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Abstract

Spillage of organic compounds into the subsurface environment can result in costly
remediation. As a possibly effective remediation technique, the injection of air into
the groundwater (air sparging) has recently gained significant attention. The in
jected air migrates towards the unsaturated zone, volatising contaminants from the
groundwater and delivering oxygen to biota for biodegradation.
This article concerns the applicability of some numerical schemes for the two-phase
flow process. The flow turns out to be predominantly driven by convection. It is
modelled using a fractional flow approach, which yields a quasi-hyperbolic governing
equation for the air saturation. It appears that this equation can be solved effectively
by suitable modifications of explicit conservative schemes for hyperbolic conservation
laws. A first order Godunov method and a high resolution method are considered as
examples. Results are presented and discussed for flow in a homogeneous isotropic
medium, both for a one-dimensional as a multi-dimensional case.

Keywords: air sparging, fractional flow, Godunov scheme, high resolution scheme.
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1 Introduction

Accidental releases of organic compounds into the subsurface environment in the form of
petroleum products or industrial solvents can result in costly remediation.
As a cost-effective in-situ remediation technique, the injection of air into groundwater (air
sparging) has gained significant attention since the mid eighties. A typical air sparging
system has one or more subsurface wells through which air is injected. The injected air
migrates towards the unsaturated zone, volatising contaminants from the groundwater
and delivering oxygen to biota for in-situ biodegradation. The contaminated vapours are
typically extracted from the unsaturated zone with a soil extraction system. Relevant
topics for the effective application of air sparging include soil layering and heterogeneity,
air flow patterns and the concepts of radius of influence and rate of remediation. Numerous
accounts describing applications of the technique on both field and laboratory scale have
been presented in the literature, as well as attempts to capture the various air sparging
phenomena in mathematical models. An overview of recent developments considering a
wide range of aspects of air sparging can be found in [6].
In this article we will focus on the numerical treatment of the two-phase flow of air and
water. The two phases will be considered as two immiscible incompressible continuous
phases, both obeying Darcy's law. Air-saturation dependent permeability and capillary
pressure relations describe the interaction between the phases and the porous medium.
In Section 2 the basic equations are given for a homogeneous isotropic porous medium in
a three-dimensional setting. Two approaches for the modelling of the flow are considered,
i.e. the commonly used mixed form of Richards equation and the so-called fractional flow
model. In Section 3 the fractional flow model is considered in a simple one-dimensional
setting. The governing equation for air saturation is found to be quasi-hyperbolic due to
a dominating convective component. Modifications of the first order Godunov scheme and
a high resolution scheme are evaluated for the numerical solution of the one-dimensional
problem. In Section 4 a typical multi-dimensional case is considered. The fluid pressure is
computed by a finite volume method. Some conclusions are listed in the final section.

2 Statement of the model

2.1 Governing equations

In this section a general mathematical model is presented for air sparging. Air sparging
is a three-dimensional two-phase flow process of air and water, starting in the saturated
zone of a porous medium and passing to the unsaturated zone.
It is assumed that the flow of both air and water can be adequately described by Darcy's
law. If the phases are immiscible, then the following equations are representative in a
Cartesian coordinate system for which the gravitational force points in the same direction
as the negative z-axis:

a(<Pp1Sl)at + \7 . (Plvd = 0, 1= a, W, (1)
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(2)

(3)

(4)

kl
VI = -K-V(PI +PIgZ), I = a, W.

III

Equation (1) expresses conservation of mass. Herein, </> [-] denotes the porosity while
PI [kg m-3], SI [-] and VI [m S-l] respectively denote fluid density, saturation and specific
discharge. The specific discharge is given by Darcy's law, i.e. (2), in which PI [Pa], III [Pa s],
kl [-] are the fluid pressure, viscosity and relative permeability. Clearly, the index I can
either be a (air phase) or W (water phase). Also in (2), we have 9 [m S-2] denoting the
acceleration due to gravity and K [m2

] the absolute permeability tensor. The two phases
are linked by the identity Sa +Sw = 1. With the above expressions in the three-dimensional
case, for each phase we have four equations and six unknowns: PI, SI, Vx,l, Vy,l, Vz,1 and
PI. Later on it will be shown how the system can be closed using additional constitutive
relations.

2.2 Simplified equations

In this study, a homogeneous isotropic medium is considered, i.e. the porosity and absolute
permeability are assumed to be constant and uniform whilst the tensor K reduces to a scalar
K.
With respect to the flow, both phases are assumed to have constant and uniform viscosity,
and to be incompressible. Especially for the air phase, the latter assumption seems to be
a quite rigorous one as it is intuitively clear that air rising from an air sparging well to the
surface will undergo changes in density. However, considering the hydrostatic pressure at
depths of about 5 m (at which air is usually injected) and the fact that air-sparging entry
pressures do generally not exceed the local water pressure by much, it seems reasonable to
disregard variations in air density.
With these assumptions, (1) and (2) change into

aSI
</> at +v .VI = 0, I = a, w.

Kkl
VI = ---(VpI + PIgez), 1= a, w,

III

where ez is the unit vector in the positive z-direction.

2.3 Completing the flow model

In order to solve the flow problem (3)-(4), it is necessary to close the system. This can be
done by the use of constitutive relations linking pressure, saturation and relative perme
ability. First we scale saturation and porosity to obtain effective saturation and effective
porosity:

S* = Sw - Sr S* = Sa )
w 1 _ Sr' a 1 _ Sr' </>* = (1 - Sr </>,
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Figure 1: Typical capillary pressure curve

where Sr denotes the residual water saturation. Having scaled these variables, we omit the
stars. The following empirical relations are currently widely used to describe how capillary
pressure and relative permeability in a two-phase system depend on saturation (see [3], [9]
and [2]):

Pc(Sa) = Pa - pw = (Pw - Pa)g ((1 _ Satl/m_ l)l-m ,
a

kw(Sw) = s~f2 (1- (1- sym)mr (5)

ka(Sa) = S~/2 (1 - (1 - Sa)l/m)2m ,

where m [-] and a [m- I
] are empirical soil parameters satisfying 0 < m < 1 and a > O.

Not included in (5) is the phenomenon of hysteresis. Hysteresis explains why, as soil
is wetted, the yielded (empirical) capillary pressure and relative permeability curves are
different compared to the reverse situation when the soil is drained. Hysteresis can have a
significant effect on flow behaviour in case the soil is alternately wetted and drained. As
in the case of air sparging the soil is primarily drained, however, the effect is not believed
to play an important role and is therefore disregarded.
It can be easily seen that the above relations possess common features of pressure and
permeability curves, such as Pc(O) = 0, kl(O) = 0, kl(l) = 1, Pc tending to infinity as Sa
tends to one and Pc having a vertical tangent at Sa = o. As hysteresis is not considered, all
relations are reversible. Typical examples of capillary pressure and relative permeability
curves can be seen in FIgures 1 and 2 for m = 2/3 and a = 2 m- I

.

For a three-dimensional domain, the flow system considered consists of ten unknowns VI,

SI and PI, with 1= a, w. Equations (3) and (4) are two mass conservation equations and
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Figure 2: Typical relative permeability curves

six equations of motion (Darcy). The remaining two equations are provided by the identity
Sa + Sw = 1 and by the capillary pressure relation of (5). These equations also provide
expressions for the relative permeability, necessary for the solution of the equations of
motion. Thus, we have a closed system which is referred to as the mixed form of Richards
equation (see [2]).

2.4 The fractional flow model

A formulation that is often used for multi-phase flow problems is the so-called fractional
flow model. It is equivalent to (3) and (4) and yields two separate equations for saturation
and specific discharge. One of the major advantages of this formulation is that the model
becomes more accessible to analysis. For our purposes the use is evident as will be explained
in the next section.
Adding the equations (4) for both phases and using the identity Sa + Sw = 1 we obtain

\7 . Vt = 0, (6)

in which Vt = Va +Vw is the total specific discharge. Equation (6) expresses conservation of
mass. To obtain the equation for air saturation (from which water saturation is immediately
found from Sw = 1 - Sa), (4) is rewritten as

VI
\7PI = -~ - PIgez , 1= a, w, (7)

where the mobility of phase 1, )..1 [m2 Pa-1 S-1], is defined as

Kk l
)..1 = --, 1= a, w.

III
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We subtract (7), l = w, from (7), l = a, to obtain

Va V w (
Vpc = - A

a
+ A

w
+ pw - Pa)gez.

With V w = Vt - Va this can be written as

where the air fractional flow function fa [-] is defined by

Aa

fa = Aa + Aw

In the above, fa, Aw, and Pc are non-linear functions of Sa, directly available from the Van
Genuchten constitutive relations (5).
The systems (3) and (4) can now be rewritten in terms of air saturation and total Darcy
velocity:

(8)

where

The vector-valued function F [m S-1] and the scalar function A [m2 Pa-1 S-1] are respec
tively referred to as the flux and mobility function. Define the average fluid pressure p
by

Pa +Pw
p=

2

then Pa = p +Pc(Sa)/2 and pw = P - Pc(Sa)/2, thus from Vt = Va +V w and (4) we obtain

The equations (8) and (9) result into the fractional flow model:

</> [)~a + V . [F(Sa, Vt) - A(Sa)VPc(Sa)] = 0,

V. [(Aa(Sa) + Aw(1- Sa))Vp + Aa(Sa) - ~w(1 - Sa) VPc(Sa)]
[)

+g [)z (PaAa(Sa) +Pw Aw(1- Sa)) = O.

6
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Figure 3: Typical flux function

These equations are respectively called the saturation and pressure equation. It is also
possible to write the saturation equation as

(11)

where the capillary diffusion function D [m2 S-l] is defined by

(12)

The flux and capillary diffusion function are highly non-linear. The flux function repre
sents convective transport of the air phase and includes gravitational effects. The capillary
diffusion function represents diffusive transport caused by capillary suction. It is only de
fined for 0 < Sa < 1. If the system becomes completely air-saturated, i.e. Sa 1 1, then
F(Sa, Vt) ~ Vt and D(Sa) ! o. The relative air-permeability is now uniformly equal to 1,
capillary forces no longer playa role and the flow described by (8) is entirely convection
driven, i.e. it reduces to saturated Darcy air flow. In this case the first equation of (8) is
identical to (3) for l = a. In the opposite case where water saturation uniformly approaches
one, i.e. Sa ! 0, we have F(Sa, Vt) ~ 0 and D(Sa) ! O. Equations (8) now degenerate as
they only relate to the air phase. However, similar equations as (8) can be derived for the
water phase. It is easily verified that these equations reduce to saturated water flow as
described by (3) for l = w.

The above described behaviour is illustrated by Figures 3 and 4 in which graphs of
Fz(Sa, Vt) and D(Sa) are depicted for J{ = 5.3 . 10-11 m 2 and Vt,z = 0.293 mm S-l.

The values used for the other relevant parameters can be found listed at the end of this
article.
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Figure 4: Typical diffusion function

Figure 3 also shows that Fz is not necessarily monotone in Sa' This is due to the presence
of gravity in the system. The following theorem gives a condition for the monotonicity of
Fz (see also [2]).

THEOREM: FA., Vt) is an increasing function if, and only if,

Vt,z ~ - I«pw - Pa)g or Vt,z 2:: I«pw - Pa)g. (13)
Pa pw

Moreover, if Fz (., Vt) is not increasing, then the equation Fz(S, Vt) = Vt,z has exactly one
solution S E (0,1). In this case Fz (., Vt) is increasing on (0, S) if Vt,z > 0, and Vt,z < 0
implies that Fz (., Vt) is decreasing on (S,l).

PROOF: If Vt,z = 0, then Fz (., Vt) is not increasing. Thus assume Vt,z =1= 0 and denote

(Pw - Pa)g
'" = -'-----'---'--.

Vt,z

Define F(S) = fa(S)[l + "'Aw(1- S)], 0 < S < 1. Let -pw ~ ",I< ~ pa, then 1 + "'Aw (1
S) > 0 and 1 - "'Aa(S) > 0 for all S E (0,1), thus

F'(S) = Aw (1 - S)[l + "'Aw (1- S)]A~(S)+ Aa(S)[l - "'Aa(S)]A~(1 - S) 0
[Aa(S) + Aw (1 - S)J2 > ,

O<S<1.

Let ",I< > Pa, then there exists some S E (0,1) such that "'Aa(S) > 1, i.e.

F(S) = Aa(S) +"'Aa(S)A w (l - S)
Aa(S) + Aw (1- S) > 1.

8



Since lims!o F(S) = °and limStl F(S) = 1 it follows that F is not increasing.
Furthermore,

KAa(S) > 1 <=} F(S) > 1,

KAa(S) < 1 <=} F(S) < 1.

Therefore the equation F(S) = 1 has exactly one solution S E (0,1), and F is increasing
on (0, S).
Let Kf{ < -Jlw, then there exists some S E (0,1) such that KAw(1-S) < -1, i.e. F(S) < 0,
which implies that F is not increasing. Furthermore,

KAw (1- S) < -1 <=} F(S) < 0,

KAw (1- S) > -1 <=} F(S) > 0.

Therefore the equation F(S) = 1 has exactly one solution S E (0,1), and F is increasing
on (S,1). 0

Equation (13) balances some vertical Darcy velocity due to gravitational pull and the
vertical component of the total Darcy velocity Vt, which also incorporates capillary diffu
SIOn.

In Figure 3 condition (13) does not hold for Vt,z = 0.293 mm S-I. It appears that
Fz(Sa) = Vt,z for Sa ~ 0.061. This corresponds to a steady-state solution for problem (8).
Apparently, (13) provides the maximum allowable magnitude Vt,z ~ 29.3 mm S-1 for the
vertical component of the Darcy velocity in order that a uniform steady-state solution is
available. For larger values of Vt,z capillary action causes the steady state solution to be
non-uniform.
When comparing Figures 3 and 4, first it appears that Fz(Sa, Vt) is generally larger than
D(Sa)IVSal as long as IVSal is smaller than 1.6 m-1

. Second, as Sa approaches one the
contribution of D dies out rapidly. Our system seems to be dominated by convection.
At this point it is stressed that the first expression of (8) changes from a parabolic into
a hyperbolic partial differential equation with the disappearance of the diffusion function.
This observation will eventually enable us to identify appropriate numerical techniques.
If Vt is chosen such that V . Vt = 0, then the remaining equation of (8) is a non-linear
convection-diffusion equation in terms of Sa only. Choosing Vt this way is a common ap
proach to understand the qualitative behaviour of the solution. We shall use this approach
in our study of the one-dimensional case in the next section.

3 One-dimensional modelling

In this section the simple one-dimensional instationary case is studied in order to gain
insight in the various physical and numerical problems encountered in modelling the air
sparging process. First, a mathematical statement of the one-dimensional problem is given
using the fractional flow approach discussed at the end of the previous section. The mass
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conservation equation is classified for as much as its non-linear nature allows. The Godunov
scheme and a high resolution scheme are outlined and tested.

3.1 One-dimensional fractional flow model

3.1.1 Governing equations

We will consider vertical upward flow resulting from a constant vertical injection of air at a
certain depth. Thus, consider the one-dimensional fractional flow model for air saturation
resulting from (8):

as a ( a)<Pat + az F(S) - A(S) azpc(S) = 0,

aVt = 0
az '

(14)

(15)

where F(S) = fa(S)Vt + A(S)(pw - Pa)g. From (15) it is clear that Vt is uniform.
Suppose that (14) holds for -hb < z < ht . The lower boundary z = -hb is located at the
position of the vertical air injection, i.e. the boundary condition at z = -hb is

(16)

From this it follows that Vt = Vin and thus

F(S) = fa(S)Vin + A(S)(pw - Pa)g.

We locate the upper boundary sufficiently high above the natural water table at z = o. At
the upper boundary z = ht we impose the natural outflow condition

as = o.
az

(17)

As an alternative the condition S = 1 can be used. Both conditions mimic the infinite
boundary condition limz-l-oo S(z) = 1. We assume the natural no-flow equilibrium as initial
condition. Thus, initially the water table is located at z = 0, i.e. S(z) = 0 if z ::; o. The
no-flow saturation distribution above the water table now follows as the solution of the
one-dimensional analogon of (4). Thus, Pw = -pwgz and Pa = -pagz for z ~ 0, and from
the first equation of (5) it follows that

(Pw - Pa)g (( S( ))-l/m )l-m - (S()) _ ( )1 - z - 1 - Pc z - pw - pa gz.
a

Therefore,

S(z) = 1- ((az)l~m + l)-m, z ~ 0

(see Figure 5). Indeed, S(O) = 0 and limz-l-oo S(z) = 1.

10
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3.1.2 The hyperbolic problem

Since (14) is assumed to be dominated by convection, we will consider the hyperbolic
conservation law

as a
</>- + -F(S) = 0at az (18)

with the boundary condition F(S) = Vin at z = -hb and the initial condition S(z) =
0, z > -hb, i.e. we do not consider the unsaturated zone.
First consider the case that F is not increasing. Let So be the solution of the equation
F(S) = Vin, and Fe be the concave envelope of F (see Figure 6). We assume that for some
Se E (0, So),

Fe(S) = {F(Se)S/Se, 0 ~ S ~ Se,
F(S), Se ~ S ~ So.

Let Ve = F'(Se)/</> and Vo = F'(So)/</>, then the solution of (18) is (see Figure 7)

{

So, 0 ~ z +hb ~ vot,
S(x, t) = S such that (z +hb )</> = F'(S)t, vot ~ z + hb < vet,

0, z +hb > vet.

In the case that F is increasing we' obtain the same solution except that So = 1. For a
detailed derivation see [4].

11
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3.2 Numerical methods

Based on the previous sections, we know that the differential equation (14) is a non-linear
parabolic equation. As the contribution of diffusion is expected to be small, however, we
may classify our equation equally well as quasi-hyperbolic. Characteristic of solutions of
hyperbolic conservation laws is that initially discontinous data may cause the solution to
remain discontinuous while propagating. Solutions of parabolic laws, to the contrary, will
always be smooth regardless of the initial data.
Prior to the implementation of the air sparging model it makes sense to have this discussion
as, from a physical point of view, we do not yet know how 'sharp' the air-saturated front
will be immediately after switching on the injection system. That is the reason why (14)
is regarded as both a parabolic and a quasi-hyperbolic equation in order that suitable
numerical methods can be proposed.
To discretise (14) the domain [-hb, ht ] is divided into M cells of equal width ~z. This
gives M nodes Zj = -hb + (j - 1/2)~z, j = 1, ... ,M, where ~z = (h b + ht)/M. The
nodes Zj are the centres of the grid cells. The boundaries of the computational domain
coincide with the outer edges of the outer cells. Using this block-centred approach, the
air saturation S is approximated at the cell centres, giving unique values per cell. After
collecting those values, a piecewise continuous approximation for the saturation profile is
constructed. The Darcy velocities are approximated at the interfaces Zj+I/2 between the
cells, thus allowing mass conservation to be easily monitored and secured per cell.
Time-sampling takes place at t n = n~t, n = 0,1, ... , where ~t is the time step. We write
Sj for a numerical approximation of the exact solution S(Zj, tn). The governing equation
is represented by M - 2 difference equivalents, discretised at time levels tn and tn+b and at
nodes Zj with j = 2, ... ,M - 1. The boundary conditions at Z = -hb and Z = ht provide
the remaining equations necessary to solve the system.

3.2.1 The Godunov scheme

The first scheme considered is the Godunov scheme (see [7], [8] and [4]). It is used in a
modified version because of the presence of a diffusive term. The scheme is explicit, i.e. all
values for S calculated at the new time level are functions of values at the previous time
level only. With respect to computational effort, this is a very attractive feature of this
scheme. On the other hand, however, the time step is limited by the Courant-Friedrichs
Lewy condition CFL ~ 1, where

~t
CFL = '" A max IF'(S)I

'f'LJ..Z 0$8$1

is the Courant number. The Godunov scheme for hyperbolic conservation laws is based on
solving Riemann problems at the interfaces Zj+I/2 between grid cells. At each time level
the numerical solution of the previous time level serves as initial data. The solutions of
the Riemann problems are assembled to form a piecewise constant numerical solution at
the new time level.

13



Consider for the time being the hyperbolic problem (18). Provided that CFL ~ 1, the
Godunov scheme is

Sj+1 = Sj - ¢>~)F(Sn(O; Sj, Sj+I)) - F(Sn(O; S.i-ll Sj))].

The function Sn (e; Sj, Sf+1) is defined by

(
Z-Z+1/2 )Sn ) ;Sf,Sj+I = W(z,t),

t - tn

where W is the solution of the Riemann problem for the interface Zj+1/2, i.e.

(19)

Equation (19) results from averaging the juxtaposition S~+l of the Riemann solutions
Sn( e; Sf, Sf+I) over the corresponding grid cells at time level tn+I, i.e.

1 lZ
)+1/2

Sj+1 = ~ S~+I(z) dz.
z Zj-1/2

It can be shown (see [8]) that

{

n min
n

F(S) if Sj :::; Sj+1'
F(S ( . sn sn )) _ Sj ~S~Sj+1

n 0, j' j+I - max F(S) if sn > Sr: .
sn <s<sn ) - )+1
)+1- - )

If (13) holds, then F is an increasing function and thus F(Sn(O; Sf, Sf+I)) = F(Sf). If
(13) does not hold, then the computation of F(Sn(O; Sf, Sf+1)) is more complicated. We
assume, however, that in this case F has exactly one stationary point, i.e. the equation
F'(S) = 0 has a unique solution S E (0,1). As a result from this assumption, F is increas
ing on (0, S) and decreasing on (S, 1).
The Godunov scheme is monotone (see [8] and [4]) and therefore it is only first or
der accurate. Note that a monotone scheme is total variation diminishing (TVD), i.e.
Tv(sn+1) ~ Tv(sn), where

N-l

TV(S) = L ISj+I - Sjl·
j=l

With the definition Sj+I/2 = (Sf +S;+l) /2, a possible modification of the Godunov scheme
for problem (14) results into the explicit scheme

Sj+I = Sj - ¢~)fa(Sj, Sj+1) - fa (Sj_1 , Sj)],

14
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(23)

(24)

} (22)

where

!G(Sj, Sj+1) = F(Sn(O; Sj, Sj+1)) - ),(Sj+l/2lc(Sj+l~~ Pc(Sj) .

The construction of Sf+l and SAtl has to be chosen differently in order to incorporate the
boundary conditions. The inflow boundary condition (16) leads to

S~+l = S~ - ¢>~z[jG(S~, S;) - Vin],

and the natural outflow condition (17) results into

S~+1 = SM - ¢>~)F(SM) - !G(SM-llSM)]'

Since problem (14) is quasi-hyperbolic, i.e. dominated by convection, we limit the time
step by C FL ::; 1. Even then the scheme (20) is not necessarily monotone. Since
lims!o D(S) = limSl1 D(S) = 0, it is impossible to give an upper bound for the quo
tient f::1tj(f::1Z)2 that guarantees monotonicity. A modification of the Godunov scheme that
guarantees monotonicity is

S':I+l _ 6.t [),(S~+l )Pc(Sjtl ) - Pc(Sj+l) _ ),(S~+1 )Pc(Sj+l) - Pc (Sj!ll )]
) ¢>6.z J+l/2 6.z )-1/2 6.z

= Sj - ¢>~z [F(Sn(O; Sj, S'l-H)) - F(Sn(O; Sj_ll Sj))] . (21)

Incorporation of the boundary conditions into (21) results into a non-linear algebraic system
of equations. Therefore we linearise this scheme resulting into

S;+1/2 = Sj - ¢>~z [F(Sn(O; Sj, Sj+1)) - F(Sn(O; Sj_ll Sj))] ,

S':I+1 _ 6.t [D(S~+1/2)(S1!'+l _ S1!'+I) _ D(S"':+1/2)(sn+1 _ S1!'+1)] = 0) ¢>(6.z)2 )+1/2 J+l) J-l/2 J )-1 .

The inflow boundary condition (16) leads to

S~+1/2 = Sf - ¢>~z [F(Sn(O; Sf, S;)) - Vin] , }

sn+l _ 6.t [D(Sn+1/2)(sn+1 _ sn+1)] = 0
1 ¢>( f::1Z)2 3/2 2 1 .

and the natural outflow condition (17) results into

S;:I/2 = SM - ¢>~Z [F(SM) - F(Sn(O; SM-ll SM))] , }

sn+l _ 6.t [D(Sn+l/2)(1 _ sn+1) _ D(Sn+l/2 )(sn+1 _ sn+1 )] = 0
M ¢>(6.z)2 M M M-l/2 M M-l .

In the second equation of (24) we have used the boundary condition S = 1. The equa
tions (22)-(24) are a linear system of equations with a tridiagonal coefficient matrix. Note
that the scheme is conservative, i.e. it conserves mass and thus also volume.
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3.2.2 A high resolution scheme

As an improvement of the first order accurate Godunov scheme, we consider a conservative
scheme that is second order accurate in space. However, it is still first order accurate in
time. So, the complete scheme is first order accurate with a possibly better resolution in
space. Again, the scheme is based on solving Riemann problems at the interfaces z~4112
between grid cells. At each time level the numerical solution of the previous time level
serves as initial data. The solutions of the Riemann problems are assembled to form a
piecewise linear numerical solution at the new time level. In order to prevent excessive
oscillations, the slopes of this piecewise linear solution are limited by a slope limiter. If the
time step is limited by GFL ~ 1/2, then the scheme is total variation diminishing. For
details on this scheme, see [4], [7] and [8].
With the definition = (S~ + S~~~1)/2, the modification of the high resolution scheme
for problem (14) results into the scheme

= S~ — ~ [F(Sn(O; ~~/2’ ~~/2)) — F(Sn(O; ~~/2’ S~,2))],

- ~z)2 [D(s~!:)(s#~ - Sr’) - D(S~!)(S~’ - Sm)] = o.
The left and right values at the interfaces z~112 between grid cells are defined by

= Si + ~/2, ~~/2 = s~+~ —

where crj = minmod(S~+i — ~ ~ — S~.i). The minmod function is defined by

( aifja~<jbIandab>O,
minmod(a, b) = b if al > IbI and ab> 0,

~ 0 if ab < 0.

Near the boundaries we define o~ = = 0. The construction of 57Z+1 and 5n-f-1 has to
be chosen differently in order to incorporate boundary conditions. The inflow boundary
condition (16) leads to

0n+1/2 — ~ ~t E~0 in. an,— an,+~\ 1
— — ~ [1 ~&J7~.i~U, ~3/2 ‘~3/2)) — Vin] ,

5n+1 — At FDS~hI2vSn+1 — 5n+1 — 0
1 q~(Az)2 [ ~ 3/2 )\ 2 1 —

and the natural outflow condition (17) results into

~n+1/2 = — ~_ [F(S~) — F(S~(0; ~~1I2’ 5~t1,2))],

- ~(Az)2 [~5~1/2~1 - Sr’) - D(S~’~2)(S~’ - S~7~~)] =0.
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M N=frI

20 2.2012 10~ 4.3632• 1O~
40 1.4059 10~ 2.7917. 10~
80 8.7845 . l0—~ 1.7572~ i0~

160 5.4084• i0~’ 1.0909• i0~

Table 1: Discretisation errors for the Godunov scheme

M N=~M

20 1.5209 i0~
40 7.1967 i0—~
80 3.0990 .

160 1.6375 i0~

Table 2: Discretisation errors for the high resolution scheme

3.2.3 Numerical experiments

As there is no analytic solution available for (14), we cannot assess the reliability of the
numerically generated solutions directly.
Therefore, we first consider the hyperbolic problem (18) with the boundary condition
F(S) = vj,~, at z = —hb and the initial condition S(z) = 0, z > —hb. Let h~ = 4 m,

= 6 m, v,~ = 0.293 mm s1 and the other relevant parameters be chosen as listed at
the end of this article, then S~ ~ 0.0610 and S~ ~ 0.0525. Thus v0 ~ 10.2 mm s1 and
v~ ~ 12.5 mm s~. We consider the solution at time t = ~ 481.3 s (see Figure 7).
The domain [—ha, h~] is divided into M cells of equal width Az. Time-sampling takes place
at t,~ = nAt, n = 0, 1,. . . , N, where At = t/N is the time step. Limiting the time step by
CFL ~ 1 results into the condition At ~ 62.25 Az. This condition is fulfilled by choosing,
e.g., M = 20 and N = 16. In Tables land 2 the discretisation error~ S~—S(x~,t)J
is displayed for the Godunov scheme and the high resolution scheme.
From Table 1 it appears that the Godunov scheme is first order accurate. Given some cell
width Az, choosing At smaller than the maximal value resulting from CFL ≤ 1 does not
result into a more accurate solution.
The high resolution scheme generates a more accurate solution than the Godunov scheme.
For a fair comparison of Table 1 and 2 one should realise that the computational work is
linearly proportional to M and N. The high resolution scheme is also first order accurate.
As a second numerical experiment (14) is solved for ~ = 0.293 mm s1. Again the
solution at time t = hb/v~ is considered. The results for the Godunov scheme and the
high resolution scheme are displayed in Figures 8 and 9. The high resolution scheme gives
slightly better results, but needs more computations.
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Figure 8: Solution for the Godunov scheme
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Figure 10: Physical domain

It can be observed that the water table is forced upwards due to the assumption of in
compressibility of both phases. This is, however, a relatively slow process as the water
phase must penetrate the unsaturated zone where initial permeability is low due to large
air saturations.

4 Multi-dimensional modelling

4.1 Governing equations

Consider the three-dimensional fractional flow model (10), combining the saturation and
pressure equation. The total Darcy velocity Vt is given by (9). As in Section 3, we will
denote the air saturation by S. If S is assumed to be known, then the pressure equation
is a linear elliptic equation for the average fluid pressure p.
We will consider axially symmetric flow resulting from a constant injection of air through
an injection filter (see Figure 10). In order to describe this situation properly, we introduce
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exponential cylindrical coordinates T, () and z, i.e.

The choice of these coordinates implies a refinement of the numerical grid near the injection
filter (see Section 4.2). If the boundary conditions and initial conditions are chosen such
that the solution does not depend on (), then the fractional flow model (10) can be rewritten
as

(25)

(26)

where the horizontal and vertical components of the flux function are given by

1'~(S,Vt,T) = !a(S)Vt,Tl
FAS, Vt,z) = !a(S)Vt,z +A(S)(pw - Pa)g.

Suppose that these equations hold for -hb < Z < ht and Tin < r < rout, i.e. the bottom
of the physical domain is located at z = - hb and the top at z = ht , and the radius of
the filter and the physical domain are respectively equal to eTin and eTout

• Air is injected
through the filter, i.e. the boundary conditions at -hi < z < -hu and r = Tin are

Vt,r = Vin'

(27)

(28)

The top boundary z = ht is located sufficiently high above the natural water table at z = o.
At this boundary we impose the natural outflow condition

as = 0
az ' (29)

combined with the condition S = 1. We assume the pressure corresponding to the natural
no-flow equilibrium as the other boundary condition, i.e.

pa + pw hp=- gt2 .

21
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At the remainder of the inner boundary r = rin the no-flow boundary condition is imposed.
At the bottom boundary z = -hb an impermeable bedrock is assumed. Suppose that
rout ~ rin, then at the outer boundary r = rout the influence of the air injection can
be neglected. Therefore, the no-flow boundary condition is also supposed to hold at this
boundary, i.e.

Fr(S, Vt,r) - ..\(S)e-r:rPc(S) = 0,

Vt r = O.,

(31)

(32)

We assume the natural no-flow equilibrium as initial condition (see Section 3.1.1). Note
that there is no need for an initial condition for the total pressure p.

4.2 Numerical methods

In the one-dimensional case it is a trivial matter to compute the total Darcy velocity Vt.
The solution, i.e. Vt = Vin, can be used in the flux function F to compute the air saturation
S. Computing Vt in the multi-dimensional case is certainly not as obvious. At each time
level (26) has to be solved numerically for some approximate saturation S.
The interval hn, rout] is divided into Mr cells of equal width ~r. Note that this choice gen
erates a refinement of the numerical grid near the injection filter. The interval [-hb, ht ] is di
vided into Mz cells of equal width ~z. Thus, the computational domain [rin, rout] X [-h b, ht]
is divided into MrMz cells with centres (ri, Zj), where ri = rin +(i -1/2)~r, i = 1, ... , Mr,
and Zj = -hb + (j - 1/2)~z, j = 1, ... , Mz • The air saturation S and pressure pare
approximated at the cell centres, giving unique values per cell. The Darcy velocity Vt is
approximated at the interfaces between the cells.
Time-sampling takes place at tn = n~t, n = 0,1, ... , where ~t is the time step. We
write SIj and piJ for the numerical approximations of the exact solutions S(ri, Zj, tn) and
p(ri, Zj, tn). The governing equations are represented by (Mr - 2)(Mz - 2) difference equiv
alents, discretised at time levels tn and tn+l, and at nodes (ri, Zj), where i = 2, ... , Mr -1,
and j = 2, ... , M z -1. The boundary conditions provide the remaining equations necessary
to solve the systems.

4.2.1 The Godunov scheme for the saturation equation

We consider the multi-dimensional version of the Godunov scheme (see [5]). With the
definitions SH-l/2,j = (Si+l,j + SIj)/2 and S~j+l/2 = (S~j+l + S0)/2, the modification of
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this scheme for problem (25) results into the scheme

S;;+1/2 = So - <P~~T [Ri+l/2Fr (Sn(O; So' S~l,j)' Vi+l/2,j)

-Ri- 1/2Fr (Sn(O; Sf-l,i' S&), Vi-l/2)]

- <P~z [Fz(Sn(O; So' S~j+l)' V~j+l/2) - Fz(Sn(O; S~j_l' Sij), V~i-l/2)]'
~ ~R~S~.+l _ ~t~z [ Ri+l/2 D(S~+1/2 .)(S~+l. _ sn.+l)

z t tJ A.. AR t+l/2,J t+l,J tJ
'fJ u i+l/2

_ Ri-l/2 D(S~+l/2.)(S~.+l _ S~+l.)]
~Ri-l/2 t-l/2,J tJ t-l,J

_ ~t~RT [D(S~:1/2 )(S~tl _ s~.+l) _ D(S~:1/2 )(S~.+l - s~tl )] = O.
<p~z t,J+l/2 t,J+l tJ t,J-l/2 tJ t,J-l

(33)

For notational convenience we denote Ri+1/2 = eri+1!2, ~Ri+l/2 = eri+ 1 - eri and ~RT =
e2ri+l/2 - e2ri - 1!2. The horizontal and vertical components of the total Darcy velocity at

time tn are approximated by vi+l/2,j and V~j+l/2'

The construction of 5&, SMrj' SA and SIMz has to be chosen differently in order to incor
porate boundary conditions, which results into equations analogous to (23) and (24).
The second equation of (33) and the corresponding equations for the unknowns near the
boundaries are a linear system of equations with a pentadiagonal coefficient matrix. Since
this sparse matrix is symmetric positive definite, it can be solved efficiently by a precon
ditioned conjugate gradient method (see [10]).
As a possible improvement of the Godunov scheme we can consider a multi-dimensional
version of the high resolution scheme. However, the construction of piecewise linear ap
proximations for the saturation is not straightforward. These approximations have to be
chosen such that the resulting scheme is conservative, which cannot be realised easily in
combination with the use of exponential cylindrical coordinates.

4.2.2 A finite volume method for the pressure equation

In order to solve (33) an approximation for the total Darcy velocity Vt at time tn needs to be
available. Therefore the pressure equation (26) has to be solved for a given approximation
for the saturation S. A conservative scheme can be constructed using the finite volume
method (see [7]). Denote A+(S) = Aa(S) +Aw (1- S) and A-(S) = Aa(S) - Aw (1- S), then
we obtain the scheme
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where the horizontal and vertical components of the Darcy velocity at time t n are approx
imated by

n _ 1 [A+(sn )( n n) A-(sn )Pc(Si+I,j) - Pc(SJ)]
vi+I/2,j - - AR i+1/2,j Pi+I,j - Pij + i+1/2,j 2 '

u i+1/2
n _ 1 [A+(sn )( n n) A-(sn )PC(S~j+1) - Pc(SJ)]

Vi,j+1/2 - - ~z i,j+I/2 Pi,j+I - Pij + i,j+1/2 2

-(PaAa(S~j+1/2) + Pw Aw(1- S~j+I/2))g·

The construction of V~/2,j' vMr+I/2,j' V~1/2 and v~Mz+I/2 has to be chosen differently in
order to incorporate boundary conditions. For the inner boundary r = rin this means
that V~/2,j = Vin if -hi < Zj < -hu and V~/2,j = 0 otherwise. For the no-flow boundaries
r = rout and Z = -hb this respectively means that VMr+I/2,j = 0 and V~1/2 = O. For the top
boundary it follows from (29) and (30) that

V~Mz+I/2 = - ~z [A+(S;MJ (_Pa; Pw g(ht +~z) - PiMz)]

-(PaAa(SiMJ +Pw Aw(1- S;MJ)g.

Again, the result is a linear system of equations with a symmetric pentadiagonal coefficient
matrix, which can be solved efficiently by a preconditioned conjugate gradient method.

4.2.3 Numerical experiments

We consider (25)-(26) together with the boundary conditions (27)-(32). Let ht = 4 m,
hb = 6 m, hu = 3 m, hi = 4 m, rin = log 0.05 and rout = O. The injection rate is equal to
Q = 5 m3 h-1 , which corresponds to Vin :::::: 4.421 mm S-l. The other relevant parameters
are chosen as listed at the end of this article. We consider the solution at time t = 240 s.
The domain hn, rout] X [-h b, ht] is divided into M 2 cells of equal size ~r~z. Time-sampling
takes place at t n = n~t, n = 0,1, ... , N, where ~t = tiN is the time step. It is not clear
which CFL-condition should hold, thus the time step is chosen such that 0 ::; Sij ::; 1. The
results are displayed in Figure 11. Contour lines are plotted for S = 0.05,0.10, ... ,0.95.
The linear systems resulting from the discretisation of the saturation and pressure equation
are solved by the preconditioned conjugate gradient method with the zero fill-in incom
plete Cholesky factorisation as a preconditioner (see [10]). For the saturation equation
one iteration appeared to be sufficient. This suggests that the capillary pressure term in
the saturation equation can be omitted, i.e. solving the hyperbolic problem can give suf
ficiently accurate results. However, in the one-dimensional case this results in a notably
less accurate representation of the unsaturated zone.
For the pressure equation tens of iterations of the preconditioned conjugate gradient
method have to be executed. This, in combination with the small time-step, makes the
computation pretty expensive. Since the pressure field evolutes more slowly than the sat
uration field, a more efficient method can result from choosing a larger time-step for the
pressure equation than for the saturation equation. Indeed, computing the pressure equa
tion after 10 time-steps results in a proper approximation of the saturation (see Figure 12).
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Figure 11: Solution for injection problem
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Figure 12: Solution for injection problem (pressure is computed after 10 time-steps)
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5 Conclusions

In this study a conceptual model was constructed to simulate the physics of air sparging.
It was argued that, under normal air sparging circumstances, this flow is predominantly
driven by convection, so that the fractional flow model formulation is appropriate. One of
the attractive features of the fractional flow approach is that the saturation equation can
be solved efficiently.
Simulations were carried out for a one-dimensional and a multi-dimensional case. The
modified Godunov scheme for the numerical approximation of the saturation performed
satisfactorily. In the one-dimensional case a high resolution scheme gives slightly better
results. However, generalising this scheme to more dimensions is not straightforward.
As usual, additional research can be executed. The accuracy and efficiency of the numerical
solution of the fractional flow model and the mixed form of the Richards equation (see [2])
should be evaluated. Furthermore, the applicability of the model could be extended by
including heterogeneity of the porous medium or air compressibility.
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Nomenclature and parameter default values

symbol meamng parameter unit
default value

a air phase (indicator)
CFL Courant number
D capillary diffusion function m2 S-1

ez unit vector in the positive z-direction
F flux function (vector) m S-1

F flux function (scalar) m S-1

fa air fractional flow function

9 acceleration due to gravity 9.81 m S-2

h distance between boundary
and initial water table m

z horizontal space index

J vertical space index
K absolute permeability (tensor) m2

f{ absolute permeability (scalar) 5.3.10-11 m2

kl relative permeability of phase 1
1 phase indicator, either a (air) or w (water)
M number of grid cells
m Van Genuchten soil constant 2/3
N number of time-steps
n time level index

P average fluid pressure Pa

PI pressure of phase 1 Pa

Pc capillary pressure Pa
Q air injection rate 5 m3 h-1

r exponential horizontal coordinate
SI saturation of phase 1
Sn solution of Riemann problem
Sr residual water saturation
t time s
TV total variation
VI Darcy velocity of phase 1 (vector) m S-1

Vt total Darcy velocity (vector) m s-1

Vt total Darcy velocity (scalar) m S-1

Vin Darcy injection flux in the air phase 2.93.10-4 m S-1
w water phase (indicator)
z vertical coordinate m
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symbol meamng parameter unit
default value

a Van Genuchten soil parameter 2 m 1

~r exponential cell width in horizontal direction
~t time step s
~z cell width in vertical direction m
() cylindrical angle
A mobility function m 2 Pa-1 S-l

Al mobility of phase l m 2 Pa-1 S-l

/-la viscosity of the air phase 1.77.10-5 Pa s

/-lw viscosity of the water phase 1.30.10-3 Pa s

Pa density of the air phase 1.24 kg m-3

pw density of the water phase 1.103 kg m-3

(j slope
¢> porosity 0.39
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