

Application areas and added value of knowledge base
systems
Citation for published version (APA):
Schuwer, R. V., & Kusters, R. J. (1993). Application areas and added value of knowledge base systems.
Information and Management, 24, 83-92. https://doi.org/10.1016/0378-7206%2893%2990057-Z,
https://doi.org/10.1016/0378-7206(93)90057-Z

DOI:
10.1016/0378-7206%2893%2990057-Z
10.1016/0378-7206(93)90057-Z

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1016/0378-7206%2893%2990057-Z
https://doi.org/10.1016/0378-7206(93)90057-Z
https://doi.org/10.1016/0378-7206%2893%2990057-Z
https://doi.org/10.1016/0378-7206(93)90057-Z
https://research.tue.nl/en/publications/2dcd1aef-c298-4b18-9b4f-3590c479f96b

Information & Management 24 (1993) 83-92

North-Holland

83

Research

Application areas and added value
of knowledge base systems

R.V. Schuwer and R.J. Kusters
Eindhor:en Unil~ersity of Technology, Eindhol:en. Netherlands

A knowledge base system is characterized by a separation

between application-dependent knowledge and application-

independent deduction rules. When used in a business envi-

ronment, it is not clear what added value this separation has,

over conventional systems. It also is not clear what character-

istics make a problem tractable for a solution using a knowl-

edge base system. This paper tries to formulate answers to

these questions. In order to obtain a sound basis for discus-

sion, a formal model of a knowledge base system is presented.

Keywords; Knowledge base system; Expert system; Applica-

tion areas; Forma1 definition

R.V. Schuwer received his MA in
Mathematics in 1980 from the
Catholic University in Nijmegen (The
Netherlands) and his M.Sc. in Infor-
matics in 1989 from the University of
Technology in Eindhoven. He worked
for four years as a high school teacher
and for three years as consultant for
the support of end user computing in
industry. Since 1987 he is Assistant
Professor at the Eindhoven Univer-
sity of Technology. His research is
focused on knowledge base systems.

R.J. Kusters received his MA in
Econometrics in 1982 from the
Catholic University Brabant in Tilburg
(The Netherlands). After his gradua-
tion he worked for five years as a
research assistant at the Eindhoven
University of Technology. In 1988 he
received his Ph.D. on the basis of a
thesis “admission planning in general
hospitals” in which production con-
trol principles were applied to a non-
profit environment. Since 1987 he
works as an Assistant Professor of

Management Intormation Systems and Automation at the
same institute.
Correspondence to: R.V. Schuwer, Eindhoven University of

Technology, Faculty of Industrial Engineering and Manage-
ment Science, Dept. of Information & Technology, P.O. Box

513, 5600 MB Eindhoven. The Netherlands.

Introduction

In recent years many organizations have in-
vested in research aimed at the applicability of
knowledge base systems as a solution to business
problems. Often prototypes were developed. Cri-
teria for choosing the right problem were gener-
ally based on rules of thumb, such as those in
Waterman [1986]: the problem must be neither
too complex nor too easy; there must be an
expert available who is able to formulate his or
her way of working etc. These criteria do not say
anything about the characteristics of a knowledge
base system (namely the separation between
knowledge and inference), nor do they give an
indication when it is best to tackle a problem with
a knowledge base system. In this paper we sug-
gest some answers to this last question. For this it
is necessary to have a reasonable idea of the
important features of a knowledge base system.

1. Knowledge base systems and backgrounds

In the literature, many different definitions of
a knowledge base system can be found. Here we
use the following architectural definition [Mars,
19881: “A knowledge base system is a computer

program, in which as good as possible a separation
has been made between application-independent in-
ference rules and application-dependent know-

ledge. ” The difference between a knowledge base
system and an expert system is vague. An expert
system can be considered a knowledge base sys-
tem with almost the performance of a human
expert. We will use the term “knowledge base
system” here.

The evolution of knowledge base systems can
be explained in different ways. One starts with

0378-7206/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved

Artificial Intelligence (AI) as the basis, but adding
on the explanation and emulation of human act-
ing and thinking. With the development of a
knowledge base system one tries to understand
how humans think and act. This might result in a
computer taking over certain tasks of a human
expert. Examples of AI-products are robots, neu-
ral networks, computer vision, and natural lan-
guage processors.

The evolution of knowledge base systems can
also be explained as a trend towards a modular
construction of software. The goal then is to
provide higher quality with better interfaces for
maintenance of software and control of the devcl-
opment process. The evolution of knowledge base
systems will be discussed from this viewpoint.

The trend towards a more modular construc-
tion of software has been an issue since the
beginning of automation. The following partition
is traditionally found in software systems:

- Operating system and utilities;
- Data;
- Application programs.

Initially these three components existed in a
single computer program: each program con-
tained load-, read- and print-functions; e.g. in the
Gamma ET-computer of Bull (1957).

The first partitioning of components occurred
in a separation of system and application soft-

ware. Greater efficiency could be reached by
generalizing the system tasks. At first this system
software contained only simple functions, but the
development of multiprogramming led to more
complex operating systems with memory manage-

ment; e.g., that of the IBM 1410 (1961).
The second partitioning was the separation

between data and application software; e.g., in
COBOL (1961). The simultaneous use of data by
several users at one time led to the separation of
data management functions from the application
software and the development of DBMS; e.g.
with DBMS IDS (1965).

The next logical step was the separation of
knowledge from the application software. This
resulted in knowledge base systems. The assump-
tion was made that an application program con-
tains two types of knowledge: domain dependent
knowledge of data and the way in which the data
can be manipulated and domain independent de-
duction (inference) rules. In knowledge base sys-
tems, these two types of knowledge arc separated
from the application program and stored apart in
a knowledge component, which consists of:

1. domain dependent knowledge about the data,
2. domain dependent deduction rules,
3. domain independent deduction rules,

The first two form the application dependent
knowledge; the last are the application indepen-

operating
system &
utilities

opeXtir\

~ 1

system
utilities

data
datacontrol
functions

knowledge application

1

I---- -1

data
datacontrol
functions

knowledge application

operatin
system

7 utilities

operatin
system
utilities ”

operatin
system

utilities
!I

rl i
datacontrol
functions

knowledge application

-~ - ,--
datacontrol
functions I!

knowledge application

L J

i --I r

M
0

:
I L
I A

R
I

I ;
’ T

0
N

T
R

1 E
N
D

W
I

HT

T

h
E

Fig. I. Modularization trenda of software.

Information & Management R. I/: Schvrr. R.J. Kusters / Added r~alue of krtowledge base systems 85

dent inference rules. In the application program
there is also a user interface and the program
operates under program control.

Figure 2 presents this development in a
schematic way, where a conventional information
system (not included the system software) usually
only contain:

- Data;
- Data management component;
- Application program component.

Thus the following differences can be found:

- The knowledge base system has a separate
knowledge component. This is part of the ap-
plication program in conventional information
systems.

- In a knowledge base system there is no compo-
nent for the management of knowledge. Fu-
ture development may lead to Knowledge Base
Management Systems (KBMS).

The knowledge component is the characteristic
component of a knowledge base system. A formal
description of a knowledge base system is there-
fore valuable for our discussion.

2. A formal description of a knowledge base sys-
tem

Several questions are not answered in the in-
formal definition of a knowledge base system:

- What exactly are facts and rules?
- What is an inference mechanism?
- How do facts, rules, and the inference mecha-

nism influence each other?

Also, the definition does not give information
about the design of a knowledge component. To
get a clearer view of these issues, it is necessary
to start with a formal description or model, pro-
viding an unambiguous description of the essen-
tial characteristics of a knowledge base system.
Furthermore the working of and the cooperation
between the different components is clearer. For
an exact mathematical description of the model,
see Schuwer and Eiben [1991].

To illustrate the definition we use the follow-
ing example:
Buying a kitchen will confront us with a large
number of possible configurations which are sub-

ject to several constraints. A system which sup-
ports the configuration of a kitchen must answer
questions as “Is it possible to combine a Philips
microwave with a certain type of Bauknecht
oven?” or “Which types of dishwashers do fit
within a kitchen-cupboard with a width of 45
cm.?” The system must also be able to check if a
configuration complies to all constraints.

When building a knowledge base system, in a
similar way to a conventional system, the impor-
tant relations of interest in the domain must be
input. In our example, this is a set of relation
symbols, combined with variables and the logical
NOT-sign (‘), such as:

micro(id#,type,price,colourl
dishwasher(id#,type,price,colour,width,contentsI
colour_ok_o_m(id#_oven,id#_micro)
colour_ok_m_d(id#_micro,id#_dishwasher)
colour_ok_o_d(id#_oven,id#_dishwasher)
cupboard(id#,type,width)

Also the “constant” elements must be given. In
the example those are the types of the pieces of
apparatus (Philips, Bauknecht, Miele, . . .), the
colours (white, grey, black,. , .), the prices etc.
Relation symbols can be combined with con-
stants. A combination of a relation symbol with
variables or constants with or without the “ l”

will be called a literal. When the literal does not
contain variables, it is called ground. A set of
ground literals is called a database-state (DB-
state). In this paper an element of a DB-state is
called a fact. A DB-state will therefore often be
called a factbase. This part of a knowledge base
system is comparable with the datacomponent
(database) of a conventional information system.
Examples of such DB-states are:

u, = (micro(20,philips,500,white), oven(l0,
philips,4000,white))

u* = { colour_ok_o_m(10,20), colour_ok_
m_d(20,301, colour_ok_o_d(10,30))

u3 = { colour_ok_o_m(10,20), colour_ok_m_d

(20,301]
uq = { micro(20,philips,50O,white), micro(20,

bauknecht,600,whiteI }

u,, u2 and uj are examples of DB-states which
represent the “Universe of Discourse” correctly.
DB-state u z however has some redundancy. When
it is known, that colour_ok_o_m(10,20) and col-
our_ok_m_d(20,30) then one also “knows”, that

86 Research Information & Management

colour_okPoPd(10,30) is correct. These depen- that can be made with the relation symbols and
dencies between facts can be given in the form of the constants (u E U, R and k), the different
rules. The general form of such a rule is: subsets of L are:

IF (a number of facts are known)
THEN (a new fact may be concluded)

In the case of u2 the rule is as follows:

U which contains the basic facts.

k(u) \ u the deducible facts.

{‘AIAEk(u))

IF colourok_o_m(X,Y) AND
colour -ok _ m _ d(Y,Z)

the set of forbidden information
L-(k(u)u{‘AlAEk(u)))

the set of inaccessible information
THEN colour_ok_oPd(X,Z)

A finite set of rules is called a rulebase.

(1)

DB-state u4 shows, that constraints must be
given to ensure, that a DB-state really gives a
correct representation of the Universe of Dis-
course. In the case of uj this constraint will state,
that id-numbers must be unique within a DB-
state. Such a constraint is like a filter for a
DB-state. In the sequel we are only concerned
with so called feasible DB-states, which fulfil all
formulated constraints. The set of all feasible
DB-states will be called the feasible Dutubuse-

unicerse (DB-universe).

This leads to the following definition: Suppose
a set of constraints is given. A knowledge model
is a tuple (U,R,k) such that:

_ U is a feasible DB-universe,
- R is a set of rules (the rulebase),
_ k is the knowledge function, determined by U

and R.

Rules from the rulebase can be used on a
DB-state to extend it. New facts are added such
that a new feasible DB-state will be obtained (so
another element of the DB-universe is created).
In the example, rule (1) can be used with DB-state
ui to create a new DB-state (in this case the
DB-state u,). This can be done repeatedly until
no new facts can be deduced. In this way a
rulebase gives a structure to the feasible DB-state:
it can be split up into a set of “basic” facts
(always present in the database) and a set of
deducible facts. Furthermore there is a set of
“forbidden information”: due to the demand of
consistency of a DB-state, all literals, that are the
opposite to those in the feasible DB-state are
FALSE. One could call the union of the set of
basic facts, the set of deducible facts, and the set
of forbidden information the range of knowledge
of u and R. The remaining set of literals are all
those literals, where no assertions can be made
(inaccessible information). This structure can be
described with a function k. For each feasible
DB-state u k(u) is the union of u and the set of
deducible facts. k(u) itself is also a feasible DB-
state. Because knowledge from the rulebase is
used we will call the function k a knowledge
function.

An element u of U and the rulebase R together
form a knowledge base. A knowledge base thus is
a set of facts and rules. This agrees with most
definitions found in the literature (e.g. [Water-
man, 19861).

A knowledge model is the foundation of a
knowledge base system (KBS). We first define a
KBS as a program to compute the range of
knowledge of a knowledge base. This process
starts with a query from the user. A query is a set
of literals (not necessarily ground) whose ele-
ments will be called hypotheses. For each hypoth-
esis the KBS has to select the set which contains
it or to find facts whose constants can be substi-
tuted into the hypothesis to get the literal. The
ultimate goal is to let the KBS do this for the
whole query in order to give an answer (to prol’e
it). This process can be described step by step.
After each step, the state of the KBS can be
described by the state of the database (it can have
grown by adding proven facts) and the state of
the query (it can have grown by adding sub-hy-
potheses or it can have diminished by deleting
hypotheses, that have been proven). For this pur-
pose a KBS consists of an inference procedure
able to do this reasoning process. The process
can be characterized by two sets of metarules:

_ In the query, a hypothesis will be chosen. This
is determined by one or more metarules, the
goal-selectionrules.

When L denotes the set of all possible literals

_ When the hypothesis cannot be answered with
the existing DB-state, the system will deduce

Information & Management R. V. Schuwer, R.J. Kusters / Added clalue of knowledge base systems 87

facts, until the hypothesis can be answered, or
k(u) is reached. For this process of deduction
one or more rules are selected and used with
the DB-state u. For this the system will use
another set of metarules, the rule-selectionr-
ules.

In practice the knowledge base and the infer-
ence procedure are not enough to answer the
query. One often has to go across the border of
the range of knowledge of the knowledge base
and has to do an assertion about a piece of
inaccessible information. For this purpose the
KBS uses a set of extended metarules to answer
the query. Those will be called E-rules. A well-
known example is the Closed World Assumption:
assume the (ground) hypothesis False when all
attempts to proof the hypothesis fail. This rule
assumes that all knowledge is available in the
system.

Strategies for executing a reasoning process
can be described in the way an inference proce-
dure uses goal-selectionrules, rule-selectionrules,
and E-rules. When the system uses a “backward
chaining” strategy, the rule-selectionrule selects a
rule, where the head matches the hypothesis-to-
prove. When a “forward chaining” strategy is
used, the rule selected must satisfy all the predi-
cates in the body (that is they must be TRUE).

This gives the following definition: A knowl-

edge base system is a computer program which
consists of:

-u a feasible DB-universe
-u E u a feasible DB-state
-R a rulebase
-G a set of goal-selectionrules
-s a set of rule-selectionrules
-E a set of E-rules
-IP(G,S,E) an inference procedure

This is illustrated in the appendix. The model can
be used to identify knowledge base systems. It
can therefore be used to evaluate AI-tools (lan-
guages or shells). This gives an indication of
problems that can be expected when using a tool
in a specific situation.

Although a more or less precise description of
a knowledge base system has now been pre-
sented, it is not yet obvious what added value is
provided by the separation of knowledge and
deduction rules.

3. The added value of a knowledge base system

In the terminology of Bemelmans [1987], in
evaluating the added value of an information
system a distinction is made between:

Fig. 2. Software quality characteristics tree.

88 Research Infortnution R Munugernent

- functional requirements: those requirements
that indicate which data have to be processed
and supplied (WHAT the system must do?),

- non-functional requirements (also called per-
formance or quality indicators): the conditions
under which data processing and supply must
take place (HOW will the system do it?).

The added value of a knowledge base system can
also be considered in this way.

The specific architecture of a knowledge base
system will not add to its functionality. In princi-
ple, all functionality that can be provided by a
knowledge base system can also be provided by a
traditional information system. From this point of
view it comes as no surprise that a system origi-
nally designed as a knowledge base system, is
often implemented in a traditional way.

Of course in the end all programs can be
compiled into machine language. At that point, it
makes no difference how the statements were
derived. Therefore there is no reason to assume a
difference in functionality. Thus the added value
of a knowledge base system is found in its ability
to fulfil certain non-functional requirements with
less effort.

In Boehm et al. [1978] a classification of these
non-functional requirements is presented. This
so-called ‘quality tree’ is represented in Figure 2

hierarchically. Looking at the lowest level, the
knowledge base system will have an advantage in
the following ways:

Consistent Explicit definition of the
knowledge provides for better
checks of the knowledge.

Accessible The fact that the different
components of the system are
explicitly defined makes it pos-
sible to access them sepa-
rately.

Structure From the definition it follows
that a knowledge-base system
is well structured.

Self-description Since no information is pro-
vided of the knowledge other
than the knowledge itself,
self-description is assured.

Legible Separation of knowledge
makes it easier to acquire in-
formation.

Augmentable Since the components are de-
fined separately, it is easier to
add to these modules.

If we take these characteristics and look at the
software quality characteristics tree we see that
on higher level the characteristics testable, under-
standable and modifiable are influenced. Follow-
ing this through to the next higher level, we see
that maintainable is the high-level non-functional
requirement that is influenced by the decision to
design a system as a knowledge-base system. This
means that using a knowledge-base system to
implement a particular problem has advantages
that increase the effectivity and the efficiency of
managing the knowledge in the system.

When designing a knowledge base system it is
necessary to map the knowledge in terms of the
representation technique to be used in the even-
tual implementation. The development of a
knowledge model does not necessarily have to
remain restricted to knowledge base systems.
When the knowledge used is documented on a
conceptual level, insight in this knowledge will
increase. This will increase insights into the whole
system, providing for greater maintainability.

4. Recognizing problem characteristics

Our analysis is aimed at the components of the
knowledge base, namely the sets u, an element of
the feasible database universe U, and R, the
rulebase. We consider properties of these sets
that might indicate the advisability of a knowl-
edge base system solution.

We will first consider the set u, where the facts
and relations between them are represented (data
and datastructure). If we are talking about a set
of data where high demands are required use is
made of a Data Base Management System
(DBMS), justified by the following properties
[Everest, 19861:

- data are used by multiple users and multiple
applications,

_ the size of the set of data is large,
_ changes in the data occur regularly.

Looking at the rulebase R, we also have to
find properties that would make it advisable to be
able to manage it. In general, it is desirable to be

Information & Management R. V. Schuwer, R.J. Kusters / Added value of knowledge base systems X9

able to control a situation when it is complex, or
changes regularly, or when several parties are
involved in it. Compare this with the DB-state.
We now translate these general properties into
those that have meaning within the setting of a
rulebase. This results in the following properties:

- High complexity and/or size of the knowledge.
When these increase, there will be a demand
for better control of this rulebase, and this will
be facilitated within the architecture of a
knowledge base system. It is easier to control
the knowledge base when it is represented
separately then when it is “hidden” within
code.

Table 1
Overview of possible solutions, given the properties of the

problem area.

”

weak strong

weak no DBMS/KBMS DBMS

R
(situation 1) (situation 2)

strong Knowledge Base System KBMS

(situation 3) (situation 4)

management. In this situation a knowledge base
system is not needed.

- If changes in the knowledge occur relatively
often, the changes are easier to make when the
knowledge is stored separately. This way one
avoids large parts of the application having to
be rewritten each time a change occurs. A
specific case occurs when the knowledge base
is being developed: it can then be considered
incomplete.

Situation 2: Properties of u indicate that data
management is needed, but no such indications
exist for R. Then a DBMS is indicated as solu-
tion.

The way the set R is handled is also of impor-
tance:
- The knowledge is shared by several users or

applications. This occurs relatively seldom but
security problems will result; e.g. classified facts
may be inferred from others. In such a case
admittance control is required.

- The order in which rules can be used is depen-
dent on the specific state of u. It is possible
that, in a certain DB-state, rule A has to be
used before rule B, while in another DB-state
the reverse may be the case; e.g., when little
data are available in DB-state u and R is
relatively large, it is advisable to choose a
forward chaining strategy. However, when u is
large and R is small, a backward chaining
strategy would be in order. Thus the choice of
the rules to be used and the order in which to
use them depends on the contents of u. Flexi-
ble use of rules is aided by storing them in a
knowledge base.

Situation 3: Management for R is needed, but
not for u. This can be tackled using the present
generation of knowledge base systems. These sys-
tems provide sufficient support for the manage-
ment of knowledge but are lacking in the man-
agement of data.

Situation 4: If management of both u and R is
required, then both the present generation
knowledge base system (insufficient capabilities
for data management) and the present DBMS
(insufficient capabilities for knowledge manage-
ment) are incapable of fulfilling the demand. In
this situation, the need for a Knowledge Base
Management System (KBMS) arises.
This is summarized in Table 1.

In a KBMS, apart from the database, rulebase,
sets of metarules, and the inference procedure,
functions have to be available for the mainte-
nance of these components.

This gives the following definition of a KBMS:
A KBMS is a group of computer programs in
which:

_ the components of a knowledge base system
can be defined,

We have now described properties that argue - the database can be maintained,

the advisability of proper management of the - the rulebase can be maintained,

sets; the potential for this management is offered _ the sets G, S and E can be maintained,

by a knowledge base system solution. This leads _ the security of these components can be man-

to the following classification: aged.

Situation 1: Both for R and for u, there is no
necessity for extra effort that provides better

Note that the functionality of a KBMS encom-
passes both the functionality of a DBMS as that

90 Reseurch

of a “traditional” knowledge base system. As an
example of an implementation of a KBMS, see
Van Herwijnen et al [1990].

5. Conclusions

The knowledge base systems can be consid-
ered a logical step in historic evolution. In order
to determine if a problem can be adequately
solved using a knowledge base system, the knowl-
edge must be analyzed into a set of data (u) and a
set of rules (RI. Based on the properties of these
sets (size, complexity, completeness, robustness
and the order of use of rules), the appropriate-
ness of the implementation mechanism can be
determined. The main argument that is used for
this choice is the need for management of the
sets u and R.

Note:
The authors would like to thank Prof. Dr. T.M.A.
Bemelmans for his comments on earlier versions
of this paper.

References

Bemelmans. T.M.A., Bestuurlijke informatiesystemen en au-

tomatisering (Management jnformation systems and au-

tomation), Stenfert Kroese, Leiden, 1987 (in Dutch).

Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod,
G.J., and Merrit, M.J., Characteristics of software quality,

North-Holland Publishing Company, Amsterdam, 1978.
Everest G.C., Database Management, McGraw-Hill Book

Company. New York, 1986.
Herwijnen, J. van. Houten, E.G. van, Houtsma, M.A.W. and

Romkema, H.M., Implementatie van een regel-gebaseerd

kennissysteem in een relationele database-omgeving (Im-

plementation of a rule-based knowledge base system in a

relational database environment), Informatie, Vol. 32, nr.

I, pp. 14-21, 1900 (in Dutch).

Mars, N., Onderzoek van niveau: Kennistechnologie in word-
ing (High level research: the growth of knowledge technol-

ogy), Infmmutie, Vol. 30, nr. 2, pp. X4-90, 1988 fin Dutch).
Schuwer R.V.. Eiben A.E., Knowledge Base Systems: A for-

mal model, Eindhoven University of Technology Comput-

ing Science Note 91/20. 1991.
Waterman, D.A., A guide to expert systems, Addison-Wesley

Publishing Company, Reading, Massachusetts, 1986.

Appendix

The domain of the KBS refers to the configu-
ration of a kitchen. For the sake of simplicity,

Information & Management

only part of the configuration will be considered.
There will be rules on possible combinations of a
micro-wave and an oven. Combinations are re-
stricted by the following rules:

- If the oven has a built-in micro-wave, one is
not allowed to choose a separate micro-wave
as well. Such ovens are offered by Philips and
cost over $2000.

- Only certain colour-combinations of an oven
and a micro-wave are allowed.

The following literals will be used:

Oven(Id#,Type,Price,Colour).
Micro(Id#,Type,Price,Colour).
Cook_ok(Id#~Oven,Id#~Micro).
Colour ~ ok(Id# _ Oven,Id# _ Micro).
Combination _ok(Id# _ Oven,Id# _ Micro).

The meaning of “Id# = 0” will be “Not chosen”.
A “-” will denote a “don’t care” (it doesn’t mat-
ter which value the corresponding field will have).

Given the following knowledge base (u,R) and
metarules:

u = (oven(lO,philips,4000,white),
oven(1 l,philips,1500,white),
oven(l2,bauknecht,llOO,white),
micro(20,philips,500,white),
micro(21 ,philips,600,grey))

R = { combination ~ ok(X,Y), colour ok(X,Y)
+ cook_ok(X,Y), (1)
oven(X,B,P,-1, B = philips, P > 2000,
micro(Y,-,-,-), Y = 0
- combination _ok(X,Y), (2)
oven(X,-,-,-), X # 0, micro(Y,-,-,-), Y f 0
- combination -ok(X,Y), (3)
oven(X,-,-,white), micro(Y,-,-,white), Y f 0
+ colour _ ok(X,Y), (4)
oven(X,-,-,grey), micro(Y,-,-,white), Y # 0
-+ colour _ok(X,Y), (5)
oven(X,-,-,white), micro(Y,-,-,black), Y f 0
+ colour ok(X,Y), (6)
oven(X,-,-,-I, micro(Y,-,-,-), Y = 0
+ colour ~ ok(X,Y I) (7)

G = (“Select the hypothesis according to the tex-

S={

E=(

tual order” }
“Select the rules according to the textual
order” }
“IF the hypothesis_ to_solve is a ground
hypothesis
THEN answer is “FALSE”
ELSE answer is “No solution”
ENDIF”)

Information & Management R. PC Schuwer, R.J. Kusters /Added r>alue of knowledge base systems 91

The inference procedure
IP(G,S,E) =

{ “Select rules from R according to the back-
ward chaining strategy” (1)
“IF hypothesis _ to _ solve is selected
THEN Look into database for unification

(2a)
IF no success
THEN Select rule ~ to -use (2b)
ENDIF

ENDIF”
“IF no ruleeto_use can be found
THEN Backtrack
ENDIF”) (3)

Note that the E-rule in this situation follows the
Closed World Assumption.
The set of hypotheses to be answered is:
H = { cook_ok(11,20), (1)

colour_ok(l5,21)) (2)
The questions (the hypotheses formulated in H)
are answered in the following way:

1. Goalselection
Result (according to goal-selectionfunction):
cookpok(ll,20).

2. Metarule (2a) from IP(G,S,E).
Result: no success.

3. Metarule (2b) from IP(G,S,E)
(according to metarule 1 from IP(G,S,E), the
KBS will look for a rule, where the head
matches the hypothesis to _ solve).
Result (according to S): rule (1).

4. (Again, according to metarule 1 from

IP(G,S,E))
Add subgoals to H.
Result (taken into account the goal-selection-
function):
H = { combinationok(11,20),

colourrok(11,20), cook_ok(11,20), col-
our_ok(l5,21))

5. Goalselection
Result: combination ~ok(l1,20).

6. Metarule (2a) from IP(G,S,E).
Result: no success.

7. Metarule (2b) from IP(G,S,E).
Result (analogous to steps 3 and 4, rule (2) is
chosen from R):
H = (oven(1 l,B,P,-), B = philips, P > 2000,

micro(20,-,-,-I, 20 = 0,
combination _ok(l1,20),. . .)

8. Goalselection
Result: oven(ll,B,P,-).

9. Metarule (2a) from IP(G,S,E).
Result:
oven(ll,philips,1500,grey).
(The subgoal is removed from H and all
occurrences of B and P in H are substituted)
H = (philips = philips, 1500 > 2000, . . .}

10. Goalselection
Result: philips = philips (TRUE)
(The subgoal is removed from H)
H = (1500 > 2000, micro(20,-,-,-I, combina-

tion_ok(ll,20), . . .}
11. Goalselection

Result: 1500 > 2000 (FALSE)
(This situation is analogous to the situation,
that no rule _ to-use can be found to unify
this hypothesis. Therefore, according to
metarule (31 from IP(G,S,E), backtracking
takes place. All subgoals, which were added
at step 7, will be removed)
H = { combination _ok(l1,20),

colourrok(ll,201, cook_ok(ll,20),
colourok(l5,21))

12. Metarule (2b) from IP(G,S,E)
Result (according to S): rule (3).

13. (analogous to step 4, subgoals are added to

H).
Result:
H = { oven(ll,-,-,-I, 11 # 0, micro(20,-,-,-),

20 # 0, combination -ok(l1,20), . . . }
14. (Analogous to step 9 the subgoals, which

were added in the last step all can be re-
moved from H, because they can be unified.
The subgoal combination -ok(11,20) has now
be proven and can be removed from H and
added to u.>
Result:
H = { colour_ok(l1,20), cook_ok(ll,20),

colour_ok(l5,21))
u = (combinationok(11,20),

oven(lO,philips,4000,white), . . .)
15. Goalselection

Result: colourok(11,20).
16. Metarule (2a> from IP(G,S,E)

Result: no success.
17. Metarule (2b) from IP(G,S,E)

Result (according to S>: rule (4).
18. (Analogous to step 4, the subgoals will be

added to H)

Information & Management

Result:
H = (oven(1 I,-,-,whitel, micro(20,-,-,whitel,

20+0, colourok(11,20,...)
19. Goalselection

Result: oven(1 I,-,-,white).
20. Metarule (2a) from IP(G,S,E)

Result: success
(The subgoal will be removed from H)
H = { micro(20,-,-,white), 20 f 0,

colourok(l1,20),. . .I
21. (Analogous to steps 19 and 20 the two re-

maining subgoals which were added in step
18 can be proven. As a result the subgoal

colourok(11,201 has also been proven and
will be removed from H and added to u.1
Result:
H = (cookkok(ll,20), colour~ok(lS,211)
u={ colour_ok(l1,20), combinationok

(1 1,201, oven(lO,philips,4000,
white), . . .)

22. (The hypothesis cook-ok(11,201 has been
proven and will be removed from H and
added to u)
Result:
H = (colour_ok(l5,21))
u = { cook_ok(ll,20), colour_ok(ll,201,

combinationok(11,20),
oven(lO,philips,4000,white), . }

23. Goalselection
Result: colourok(l5,211

24. Metarule (2a) from IP(G,S,El
Result: no success.

25. Metarule (2b) from IP(G,S,E)
Result (rule (4) has been selected from Rl
H = (oven(15,-,-,white), micro(21,-,-,whitel,

21 # 0, colour_ok(l5,211}
26. Goalselection

Result: oven(l5,-,-,white)
27. Metarule (2a) from IP(G.S,El

Result: no success.
28. Metarule (2b) from IP(G,S,El

Result: no success
29. Metarule (31 from IP(G,S,E)

Result:
H = { colour_ok(l5,211 1

30. (Analogous to steps 25 to 29 also rules 5, 6
and 7 will be selected from R. None of the
rules leads to a proof for the hypothesis. The
hypothesis must therefore be solved with the
E-rule.)
Result (answer is FALSE. The hypothesis

can be removed from H):

II={ 1
Because H is the empty set now, the query is
solved. The answer, which will be given by the
KBS is “FALSE”.

