance r:
V¢=Vs(r)Ps+ Vr(r) Pr, (24)

with Pg and Pr the projection operators on the singlet (S = 0) and triplet (S =
1) subspaces. The potentials Vg and Vi are the two Born-Oppenheimer molecular
potential curves connected to the 25; 2+ 25, /2 separated-atom limit; in spectroscopic
notation the corresponding molecular electronic states are X 123‘ and a 3%}, If, for
the sake of simplicity, we temporarily limit ourselves to the valence electrons with

coordinates 7] and 75, these states ¥g have the asymptotic behavior

Wsir (5 74.72) = sl () 2 () 4 () ¢ ()] (2.5)

where ¢ 4 and @p are the atomic 25, /2 states centered at nucleus A or B. Refering to
the subspaces in which they work Vg and Vr are called singlet and triplet potential.
Note that in the effective Hamiltonian (2.1) the atomic reduced mass is used instead
of the nuclear mass which one would expect from the standard Born-Oppenheimer
procedure. This effectively accounts [4] for the adiabatic correction terms (proportional
to <\IIS7T (’I“; 7?1, 7?2)‘ d2/d7“2 ‘\IIS7T (’I“; 7?1, 7?2) > )

The singlet and triplet potentials are quite different. The singlet potential is the
most attractive one of the two. Due to the Pauli principle the triplet curve is much
shallower and the internuclear separation where the potentials become strongly repul-
sive is several Bohr radii ag larger for Vp than for Vg. A comparison of the number
of bound states supported by the potentials is also illustrative: for sodium the singlet
potentials has 66 zero angular momentum bound states, while the triplet potential has
only 16. Figure 2.2 shows the curves for sodium.

At large separations (r > 16 ap to 19 ag, depending on the atom species), the

central potentials may be written as

VS,T (7’) = —% - % - % FVe (T) : (26)
The first term represents the van der Waals interaction. It is followed by the next
two terms in an electric multipole expansion of the Coulomb interactions between the
charge distributions of the two colliding atoms: the dipole-quadrupole and quadrupole-
quadrupole interactions. The different permutation symmetries of the molecular elec-
tronic wave functions ¥g and U are responsible for the exchange energy Vg (r). The
dispersions coefficients Cg, Cs and Cg can be calculated with a model containing pa-
rameters that are fitted to measured quantities such as the atomic static electric dipole
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Figure 2.2 Nay singlet (S = 0) and triplet (S = 1) ground-state potentials.

polarizabilities, or even completely ab initio. For several years, the coefficients calcu-
lated by Marinescu et al. [5] for all pairs of identical alkali atoms up to cesium have
been the most widely used. They have an estimated accuracy of about 5 %. In the
meantime even more accurate values have been calculated for all Li coefficients [6] and
for the van der Waals coefficients Cg [7] for the other alkalis. It should be emphasized
that all electrons of the atom pair, including the core electrons of both atoms, are taken
into account in these calculations.

Smirnov and Chibisov have derived a general analytic formula for the long-range

exchange interaction energy. It has the form [§]
Ve (7“) _ Ar7/2a—16—2ar 7 (27)

where —a?/2 is the atomic valence electron binding energy and A is equal to an inte-
gral depending on « and a normalization parameter for the atomic long-range valence
electron wave function. The « and A parameters following from present standard
atomic data have been summarized recently for all pair of identical alkali atoms up to
Cs [9]. In a small r-range near the beginning of the long-range region (r ~ 20 ag), the
exchange interaction Vg is of the same order of magnitude as the hyperfine-Zeeman
energies. This is a crucial region because transitions between hyperfine states take
place here. Trap loss caused by these transitions is called exchange decay. Accurate
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knowledge of the long-range potential is very important in the theory of interaction
processes between between cold atoms because the potential is effective up to large r
for small collision energies.

Several methods are used to determine the inner part of Vg and Vp, either based
on analyzing experimental data or on ab initio calculations. By means of the Rydberg-
Klein-Rees (RKR) procedure [10] it is possible to construct a potential curve from the
energy spacings of bound states, which can be measured with spectroscopic techniques.
The part of the curve that can be obtained with this procedure is limited by the inner
and outer turning points of the measured bound states. If the RKR curve does not
overlap the long-range tail (2.6), it is often connected to it by means of a cubic spline.
The strongly repulsive inner wall is usually extrapolated to smaller r as far as necessary.
A hybrid potential constructed in this way will certainly contain errors and will not
perfectly reproduce the measured energy spacings. To correct this one often turns to
Inverse Perturbation Analysis (IPA) [11,12]. The required r-dependent correction to
the potential is written as a sum of basis functions with unknown coefficients which are
optimized with a least-squares method that minimizes x? for the bound-state energy
spacings. This procedure is repeated for the resulting potential until convergence is
reached.

Good results [12] have been achieved with TPA potentials, but high-precision cal-
culations of collisional properties for small collision energies based on these potentials
have still been limited by the quality of some bound-state energy measurements or
the absence of data on the highest bound states that control the low collision energy
behavior. Recently, however, several high-precision measurements of the binding en-
ergies of these states [13-15] have become available. On top of that the experimental
determination of Feshbach resonance fields [16,17] and measurement of the low-energy
continuum wave function itself via photoassociation [18-21] have provided important
data on the atomic interactions. In this thesis we have used this new information to
improve our knowledge of the Li, Na, and Rb interactions. For describing atomic in-
teraction processes in the low-temperature limit, one does not need complete potential
curves. Instead a few interaction parameters suffice. 'We have used this fact in our
calculations. Details will be given in section 2.4.

The ab initio approach [22,23] to the inner part of the potential curves so far has not
led to potentials that are accurate enough for doing reliable cold collision calculations.
To our knowledge, only one curve [24] — for the Na triplet potential — published after
the appearance of our paper on sodium interactions (chapter 7 of this thesis), may be
able to compete with interaction parameters found from high-precision measurements.

An interaction that is often included in the effective Hamiltonian (2.1), but has been
omitted here, is the magnetic dipole-dipole interaction. It has one electron-electron

and two electron-nuclear contributions (the nuclear-nuclear contribution can always be
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neglected) that can each be written in the form

Y = o iz =3 4(;3%) (7 - fip) , 2.8)
where [i; is the spin magnetic dipole moment of the electrons or the nucleus of one atom
and [, that of the electrons or nucleus of the other atom. This weak interaction can
cause inelastic collisions that lead to loss of atoms from a trap. But this decay process
has a time constant (typically 1 min or longer) that is several orders of magnitude
larger than that for the inelastic processes (exchange decay, photoassociation) studied
in this thesis. Also, it has a negligible effect on elastic processes. Therefore we have left
it out of our calculations. Finally, we mention the second-order spin-orbit interaction
which couples the molecular ground state to molecular states with one or two excited
atoms. This interaction is important in interactions between the heaviest alkali atoms
cesium and francium, but relatively unimportant or negligible in case of the lighter

ones.

2.2 Coupled Channels and Rate Coefficients

In the framework of the effective Hamiltonian the hyperfine states |f, my) form a com-
plete basis for the internal state of an atom. If two distinguisable atoms (with different
numbers of protons or neutrons) interact, the collision can be conveniently described

using two-body internal-state vectors of the form

[aB) = la), 1B), (2.9)

where the subscripts indicate atom 1 or 2 and a and 3 label the one-atom hyper-
fine states in shortened form. In collisions between atoms of the same species, the
atoms behave as indistinguishable compound bosons (f is an integer) or fermions (f
is half-odd-integral) and their total state vector (internal 4 orbital motion) is required
to be (anti)symmetric under exchange of atoms. It is then useful to introduce the

(anti)symmetrized two-body hyperfine states

£\ _ @) 1B)y £ )y [8)4
‘{aﬂ} > = T (2.10)

Usually, the Hamiltonian H is time-independent and collisons can be described
by stationary scattering states. To solve the time-independent Schrédinger equa-
tion H |¥) = Eio |¥) we introduce a basis of so-called channel states, based on the
above two-body internal states and spherical harmonics |l m;) for the angular part
of the orbital motion. For collisions between distinguishable atoms these are labeled
|lm;afB). In the case of indistinguishable bosons (fermions) the channel states are
labeled |l my {aﬂ}+> for even (odd) [, and |lmy {a8}” ) for odd (even) I. Note that
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all states have the proper permutation symmetry. In equations that are valid for all
three bases the general form |l m; {af}) is used. Now, (7| ¥) is expanded in terms of
the channel states:

o) = 3 3 Mo Wiy, 3y o)) (2.11)

{aB}l,m

The notation {«f} under the sum symbol means that the sum should be taken over
all different combinations of a and 3. Only in the case of distinguisable atoms this
is identical to separate sums over « and (. In the other cases {a} and {Ba} are
identical. Also note that | {aa}™ ) = 0 so that the corresponding terms can be left
out of the summation. Substituting expression (2.11) into the Schrédinger equation
and projecting onto each of the channel states gives the following system of coupled

differential equations for the radial wave functions s, {8} (r):

B2 2 U+ 1)k
*ZW + W +eatéeg— Etot:| Ui, {aB} (T) =
- Z Z CZWL,{aﬁ},l’WL;{a’ﬁ’} (T) Wmy{o/ B} (T) ) (212)
{e/B'} 1, m;

in which the coupling matrix is defined by
Cimytasyirmigarsy (1) = =iy {aB) |ve|lmp {«B'}) . (2.13)

These equations are refered to as the coupled-channels equations. The energies ¢, and
€ are the internal energies of the separate atoms: (Vlhf +V#) |a) =eqla) and (Vth +
Vi#) |3) = es|B). Due to symmetries of the physical system the total system of coupled-
channels equations (2.12) can be divided into many mutually uncoupled systems that
contain only a few channels. First, the projection of the total angular momentum
F=I4F =1+ ﬁ + fé on the magnetic field axis is conserved since an arbitrary rotation
of the total system around this axis is a symmetry operation. Secondly, because V¢
does not depend on 7, the orbital angular momentum quantum numbers [ and my
are conserved. And finally, conservation of m and m; also implies that transitions
between channel states with different mp are not allowed. The simplified coupled-

channels equations are

R A2 U1+ 1)k2 l
_ZF'F 2‘[,”“2 +€C¥+55_Et0t:| ’U/{QB} (7") =
= Y Craspasy () dhagy (1) (2:14)
{a's'}

my1+mype=mygp
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with

Crapy farpy (1) = ({aB} [V {5} (2.15)

The subscript m; has been dropped from the radial wave functions because they are
independent of this quantum number. The quantum number [ is now written as a
superscript to indicate that it is conserved. Note that Cy,gy (o7} is different for odd
and even [ when the colliding atoms are identical bosons or fermions. For zero magnetic
field F and F are also good quantum numbers and the problem can be even further
simplified. This fact is used in section 4 of chapter 7.

The coupled-channels equations alone do not completely determine the radial wave

functions uf{a 3} (r). They must be combined with the boundary conditions
u{{a 8} (0)=0

Upasy (1)~ i,/ m {ilf (kapr) = Stasy,ysy (B) I (Ragr) | if {aB} = {78}

. L 5 .
ooy (1), 2 1y [5mpeg s Stesy oy (B) i (Fasr) if {ag} # {10},
(2.16)

for a certain choice of entrance state {76}. Here, }Azf and izf are the Riccati-Hankel

functions representing incoming and outgoing waves: hli (kr) ~ eFi(kr—15)

itly, we have defined the asymptotic magnitude of the momentum in channels with

. Implic-

internal state [{a/3}) as

hkap = \/ 2 (Erot — €a — €) (2.17)

where the square root is positive real (open channels) or positive imaginary (closed
channels; le+ becomes an exponentially vanishing function). The relative kinetic energy
E = h2k? /21 = Eyo; — €4 — €5 in the incident channel is the collision energy that is
important for thermal averaging and the threshold behavior discussed in the next
section. Also, we have introduced the elements of the S-matrix from which the elastic
and inelastic collision rates can be calculated (only the elements for the open channels
have a physical meaning). The asymptotic behavior of the radial wave function in the

entrance channel can also be written as

20 gl () T
_ke Mivsy sin |:k7“ - l§ + 77{,7,5} (k) ) (218)

r—00 ﬂ'hz

ul{fyﬁ} (T)

where 77{{76} is the phase shift induced by the interaction and related to the elastic

S-matrix element by S?h 8},{76} = 201 T there is only one open channel in the
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system of coupled-channels equations (elastic scattering), the associated phase shift is
real, |S i 8}, {78} |2 = 1 and the problem is similar to the simple scattering of two particles
without internal states. But as soon as there are more than one open channels, 77{{7 5}
becomes a complex number.

The solutions of (2.14) and (2.16) are denoted by the vectors gf{ 6} (r; E) with all
radial wave functions u{{aﬁ} (r) coupled to entrance-channel wave function uf{ 6} (r)
(i.e. with the same [ and mp) as components. It is these vectors that we compute in
our numerical calculations. To that end we write Eq. (2.14) in the matrix notation

2

Su(r) =5 (), (219)
where the columns of u represent a complete set of linearly independent solution vectors.
The tilde on the coupling matrix indicates that it contains also the diagonal energy
and centrifugal terms on the left hand side of Eq. (2.14). This equation is integrated
using a modified Numerov method [25], a O (hG) two-step method. Due to exponential
growth of the solutions in locally closed channels for which é{a/g}7{aﬁ} (r) > 0, the
boundary conditions at the origin can be fulfilled by starting the integration from left
to right with w(r;) = 0 and u(rs +h) = L for sufficiently small ro. The desired
solutions gf{ 453 (r; E) and the S-matrix are found by connecting to the result of an
inward integration started at large r with a diagonal u-matrix containing Hankel-like
radial wave functions.

To show the relation of the solution vectors E{{v’ﬁ} (r; E) to some well-known ex-
pressions from scattering theory we define (in coordinate repesentation) the partial

waves
m 1,
(Flesy @) = 3 [ty 5B %, () aB)) . (220)
{aB}
in which the sum is taken over the components of u. Due to the choice of the leading
factors in the boundary conditions (2.16) the partial waves are energy-normalized:

my U"'my -
<‘I’l{w6}+ ‘\I’{w (& /)> = 0urbmm 6 (15} {636 (B — E') . (2.21)

Evaluating the sum

WZ‘ W (B)) Vi (F) (2.22)

l,my
which is equivalent to the well-known expansion of a plane wave in terms of spherical
harmonics, then gives the three-dimensional scattering state |\I/f{"76} (E)> For distin-

guishable atoms it has the familiar asymptotic behavior

) T:wm

) (2.23)

—~
oy

-, . ikr
7 16) 4+ 3 fapira (7 F)
a, B8



18 2 Basic Concepts

with

St (E)—1
{aB},{16} —
) 72214: P(7- k), (2.24)

faprs(Fs E) =" (21 +1
l

comprising an incident plane wave describing the relative motion of two atoms in inter-
nal states |v) and |6) and scattered waves of atoms in these same internal states or other
hyperfine states. For identical atoms |\IIEF7 5} (E)> is proportional to the (anti)symmetrized
version of (2.23).

To apply the above theory to actual experiments in dilute gases we must make the
transition from the microscopic picture of the S-matrix to the macroscopic picture of a
trapped gas containing atoms (possibly of different species) in different internal states
|v) with partial densities n,. From a quantum Boltzmann equation it can be derived [1]

that the time evolution of the partial densities is governed by

d
T =D D (14 638) (Gapns nans — Grsmapmgns) . (2.25)
5 {aB}

in which the rate coefficients are given by

1
Gys—ap (B, T) = <T55”%@,va (v)>
S

th

ﬂ' 2
= <v Y > o@+1) ‘Sgaﬁ}, sy (B) — 5{@5}{75}‘ > : (2.26)
l

th

The notation (.),, stands for a thermal average over the collision velocity 7 = hk/

and 0,8,,s (v) is the angle-integrated cross section. Equation (2.26) is the appropiate

expression for exothermal transitions (e, +e5 > €4 +¢g) where ‘Siaﬁ} (46} (E)‘ can be
interpreted as a transition probability, and is also valid for the elastic rate coefficients
G y5—~s- It is sufficient to consider only these processes because the rate coeflicients of

any process and its reverse are related by [1]
Gaps (B.T) = Gysas (B,T) & (6o ek (2.27)

when the translational degrees of freedom of the atoms are in thermal equilibrium.

The rate equation (2.25) describes the time evolution of partial densities assuming
that all atoms stay in the trap. Often, however, exchange collisions in a cold gas lead
to the loss of both colliding atoms from the trap and one is interested in the total decay
rate. In the common case that the trap is loaded with atoms that are all in the same
internal state |y), this decay is described by

d

7" = ~Giat (B,T) n? (2.28)
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with

Giot (B, T) = Z (2= 6ya —648) Gyyas (2:29)
{af}

where the sum is over all possible decay channels, i.e. with the same mp value as
|vy) and reached via an exothermal transition. This follows directly from Eq. (2.25)
neglecting endothermal transitions (we assume that kg7 < internal energy differences).
Mostly (but not always [27]), exchange decay rate coefficients are so large that stability
against them is an important requirement on a hyperfine state to be appropriate for
trapping in a magnetic trap, apart from it being low-field seeking. In the case of
sodium (see Fig. 2.1), for example, only the doubly polarized state |f =2,m; = 2)
and the state |f = 1,my = —1) can be used. The first state is stable against exchange
collisions because the corresponding two-atom hyperfine state is the only one with
mp = 4 and the collision proceeds purely along the triplet potential. The two-body
state corresponding to the latter state is not the only one with mp = —2 but there
are no energetically accessible states with that mg value. The states |f = 1,m; = 0),
|f =1,msy =1) and |f = 2,my = —2) do not decay either for similar reasons but are
high-field seeking. Recently, an optical trap has been used to hold Na condensates [28].
Optical traps have the advantage that the requirement with respect to the low-field
seeking property does not play a role. As a consequence all f = 1 states can be trapped.
Finally, it is important to draw attention to the fact that the above expressions
for the rate coefficients were derived for a thermal gas. In a Bose-Einstein condensate
two-body rate coefficients are reduced by a factor of two (in general: n-body rates are
reduced by a factor n!) [29]. Also, the low-temperature limit will apply so that

1 .
GBEC, 5 (B) = 5 Jim Grsas (B.T) . (2:30)

2.3 Scattering Properties in the Ultracold Limit

With decreasing temperature the de Broglie wavelength of the atoms becomes larger
and larger with respect to the interaction range, causing the number of partial waves
that contribute to scattering processes to decrease as well. In the ultracold limit only
the spherically symmetric s-wave with [ = 0 contributes (except for fermions in identical
internal states; the antisymmetry requirement does not allow s-waves in that case and
virtually no collisions will take place). Moreover, the [ = 0 phase shifts simply vary as
77%5} (k) = —kagysy as k — 0, where ag,s) is the (s-wave) scattering length defined
by [30]

[ )
agysy = — lim —————=

Lim T (2.31)
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Figure 2.3 Radial scattering wave functions u(r) at very low collision energy for two differ-
ent model potentials with negative and positive scattering length a and for the case without
interaction (V' = 0). The scattering length can be found by extrapolating the solution at large
distances to the r-axis. For clarity the r-axis has been shifted upwards for the radial wave

function with negative a.

Instead of ay; we will write a,,. The scattering length is primarily used to characterize
elastic scattering processes for which it is a real number. As was mentioned before, it is
an important parameter in the context of Bose-Einstein condensates. From Eq. (2.26)
it follows that the elastic cross section for atoms in identical internal states, essential

for evaporative cooling, approaches
_ 2
Ty = Oy yy — 8Tay (2.32)

in the low energy limit. The factor 8 instead of the usual 4 occurs due to identical
particle symmetry. Note that the rate coefficients for elastic scattering vanish as T1/2
for low temperatures.

Figure 2.3 illustrates the properties of a radial wave function at very low collision en-
ergy for the case of one-channel scattering (e.g. the collisions between Na | f=2, m ;=2)
atoms discussed near the end of the previous section). It shows the wave function for
two different model potentials (the ab initio triplet potential for Na multiplied by two
different constants) with two different scattering lengths a: one positive and one nega-
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Figure 2.4 Scattering length a as a function of the parameter A for the model potential
AV (r) where V(r) is the Na triplet potential. The scattering length goes through —oo and
400 when an additional level is added to the bound states supported by the potential.

tive. At short range the wave function undergoes a large number of oscillations due to
the deep potential well. At long range it is proportional to sin (k:r + 770) =sink (r — a).
The effect of the potential is simply to shift the point of origin of the asymptotic sine
wave over a distance a; for positive a it is the same as for a hard wall at » = a. The
wave function for the case without interaction is also drawn for comparison.

It is illustrative to consider the behavior of a when one gradually increases the
depth of the potential well. To that end Fig. 2.4 shows a for the model potential
AV (r), where V(r) is the above-mentioned Na triplet potential, as a function of A\. The
scattering length varies between —oo and +00. The singularities occur each time that
an additional level is added to the bound states supported by the potential.

Inelastic collisions have very different threshold properties than elastic ones. Aslong
as the internal energy of the separated atoms in the exit channel |[{a8}) is lower than
for the entrance channel [{76}) (exothermal transition), the s-wave S-matrix element
varies as [31]

SPusy vey (B) ~ kY2, ask—0 (64 + €5 > €a+e5). (2.33)

Thus, the cross section for inelastic exothermal collisions varies as 743,45 (v) ~ 1/k in
the very low energy limit and becomes arbitrarily large. The associated rate coefficient
Gys—ap (B,T), however, approaches a nonvanishing constant as 7' — 0. If, on the
other hand, the internal energies of entrance channel and exit channel are identical
(e.g. in the case of zero magnetic field where all one-atom hyperfine states with the
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same f value are degenerate: see Fig. 2.1), the S-matrix element varies as
SPasyirsy (E) ~ k, ask—0 (64 +e5s =€a+65). (2.34)

In that case the cross section approaches a constant and G.s_.a3 (B,T) vanishes as
TY% as T — 0.

The use of the scattering length can be extended to collisions with open inelastic
channels. It is then complex: ag sy = ai, 5} —H’ai Y6} From the unitarity of the S-matrix
it follows that

2 2
0 _ 0
> ‘S{aﬁ},{wﬁ} (E)‘ =1- ‘5{7'5},{'75} (E)
{aBY2{75}
— dal_gk (2.35)
in the low energy limit. Hence

4rh

Z Gys—ap (B, T) — %a%é} , asT —0. (2.36)

{aB}#{ro}

This sum is similar to the rate coefficient Gyt (B, T') defined in the previous section,
apart from the factors (2 — 6, — 6x,) that differentiate between processes in which
two, one or no atoms are lost from the trap. As long as the imaginary part of a
complex scattering length is not too large, its real part is still a good parameter to

characterize elastic collision events.

2.4 The Accumulated Phase Method

In section 2.1 we mentioned the coupling region where the exchange interaction Vi is
comparable (differing by a factor of order 10 or less) to the internal energy differences
caused by the hyperfine and Zeeman interaction. Let the r-interval (r1,r3) denote this
region. For r > ro the coupling between the two-atom hyperfine states is negligible and
the radial motion is adiabatic. For r < r; the motion is also adiabatic, but with S as a
good quantum number. Consequently, a complete set of linearly independent solutions
of the coupled-channels equations up to » = r; can be represented by the diagonal
matrix v’ (r) =diag (u;(r)) in the basis of adiabatic two-body internal states [i),,.
The subscript 2b is added to avoid confusion with 1-body internal states. Moreover,
for r < rq, the radial wave functions w; (r) are almost identical for different energies
E4o: (both in the continuum and in the discrete spectrum), provided these energies are
all within a range that is smaller than the depth of the singlet and triplet potentials at
r1 (of order 10 K). The same is true for different values of [ near [ = 0. These criteria
are fulfilled by the entire ranges of F;,; and [ values relevant for cold collisions and
the highest two-atom bound states. Thus the insufficiently accurate inner parts of the
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potentials Vg (r) and Vr (r) can be replaced by two boundary conditions at rg < rq,
one for the singlet wave function and one for the triplet wave function, with a simple
dependence on energy and orbital angular momentum. This greatly simplified our
analyses of experiments.

In our approach the boundary conditions take the form of the accumulated phases
¢g (E,1) and ¢ (E,1) of the rapidly oscillating radial wave functions ¢ (r) and ¢ (r)
in a pure singlet and a pure triplet channel without internal energy. These phases are
defined by the WKB expression

o _ (057 (B.0)] .
ST al K(ro) ‘

in which & (r) is the local radial wave number:

K2 )= 2B Veyr (r) -

R2L(1+1)
= 3 —] . (2.38)

272

In these equations the dependence of k£ on S, E and [ has been omitted in the notation
for simplicity. The validity of the WKB approximation is not a prerequisite for the
method: we could have specified each boundary condition in terms of a logarithmic
derivative of the radial wave function. The accumulated phase may be considered as a
convenient parametrization of the logarithmic derivative. Its convenience stems from
the fact that it can be accurately expanded in terms of a Taylor series in F and [ (I + 1),

cut off after the second order terms:

a¢S/TE+ Obgr

1P0s7 o g1

valid for all relevant E and [. The second derivative with respect to { (I 4+ 1) can be set
to zero. The remaining second and mixed derivatives, which are the least sensitive to
errors in the inner parts of Vg and Vi are determined from the best available ab initio,
RKR or IPA potential. In our work on Na the first-order derivatives and ¢, (0,0) are
fitted to experimental data. In the latest determination of Rb interaction parameters,
carried out by Vogels et al. [32], only ¢g,p (0,0) was fitted. If the range of energies
needed in a calculation is of the order of 1 K or less, which is often the case in cold-
atom physics, the expansion (2.39) can even be limited to its linear part. In contrast,
the logarithmic derivative shows the typical tangent-shaped excursions through infinity

each time a radial node passes the point r = rg.
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The adiabatic potentials V; (r) felt by the adiabatic internal states |i),, follow from

R2L(1+1)

2
hf+ Z c
VLN VI A VE(r) + e

i=1

|5)ap = Vi (1) li)ap

P21+ 1)

= |&; + VS/T (7“) + 2,LL7“2

[1)ap -
(2.40)

Whether the singlet or triplet potential applies is determined by the S quantum number
of |i),,. Note that ¢; is independent of r. The operator

hf+ a}ff g agf g
14 = ﬁ5'11+ﬁ5'22, (241)

which equals %S” - T for indistinguishable atoms, is the part of the total hyperfine
interaction 25:1 thf that is diagonal in S. The part that is not diagonal in S is
negligible for r < r; because of the large singlet-triplet energy separation. The only
difference between the adiabatic potential V; (r) and the potential (including centrifugal
barrier) in Eq. (2.38) is ¢;. The boundary condition for the radial wave function w; (r)

in channel [i),, for total energy Fj is therefore given by

sin {QSS/T (Erot — €35 l)}
k?i (7’0)

Now, to solve the coupled-channels equations, the solution matrix u’ (r) in the adiabatic

u; (1o) = (2.42)

basis is transformed to a matrix u (r) in the basis of asymptotic hyperfine states, and
the Schrodinger equation (2.19) is integrated for r > rq.

2.5 Feshbach Resonances

Feshbach resonances were introduced in section 1.2 as a promising tool to tune the
scattering length. The basic idea is illustrated in Fig. 2.5. The upper panel shows the
scattering length a; 1 for collisions between two Na atoms in the |k) = |f = 1,m; = 1)
hyperfine state as a function of magnetic field strength, obtained from coupled-channels
calculations. The lower panel shows the field-dependent threshold energy 2e, (B) for
this entrance channel (the total energy where zero collision energy scattering takes
place), and the field-dependent energies of two bound states, which are solutions of the
same coupled-channels equations with [ = 0 and mp = 2. Near the field strength By
where a bound-state energy equals the threshold energy, aq 1 (B) displays a dispersive

feature:

a(B) = a (1 - BABO> . (2.43)
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Figure 2.5 Feshbach resonances for collisions of two Na atoms in the hyperfine state |k) =
|f =1,ms =1). The lower panel shows the field-dependent threshold energy 2e, (B) for
this entrance channel, and the field-dependent energies of two bound states. The upper panel
shows the scattering length a;; for these collisions as a function of the magnetic field strength
B, obtained from coupled-channels calculations. Near the field strengths where a bound-state
energy equals the threshold energy, a1,1 (B) displays a dispersive feature. For the 907 G

resonance the sign of the scattering length is changed within a field range of 1 G.
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Exactly at By the scattering length is infinite. The absolute value of the field width A
specifies the range of magnetic field strength for which the sign of a is different than for
the off-resonant value a.,. At By+ A the scattering length passes through zero. Above
threshold, Feshbach resonances occur when E.; (B) = E + 2¢, (B) is approximately
equal to the energy on the extrapolation of one of the bound-state curves, causing the
elastic collision rate to go through a maximum and a minimum (or vice versa) as a
function of B. Thus, applying a static magnetic field to a Bose-Einstein condensate
in a dilute atomic gas enables an experimentalist to control the effective interactions
between the atoms in that gas. In an experiment designed to study the collapse of a
condensate by suddenly changing the scattering length from positive to negative, the
ratio A/ By governs the degree of field control that is needed and should be as large as
possible.

To give the reader some insight in the origin of Feshbach resonances, we give a brief
outline of their mathematical desription, specializing to the formalism for s-wave scat-
tering of two atoms explained in the previous sections. For a more detailed treatment
we refer to the literature [30,33]. The first step is splitting the coupled-channels equa-
tions describing { = 0 collisions for the entrance channel [{§}) (in the above example
for Na, |[{v6}) = |kk)) into two uncoupled subsystems: one containing the open chan-
nels and one containing the closed channels. The associated Hilbert spaces are denoted
by P and Q, respectively. We also introduce the operators P and () that project on
these spaces. Next, the coupled-channels equations for the P space are solved with the

usual boundary conditions (2.16), giving the result

(rlodn) = X [ubo @], ltes)) (2.44)

{aB} in P

The coupled-channels equations for the Q space are solved with bound-state boundary

conditions, resulting in the bound states

(r|ém) = Z [ﬂg (T)] {aB} [{aB}) , (2.45)

{aB} in Q

with energies F,,. In the language of Feshbach resonance theory |¢{‘: 6}> and | ¢,,,) are
eigenstates of Hpp = PHOP and Hgg = QHYQ, where H? is the [ = 0 radial Hamil-
tonian. If the total energy Ej,; is close enough to one particular bound-state energy
E, the dynamics in the Q space are dominated by the one state | ¢,). Reintroducing
the coupling between P and Q into the problem results in this bound state becoming
a quasibound state and acquiring a finite width I', and in its energy undergoing a
so-called resonance shift A,.;. For the S-matrix element for the transition to channel
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{aB}) one finds the expression

0 P ~ <¢‘{;‘5}‘ HPQ‘ ¢b> <¢b ‘HQP ‘¢{?’5}>
S =5 — 2mi . ,
{as}, 28 = Stas), (0} Ern— Bp— Areo 71T

(2.46)

containing the well-known Breit-Wigner denominator. The minus sign in |1/1 {a 6}> in-
dicates an outgoing instead of an incoming plane wave in the boundary conditions.
We see that apart from the direct term S fa 81,{~6} resulting from coupling within P-
space alone, the amplitude of the outgoing wave in channel [{a/3}) will include a term
arising from coupling of the incoming wave in channel |{y6}) to the bound state in
Q-space followed by coupling of this state to channel [{a3}). The coupling operator
Hpg = PHQ = H&) p is effectively proportional to the exchange interaction Vg. If
there is only one open channel, which is often the case, we can write

0 _qP i
SGoniasr = Stash a0} (1 B %-F) : (2.47)
2
and T' = T'qy5y = 27 |(¢y] HQPW{‘:&})‘ . Now, for a certain collision energy E, the

resonance condition
E=Ey(B)+ Ayes (B,E) —e4(B) —es (B) =¢yes (B, E) , (2.48)

where €,.5 is the resonance energy with respect to threshold, can be fulfilled by tuning
B. From this condition it is clear that a curve representing Fp (B)+ A,cs (B, E) should
in fact be used instead of the extrapolation of the bound-state curve in Fig. 2.5. On
the scale of this figure, however, these are approximately identical. An interesting
difference between the two near threshold will be demonstrated below.

In the low energy limit I'r,5y = Ck with C' > 0, and close to a resonance field
strength By we can write

Eres (B) = Eres (B7 0) - (lufree - Nqb) (B - BO) ) (249)

in which py,.. and gy, are the effective magnetic moments of the free two-atom system
and the quasibound state considered; in other words fis,.. — fig 1S approximately
proportional to the difference in slope of the crossing lines in Fig. 2.5. Setting
0 _ —2ik P _ —2ikaw : : :
S{v’é},{v/ﬁ} = e~ and S{v’é}y{v/ﬁ} = e~ "% then leads to the dispersive behavior
(2.43) of a (B) with
C

A= . (2.50)
Qoo (:u’f’r’ee - /‘l’qb)

The quantities C' and a., can usually be considered constant over the resonance. It
should be emphasized that the resonance field strength By always corresponds exactly
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to the field strength where the energy of a real bound state of the total system equals the
threshold energy. This can be seen from the threshold relation between the binding
energy Eping = h2k2/2u of the highest | = 0 bound state (near a resonance this is
the state about to cross the threshold) and the scattering length [30]: k; = 1/a. In
combination with the dispersive behavior of a (B) near By this leads to the conclusion
that the bound-state energy curves bend quadratically toward the threshold curve as

a function of B just before they touch it.

Sometimes, more than one bound state in Q-space has an energy close to F,,; near
a resonant field strength. Then it becomes necessary to include a Breit-Wigner-like
term for each of these states in expression (2.46). The additional quasibound states
can induce a significant change in the background scattering length that is otherwise
determined by interactions in P-space alone, and cause interferences between reso-
nances. This situation will come up in chapters 4 and 5 which deal with a Feshbach

resonance in 3°Rb.

Finally, it is important to distinguish Feshbach resonances from potential reso-
nances. The latter occur in potential scattering where only the translational dynamics
of the colliding atoms is involved. In practice they arise for partial waves with [ > 0
when a quasibound state occurs inside the centrifugal barrier. As explained above,
the quasibound state of a Feshbach resonance has an internal structure orthogonal to
that of the combined scattering partners so that it can only occur in multi-channel

scattering and also for | = 0.

2.6 Photoassociation

The principle of cold photoassociation was already briefly explained in section 1.2:
excitation of a colliding pair of cold atoms by a laser photon leads to the formation of
an electronically excited bound molecular state, followed by spontaneous decay back to
free atoms. The relative velocity of the atoms after decay will be practically identical
to that before decay (Franck-Condon principle). And since the average velocity in
the deep excited-state potential is relatively large (the atoms undergo many vibration
cycles before decaying), the free atoms will have enough translational energy to leave
the trap in which the process takes place. The decrease of density by this trap loss can
be detected, for instance, by measuring the fluorescence from the atoms in the trap.
In the simple case that the ground-state dynamics can be described with one radial
wave function u, (r) (e.g. one-channel s-wave scattering), the same Franck-Condon
principle is responsible for the excitation probability being approximately proportional
to |ug (r)]* with r near the classical outer turning point of the excited state where
the velocity of the atoms is low and thus comparable to that before excitation. This
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Figure 2.6 Cold-atom photoassociation. A colliding pair of atoms, described by the scat-
tering wave function wug (), is excited by a laser field into an electronically excited bound
molecular state with radial wave function u.s (r) at a rate ;. This state then decays back
at a rate 7, to free atoms. Due to the large average velocity in the excited-state potential,
these have enough translational energy to leave the trap in which the process takes place. The
decrease in atomic density in the trap due to this loss is detected. For clarity energies are not

shown to scale.

enables one to map out the nodal structure of this wave function along a laser frequency
axis [20]. The whole process is illustrated in Fig. 2.6.

Obviously a theoretical description of photoassociation requires knowledge of the
excited bound states apart from the description of the ground-state dynamics treated
in the previous sections. The electronic structure of the excited states can, like that
for two ground-state atoms, be determined by means of a Born-Oppenheimer proce-
dure. The excited alkali atom states that occur in this thesis are all associated with
the 28 +2 P separated-atom limits. These states have been studied by Movre and
Pichler [34]. In the radial range of outer turning points of the uppermost rovibra-
tional levels of the Born-Oppenheimer potential curves — which are the ones observed

in the experiments — the excited states have a relatively simple electronic structure
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determined by only a few basis states coupled by the fine-structure interaction of the
excited atom and the interactomic resonant electric dipole interaction proportional to
1/r3. The rovibrational levels are labeled by v, the vibrational quantum number, and
by J, where J =14L+S and L is the electronic orbital angular momentum (for Li the
electronic spin-orbit coupling is so weak that S does not couple to N=1[0+1Las usual;
this results in rovibrational levels labeled by v and N: Hund’s case b). Each level
consists of a number of bound states labeled by additional quantum numbers (in par-
ticular those related to the nuclear spins), possibly split in energy by the hyperfine and
Zeeman interactions. The expression for the photoassociation rate coefficient should
contain an incoherent sum over all excited states that are approximately resonant at
the frequency wy, of the photoassociation laser. Often, this sum involves precisely all
states that belong to one rovibrational level.

In chapters 4 and 5 of this thesis we study a photoassociation process in 8°Rb. By a
careful choice of excited state we are there able to avoid the above-mentioned hyperfine
and Zeeman splitting, so that all excited states that contribute to the photoassociation
signal are degenerate and have a simple structure. We have also analyzed a photoas-
sociation experiment for Li where the Zeeman and hyperfine splitting were absent. In
view of these experimental conditions, we will limit the following discussion to the case
of degenerate excited states with energy E, ;. The rate at which these states are formed
during collisions of two atoms in hyperfine states |y) and |6) is given (in energy units)
by the width for laser excitation

VL, (6} = ﬂ Ly Z (@57 |(d +da) - 7 Wiy (B)) ‘2 , (2.51)

l7n1 I¢}

where cfl and Jg are the electric dipole operators of atoms one and two, & is the
polarization vector of the photoassociation laser and I7, its intensity. The partial waves
|\I/l{7:(’$; (E) ), describing the ground-state dynamics, are defined by Eq. (2.20). They
are coupled by the laser field to the electronically excited bound states |<I>fé‘] >, where v
and J label the resonant rovibrational level in one of the Born-Oppenheimer potentials,
and (3 labels all other quantum numbers. The width v, {6} contains overlap integrals
of the excited bound-state radial wavefunction wu,s(r) and the ground-state radial
wavefunctions ul{a 3} (r). Just like for the ground-state Born-Oppenheimer potentials,
the inner part of the excited-state potentials is not as accurately known as its above-
mentioned simple long-range part. Therefore, the wave function w, s () is computed by
inward integration for the experimental level energy E, ;. Moreover, due to application
of the accumulated phase method the functions ul{a 3} (r) are not available for r < r.
Fortunately, the overlap integrals are completely dominated by the r-region near the
classical turning point associated with u, s (r) (as can be seen from Fig. 2.6), so that

the integration can be limited to the long-range interval r > ry without any effect on
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the result.

From the width v, 5 for excitation and the natural linewidth v, of the laser-
coupled excited-state level, representing the rate at which the excited bound states
belonging to this level decay back to free atoms, the rate coefficient K,53 for pho-

toassociation losses can be calculated. To first order in the laser intensity I; one
finds [18,35]

T ’YO,YL,{’WS}
o B — o _ (2.52)
{76} k2 (E+th*EvJ)2+i,Y(2) th

To see if the approximation to first order in I; applies in a certain experiment one
usually checks if the photoassociation rate varies linearly with laser intensity. The rate
coefficient K, sy can be used in the same way as the inelastic collision rate coefficients

Gq’ﬁ—»aﬁ-
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Time-Dependent Feshbach Resonance
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We study Feshbach resonance scattering in a time-dependent magnetic field. We ex-
plain the extremely rapid decay observed in a recent experiment investigating Feshbach
resonances in a Na Bose-Einstein condensate. In our picture, the decay is stimulated
by the formation of a molecular condensate of quasibound atom pairs. Another essen-
tial element is the concept of a global and a local resonance lifetime. The predicted
decay rates are large, about 5 orders of magnitude larger than typical dipole decay
rates and 1 order larger than typical exchange decay rates. We point out the possible
role of a Josephson-like oscillation between the atomic condensate and a long-range

molecular condensate.

3.1 Introduction

A remarkable aspect of the recently realized Bose-Einstein condensates in dilute alkali
and hydrogen atomic gases [1] is the prominent role of atom-atom interactions. For
instance, the linear dimensions of a trapped condensate may be several times larger
than for the quantum mechanical ground state in the trap potential [2], i.e. the state
of the condensate without interactions. Other examples are the spin domain struc-
ture recently observed in a spinor condensate [3|, an amazing and counter-intuitive
phenomenon for a dilute system, and the fascinating recent four-wave mixing experi-
ment [4]. There is reason to expect that interactions will also be important for future
developments in the direction of coherent matter waves. The fact that such waves can
interact may well be one of the most important advantages of atom lasers compared
to optical lasers.

Unlike previously studied degenerate systems such as *He, the new quantum liquids
can be understood quantitatively on the basis of first principles. Most of their prop-
erties can be expressed with the aid of a single interaction parameter: the scattering

length a. Interestingly, this parameter can be experimentally modified. A promising
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way to do this relies on the strong variation of a that occurs if a Feshbach resonance is
tuned through zero energy by varying an external magnetic field [5]. Such resonances
have been observed in Na [6] and in ®*Rb [7,8]. In the Na experiment the scattering

length was seen to vary dispersively as a function of the magnetic field as predicted:

a(B) = aco (1 - B_LBJ : (3.1)

where a is the off-resonant scattering length and A characterizes the width of the
resonance as a function of B. Feshbach resonances thus offer the possibility to study
quantum liquids and coherent matter in widely varying circumstances with positive,
negative and zero values of a in a single experiment. In particular, it should be possible
to see the predicted [9], but still unobserved collapse of a condensate if its scattering
length is suddenly shifted to a sufficiently negative value.

Cold atom Feshbach resonances are exceptional also in another sense. For practi-
cally realizable time-varying fields, it is possible to change the properties of a scattering
process significantly while it is going on. It is the purpose of this Letter to point out
that this was in fact an important element in a recent experiment by Stenger et al. [10]
at MIT. In an attempt to realize a maximum variation of a in an optically trapped
Na Bose-Einstein condensate, they observed a strong decay of the condensate when a
resonance was approached or crossed with the external magnetic field. The experiment
consisted of runs of two types: (1) Runs in which the magnetic field was changed adia-
batically from an off-resonant value to a value near a resonance field strength without
crossing the resonance; (2) runs in which a resonance was crossed with high ramp speed,
beginning and ending with off-resonant fields. A mechanism for the type 1 observations
has been proposed by Timmermans et al. [11] and will be briefly recapitulated later in
this paper. We will focus on the anomalous decay in the second type of experiment.
As pointed out by Stenger et al., the experimental data suggest decay rates far larger
than expected for any of the known two-body and three-body mechanisms. We will

present a new picture based on time-dependent Feshbach resonance scattering.

3.2 Anomalous Decay in Type 2 Runs

Feshbach resonances arise when the total energy of a pair of colliding atoms matches
the energy of a quasibound two-atom state, leading to the resonant formation of this
state during the collision [12]. Figure 4.2 in chapter 4 [13] shows an example of the
enhancement of the collisional wavefunction near a resonance, reflecting the increased
amplitude of the admixed quasibound state. Magnetic tuning is possible if the pair of
free atoms and the quasibound state have different magnetic moments fif,... — fgp =
Ap # 0, giving rise to different Zeeman dependencies. Figure 3.1 shows the crossings
of two Na quasibound states with the collision threshold at B = 853 and 907 G. The
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Figure 3.1 Crossing of quasibound two-atom states with Na 4+ Na collision threshold at
B = 853 and 907 G, due to different Zeeman dependencies of the quasibound states and the

state of free atoms. Inset: Schematic illustration of proposed loss mechanism.

corresponding resonances were observed [10] in a condensate of atoms in the lowest
hyperfine state |f,ms) = |1,+1), with f: §+ 7’ the total atomic spin. First, we will
focus on the resonance at 853 G.

In our picture the extremely rapid loss of the atomic condensate in the high ramp
speed experiments is due to the fact that the formation and the decay of the resonance
state occur at two different field values as a consequence of the delay caused by the
resonance lifetime 7,5 9. Whereas outside the resonance the energy of each of the two
atoms follows adiabatically the single-atom Zeeman dependence (see schematic inset in
Fig. 3.1), this energy decrease is interrupted during the lifetime of the resonance by a
rate of change of energy, different by Ap B. Theresultisa significantly increased kinetic
energy of the free two-atom state arising from the decay of the quasibound state. This
increase can be estimated as AIMBTT&;,Q ~ kp[0.5 to 3.5 uK] (the Boltzmann constant
kp will be omitted in all equations below where energy is expressed in Kelvins). Because
it is larger than the mean-field energy in the condensate, the accelerated atoms are
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counted as lost from the condensate when the remaining number of atoms is determined
after the sweep [14]. In short, the quasibound pairs start to be formed from the
atomic condensate, stimulated by a bosonic stimulation factor, and form a “molecular”
condensate [15]. On the other hand, their decay back to the atomic condensate is
almost completely suppressed due to the above kinetic energy gain. Instead, a very
rapid decay takes place to a noncondensed atom fraction, which is effectively observed
as a loss process. The possibility that the resonantly formed quasibound atom pairs
form a condensate was previously suggested by Timmermans et al. [11]. In contrast to
their proposal, however, a crucial element of our description is the above decay to a
noncondensed atom fraction.

Interestingly, for the above estimate of the kinetic energy it is not the usual “global”
resonance lifetime 7,..5 = i/ (where v is the decay width) that is relevant but the, often
much shorter, “local” lifetime 7,.s0 = fi/7v,. This is the lifetime associated with the
formation or decay of the resonance in the radial region (r 5 24 atomic units ag) where
the quasibound state is coupled to the incoming channel via the exchange interaction. It
follows from the energy dependence of the local phase shift d¢ of the radial wavefunction
at r ~ 24ag near resonance. With e?% = 0.0 [1 — iy, /(E — €yes + 570)] [12] we
find Tres,0 = 1.4 us (calculated using the interaction parameters derived in chapter
7 [16]). In this formula 6¢p, is the background value of the local phase shift, €,s
is the resonance energy and E ~ 1 nK the typical kinetic energy for an atom in
the condensate. The local lifetime is much shorter than the global lifetime 7,.s =
h/v(E)~E —% of order 1 ms, associated with the energy dependence of the phase shift
at a much larger distance (r > 1000 ag). In contrast to an intermediate radial range
where quantum reflection takes place [17], a wave packet propagates in the regions at
small and large r without significant reflection, so that meaningful concepts of phase
shift and delay time are possible. Understandably, the global lifetime is the resonance
lifetime that mostly occurs in expressions for resonance phenomena. In our case it is

much longer than the local lifetime due to strong quantum reflection.

3.3 Two-State Model

We calculate the atom loss fraction after the field ramp by considering the atom pairs
in their quasibound state as a molecular Bose-Einstein condensate, described by a
coherent field ¢, (%, t) in addition to the field ¢, (Z,t) describing the atomic condensate.
The evolution of the double-condensate system is described by a two-state model,

governed by a pair of coupled Gross-Pitaevskii equations [11,18]:

ihpy = Uolér*d) + 20616y,
ihdy = (eres = 370)05 + . (3:2)
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with uniform amplitudes ¢, , = \/m12exp(if2) over the volume of the condensate.
Here Uy = 47h?as,/m is the off-resonant strength of the atomic condensate self-energy
and the a terms describe the process that converts atoms into molecules. In our
simulations we omit the influence of the interactions between the molecules during
their short lifetime and between those molecules and atoms. The coupling parameter
is given by a = (2UpApA)/2, while €,e5(t) — 279 = [B(t) — Bo] Ap — 37, is the
complex energy of the quasibound state relative to threshold including its decay width.
In view of that large decay width, we treat ¢, by the method of elimination of fast
variables, expressing it as ¢y (t) = —a@? /(€res — £70). We then end up with an equation
for ¢,(t) only:

2
ihiy = <U0 - L) on [Py = Ul %6, (33)
Eres(t) —357%0

with initial condition ¢;(—00) = /n;. Apparently, the influence of the resonance
during the field ramp has effectively the form of a Breit-Wigner contribution to the
condensate self-energy. The off-resonant strength Uy changes into U = 4rh?a/m, with
a complex scattering length of the form (3.1) with By replaced by By + %AB , where
AB = 7y/Ap. The quantity AB characterizes the local width of the resonance as
a function of the field. It is approximately equal to twice the width parameter A of
Eq. (3.1) in the circumstances of the experiment. More generally, the ratio A/AB
is related to the transmission through the quantum reflection region and depends on
G- The imaginary part of U describes the decay of the atomic condensate: n; =
—G(t)n3, with the rate coefficient G(t) = %’yo/(ezes + 173). Its maximum value is
8a2/hyy = 4UgA/RAB ~ 2 x 10~%m3s~!, independent of B. To our knowledge, this
value for the instantaneous rate of decay observed in the MIT experiment represents
the largest inelastic rate for a cold atom process ever observed, at least 1 order of
magnitude larger than typical exchange decay rates (Gezer ~ 10 'cem®s™!) and 5
orders larger than typical dipolar decay rates (Gg;, ~ 107cm3s~!). Note that the
physics of our picture is very similar to that of exchange relaxation in the vicinity of
a Feshbach resonance (forbidden in our case). In chapter 6 [19] we predict for that
process in 8Li-"Li collisions a relaxation rate with a quantum limit magnitude, at least
103 larger than the typical exchange value.

Integrating the rate equation we obtain the fraction of atoms lost from the conden-

sate for a given ramp speed:

ni—ny _ n; [ G(t)dt _ p(B)
7 14+n; [G(t)dt — 14 p(B)’

(3.4)

where p(B) = m(Ugni/h).(2A/B). Apparently, the loss is determined by the non-
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Figure 3.2 Predicted (solid lines) and measured (dots connected by dashed lines) fraction
of lost atoms after crossing the Feshbach resonance as a function of inverse ramp speed for
the resonances at 853 and 907 G.

resonant change of the condensate phase #; during the crossing of the resonance. Note
that the two-state model predicts the loss fraction to depend on n; and B only via the
combination n;/ B. The specific properties of the resonance come in only via A as was
already implicitly assumed in Ref. [10]. While a fast time dependence of the magnetic
field is needed for the resonant loss process, the loss decreases with increasing B due

to the shorter time in which the resonance is crossed.

3.4 Results

In Fig. 3.2 we present the loss fraction for 7,.;0 equal to the calculated value 1.4 us
(7o = 5.3 uK, A = 0.0091 G). We obtain rather good agreement with experiment for
n; = 7.0 x 10'* ¢cm~3. This (uniform) initial density agrees with the experimental value
5.2 x 10** ¢cm™3 for the mean initial density within the combined experimental (+ 5%
statistical, & 20% systematic) [14] and theoretical error bars.

In the case of the 853 G resonance, the quasibound state and the free two-atom
state are very weakly coupled. The coupling is more than a factor 100 stronger for the
other resonance at 907 G. Fig. 3.2 shows the loss fraction following from the previous
expressions for the calculated value 7,50 = 0.012 us (v, = 646 uK, A = 1.05 G) at the
experimental mean density n; = 5.7 x 1014 cm™3 [14]. Clearly, for both resonances the
order of magnitude of the loss rate is correctly described, confirming the basic mecha-
nism. For the 907 G resonance, however, the theoretical prediction shows a difference
with experiment. We believe that this is due to the fact that for the highest experimen-
tal B values the time dependence of the scattering process is incompletely described in
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our two-state model. In particular, the finite time needed for the transmission of a wave
packet through the quantum reflection region and for the multiple reflections between
this region and the origin may play a role, since it turns out to be comparable to the
time in which the resonance is crossed with the magnetic field. This suggests that in
this regime the time-dependent resonance phenomenon in a condensate is too involved
to be described in terms of a combination of an atomic and a molecular condensate

wavefunction.

Instead, a description with a pair condensate wavefunction ¢(z7, #3,t) in analogy
to the independent-pair description for fermionic systems [20] would seem appropriate.
This requires a generalization of the coupled Gross-Pitaevskii equations. Remarkably,
we found that a simple extension of the above coupled Eqs. (3.2) with an extra coupling
term in both equations produced by an additional reflection, describes qualitatively
the behavior of the observed loss fraction for a delay time due to reflection of about
10 ps. The situation of the quantum reflection region separating two condensates
(a condensate of free atoms and a “long-range molecular” condensate) with an initial
removal of atom pairs on one side during the crossing of the resonance, is reminiscent of
the Josephson effect [2]. In this picture, two types of molecular condensate play a role:
The “long-range” condensate of atom pairs in the initial spin state with interatomic
distances up to the quantum reflection region and the “short-range” condensate of
quasibound pairs in the admixed spin state. The latter is only indirectly coupled
with the atomic condensate via the long-range molecular condensate. The excess loss
observed experimentally would be caused by the additional resonance absorption of the
inward atom flux arising from the first Josephson oscillation. The fall-off of this excess
loss at low 1/B would be due to an arrival at 24 ag with a 10 us delay of the order of
the inverse Josephson frequency, too late to be in full resonance with the quasibound

state.

3.5 Two-Step Three-body Decay in Type 1 Runs

We now turn to the experimental data for the runs of type 1. In this case, the fast-
sweep two-body decay mechanism is absent and most of the loss occurs after the field
ramp. We follow the treatment by Timmermans et al. [11] (see also Ref. [21]), which
we recapitulate using the latest Na parameters (see chapter 7 [16]). They explain the
loss as a two-step process: the formation of quasibound pairs during the adiabatic field
change, followed by stabilizing collisions of such pairs with third Na atoms with rate
coefficient Ggqp. The density of quasibound pairs follows directly from the static off-
resonant equivalent of Eq. (3.2) without v, as well as from an explicit wavefunction

calculation: ny = (a?/€2_,)n?. Assuming that all three atoms are lost, we have the
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rate equation

2
N1 = —3Gstab {M] nf. (3.5)
Note that this equation is valid for fields smaller and larger than By. An approximate
determination of the effective two-body relaxation constant Ggqp is possible using Fig. 2
of Ref. [10]. We find good agreement with experiment with Gszap = 4x 1071 cm3s ! for
the 907 G resonance and Gqp = 1 x 107! cm3s™! for the 1195 G resonance, both with
an order of magnitude in the range 107 to 10~!''cm3s™! estimated by Timmermans
et al. [11] on the basis of calculations for Hy + He collisions. For the 907 G we can
thus compare the decay width v, = MGsiapn1 to v5. We find v, to be smaller by

a factor of order 100 and thus negligible in runs of type 2.

3.6 Conclusions

We have given an explanation for the losses in the MIT high ramp speed experiment.
As a next step, a more detailed understanding on the basis of an extended version of
the Gross-Pitaevskii equations would be important, since it should then be possible to
make reliable further predictions. For instance, a high ramp speed experiment with
a tailored time dependence might lead to the “permanent” formation of a molecular
condensate. If followed by a suitable stimulated Raman pulse, this could be converted
to a more strongly bound state [15,18]. The resonance at 1195 G seems to be particu-
larly interesting for this purpose. There, the energy of the quasibound state decreases
with increasing magnetic field, so that a simple fast sweep from low to high field tends
to create condensed molecules rather than atoms with increased kinetic energy. A
fast sweep from high to low field across the 853 G or 907 G resonance would have a
similar effect but has the disadvantage of reducing the condensate fraction when the
field is turned on. The dependence on field ramp direction is typical for the fast-sweep
two-body mechanism and absent in the 3-body mechanism proposed by Timmermans
et al. Additional high ramp speed observations should be of great importance to test
the above n;/ B dependence of the loss for the 853 G resonance, while time-resolved
measurements might detect the Josephson-like current-phase effects expected for the

907 G resonance.
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We investigate theoretically the influence of magnetically tunable Feshbach colli-
sion resonances on the photoassociation spectra of ultracold atoms. As an exam-
ple we consider recently predicted resonances for °Rb atoms. For excitation to the
85Rbs 0y (S1/2+Py/2) electronic state, we predict that the photoassociation rate is res-
onantly enhanced by at least two orders of magnitude. We find that photoassociation
could serve as a useful probe for studying Feshbach resonances in ultracold collisions.
In turn, these resonances should be very important to Bose-condensed gases, and more

generally, to coherent atom optics.

4.1 Introduction

After the first observations of Bose-Einstein condensation (BEC) in dilute, ultracold
gases of alkali-metal atoms [1-3], rapid progress has been made in observing and un-
derstanding the properties of Bose condensates. Atomic interactions have been found
to play a crucial role. Their effect may be accounted for in a mean-field model by
a self-energy 4mh?n(7)a/m, where a is the two-body scattering length, m the mass
of the atoms, and n their density. In spite of the importance of interactions, in
many respects the range of accessible interaction strengths has been rather limited.
For example, an important natural scaling parameter for the interaction strength is
n = 1.57(NY%a/ago)?/®, where ao is the spread of the zero-point wave function of
the trapped atoms and N is their number [4]. For positive scattering length gases, only
a very narrow range for 7 near the value 0.4 has been realized. A negative scattering
length gas has also been explored [3], but again under rather limited circumstances.
The experiment confirms predictions [5] that condensates can form only if the attrac-
tive mean-field energy is less than the spacing of the trap levels. For larger interaction
energies the condensate presumably collapses [5], but the physics of such a collapse is

as yet unclear.
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In order to more fully understand the effect of atomic interactions on dilute Bose
condensates, it would clearly be desirable to be able to tune the scattering length to
an arbitrary value. This would allow studies of BEC in very strong or weak interaction
limits, and it might also be possible to study the dynamics of the collapse of a conden-
sate induced by a sudden switch of the sign of a. A proposal to produce such variations
of the scattering length with magnetic-field-induced Feshbach resonances was published
some years ago [6]. Feshbach resonances are scattering resonances which arise when the
total energy of a pair of colliding atoms matches the energy of a quasibound two-atom
state, leading to the resonant formation of this state during the collision. Magnetic
tuning of the resonance is possible if the magnetic moments of the free and quasibound
states are different, and this allows for tuning of the scattering length. A concrete
example of this was predicted recently for the case of a 3°Rb gas sample in the highest
level (|f,mys) = |2,—2)) of the f = 2 lower hyperfine manifold [7]. According to this
prediction, based on a previous analysis of measured bound ®°Rb, levels [8], a can be
given an arbitrary positive or negative value by changing the strength of the magnetic
field around a certain resonance value for each of three Feshbach resonances. All of
these are in the range where the atoms can be trapped in a static magnetic trap.

The potential importance of these scattering resonances is not necessarily restricted
to single-species Bose condensation. For instance, they could allow tuning of the rela-
tive interaction strengths between and within species in a multicomponent Bose con-
densate. Feshbach resonances might play a role in minimizing interactions within the
lasing species in an atom laser. Resonant interactions between coherent beams of
atoms might be important, and could occur at a nonzero and sharply defined value of
the relative kinetic energy.

Experimental studies of these collision resonances are clearly desirable, in order to
determine the quantum numbers of the resonances, the field values at which resonances
occur as a function of collision energy, and the resonance widths. We propose a method
to observe and study Feshbach resonances based on cold-atom photoassociation [9].

4.2 Photoassociation as a Probe of Feshbach Resonances

In the photoassociation (PA) process, a photoassociation laser optically excites two
colliding ground-state atoms into a bound electronically excited molecular state. We
predict a dramatic increase of the PA signal for magnetic field strengths in the vicinity
of a Feshbach resonance; the resonant formation of the quasibound two-atom state
increases the penetration of the colliding atoms to the distance range where the optical
excitation occurs. This enhancement of the PA signal should serve as a clear-cut signal
for the occurrence of a Feshbach resonance at the experimental field strength. To be
concrete, we consider the specific example of the predicted Feshbach resonances of
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85Rb [7], but many of the conclusions of this analysis should apply more generally.
An alternative method to observe and study Feshbach resonances would be through
their impact on the thermalization of an ultracold gas [10], or on the properties of a
Bose-condensed gas. However, photoassociation has certain advantages over studies of
gas properties that should make this technique of some interest. First, studies of gas
properties at many different field values are rather cumbersome and difficult to carry
out. In contrast to this, photoassociation provides a very rapid and direct signature
of a collision resonance. This could be particularly important when searching for a
very narrow resonance. Further, the analysis of gas thermalization experiments be-
comes very complicated once the elastic collisions are energy dependent and no longer
purely s-wave. With photoassociation, selecting the 0 electronic state connected to
the Sy/3 + Py /2 separated-atom limit as the final state circumvents this problem. This
state has total electronic angular momemtum quantum number j = 0 and, therefore,
imposes the selection rule [ = J for the partial wave [ of the ground-state collision
that can give rise to the formation of a given excited two-atom rotational state J [11].
Thus, one can study all partial waves separately. Finally, the laser frequency is an
extra parameter available experimentally that allows one to study the energy depen-
dence of the resonance phenomenon through careful analysis of the PA line shapes.
In fact, scanning both the laser frequency and the magnetic field makes for an ideal
new kind of spectroscopy for exploring the structure of the region between the lowest
and highest hyperfine-split dissociation limits. One would expect similar resonances
in other partial-wave channels at higher temperatures and in other hyperfine entrance

channels if the atoms are not polarized.

4.3 Numerical Calculation of the Signal

To illustrate the usefulness of the photoassociation method for the detection and study
of field-induced resonances, we calculate the expected PA signal for the broadest of
the three predicted ®*Rb resonances, which is also predicted to occur at the lowest
field strength, i.e., 142 G. We consider a specific temperature (0.3 mK) for the 8°Rb
gas sample and a linearly polarized PA laser beam propagating in the direction of the
magnetic field. For the sake of definiteness we consider the excitation of a specific
vibrational level of the lower 0 state with a J = 0 level energy at —3.365 cm~! with
respect to the barycenter of the S;,5 + P /o dissociation limit. Due to the [ = J
selection rule, the Feshbach resonance considered should only show in the PA signal
for the excitation of J = 0 rovibrational levels. Finally, we assume low enough laser
intensities that saturation effects can be neglected.

Since the 0 excited state is purely triplet, in the calculation of the PA intensity
only the part Ps—;1, of the ground-state collisional wave function 1, contributes to
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the optical matrix element. Here, Pg_; is a projection operator on the triplet spin
subspace, while v, describes both the relative motion of the atoms and the electronic
and nuclear spin dynamics, and is energy normalized. Pg—;1, follows from a coupled-

channels calculation and is a linear combination of |S, mg, I, mr) components:

PS:ld)c: Z uS:l,ms,I,ml(T; E)|S:17m57I7mI>7 (41)

ms,I,mr
subject to the requirements of Bose symmetry (I4+S+1I = 141 = even) and conservation
of spin angular momentum about the field direction (mg+m; = —4). The partial width

vy, for the laser excitation is then given by

’YL(E) -
2
7wl o0 ) - o,
?2 Z/Uf(r)@:mj =0,0[[d1 + da].FL|S =1, mg)us—1,ms,1.0, (r; E)dr|,
I,my | ms 0
(4.2)

with E the collision energy, Ir the laser intensity, &7, its polarization vector, ug(r)
the radial wave function of the final state, and cfl and d_; the atomic electric dipole
operators. Compared to Eq. (3) of Ref. [11] a coherent sum over mg and an inco-
herent sum over I, m; have been added. This simple treatment of the nuclear spin is
possible because of the selection of the 0 state, which avoids a complicated “hyperfine
spaghetti” structure of the PA spectrum. The second-order Zeeman broadening of the
0, state is negligible compared to the width ~, due to spontaneous decay, despite the
relatively strong magnetic field.

Figure 4.1 shows the laser frequency dependence of the expected PA signal in ar-
bitrary units, for a number of B values close to the resonance field value and two
nonresonant fields. The abscissa is the laser detuning Aj, relative to the energy dif-
ference between the asymptotic ground hyperfine state and the above-mentioned final
vibrational level. We find a dramatic resonance enhancement close to B = 143 G; the
PA maximum grows to a value at least two orders larger than the nonresonant back-
ground value. A gradual shift of the maximum to the right combined with an almost
constant width at half maximum, is noticeable for increasing field values. The width
of the peaks corresponds approximately to 7.

To illustrate the origin of the increased PA maximum, in Figs. 4.2(a) and 4.2(b)
we show the radial wave functions for the hyperfine components |f1,mys1, fa, mg2) of
Y, for E = 0.3 mK and two values of B: one close to the resonance value and one
further off. The resonant enhancement of the penetration, due to the admixture of
the quasibound two-atom state in 1, is clearly visible in the form of a large increase

of the spin components that are formed by the promotion of one or both atoms from
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Figure 4.1 Calculated photoassociation signal as a function of laser frequency for the 3Rb
Feshbach resonance in arbitrary units, for five B values near the resonance field value and two

values further off.

the lower hyperfine manifold f = 2 to f = 3. The shift in the location of the PA
maximum is due to the approach of the total energy at resonance to the threshold of
the | fi,mp1, f2, mg2) = |2, —2,2, —2) incident channel, reducing the resonant collisional
kinetic energy €,.s and thus increasing the resonant laser frequency. This is consistent
with the predicted pattern of the a(B) dependence [7]: a decrease to —oo, followed by
a decrease from +oo for increasing B, pointing to a quasibound state that crosses the
threshold from above (see Fig. 4.3).

4.4 An Analytical Model

A more detailed investigation of the partial width v for the laser excitation enables
a qualitative explanation of all the main features of Fig. 4.1. In Fig. 4.4 we show
the dependence of «; on the collision energy E for a value of B close to the reso-
nance field. A clear resonance behavior is visible superposed on a nonresonant back-
ground. The resonant part is described approximately by a Breit-Wigner-like factor
(T/27)/ [(E — &res)? + 32| with I'(B) the resonance width. Figure 4.4 also shows a
Breit-Wigner fit to v, (E). The width turns out to be at most of order 0.2 mK. We
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15 [ ,

20 30 40 50 60 70
r (units of a,)

Figure 4.2 Radial wave functions u(r) for the hyperfine components |f1,ms1, f2,mys2) of
the ground-state collisional wave function, for collision energy £ = 0.3 mK (with amplitude
(kao)™'/? for r — oo, where k is the asymptotic wave number). (a) Field far from resonance
(B =100 G). (b) Field close to resonance (B = 143 G). Resonant admixture of a quasibound

two-atom state enhances the interior wave functions.
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Figure 4.3 Bound-state energy (thin solid line) and entrance channel threshold (thick line)
as a function of the magnetic field strength B. The dashed extrapolation of the bound-
state curve is a symbolic representation of a quasibound state embedded in the continuum.
A Feshbach resonance occurs when the total energy (threshold plus kinetic energy; dashed-
dotted line) equals the quasibound-state energy at the applied magnetic field. For clarity the
figure shows a situation where the resonant kinetic energy er.s is higher than the energies that

contribute to the PA signal at experimental temperatures.
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Figure 4.4 Dependence of partial width v, (solid line) for laser excitation on collision

energy E close to resonance and a Breit-Wigner fit to this curve (dashed line).
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find that ¢,.s(B) shows approximately a linear B dependence, as one would expect for
a state that crosses the threshold to become bound. It is interesting to note, however,
that the crossing (e,.s = 0) appears to occur at a field somewhat larger than where the
scattering length becomes infinite (B = 142 G), due to interference of the resonance
with the background for small &,.;.

Retaining only the Feshbach resonance contribution to «;, and describing it by the

above Breit-Wigner form, the photoassociation rate constant

T YoVL
K(T,B,wi) ={ v— , (4.3)
< FE+ AL + 76 >th

with the brackets (.)y, standing for a thermal average over the collision velocity v and

the associated wave number k, factorizes into the E integral

T7-3/2 /OO dE e~ B/ksT L L/2n (4.4)
0 [E+ AL + 193 [E— ered]” + 112
and a factor K independent of 7', B and wy. T is sufficiently small compared to the
two remaining energy scales kgT and 7, occurring in the integral (4.4), for a qualitative
description in which we approximate the Feshbach resonance energy dependence by a
Dirac ¢ function and obtain

1

K(T,B,LUL) :KOT_3/2 6_8""5/kBT .
[Eres + AL]Q =+ %73

(4.5)

Eq. (4.5) describes the qualitative features of the PA signals with 141 G < B <143 G
displayed in Fig. 4.1: (1) A shift of the signals from A; = 0 over €,.5(B) in the
negative Ay, direction; (2) a width approximately equal to the spontaneous emission
rate 7y; (3) a decrease in magnitude of the PA maximum with increasing resonance
energy above threshold. The decrease of the signal with increasing B above 143 G can

be ascribed to the gradual disappearance of the resonance below threshold.

4.5 Conclusions

We conclude that magnetic-field induced Feshbach resonances will be readily observable
in a photoassociation experiment carried out on a 3Rb gas sample. We predict a
strong enhancement of the PA signal, with a dependence on the laser frequency and
the magnetic field that can be qualitatively understood by considering the limit of a
vanishing width of the Feshbach resonance. The laser detuning at the maximum of the
PA signal immediately gives the resonant kinetic energy at the experimental field. The
observation of the PA spectral peak for varying B could enable the first experimental
demonstration of the shift of a Feshbach resonance into the continuum, starting from a
bound two-atom state that crosses the threshold of the elastic scattering channel. An
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interesting alternative possibility to study this phenomenon could be realized via a two-
photon experiment, where two atoms in the |f; = 3,ms1 = —=3) + |fo = 3,mp2 = —3)
entrance channel collide in the presence of two laser fields of frequency w; and wy that
enable a two-photon transition to the above-mentioned bound state. Again, varying
the magnetic field, the latter could be tuned to above the threshold.

For these reasons, photoassociation spectroscopy appears well suited as a probe
of Feshbach resonant collisions, and more generally as a spectroscopic probe of the
structure of the region between the lowest and highest hyperfine-split two-atom disso-
ciation limits. Such scattering resonances should provide new opportunities to study
Bose-Einstein condensates with a wider range of interaction strengths, and may have
other applications in atom optics. We finally note that very precise measurements
of the magnetic field values at which the collisions are resonant could more precisely

determine interatomic potentials.
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Observation of a Feshbach Resonance in
Cold-Atom Scattering
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We probe s-wave collisions of laser-cooled ¥ Rb |f = 2,m; = —2) atoms with Zeeman-
resolved photoassociation spectroscopy. We observe that these collisions exhibit a
magnetically tunable Feshbach resonance, and determine that this resonance tunes
to zero energy at a magnetic field of 164 £+ 7 G. This result indicates that the self-
interaction energy of an ®Rb Bose-Einstein condensate can be magnetically tuned.
We also demonstrate that Zeeman-resolved photoassociation spectroscopy provides a

useful new tool for the study of ultracold atomic collisions.

5.1 Introduction

The observation of Bose-Einstein condensation (BEC) in dilute, magnetically trapped
alkali gases has created exciting new opportunities for studies of macroscopic quantum
phenomena [1-7]. An important aspect of dilute gas BEC is that two-body interactions
dominate, and give rise to a condensate self-energy proportional to the two-body scat-
tering length a. The self-energy strongly influences most of the important properties of
a condensate, including its stability, formation rate, size and shape, and collective exci-
tations. There has been considerable interest in finding ways to experimentally modify
the scattering length, because that could make possible studies of a BEC with a very
strong, very weak, positive, negative, or even time-dependent interaction strength, all
within a single experiment. One promising proposal to do this relies on the strong vari-
ation of a that occurs if a Feshbach collision resonance is tuned through zero energy [8].
Such a tunable resonance could be induced optically, but this method introduces unde-
sired effects of optical spontaneous emission into the condensate [9,10]. Magnetically
tunable Feshbach resonances that arise from the coupling between different spin chan-
nels in an atomic collision can also result in a tunable value of a [8,11,12]. A previous
search for this type of resonance [13] did not detect one. Interest in this topic in-
creased with a prediction of a zero-energy Feshbach resonance in collisions of 8°Rb
|f =2,m; = —2) atoms [12]. In this paper, we report the observation of this reso-
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nance, which we find tunes to zero energy at a magnetic field of 164 + 7 G. From the
observed position and width of the resonance, we are able to precisely determine **Rb
interaction parameters. Our work, along with a recent report of a similar resonance
in an atomic 23Na BEC [14], constitute the first observations of this important cold

collision phenomenon.

5.2 Experimental Method

In order to detect this resonance, we use photoassociation spectroscopy [15] to probe the
collisions of laser-cooled ®3Rb atoms in a magnetic field. The concept of the experiment
is illustrated in Fig. 5.1. To be concrete, we specialize to our particular case. Free,
ground-state 85Rb atoms collide in the |f = 2,m; = —2) + |f = 2,m = —2) entrance
channel. Here, f = 2 or 3 is the hyperfine state (combined electron and nuclear spin)
of an atom and my is the spin projection quantum number of that atom. The entrance
channel has a total angular momentum projection quantum number Mp = —4, equal
to the sum of the two atomic m; values. It is coupled to other M = —4 channels at
small internuclear distance by the electronic exchange interaction. The other Mp = —4
potential curves all correlate to the higher energy f =2+ f =3 or f =3+ f =3
dissociation limits. They support multichannel quasibound states at positive energies,
where we take the zero of energy to be the threshold of the entrance channel. If the
energy of the incoming atoms matches the energy of one of these states, a Feshbach
resonance occurs in which a large wave-function amplitude builds up in the quasibound
state. The resonance energy can be tuned to zero with a magnetic field because the
quasibound state and threshold energy Zeeman shift at different rates. In that case the
resonance strongly affects ultracold collisions. In order to detect the resonance, we drive
photoassociation transitions to the excited 85 Rbg 0, bound molecular vibrational state
at an energy 5.9 cm ! below the 529, /2+9 2P /2 dissociation limit [16]. As discussed
below, we are able to isolate a single component of the spectrum which originates from
the s-wave, Mp = —4, collisional resonance state. Its transition rate is proportional to
the square of the wave-function overlap between the collisional state and the excited
state, and therefore shows an enhancement when the Feshbach resonance is tuned near
ZEero energy.

We detect the photoassociation with a trap loss method [16-19]. About 10* ®*Rb
atoms are transferred from a magneto-optical trap into a far-off resonance optical
dipole force trap (FORT) [20], created by a 1.7 W, 835 nm wavelength laser beam
focussed to a waist of 20 ym. The atoms are laser cooled to a temperature between
30 and 100 pK, and have a density between 10'' and 10'2 cm™3. We then switch on
a magnetic field B and allow it to stabilize for 300 ms. After this, we continuously
illuminate the atoms with a near-resonance laser beam that optically pumps them into
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Figure 5.1 Photoassociation method for detecting a Feshbach resonance in collisions of
ultracold ®Rb |f = 2,my = —2) atoms. The entrance channel wave function u;ns: () couples
to a quasibound state with wave function %res (R) A laser field induces photoassociation of
this state to an excited, bound 05 (v, J) molecular state at a rate v, which then decays back to
free atoms at a rate v,. As a magnetic field is varied, the quasibound state tunes through zero
energy, producing a Feshbach resonance for ultracold collisions. The resulting enhancement

of ures (R) produces an enhancement of -y, that we detect with a trap loss method.

their f = 2 ground hyperfine state, and with a tunable probe (PA) laser beam which
induces the photoassociation transitions. In some cases we also apply an additional
near-resonance o -polarized (OP) laser to pump the atoms into their my = —2 state.
After an additional 700 to 1000 ms, we switch off these laser beams and the magnetic
field, and probe the atoms remaining in the trap with laser-induced fluorescence. The
photoassociation rate is detectable as reduced atomic fluorescence, because most pairs
of atoms which absorb a PA laser photon return to the ground state by spontaneous
emission as free atoms with a kinetic energy that is too high to remain in the trap.
In the plots below, we show this measured fluorescence signal vs PA laser frequency,

inverted so that photoassociation-induced trap loss produces upward going peaks.
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Figure 5.2 ®*Rbo photoassociation spectra for excitation from lower (f = 2 + f = 2)

hyperfine state collisions to a single excited vibrational level, at a laser intensity of 20 W/ch.
Upper curve: spectrum at zero magnetic field. Lower curve: spectrum at a magnetic field
of 195 G. Each of the zero-field components splits into 10 or 15 distinct components due to
Zeeman splitting of the ground-state atoms; calculated splittings are shown by the vertical
dashed marks. The successive peaks in the lower spectrum correspond mainly to J = 0, and
(from left) Mg = —4, —3, =2, —1, 0, 1, and 2.

5.3 Observation of a Feshbach Resonance

A typical spectrum, recorded with the OP laser beam off and with no magnetic field, is
shown in Fig. 5.2. We observe a simple spectrum that arises from the 0 excited state
J =0, 1, and 2 rotational levels. Fig. 5.2 also shows the spectrum with the OP laser
beam off and with B ~ 195 G. In this case, the f = 24 f = 2 dissociation limit Zeeman
splits into 15 different limits for the even partial waves, and 10 different limits for the
odd partial waves, which correspond to the various possible combinations of the two
atomic my quantum numbers. Without optical pumping all of these combinations are
populated. The excited state does not show a significant Zeeman splitting. Because
some of the splittings are not resolved, the J = 0 rotational peak splits into 9 Zeeman
components corresponding to Mg = —4,...,44. The leftmost peak in the spectrum
arises only from |f =2,my = —2) 4+ |f = 2,my = —2) (Mp = —4) collisions. Further,
this peak arises only from s-wave collisions because the selection rule J = [ is obeyed
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Figure 5.3 Photoassociation spectra showing the J = 0, Mr = —4 peak at a succession of
magnetic field values, with a laser intensity of 0.1 W/cm?. The relative Zeeman shift of the

successive peaks is removed so that they appear at the same laser tuning.

for this transition, where [ is the orbital angular momentum of the initial state [16].
Therefore the leftmost peak probes exclusively the desired collision channel.

In Fig. 5.3, we show repeated scans over the J = 0, Mp = —4 peak at many
different field values. The data clearly show the effect of the Feshbach resonance. For
these scans we also turn on the OP laser beam, which enhances the intensity of the
Mp = —4 peak by a factor of 5. The PA laser intensity I = 0.1 W/cm?2. As the
magnetic field is increased, the signal emerges from the noise, reaches a maximum
strength near 167 G, and then disappears again into the noise. The field magnitude is
calibrated using the Zeeman-resolved spectra. Our interpretation of this enhancement

as a Feshbach resonance is supported by several factors. First, previous studies of
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Figure 5.4 Height of the photoassociation peaks shown in Fig. 5.3, as a function of magnetic
field, showing clearly the Feshbach resonance. The solid curve shows a Lorentzian fit to the
data.

ultracold Rb collisions have fairly strongly constrained its ground-state interaction
potentials [4,13, 16-19, 21, 22], and allowed for predictions of this resonance [12,22].
We observe a resonance in the correct channel near the predicted field. Finally, we
observe these photoassociation peaks at an anomalously low laser intensity, at which
other features in the spectrum are not visible. This can occur only with resonance
enhancement of the rate v, due to the enhanced wave-function amplitude.

In Fig. 5.4, we plot the heights of the photoassociation peaks, determined from
Lorentzian fits, as a function of magnetic field. We find that this curve is also well
fit by a Lorentzian line shape, which yields a resonance field By pa(I) and a width
(FWHM) ABp4(I). Theoretical calculations along the lines of chapter 4 [23] show
that departures from Lorentzian line shapes should be small for our conditions. We
find that optical power broadening is significant. In order to account for this, we
repeat the measurements at laser intensities I ranging from 0.1 to 0.54 W/cm?, and
plot By, pa(I) and ABp4(I) vs I. By pa(I) varies by less than 1.5 G over this range,
and ABp 4(I) varies from about 8 G to about 15 G. By fitting these data, we determine
zero-intensity intercepts of By p4 = 166.6 £6 G and ABp4 = 5.9 £ 2.1 G. The error
in By,p4 is mainly due to errors in the magnetic field calibration. We searched for and
did not find any additional Feshbach resonances in the field range between 100 G and
195 G.
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5.4 Determination of 3°Rb Interaction Parameters

In order to further analyze these results, we have calculated the resonance field By p4
and width ABp,4 using an accurate model for the atomic Rb interaction potentials
and photoassociation process, as described in chapter 4 [23]. These quantities depend
most sensitively on the Rbo ground-state Van der Waals interaction coefficient Cg,
and the two parameters vpg (mod 1) and vpy (mod 1). vpg and vpr correspond
to the (fractional) number of bound states in the lowest singlet and triplet 33 Rby
molecular potential wells, respectively. Further, near our parameter range the position
of the resonance depends mostly on Cg and on the sum vpg (mod 1) + vpy (mod 1),
whereas its width depends mostly on the difference vpg (mod 1) —vpg (mod 1). Taking
a fixed Cy = 4550 a.u. [18] we determine from our measured value of By p4 that
vps (mod 1) + vpr (mod 1) = —0.082+0.011. Allowing for a 50 a.u. uncertainty in Cg
increases the uncertainty of vpg (mod 1)+ vpr (mod 1) to £0.016. From the measured
value of ABp 4, we determine vpg (mod 1) —vpg (mod 1) = 0.058£0.016. (We rule out
an opposite sign for vpg — vpr because it conflicts with previous measurements [19].)
Combining these results, we determine vpg (mod 1) = —0.012 and vpy (mod 1) =
—0.070, with uncertainties for both their sum and difference of +0.016.

The best previous determination of these quantities followed from our measurements
of the highest bound levels of the 3> Rby molecule [19]. Taking again a fixed Cg =
4550 a.u., those measurements yield vpg (mod 1) = —0.006 +0.008 and vpr (mod 1) =
—0.047+£0.006. Plotting the allowed regions in the vps —vpr plane at fixed Cg for both
the Feshbach and the bound-state measurements, we find that they nearly contact each
other near the point corresponding to the lower limits for both the Feshbach resonance
width and resonance field. The difference between the parameters derived from the
two experiments is somewhat larger than would be expected from their respective
uncertainties; a possible explanation is that errors in the bound-state measurements
due to line-shape effects were underestimated. The uncertainty in Cjy also increases
the uncertainties of the parameters derived from the bound-state experiment [19], but
it does not significantly change the level of agreement between the two experiments
because their allowed vps — vpr regions display similar shifts with Cg.

Based on our Feshbach resonance measurements, we calculate the scattering length
as,_o for collisions of 8 Rb |f =2,m; = —2) atoms as a function of field strength,
shown in Fig. 5.5. The resonance in the scattering length has the dispersive form
ag,—» = a3 [l — A/(B — By)]. For the same parameters that yield the observed
values of By p4 and ABp4, we find that a87_2 = —295+80ag, A =8.2+3.8 G, and
By =164+ 7 G. By is a few Gauss lower than By p4 due to the fact that close to
the crossing of the Rby bound state and the |f = 2,m; = =2) + |f = 2,m; = —2)
threshold, the PA phenomenon is influenced to a significant extent by interference of



60 5 Observation of a Feshbach Resonance in Cold-Atom Scattering

500 T T T T T T
250 .
w0
©
1]
= -250
2
< -500
-750
-1000 1 1 | 1 1 1

140 150 160 170 180 190
B (G)

Figure 5.5 Calculated field dependence of scattering length a2 _o, corresponding with the

resonance field value and width observed in this experiment.

the Feshbach resonance and the strong background (potential) scattering associated
with the large background value of ag, 2. The measured resonance field is in moderate
disagreement with our previous prediction of 142 + 10 G [12], which was based on the

bound-state measurements [19], for the reasons discussed above.

5.5 Conclusions

In summary, we have detected a zero-energy Feshbach resonance in collisions of ®*Rb
|f =2,m; = —2) atoms at a magnetic field of 164+7 G. Our method, based on Zeeman-
resolved photoassociation spectroscopy of ultracold atoms, allows us to search for res-
onances in any hyperfine, Zeeman, and partial wave channel by simply looking for an
enhancement of the appropriate spectral component as the magnetic field is tuned.
This method may therefore prove more generally useful as a new probe of ultracold
atomic collisions. ®Rb |f =2,m; = —2) atoms can be magnetically trapped, and
are expected to exhibit a very low two-body inelastic collision rate [22]. Evaporative
cooling of this isotope is somewhat difficult due to a suppression of its elastic cross
section at temperatures above 10 pK [22,24,25], but it is feasible [25]. Therefore it
should be possible to study a magnetically trapped 8°Rb BEC with an adjustable scat-
tering length. One attractive feature of this resonance is that its ratio A/Bg, which
governs the degree of magnetic field control needed to stably produce a very large



References 61

scattering length, is relatively large. Two and three body collisional loss rates are
also enhanced by a Feshbach resonance [14,22], and this may limit the tuning range
achievable in practice. A further interesting possibility is that it should be possible to
form a mixed 87Rb-8°Rb condensate, with the 8"Rb and cross-species scattering length
positive [17,22], and the 8°Rb scattering length tunable. Other Feshbach resonances in
both single and multicomponent gases could play important roles in many future BEC

and coherent atom optics experiments.
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We use recently measured cold photoassociation and two-photon data to extract the
singlet and triplet accumulated radial phases of interacting ground-state lithium atoms.
Using the resulting values we predict scattering lengths, Feshbach resonances and
exchange decay rate coefficients for cold collisions between “Li and SLi atoms that are
of interest for the possibility of sympathetic cooling of ®Li and for the coexistence of
the bosonic and fermionic quantum-degenerate phases of "Li and ®Li. In addition,
we calculate scattering lengths and exchange decay rate coefficients for cold collisions
between identical lithium isotopes in different hyperfine states. These quantities are
used to examine the possibilities of coexisting “Li Bose condensates and of evaporitively

cooling coexisting 8Li subsystems.

6.1 Introduction

In recent years cold collisions between “Li atoms and between ®Li atoms have been
studied extensively both experimentally and theoretically. Relatively little attention
has been devoted to collisions where a 7Li atom collides with a ®Li atom. Interest in
fermion-boson collisions like these, however, is rapidly growing in view of the possibility
of cooling a fermionic gas to the Fermi-degenerate regime by contact with an ultracold
bosonic gas (sympathetic cooling [1]). Such a cooling method is called for since normal
evaporative cooling of a spin-polarized fermionic gas is not efficient due to the absence
of s-wave collisions in this case [2]. The efficiency of the sympathetic cooling scheme,
on the other hand, does depend on the elastic s-wave cross section o = 4wa? of "Li—
814 collisions, where a is the scattering length. As in the single-isotope case we are
especially interested in combinations of “Li and ®Li hyperfine states for which the
typically fast exchange decay is forbidden in a static magnetic trap: |f; = 2,ms; = 2)
with |fo = %,mfg = %) and |f1 = 1,mp = —1) with |fo = %,mfg = f%> In this
paper we present calculated a values for the corresponding collision channels.

In addition to sympathetic cooling, the scattering length is also of interest for the
description of the effective interaction between the bosonic and fermionic subsystems in

a future system of coexisting quantum-degenerate 7Li and °Li phases in case the above
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scheme for sympathetic cooling is successful. In this connection we also address in this
paper the topic of the possible existence of Feshbach resonances in the (1 —1)+ (3 —3)
collision channel. Such a resonance causes a to change sign as a function of the magnetic
field strength in the trap and would therefore offer the possibility to change the nature
of the effective interactions in a combined quantum-degenerate state.

Another possibility to cool a SLi gas sample, without contact with evaporatively
cooled 7Li, could be the use of coexisting SLi subsystems in the |3,3) and |4, 4)
hyperfine states, for which s-wave collisions are not forbidden [3]. This system would
be analogous to the recently realized coexisting 8"Rb subsystems in different hyperfine
states [1]. A necessary condition for this scheme to work is a small enough exchange
decay rate and a sizable scattering length. For this reason we also study these quanti-
ties.

As a byproduct of our calculations we also obtain the scattering length and exchange
decay rate for collisions of two 7Li atoms in two different hyperfine states, which is
important for possible experiments with coexisting |2,2) and |1, —1) Bose condensates
in an ultracold Li gas sample [4].

Recent developments, both theoretical and experimental, enable us to base our
predictions on improved knowledge of the interaction between ground-state lithium
atoms. An important development in theory is the rigorous calculation of the Li 4 Li
dispersion coefficients by Yan et al. [7]. On the experimental side a measurement of
the binding energy of the least-bound “Lis triplet [ = 0 state [8], as well as a recent
"Li + "Li and SLi + SLi cold photoassociation study [9], yield important information
that needs to be taken into account.

All results in the present paper have been calculated by the rigorous coupled-
channels method. They could also have been obtained in the degenerate internal states
(DIS) approximation [5,6]. The shifts in the photoassociation signals (see Figs. 6.1 and
6.2) would result from a calculation including a first-order correction to DIS results [5].
We preferred to carry out the full coupled-channels calculations in view of our interest
in Feshbach resonances, which do not show up in the approximate calculations.

In section 6.2 we reexamine the information available on the interaction properties
of the ground-state lithium isotopes, using the method of accumulated phases [10,11].
In section 6.3 we present predictions for the mixed “Li-SLi collisions and in section
6.4 for the identical-isotope “Li—"Li and 6Li-%Li systems. Our conclusions are given in

section 6.5.

6.2 Reexamination of the Li + Li Accumulated Phases

We have applied the accumulated phase method to the ground-state triplet poten-
tial V(r) and singlet potential Vg(r), and the associated partial-wave radial wave
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functions. The central idea is to impose a boundary condition on the oscillating ra-
dial wavefunction at a radius ro = 18ap in the form of a WKB phase ¢,5(E,1) =
b /s(E.1) + A¢y, g, forgetting about the detailed form of the potentials within this
boundary, except for variations in the reference phases ¢ s(E,1) with E and [(I +1)
which follow accurately from the available potentials [10,12], as described by Moerdijk
et al. [10,11]. The long-range part of the potentials (r > 18ag) consists of dispersion
and exchange parts of the form
Cs Cs Cuo

VT/S:—T—G—T—s—TTOiAe 5 (61)

the only change relative to Refs. [10-12] being the substitution of the rigorous values
for the dispersion coefficients which have recently become available [7].

To further improve our knowledge of the Li + Li short-range interaction during
cold collisions, we first concentrate on the triplet accumulated phase and compare
theoretical predictions for the binding energy of the least-bound [ = 0 triplet state
of "Lis (v = 10) to the measured value —12.47 + 0.04 GHz [8], thus establishing the
phase correction A¢s needed to reproduce it. With a conservative error bar we find
A¢r = 0.025£0.005 [aT(7Li) = —(27.6 £0.8) ag, ar(°Li) = —(22 £ 8) x 10? ao]. The
"Li triplet scattering length that we calculate agrees with the value given in Ref. [8].

We now turn to the singlet accumulated phase. The most accurate published value
for A¢g [11] was derived from energy intervals between highly excited singlet rovibra-
tional Lisy levels. It is useful to compare the result,

—0.02 < Agg < +0.05 (6.2)

to recent cold-atom "Li+ Li and 9Li + SLi photoassociation experiments [9]. In these
experiments a single N = 1 rotational level of the A'X} state of Liy was optically
excited for a number of subsequent vibrational quantum numbers (v = 65-76, 79-82
for "Liz, v = 62-72, 76-79 for 5Liy), starting from unpolarized (f1, f2) = (i + 4,i + 3),
(i4+4,i—1), and (i — 4,i — 1) ground-state hyperfine channels with i = 2 (1) the
nuclear spin of "Li (SLi). These data were analyzed by Abraham et al. [9] in the DIS
approximation [5,6], assuming essentially that the singlet and triplet parts of the wave
function in each incident ground-state hyperfine channel are scattered independently
off the singlet and triplet potentials. As a consequence, the analysis yielded a value for
the singlet scattering length with a rather large error bar, since each of the three fy, f3
combinations under their assumption leads to a different ag value. For the purpose of
this paper we have dropped this assumption and carried out a full coupled-channels
analysis taking into account both the singlet and triplet interactions and the atomic
hyperfine couplings during a collision. Using the electric-dipole matrix element for
the optical transition involved, the long-range A} atom-atom potential derived in
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Figure 6.1 Comparison between experimental photoassociation signals (taken from Ref. [9])
for three (f1,f2) combinations (triangles, circles and squares) and theoretical predictions
(lines) for A¢g = 0 and A¢p = 0.0275. The agreement is good.

Ref. [7], and the A'SF (N = 1) binding energies measured by Abraham et al. [13], we
have calculated the thermally averaged and myi, m e averaged photoassociation signal
as a function of v for a range of A¢pg values. We restricted A¢p to the range previously
derived from the least-bound fully spin stretched "Lis state. Comparing with the 7Li
photoassociation measurements we thus find the range

—0.05 < Agg < +0.08. (6.3)

Figure 6.1 illustrates the excellent agreement for A¢g = 0: the shifts along the v-axis
for the three f1, fo combinations are very well described. Figure 6.2 shows that the
agreement is much worse for A¢g = —0.1.

Similarly, the Li data lead us to the range

—0.1 < A¢g < 0. (6.4)

Both ranges are consistent with the result (6.2). For the following, we take with a

conservative error bar

Apg =0.00 % 0.04 [as("Li) = (34 £ 1) ag, as(°Li) = (45+1) aq] . (6.5)
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Figure 6.2 Same comparison as in Fig. 6.1, but for A¢g = —0.1. Experimental signals

from Ref. [9]. The lines that connect the theoretical values are shifted to the right relative to
the experimental data.

The singlet scattering lengths given in Eq. (6.5) agree well with the DIS values in
Ref. [9], but have a considerably higher accuracy than those thanks to our full coupled-
channels approach.

With the above accumulated phases we now dispose of the information needed to
calculate all relevant ground-state Li 4 Li cold collision quantities, either for like or
for unlike isotopes. In this paper the main interest goes to the mixed boson-fermion
system.

6.3 "Li—°Li Collisions

Our predictions for the (22) + (2 2) and (1 —1)+ (3 — 3) scattering lengths for B =0
[a(29)(23) and a(y_y)(1_ 1), respectively] are listed in Table 6.1. Note that the former is
independent of B. The error bars correspond to the uncertainties in the accumulated

triplet and singlet radial phases. Both a(gg)z2) and a;;_yy 1-1) are large so that

53
sympathetic cooling should work efficiently for each of the two trappable combinations
of hyperfine states. Also, they are both positive, indicating an effectively repulsive

interaction, which may be favorable from the point of view of the stability of the mixed
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Table 6.1 Zero magnetic-field values for the real part of the scattering length a and for
the zero-temperature total exchange decay rate coefficient G for a number of Li-Li collision

channels involving different isotopes and spin states.

Channel Re a (ap) G (107 c¢cm3/s)
"Li (22) 4+ SLi (2 3) 40.8 0.2 —
Li(1-1)+°%Li(3 -3 38.04+0.2 —
"Li (22) 4+ SLi (3 — 3) 349404 2.7+£0.3
"Li (1 —1)+°Li (2 3) 38.5+0.2 0.15+0.01
SLi (32)+°Li (3 — 1) —(17 £ 6) x 102 —0
"Li (22) +7Li (1 — 1) -14+1 2.4+0.2

quantum-degenerate system. More generally, the calculated interisotope scattering
lengths are of importance for the solution of the coupled system of generalized Gross-
Pitaevskii equations of this mixed quantum-degenerate system.

In Fig. 6.3 the real part of a(; 1)1 1) is shown as a function of B for A¢; = 0.0275
and A¢g = —0.01. The results for other accumulated phases within the error bars do
not show significant differences. It turns out that, due to the small 6Li hyperfine split-
ting, at B ~ 150 G the exchange decay channel (10) + (2 — 2) opens and ag_1y(1-1)
becomes complex (see dotted and dashed lines in Fig. 6.4). A similar situation can-
not arise in the scattering of two identical isotopes. Fortunately, the decay is still
forbidden for the experimentally relevant low temperatures and the lower field range
where the atoms are trappable in a static magnetic field. The decay rate coefficient

G(1_1>(L_£>_)(10)(%_%) is also shown in the figure. This rate contains the same infor-

mation 2as 2the imaginary part of a-1)(5-3) which is not shown.

The curve for the scattering length contains three resonance features, two of which
occur at almost the same field. Unfortunately, none of them occurs in the B range
where both “Li and SLi atoms are low-field seeking with ®Li putting the strongest
restriction on the magnetic field strength: B < 27 G. As a result of this the resonances
cannot be observed in a static magnetic trap. They might be observable, for instance,
in an infrared trap [14] with a static magnetic field superimposed. At resonance 2
(we number the resonances from low to high magnetic field) a(1-1)(4 %) goes through
+o0, as we would expect for a Feshbach resonance [15]. At the resonances 1 and 3 this
is not the case and the scattering length does not change sign. This is only possible
due to the presence of an exchange decay channel. The resonances in a-1)(5-1)
coincide with the maxima in G. At resonance 2, G shows a cusplike behavior; by
accurate tuning of the field, G values of more than 103 times the typical exchange value

(Geger ~ 1071 cm?/s) might arise. The other maxima do not show this behavior, in
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Figure 6.3 Real part of the scattering length a and zero-temperature exchange decay rate
coefficient G for (1 — 1) + (3 — %) "Li-°Li collisions as a function of the magnetic field
strength, calculated with A¢pg = —0.01 and A¢, = 0.0275. The exchange decay channel
opens at B ~ 150 G.
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Figure 6.4 Energies of the least-bound triplet | = 0 states (v = 10) as a function of the
magnetic field strength (solid lines) and the threshold energies of the incoming channel (dotted

line) and the decay channel (dashed line). Feshbach resonances occur near the intersections.
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agreement with the behavior of the scattering length. At the first two resonances the
maximum in G is preceded by a G minimum. At resonance 3 the situation is reversed
and the maximum is followed by the minimum. Outside the resonance regions the
decay rate coefficient is of order 10~16-10=1*, much smaller than the typical exchange
decay rate coefficient Geycp. This is probably due to the small available phase space
in the final channel.

The location of the resonances in Fig. 6.3 can be understood by means of a simple
"Li-%Li bound-state calculation, neglecting the part of the total hyperfine interaction
for the two-atom system coupling the singlet and triplet subspaces, i.e. the part pro-
portional to §1 — gg. Figure 6.4 shows the energies of the two-atom bound states with
the same value mp = myg; +mypr = f% of the conserved total spin magnetic quantum
number as that in the incident channel, as a function of the magnetic field strength.
At the B values where a particular bound state crosses the continuum threshold of the
incident channel (the dotted curve), it turns into a Feshbach resonance at zero collision
energy. The crossings indeed occur at about the field values where the resonances were
predicted in the continuum calculation of Fig. 6.3. The difference in nature between
resonances 1 and 3 on the one hand and resonance 2 on the other will be the subject
of further study.

For completeness, in Table 6.1 we also give the scattering length and total exchange
decay rate coefficient for B = 0 in the case of "Li (22) + SLi (3 — 1) scattering and
"Li (1 — 1) + °Li (3 2) scattering.

6.4 Collisions between Identical Isotopes

We now give the results of calculations of some quantities that are of importance for
the alternative sympathetic cooling method described in section 6.1, involving s-wave
collisions between Li atoms in different hyperfine states. Due to the fact that s-wave
scattering is forbidden for two SLi atoms in identical spin states, exchange decay to the
(3 1)+ (3 1) channel is not possible and only one decay channel remains: (2 3)+(3 1).
The zero-temperature rate coefficient G to this channel vanishes for B — 0 because of
the zero available phase space in that case. For small B, it is proportional to BY/2. In
Fig. 6.5 the rate coefficient G is shown as a function of B along with the real part of the
scattering length a for A¢g = —0.01 and A¢ = 0.0275. For other values of the phase
corrections within their error bars, the results are not significantly different. The real
part of a changes sign at B ~ 40 G, indicating an effective interaction that changes
from attractive to repulsive. At small B the absolute value of the scattering length is
very large: a ~ —2 x 103 aq for B = 0, see Table 6.1. Together with the vanishing zero-
temperature exchange decay rate this would suggest that a mixed 6Li %, %>+6Li %, —%)
gas sample can be cooled evaporatively. It should be noted, however, that G is still of
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Figure 6.5 Real part of the scattering length a (solid line) and zero-temperature exchange

decay rate coefficient G (dotted line) for (3 ) + (3 — 3) ®Li-°Li scattering as a function of
the magnetic field strength B, calculated with A¢g = —0.01 and A¢, = 0.0275. To combine
the advantages of a linear field scale for small B and a logarithmic scale for large B we have

plotted 1 + B/ By logarithmically with Bo =1 G.

order 1071 em®/s at B = 0 for a finite temperature of 10 nK.

In view of the present interest in coexisting Bose condensates we also present pre-
dictions for the scattering length a and the exchange decay rate coefficient G(22)(1—1)
associated with “Li (22)+7Li (1 —1) scattering in a static magnetic field B. The avail-
able exchange decay channels in this case are (21)+(10), (20)+(11) and (10)+(11).
Figure 6.6 shows the real part of the scattering length as a function of B. In the
same figure we present the zero-temperature value of G(2)(1—1) along with the sep-
arate contributions from the three decay channels for A¢pg = —0.01. The G values
for other choices of A¢g within the combined error bar that we found in section 6.2
are not significantly different from those shown in the figure. A¢ is set to 0.0275.
The real part of a is negative for small and positive for large B, indicating an effective
intercondensate interaction that changes from attractive to repulsive as the magnetic
field is increased. The partial decay rates to the two fi, fo = 2,1 channels vanish
as B approaches zero, as one should expect since these channels have zero available
phase space for B — 0. The partial rate to the f1, fo = 1,1 channel starts from a
nonvanishing value and therefore dominates the total rate for the very low B values of
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Figure 6.6 Real part of the scattering length a (solid line) and zero-temperature partial
(dashed lines) and total (dotted line) decay rate coefficients G for "Li intercondensate scat-
tering as a function of the magnetic field strength B, calculated with A¢g = —0.01 and
A¢p = 0.0275. B axis as in Fig. 5.

primary experimental interest. The decay rate coefficient grows with B and is of order
10~ ¢m?3/s at small B, i.e. the typical magnitude for exchange decay rate coefficients.
That means that it is much larger than the experimentally observed intercondensate
decay rate coefficient for 3’Rb [Ga2y1-1) = 2.2(9) x 10~ cm?/s] that made it pos-
sible to create overlapping 8"Rb condensates in the two different hyperfine levels [1].
We conclude that our predicted exchange rate is too large to make observation of “Li
coexisting Bose condensates possible. It thus appears that the situation for “Li is in
this respect comparable to that for 23Na [16].

6.5 Conclusions

We conclude that sympathetic cooling of 6Li atoms by contact with evaporatively
cooled “Li atoms should work efficiently. The interisotope interaction in a mixed gas
sample is repulsive. We have found Feshbach resonances in the (1 — 1) + (3 — 3)
collision channel, however outside the magnetic-field range where both Li isotopes are

low-field seeking. These resonances show unusual characteristics due to the presence



References 73

of an exchange decay channel. The exchange decay rate that occurs in the scattering
of 6Li atoms in different hyperfine states vanishes if the magnetic field approaches zero
at zero temperature. At finite temperatures as low as 10 nK there is, however, still
a sizable decay. The zero magnetic-field scattering length, on the other hand, is of
order 10° ag. By calculating the intercondensate exchange decay rate coefficient for 7Li
atoms, we have found that coexisting “Li Bose condensates cannot be observed. In the
process of our calculations we have confirmed the reliability of a previously published
singlet accumulated phase correction and found a very narrow range for the triplet

accumulated phase correction.
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We review the information on the interactions between cold ground-state Na atoms fol-
lowing from Nag bound states, a Na photoassociation experiment, and a recent obser-
vation of field-induced Feshbach resonances in a Na Bose condensate. We obtain a set
of Na interaction parameters that is in excellent agreement with all these experimen-
tal data. The existing discrepancy between different values for the scattering length
a1,—1 of Na atoms in the |1, —1) hyperfine state is resolved. The present interaction
parameters enable us to give accurate predictions for the singlet and triplet scattering
lengths as and ar, a1,—1, scattering lengths for collisions between Na atoms in other
hyperfine states, and resonance fields of several yet unobserved Feshbach resonances.
We find as = (19.1 £2.1) ao, ar = (65.3£0.9) ag, and a1,—1(B = 0) = (55.4£1.2) ao.

7.1 Introduction

In the past few years extensive experimental and theoretical efforts have been put
into obtaining scattering lengths and inelastic rate coefficients for collisions between
alkali-metal atoms with the highest possible accuracy. The scattering length for two
elastically colliding atoms characterizes their interaction in the ultralow-temperature
limit and thus plays a crucial role in the properties of Bose-Einstein condensates and
in the evaporative cooling process that is used in the creation of these condensates.
The inelastic collisional rates are also important for this cooling process and for the
lifetime of these condensates.

The scattering lengths a;,_; for 2*Na atoms colliding in the |f,ms) = |1,—1) and
as o for atoms in the |2,2) doubly polarized state (f = 1 or 2 is the hyperfine quan-
tum number, i.e., the combined electron and nuclear spin, of an atom and my is its
projection) were first calculated by Moerdijk and Verhaar [1], based on an analysis
of the energy spacings of bound triplet [2] and singlet [3] Nay states. They found



76 7 Determination of Collisional Properties of Cold Na Atoms ...

ar_1 = 86755 ag and azs = 10675 ap. The starting point for this analysis were
the triplet and singlet potentials given in Table IT of Ref. [4] [composed of Rydberg-
Klein-Rees (RKR) curves, and analytic inner wall and long-range tail]. An inverted
perturbation analysis (IPA) was applied to the singlet potential after one RKR point
was shifted to better fit the highest measured vibrational energy spacings. In the same
year, Coté and Dalgarno [5] predicted ag = 34.9ag and ar = 77.3ag, without error
bars, for the singlet and triplet scattering lengths. They also used the RKR curves
of Ref. [4], but extended the singlet curve with two spectroscopic data points near
the potential minimum and both curves with ab initio data points in the short-range
region. In addition, they used a different analytical inner wall and long-range tail.

Since then, an analysis by Tiesinga et al. [6] of a Na photoassociation experiment
led to scattering lengths with much smaller error bars than those of Moerdijk and
Verhaar: ay,_1 = (52 £ 5)ag and azp = (85 £+ 3)ap. The fact that two specific
rovibrational lines in the photoassociation spectrum that arise from p-wave scattering
were significantly weaker than neighboring lines enabled them to constrain the position
of the last node in the zero-magnetic-field p-wave ground-state wave function with
total atomic angular momentum quantum numbers f; = f5 = 1 and sum F = 1.
Next, by introducing a smooth change in the inner walls of the above-mentioned RKR
potentials, they constructed a family of potentials reproducing the p-wave node within
these constraints. The ratio of the peaks for the rotational quantum numbers J = 2
and J = 4 was then used to further constrain the potentials. With the final family of
potentials, the scattering lengths were calculated. The changes in the potential were
restricted by the requirement that the number of [ = 0 vibrational levels in both the
singlet and triplet potentials was conserved. Contrary to Moerdijk and Verhaar and
Coté and Dalgarno, Tiesinga et al. did not check the consistency of their final potentials
with the energy spacings between the measured bound states.

We notice an apparent discrepancy between the photoassociation data analyzed by
Tiesinga et al. and the level spacings analyzed by Moerdijk and Verhaar: The ranges
that they find for a; _; do not overlap. This discrepancy is further enhanced by the fact
that each prediction for a;,_; is supported by one more direct measurement of a;,_:
From the thermalization time of a ?3Na gas sample with a temperature of 200 puK
the value a1,_1 = (92 £ 25) ag was found [7], whereas a later analysis of time-of-flight
measurements of expanding condensates [8] yielded (42 + 15) ay.

Valuable additional experimental data recently became available in the form of
magnetic field values at which Feshbach resonances occur in the scattering of ultracold
23Na atoms. Feshbach resonances arise when the total energy of a pair of colliding
atoms matches the energy of a quasibound two-atom state, leading to the resonant
formation of this state during the collision. They give rise to a variation of the scattering
length to arbitrary positive or negative values as a function of the applied field strength
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around a resonance value [9] and, depending on experimental conditions, to a significant
enhancement of inelastic processes [9]. Both these effects were observed in an optically
trapped 23Na |1, 1) Bose-Einstein condensate at an external magnetic field of 907420 G.
A second Feshbach resonance was detected at a field strength 54 &1 G smaller [10].

In this paper, we show that the fairly large discrepancy between the photoassocia-
tion data and the bound-state data can be removed with the use of a set of potential
parameters that give an improved description of the interactions between ultracold
ground-state 2*Na atoms with respect to the former (modified) RKR and IPA poten-
tials. Also, we show agreement between these potential parameters and the measured
Feshbach resonance fields, which are then used to restrict the parameters to very nar-
row ranges and accurately predict scattering lengths and field values for other Feshbach
resonances in 22Na-23Na collisions.

7.2 Method

Rather than using complete singlet (S = 0) and triplet (S = 1) potentials, we use
only the long-range parts and summarize the information in the short-range parts in
a boundary condition on the S = 0 and S = 1 radial wave functions at a suitable
interatomic distance r = rg = 16ag, on the basis of which Schrédinger’s equation
is solved for r > rg. The choice of rg = 16ag is discussed below. The boundary
condition takes the form of a set of phases ¢g[E, (I + 1)] and ¢p[E,I(l + 1)] of the
oscillating singlet and triplet radial wave functions as a function of the energy F and
interatomic angular momentum quantum number [ [11]. The phases ¢g[E,(l+1)] and
o[ E, (1 + 1)] are expressed as a Taylor series up to second order in the two variables
E and (I + 1). The long-range singlet and triplet potentials Vg and V7 are written in
the form

Vsyr(r)=——% —— — 0T Ve, (7.1)

with the Smirnov-Chibisov [12] exchange part
Vi = Ar/2e—te2ar (7.2)

in which we use their recommended 23Na parameters a = 0.626a5" and A = 1.25 x
1072 au. In Ref. [5], Coté and Dalgarno use the same formula for Vg, but with
slightly different values for o and A. The dispersion coefficients Cg and Cjq are set
to the values calculated by Marinescu, Sadeghpour, and Dalgarno [13]. Cjy is varied
within 5% uncertainty limits around this center value. An uncertainty interval is not
given in Ref. [13], but we believe 5% is a reasonable estimate. Ciq is kept fixed because
small changes in Cyp hardly play a role for r > 16ag. A recent accurate value of
Cs = 1561 a.u. was obtained by Kharchenko, Babb, and Dalgarno [14]; it differs from
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a previous value of 1539 a.u. calculated by Marinescu, Dalgarno, and Babb [15] by
22 a.u. We chose Cg = 1561 % 22 a.u. in order to take into account this difference.

The main difference between the analysis of the bound states in this paper and
that in Ref. [1] is in the choice of the long-range singlet and triplet potentials. In
the previous work these were taken from RKR [4] and IPA [1] analyses of separate
sets of singlet and triplet bound diatomic states. The quantities that we want to
predict, on the other hand, are very sensitive to the difference of the potentials, i.e.,
the exchange energy. Although the above bound states were the best experimental
information available at the time, we believe that a much better description is achieved
by taking the exchange energy from theory. The present use of the Smirnov-Chibisov
form for Vg(r) greatly improves the exchange energy in the recoupling region where
the hyperfine and exchange interactions are comparable and thus leads to significantly
more reliable predictions for scattering lengths and exchange decay rates.

Obviously, at r = rg, the exchange interaction Vg must be much larger than the
hyperfine splitting Ap s so that there are indeed uncoupled S = 0 and S = 1 radial wave
functions to put a boundary condition on. This leads us to the requirement o < 17 ag
VE(17 ap) = 23Ap¢]. A second requirement, which limits the choice of r¢ on the lower
side, is the validity of the long-range expression (7.1) beyond rq. Further, for a given
value of [, the boundary condition on the radial wave functions at r = rg can only be
expressed in terms of phases ¢¢ and ¢, with a simple energy dependence as indicated
previously, above a certain minimum energy depending on 7y and /. Consequently,
the choice of g limits the energy range, and thus the number of bound states, that
can be included in our analysis for each [. Based on the above considerations we have
chosen g = 16ag. This allows us to analyze ten bound states: three singlet states
(v =60,61,62) for both | = 13 and | = 15, and two triplet states (v =9, 10) for both
l =14 and | = 16.

7.3 Bound-States Analysis

The experimental bound state energies in Refs. [2] and [3] were all (singlet and triplet)
determined with respect to the minimum of the singlet potential. How far this minimum
lies below the dissociation limit was not measured. Therefore, instead of fitting our
potential parameters to absolute binding energies, we fit them to the energy spacings
between the levels. To be specific, we use the singlet state with v = 60 and [ = 13 as
the reference level, and fit to the energy spacings between this state and each of the
other nine bound states used in our analysis. All these states and their experimental
energies with respect to the reference state are shown in Table 7.1.

The fitting procedure is as follows: For a certain choice of Cg and Cg, we simulta-
neously optimize ¢¢(0,0) and ¢1(0,0) and their first derivatives with respect to E and
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Table 7.1 Bound Nas states used in our analysis and their experimental energies [2,3] with
respect to the singlet reference state a (v = 60,1 = 13) with an energy of 6010.9102 cm ™" [3]

with respect to the minimum of the singlet potential.

State v,l Energy (cm™1)

Singlet

a 60,13 0

b 60,15 1.5941

¢ 61,13 6.3232

d 61,15 7.5855

e 62,13 10.0079

f 62,15 10.9222
Triplet

A 9,14 -1.2292

B 9,16 0.5748

C 10,14 4.9298

D 10,16 6.5418

I(I+ 1) with the aid of a least-squares method that minimizes y2 for the bound-state
energy spacings. The second and mixed derivatives of ¢¢ and ¢, are not fitted but
determined from the inner parts (up to 16 ag) of the IPA singlet potential constructed
by Moerdijk and Verhaar and the RKR triplet potential of Ref. [4]. The IPA potential
is given in Table 7.2. These derivatives are nearly constant over the energy range be-
tween the dissociation limit and the lowest of the analyzed bound states. Their average
values, listed in Table 7.3, are used in the fitting procedure. The effects of the spread
around the average values can be estimated and are taken into account in the form of
small errors added to the uncertainties in the fitted parameters that follow from the
least-squares fit. The procedure is repeated for different choices of Cg and Cs.

The measured singlet bound-state energies are given with a precision of 10™* cm™!

in Ref. [3]. An experimental error is not given but we assume it to be of the order of
10~* cm™! as well. With our limited set of potential parameters we cannot reproduce
the energy spacings between the singlet bound states with that precision. Still, we can
attain a very high precision: if we fit the singlet parameters to the singlet bound states
alone, we find x? = 5 (six singlet states give five energy spacings) for a standard devia-
tion 0g = 1.1 x 1073 cm ™! in the level energies. This o is used in the fitting procedure
described above. For the triplet bound-state energies, a maximum experimental error
of 0.3 cm™! is quoted in Ref. [2]. The standard deviation o in the triplet energies is
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Table 7.2 IPA singlet potential Vg(r) for Na constructed by Moerdijk and Verhaar [1]. The

zero of energy is set at the dissociation limit.

r (ag) Vs(r) (a.u.) r (ag) Vs(r) (a.u.) r (ag) Vs(r) (a.u)

4.0 0.00528777909 10.0  -0.00489382935 16.0  -0.00014170279
4.2 -0.00316646188 10.2  -0.00430593832 16.5 -0.00011305197
44  -0.00988365626 10.4  -0.00378361262 17.0  -0.00009126498
4.6  -0.01525470849 10.6  -0.00332132572 17.5  -0.00007458045
4.8 -0.01943835505 10.8  -0.00291347319 18.0  -0.00006155216
5.0  -0.02258676589 11.0  -0.00255429652 18.5  -0.00005099525
5.2 -0.02483791285 11.2  -0.00223928667 19.0  -0.00004242869
54  -0.02632625682 114 -0.00196378261 19.5  -0.00003549124
5.6  -0.02715809476 11.6  -0.00172292402 20.0  -0.00002982550
5.8  -0.02743663688 11.8  -0.00151253077 20.5  -0.00002517682
6.0  -0.02726590589 12.0  -0.00132896983 21.0  -0.00002140900
6.2  -0.02673455863 122 -0.00116878475 21.5  -0.00001839211
6.4  -0.02591530524 12.4  -0.00102918491 22.0  -0.00001599623
6.6  -0.02487041455 12.6  -0.00090748310 22,5 -0.00001409149
6.8  -0.02365557413 12.8  -0.00080126123 23.0  -0.00001254739
7.0  -0.02232021881 13.0  -0.00070860189 23.5  -0.00001123357
7.2 -0.02090703144 13.2  -0.00062776365 24.0  -0.00001004234
74 -0.01945205624 13.4  -0.00055712727 24.5  -0.00000895033
7.6  -0.01798532416 13.6  -0.00049535746 25.0  -0.00000795411
7.8  -0.01653183110 13.8  -0.00044128347 25.5  -0.00000704977

8.0  -0.01511214019 14.0  -0.00039390246 26.0  -0.00000623340
8.2  -0.01374289558 14.2  -0.00035236374 26.5  -0.00000553975
84  -0.01243710395 14.4  -0.00031586009 27.0  -0.00000488726
8.6  -0.01120451049 14.6  -0.00028376027 27.5  -0.00000431031

8.8  -0.01005181286 14.8  -0.00025548354 28.0  -0.00000380471
9.0  -0.00898302404 15.0  -0.00023047246 28.5  -0.00000336602

9.2  -0.00799981879 15.2  -0.00020832174 29.0  -0.00000298995
9.4  -0.00710187927 154  -0.00018868915 29.5 -0.00000251290
9.6  -0.00628723166 15.6  -0.00017123267 30.0  -0.00000221302

9.8  -0.00555263317 15.8  -0.00015563663
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Table 7.3 Values of the second and mixed derivatives of the phases ¢¢ and ¢, used in the

bound-states analysis.

Parameter Value
O?pg/OE? —4.8 x 1074 K2
PPpg /Ol +1)]2 0
D¢ /OE A +1) 1.9x 1075 K1
O*pp/OE? —9.7x 1074 K2
% /Ol +1))? 0
02¢pp/OE OI(1 + 1) 3.9 x 1075 K1

Table 7.4 The five choices of Cs and Cs used in our analysis.

Choice Ce (a.u.) Cs (a.u.)
I 1539 106283
1I 1539 117471
111 1561 111877
v 1583 106283
V 1583 117471

taken to be o =  x 0.3 em™ = 0.15 cm™!. The differences between the theoretical
and experimental energy spacings that we find for the fitted parameters with Cg and
Cg at the middle of their uncertainty intervals are shown in Fig. 7.1. Note that for the
triplet states theory and experiment agree within the above standard deviation. The
best accuracy in previous calculations of the highest Nay bound states was obtained
by Co6té and Dalgarno [5]. Their accuracies were around 1072 cm™! for the singlet and

0.2 ecm™! for the triplet levels.
The ¢4(0,0) and ¢,(0,0) that we find from the fitting procedure for each choice

of Cg and Cg are translated into the fractional vibrational quantum numbers at the
dissociation limit of the singlet and triplet 23Nas molecular potential wells vpg =
nps—1+Ag and vpr = npr—1+Ag, respectively. The integer npg(r) is the number of
bound states in the singlet (triplet) potential and Ag ) is the fractional part; nps = 66
and ngr = 16. The vpg and vpr intervals that we find for the four choices of Cg and Cg
where each of these parameters is at the lower or upper limit of its error bar and for the
choice of central values (see Table 7.4) are listed in Table 7.5 (in terms of Ag and Ap),
along with the ranges that we find for d¢gry/9E (0,0) and 9¢g1y/9l(1+1) (0,0). The
values of Cy and Cy for each parameter choice are also given in the table. The allowed
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Figure 7.1 Differences between theoretical and experimental (see Table 7.1) bound-state
energy spacings found for the fitted potential parameters with Cs and Cs at the middle of

their uncertainty intervals.

Table 7.5 Singlet (S) and triplet (I') potential parameters resulting from the fit to the
bound-state energy spacings in Table 7.1 for the five choices (I-V) of Cs and Cs listed in Table
7.4. The phase parameters ¢y have been translated into the corresponding fractional parts
Agry of vps(ry. The values of vpg(ry itself can be found from vpsry = npsry — 1+ Aser,
with ngs = 66 and npr = 16. If desired, the values of ¢s(T) (0,0) can be evaluated by
¢5()(0,0) (mod 7) = ¢y, () T As(rym. The phases ¢y, 57y (mod 7) for which the
highest bound state lies at the threshold, are listed in the last column.

Choice Potential ~22(0,0) (K1) %(o, 0) A Binros
I S 0.0989 + 0.0016  —0.0064 + 0.0001  0.661 +0.005 1.4142
T 0.1264+0.023  —0.008+0.003  0.30+0.18  1.6039

II s 0.0969 + 0.0016  —0.0064 + 0.0001  0.656 £ 0.005 1.3151
T 0.1254+0.023  —0.008 £0.003  0.29+0.18  1.5031

111 S 0.0965 + 0.0016  —0.0063 + 0.0001  0.669 + 0.005 1.2616
T 0.125+0.023  —0.008£0.003  0.304+0.18  1.4494

IV s 0.0960 + 0.0016  —0.0063 + 0.0001  0.682 + 0.005 1.2084
T 0.12440.023  —0.008+0.003  0.324+0.18  1.3960

v S 0.0941 +0.0016  —0.0063 + 0.0001  0.677 +0.005 1.1104
T 0.1234+0.023  —0.008+0.003  0.31+0.18  1.2964
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vpg and vpr ranges for other values of Cg and Cg can be found by linear interpolation
between the given intervals. For each parameter choice the last column of Table 7.5
lists the values of ¢¢(0,0) and ¢4(0,0) (modulo 7) for which vpgiry = npgry — 1,
i.e., the highest bound state lies at the threshold. These phase values are denoted as
Pinres,s a0d Gyppes 7o I desired, the phases that correspond to the given Ag and Ar
ranges can be simply evaluated by ¢g(1)(0,0) (mod ) = Gypyes () + Asgerym. If Cg is
increased, vps and vpr increase too. This is consistent with the Le Roy formula [16]
for binding energies which predicts that the energy spacings between levels decrease
with increasing Cg. All levels must be lowered (and thus vps and vpr increased) to
compensate for this.

We would like to emphasize that the magnitude of the vpp ranges listed in Table 7.5
is directly related to the large error bars in the experimental triplet bound-state ener-
gies. They are not due to our method of analyzing the bound states. As an illustration
of this, we point to the much smaller vpg ranges in the same table. In this paper
we obtain the best accuracy for the singlet parameters for each Cg,Cs choice from
our analysis of the bound states; this singlet accuracy is not further restricted by the
remaining experimental data. In fact, it turns out that the uncertainties in d¢g/0F
and 0¢¢/0l(l + 1) have negligible effects on the analysis of the remaining data, so
that in the following sections we can limit ourselves to fitting ¢;-(0,0) as a function
of the Cg,Cs choice and vpg, 0pp/OE, and d¢4/0l(l + 1) within the ranges listed in
Table 7.5. Only because the range of Cg is restricted by the remaining data, is the
overall error in vpg that we find at the end of this paper smaller than the overall error

following from the bound-states analysis alone.

7.4 Photoassociation Data

In the photoassociation experiment analyzed by Tiesinga et al. all atoms were pumped
into the 32S(f = 1) ground state and no static magnetic field B was applied. For B = 0
(and neglecting the weak dipole-dipole interactions), the total two-atom electronic
angular momentum quatum number F'is a good quantum number. Further, the atomic
quantum numbers f; and fz in Na (f; = 1)+Na (fz = 1) collisions couple to F' = 0 or 2
for even [ and F' = 1 for odd [. Therefore, s-wave contributions to the photoassociation
data can be represented in terms of two s-wave wave functions W, and ¥, with F' =0
and F' = 2, respectively. There is only one p-wave contribution: ¥,;. Finally, d-waves
also contribute to the photoassociation spectrum but we do not need them here.

As mentioned in the introduction, Tiesinga et al. were able to constrain the position
of the last node in W¥,; based on the fact that certain rovibrational lines arising from
p-wave scattering were significantly weaker than neighboring lines. They found the
position of this node to be (73 £ 3)ag for a collision energy E.,; of 500 pK. The
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Table 7.6 Ranges for the fractional parts Apr of vpr following from analysis of photoasso-
ciation data [6] and observed Feshbach resonances [10], for the five choices of Cs and Cy listed
in Table 7.4. ¥, node, Apr range that produces the last node in the p-wave wave function
P, at (73 £ 3)ao; ¥so node, Apr range that produces the last node in the s-wave wave
function ¥4 at (60 & 3) ao; ¥s2 node, range producing the last node in ¥ at (60 £ 3) ao.
The restrictions on the positions of the nodes were taken from Ref. [6]. B, Apr range that
produces the Feshbach resonance near 907 G at a magnetic field consistent with experiment;

B1 — Bs, range producing a difference of Feshbach resonance fields B; — Bs consistent with

experiment.

Ch. lIlpl node \Ifs() node \1152 node B1 Bl — BQ
I 0.3052-0.3495 0.3148-0.4065 0.3593-0.4510 0.3399-0.3600 0.3441-0.3621
IT  0.3064-0.3507 0.3157-0.4080 0.3609-0.4519 0.3392-0.3593 0.3434-0.3614
III  0.3052-0.3494 0.3144-0.4061 0.3591-0.4505 0.3427-0.3629 0.3504-0.3676
IV 0.3039-0.3482 0.3125-0.4039 0.3571-0.4484 0.3463-0.3663 0.3573-0.3738
V' 0.3051-0.3493 0.3146-0.4060 0.3592-0.4505 0.3455-0.3659 0.3568-0.3733

energy 500 pK is close to the most probable collision energy in the experiment and the
photoassociation spectra are therefore most sensitive to the shape of wave functions
with this collision energy. In addition, Tiesinga et al. showed that the ratio of the
J = 2 and J = 4 peaks is related to the position of the last s-wave node. They gave
(60 + 3) ag for this position where they did not differentiate between ¥y9 and Wo. The
choice of the precise collision energy is less critical for the s-wave nodes. We take again
500 pK.

With a coupled-channels program we have calculated the positions of the last nodes
in 0,1, Uy, and Pyo as a function of ¢¢(0,0) and ¢,(0,0) for different choices of Cg,
Cg and with E.,; = 500 pK. For each of the five choices of Cs and Cg introduced in the
previous section (see Table 7.4), three vy intervals are listed in Table 7.6 (in terms
of Arp): The first gives the vpr range that produces the node in ¥, at (73 £ 3) ao,
the second interval gives the vpr range that produces the U, node at (60 + 3) ag,
and the last gives the vpr range for the Uy node at (60 & 3)ag. A small part of
the width of the p-node interval is due to the uncertainty in d¢,/0l(l + 1). All listed
intervals are for vpg set at the middle of its uncertainty interval following from the
bound-states analysis. If vpg is increased or decreased by its uncertainty of 0.005, all
vpr intervals move approximately 0.0018 to lower or higher values. Their widths and
mutual positions remain unchanged to better than 2%. The results for Cg, Cs choices

not shown follow from linear interpolation.



7.5 Feshbach Resonances 85

To enable a quick comparison, all vp7 ranges found in the above analysis of the
photoassociation data are also graphically shown in Fig. 7.2, in combination with the
vpr ranges from the bound-states analysis. Looking at the p- and s-node intervals,
and realizing that the experimentally relevant s-node lies somewhere between the Wy
and U, nodes, there clearly is a strong indication that we have achieved agreement
with the photoassociation data. Moreover, this agreement is realized for vps and vpr

values that also agree with the bound-state data.

7.5 Feshbach Resonances

The last two pieces of information that we incorporate in our analysis are the Na |1,1)+
Na |1,1) Feshbach resonances measured by Inouye et al. [10]. The widest of the two
was detected at a magnetic field B; = 907 + 20 G and the second very narrow one
Bi — B, =54+ 1 G below the first one.

For different choices of our potential parameters, we have calculated the scattering
length a1 for Na |1,1) +Na |1,1) collisions as a function of B and determined where
it becomes infinite, thus locating Feshbach resonances [9]. For our five choices of Cg
and Cg (see Table 7.4), the vpr ranges consistent with the measured field By are
listed in Table 7.6 (in terms of Ar). The specific choice of vpg in its uncertainty
interval has a negligible effect on the allowed vpr values. This is due to the fact
that the bound state involved in the Feshbach resonance is almost purely triplet. The
uncertainty in d¢/0F, on the other hand, is important (it causes a shift of about +7 G
in By) and contributes to the width of the given vpr interval. Much as expected,
changing Cg within its error limits turns out to cause a significant shift of the vpp
range corresponding to the measured Bj, whereas the effect of changing Cg is very
small: about a £0.0003 shift in vpr for a change of +5% in Cs.

The vpr intervals that produce a difference of Feshbach resonance fields By — Bs
that is consistent with the experiment are also given in Table 7.6, again for each
of the five Cg,Cg choices. Also in this case, results for intermediate Cg,Cg values
can be found by linear interpolation. B; — By depends mostly on By and Cg. For
Cs = 1539 a.u., 887 G < By < 927 G leads to 53 G < By — By < 57 G, where the
highest By value corresponds to the lowest B; — By value. For Cs = 1583 a.u. we get
54 G < By — Bz < 59 G. Since the uncertainty in d¢r/OF has an effect on By, it also
has an effect on By — B and thus contributes to the width of the vpr ranges that
agree with the measured value.

As in section 7.4, for a quick comparison, all vpp ranges found in the above analysis
are shown in Fig. 7.2. Overlooking all available data, we conclude that there is complete
agreement for Cg values near the lower end of their uncertainty interval. If Cjy is
increased to 1583 a.u., the agreement between the Feshbach resonance fields and the



86 7 Determination of Collisional Properties of Cold Na Atoms ...

I n FB2
C,=1539 a.u. [ FB1
C,=106283 a.u. T SN
I PN
I &S

Il: u FB2
C,=1539 a.u. B FB1
C,=117471 a.u. T sN
I pN
N

C,=1561 a.u. ] FB1
C,=111877 a.u. T sN
I PN
I GS

IV: N FB2
C,=1583 a.u. ] FB1
C,=106283 a.u. T sN
pN
., ©S
V: FB2
C,=1583 a.u. FB1
C,=117471 a.u. sN
PN

I  BS

0.1 0.2 0.3 0.4 0.5

A

DT

Figure 7.2 Graphical representation of the ranges for the fractional part Apr of vpr (see
Tables 7.5 and 7.6) resulting from our analysis of various experiments. The numbers I-V refer
to the choices of Cg and Cs. Each bar represents a Apr range. BS, bound-state ranges; pN,
¥,1 node ranges; sN (left-hand range including the hatched part), ¥4 node ranges; sN (right-
hand range including the hatched part), ¥,o node ranges; FB1, B; ranges; FB2, B; — Bo

ranges. For each Cg,Cs choice vpgs is completely determined by the bound-states analysis.
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Table 7.7 Scattering lengths a for all combinations of hyperfine states in the f = 1 manifold,

evaluated at zero magnetic field.

Channel a (ag)
Na [1,1) + Na |1,1) 55.4+ 1.2
Na [1,1) + Na |1,0) 55.4+ 1.2
Na |1,1) + Na |1, —1) 51.7+1.3
Na |1,0) 4+ Na |1,0) 53.5+1.3
Na [1,0) + Na |1, 1) 55.4+ 1.2

Na |1, —1) + Na [1, —1) 55.4+1.2

photoassociation data deteriorates. This confirms what one might expect from the two
calculations of Cs by Kharchenko et al. [14] and Marinescu et al. [15] alone: The value
of Cg should lie between 1539 a.u. and 1561 a.u., rather than above 1561 a.u. Again,
the effect of changing Cg apparently is very small.

7.6 Predictions and Conclusions

Combining all the results of the previous sections as listed in Tables 7.5 and 7.6, we have
determined the maximum vpg and vy ranges that are consistent with all experimental
data analyzed in this paper. The overlap between the vpr ranges extracted from the
By — By data and those extracted from the p-node data turns out to be the limiting
factor. We find vpgs = 65.662 £ 0.012 and vpr = 15.348 £ 0.005. The corresponding
singlet and triplet scattering lengths are ag = (19.1 £2.1) ag and ap = ag 2 = (65.3 £
0.9) agp. Treating the uncertainties in vpg and vpr as uncorrelated errors, we have
also calculated the scattering lengths for all combinations of hyperfine states in the
f = 1 manifold and for zero magnetic field. The results are listed in Table 7.7. The
situation that several scattering lengths have the same value is a result of the fact
that for B = 0 all s-wave Na (f; = 1) + Na (fy = 1) collisions can be represented
in terms of Wy and Wy, as discussed in section 7.4. All exchange decay rates for
these collisions vanish as B — 0 and E — 0 because of zero available phase space. In
particular, we find a1, _1 = (55.4£1.2) ag. That is consistent with the value (52 £5) ag
found by Tiesinga et al. and the time-of-flight value (42 £ 15) a¢ from Ref. [8]. The
thermalization-time value of a1 1 = (92 £ 25) ag [7] falls outside the present error bar.
The triplet scattering length that we find is significantly smaller than both the values
found by Moerdijk and Verhaar and Tiesinga et al. This is not very surprising because
the long-range part (r > 16ag) of the triplet potential, for which they both use the
tail of the RKR potential from Ref. [4], was improved by us. The fact that our values
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Table 7.8 Previous [1] and present values for the resonance fields By of Feshbach resonances

in ultracold Na collisions.

Channel Previous By (G) Present By (G)
Na |1,1) + Na |1,1) 900 < By < 1850 2035 < By < 2080
Na |1,—1) + Na |1, -1) not reported 1200 < By < 1285
Na |1, 1)+ Na |1, 1) 840 < By < 1340 1485 < By < 1520
Na|l,—1)+Na|l,—1) 1480 < By <2330 2620 < By < 2670

for a;,_; and ag o are closer together than those of Tiesinga et al. can be explained by
our different handling of the exchange part of the potentials. Our results for ag and
ar are also both smaller than the values ag = 34.9 ag and ap = 77.3 ag found by Coté
and Dalgarno, who use a similar treatment of the exchange energy, but the values for

the difference ar — ag are fairly similar.

We have also used the results of our analysis to predict the locations of an additional
Feshbach resonance in the Na |1,1) + Na |1,1) entrance channel and three resonances
in the Na |1, —1) + Na |1, —1) channel. Since all these resonances are related to almost
purely triplet quasibound states, their resonance fields depend mostly on vy, Cg and
O¢r/OE. Correlations between these parameters are taken into account. The results
are shown in Table 7.8, along with previous predictions by Moerdijk and Verhaar [1]
for comparison. The present predictions for the resonance fields are higher than the
previous ones. This is in agreement with the lower ar (higher vpr) that we find
in this paper. Except for the resonance near 1200 G in the Na |1,—1) + Na |1, —1)
channel, the bound states that cross the threshold at the predicted magnetic fields
have mg = +1; see Fig. 7.3. For the resonance near 1200 G, which was not previously

reported, mg = —1 so that a smaller a; there leads to a lower resonance field.

In conclusion, we have resolved the apparent discrepancy between the Na photoas-
sociation data in Ref. [6] and the singlet and triplet bound-state energies in Refs. [2—4].
Moreover, we have obtained agreement between the above data and the observation of
Feshbach resonances in a Na Bose condensate. Combining all these data has enabled
us to determine a set of Na interaction parameters with an accuracy that allows precise
calculation of Na cold collision properties. A few essential cold collison properties have
been presented in this paper, but it is also possible to accurately calculate other prop-
erties such as the scattering lengths and exchange decay rate coefficients for arbitrary
Na hyperfine states in the f = 2 manifold or for collisions between atoms with different
f, and the locations of Feshbach resonances in arbitrary entrance channels.
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Figure 7.3 Triplet and singlet bound states (solid lines) and the Na |1,1) +Na |1, 1) thresh-
old (dashed line) as a function of magnetic field. At B = 0, the degeneracy of the triplet state
is lifted by the hyperfine interaction. Feshbach resonances occur at the intersections of the
bound-state and threshold curves. If vpr is increased, the bound-state curves move to lower

energies and thus the resonance fields increase.
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Summary

A remarkable aspect of the recently realized Bose-Einstein condensates in dilute gases
of alkali atoms is the prominent role that atom-atom interactions play in them. They
influence most of the important properties of these condensates, including their stabil-
ity, size and shape, and collective excitations. The condensates are created by trapping
atoms in a magnetic trap and cooling them to below the critical temperature by forced
evaporation. Atomic interaction processes are also crucial in this process: a minimum
rate of elastic collisions is required for efficient cooling and inelastic collisions should
not occur too often. In addition, interactions between cold atoms will be an important
factor in developments in the fields of atomic clocks, coherent matter waves and Fermi-
degenerate gases. This thesis contains theoretical contributions to the investigation of
cold-atom interaction processes and the determination of parameters that describe the
interactions between cold rubidium, lithium and sodium atoms. Rather than describing
complete interaction potentials with these parameters, we describe only the long-range
parts using the standard parameters (dispersion coefficients and an analytical expres-
sion for the exchange energy) and summarize the information in the short-range parts
in boundary conditions on the radial scattering wave functions in terms of accumulated
WKB phases at a suitable internuclear separation [Sec. 2.4].

The scattering length characterizes two-body elastic collisions at very low tempera-
tures and therefore also the atomic interactions in a dilute condensate. An interesting
phenomenon in cold collision physics is the resonance behavior often shown by the
scattering length as a function of the strength of an external magnetic field. These
so-called Feshbach resonances make it possible to vary the strength of the interactions
between the atoms in a condensate and even change them from effectively repulsive
to attractive, which is predicted to cause a collapse of the condensate. An experiment
investigating Feshbach resonances in a relatively dense sodium condensate showed that
crossing a resonance while increasing the magnetic field at high ramp speed can also
lead to a large loss of atoms from the trap. Using the nonconservation of energy due to
the time dependence of the magnetic field, we describe a two-body decay mechanism
[Sec. 3.2; Fig. 3.1] that can explain this observation [Eq. 3.4; Fig. 3.2]. An essential
element in our picture is the concept of a global and a local resonance lifetime.

When the work for this thesis was started, the existence of Feshbach resonances in
cold-atom scattering had been predicted but not yet observed. We show that photoas-
sociation is a good probe for observing Feshbach resonances [Secs. 4.2 and 4.3]. In the

photoassociation process a laser optically excites two colliding ground-state atoms into
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a bound electronically-excited molecular state, which then decays back to free atoms
with a translational energy large enough to escape from the trap; the resulting de-
crease in the number of trapped atoms is measured. A Feshbach resonance lengthens
the time that the atoms spend in the internuclear distance range where the optical
excitation occurs, so that the photoassociation signal increases [Figs. 4.2 and 5.1]. Our
calculations show an enhancement by at least two orders of magnitude [Fig 4.1] for
the broadest of the three resonances that had been predicted for 8Rb and a suitable
choice for the excited bound state. After this prediction, the photoassociation method
was successfully applied by Heinzen and his group at the University of Texas, Austin,
with whom we closely collaborated on this subject. Their observation of the 3Rb
resonance [Fig. 5.3], and the almost simultaneous observation of a Feshbach resonance
in a sodium condensate by Ketterle’s group at MIT, constitute the first observations
of this phenomenon in cold collisions. The photoassociation spectra are analyzed [Sec.
5.4] leading to a precise prediction for the dependence of the scattering length on the
magnetic field strength near the resonance [Fig. 5.5]. The ratio of the field width and
the resonant field strength, which governs the degree of field control that is needed to
stably change the sign of the scattering length, turns out to have a relatively favourable
value for the ®®Rb resonance.

Because evaporative cooling does not work for spin-polarized fermions at very low
temperatures, the creation of a Fermi-degenerate gas is more complicated than the
creation of a Bose-FEinstein condensate. We show, through analysis of photoassociation
data and measured bound-state binding energies [Sec. 6.2], and via calculation of scat-
tering properties [Table 6.1; Figs. 6.3 and 6.5], that there are two possible solutions in
the case of 5Li: sympathetic cooling (cooling the 5Li atoms with evaporatively cooled
bosonic “Li atoms) or using Li atoms in different internal states.

The thesis is concluded with a simultaneous analysis [Secs. 7.3-7.5] of data from
three different experiments on sodium: Nas bound-state energies, photoassociation
data, and Feshbach resonance fields. We obtain a set of Na interaction parameters
[Fig 7.2; Table 7.3] with a high precision that is in excellent agreement with all these
experimental data; a discrepancy between the results of previous analyses of the bound-
state energies and the photoassociation data is resolved. The interaction parameters
are used to give accurate predictions for scattering lengths [Table 7.7] and resonance
fields of several yet unobserved Feshbach resonances [Table 7.8] (one of which has
been observed in the meantime at the right field strength). Preliminary results of our
analysis have been of great help in locating and observing the Feshbach resonances
in sodium by Ketterle’s group. Moreover, our results have been used to confirm the

reliability of ab initio calculations of van der Waals interactions.



Samenvatting

Een opmerkelijk aspect van de recent gerealiseerde Bose-Einsteincondensaten in ijle
gassen van alkali-atomen is de belangrijke rol die interacties tussen de atomen daarin
spelen. Zij beinvloeden het merendeel van de relevante eigenschappen van deze con-
densaten, zoals hun stabiliteit, vorm en afmetingen, en collectieve excitaties. De con-
densaten worden gemaakt door atomen op te sluiten in een magnetische valkuil en ze
af te koelen tot onder de kritische temperatuur door middel van geforceerd afdampen.
Atomaire wisselwerkingsprocessen zijn ook van doorslaggevend belang in dit proces:
voor efficiént koelen is een minimale frequentie van elastische botsingen noodzakelijk
en inelastische botsingen mogen niet te vaak voorkomen. Tevens zullen interacties
tussen koude atomen een belangrijke factor zijn in ontwikkelingen op het gebied van
atoomklokken, coherente materiegolven en Fermi-ontaarde gassen. Dit proefschrift be-
vat theoretische bijdragen aan het onderzoek naar deze wisselwerkingsprocessen en het
vastleggen van parameters die de wisselwerking tussen koude rubidium-, lithium- en
natriumatomen beschrijven. In plaats van de complete interactiepotentialen te beschrij-
ven met deze parameters, beschrijven we alleen het lange-dracht deel met behulp van
de standaardparameters (dispersiecoéfficiénten en een analytische uitdrukking voor de
exchange-energie) en vatten we de informatie opgesloten in het korte-dracht deel samen
in randvoorwaarden voor de radiéle verstrooiingsgolffunctie in de vorm van geaccumu-
leerde WKB fasen bij een geschikte internucleaire afstand [§ 2.4].

De verstrooiinglengte karakteriseert elastische twee-deeltjesbotsingen bij zeer lage
temperaturen en daarom ook de interacties in een ijl condensaat. Een interessant ver-
schijnsel in de fysica van koude botsingen is het resonantiegedrag dat de verstrooiings-
lengte vaak vertoont als functie van de sterkte van een extern magnetisch veld. Deze
zogenaamde Feshbachresonanties maken het mogelijk om de sterkte van de interacties
tussen de atomen in een condensaat te variéren en zelfs om een effectief afstotende
wisselwerking om te zetten in een aantrekkende, wat volgens voorspellingen leidt tot
ineenstorting van het condensaat. Een experiment dat Feshbachresonanties onderzocht
in een condensaat met een relatief hoge deeltjesdichtheid heeft aangetoond dat het pas-
seren van een resonantie tijdens een snelle verhoging van de magnetische veldsterkte
ook kan leiden tot een groot verlies van atomen uit de valkuil. Gebruik makend van
het niet behouden zijn van de energie ten gevolge van de tijdathankelijkheid van het
magnetische veld, beschrijven we een twee-deeltjesvervalmechanisme [§ 3.2; Fig. 3.1]
dat deze waarneming kan verklaren [Vgl. 3.4; Fig. 3.2]. Een essentieel onderdeel van

ons beeld is het idee van een lokale en een globale levensduur van de resonantie.
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Bij het begin van dit promotieonderzoek waren Feshbachresonanties in botsingen
tussen koude atomen wel voorspeld maar nog niet waargenomen. We laten zien dat
fotoassociatie een goed instrument is om deze resonanties waar te nemen [§ 4.2 en 4.3].
In dit proces exciteert een laser twee botsende atomen, die zich in de grondtoestand
bevinden, naar een electronisch aangeslagen gebonden toestand, die vervolgens weer
vervalt naar vrije atomen met een translatie-energie groot genoeg om uit de valkuil te
ontsnappen; de resulterende afname van het aantal atomen in de valkuil wordt geme-
ten. Een Feshbachresonantie verlengt de verblijftijd van de atomen in het gebied van
internucleaire afstanden waar de exciatie plaatsvindt, zodat het fotoassociatiesignaal
toeneemt [Fig. 4.2 en 5.1]. Onze berekeningen laten een versterking met tenminste
twee grootte-orden zien [Fig. 4.1] voor de breedste van de drie resonanties die voor
85Rb waren voorspeld en voor een geschikte keus voor de aangeslagen gebonden toe-
stand. Na deze voorspelling is de methode succesvol toegepast door Heinzen en zijn
groep aan de University of Texas in Austin, met wie we nauw hebben samengewerkt
aan dit onderwerp. Hun waarneming van de resonantie bij ®*Rb [Fig. 5.3], en de vrijwel
gelijktijdige waarneming van een Feshbachresonantie in een natriumcondensaat door
de groep van Ketterle op MIT, vormen de eerste waarnemingen van dit verschijnsel in
koude botsingen. De fotoassociatiespectra worden geanalyseerd [§ 5.4]. Dit levert een
exacte voorspelling op voor de afhankelijkheid van de verstrooiingslengte van de mag-
netische veldsterkte in de buurt van de resonantie [Fig. 5.5]. De verhouding tussen de
veldbreedte en de resonante veldsterkte, die de mate van controle over het veld bepaalt
die nodig is om de verstrooiingslengte stabiel van teken te veranderen, blijkt relatief
gunstig te zijn voor de resonantie bij 33Rb.

Omdat afdampkoeling niet werkt voor spin-gepolariseerde fermionen bij zeer lage
temperaturen, is het maken van een Fermi-gedegenereerd gas ingewikkelder dan het
maken van een Bose-Einsteincondensaat. Via analyse van fotoassociatiedata en geme-
ten bindingsenergieén [§ 6.2], en het berekenen van verstrooiingseigenschappen [Tabel
6.1; Fig. 6.3 en 6.5], tonen we aan dat er in het geval van °Li twee oplossingen mo-
gelijk zijn: sympathetic cooling (het koelen van de %Li atomen met door middel van
afdampen gekoelde “Li atomen die zich gedragen als bosonen) of het gebruik van 6Li
atomen in verschillende interne toestanden.

Het proefschift wordt afgesloten met een gecombineerde analyse [§ 7.3-7.5] van
de meetresultaten van drie verschillende experimenten aan natrium: energieén van
gebonden Nay toestanden, fotoassociatiedata, en veldsterkten waarbij Feshbachreso-
nanties optreden. We verkrijgen een stel interactieparameters voor Na [Fig. 7.2; Tabel
7.3] met een grote precisie dat uitstekend in overeenstemming is met al deze expe-
rimentele gegevens; een discrepantie tussen resultaten van eerdere analyses van de
gebonden-toestandsenergieén en de fotoassociatiedata wordt opgelost. De interactie-

parameters worden gebruikt voor nauwkeurige voorspellingen voor verstrooiingslengten
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[Tabel 7.7] en resonantievelden van verschillende nog niet waargenomen Feshbachreso-
nanties [Tabel 7.8] (waarvan er één inmiddels waargenomen is bij de juiste veldsterkte).
Voorlopige resultaten van onze analyse zijn van grote waarde geweest bij het localise-
ren en waarnemen van de resonanties in natrium door Ketterle’s groep. Bovendien
is ons werk gebruikt om de betrouwbaarheid van ab initio berekeningen van Van-der-

Waalsinteracties te bevestigen.
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1

Bij een experiment aan een Bose-Einsteincondensaat van Na-atomen in een
tijdafhankelijk magneetveld zagen Stenger et al. 80% van de condensaatatomen
verdwijnen binnen de kortetijd van 1 ns. Dit kan verklaard worden met een twee-
atoomsverval mechanisme.

- J. Stenger, S. Inouye, M.R. Andrews, H.-J. Miesner, D.M. Stamper-Kurn, and W.
Ketterle, Phys. Rev. Lett. 82, 2422 (1999).

- Dit proefschrift, hoofdstuk 3.

2

Met een kleine uitbreiding van de experimenten van Stenger et al. had een condensaat
van moleculen, en daarmee een belangrijke stap op weg naar coherente chemie,
waarschijnlijk reeds in 1998 een feit kunnen zijn.

- J. Stenger, S. Inouye, M.R. Andrews, H.-J. Miesner, D.M. Stamper-Kurn, and W.
Ketterle, Phys. Rev. Lett. 82, 2422 (1999).

3

De nauwkeurigheid van uit experimenten bepaal de interactieparameters voor akali-
atomen is de laatste jaren razendsnel toegenomen. De veelgebruikte vuistregel voor de
relatie tussen de geaccumul eerde fasen van verschillende isotopen van één element, die
stelt dat deze fasen zich verhouden als de wortels uit de massa van het isotoop, heeft
zichzelf hierdoor overleefd.

- Dit proefschrift, hoofdstukken 1, 6 en 7.
- A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1970), p. 234.

4

De nieuwe multiprocessor supercomputer UNITE heeft die elgenschappen in zich
verenigd waardoor hij bij uitstek geschikt is voor rigoureuze quantummechanische
berekeningen aan drie-dedltjesverstooiing.

- http://www.unite.nl.
- JM. Vogels, proefschrift Technische Universiteit Eindhoven (1999).

5

Het formalisme van Kievsky et a. voor drie-deeltjesverstrooiing vereist een efficiént
integratie-algoritme voor tweede-ordedifferentiaal vergelijkingen met eerste afgeleide.
De gemodificeerde Numerovmethode, een beproefd algoritme voor tweede-orde-
differentiaal vergelijkingen zonder eerste afgeleide, kan na generalisatie aan deze eis
voldoen.

- A.Kievsky, M. Viviani, and S. Rosati, Phys. Rev. C 56, 2987 (1997).
- J. Raynal, in Computing as a Language of Physics, edited by A. Salam (IAEA, Wenen,
1972), p. 292.



6

Fotoassociatiespectroscopie in een variabel extern magneetveld is een verrijking van de
experimentel e technieken voor het bestuderen van koude botsingen.

- Dit proefschrift, hoofdstukken 4 en 5.

7

De formule van Gribakin en Flambaum voor de verstrooiingslengte is gebaseerd op de
foutieve veronderstelling dat een atoombotsing voor aleinternucleaire af standen waar
de potentiaal afwijkt van het Van der Waal sgedrag, semiklassiek beschreven kan
worden.

- G.F. Gribakin and V.V. Flambaum, Phys. Rev. A 48, 546 (1993).
- Ch. Boisseau, proefschrift Université Paul Sabatier de Toulouse (1999).

8

De zegswijze “ stille wateren hebben diepe gronden” gaat ook op voor stabiele alkali-
atomen: hoe dieper de singletpotentiaal, des te minder vibratieniveaus deze bevat.

- A.J. Moerdijk, Notorious Table (interne lijst met gegevens over alkali-atomen, groep
Atoomfysica en Quantumelectronica, Technische Universiteit Eindhoven).

9

De beangstigend steile trappen in veel Nederlandse huizen getuigen van een
doorgeschoten angst om ruimte te verspillen.

10

Dankzij satellietverbindingen en internet hoeft een grote oceaanzeilwedstrijd als de
Whitbread Round The World Race wat betreft aantrekkelijkheid voor toeschouwers
niet onder te doen voor het wereldkampioenschap voetbal .

- http://www.whitbread.org.

11

Een geslaagd dessert is door zijn presentatie en smaak in staat de verrukkingen van
kunst en gastronomie in zich te verenigen.

12

“Eerst denken, dan doen” is de verkeerde filosofie in de omgang met Windows-
programmatuur.
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