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Abstract

In the present study the usefullness of a large eddy simulation for transition is examined. Nu
merical results of such simulations are presented from a study to determine the characteristics
of a flow induced by a thermal line source. The first bifurcation to time dependent motion
and the route to chaos are considered. Qualitatively these features are in good agreement
with theory.

The governing equations, the concept of large eddy simulation and the numerical code that
was used are described extensively. Also the results from a literature survey are presented.
Special attention is paid to analytical solutions for the boundary layer equations for laminar
flow and the stability of these solutions. It includes also overall conservation principles for
turbulent plumes and results obtained by experiments.
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Preface

This report deals with a preliminary investigation of the characteristics of natural convection
flows. The intention is to find a numerical model that can describe physical reality with
good accuracy. Therefore a large eddy simulation technique will be used. Application of this
method is not trivial for both transitional flows and complex geometries. The final objective
is to find a large eddy model implemented in a numerical code that can deal with these
problems.

Natural convection occurs when a local heating of a fluid causes it to rise due to buoyancy
effects. At a low heating rate the flow will be laminar. As the buoyancy effects are growing
an oscillating flow will occur getting more complex and finally becoming chaotic or turbulent.
In. case of a turbulent plume a spatial transition from laminar to turbulent flow will appear.

First a literature survey is described dealing with analytical theories of laminar and tur
bulent plumes. Also a stability analysis is included. Experiments are quoted in which the
transition of buoyant plumes is investigated.

Later on some large eddy simulations were performed for transitional flows in cubical
flow domains. The conclusions from these calculations form the point of departure of further
more thorough investigations, both numerical and experimental. The used numerical code
was made available by Prof. F.T.M. Nieuwstadt and T.A.M. Versteegh from Delft University
of Technology for which they are very much acknowledged. They are also thanked for a three
month stay of the author of this report at Delft University.

Rob Bastiaans

9th July 1993
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Chapter 1

Problem definition

1.1 Introduction

In many process engineering problems heat exchange takes place in combination with turbu
lent flows. An example of such a problem is the process of natural convection in the heat
storage vessel of a solar energy water system or the plumes induced by hot electronic com
ponents in various devices. In most cases the design of these systems is based on empirical
relationships and analytical solutions of strongly simplified problems. The reason for apply
ing these kinds of treatments is because of the complexity of both the geometries considered
(3D-effects) and the flow phenomena, more or less as a consequence of that (areas of separa
tion, secondary flows, turbulence). Therefore the designing process, in the case of non-trivial
geometries, is still a rather tricky business.

One of the things that are needed to optimize the dimensions of the devices as mentioned
above is the necessity of the development of a physical correct numerical code in order to
simulate the turbulent flow and heat exchange in complicated flow configurations. After
numerical analysis and experimental validation, the findings have to be translated in a relative
simple model with an accuracy that is convenient within the designing proces. In this way
it is possible to deduce important information about designing rules for the benefit of the
in detail optimized design of apparatus in which turbulent natural convection flows occur.
In the next sections of this chapter the problem under consideration will be defined more
extensively. Also the general approach to solve the problem will be outlined.

1.2 Natural convection

In this study a rather small hot object is considered. This body is surrounded by a relative
large amount of fluid. The domain under consideration thus is large with respect to the
dimensions of the heat source. Conduction is the initial transport mechanism of the heat
exchange. The fluid near to the heat source gets warm and due to the interaction of density
differences with the gravity field a convective flow sets in. A convective flow that is forced by
buoyancy is called natural or free convection, in contrast to a forced convective flow, where
a pressure gradient drives the flow. The convective heat transport mechanism or advection
is much more effective than conduction without flow. In the former case the temperature
gradients are much larger implying conduction to be more efficient, resulting in a larger heat
flux.
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The rate of advection can be expressed by the Grashof number, Gr = gp~rL3, a di
mensionless parameter expressing the ratio of the product of buoyancy and inertia forces to
viscous forces squared. Given the geometry, the Grashof number and the physical proper
ties of the fluid, expressed by the Prandtl number, Pr = ~, the process is fully determined.
Exceeding a critical Grashof number generaJIy results in a periodic oscillating flow. In this
case hydrodynamic instability arises in a laminar flow when a balance of buoyancy, pressure
and viscous forces may contribute net energy to a disturbance, causing it to grow as it is
convected along. A further increasing of the forcing leads to a chaotic motion that is caJIed
turbulence, a word introduced by Lord Kelvin. The intensity of the turbulent motion still
depends on the Grashof number. The area in which the flow regime is turbulent is limited to
a thermal plume above the heated body.

1.3 Thermal line source

As a first approach to describe the transport processes that occur in the mentioned types
of devices we'll consider an infinitely long horizontal line heat source. Figure 1.1 shows the
geometry and coordinate system that is used. Analytical considerations and solutions of the
resulting equations for these flows are described in chapter 3. In the laminar case, at low
Grashof numbers, a plane plume will develop. A flow of this type in an infinite space can be
analyzed by applying boundary layer assumptions. Transition can be studied by perturbing
the basic laminar flow by small two-dimensional velocity and temperature disturbances.
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Figure 1.1: Thermal line sourcej definition of geometry and coordinate system

The general approach in the analysis of turbulent plumes is to consider the conservation
principles for the overall mass, momentum and energy in the flow. Experimental information
for the modelling of the mean flow is often employed. The process of entrainment, or mixing,
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of the ambient fluid into the flow is important in all free boundary turbulent flows. An
important approximation is that the mean inflow, or entrainment velocity at the edge of the
boundary layer, is proportional to the local mean vertical velocity. The entrainment coefficient
is usually determined experimentally.

The analytical methods as mentioned above are all more or less verified experimentally.
The advantage of these methods is that there are very few parameters and every variation of
these parameters is rather easy to calculate. This approach on the other hand can only be
used in the most simple cases.

Our goal is to simulate these flows, especially the transitional and turbulent ones, with
a numerical code in such a way that a sufficient accurate description of the heat transfer
processes can be obtained. By considering these elementary geometries it is possible to verify
the code with data that are generated both analytically and experimentally. In the research
stadium later on the code could be used to solve more complex problems. For solving these
problems an. analytical approach is no longer applicable. Experimental validation is the way
to test the code under these circumstances.

1.4 Large eddy simulation

One of the main characteristics of turbulence is the structure of the flow. The structure of
a turbulent fluid is build up out of many scales of vortical motion. The macroscopical scales
on the one hand depend mainly on the geometry of the domain under consideration. The
microscopic scales are mainly influenced by molecular processes, like the action of viscosity.
In the inertial subrange, kinetic energy is transported continuously from the large scales to
the small ones in which it is dissipated to heat.

Because of this the numerical grid must have a resolution that has to be very high to
resolve the smallest whirls. There is theoretical prove that in forced convective flows the
number of computational nodes has to be proportional to Re9/ 4• In natural convection flows
it is observed, e.g. by Kotsovinos [22], that most of the intensity of the turbulent fluctuations
of the temperature and velocity field is contained in the low wave number range. This range
corresponds with the larger scales and this means that the required amount of gridpoints is
somewhat smaller in natural convection problems. To solve the most common flows, that
are the turbulent ones, we would need a computer effort that is far beyond the scope of the
capacity of modem supercomputers. As a consequence of that the problem has to be solved
in a slightly different manner. "Large eddy simulation" (L.E.S.) a technique developed by
scientists working in the field of meteorology can provide a way out. The approach of this
method is outlined in chapter 4.

Using L.E.S. the Navier-Stokes equations are spatially filtered with a filterlength that is
at the same time much larger than the smallest scales and much smaller than the macroscopic
scales of turbulent motion. A model has to be made to correct for the influence of the scales
of motion that are filtered out. The resulting equations can be numerically solved to get a
solution for the structure of the motion down to the scale of the distances between the nodes,
the so called large eddies.
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1.5 Main topics of investigation

As mentioned in the previous sections it is our aim to create a possibility to optimize the
• design of several devices in which natural convection occurs. To do this we will start with

numerical simulation of :flows induced by thermal line sources. The numerical code we start
with is based on a finite difference method of discretizing the Navier-Stokes equations. This
code will be clarified in chapter 5. With the numerical code we want to test several models
for balancing the subgrid scale influences in turbulent free convection :flow configurations, Le.
when a spatial transition from laminar to turbulent :flow occurs. To calculate accurately all
occurring effects also a temporal. flow transition should be predicted fairly well.

First, transition processes will be calculated with the existing subgrid closure, as described
in chapter 5. The characteristics of the calculated :flow, induced by a thermal line source have
to be studied. The first bifurcation to time dependent motion and the route to chaos are
considered. Also attention will be given to the topology of the simulated flows. In a later
stadium these characteristics will be compared to those obtained by experiments.
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Chapter 2

Governing equations

2.1 N avier-Stokes equations

The equations that are commonly used to describe the :flow variables in the continuum ap
proach consist of a set of conservation laws and are normally referred to as the Navier-Stokes
equations. It contains a continuity equation wherein conservation of mass is prescribed and
Newton's second law for the conservation of momentum. It is assumed that the density and
viscosity are invariant in space and time and tha.t we are deaJing with a Newtonian :fluid, i.e. a
medium in which the constitutional law holds that shear stress is linear proportional to strain.
This system, written in a Cartesian coordinate system and using Einstein's convention, Le.
summing over repeated indices, reads:

(2.1)

lJ1Ji lJ 1 lJp lJ2ui- +-('Ui'Uj) = Ji - --+11 (2.2)
lJt lJxj PlJxi lJxjlJxi

where 'Ui is the velocity vector, p the pressure, P the density, 11 the kinematic viscosity and
Ii an additional body force. These equations in combination with appropriate boundary and
initial conditions describe the flow for all later times.

2.2 The Boussinesq approximation

In the cases considered the body force only contains a buoyant term. Density differences only
occur in this term as a first approximation, in all other terms the variation of the density is
neglected, hence:

Ji = (p - Po) gi (2.3)
Po

in which gi only has a non-zero value -g in the vertical direction. The density Po is defined
as some reference density.

A further simplification is the linearization of the temperature dependency of the density,
referred to as the Boussinesq approximation, in which the density is expanded into a Ta.ylor
series around a reference temperature To (at which p(To) = Po) and truncated after the second

5



term:
{)p IP = Po + (T - To) £Yr'
V.L T=To

Defining a coefficient of thermal expansion {30 = (3(To) at constant pressure:

1 {)p I{30=---
Po {)T T=To

we can write the momentum equation as:

(2.4)

(2.5)

(2.6)

(2.8)

{)Ui {) 1 {)p {)2Ui- + -(UiUj) = -{3o(T - To)gi - --+ vo""""'-""""'-
{)t {)Xj PO{)Xi {)Xj{)Xj

Since we have now introduced the temperature as a new variable in our system of equa.
tions, an additional expression for solving the temperature is required. To determine the
temperature as function of space and time we apply the first law of thermodynamics for
conserving energy:

{)T {) {}2T
at + {)x. (ujT) = Ko {)x .{)x . (2.7)

J J J

in which the thermal diffusivity "0 is defined and assumed to be constant. The energy
equation in the form as written above does not account for the action of radiation and viscous
dissipation. Fourier's constitutional law is used to relate the temperature gradient to the heat
flux density. It is also assumed that the ratio of pressure work forces to convection forces is
very lowl .

2.3 The non-dimensional form of Boussinesq's formulation

All variables can be non-dimensionalized with a characteristic velocity scale U, representative
for the mean flow velocity and a length scale L proportional to a characteristic length of the
flow domain. Scaling of the temperature can be done by using a temperature difference !i.T
and time can be scaled with a characteristic frequency w. The pressure is non-dimensionalized
with pU2 • The Navier-Stokes equations in the Boussinesq formulation then read:

{)Ui = 0
{)Xi

{)Ui {) Gr {)p 1 82ui
Sr {)t + 8x' (UiUj) = Re2 (T - To)6i3 - 8x' + Re {)x'./:

J 'J

{)T 8 1 {)2T
Sr~+ g-(ujT) = R P -82

vt vXj e r Xj

in which the following dimensionless groups can be distinguished:

wL
Sr=-

U
l see Sillekens [38].
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the StrouhaJ number to express the ratio of instationary to inertia forces,

(2.12)

(2.13)
UL

Re=
v

the Reynolds number expressing the ratio of inertia to viscous forces, and

the Grashofnumber which is the ratio of the product of buoyancy and inertia forces to viscous
forces squared,

v
Pr=

1'C
(2.14)

the Prandtl number giving the ratio of molecular momentum diffusivity to thermal diffusivity.

2.4 Validity of the Boussinesq formulation

In determining the governing equations for the flows considered we made some assumptions
and approximations. The source of the major inaccuracies lies in the fact that the properties
(3, 1'C, V and p are not constant. Since we are only considering water as the flow medium we'll
look at the properties of water a little closer.

For the liquid water the pressure dependence of the mentioned properties is small and there
is mainly a temperature dependence. Also the pressure variations are low in the interesting
area of flow regimes so that it is no physical violence at all to neglect the pressure dependence.
The temperature dependence is shown in figure 2.1 for the interesting temperature range.
Gray and Giorgini [16] have investigated the validity of the Boussinesq formulation. They
show that this formulation requires that the characteristic temperature differences !i.T are
sufficiently small. As a concrete example they considered water at an average temperature of
150 C under atmospheric conditions. The requirement of less then 10 % error in the terms
of the equations demands that !i.T < 1.250 C is satisfied. It is uncertain however what this
means for the solution.

It can be concluded that the applicability of the Boussinesq formulation is strongly limited.
Especially in the neighbourhood ofTo =4° C where (3 goes to zero and changes sign, solutions
of this formulation don't make sense anymore. It has to be investigated if (3 can be used in a
temperature dependent manner and what the critical temperature difference will be in that
case. Of course the temperature may still not vary more then 1.250 C between two collocation
points of the numerical grid. It has to be remarked that in pure natural convection flows
generally only a large temperature gradient exists near the heating body, in the rest of the
flow domain there are only small temperature differences.

7
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Figure 2.1: Temperature dependence of the physical properties of water
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(3.1)

Chapter 3

Analytical solutions and
experiments

3.1 Similarity equations

In this section the idealized problem of a laminar flow generated by a horizontal line heat
source is discussed. In practice this flow would be approached by the :flow arising from long
tubes and thin wires. The idealized flow is attained also far downstream for finite-sized sources
of arbitrary shape. Here we shall follow the derivation of Gebhart, Pera and Schorr [13] to
solve the idealized flow problem.

The governing continuity, momentum and energy equations are simplified by the Boussi
nesq approximation and boundary layer assumptions to yield:

{Ju + {Jv =0
{Jx 8y

{Ju {)u a2u
u ax +v ay = g(3AT +v ay2 (3.2)

aT aT a2T
u ax +v {)y =K, {Jy2 (3.3)

in which the x-direction is vertical and the y-direction is horizontally oriented (see figure 1.1).
These equations are solved by using a similarity variable 77(x, y) and a streamfuncion 'If;(x, y)
(for which u = a 'If; / ()y and v = -a'lf;/ ax) that can be derived by eliminating the x-dependence:

(3.4)

(3.5)

where:
Gr:c = g(3x3(T~ - Too) (3.6)

v
is the local Grashof number. Indices 0 and 00 stand for the midplane and undisturbed :fluid
and f is the nondimensional streamfunction.

9



The centerline temperature is initially assumed to be of a power law form:

(3.7)

which will be shown to be appropriate. The dimensionless temperature 4>('TJ) is defined as:

(3.8)

The con.tinuity equation 3.1 is satisfied by 'I/J ('U = 8'I/J/8y j v = -8'I/J/8x) and 3.2 and
3.3 can be transformed using 3.4, 3.5, 3.7 and 3.8. Up to this point the analysis has been
general for boundary layer flow over a vertical plate, plane sources and for plumes arising
from horizontal line sources.

The total thermal energy convected in the boundary layer across any horizontal plane x
in the plume is:

Q = pCpi:(T - Too)'Udy

and in similarity variables we get:

(3.9)

(3.10)

where N is defined in equation 3.7. Since Q is not a funcion of x, the value of n must be:

3
n= --

5
(3.11)

Transforming the equations 3.1 and 3.3 and using this value for n the governing differential
equations are obtained, giving:

f'" + 121j" - ~112 + 4> = 0 (3.12)
5 5

4>" + 12 Pr(J4»' = 0 (3.13)
5

The five required boundary conditions can be generated from physical considerations as
follows: The symmetry ofthe plume with respect to the midplane requires that (8T/8y)0 =0,
Vo = 0, (8u/8y)0 =0 and T =To. In terms of the similarity variables this reads:

4>'(0) = j(O) = f"(O) = 4>(0) - 1 = 0

All effects vanish at large values of 'TJ, i.e. u - 0 and T - Too giving:

(3.14)

1'(00)-+0, (3.15)

The problem is not overdetermined since not all boundary conditions are independent: The
second condition of 3.15 follows from the first. By integrating equation 3.13 we obtain:

12
4>' +SPr(J¢) = Cl

10
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where the constant of integration C1 is zero since <p'(O) and f(O) are zero. Integrating again
and using «0) =1 yields:

<p(.,,) = e-lj-Pr fo" Jd,., (3.17)

Since f is possitive and becomes constant for large 1] the dependence of the conditions 3.15 is
demonstrated. The five independent conditions that may be used with the system ofgoverning
equations 3.12 and 3.13 are:

<p'(O) = f(O) = f"(O) =<p(0) - 1 = f'( (0) =0 (3.18)

The two-dimensional plume flow is specified and by numerical integration solutions can be
obtained for <p and f as functions of Pr.

3.2 Similarity solutions

Gebhart et al. [13] performed extensive numerical calculations in a Prandtl number range
from 0.01 to 100. The strea.mfunction is plotted in figure 3.1. The distribution of the vertical
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Figure 3.1: Streamfunction and velocity profiles as function of Pr, from Gebhart et al.

velocity component (that is linearly dependent on the derivative of the nondimensional stream
function) and temperature are plotted in figures 3.1 and 3.2. Indications of the thickness of
the temperature and velocity boundary regions can be obtained by considering <p(1]) = 0.01
and u/umarc = f'(1])/f'(O) = 0.01. For increasing Prandtl number the thermal layer becomes
relatively much thinner than the velocity layer. In the case of air both boundary layers are
of nearly the same thickness, Le. .,,::::: 3.3, see appendix A.

11



87654
7J

/0

J
0·8

0·6
rp

0-4

0'2

Figure 9.2: Temperature distribution as function of Pr, from Gebhart et al.

Now it is possible to calculate all other important variables. By defining:

(3.19)

equation 3.10 can be written as:

(
Q4 )1/5

N = 43g{3112p4c:I4

which gives with 3.7 and 3.8 the temperature at any place in the field:

(3.20)

T= r'/' (I~)<i' (gf1lv'f'/' .-'/'¢(~) +T~

The mass flow rate in the plume is given by:

. 100 (649{3p4112Q:x3) 1/5
m = pudy = J

-00 cpI

(3.21)

(3.22)

where J is the value of the integral.:

(3.23)

The velocity components are given by:

(
29/JQ) 2/5 ( :x ) 1/5 ,

u= - - f(7])
cpI p211

(3.24)
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and

tJ = 43/4;Gr~/4 (~17f'(17) - ~f(17») (3.25)

To determine the characteristics of the obtained :8.ow field, calculations of velocity and
temperature profiles at several constant :I: and 11 values are made. These profiles are depicted
in figures 3.3,3.4,3.5 and 3.6 (x and 11 are according to the coordinate system as defined in
the first chapter).

Also the temperature field is determined (figure 3.7) and compared to the interferogram
obtained by Gebhart, Pera and Schorr [13] (line source with a heating rate of Q = 51.89
WIms, in air at 25.70 C and atmospheric pressure), see figure 3.8. Figure 3.7 is obtained
by calculating the temperature according to 3.21 in the same plane as the experiments are
made. The temperature range of the outer fringe is comparable with the mentioned experi
ment, whereas the range of the inner fringe is much larger. The 1'(17) and </>(,,) profiles were
approximated by a Gaussian distribution fit, using the values at 17 = 0 obtained by Gebhart et
al. [13]. These distributions are given in appendix A together with the resulting error function
for f. The comparison shows that the boundary layer solution gives a plume thickness that
is too small and the temperatures in the core and its gradient in x-direction are much too
high. The discrepancy could be due to the fact that the comparison is made for an area that
is too close to the source. The decrease of temperature with increase of height as is showed
in figure 3.6 can also be seen in the fringe pattern, i.e. the fringes are closing at some height.

Experimental studies, reviewed by Jaluria [19] show a maximum temperature of 15-20
percent lower than the theoretically predicted centerline temperature. It is suggested that
the difference is due to scattering of data caused by the swaying motion of the plume. An
other point is the theoretically considered region :I: ~ 0 which implies no entrainment from
below the source. If a horizontal plate is placed to obstruct entrainment from below, the
centerline temperature has been observed to rise. A complication that arises here however is
the introduction of a no-slip condition at the plate surface.

3.3 Stability of laminar plumes

The hydrodynamic stability of the laminar plume induced by a horizontal line source of heat
was investigated by Pera and Gebhart [30]. Since two-dimensional disturbances are the least
stable they considered only two-dimensional disturbances for the temperature distribution
and the streamfunction superimposed upon the parallel base :now. These disturbances are
characterized by WI = 21r/A, the wavenumber ofthe disturbance, and its frequency W2:

(3.26)

The imaginary part of WI describes the amplifica.tion with respect to the x-coordinate and
the imaginary part of W2 which is set to zero describes the amplification with time at fixed x.

In this way the traditional Orr-Sommerfeld equation is obtained with an additional cou
pling term, that arises from the buoyancy effect. Also a disturbance energy equation is
obtained. With appropriate boundary conditions for symmetric and asymmetric distur
bances the equations can be numerically integrated to determine the neutral stability curve,
~(WI) =o. This was done for the inviscid asymptote (Le. Grx -+ 00), the uncoupled case
(Le. neglecting the coupling terms of the perturbations) and the fully coupled form.
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Figure 3.7: Calculated temperature fringes

From the inviscid solution it was found that the flow was much less stable for asymmetric
disturbances then it was for symmetric ones. Also the dependence of the limit, the asymptote
at high Grashof numbers, on the Prandtl number was calculated, see figure 3.9 (in the figure:
f3 ex W2G1/3, with G = 2y'2(Gra;)1/4).

Coupled and uncoupled solutions are given in figure 3.10 for Pr = 0.7. It is shown that
the coupling term is important at low G but that its effect decreases as the Grashof number
is increased. At extremely low values of G the boundary layer simplifications are no longer
applicable. In figure 3.10 constant physical frequency lines are shown for a certain heat input
(Q =56.3 W1m) as they are convected by the base flow. At low frequency, the path enters
deeply into the unstable region as G increases and these disturbances are strongly amplified.
At sufficiently high frequency (in the figure: f> 15 Hz) disturbances are always damped. In
experiments, done by Pera and Gebhart [30] it was found that disturbances with frequencies
higher than about 12 Hz were not detected downstream, disturbances of lower frequencies
gave amplification. Total disruption of the flow happened at a shorter distance of the source
with decreasing disturbance frequency. Thus experiments are in good agreement with the
presented solutions.

3.4 Turbulent plumes

A general employed analysis of fully developed turbulent plumes is to consider integral con
servation of mass, momentum and energy. Experimental information is used to model the
entrainment of the ambient fluid into the flow. An important approximation is that the mean
inflow in horizontal direction at the edge of the plume, Le. where the vertical velocity is
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Figure 9.9: Effect of Prandtl number on stability. Inviscid and uncoupled case. Asymmetric
disturbances

decreased to zero, is linear proportional to the local mean vertical velocity in the plume.
According to this model the inflow velocity at the edge of the boundary layer is equal to aU,
where a is the experimental determined constant of proportionallity, called the entrainment
coefficient. Furthermore a top-hat profile is considered for both the temperature and the
vertical velocity profile at some height x.

Employing these assumptions, the equations of conservation of mass, momentum and
energy read:

d
(3.27)aU =- (UR)

dx

g(3ATR = d~ (RU
2

) (3.28)

and
ATRU =C (3.29)

where C is a constant and R is the halfwidth of the plume at height x, and is assumed to
be linear R = cz, where c gives the rate of spread. Trying a solution of the form U ex Xli

and AT ex zb where a and b are constants, gives a = 0 and b = -1. This implies that U is
not a function of x and that the temperature difference varies as l/z. From experiments it is
known that a takes a value of approximately a l:::l 0.08. The equation for the conservation of
mass shows that c = a and the solution for U and AT at given x is determined when these
values are known at some height x.

Rouse, Yih and Humphreys [34] obtained experimentally a solution for the velocity and
temperature profiles which they presented as:

(3.30)

and
2

AT = 2.6 (Q)! !e(-41v2/:r:2 ) (3.31)
g(3 Po x

These are Gaussian distributions that give a similar behaviour as the solutions obtained above
for the quantities at the centerline of the plume.
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With the given solutions for turbulent plumes it can be stated that the Reynolds number,
defined in the midplane, varies linear with z whereas in the laminar case, according to equa
tion 3.24, it varies with z6/S. The midplane Grashof number varies with Z2 in the turbulent
case and with z12/S in the laminar situation.

3.5 Transition, uniqueness

Bill and Gebhart [2] determined the begin and end of transition of a plane plume in air by
visual means, using an interferometer. Critical Gr-numbers were obtained by measuring the
distance from the line source and the local temperatures at these points. The beginning of
transition was found to be at about GrlZ: =6.4.106• Large wave-like temperature disturbances
were seen to have become very large at this height. The end of transition was also visually
determined by noting the location in z at which a thickening of the mean flow boundary
layer occurred without relaminarization at later times. This was observed to happen at
approximately GrlZ: =2.95.107• After the complete disruption of the boundary layer the flow
begins to adjust to turbulent parameters, and the laminar centerline temperature is no longer
achieved.

An important effect occuring in laminar natural convection flows that has to be taken into
account is the non-uniqueness as reported by Gollub and Benson [15]. They observed several
different flows to be stable for a given geometry, Grasho! number and Prandtl number in
Rayleigh-Benard convection. This effect probably can influence the route to fully developed
turbulence dramatically.
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(4.2)

Chapter 4

Large eddy simulation

4.1 Numerical simulation of turbulent flows

Mostly, the natural convection flows of interest are in the transitional or turbulent regime.
The important variables in such flows contain a spectrum of time and length scales from very
small values to large integral ones. This range grows on the small scales side with the rate
of forcing of the flow, indicated by the Grashof number. These scales are referred to as the
Kolmogorov [20] microscales oftime (T) and length (17) and are given by:

T == (;) 1/2 (4.1)

_ (113) 1/4
'7= -

£

in which € is the dissipation rate per unit mass. The amount of kinetic energy per unit mass
in the large scale turbulence is proportional to U2, with U the characteristic velocity of these
large scales with characteristic length L. In the inviscid limit the energy supply to the small
scales is thus of the order U2 . U/ L. This energy is dissipated at a rate £ which should be
equal to the supply rate. Hence:

U3

€ '" T (4.3)

Since a turbulent flow is a solution of the Navier-Stokes equations we like to solve these
equations up to the smallest scales of motion. If we take a three dimensional numerical grid
we can approximate the equations for example with finite differences. The grid has to be three
dimensional because the dynamics of turbulence is essential three dimensional, e.g. vortex
stretching. Using a computer we can solve the resulting system of algebraic equations for each
time step. By this means all important variables like velocity, temperature and pressure can
be calculated all over the three dimensional field. Such rich information of a turbulent flow
is very hard to get experimentally in a laboratory setup. A simulation like the one described
in this section is called a direct simulation.

Because we want to solve the full turbulent structure with sufficient accuracy we can
derive from the Kolmogorov relations for the smallest scales that the number of gridpoints
has to satisfy:

(L)3 (UL)9/4.
Ng '" '7 '" --,;- = Re

9
/
4
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and the number of time steps:

L (UL)1/2
Nt "" - "" - = Re1/2

TU 11
(4.5)

The total work will thus be proportional to Relf when the initial state of the turbulence is
known. Even modern supercomputers do not have the capacity in the sense of both memory
and speed to solve common turbulent problems of practical importance.

4.2 Reynolds decomposition

There are two procedures to reduce the computational work. The first one is the possibility
to average each variable with respect to time. Another approach is to average the variables
with respect to space. This spatial averaging procedure is the base of large eddy simulation
and will be discussed in the next paragraph that is dealing with this subject.

The first procedure is usually referred to as the Reynolds decomposition and it splits a
variable J into a mean part 7 and a fluctuating part J':

(4.6)

7(x,) = lim ~1~ J(x"t+T)dT (4.7)
t*-oo t* _Sj-

Applying this procedure to the variables in the Navier-Stokes equations and averaging the
result we get the equations of motion for the averaged flow. Because of non-linearity terms like
BU~U/. Bu~T' • •• •
~ and~ appear. These terms express the influence of the smaller tune scales varIatIOns

J J
on the average How with respect to time and are called the Reynolds terms. Transport
equations can be written down to determine these terms but new unknowns appear and so
on. This closure problem is one of the central problems in turbulence theory. Several models
have been developed to estimate the Reynolds terms, but there is no exact solution.

4.3 Theory of large eddy simulation

Another way of handling turbulence is large eddy simulation. Theory and applications of
large eddy simulation are described in an extended review by Rogallo and Moin [33]. The
basic ideas of this theory are presented in this section.

By applying large eddy simulation one makes use of a volume averaging or spatial filtering
procedure. In general.this procedure splits a variable J into a large scale component 7 that
can be resolved and a small scale component l' by a convolution of J with a filter function
G over the How domain D:

or in wave number space:

J(Xj, t) = 7(x" t) +J'(x" t)

l(xj, t) =in G(x, - e,)J(e" t)de,
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The filter function G has to satisfy the normalization condition, so that the filtered variable
is not amplified or damped: LG(Xi-{i)tIei= 1 (4.11)

It is also possible to average a quantity over a fixed volume cel. In contrast with the use
of the filter operation this is not a running average. It's value will be piecewise constant over
the cells. This method was used by Deardorff [8] and Schumann [37] and can be advantageous
as will be explained in the following section.

Leonard [25] gave some examples of filters such as the top-hat or (continuous) volume
average filter, the Gaussian filter and the Fourier cut-off filter l . The first two filters have
identical second moments. The Fourier cut-off filter is a top-hat filter in wavenumber space.
This filter thus passes low frequency modes and filters out the high frequency modes from
a certain cut-off wave number. Since the Gaussian filter and the Fourier cut-off filter are
extended on both sides to infinity they can be used when the flow domain is unbounded in
space. When the flow is bounded the filtering procedure will not be symmetric anymore and
the normalization condition is violated.

Integration by parts gives (according to [25]):

1fT a]
8Xi = aXi

if G or I vanishes on the boundaries and it has to be noted that in general:

(4.12)

(4.13)

This can easily be seen by applying two times for instance a top-hat filter. The second
condition follows from the first by filtering the decomposition 4.8.

If the characteristic filter width is taken proportional to the gridsize A the small scale com
ponent I' is a subgrid scale fluctuation. In this case full advantage is taken of computational
effort. Filtering the non-dimensional Navier-Stokes equations in the Boussinesq formulation
one gets:

lJiIi = 0
aXi

8Ui a Gr lip 1 82Ui
Sr- +-(lZiUi) =-(T - To)6i3 - - ++-Ji:2

at aXj Re2 aXi Re aXi

aT 8 1 a2T
Sr- +-('ii7f"\ = ----8t aXi "'jA.) RePr axj

1 The filt.ers are governed by:

(4.14)

(4.15)

(4.16)

Top-hat: G:
Gaussian: Gf

Fourier cut-off: a{

{
l/d -d/2 < (x. - e.) < d/2

= 0 else

= J(6/1rI::l)e-6($i-Ei)~/A~

= 2sin(1r(Xi -e.)/I::l)
1I'(x. - e.)
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in which:

(4.17)

Here the closure problem rises again. The terms containing subgrid scale variables have
to be expressed in terms of the resolved variables. When the normal stresses are assumed to
be isotropic they can be interpreted as a turbulent hydrostatic pressure. In this situation the
normal stresses have no dynamic effect and therefore they are often added to the pressure
term. Transporting the terms that contain subgrid scale quantities to the right hand side of
the momentum equations results in:

~ a Gr - 0 ( 1 ) aTij 1 a
2
UiSr- + -(UiUj) =-(T - To)6i3 - - fi+ -r/l~lc + - + ---2

at aXj Re2 aXi 3 aXj Re aXj
(4.18)

with

(4.20)

1
Tij == -1]ij +31]/c/c6ij (4.19)

in which Tij describes the influence of the subgrid scales on the large scale effects and has to
be modeled. Applying the same technique to the energy equation 4.16 results in:

aT a - Ohj 1 a2T
Sr-Ot +-a.(ujT) = -a. + R P -a2x, x, e r Xj

with
hj == -(lIjT' +ujT+u~T') (4.21)

Here also a model has to be applied to determine hj.
In large eddy simulations thus the large scale structure is explicitly calculated. The closure

is only required for small scale effects. The Reynolds stresses on the other hand mainly depend
on the large scale structure ofthe flow. Another advantage onarge eddy simulation is the fact
that the subgrid scale closure is relative easy because the micro scales have a more universal
structure and can be described by relative simple theory. From simulations it is known that
the simulated structures are rather insensible to details of the subgrid closure. With large
eddy simulation it is possible to obtain detailed time dependent information of the flow. The
computer effort required is reduced compared with direct numerical simulation.

4.4 Special treatment terms

(4.22)

(4.23)

a a-a (lIilIj) = -0(lIilIj)
Xj Xj

0- a-a(lljT) = -a(lIjT)
Xj Xj

As stated in the previous section the use of a Gaussian filter or Fourier cut-off filter in
a bounded flow domain always gives rise to complications due to symmetry aspects and
normalization of the filter. Also the validity of equation 4.12 is not guaranteed, e.g. for
inhomogeneous directions. For this reason often a volume averaging method as applied by
Schumann or a top-hat filtering technique are used. In the volume averaging method and in
the case of application of the Fourier cut-off filter the filtered advection term for the large
scales can be written as:
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(4.24)

Frequently a finite difference method is used and the computed varia.bles on the computational
grid are regarded to as the resolved quantities 7. To obtain the resolved quantities the filtering
procedure is not needed in this way. However a filter should be used to obtain the advection
terms for the large scales as denoted in the left hand side of equations 4.22 and 4.23. Since 7
has become discrete an assumption has to be made about the continuous form of this variable.
In most cases the identities 4.22 and 4.23 are used as an approximation or the discrepancy
is said to be lumped in Tij to make life a little bit easier. Leonard [25] however, pointed out
that these terms can be presented in the following way by using a Taylor series expansion for
the resolved scales variables:

{} {} ( 'Y. {}2 )
{}x/iri'fl'j) ~ 8xj lEil1j + ; {}x~ (Wfl'j)

This can also be done for the filtered large scale advection term for the temperature. Equation
4.24 makes use of "'Ii the one-dimensional second moment of G which is equal to ~: in the
case of the top-hat or Gaussian :filter2 •

The mixed stress terms of resolvable scale components and subgrid scale components
become zero in the volume averaging case because 7' is then equal to zero. Hence:

(4.25)

(4.26)

Equation 4.25 holds also when a filter is used that is piecewise constant at values of 0 or 1 in
wave space, since 7' = G(l - G)f as can be derived3 from equation 4.10. Using the Fourier
cut-off filter thus allows the application of 4.25. When another filtering procedure is used
these mixed terms (also called cross-terms) are neglected in most cases. Sometimes there's
referenced to Clark et al. [4] who approximated the cross-terms, corrected for the normal
stresses, with a Taylor series expansion as follows:

lriui +U~lEj ~ - ~: (lEi ::J lEj +lEj ::J lEi)

wherein the subgrid scale quantities disappear. The effect of the mixed terms is not very clear
as is the effect of the approximations 4.22 and 4.23.

4.5 Subgrid scale models

In turbulent flows the viscous dissipation primarily takes place at the smallest scales of mo
tion. The effects of these scales are modeled by applying a functional relation between the
subgrid scale stresses Tij or fluxes hij and the resolved scale variables. The simplest and most
commonly used models are those that are based on gradient diffusion:

Tij =2l1T"'Sij

3The one-dimensional second moment of G can be defined as:

3li = f -1 = f - Gf =Gf - ~ f =G(l - G)f
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aT
hij = VH arc' (4.28)

J

in which an eddy viscosity lIT and an eddy diffusivity VH are defined. The resolved scale
deformation rate tensor Sij is given by:

3'i' = ! (8fIi +8fIj) (4.29)
J 2 arcj 8rci

The eddy coefficients VB and lIT depend on the local intensity of the turbulence. To
determine the eddy viscosity a. model proposed by Smagorinsky [40] in which the eddy viscosity
is set proportional to the local large scale velocity gradient is widely used:

(4.30)

Here C. is a constant, the filter width d is a characteristic length scale of the smallest resolved
eddies and 13'1 = i!.eij 3'ij. The value of C. depends on the filter type and can be determined
in various ways. he values of C. that are used in large eddy simulations vary in the range
C. = 0,07 - 0,24, see Schmidt and Schumann [36].

Instead of the rate of deformation tensor Sij, Kwak et al. [23] used the vorticity Wi =
f.ijk8fIk/8xj as a measure for the intensity of the turbulence. The advantage of this approach
is that there is no subgrid scale dissipation in irrotationa! flow areas.

Eidson [10] applied the Smagorinsky model to simulate natural convection flows. He
modified the eddy viscosity lIT by taking into account the buoyancy generated production of
subgrid scale energy.

A more complicated model has been used by Nieuwstadt and Moeng [28] for natural
convection flows in the planetary boundary layer. They define the turbulent viscosity in
terms of the subgrid energy e:

(4.31)

(4.33)

for which a separate differential equation has to be solved. The subgrid energy e is defined
as:

e = ~ (u1- ui~) (4.32)

It is found that in cases of forced convection the Smagorinsky model suffices best but that in
natural convection flows a model of the form of 4.31 gives better results.

The subgrid heat fluxes are generally modeled analogous to the subgrid stresses. Most
frequently the coefficients are therefore related to each other:

lIT
VH=-

PrT

where PrT is the turbulent Prandtl number that varies between PrT = ~-l, see Eidson [10].
All subgrid scale models discussed so far are based on isotropic and homogeneous turbu

lence and in these cases they suffice very well. Although in most practical situations where
we are dealing with wall effects and spatial and temporal transition these features are not
met. Therefore in recent years some important approaches to treat these cases have been
developed.

An eddy viscosity model to simulate intermittent and non-homogeneous flows as in the
transitional case was developed by Germano et al. [14]. In this model a Smagorinsky closure
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was used in which the model coefficient was computed dynamically. It is based on an algebraic
identity between the subgrid scale stresses at two different filtered levels and the resolved
turbulent stresses. The obtained subgrid scale stresses vanish in laminar flow and at solid

,. boundaries where a correct asymptotic behaviour of the turbulent boundary layer is predicted.
A totally different type of subgrid scale models, first proposed by Chollet and Lesieur [3],

are developed based on spectral parametrization methods. They use the Eddy Damped
Quasi-Normal Markovian (EDQNM) theory, in which the evolution of the energy spectrum is
described. This model has no adjustable parameter and provides the possibility to backscatter
subgrid scale energy to the mean :flow. Initially it was only used for flows in unbounded spaces,
using a box with periodical boundary conditions. Later on also bounded :flow domains were
simulated, e.g. the backward facing step by Silveira Neto et al. [39]. In this simulation
the used subgrid scale model was generalized in physical space as proposed by Metais and
Lesieur [26], and applied in a finite volume method.
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Chapter 5

N u:merical code

5.1 The numerically treated equations

The numerical code that was used is based on the non-dimensional Navier-Stokes equations.
However, in free convection flows the Reynolds number is an induced quantity that can not
be specified. This especially is the case in turbulent flows where the order of importance of all
terms in the momentum equation is equal. Therefore the equations are non-dimensionalized
in a somewhat different way compared to the method commonly used, described in chapter 2.
A characteristic velocity scale can be obtained by balancing the convective and diffusion terms
of the energy equation and assuming a characteristic length scale L. This gives:

~ *
Ui = LUi

Xi =Lxi

t =L2 t*
~

(5.1)

(5.2)

(5.3)

(5.5)

(5.7)

(5.6)

,.,2
P = L2P* (5.4)

where the quantities denoted with the superscript * are non-dimensional. This superscript
shall be omitted further on in this text.

By applying these relations the non-dimensional form of Boussinesq's formulation reads:

aUi =0
aXi

aUi a ( ) * ( ) ap a ( aUi )
at + aXj UiUj = Ra Pr T - To Oi3 - aXi +ax; Pr ax;

aT a a2T
at + aXj (UjT) = axj

in which Ra* = Ra/(AT), Ra being the Rayleigh number, defined as Ra =GrPro
By introducing the spatial filter and the gradient diffusion concept for the subgrid quan

tities, one gets:

(5.8)
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(5.9)

(5.10)

8iIi a~ * (- ) 01r a ( P ) EJui)-{J +-a\lIiil'jJ = Ra Pr T - To 6i3 - -a +-a ZIT + r-ot Xj Xi Xj Xj

aT a -= a ( aT)- +-(lI·T) =- (VH +1)at 8xj J oXj oXj

The eddy diffusion constants are non-dimensionalized also and are derived from resolved
dimensionless quantities. The quantities denoted with an overbar are filtered or resolved
quantities. In the numerical procedure the filtering process is defined by the sampling of
variables at the grid points. The length of the filter is of the order of the grid spacing.

5.2 Subgrid scale model

The turbulent viscosity is determined with the use of a subgrid energy. The subgrid energy
is defined as e =!(ul- il'l). The expression for the turbulent viscosity then reads:

(5.11)

with a constant CIJ and a representative grid spacing A. The subgrid heat fluxes are related
to the subgrid stresses by a turbulent Prandtl number of magnitude PrT =i. This gives:

lIH = ZIT = 3vr (5.12)
PrT

Since the grid spacing is taken to be equidistant in this study, the definition of a representative
grid distance ~ by the average of the spacing in all directions or by the enclosed volume is the
same. The constant CIJ has a characteristic value of CIJ = 0.12. This value was determined
by Schmidt and Schumann [36] by assuming a local equilibrium of shear-production and
dissipation and has proved to give good results.

To determine the eddy coefficients a differential equation for the subgrid energy is used.
This equation is given in appendix D. All turbulent diffusion coefficients are determined
from the previous time step. The subgrid energy equation is a convection-diffusion equation,
containing source terms and a sink. For more details see appendix D.

5.3 Discretization and solution process

The method used for solving the governing equations was introduced by Harlow and Welch [17].
The equations are discretized on a staggered grid as depicted in figure 5.1 for the two di
mensional case. All scalar variables are defined at the centre of each cell and the velocity
components are defined at the cell faces. The use of the staggered grid permits coupling of
the velocity and pressure solutions at adjacent grid points. This prevents the appearance of
oscillatory solutions which is a manifestation of two separate pressure solutions associated
with alternate grid points.

The spatial discretization scheme is based on central differences. The advection terms are
treated by a central difference method proposed by Piacsek and Williams [31]. This scheme
conserves energy and avoids nonlinear instability. The time integration is carried out by a
leap-frog scheme. The leap-frog method is desirable because it has neutral numerical stability
(it neither amplifies nor damps), see Deardorff [9]. To avoid time splitting of the solution a
weak time filter (Asselin [1]) is applied after each time step.
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(5.13)

(5.14)

V' Vj + 1J
k+ Y2 k+ V2

Uj-)/2 .p.
Uj ... Y2 ·Pj + 1 Uj+%J

k k k k k

v,
Vj+ 1J

k-lf2 k- V:t

Figure 5.1: Staggered grid

The method consists of solving a Poisson equation for the pressure on the staggered grid at
every time-step. The Poisson equation is obtained by taking the divergence of the momentum
equation 5.9:

{}21r {}Rt {) {Jui

{}x1 = {)Zi - {)t {)Xi

in which Ri contains the contributions of the non-linear, buoyancy and diffusion (resolved
and subgrid) terms. With this equation the modified pressure 1r at time-step n is evaluated
by taking the non-linear and buoyancy terms from time-step (n - 1) and the diffusion from
step (n - 2). The instationary term is approximated by:

{) lmiI 1 ( 8'iIiI {JuiI )
{)t {)Xi n-l ~ 2~t {)Xi n - {}Xi n-2

To force the solution to a divergence-free :Bow field the first term on the right-hand side is
assumed to be zero to satisfy the continuity equation 5.8. The tiny value of divergence that
existed at time-step (n - 2) is kept to guarantee that the divergence never grows beyond the
value it can attain in one time-step through inaccuracies or roundoff errors in the solution of
the Poisson equation (see Harlow and Welch [17] and Deardorff [9]). The result is the Poisson
equation given by:

{)21r
- ~
{)x~, n

{) ('iii I {) fiT.'iD {) {Jui • ('" ) I )-{). 2 A t - ~\'iii'iij} + ~(1IT + Pr)-{). + Ra Pr .L - To 6i3 _
X, U J(n-2} uXJ n-l uXJ xJ J(n-2} n 1

(5.15)

Herein the term (U'ilIj) is assumed to be equal to (lIilIj) as explained in the previous chapter.
Equation 5.15 was solved using a standard computer package. The obtained pressure is used
as an approximation for the pressure at time step n.

Mter having obtained a solution for the pressure the instationary term of the momentum
equation 5.9 can be calculated and the time-stepping can be performed according to the
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leap-frog scheme. After this the Asselin filter [l.] is applied:

I/(n-l) =0.8/n-l +0.1/" +0.1!t(n-2) (5.16)

The terms in equation 5.15 and 5.16 defined at time step (n - 2) are filtered terms according
to this filter.

The maximum time-step is limited by a criterion given by Pourquie [32]. It was found
by stability analysis in which only the combined step of advection and diffusion was treated.
Pressure and source terms were not taken into account. A lower bound for the maximum
admissible time-step was given by:

(5.17)

For the boundary conditions either periodic conditions or wall conditions can be adopted
to prescribe the velocities, temperatures and pressures or their derivatives on the boundaries
of the flow domain. Conditions for quantities that are not defined on the boundaries are
determined with linear interpolation between a virtual grid point outside the domain and a
grid point in the flow domain. Also a heatflux can be adopted on the boundaries. The code
converts a heatflux condition to a fixed temperature condition at each time-step.

The initial conditions are usually imposed by prescribing a realistic mean temperature and
velocity field. Upon these initial fields perturbations are superposed to trigger the turbulent
characteristics of the flow.

In table 5.1 the basic steps are given for the solution process at each time step as it is
implemented in the time loop. All (n - 2) terms are filtered terms. Here only the velocity is
taken into account, treatment of the temperature and subgrid energy are trivial.
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no. Basic step Comment

1 Set boundary conditions -

2 Determine eddy diffusion coefficients Eq. 5.11, 5.12

3 A - ~I - 8 (li.olI
o>/ + 8 ( +P >~I +- 2 t /(,,-2) 8:iij • J ,,-1 8:iij lIT r 1:; /(n-2)

+Ra'"Pr(T - To)8iS I Eq.5.15
n-1

4 B=kA Eq.5.15

5 Solve the Poisson equation Eq.5.15

6 /mol =A _ 1£0 I _ 81f I Eq. 5.9?It n m /(n-2) ~ n

7 uiln = uil/(n_2) +2at~t Leap-frog scheme

8 uil/(n_1) = O.8Uiln_1 + O.lUiln + O. lUil/(n_2) Eq.5.16

9 Determine the time step at Eq.5.17

Table 5.1: Basic solution process for the velocity at time step n
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Chapter 6

Preliminary results

6.1 Plane plumes in large aspect ratio domains

As in all simulated cases the :flow domain in the plane plume calculations consisted of a
rectangular box (see figure 6.1) that was discretized by an equidistant grid in all directions.
The box contained a finite heating strip situated at the lower boundary over the full j-direction

z

~
Figure 6.1: Considered flow configuration

at position i that is nearest to ima.re/2 (which gives not always perfect symmetric solutions
for ima.:J: even). Several combinations of box sizes, boundary conditions and rate of forcing
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of the flow by the heat source were tried out in order to get some feeling for the outcome
of the calculations. This information together with insight in physical reality should lead to
an optimal design of an experiment both in the numerical and physical sense that can be
matched.

In order to observe some transitional behaviour of the flow most flow domains are taken
large in the i-direction, Le. the direction perpendicular to the line heat source in the horizontal
plane. Also some calculations were performed with more cubical shaped boxes.

The first calculations were performed on a 80 X 8 X 8-grid1 • Some flow quantities are given
in table 6.1 and some important pictures of subgid energy and velocity field can be seen in
figures 6.2, 6.3 and 6.4.

Ra* I:1T Gr N tend Umo:& ve;;;;; Umo:&/v'gf:JATL
104 98 9.8.105 2000 0.31 152 74 0.154
105 92 9.2.106 4500 0.30 384 196 0.127
106 87 8.7.101 4500 0.127 847 404 0.091
101 86 8.6.108 4500 0.0596 1848 845 0.063
108 84 8.4.109 50000 0.3015 4077 1840 0.044

Table 6.1: Results of calculations on a 80 x 8 X 8-grid

The Prandtl number was set equal to Pr = 1 and the Grashof number (or the Rayleigh
number which is the same in this case) was varied in five steps over the decades of the
interval Gr Rl 106 - 1010• In the table the number of time steps is denoted by N, tend is the
simulated time, Umo:& the maximum velocity and emo:& the maximum subgrid energy. These
quantities are all non-dimensional as described in the previous chapter. The last column shows
the maximum velocity obtained by scaling with .jgfJAl'L. The boundary conditions were
prescribed by adiabatic no slip walls at the top and bottom, periodic boundary conditions
at the left, right, front and back, and a heat flux at the line source. In this case the box
keeps warming up at a certain rate prescribed by the heat flux and dimensions of the domain.
The driving buoyant force remains constant so the velocity field develops to a stationary
situation. The obtained solution is of limited physical relevance since the fluid properties are
kept constant while the temperature increases. As initial condition a no-flow condition was
applied, slightly perturbed with a random velocity field2• When the heat flux was set to zero
this velocity field vanished after some time.

Most flow calculations were carried out over 4500 time steps, which means that the actual
passed time got shorter with increasing Grashof number. This because of the dependence of
the size of the time step on the stability of the calculation. Nevertheless the main features of
a developed flow could be observed in all cases.

The flow starts with the forming of a two-dimensional mushroom shaped dipole vortex
that travels from the heat source to the top wall where it collides. At this moment the sole
monopoles see their own image (these are secondary vortices in the wall, caused by no slip)

lThe characteristic length L and temperature difference tJ.T scales in the Gruhof and Rayleigh number
are constantly based on height of the box (that is always set to L =1) and maximum temperature difference
within the flow domain.

2The perturbing random velocity field is not divergence free but after one solution of the Poisson equa.tion
a divergence free velocity field remains.
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Figure 6.!: Subgrid energy field for Gr = 9.8.105
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Figure 6.9: Velocity field in the center region for Gr = 8.4 . 109

Figure 6.4: Subgrid energy field for Gr = 8.4 . 109
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in the top wall and form with these images new dipoles moving away from each other. In
this way the vortices start to travel round in their own haJf of the flow domain undergoing
diffusion of impuls and driving of the heat source. After some time the main structure of the
:O.ow consists of two big vortices filling the entire flow domain, with their axis parallel to the
heat source. This structure remains the same with increasing Grashof number but becomes
turbulent in the rising zone above the source and in the spreading area at the top of the flow
domain.

The observed maximum velocities, non-dimensionalized by U = VgPlil'L, varied from
0.154 to 0.044 at the lowest and highest Grashof number respectively. This maximum appears
halfway the height ofthe box at low Grashofnumbers (laminar case), moves up with increasing
Grashof number and goes down again as the :O.ow is getting more turbulent. A relative small
amount of subgrid energy is produced in the neighbourhood of the heat source (fig. 6.2). This
subgrid energy is convected with the plume to the top where most of the subgrid energy is
produced caused by the collision of the plume with the top wall. This energy is dissipated as
it is convected away.

The transition to turbulence can be observed in the structure of the subgrid energy field,
the evolution to three-dimensional flow and the intantaneous deviation of symmetry in the
:O.ow field. The first bifurcation is best to see in the blob structure of the spatial subgrid
energy distribution, see figure 6.4. These blobs travel from the line source where they are
generated towards the top at Gr =9.2.106• At higher Grashof numbers a velocity component
parallel to the heat source is observed if looked at the :O.ow field at a fixed time, see figure 6.3.
The dynamics is then governed by thermals, high speed areas where the :O.ow breaks through.
At some distance from the plume the two dimensional field is redeveloped and especially in
the regions of the big vortices where the :O.uid is supplied to the plume again the :O.ow is two
dimensional, even at the highest simulated Grashof number. This :O.ow is still instationary. It
has to be notified that there is almost no transport across the left and right boundaries.

In figures 6.5 and 6.6 and in appendix C the vertical velocity in some point w(50, 6, 6, ti) is
plotted as function of time. Also the frequency spectrum of this velocity component is given
in these figures.

At low Grashof number a stationary flow arises after starting effects have vanished. With
the increase of the forcing a traveling wave shows up in the registered signal. The amplitude
and the frequency of this wave grows with the forcing and the wave becomes unstable. Some
more details of the time series at the highest forcing can be found in appendix B. From
the figures in appendix C it follows also that the starting behaviour of the flow is essentially
similar and that the bifurcation can not be seen at this moment. The flow develops faster with
higher forcing but the time steps become smaller. From the calculations presented however
it can be concluded that the number of time steps needed to calculate a developed flow stays
approximately constant.

At the highest Grashof number there are many frequency components. Very high fre
quencies that are associated with small length scales are probably not occuring due to the
coarseness of the numerical grid. In this way a spatial :filter always works as a frequency :filter
too.
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Figure 6.5: w(50,6,6, ti) and P(50,6,6, f) at Gr = 4.8 . 106 and Gr = 7.5 . 106

6.2 Other plane plume simulations

Calculations were also performed for a more cubical flow domain. Here an equidistant grid
of 14 x 8 x 14 nodes was used. The applied boundary conditions were the same as in the
former case except for the top wall that was kept on the initial temperature. At Gr = 4.9.106

a stationary oscillating flow arises. This flow consists of two big counter-rotating vortices
traveling from left to right through the flow domain, see figure 6.9. While doing this one
vortex grows relatively to the other because it receives more buoyant energy due to its location
with respect to the heat source. At the same time the smaller vortex is pushed up to the top
and a main flow develops going from left to right over the first vortex and under the second
flowing out of the domain. At this moment there is almost no flow in the neighbourhood of
the heat source and a relatively hot region is created. A thermal develops and breaks through
the main stream to reorganize the flow in two big vortices which start to move again. From
this point the whole process starts all over again.

As can be seen in figure 6.10 a period doubling has appeared, but the reason of the main
differences between the alternating periods could not be detected.

It is also shown that the flow is still fully two-dimensional (pay attention to the scales).
This is in contradiction to the general case wherein the second bifurcation usually exploits a
new dimension. The two distinguished orbits in the phase portrait also have some structure
as can be seen in figure 6.11, that is a blown up detail of figure 6.10.

It is not clear if these effects are due to the fact that starting effects are possibly not
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damped out yet. After the start all variables were getting periodic (ten periods were calcu
lated) with constant mean (as function of time), but the mean temperature was still increasing
and only in the end it approximated a constant value.

Simulations of flows at high Grashof numbers in a more or less cubical box resulted in a
local turbulent flow that still formed one coherent vortex, filling almost the entire domain,
see figure 6.12. The departure of the plume was not straight up but oriented to the left or
right. Because of the existence of large co-rotating vortices in the periodic direction, areas of
high shear and whirling structures appear.

Also in the case of application of adiabatic walls on the left and right side of the heat
source one vortical structure develops (see also figure 6.12. In this case it is observed that a
high temperature region sustains in the right upper corner while the flow is rotating counter
clockwise. Probably this is a rudimentary relic of the first thermal that diffuses only slowly
and is located in an area where the advection process is not very effective either. In this case
the region of high subgrid energy is moved to the left side wall.

The formation of a single coherent vortex instead of two in a cubical flow domain could
be due to the action of inertia forces. These forces cause the flow to be as less curved as
possible. Also the velocity gradients are low in the one-vortex case. From a viewpoint of
minimal viscous dissipation the formation of a single vortex is more advantageous.

39



o Centre of the
Row

III Heat source

o
o

III

Figure 6.9: Topology of the obtained flow

40



200 r------------- 200 ~---------------,

-200 '-"-~'-'--~~'-'---'~'-'--~~L._~'__'

-0.005 0 0.005 0.01 0.015 0.02

U component

r

i 100 r
a r

E or
8 I

>
-100

-400 -200 0 200 400 600

W component

100

C
<IJ
c:
a 0
Eo
u
>

-100

"

\
". i

'I.

1-0.255

Figure 6.10: Phase portrait presentation at Gr = 4.9.106

-50 r---------------.

C -55
ill
c:a
Eo
u
> -60

-65 '---~--'---~---'--~_..L_~_l_~_

-100 -80 -60 -40 -20 0

Wcomponent

Figure 6.11: Detail of the phase portrait at Gr = 4.9 . 106

41



periodic

,/

Figure 6.12: Formation of one coherent vortex, applying (left) periodic boundary conditions
and (right) no-slip walls
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6.3 Presence of a supercritical Hopf bifurcation

In the a previous section it has been showed that the first instationary motions of the flow
induced by a thermal line source in some configuration consists of a single frequency oscillating
motion. The amplitude increases with the forcing of the :flow. The start of a single frequency,
the first spike in the frequency spectrum, is the first step to a broad band spectrum that is
characteristic for fully developed turbulence.

It is possible to determine the stability of the flow by perturbing it with very small
disturbances. The stability against very small disturbances is denoted as the linear stability
of the flow. In the numerical code these disturbances were introduced in the initial condition
of the velocity field and it was observed that above some critical Grashof number, Grcr , the
flow is not linearly stable. We can also consider analytically a basic stationary :flow that is
perturbed and therefore developing in time:

(6.1)

In this way ttl must be determined from the full equations of motion. According to Landau
and Lifshitz [24] the general solution can be represented as a sum of particular solutions in
which ttl depends on time as e-iwt • By solving the equations of motion with the appropriate
boundary conditions the frequencies w are determined. If there are frequencies w = W1 +i")'l

whose imaginary parts are positive, e-iwt will increase indefinitely with time. For the :flow to
be stable it is necessary that the imaginary parts are all negative. The perturbations that
arise will then decrease exponentially with time.

We now consider instationary flows at Grashof numbers slightly greater than Grcr• In this
case there is a frequency WI with a positive imaginary part ")'1. The function ttl corresponding
to this frequency is of the form:

(6.2)

where f is some complex function of the coordinates and the complex amplitude A(t) is given
by:

A(t) =Ce'Ylte-iwlt (6.3)

This expression for A(t) is only valid during a short interval of time after the perturbation of
the basic flow. The factor e'Yl t increases rapidly with time, whereas the method of determining
ttl from the full equations that leads to 6.2 and 6.3 is only valid when Ittll is small. The
modulus IAI of the amplitude of the flow does not increase unlimited but tends to a finite
value. For Gr close to Grcr this finite value is small and can according to Landau and
Lifshitz [24] be determined as follows.

For small values of t, when 6.3 is still valid the time derivative of the squared amplitude
IAI2 is given by dlAl 2 /dt = 2''YtIAI2. This expression is the first term in an expansion in series
of powers of A and A·. As the modulus IAI increases subsequent terms in this expansion
must be taken into account. Since the third order terms contain the periodic factor and the
fact that we are interested in the time average of dlAl 2/dt we get, including the fourth order
terms:

dlAI 2

- = 2illAI2 - alAI4 (6.4)dt
that is generally referred to as Landau's equation. The factor a is positive for ordinary flows
as is observed in the growth to a constant amplitude. The non-trivial solution ofequation 6.4
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is:
_1__~ -2'Ytt
IAI2 - 2"(1 +Ce

Hence it is clear that IAI2 tends asymptotically to a finite limit:

IAI2 _ 2"(1
mil:!: - Q

(6.5)

(6.6)

This limit is called a limit cycle. The quantity "(1 is some function of the Grashof number
and near Grcr it follows that "(1(Grcr ) =0 and the zero order term in the expansion is equal
to zero, resulting for the first order approximation: "(1 = C(Gr - Grcr ). Substituting this
into 6.6 we see:

IAlmllm =J:(Gr - Grcr) (6.7)

This behaviour is known as a Hopf bifurcation. The maximum amplitude is a continuous
function of the Grashof number. Therefore it is a supercritical Hopf bifurcation in contrast to
a subcritical bifurcation in which hysteresis plays a role and the branching is discontinuous.
In a figure displaying the phase of the fiow (like figure 6.10) a Hopf bifurcation is the evolution
of a point to a small circle.

A Hopf bifurcation is also observed in the simulations as described in section 6.1. This
can be shown in a bifurcation diagram as given in figure 6.13 and 6.14 for the mentioned
simulations. From this figure the critical Grashof number can be determined by matching Q
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Figure 6.19: Bifurcation diagram for simulated flows; Amplitude

with the simulations and equation 6.7. It turns out to be that Grcr l:::l 6.2.106 for a =2.10-5•

Because of the first order expansion equation 6.7 is only valid near to Grcr and at higher
values probably a new critical Grashof number is exceeded. Another bifurcation has taken
place. For fully developed turbulent fiows Landau proposed a route of infinite number of Hopf
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bifurcations. This route to chaos, as it is called generally, has never been observed. However
for one-dimensional systems with a quadratic nonlinearity Feigenbaum [11] has proved this
scenario to be true, as also observed in experiments. From their study of dynamical systems
Newhouse, Ruelle and Takens [27] conclude that after two bifurcations a non-periodic flow may
appear (see also [35]). The time dependence of the flow then becomes chaotic with sensitive
dependence on initial conditions. Amongst other observations this route is experimentally
observed for Rayleigh-Benard convection by Gollub and Benson [15] amongst others. In
this experiment also the bifurcation sequence of Feigenbaum was observed by Libchaber and
Maurer, see [11], see also Frf/lyland [12].

6.4 The differentially heated cavity

To look somewhat closer to some aspects of the calculations that can be performed with the
present numerical code the flow in a differentially heated cavity was simulated. There is very
much known about this configuration and the effect of the subgrid scale model on both the
laminar velocity profiles as well as on the transition can be studied. The cavity is a cubical
box differentially heated over two opposite vertical walls by prescribing the temperature at
it. A no-slip condition was applied at the mentioned wa.lls and at the top and bottom walls
of the How domain. The simulations were performed for laminar two-dimensional flows on
a 18 x 6 x l8-grid. The boundary conditions at the front and back were taken periodic to
preserve two-dimensionality in the case of stable flows. Adiabatic and conducting top and
bottom walls were applied.

The reason for choosing this problem is that the results are easy to compare because of
the large amount of investigations involving this case. The work of Henkes [18] is taken here
as a reference of comparison. The main attention points of the calculations presented here
involve the effect of the subgrid-scale model in laminar flow, the effect of the grid resolution

45



Differentially heated cavity Differentially heated cavity
(J.7 Adiabatic hor. walls, Ra-l 08 (air)

0.6 l
Conducting hor. walls, Ra-l 08 (air)._._-----------.-

- -..--------_...

I
0.6 -_..---

~-
0.55 //

/ /
f--

~
/

U // /-...

i3 0.5 j i3 0.5

/I //C t:.
0.4 ----- 0.45

-----------
0.3 ...._----' ---,-_.~.

~~_.1 0.4 ..........--l_--..4-i-~_J. __

0 5 10 15 0 5 10 15
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and the occuring phenomena in the boundary layers where all variables show high gradients.
In the simulations for air at Gr = 1.4· 108 with adiabatic horizontal walls it was found

that the used grid resolution in the boundary layers was much to poor. The thickness of
the vertical velocity boundary layers has to be about 0.05· L where it actually is 0.15· L.
The proper scalings of the velocities are "gf:J15.TL for the vertical direction in the vertical
boundary layer and (g(jATlI)1/3 for the horizontal direction in the horizontal boundary layers
(see Henkes). In this sequence the maximum velocities are 0.11 and 0.86 where they should
be 0.27 and 0.82. The largest difference occurs at the vertical walls where the subgrid energy
is high. The same calculation was done for water at Gr = 107 where the dimensionless
maximum velocity should be 0.089 and was found to be 0.085.

The temperature profiles (see figure 6.15) were much smoother than the velocity profiles.
The large gradient in the conducting case could not be resolved on the given grid. The
differences with the mean temperature are too small. For the adiabatic case Henkes [18] gives
the same profile but with a difference at the wall of about 0.36 instead of 0.1 of the mean
temperature.
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Chapter 7

Conclusions and progress

7.1 Conclusions and recommendations

In this study several solution techniques for the :flow induced by a horizontal line heat source
have been considered. The approach of all methods was to take the Boussinesq approximation
as a basic assumption. This may only be done when the temperature differences are small.
The use of the Boussinesq approximation is therefore limited by this restriction.

For laminar :flow the boundary layer equations, leading to a set of two coupled ordinary
differential equations, can be solved numerically using the appropriate boundary conditions.
This results in a :flow similar to the real :flow obtained by experiments. The calculated temper
ature close to the source however tends to infinity. Also the boundary layer approximation,
that assumes a zero momentum exchange in the direction normal to the plume midplane, is
not correct, especially in this area. Therefore the obtained solutions are only valid at relative
large distances above the source. Using linear stability theory the neutral stability curve
can be calculated. This gives a good agreement with experiments when stable and amplified
frequencies are compared. From visual observations the begin and end of transition for air
were determined to be at approximately Gr,; =6.4 . 106 and Grz: =2.95 . 107 respectively.
Here boundary layer theory gives rather low and unrealistic predictions for the critical values
of z. An integral method is able to describe the macroscopic time mean features of a fully
developed turbulent plume.

In this study large eddy simulations have been performed to obtain time dependent solu
tions. In all cases, however, the mesh was too course, especially in the near wall regions, even
in the laminar case. Yet it seems to be possible to obtain a qualitative prediction of a laminar
to turbulent transition, both in spatial and temporal sense. It is not known how much the
subgrid scale model damps laminar flow, postpones temporal transition and spreads a sharp
spatial transition.

In the simulated laminar convection flows the resolution of the grid in the wall regions
was too low to solve the flow accurately. If flows are simulated in which the domain is
bounded by walls and the phenomena happening in these regions influence the interior at
an impermissible level, something has to be done to raise accuracy. The applicable tools are
equidistant grid refinement, local grid refinement and the use of wall functions. Because of
the lack of computer capacity equidistant refinement is not possible. On the other hand the
use of wall functions is limited because of its dependence on the vigor of the flow, that can
vary in time and in space and depends highly on the flow configuration under consideration.
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Using local grid refinement Henkes [18] obtained accurate results for laminar flow in a cavity
at high Grashof numbers with a limited gridsize (30 X 30).

The damping in laminar :flows caused by the subgrid scale model is not investigated yet.
This could be done by comparison with a direct simulation. Also the delay of bifurcations
with increasing Grashof numbers caused by this effect has to be examined in the same way.

An important effect occuring in laminar natural convection flows that has to be taken into
account is the non-uniqueness as reported by Gollub and Benson [15]. This effect probably
can influence the route to fully developed turbulence dramatically.

The first time dependence occuring in the simulated :flows is in agreement with theoret
ical analysis resulting in a prediction of a Hopf bifurcation. As stated above it has to be
investigated whether this happens at the right critical Grashof number. Further bifurcations
leading to turbulent flow qualitatively seem to be in agreement with the routes measured by
Gollub and Benson [15] and predicted by Newhouse, Ruelle and Takens [27] in which few
bifurcations are preceeding a broadband spectrum. The accuracy of the spatial structure of
the laminar to turbulent transition must be examined by comparison with experiments of
statistical stationary turbulent plumes and numerical solutions obtained with a refined mesh.

Furthermore turbulent spectra of velocity and temperature have to be measured in a :flow
configuration that can be simulated and must be compared with calculations. The Nusselt
number, a quantity denoting the total energy transfer, has to be compared under several
circumstances to get an integral rating of the performance of the numerical code.

Care has to be taken with respect to the dimensions of the flow domain and the choice of
the boundary conditions. With respect to the :flow domain it was observed that instationary
motions could not damp out in more or less cubical configurations. The influence of these
motions was felt in the full flow domain. In this case there was no abrubt spatial transition
of the flow. Application of periodic boundary conditions can lead to a net mass :flux through
the domain that can not be achieved experimentally.

To extend the simulations to :flows in a more complex geometry it must be investigated
how the subgrid scale models can be implemented in finite element methods or spectral
element methods, e.g. Sepran. Also finite difference and finite volume methods with general
coordinate transformations, e.g. ISNas, can be applied. Further on a study has to be carried
out whether there exist subgrid scale models that are based on a wave number description
of the turbulence and are suited for use in natural convection problems. In this case it is
interesting to use a spectral element method because of its natural spectral cut-off in wave
number space, which is in agreement with the basic idea of modelling in large eddy simulation.
Simplicity of the model as well as a good representation of physical reality could be achieved
in this way.

Besides these aspects it has to be found out what boundary conditions can be applied
within the different numerical codes. Since the governing equations are elliptical, boundary
conditions influence the full :flow domain. This is important for the accuracy of simulations,
especially in regions near boundaries. Interesting questions in this perspective are what
to do in near-wall regions and how to define in- and outflow conditions at the numerical
boundaries of free convection :flows. Out:flow conditions must allow phenomena generated
in the computational domain to pass through the boundary without undergoing significant
distortion and without in:fluencing the interior solution.

At the moment when it is possible to solve the flows of interest with convenient accuracy
design criteria can be tested numerically and we are a step closer to the deduction of designing
rules. Finally model coefficients of turbulence models (like models based on Reynolds aver-
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aging, e.g. the k-£-model) that can be used in low computational effort consuming numerical
codes could be tuned.

7.2 Progress

As suggested in the previous section several comparisons of calculations with experiments
have to be carried out. A first proposal is to look at the flow induced by a line heat:flux
source embedded in or lifted above an isothermal lower wall of a perfect cubical domain and
bounded by waJIs at aJI sides. All other walls are adiabatic except for the lower wall. At
moderate Grashof numbers in the statistical stationary case the mean :flow structure, some
velocity and temperature frequency spectra and the Nusselt number have to be determined.

Experimentally the flow is relative easy to attain. Only the energy:flux through the walls
has to be controlled. -Because the simulations are based on the Boussinesq approximation the
experiment has to be designed to not violate this approximation too much, i.e. temperature
differences have to be kept small, length scales are therefore large given a specific fluid.

In the numerical simulations the gridsize has to be estimated. The accuracy obtained
in calculations with the estimated gridsize can be tested by grid refinement. Eventually a
local grid refinement could be applied. Eventually a direct numerical simulation could be
performed.

For qualitative comparison eventually physical and numerical shadowgraphs or Schlieren
techniques as applied by Comte [6] can be used.

At this moment it is not clear whether the spatial and temporal transition to turbulence
obtained with the employed subgrid energy model is in good agreement with physical reality.
For numerical comparison other subgrid scale models have to be integrated in the numerical
code. First a Smagorinsky [40] model and a vorticity model, which are very similar, have to
be built in. This as a first step to the use of the dynamical model of Germano et al. [14] that
has to be applied to examine the improvement of this model on the transition. Further on the
structure function model of Metais and Lesieur [26] could be used. With these variations of
subgrid scale stress closures the energy closure_ has to be remained constant. In this way the
best stress closure can be determined and a variation of the Grashof number has to be carried
out to ascertain the general applicability of the model. The first step that is recommended in
this comparison is the simulation of a well defined laminar :flow, e.g. the differentially heated
cavity. Also statistically non-steady :flows, for example the starting behaviour and temporal
transition, have to be studied. This because in the first place these phenomena occur in
practice and secondly they can in:fluence the statistically steady solution.

An interesting case that eventually could be simulated then is the spreading of turbulent
plane plumes. The problem is well defined and it can serve to obtain experience with open
boundary conditions. It can be simulated by placing the heat source in the interior of the
domain and applying inflow and outflow conditions at the bottom and top. For the inflow
the pressure has to be described and for the outflow the Orlanski [29] boundary condition can
be applied. Having obtained a stationary solution the simulation could be continued with
the top of the original domain (excluding the heat source), using open boundary conditions
for the top and (new defined) bottom. Similar methods were succesfully used for the mixing
layer and the wake behind a sphere [5]. The spreading rate can be compared to those that
are obtained from integral methods and experiments in "unbounded" space. Also coherent
structures can be examined.
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Because it is our aim to solve turbulent natural convection flows in complex geometries
we have to apply a coordinate transformation, that leads also to a transformation of the
governing equations. Therefore it is easier to investigate whether the closure models can
be applied in other numerical methods like another finite volume method, e.g. ISNaS, a
finite element method, e.g. Sepran, or a spectral element method. Then using one of these
methods interesting flows in rather arbitrary geometries can be solved. The ISNaS code uses
a coordinate transformation to obtain a mathematical domain with nice properties in which
the calculations can be performed [41]. A disadvantage is the fact that the equations have to
be transformed as well. This results in the appearance of extra terms. The advantage of finite
element and spectral element methods is that this does not occur. Both finite and spectral
element methods use basis functions to represent the variables [7], [42]. These functions
are given by ordinary polynomials and Jacobi polynomials respectively. The most commom
used Jacobi polynomials are Legendre and Chebyshev polynomials. This means that the
suggested advantage of a natural definition of the spectral cut-off as in the Fourier space
can not be obtained with the spectral element method. However, the advantage of spectral
element methods is the (spectral) accuracy that can be met at constant computer effort in
comparison with the other two methods. To the author's opinion the ISNaS code provides
the simplest base to implement a subgrid scale model. This was already done by Vreman [44]
for compressible flows in a case where there was no transformation required. Therefore ISNaS
is the most recommended code to use, when a three dimensional version is available.
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Appendix A

Approximation of the similarity
functions

To determine the velocity profiles and fringe patterns the similarity functions are approxi
mated by Gaussian distributions for f' and 4>, using the values at 17 =0 obtained by Pera and
Gebhart [30], so that only the width had to be fitted:

and
4>(17) = e-0.43'1

2

Equation A.l results in an error function for f, given by:

Plots of these approximations are presented in figure A.I.
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(A.3)
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Figure A.l: Approzimated similarity functions
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Appendix B

Some velocity time series
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Appendix C

Velocity time series and frequency
spectra
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double logarithmic spectrum
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Appendix D

The differential equation for the
subgrid energy

To determine the eddy coefficients a differential equation for the subgrid energy is used. This
equation is formulated in terms of the square root of the subgrid energy ve, the quantity
needed to determine the eddy diffusivity (equation 5.11):

2 -s. Bu.. 1 .8.i.. a2'r
a 1/2 + a ( 1/2) a ( a 1/2) lIT i;~ +"2

l1H TOB;;f Ie e-e - lZ"e = - lIT-e + - - d-at ax; J ax; ax; 2e1/ 2 2 .6.

Equation D.l was used in the preliminary calculations as presented in this report. It has
to be noted that there are some errors in it. The correct subgrid energy equation (see also
Versteegh and Nieuwstadt [43]) should read:

ae a a ( ae ) 8TI,. aT e3
/
2

- +-(u;e) = - lIH- +2l1T-gi;-' +lIH9iP- - Cd-at ax . ax . ax . ax . ax' .6.J J J J ,

It is assumed that the diffusion coefficient of subgrid energy is equal to the di1fusivity of
temperature (diffusion of a scalar). According to Schmidt and Schumann [36] the constant
Cd must be taken equal to 0.7 (see also de Korte et al. [21]). The first source term accounts
for the rate of irreversible turbulent conversion to internal energy. An extra source term
is introduced to deal with the damping effect of a stable vertical temperature stratification
and can be found by dimensional analysis. In this case it is negative and it removes subgrid
energy. When there is an unstable stratification it is assumed that the temperature gradient
dies out very fast by convection and the term will not affect the solution in a significant way.
The sink term can be derived from the assumption that the spectral cut-off of the used filter
lies in the inertial subrange.

The differences between the two expressions are concerning the diffusion and the strat
ification term. The stratification term of D.l is multiplied by a half and it contains the
second derivative of the temperature. Also the ideal gas law was used in this formulation,
whereas, with the use of the expansion coefficient, equation D.2 is more general applicable.
The diffusion term of subgrid energy in the former equation has to be divided by a factor 2..ji,
making advection more important. Furthermore it can be argued that the use of temperature
diffusivity is a better approximation for the coefficient.

In the future the last equation will be applied. It is assumed however that the preliminary
calculations are not affected too much, especially as regards the qualitative results.
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