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1 
Introduction 

1.1 Motivation and objective 

In this monograph, we study single-server multi-queue systems with periodic service. For these sys
tems, the time axis consists of intervals of equal length, called cycles. In a cycle, the server attends 
the different queues to serve customers. The order in which he visits the queues is the same for all 
cycles. Moreover, the time instants within a cycle at which the server starts switching from one queue 
to another are fixed and the same for all cycles. Further, switching from one queue to another may take 
some time, and no customer can be served during these time periods. 

As an illustration of such a queueing system, consider the case of two queues and deterministic 
switch-over times. In Figure 1.1, we give an example of a periodic service policy for this system. For 
this example, the server attends queue 1 for three time units to serve customers in this queue. After 
this period, he requires two time units to switch to queue 2. Then, he attends queue 2 for four time 
units to serve customers, after which he requires one time unit to switch back to queue 1. Finally, the 
service policy starts over again. So, in this example, the time interval (0, lO) can be considered as a 
cycle. 

Figure 1.1: A representation of a periodic service policyfor an example(<{ a queueing system with two 
queues and deterministic switch-over times. 

Various real-life situations are modelled in a natural way by queueing systems with periodic ser
vice. We give three examples of such situations. The first example is a fixed-cycle traffic light at an 
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intersection. The second example is a periodic access scheme to allocate the capacity of communica
th:-n and computer systems. The third example is the manufacturing of products governed by a periodic 
production rule. 

For the first example, consider a fixed-cycle traffic light to control an intersection. More precisely, 
for each direction, cars that approach the intersection alternately face red and green time periods of 
fixed duration. Clearly, this model can be regarded as a queueing system with periodic service with 
the traffic light as the server, the different directions as the queues, and the cars as the customers. These 
models were first studied in the 1950's to evaluate the throughput and delay of cars. Nowadays, fixed
cycle traffic lights particularly arise in heavy traffic and as a result of phased traffic lights. 

Since the mid 1970's, queueing systems with periodic service are also used in communication and 
computer systems. The capacity of these systems for transmitting data or executing tasks has to be 
shared by different types of data or tasks. In real-time computer systems, some tasks have strict time
critical requirements. To meet these requirements, these tasks have priority, and their executions are 
scheduled periodically. Hence, the execution of ordinary tasks is interrupted periodically. For these 
systems, the quantities of interest are the probability of a buffer overflow and the probability that or
dinary tasks meet their deadlines. 

In the last decade, queueing systems with periodic service have been applied to model situations at 
production centres as well. This application is our main motivation for studying these systems. Con
sider a machine at a production centre, which manufactures a variety of products. Switching the pro
duction from one type of product to another may take a considerable amount of time, that is, it may 
cause loss of the machine's production capacity. In order to control and restrict the number of switch
overs, the production centre may apply a periodic production rule. More precisely, the centre uses 
production cycles of equal length. The order in which the different types of products are manufac
tured is the same for all production cycles. Furthermore, the machine starts switching at fixed time 
instants in a cycle, and these instants are the same for all cycles. A key performance measure for the 
centre and its customers is the delivery times of orders. From these times, other interesting perfor
mance measures, such as tardiness and the fraction of customers delivered in time, can be obtained. 
Tardiness is the amount of time an order is delivered too late. 

Queue lengths and sojourn times are important performance measures, and many other perfor
mance measures, such as the fraction of customers served in time, can be obtained from them. With 
respect to the three aforementioned examples, think of the delay of cars, the buffer size and response 
times oftasks, and the delivery times and tardiness of orders, respectively. To evaluate the performance 
of queueing systems with periodic service, we need techniques to analyse these systems. 

Although the server attends more than one queue, the analysis of the joint queue-length process reduces 
to analysing the queue-length process for each queue separately. The reason for this is that the queue
length processes do not affect each other, because of the fixed switch-over instants. Hence, for each 
queue, the sojourn times of customers can be determined separately as well. In spite of the fact that the 
analysis can be reduced to essentially that of a single-queue system, there are not many useful results 
known, since the analysis is mathematically hard. In Section 1.2, we shall present an overview of the 
literature, so that we confine ourselves here to the main conclusions. 

In the literature, typical analytical approaches for studying queueing systems with periodic service 
are the generating-function technique, the use ofLaplace-Stieltjes transforms, and, more recently, the 
matrix-geometric approach. Unfortunately, we face both analytical and numerical problems when ap
plying these techniques. 
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For the generating-function technique, an important and well-known problem is the determination 
of the solutions of a characteristic equation, which is often a (possibly, high degree) polynomial equa
tion. Further, these solutions have to be substituted into a system of regularity conditions. Since these 
solutions may be closely clustered, solving this nearly linearly dependent system can lead to numer
ical difficulties. The use of Laplace-Stieltjes transforms requires the often difficult tasks of solving 
integral equations and inverting these transforms for obtaining explicit results. If we want to apply the 
matrix-geometric approach, then we have to solve a polynomial matrix equation. Solving this equa
tion may be rather time consuming when the matrices are large or when the utilisation factor (that is, 
the quotient of the average amount of work arriving at the system per time unit and the average service 
capacity per time unit) is close to one. Furthermore, the size of the matrices involved become quite 
large when this approach is applied to queueing systems with periodic service; this approach faces a 
'dimensionality curse'. 

Numerical techniques for the determination of the (moments of the) queue-length or sojourn-time 
distribution can be found in the literature as well. However, these techniques have drawbacks. Firstly, 
some of these techniques seem to be only applicable when the server visits each queue essentially 
once every cycle (as for the special example in Figure 1.1). Although this case is important, it can 
be too restrictive. Secondly, other techniques are rather cumbersome, since they solve the system of 
equilibrium equations of a periodic Markov chain, describing the queue-length process, by starting 
with an initial distribution and then iterating these equations to compute the stationary distribution of 
this chain. 

Finally, some attention in the literature is focussed on deriving approximations for the average 
queue length or sojourn time of customers. However, information about the averages only is often 
insufficient for evaluating queueing systems. The reason for this is that other performance measures, 
like the fraction of customers served in time and tardiness, are important too. 

So, both the analytical approaches and the numerical approximations, as found in the literature, 
may not be quite suited or may be too limited for analysing and evaluating queueing systems with pe
riodic service. This raises the question whether there are useful techniques for analysing and evaluat
ing these systems; in particular, whether there are techniques for determining the queue-length and/or 
sojourn-time distribution of customers. The development of such techniques is the main objective of 
this monograph. 

To achieve this objective, we consider the queueing systems in discrete-time. The reason for this 
is that it reduces the complexity of the analysis considerably. Furthermore, it enables us to use proba
bilistic arguments to obtain the quantities of interest or approximations for these quantities. We prefer 
the application of probabilistic arguments to transform techniques, because we can use our intuition 
with reference to the problem. 

In this monograph, we present two techniques for analysing the queue-length processes of customers 
for discrete-time queueing systems with periodic service. The results of these techniques are used to 
obtain the sojourn-time distribution of customers. To give a brief description of these two techniques, 
we recall that the queue-length processes can be studied separately. Therefore, we consider one queue 
only. Further, the cycles are divided into intervals of equal length, called slots. 

The first technique exploits the fact that the stationary distribution of a one-dimensional Markov 
chain often has an asymptotically geometric taiL For stationary distributions having this tail behaviour, 
the parameter determining this behaviour can be computed easily and accurately. By imposing this be
haviour on the stationary probabilities from a certain state onwards, we solve a finite system of equi-
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librium equations of this chain to obtain estimates for the remaining stationary probabilities. To apply 
this technique for studying the queue-length process, we have to impose some restrictions on the arrival 
process and service-time distribution of customers. Fortunately, these restrictions are not too severe. 
For example, customers may arrive according to a periodically time-varying Bernoulli process, and the 
service-time distribution may be an arbitrary discrete distribution with bounded support or a mixture 
of a finite number of negative binomial distributions with the same parameter q. Once the stationary 
queue-length distribution is approximated, the sojourn-time distribution of customers is computed ex
actly. 

This first technique uses detailed information about the service times of customers. In practice, 
however, one often only has the first two moments of these times (approximately). Therefore, it makes 
sense to study a second technique, which only uses this limited information, for the determination of 
the performance measures. With this second technique, we can approximate the performance mea
sures for broader classes of queueing systems than the previous class. More specifically, we derive 
a periodic system of equations to evaluate the performance. This system describes the queue-length 
process of customers at two consecutive slots. Each of these equations is related to Lindley's equation 
for the DIG /1 queueing system with discrete service times (see, for instance, Grimmett & Stirza
ker [ 1992]). These equations are solved by an efficient moment-iteration algorithm, which involves a 
novel procedure for fitting discrete distributions on the first two moments. From these approximations 
of the queue-length distributions, we compute the sojourn-time distribution. 

These two techniques can be used to evaluate a specific queueing system with periodic service. Fur
thermore, we can analyse some modifications of this system by the same techniques. We consider three 
modifications of the periodic production rule as described by the third example. These modifications 
concern the production of a limited number of products to stock (think of fast movers), working over
time, and splitting the arrival process of orders into periodic arrivals with priority and random arrivals. 
This third modification assumes that it is possible for some customers (think of regular customers) to 
place orders according to a periodic pattern. 

In Section 1.2, we give an overview of the literature related to the analysis of queueing systems with 
periodic service. The organisation of this monograph will be given in Section 1.3. 

1.2 · Overview of related literature 

In this section, we give an overview of the literature related to the analysis of queueing systems with pe
riodic service. Analytical techniques for such systems are discussed in Section 1.2.1, together with the 
applicability of these techniques in relation to that of the numerical technique exploiting the geomet
ric tail behaviour (the GT technique, for short). Section 1.2.2 is devoted to approximation techniques. 
The main conclusions of Sections 1.2.1 and 1.2.2 are listed in Section 1.2.3. 

To facilitate the exposition of this overview, we introduce some definitions to obtain a unified ter
minology instead of the diverse terminology used in specific applications of these queueing systems. 
As explained earlier, we consider one queue only. The time periods during which the server is attend
ing and not attending this queue are called on-periods and off-periods for this queue. It is assumed that 
a cycle starts with an off-period and ends with an on-period. Unless stated otherwise, in this section, 
we assume that the lengths of the on-periods and of the off-periods are both constant, in which case a 
cycle consists of one on- and off-period. The resulting queueing system constitutes the basic system 
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considered in this section, as this is the simplest and most studied system with periodic service. In 
Figure 1.2, we graphically represent these assumptions. Finally, the arrival patterns of customers are 
assumed to be stochastically identical and independent for each cycle. 

cycle 

Figure 1.2: A representation of the basic queueing system considered in Section 1.2. 

1.2.1 Analytical techniques 

The major part of the literature treating analytical techniques is devoted to the case that the service 
of customers can start at certain discrete time instants in an on-period only. Clearly, this holds for 
discrete-time queueing systems, which naturally arise in modelling of, for instance, communication 
and computer systems. Moreover, in the study of fixed-cycle traffic-light queues, it appears to be fairly 
reasonable to assume that cars in a queue pass the traffic light at equally spaced time instants in a green 
period, and that cars that do not have to queue during a green period experience no delay at all. So, cars 
in a queue can effectively start with passing the traffic light at certain discrete time instants only. The 
assumption that customers arriving in an on-period at an empty queue experience no delay is called 
the traffic-light queue assumption (or, in brief, the TLQ assumption). We remark that arrivals do not 
have to coincide with the time instants at which a service may begin. A minor part of the literature is 
concerned with the case that services can begin at arbitrary time instants in an on-period. 

For the analytical techniques, we discuss the following issues: main results, problems associated 
with the implementation of these techniques, approximations found in the literature to avoid these 
problems, and the relation between the applicahility of these techniques and the GT technique. We 
begin with discussing the analytical techniques for the case that services can begin at discrete time 
instants only and then treat the case that these instants are arbitrary. 

1.2.1.1 Services start at discrete time instants 

For the case that services can only begin at discrete time instants, we introduce the following conven
tions. We discrctise the time axis by dividing a cycle into intervals of equal length, and assume that 
the service times are multiples of these intervals. Such an interval is called a slot. In Figure 1.2, we 
have subdivided a cycle into five slots. 

In this case, three typical techniques for analysing queueing systems with periodic service are the 
generating-function technique, reducing the analysis to the study of a certain G/ I G I 1 queueing sys
tem, and the matrix-geometric approach. These techniques arc successively discussed. We conclude 
this section with mentioning some results for specific queueing systems. 

For discrete-time queueing systems with periodic setvice, the generating-function technique is the 
technique most frequently used for anulysing the queue-length process at the start of cycles. This pro
cess is called the imbedded queue-length process. The generating-function technique is also used to 
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determine the waiting-time or sojourn-time distribution of customers. Applying this technique yields 
the probability generating function of the stationary imbedded queue-length distribution and that of 
the waiting-time or sojourn-time distribution, respectively. 

For service times equal to one slot, studies of the imbedded queue-length process by this tech
nique have been presented by numerous authors. For instance, Newell [1960] and Meiss! [1962] study 
this process by the generating-function technique for a Bernoulli arrival process; Meiss! [1963], Dar
roch [1964], Anderson, Foschini & Gopinath [1979], Rubin [1979a,1979b], Rubin & Zhang [1988], 
Steyaert & Bruneel [ 1991 ], and Heidemann [ 1994] for a generally distributed number of arrivals in a 
slot. In addition, Meiss! [ 1962], Rubin [ 1979a, 1979b ], Rubin & Zhang (for several arrival processes), 
and Steyaert & Bruneel apply this technique for determining the probability generating function of the 
waiting-time or sojourn-time distribution. We remark that the generating-function technique can also 
be used to study the transient queue-length process (see, for example, De Smit [ 1971]). Moreover, we 
note that Anderson, Foschini & Gopinath even allow for multiple (and different) on- and off-periods 
in a cycle. Further, we mention that Kaplan [1983] assumes a (time-varying) Poisson arrival process 
of customers with generally distributed discrete service times. By considering the off-periods as the 
service times of periodically arriving customers, Kaplan applies the generating-function technique to 
determine the probability generating function of the virtual waiting time (that is, the amount of work 
in the system). 

In general, the determination of the distributions from probability generating functions leads to 
numerical problems. First of all, we have to calculate the roots of a characteristic equation. The de
termination of these roots is often difficult (see, for instance, Kleinrock [1975]). In fact, the accurate 
computation of these roots seems to be possible only if the parameters of the model (like the num
ber of slots in a cycle) are small or if the characteristic equation possesses a special structure (see, for 
instance, Newell [1960], Meiss! [1962], and Adan & Zhao [1994]). However, even if we can com
pute all roots accurately, then it is common that these roots are closely clustered. These roots have to 
be substituted into a system of regularity conditions, so that this system is nearly singular and solv
ing it is quite delicate. We shall show in Chapter 2 that these problems occur already for small cycle 
lengths in queueing systems with periodic service. Further, the determination of the moments of the 
distributions from their probability generating function generally requires the roots of the characteris
tic equation and the solutions to the regularity conditions as welL Only if the length of the on-period 
is equal to one slot, we do not need these roots and the solutions to the regularity conditions for the 
calculation of these moments. 

Because of these problems, the generating-function technique is often only used to evaluate spe
cial queueing systems, or to derive bounds and approximations for the performance measures. Meiss! 
[1962,1963] and Anderson, Foschini & Gopinath [1979] present some numerical results for special 
queueing systems. Newell [ 1960] gives an approximation for the average sojourn time, but he does 
not evaluate the quality of this approximation. Darroch [ 1964] derives upper and lower bounds for the 
average sojourn time, but the difference between these bounds is rather large. Rubin & Zhang [1988] 
and Steyaert & Bruneel [ 1991] also derive upper and lower bounds, and these bounds can be used to 
obtain a rough estimate for the average sojourn time. Further, under the TLQ assumption, Ohno [ 1978] 
obtains an expression for the average sojourn time for Poisson arrivals. This expression contains the 
average number of customers at the start of a cycle in terms of the roots of an equation. In order to 
compute the average sojourn time, he uses the approximations for this average number of customers 
as derived by Miller [1963], Newell [1965], and McNeil [1968] (we discuss these approximations in 
Section 1.2.2). Ohno's approximations perform quite well. 
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So, a fruitful application of the generating-function technique seems to be limited to very special 
queueing systems with periodic service. As we shall see, the geometric tail (GT) technique is appli
cable to a broad class of queueing systems with periodic service. For instance, this technique can be 
applied in the case of multiple on- and off-periods in a cycle, and for many important arrival processes 
and service-time distributions. Other important situations can be very well approximated by these ar
rival processes and service-time distributions. 

The second analytical technique employed in the literature is based on the observation that the deter
mination of the performance measures reduces to the study of a certain G I I G 11 queueing system or 
of a queueing system with bulk service. This reduction implies that Lindley's integral equation has to 
be solved (cf. Lindley [1952]). The solution of this equation is the same as the limiting solution for n 
tending to infinity of the recurrence relation 

W,,+, max(O, W" + Bn- An), (1.1) 

where Wn is the quantity of interest; An and B, are independent random variables with known dis
tributions and independent of W,,. This recurrence relation is also known as Lindley's equation (cf. 
Grimmett & Stirzaker [1992]). Due to the periodic nature of the queueing system, the random vari
ables A11 and B, may be periodic. 

Beckmann. McGuire & Winsten [ 1956] study the same model as Newell [1960], and they express 
the average sojourn time in terms of the average queue length at the start of a cycle. They observe that 
this latter quantity is equal to the average number of customers in a queueing system with bulk service. 
This number of customers can be represented by Lindley's equation for a DIGI1 queueing system 
with binomially distributed service times. Chu & Konheim [ 1972] consider the restrictive case that the 
length of an on-period is equal to one slot, and they allow for a general distributed number of slots of 
work arriving in a slot. They observe that the queue-length process can be related toaD I G ll queueing 
system. To derive the first two moments of the queue-length distribution, Chu & Konheim require the 
probability of an empty queue at the start of a cycle. They determine this probability by studying the 
gambler's ruin problem (see also, for instance, Feller [1968]). Kosovych [1978] considers the case of 
geometrically distributed batches that arrive according to a Poisson process. He relates this model to 
the analysis of a queueing system with bulk service and expresses the average sojourn time in terms 
ofthe roots of an equation. Fredericks [1979] and Fredericks, Farrell & DeMaio [1985] suppose that 
the slots in an off-period correspond to the service times of higher priority customers. These authors 
study the case that ordinary customers can only arrive in one fixed slot of the cycle. The waiting
time process for ordinary customers is then described by a D 1 G 11 queueing system with inter arrival 
times equal to the length of an on-period. Ackroyd [ 1985] assumes that customers arrive at the start of 
slots. Furthermore, the slots in an off-period are considered as the service times of scheduled customers 
having preemptive priority. He relates the amount of work (including that of scheduled customers) in 
two consecutive slots, yielding a periodic system of Lindley's equations (that is, A" and Bn in (1.1) are 
periodic). 

However, the limiting solution for n tending to infinity of Lindley's equation cannot be determined 
analytically except in a few special cases, let alone the periodic solution for a periodic system of these 
equations. Therefore, several approximations have been proposed. For instance, Fredericks [1979] 
and Fredericks, Farrell & DeMaio [ 1985] exploit the fact that, under rather mild conditions, the tail 
of the waiting-time distribution is asymptotically exponential (see Feller [ 1971 ]). This procedure, de
scribed in detail in Fredericks [1982], gives reasonable approximations. Ackroyd [1984] suggests to 
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truncate the state space and to solve the reduced system of the equations in Ackroyd [ 1985} by Levin
son's method (see Levinson [1946} and Robinson [1967}), because this reduced system has a block 
Toplitz form. In Ackroyd [ 1985], the author iterates the periodic system of Lindley's equations until 
the solution converges to a periodic stationary distribution. 

The queueing system of Fredericks [1979] and Fredericks, Farrell & DeMaio [1985] is rather re
strictive, mainly because customers can arrive in exactly one fixed slot in the cycle. These authors 
allow, however, more general service times than we allow for the GT technique. At the cost of slightly 
less general service times, this technique allows us to analyse their queueing system, extended to the 
case where customers can arrive in each slot of the cycle. Ackroyd [ 1985] also allows more general 
service-time distributions. By making the same slight reduction in generality, his system can be anal
ysed by the GT technique too. This technique is more efficient than his iteration method. Furthermore, 
it is likely that, to obtain the same accuracy, the GT technique may reduce the denumerable system of 
equilibrium equations more than simple truncation as employed in Ackroyd [1984]. The reason for 
this is that the GT technique exploits the geometric tail behaviour of the stationary (imbedded) queue
length distribution. 

The third analytical approach is the matrix-analytic approach. This approach is extensively discussed 
in Neuts [ 198 I, 1989], and it can be used to determine the stationary distribution of multi-dimensional 
Markov chains with a discrete state space, which is infinitely large in at most one dimension. For a 
discrete-time queueing system with a Markovian arrival process, service times equal to one slot, and 
multiple on- and off-periods in a cycle, Alfa & Neuts [1995] use the matrix-geometric approach of 
Neuts [ 1981] to study the queue-length process. We mention that this system is more general than the 
one we consider for the GT technique, because Alfa & Neuts allow for an arrival process which may 
not be stochastically identical and independent for each cycle (although this dependency is of a special 
form). 

To apply the matrix-geometric approach, Alfa & Neuts [ 1995] have to solve a quadratic matrix 
equation first, and then a system oflinear boundary equations. The solution of the matrix equation can 
in general not be obtained analytically, but it has to be determined by, for instance, successive substitu
tions. However, if the size of the matrices involved becomes large (due to, for instance, lengthy cycles), 
if the degree of the polynomial is high, or if the utilisation is close to one, then the determination of 
this solution is rather time consuming. We finally remark that the matrix-geometric approach can be 
applied to more general phase-type service-time distributions than we consider for the GT technique. 
This generalisation, however, increases the computational effort (considerably), because the size of the 
matrix equation becomes larger and because this equation may not be quadratic, but a higher degree 
polynomial equation. 

To conclude this section, we mention four other results derived by analytical techniques, for the case of 
a Poisson arrival process. Haight [1959] and Buckley & Wheeler [1964] assume that the service times 
are equal to one slot, and these authors make the TLQ assumption. Haight obtains the conditional 
probability of the number of customers at the start of an cycle, given this number at the start of the 
preceding cycle, in terms of Poisson and Borel-Tanner distributions. Buckley & Wheeler determine the 
Laplace-Stieltjes transform of the joint distribution of the number of delayed customers and the total 
delay, and the transforms for the marginal probability distributions. The use of these two models is, 
due to the TLQ assumption, rather limited, because this assumption is certainly not valid for computer 
and production systems. Lam [I 977] and De Moraes & Rubin [ 1984] consider the case that on-periods 
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are equal to one slot. Lam assumes that the service times are also equal to one slot, and he redefines 
the service time of a customer as the time that this customer ;s at the head of the queue. Then, his 
system corresponds to an MIG I I queueing system with an exceptional first service, so that standard 
results can be used to derive the probability generating function of the number of customers in the 
system. The moments of the corresponding distribution can easily be obtained. De Moraes & Rubin 
assume that the service times are a generally distributed number of slots. They transform the service 
times of customers into the number of eye les customers are at the head of the queue. Moreover, they 
introduce low priority customers. These low priority customers arrive according to a Poisson process 
with such a rate that the server is (almost) never idle, and these customers have service times equal 
to one cycle. By relating this model to an MIG I 1 queueing system with non-preemptive priority, De 
Moraes & Rubin derive the Laplace-Stieltjes transform for the waiting-time distribution. The utility 
of these latter two queueing systems is, of course, rather limited due to the fact that the length of an on
period is equal to one slot. Furthermore. the relation with standard MIG I 1 queueing systems seems 
to be neither applicable to the case that on-periods consist of more than one slot, nor to multiple on
and off-periods in a cycle, nor to the modifications mentioned in Section 1.1. 

1.2.1.2 Services start at arbitrary time instants 

Jn this section, we discuss four techniques for studying queueing systems with periodic service, when 
services can start at arbitrary time instants. These techniques involve the determination of the perfor
mance measures of interest by using a system of differential or integral equations, reducing the analysis 
to that of a certain G I I G I 1 queueing system, the use of Laplace-Stieltjes transforms, and a decompo
sition of the queueing system. 

The first technique to be discussed is the use of differential or integral equations relating the quanti
ties of interest. Newell [ 1956] considers the case that the service times are deterministic and that the 
interarrival times of customers, which have a general distribution, are at least equal to a service time. 
Furthermore, if the queue is empty in an on-period, then it remains empty during the remaining part 
of the on-period (in other words, Newell makes the TLQ assumption). To determine the sojourn-time 
distribution, he derives a system of integral equations. Robillard &'Naor [1968] study the case that 
customers arrive according to a Poisson process and have exponentially distributed service times. By 
using differential equations for the queue-length distribution, they derive an expression for the average 
queue length in terms of the average queue length at the start of a cycle. 

The system of integral equations in Newell [1956] can in general not be solved analytically. There
fore, he suggests to solve this system approximately by successive substitutions, provided that the av
erage queue length at the start of an off-period is small compared to the average queue length at the 
start of an on-period. Robillard & Naor [ 1968] determine approximations for the unknown quantity 
for the case that the lengths of the on- and off-periods are short and for the case that these lengths are 
long, but they present no numerical results. 

The main drawback of the queueing system of Newell [ 1956] is the simplifying TLQ assumption. 
A drawback of the analysis in Robillard & Naor f 1968] is that this analysis is exclusively focussed on 
the average queue length as performance measure. By approximating these queueing systems, we can 
use the GT technique or the moment-iteration technique to obtain approximations of the performance 
measures for these systems. 
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As in Section 1.2.1.1, the analysis of some systems reduces to the study of Lindley's (integral) equa
tion. Mine & Ohno [1971] consider a general interarrival-time distribution, and they assume that a 
service time consists of a lost time and an actual service time, which have general distributions. Un
der the TLQ assumption, the virtual waiting-time process at the start of cycles can be described by 
Lindley's integral equation for the following G I I G I 1 queueing system. The interarrival times of cus
tomers are equal to the length of an on-period minus the total lost time in a cycle, and the service times 
are equal to the total actual service time of customers arriving in this cycle. 

The Lindley's integral equation Mine & Ohno [ 1971] obtain seems to be solvable in a few excep
tional cases only. They suggest to solve this equation by successive substitutions for the probability 
distribution of the virtual waiting time, but they present no numerical results. Despite the generality 
of the interarrival-time and service-time distributions, the system of Mine & Ohno is only reasonable 
for studying traffic-light queues. Furthermore, it seems that their technique cannot cope with multiple 
on- and off-periods in a cycle. In the same way as for the previous two models, we can derive approx
imations for the performance measures by the two techniques to be discussed in this monograph. 

Laplace-Stieltjes transforms are widely and fruitfully applied in the analysis of continuous-time queue
ing systems (see, for instance, Prabhu [1965] and Cohen [1982]). For a Poisson arrival process of 
customers with generally distributed service times, ~ahin & Bhat (1971] and Schassberger [1974] use 
these transforms to analyse queueing systems with periodic service. These authors consider the off
periods as service times of periodically arriving customers. ~ahin & Bhat study the virtual waiting
time process (including the work of periodic customers). They exploit the circumstance that this pro
cess is identical to the transient virtual waiting-time process in an MIG 11 queueing system during 
on-periods. To derive the Laplace-Stieltjes transform of the virtual waiting time, they have to solve an 
integral equation. This equation is formally solved by a Wiener-Hopf decomposition. Schassberger 
considers the periodic customers as customers with preemptive priority. Using Laplace-Stieltjes trans
forms, he derives a system of functional equations, which constitutes a Hilbert problem. He presents 
a formal solution to this problem, from which performance measures can in principle be obtained. 

The use ofLaplace-Stieltjes transforms involves the solution of a (system of) integral equation(s). 
Unfortunately, it does not seem possible to determine this solution explicitly. If the length of the off
period has a rational Laplace-Stieltjes transform, then ~ahin & Bhat [ 1971] can compute the moments 
of the virtual waiting time in terms of the roots of an equation. As we have already mentioned, it 
is in general quite hard to determine these roots. Further, it seems that these techniques do not lend 
themselves to analysing the modifications. 

Ott [1987b] studies the same queueing system as ~ahin & Bhat [1971]. He shows that the virtual wait
ing time consists of the virtual waiting time in an MIG I 1 queueing system (as if there are no off
periods) plus the virtual waiting time in a Dl Gl 1 queueing system, with interarrival times equal to 
the length of a cycle and service times equal to the time to empty an M 1 G I I queueing system which 
begins with an initial amount of work equal to the length of an off-period. So, the analysis reduces to 
that of a DIG I I queueing system and, hence, similar problems arise as in solving Lindley's (integral) 
equation as mentioned in Section 1.2.1.1. Ott [ 1987b] presents, however, a numerical approach based 
on Ott [l987a]. Numerical examples in Ott [1987a, 1987b] indicate that this approach works well. Fur
ther, Sengupta [ 1990] uses the decomposition of Ott [ 1987b] to approximate the average waiting time 
for independent generally distributed lengths of the on- and off-periods. Note that if the lengths of the 
on- and off-period are not constant, then service is not offered periodically in his model. For the case 
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of on- and off-periods of fixed duration, however, he shows no numerical results. This kind of decom
positions is well known to exist for MIG /1 queueing system;;; with so-called server vacations (see, 
for instance, Fuhrmann & Cooper [1985], Shanthikumar [1988], and Zhang, Vickson & Van Eenige 
[ 1995]), or for systems with (possibly, non-Markovian) additional inputs (see Ott [1984]). 

Unfortunately, this decomposition into M 1 G II and other single-server queueing systems does not 
seem to hold for multiple on- and off-periods in a cycle. Moreover, we see no opportunity to apply 
this decomposition technique to study the interesting modifications mentioned in Section 1. 1. 

1.2.2 Approximation techniques 

In Section 1.2. 1, we discussed analytical techniques; almost all of them leading to mathematical dif
ficulties. Because of these difficulties, some attention in the literature is focussed on the derivation of 
approximations. In this section, we discuss some of these approximations. Firstly, we discuss approx
imations that result from analysing fixed-cycle traffic-light queues. Mainly because of the TLQ as
sumption, the resulting expressions are not useful in the study of the queueing systems arising in other 
applications. Secondly, we present approximations resulting from analysing communication and com
puter systems. Thirdly, we give an approximation used to study a periodic production rule. Finally, 
we mention an approximation used to derive optimal periodic service policies. The last three approxi
mations yield insight into the performance of queueing systems with periodic service, but they do not 
seem to be extendible to the modifications. 

For the results obtained in studies of fixed-cycle traffic-light queues, we mention three results. Firstly, 
we present results based on fluid approximations, secondly, approximations obtained by fitting an ex
pression to simulated data, and, finally, results which arise from approximating the average queue 
length at the start of a cycle. 

Wardrop [ 1952] and Newell [ 1965] analyse queueing systems arising in the study of fixed-cycle 
traffic lights, and they make the common TLQ assumption. Wardrop considers the case of Poisson 
arrivals and deterministic service times. Newell allows for general interarrival-time and service-time 
distributions. By considering customers as a continuous fluid, both Wardrop and Newell derive ap
proximations for the average sojourn time. The approximation of Wardrop tends to underestimate the 
average sojourn time. Using numerical examples, Newell compares his approximations with those of 
Webster [ 1958] (to be discussed next) and shows that his best approximation is within 5% of Webster's 
approximation. 

Webster [ 1958] studies the same queueing system as Wardrop [1952]. Like Wardrop and Newell 
[ 1965], Webster gives an (approximate) expression for the average sojourn time. This expression con
sists of three terms, namely, the expression of Wardrop, the average sojourn time in an Ml Dll queue
ing system with adjusted service time, and a correction term obtained by fitting simulated data. The 
expression of Webster compares fairly well with simulations. 

Miller [1963], McNeil [1968], and Cowan [1981] also study fixed-cycle traffic-light queues. These 
authors assume deterministic service times and make the TLQ assumption. To derive an expression 
for the average sojourn time, these authors need the average queue length at the start of cycles. Miller 
and McNeil use Lindley's equation for this imbedded queue-length process, while this equation does 
not really apply. Both authors obtain an expression for the average sojourn time: Miller for the case 
of a general arrival process and McNeil for a compound Poisson arrival process. In case of Poisson 
arrivals, numerical results show that both expressions yield approximations close to those of Webster 
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[ 1958]. Cowan considers bursty arrivals. More precisely, the interarrival time of customers within a 
burst is supposed to be equal to one service time and the interarrival time between two successive bursts 
is assumed to be one service time plus a negative exponentially distributed amount of time. Cowan 
determines the average number of customers by evaluating a transient Markov chain iteratively, but he 
does not present any numerical results. 

Mainly because of the TLQ assumption, these approximations are not useful in the general setting 
of this monograph. 

In the study of communication and computer systems that allocate their capacity in a periodic fashion, 
Fischer [1977a,l977b], Ko & Davis [1984], Bruneel [1986], and Keilson & Servi [1990] determine 
expressions for the average waiting time or sojourn time of customers. For a Poisson arrival process 
and generally distributed service times, Fischer uses a diffusion approximation to derive a closed-form 
expression for the (approximate) average waiting time of a customer. This expression gives fairly good 
results compared to simulation results. Ko & Davis assume a Poisson arrival process and determinis
tic service times. They use Lindley's equation to describe the queue-length process at the start of on
periods approximately and apply the generating-function technique. To compute the average sojourn 
time, they obviously face the aforementioned numerical problems arising in this technique. Bruneel 
generalises the model of Ko & Davis to general arrival processes, and he applies the same technique. 
Keilson & Servi study the same model as Fischer and assume that the off-periods correspond to pe
riodically arriving customers who have preemptive priority. The work-load process of these periodic 
customers is approximated by a limit of compound Poisson distributions. For this system, they give 
an expression for the average and the variance of the sojourn time of ordinary customers. Numerical 
results are in line with simulated results. 

In the context of production centres, Federgruen & Green [ 1986] and Dellaert [ 1988] evaluate peri
odic production rules for the case that customers arrive according to a Poisson process. Federgruen & 
Green derive bounds and approximations for the average waiting time, the probability of waiting, and 
the queue-length distribution for general service-time distributions. Simulation results show that the 
approximations for the average waiting time and the probability of waiting are fairly accurate. Dellaert 
considers the model of Robillard & Naor [ 1968], that is, Poisson arrivals and exponentially distributed 
service times. He decomposes the sojourn time into three parts, namely, the time until the next on
period (if a customer arrives during an off-period), the time to serve the customer and the customers 
in front of him, and the lengths of the off-periods occurring during this service. From this decompo
sition, he derives an approximation for the average sojourn time in terms of the average number of 
customers at the start of cycles. This latter quantity can be studied by means of the transient queue
length process in an MIMI 1 queueing system. Since Dellaert is interested in minimising costs, he 
needs a nicer expression for this quantity. He gives two expressions, namely, a shadow approximation 
and a weighted average of the shadow approximation and the average number of customer waiting 
in an MIMI I queueing system. The shadow approximation is the average number of customers in 
an MIMI I queueing system with the same arrival rate as for the original system, but with the mean 
service times adjusted such that the utilisation of this system is equal to that of the original system. 
Numerical results show that the shadow approximation performs very poorly and that the weighted 
average is within 10% of the exact values. 

Finally, Borst, Boxma, Harink & Huitema [ 1994]look for optimal rules for polling systems according 
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to a fixed-time polling scheme. In addition, they consider gated service policies. More specifically, 
they assume that only those customers are served in an on-period that were in the system at the start 
of this on-period. Furthermore, they suppose that all these customers are served within this on-period. 
They decompose the waiting time of a customer in two parts. The first part is the time period between 
the arrival instant of the customer and the start of the first on-period after this arrivaL The second part 
is the time period from the start of this on-period until the time instant at which the service of this 
customer begins. By approximating this second part, they obtain an approximation for the average 
waiting time. 

1.2.3 Conclusions 

In the literature, many techniques and approximations have been used and proposed to study queueing 
systems with periodic service. Most of the analytical techniques are applicable to a limited class of 
these systems only, or they yield results that are merely interesting from a theoretical point of view. 
Exceptions are the iteration method in Ackroyd [ 1985] and the matrix-geometric approach used in 
Alfa & Neuts [ 1995]. The drawbacks of these latter two approaches are related to their computational 
effort. Further, many analytical techniques do not seem to be suitable for studying modifications of 
these systems or extensions to multiple on- and off-periods in a cycle. 

An important part of the approxitnations is restricted to the study of systems with the TLQ as
sumption. These systems are too restrictive to act as reasonable models for analysing computer or 
production systems. Moreover, the approximations are mainly focussed on the average queue length 
or sojourn time, which is often insufficient. 

The GT technique and the moment-iteration technique to be developed in this monograph are appli
cable to an important and broad class of queueing systems with periodic service and some interesting 
modifications. These techniques are also efficient as compared to the ones discussed in Sections 1.2.1 
and 1.2.2. .. 

To conclude this section, we briefly m¢ntion three other systems that are related to queueing sys-
tems with periodic service. Firstly, the off-periods as faced by customers of a certain queue can be 
regarded as server vacation periods. So, queueing systems with periodic service can be viewed as spe
cial queueing systems with server vacations. For a survey on these latter systems, we refer to Doshi 
( 1986, 1990]. Secondly, the off-periods may correspond to time periods of scheduled maintenance, so 
that queueing systems with periodic service can be viewed as special preventive maintenance models 
(see, for instance, Valdez-Flores & Feldman [ 1989] for a survey on such models). Finally, as pointed 
out in Sections 1.2.1 and 1.2.2. the off-periods can be viewed as service times of higher priority cus
tomers. So, queueing systems with periodic service can be regarded as special priority systems. 

1.3 Outline of the monograph 

This monograph is concerned with the development of two techniques for the determination of the 
stationary queue-length distribution in queueing systems with periodic service. Furthermore, an algo
rithm is developed to compute the sojourn-time distribution of customers, given the stationary queue
length distribution. 

To illustrate the techniques for analysing the queue-length process, in Chapter 2, we shall analyse 
this process in one of the queues for a queueing system with periodic service. The sojourn time of 
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2 
A Queueing System with Periodic Service 

2.1 Introduction 

In this chapter, we first demonstrate two kinds of numerical problems that can occur when analyti
cal techniques are used for determining the stationary distribution of Markov chains. These problems 
concern the determination of the roots of a characteristic equation and, if all roots have been computed 
accurately, the clustering of these roots; substituting them into a system of regularity conditions leads 
to a nearly linearly dependent system. After that, we present the main ideas of the two numerical tech
niques, which will be explored further in this monograph. For the examples we consider, it appears 
that these two techniques are numerically stable. 

As an illustration, we consider a discrete-time queueing system with periodic service. As men
tioned in Chapter l, the queue-length processes of customers do not affect each other, so that they 
can be analysed separately. Therefore, in this chapter, we consider customers of one queue only. Cus
tomers are supposed to arrive according to a Bernoulli process, and they are assumed to have determin
istic service times of one time unit. The time periods during which the server is attending (on-periods) 
and not attending (off-periods) this queue are assumed to be of fixed duration. These assumptions 
imply that, once the amount of work upon arrival is known, the sojourn time of a customer is deter
ministic. So, it suffices to study the queue-length process only. 

We note that this queueing system is the same one as previously introduced by Beckmann, McGuire 
& Winsten [ 1956], Newell [ 1960], and Meiss! [ 1962]. These authors use this model for analysing the 
delay of cars at an intersection which is governed by a fixed-cycle traffic light. 

The number of customers at the start of otT-periods can be described by a one-dimensional Markov 
chain. The equilibrium equations of this chain constitute a homogeneous linear difference equation of 
finite order with constant coefficients. So, the solution of these equations is a linear combination of 
powers. Two standard analytical techniques to determine this linear combination are the generating
function technique (as used by the above authors) and an approach (which is called the method of 
particular solutions in Feller [ 1968]) that directly seeks a linear combination of powers satisfying this 
equation. Both techniques face the aforementioned numerical difficulties. 

17 
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The first numerical technique to be discussed in this chapter exploits the fact that the tail of the 
stationary distribution of the Markov chain is asymptotically geometric. This tail behaviour will be 
utilised in the same way as in Tijms & Van de Coevering [1991]. The second numerical technique 
exploits the circumstance that the Markov chain corresponds to the waiting-time process in a DIG I I 
queueing system with binomially distributed service times. This waiting-time process (and, hence, 
the queue-length process) is studied by a discrete version of the moment-iteration method described 
in De Kok [ 1989]. This technique uses the first two moments of the service-time distribution only, and, 
moreover, it uses a novel procedure for fitting discrete distributions on the first two moments. 

The outline of this chapter is as follows. In Section 2.2, we present the queueing system with periodic 
service in detail and introduce the Markov chain describing the number of customers at the start of 
off-periods. In Section 2.3, the method of particular solutions and the generating-function technique 
are applied to determine the stationary distribution of this chain, and their numerical instabilities are 
illustrated. The numerical technique exploiting the geometric tail behaviour (henceforth, abbreviated 
as GT technique) is discussed in Section 2.4. The moment-iteration technique (or, in brief, the MI 
technique) is the topic of Section 2.5. Finally, the main conclusions of this chapter are summarised in 
Section 2.6. 

2.2 The model and the imbedded queue-length process 

We consider a single-server queueing system in discrete time by dividing the time axis into intervals 
of equal length. Such an interval is called a slot. Customers are supposed to arrive according to a 
Bernoulli process with parameter p. This means that in each slot exactly one customer arrives with 
probability p, and no customer with probability I - p. In other words, the interarrival times have a 
geometric distribution with parameter p. The service times of customers are deterministic and equal 
to one slot. 

The server renders service periodically: there is service during on-periods and no service during 
off-periods. The length of the off-periods and of the on-periods are both assumed to be constant. An 
off-period and the next on-period together are called a cycle. Hence, the length of a cycle is constant. 
The number of slots in a cycle is denoted by C and the length of an on-period is equal to A slots, with 
A and C non-negative integers. The slots in a cycle are numbered I, 2, ... , C. During a slot in an 
on-period (an on-slot), the server is either idle or rendering service to a customer. In Figure 2.1, we 
give a representation of the on- and off-periods as faced by the customers. 

A -
off off 

c 

Figure 2.1: The on- and off-periods for the customers. 

Customers are served in the order of their arrival. Further, we assume that Cp < A, so that the av-
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erage number of slots of work (that is, the average number of customers) arriving in a cycle is strictly 
less than the service capacity of the server per cycle. Observe that the queue length cannot increase 
in an on-period, because in each slot at most one customer can arrive and the service time of a cus
tomer is exactly equal to one slot. This observation implies that the traffic-light queue assumption (as 
introduced in Section 1.2.1) is implicitly made. 

Our purposes are the determining of the stationary queue-length distributions at the slot boundaries 
in the cycle and of the sojourn-time distribution of customers. If the number of customers upon arrival 
is known, then the sojourn time of an arriving customer is deterministic, because the service times as 
well as the lengths of the on- and off-periods are deterministic. This observation implies that the deter
mination of the sojourn-time distribution reduces to the determination of the queue-length distribution 
at arrival instants. Before analysing the queue-length process, we introduce some conventions. 

Customer arrivals as well as the start and completion of the service of a customer occur at slot 
boundaries. For convenience, we assume that arrivals and the start of the service of a customer occur 
just after slot boundaries, and that service completions (that is, customer departures) occur just before 
slot boundaries, see Figure 2.2. In the sequel, a customer departing at the n-th slot boundary in the 
cycle (that is, the boundary between slot n I and slot n) is said to depart in slot n- 1, and a customer 
arriving at this slot boundary is said to arrive in slot n. Finally, the service of a customer arriving at an 
empty queue during an on-period (that is, arriving when the server is idle) begins immediately. 

slot n -I t slot n 

! I 

Figure 2.2: A customer departure in slot n- I, and a customer arrival in slot n. 

For the analysis of the queue-length process, we consider the number of customers at the start of 
cycles. More precisely, we consider the number of customers at the first slot boundary of cycles. So, 
we look at the system just after a possible departure in the last slot of the preceding cycle, but just before 
a possible arrival in the first slot of the forthcoming cycle. Let Xk denote the number of customers at 
the start of the k-th cycle, see Figure 2.3. 

cycle k-1 cycle k cycle k+l 

Figure 2.3: The imbedded time epochs. 

The stochastic process { Xk- k I, 2. 3, ... ) is a discrete-time Markov chain with state space the set 
of non-negative integers {0, l, 2, ... } and X1 i, where i is a possibly random non-negative integer. 
This process is also called the imbedded queue-length process. The Markov chain is easily seen to be 
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irreducible and aperiodic, and since the average number of slots of work arriving per cycle is strictly 
less than the service capacity per cycle (that is, Cp < A), the chain is ergodic (cf. Pakes [1969]). 
Hence, this chain has a unique stationary distribution {rr 1, j = 0, 1, 2, ... } . 

To determine this stationary distribution, we use the recurrence relation 

(2.1) 

where Nk is the number of arrivals in the k-th cycle. This relation can be derived as follows. As men
tioned earlier, the number of customers in the system cannot increase during an on-period. From this 
observation, Xk+I is equal to the maximum of the number of customers at the end of the off-period in 
the k-th cycle plus the number of customers arriving during the on-period in the k-th cycle minus the 
service capacity A per cycle, and zero. Since the number of customers at the end of the off-period in 
the k-th cycle is equal to the sum of Xk and the number of customers arriving during this off-period, 
relation (2.1) is an immediate consequence. This relation has already been pointed out by Beckmann, 
McGuire & Winsten [ 1956] in their study of a fixed-cycle traffic-light queue. Furthermore, this re
lation naturally appears in the study of queueing systems with bulk service (see, for instance, Bailey 
[1954b], and Downton [1955,1956]) and in the analysis of a periodic-review (R, S) inventory system 
(cf. De Kok [1989]). 

In Section 2.5, we propose a moment-iteration technique for approximating the stationary distribu
tion of the Markov chain. This technique exploits the fact that relation (2.1) corresponds to Lindley's 
equation for the waiting time Xk+1 of the (k + 1)-st arriving customer in aD/ G! 1 queueing system. 
In the next section, we present two standard analytical techniques for the determination of this distri
bution, and we demonstrate that applying these techniques leads to numerical problems, even for rel
atively small C and A. In Section 2.4, we utilise the fact that the stationary distribution has an asymp
totically geometric tail. 

2.3 Two analytical techniques 

The stationary distribution {rr1, j = 0, l, 2, ... } is the unique normalised solution of the system of 
equilibrium equations of the Markov chain. More specifically, when p;,1 denotes the stationary tran
sition probability from state i to state j, that is, for all integers k :::: 1, 

Pi.J := Pr{Xk+l = }IX• i}. i, j = 0, 1, 2, .... 

this distribution is the unique normalised solution of the equations 

Jri JroPO.J + lrJPl.J + · · · + lrJ+APJ+A.i• j =0, 1,2, .... (2.2) 

It is clear that, given that there is at least one customer at the start of a cycle, the server cannot have 
been idle during the on-period of the preceding cycle. The reason for this is that, as mentioned earlier, 
the queue length cannot increase during an on-period. As a result, the probabilities of transitions to 
states j, with j > 0, depend only on the number of arriving customers in the preceding cycle and not 
on the arrival pattern inside this cycle. 

To show that p;,1dependson j- i only, for j > 0, consider the recurrence relation (2.1) and assume 
that Xk+l = j > 0. Then, we have 

j i +A}. 0 ~ j- i +A ~ C, 
otherwise, 

(2.3) 
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from which it immediately follows that, for j positive, Pi.j only depends on j i and is determined by 
the number of arrivals in a cycle. Further, the number of arrivals in a cycle has a binomial distribution 
with parameters C and p, that is, for all k = I, 2, 3, ... , 

( C) h C-h 
ah := Pr{Nk =h)= h p (I - p) , h 0, I, 2, ... , C. (2.4) 

The transition probabilities p; 0 are given by 

(2.5) 

From relations (2.3), (2.4), and (2.5), the equilibrium equations (2.2) can be partitioned as follows 

A A-1 

7To = 7To L 0'.11 + 7rl L Cit, • · ·- 7T;l(Yo, 

h=O h=O 

l.::::j.::::C-A-l, 

j >C-A. 

(2.6) 

(2.7) 

(2.8) 

The equations (2.8) have a constant structure and hold for all states, except for the first C - A at the 
boundary of the state space. Therefore, we call the equations (2.6) and (2.7) the boundary equations 
and the equations (2.8) the inner equations. 

As already mentioned, the stationary distribution is the unique solution of the equilibrium equa
tions and the normalisation equation 

7T.: I. (2.9) 

Taking a closer look at the inner equations, we notice that these equations form a C-th order homoge
neous linear difference equation with constant coefficients. Then, we know from the theory of differ
ence equations (see, for instance, Henrici [ 1968]) that there are C (not necessarily distinct) solutions of 
the form 7T i = zi of this equation. By linearly combining these solutions, we may satisfy the boundary 
equations. However, only for the solutions ;: 1 with lzl < 1 the coefficients in the linear combination 
can be non-zero. because otherwise this linear combination cannot satisfy equation (2.9). So, the sta
tionary distribution is in essence a linear comhination of geometric distributions. 

There are two standard techniques for the solving of this difference equation with its boundary 
equations. The first technique directly seeks solutions of the form 7Tj = zl satisfying the inner equa
tions and, after that, it uses a linear combination of these solutions zi with I z I < I to satisfy the bound
ary equations and the normalisation equation. Adopting the terminology in Feller [1968], we denote 
this technique by the method of particular solutions. The other technique is the generating-function 
technique. We begin with discussing the former technique for solving the equilibrium equations and, 
thereafter, we discuss the latter one. 
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2.3.1 The method of particular solutions 

For the method of particular solutions, we substitute rr j = zj into the inner equations (2.8) and divide 
by zj-(C-AJ to obtain 

(2.10) 

where the last equality results from using (2.4) and Newton's binomial formula. This equation is also 
known as the characteristic polynomial equation of the difference equation. 

Equation (2.1 0) has exactly C solutions in the complex plane. But, only those solutions zj of the 
difference equation with lzl < I can satisfy equation (2.9). As we shall prove for a more general case 
in Chapter 3, we have the following lemma concerning the number of solutions z of the characteristic 
polynomial equation with lzl < 1. 

Lemma 2.3.1 Equation (2.10) has exactly C- A roots inside the unit circle, if Cp < A. 

Proof. See Lemma 3.3.1 in Chapter 3. D 

Let z1, z2 , ••• , Zc-A denote these C- A solutions inside the unit circle of the characteristic poly
nomial equation (2.1 0). Clearly, any linear combination of the solutions zt. with lzk I < I, is a solution 
of the inner equations (2.8) as well. We now try to find a linear combination of these C- A solutions 
zf to satisfy theC-A boundary equations (2.6) and (2.7), and the normalisation equation (2.9). 

Although we have C- A solutions zf, these solutions may not be all distinct, so that the number 
of independent solutions may be insufficient for solving the boundary equations and the normalisation 
equation. The next lemma states how to obtain C- A independent-solutions from the C- A roots of 
equation (2.1 0), which is a familiar result from the theory of difference equations. 

Lemma 2.3.2 Let equation (2.10) have the K distinct solutions z1, z2 , ••• , ZK inside the unit circle, 
with K .:::; C- A, and let solution Zk have multiplicity mk, so that 2::=1 mk = C- A. Then, the K 
sequences with elements zt. jzt .... , j"''- 1zi. with k =I, 2, ... , K, constitute a system ofC- A in
dependent solutions for the difference equation (2.8). 

Proof. See, for example, Theorem 5.3 in Henrici [ 1968]. D 

To simplify the notation, we assume that the solutions z 1, z2, ... , Zc-A are distinct (Feller [ 1968] 
remarks that these solutions are distinct in most practical cases). So, we have C- A independent so
lutions zf which satisfy the inner equations, and any linear combination of these solutions 

C-A 

1fj = L AkZf. (2.11) 
k=l 

is a solution of these equations as well, where the Ak 's denote complex numbers. We now show that 
this representation of rr j can be used to solve the boundary equations and the normalisation equation. 

We substitute the form (2.11) into the boundary equations (2.7), forgetting for the moment the equi
librium equation for state j = 0. Recall that the form (2.11) already satisfies the inner equations. This 
system of boundary equations forms a system of C - A - I homogeneous linear equations with the 
C- A unknown coefficients A.k. Hence, this system has a non-trivial solution, that is, a non-null solu
tion. Notice that, since lzk I < I for all k, 

(2.12) 
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Consider any non-trivial solution for the coefficients )..k of the equilibrium equations (2. 7) and (2.8). 
Then, since adding the equations (2.7) and (2.8) yields the equation (2.6), this solution automatically 
satisfies the equilibrium equation (2.6) for state j = 0. So, we have a solution (2.11) of the equilibrium 
equations. Since this solution satisfies (2.12), it follows from a Foster's criterion (cf. Foster [1953]) 
that this solution, after normalising it (using equation (2.9)), is equal to the stationary distribution. 
Furthermore, this implies that the boundary equations (2.7) and the normalisation equation constitute 
a system of linearly independent equations, so that the coefficients )..k are unique and can be obtained 
directly by solving this system of equations (of course, after substituting the form (2.11 )). 

So, in principle, we have now determined the stationary imbedded queue-length distribution, since 
the solution (2.11) satisfies the equilibrium equations and the normalisation equation. However, to 
use this solution, we have to determine the C - A roots z inside the unit circle of the characteristic 
polynomial equation (2.1 0) and to solve a system of C- A linear equations for the determination of the 
coefficients )..k of the linear combination of z'. Unfortunately, applying this analytical technique leads 
to numerical difficulties for relatively small C already, as we shall see below. Firstly, we show that it is 
in general hard to determine all roots accurately for polynomial equations, even if these equations are 
of rather low degree. Secondly, we illustrate that, even if we are able to compute all roots accurately, 
(some of) these roots may be closely clustered, so that the reduced system of boundary equations (2.7) 
and the normalisation equation (2.9) are nearly singular. Both numerical problems are well known to 
be hard to overcome in general (see, for instance, Press, Flannery, Teukolsky & Vetter ling [ 1986]). 

To illustrate the first problem, we have to be able to compute the roots of the characteristic polyno
mial equation (2.10) accurately, at least for some specific problems, and to compare these roots with 
the roots as computed by applying a standard numerical method. For computing these roots accurately, 
we exploit the structure of the characteristic polynomial equation. 

We recall that the characteristic polynomial equation (2.10) reads 

z(I-A/CJC = (p + (1 _ p)z)c. (2.13) 

Raising both sides of this equation to the power 11 C, the C roots of this equation can be obtained by 
solving the C equations 

zl-A/C = ifh(P +(I- p)z), k = 0, 1, ... , C- 1, (2.14) 

with rpk satisfying rpf = 1, so that rpk = e2"ik/C with i = R. If we divide A and C by their greatest 
common divisor, so that A/ C becomes q/ r, say, and raise both sides of equation (2.14) to the power 
r, then this equation becomes 

zr-q = rp~(p +(I - p)z)'. (2.15) 

If r is rather small, then the r roots of this equation can easily be computed accurately by, for instance, 
the modified Laguerre method. Hence, the determination of the C roots of the characteristic polyno
mial equation reduces to solving C I r polynomial equations of the degree r. 

To illustrate that the finding of all roots of a polynomial equation generally leads to numerical in
stabilities, we use the following example. Suppose that 20% of the service capacity is reserved for 
rendering service to customers, that is, A = 0.2C. Customers arrive at a rate p = 0.17, so that the 
effective utilisation Cpj A is 0.85. We consider four cases, namely, the cycle length Cis equal to 10, 
20, 40, and 80 slots (so, the length A of the on-period is equal to 2, 4, 8, and 16 slots, respectively). 
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Since the solutions of equation (2.13) are also solutions of the same equation after raising both 
sides to the same power, the solutions of the equation for the case C = 10 are also solutions for the case 
C = 20, the solutions for the case C = 20 are solutions for the case C = 40 as well, and the solutions 
for the case C 40 are solutions for the case C 80 too. In Figure 2.4, we depict the computed 
values of solutions inside the unit circle of the characteristic polynomial equation (2.10) for the four 
examples. These roots are computed by applying the modified Laguerre method to this equation using 
double machine precision. In this figure, z 1 denotes the largest of these roots in absolute value, which, 
as we shall prove later on in Lemma 2.4.1, is the unique positive root inside the unit circle. The ovally 
shaped contours in this figure denote the solutions of the characteristic polynomial equation when C 
tends to infinity. These roots are given by the relation 

lzlr-q IP +(I- p)z)l'. 

For all examples, the computed values should lie on this ovally shaped contour. The figure shows that 
the computed values lie on the contour when Cis small only. However, when C gets larger, the number 
of the computed values which are not lying on this contour increases rapidly, which indicates that the 
precision is insufficient. 

From Figure 2.4, we conclude that the determination of all roots (inside the unit circle) of poly
nomial equations of rather low degree is hard already. However, for the queueing system of Section 
2.2, we can still determine all roots of the characteristic polynomial equation accurately for certain 
parameter settings (recall equation (2.15)). We now show that, although the roots can be computed 
accurately, (some ot) these can be closely clustered, so that the reduced system of boundary equations 
(2.7) and the normalisation equation (2.9) are nearly linearly dependent. 

For the examples C = 20 and C = 40, we depict in Figure 2.5 the roots inside the unit circle of 
the corresponding characteristic polynomial equation, which are computed by applying the modified 
Laguerre method to equation (2.15). This figure shows that, already for a relatively small number of 
roots, many of these roots can be very closely clustered. 

We solved the reduced system of boundary equations (2.7) and the normalisation equation (2.9) 
(after substituting the form (2.11) and the computed roots) for the coefficients 'A* of the linear combina
tion. In Table 2.1, we list some of the 'stationary probabilities' resulting from the method of particular 
solutions (MPS) for the two examples by using double machine precision, and we compare them with 
the exact values. The exact stationary probabilities are obtained analytically by utilising the structure 
of this reduced system of boundary equations, which yields (see Lemma 3.3.3 in Chapter 3) 

C-A n (zt -1) 

'Ak (l zd-c_-A ___ _ 

n( -1 -1) z.i - zk 

.i=l 
j#k 

For the case C 20, the numerical results are satisfactory. But already for C = 40, some of the roots 
are so closely clustered that the reduced system of boundary equations and the normalisation equation 
are nearly singular, which leads to numerical problems. 

From these examples, we conclude that solving the equilibrium equations by the method of par
ticular solutions may be suitable from a numerical point of view for small problems only. We remark 
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Im(z) C=l0,A=2 Im(z) C=20,A=4 

Im(z) C=40,A=8 C=80,A=l6 

Figure 2.4: The computed values of the roots of equation (2.10) inside the unit circle for the four ex-
amples with p 0.17 and with z1 0.676 the unique positive root inside the unit circle. 

that increasing the machine precision enables one to evaluate larger numerical examples accurately by 
this method than the examples above, but the numerical problems will occur eventually. For instance, 
lengthening the cycle leads to similar numerical problems. 

2.3.2 The generating-function technique 

Another standard technique for solving the equilibrium equations which form a homogeneous linear 
difference equation of finite order with constant coefficients is the generating-function technique. As 
mentioned before, Beckmann, McGuire & Winsten [1956], Newell [1960], and Meiss! [1962] apply 
this technique to this model which, for their case, describes the queue-length process of cars at an 
intersection governed by a fixed-cycle traffic light. 

For this technique, we define the probability generating function 

00 

n(z) L.>·jz1
, 

J~O 
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lm(z) C=20,A=4 Im(z) C=40,A=8 

--t------t-+----~-Re(z) -z, 21 

Figure 2.5: The roots of equation (2.10) inside the unit circle for two examples with p = 0.17 and with 
z 1 = 0.676 the unique positive root inside the unit circle. 

lrj 

c j Exact MPS 
20 0 0.50948 0.50948 

1 0.14456 0.14456 
2 0.10896 0.10896 
3 0.07643 0.07643 

40 0 0.60476 0.60156-0.01563i 
0.11049 0.11133+0.0039li 

2 0.08594 0.08594+0.00044i 
3 0.06211 0.06211 +0.00098i 

Table 2.1: Some 'stationary probabilities' computed by the method of particular solutions (MPS) and 
the exact values. 

which is well defined for lzl :S 1, since the Markov chain has a unique stationary distribution. Multi
plying the equations (2.6), (2.7), and (2.8) by zi, and adding, we obtain after some algebra 

zAf: (I:o- zi+h-A)a 11 ) rr1 
J=O h=ll n (z) = ----'----c-----

zA- La"z" 
zA- (pz +(I - p))c 

(2.16) 

h=ll 

Since a probability generating function converges for lzl :S I, it may not have singularities inside and 
on the unit circle. Hence, the numerator of (2.16) must have the same roots inside and on the unit circle 
as the denominator of (2.16), and with the same multiplicity. 

Lemma 2.3.3 The denominator of (2.16) has exactly A roots inside and on the unit circle, if Cp < A. 
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Proof. See Lemma 3.3.4 in Chapter 3. 0 

This result also follows from Lemma 2.3.3, because the roots of the characteristic polynomial equa
tion (2.1 0) are the reciprocals of the zeroes of the denominator of (2.16). This is easily verified by 
dividing the characteristic polynomial equation by zc and comparing the resulting equation with the 
equation that the denominator is equal to zero. 

We denote the A roots in Lemma 2.16 by ~C-A+I, ~C-A+Z· ... , ~c and show, by similar arguments 
as in Bailey [ 1954b] and Meiss! [ 1962], that they are distinct. 

Lemma 2.3.4 The roots ~C-A+I, ~C-A+Z· ... , ~care distinct. 

Proof. Suppose that~ is a multiple root of the denominator of (2.16) with 1~1 .::: I. Then,~ is a solution 
of 

and its derivative 
A~A-1 = Cp(p~ +(I- p))C-1. 

Dividing these two equations and rewriting yields 

~ = A (I- p). 
(C- A)p 

Clearly, the right-hand side of this latter equality is positive. Furthermore,~ is a root inside or on the 
unit circle, so that we must have 

A(l- p) < I. 
(C- A)p -

However, this inequality implies A _::: Cp, which is a contradiction with the ergodicity assumption for 
the Markov chain. Thus, the assumption that the root~ has multiplicity larger than one is incorrect, so 
that we conclude that the roots ~C-A+I· ~C-A+Z· ... , ~care distinct. 0 

The stationary probabilities IT0 , IT 1, ... , IT A-I must satisfy the conditions that the numerator and 
denominator of (2.16) have the same zeroes inside and on the unit circle. These conditions are also 
known as regularity conditions. Clearly, z = I is a root of the denominator, and this is also a root of 
the numerator, irrespective of the values of IT1, with j = 0, I, ... , A- I. Hence, this root, ~C-A+I, say, 
does not restrict the values of these stationary probabilities. Substituting the other roots into the numer
ator leads to a system of A- 1 homogeneous linear equations with the A unknowns ITo, IT 1, .•. , ITA-!· 

By adding the normalisation equation, that is, lim,~ 1- n (z) = I, to this system, the solution of these 
A equations yields the stationary probabilities ITo, IT 1, ... , IT A-I, since these A equations are linearly 
independent. 

Lemma 2.3.5 The system of A- I equations 

k = C- A+ 2. C- A+ 3, ... , C, 

with the normalisation equation lim,_, 1- n (z) = I is a system of A linearly independent equations 
with the A unknowns IT11 , IT1, ... , IT A-1· 
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Proof. For convenience, we order this system of A equations such that the first condition is the nor
malisation equation. This ordered system of A equations can be written in matrix notation as A 1r A = 
b, where 1r A denotes the column vector (rr0 , rr 1, ••• , rr A-I) and b the column vector with first entry 
A Cp (after elaborating the normalisation equation) and the other entries equal to zero. The matrix 
A has as first row the row 

and, form= 2, 3, ... , A, as m-th row the row 

( 

A-1 

t;c~~-A+IIl 

If this system of equations is linearly independent, then the matrix A should be nonsingular. We show 
that linearly combining the columns of this matrix yields a nonsingular matrix, so that the matrix A is 
nonsingular. 

We initialise k = A and execute the following steps. Firstly, we multiply the k-th column with 
lfa0 • Secondly, we subtract, form = I, 2, ... , k- I, from the m-th column ak-m times the new k-th 
column (that is, the k-th column after multiplying). Finally, we set k := k- 1, and repeat these two 
steps, if k > 0, and otherwise, we stop. 

After executing the above steps, we have the matrix 

A 

~t:-A+2 
~LA+3 

A 

~~-A+2 - ~C-A+2 
~t:-A+3 - ~C-A+3 

Subtracting column k + 1, for each k = I, 2, ... , A I, from the column k, and then dividing, for 
k 2, 3, ... , A, row k by ~C-A+k l, yields the matrix 

~C-A+2 
Sc-A+3 

~~-1 

This matrix is of a Vandermonde-type (see, for instance, Bellman [1970]), because by Lemma 2.3.4 
the roots ~b k = C A + 2, C A+ 3, ... , C. are distinct. Hence, this matrix is nonsingular, so that 
the matrix A is nonsingular and the proof is complete. D 

Since we can now determine the stationary probabilities 3i'th rr 1, •.• , Ji'A-I• the final step of the 
generating-function technique is to invert the probability generating function f1(z). To invert the prob
ability generating function (2.16), we first divide both the numerator and denominator of (2.16) by 
-ac, and we denote the resulting numerator and denominator by N(z) and D(z), respectively. Fur
ther, the C A roots of D(z) outside the unit circle are denoted by ~ 1 • ~2 •••. , ~C-A· 
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Since the terms (z ~. ), fork C- A+ I, C- A+ 2, ... , C, appear in the numerator N(z) as 
well as in the denominator D(z), they cancel out. So, under the assumption that all roots ~k are distinct, 
with k l. 2, ... , C- A, n (z) can be expanded into partial fractions 

N( ) C-A 
n(z) = _!:._ = L Ilk 

D(z) <=t ~. z 
(2.17) 

where the Ilk's denote the coefficients of the partial-fraction expansion. The coefficients 1'/k can be 
determined explicitly. 

If the root ~k has multiplicity m, with m > 1, then we should expand the probability generating 
function into the partial fractions 1/(~,- z), 1/(~,- z)2 , •.• , 1/(~k- z)"'-1• 

For the determination of Ilk (see, for instance, Jury [1964]), we multiply relation (2.17) by z ~k. 

let z tend to ~k. and employ l'Hopital's rule, to obtain 

The derivative of D(z) is obviously 

so that 

I
. -N(z)(z ~.) 
!ill -----'--'-

z.->1;; D(z) 

c c 
D'(z) = I:U<z-O. 

i=l j=l 
pfc.i 

c 
D' (~d n <~k - ~). 

)=I 
i# 

(2.18) 

The probability generating function n (z) can now easily be inverted, so that the stationary distribution 
is (again) expressed as a linear combination of geometric distributions 

C-A Ilk ( I ) .I 
Jfj= I:- -

k=i ~k ~k 
(2.19) 

To apply the generating-function technique, we again have to determine the roots of a polynomial 
equation. But, now we have to compute all these roots: inside, on, and outside the unit circle. Fur
ther, we have to solve a system of A equations for the determination of the stationary probabilities 
1f0 , 1f1, •••• 1f A 1• The coefficients Ilk of the partial-fraction expansion can be given explicitly. Unfor
tunately, applying this technique leads to similar numerical problems as the previous technique. Since 
we determine the roots of an equation that is basically the same as the characteristic polynomial equa
tion (2.10), we omit illustrating the problems resulting from numerically computing these roots. We 
only show that the clustering of the roots leads to a nearly singular system of equations for the deter
mination of the stationary probabilities 1fo, :rr 1, ... , 1f A-t· To show this, we again have to be able to 
compute all roots accurately. 

Using the same arguments as for the derivation of equation (2.14 ), one easily verifies that the de
termination of the C roots of the denominator of (2.16) reduces to solving the C equations 

<fk(pz+O-p}), k O,I, ... ,C-1, 
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with fPk = e21rik!C and i = R. So, if A and Care divided by their greatest common divisor, then 
we have that A/C becomes qfr, say. Consequently, solving a polynomial equation of the degree C 
reduces to solving C I r polynomial equations of the degree r 

zq = fP',(pz + (l p))'. (2.20) 

Suppose that 62.5% of the service capacity is reserved for servicing customers, that is, A= 0.625C. 
The arrival rate of customers is 0.5, so that the effective utilisation Cp/ A is equal to 0.8. We consider 
three cases, namely, C = 16, C = 40, and C = 80 (and so, A is equal to 10, 25, and 50 slots, respec
tively). 

In Figure 2.6, we depict the roots inside the unit circle of the denominator of relation (2.16) for 
the case C = 40 and C = 80. These roots are computed by applying the modified Laguerre method to 
(2.20) with r = 5 and q = l. 

Im(z) 
1 

C=40,A=25 Im(z) 
1 

C=80,A=50 

Figure 2.6: The roots of the denominatoN~/'(2. 16) inside the unit eire lefor two examples with p = 0.50. 

The roots inside the unit circle and the normalisation equation limz-. 1- n (z) = 1 are used to com
pute the stationary probabilities rr0, rr1, ... , rrA-I· In Table 2.2, we list the resulting stationary prob
abilities (OFT-a), using double machine precision, and the exact values. For small C, the results are 
satisfactory. When enlarging C, only the computed stationary probabilities for small values of j are 
good, but for j close to A - I; the results are of no practical value. Increasing C further, the system 
of equations for the determination of these probabilities is almost singular, so that it is not possible to 
compute these probabilities in a numerically stable way. 

From the computed roots and the stationary probabilities rr0 , rr 1, ••• , rr A-I, we compute the coeffi
cients '7k· Using expression (2.19) and double machine precision, the resulting stationary probabilities 
(OFT-b) are listed in Table 2.2. For small C, the results are excellent, even if not all stationary proba
bilities rr i• j = 0, 1, ... , A - I, are computed accurately (that is, the probabilities from OFT-a). The 
reason is that the erroneous probabilities rr.i, with j close to A 1, are multiplied by a very small num
ber, as can be verified from (2.16), so that the total effect of the error is negligible. Evidently, for larger 
C, none of the coefficients is correct, so that the resulting 'probabilities' do not make any sense at aU. 
Finally, as we mentioned for the method of particular solutions, increasing the machine precision only 
allows us to apply the generating-function technique successfully to larger queueing systems, but the 
numerical difficulties will occur eventually. 
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c j 
16 0 0.86057 

0.07774 
2 0.03791 
3 0.01540 0.01540 

40 0 0.95519 0.95519 
I 0.02262 0.02262 
2 0.01210 0.01210 
3 0.00587 0.00587 

10 0.00001 0.00269+0.000151 0.00001 
15 0.00000 15.89236-0.33263i 0.00000 
20 0.00000 4310.8434l-590.25444i 0.00000 

80 0 0.99059 1.03608-0.02210i l.Ol722+0.02135i 
0.00440 -0.0410l-0.00695i 0.00454+0.00013i 

2 0.00247 0.03590+0.04445i 0.00254+0.00007i 
3 0.00131 0.13196-0.12954i 0.00136+0.00002i 

Table 2.2: The 'stationary probabilities' obtained by implementing the generating-function technique 
and the exact values. 

2.3.3 Conclusions 

For the two presented analytical techniques, we have pointed out two numerical problems, which arise 
when implementing them, and both problems can hardly be overcome (see, for instance, Press, Flan
nery, Teukolsky & Vetterling [1986]). The first problem is the determination of all solutions of a poly
nomial equation. For polynomial equations of relatively small degree, significant numerical problems 
occur already. Furthermore, even if we are able to compute all these solutions accurately, these so
lutions may be closely clustered, so that the system of equations (after substituting these solutions), 
for determining the coefficients ')..k of the linear combination or the first A stationary probabilities, is 
nearly singular. Only if Cis small, that is, the cycle length is small, these techniques give accurate re
sults. Therefore, we present two numerical approaches for approximating the stationary distribution. 
The first of these approaches exploits the tail behaviour of this distribution as previously suggested by 
Tijms & Van de Coevering [1991]. 

2.4 A numerical approach exploiting the tail behaviour 

Because of the structure of the equilibrium equations, the stationary distribution can be expressed by 
the form (2.11) or (2.19), with possibly some of the zi or 1/~f multiplied by powers of j. It is clear from 
this form that the largest Zk or I /tk in absolute value determine(s) the tail behaviour of the stationary 
distribution. Since both techniques lead to the same results, and because Zk = If tb we use the notation 
and formulae of the method of particular solutions of Section 2.3.1 for deriving a numerical approach. 

The next lemmas state that the largest root in absolute value of the characteristic polynomial equa
tion (2.10) is unique, and that it is real and positive. These results are well known from the theory of 
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branching processes (see, for instance, Athreya & Ney [1972]). 

Lemma 2.4.1 Equation (2.10) has exactly one root in the interval (0, 1), ifCp <A. 

Proof. See Lemma 3.4.1 in Chapter 3. 

Let this positive root be denoted by z1• 

Lemma 2.4.2 For all k = 2, 3, ... , C- A, we have lz*l < z,. 

Proof. See Lemma 3.4.2 in Chapter 3. 

Thus, from these two lemmas and the form (2.11 ), we have 

. 1l'j+l 
hm -- =z,, 

}-+oo 7'Cj 

0 

0 

(2.21) 

so that the tail of the stationary distribution is asymptotically geometric. Since the positive root z1 

completely determines the tail behaviour of this distribution, we try to exploit it for numerical purposes. 
That is, we try to use it for approximating the solution to the equilibrium equations (2.7) and (2.8), 
and the normalisation equation (2.9). Equation (2.6) is omitted, because it is redundant, as we noted 
in Section 2.3.1. To use this tail behaviour, we should be able to compute this root accurately. 

By equation (2.15), the positive root z1 can be computed accurately for f/lo = 1, if r is small, by, 
for instance, the modified Laguerre method. Moreover, for r = 1, 2, 3, 4, this root can even be com
puted analytically. If r is not rather small, then this root z1 can easily be determined by, for example, 
bisection. For the examples considered in Section 2.3, applying bisection to the equation (2.10) di
rectly does not give numerical problems. As we shall show in Chapter 3, calculating z1 by bisection 
from a general characteristic equation can give numerical problems. These problems are caused by 
the fact that the differences between the left-hand and the right-hand side of this equation may not be 
distinguished from zero within the machine precision in the neighbourhood of z1• Therefore, we shall 
suggest to divide both the left-hand and right-hand side of this equation by first, and then take 
logarithms to avoid these problems. 

Since the root z1, which completely determines the tail behaviour of the stationary distribution, can 
be computed accurately, we use it for the numerical determination of this distribution. By (2.21), we 
have for large j approximately 

Tijms & Van de Coevering [1991] propose an algorithm, which uses this approximation to compute 
the stationary distribution numerically. 

For this algorithm, we choose an integer 1 and set, for j :::=: J, 

(2.22) 

so that we approximate the quotient 1l'J+ 1 1 rr1 for these j by z 1• In other words, we reduce the denumer
able system of equilibrium equations to a finite system of equations by assuming that (2.22) holds for 
j :::=: J. As noted earlier, we omit the equilibrium equation (2.6) for state j = 0. Then, the form (2.22), 
for j :::=: J, is substituted into the equilibrium equations for the states I, 2, ... , J and the normalisation 
equation, which now reads 
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Solving the reduced system of J equilibrium equations and the normalisation equation yields an ap
proximation for the stationary probabilities rr0 , rr1 , ••. , rr 1 , and hence for the stationary distribution. 

The quality of this numerical approach depends of course on the rate at which the quotient rr i+drrj 

can be approximated well by z 1• Hence, the quotient of the second-largest root in absolute value of the 
characteristic polynomial equation, denoted by z2, and z1 plays an important role. For the numerical 
examples of Section 2.3, we list the quotient of these roots in absolute value in Table 2.3. This ta
ble suggests that this quotient lz21/lzll increases with C (keeping A/C fixed). Actually, if C tends 
to infinity, then this quotient tends towards one. Hence, to attain the same accuracy for the resulting 
stationary probabilities, we have to increase J when we increase C. In Table 2.3, we list the quotient 
to the power C- A as well. This gives an indication as to whether for this method we have to solve 
a smaller or larger system of equations than the number of boundary equations to be solved by the 
method of particular solutions. As this table shows, the effect of the second-largest root is practically 
nil for j ::: C - A. Indeed, the results of Table 2.4 confirm that for our examples z1 is a fairly good 
approximation for the quotient rri+ 1 /rri for relatively small values of j. Recall that for these examples 
z1 is the same. 

c lz2l 
-
lz1l 

10 0.212 
20 0.327 
40 0.463 
80 0.609 

Table 2.3: The quotient of the second-largest and the largest root in absolute value. 

j C= 10 c =20 C=40 C=80 
I 0.7247 0.7537 0.7773 0.7915 
2 0.6826 0.7014 0.7292 0.7560 
3 0.6756 0.6807 0.6994 0.7279 
4 0.6761 0.6757 0.6835 0.7067 
5 0.6764 0.6757 0.6768 0.6919 

10 0.6764 0.6764 0.6764 0.6752 
15 0.6764 0.6764 0.6764 0.6765 
20 0.6764 0.6764 0.6764 0.6764 
25 0.6764 0.6764 0.6764 0.6764 
00 0.6764 0.6764 0.6764 0.6764 

Table 2.4: The quotient rri+ 1/rrJor the examples. 

According to Tijms & Van de Coevering [ 1991], their numerical approach works well in practice, 
since z 1 is a fairly good approximation for the quotient rri+ 1 I rri even for small values of j. The theoret
ical foundation of this approach, however, is still incomplete. Therefore, it is unclear why this method 
works so well, and it is not possible to give rules for the choice of J. So, J has to be determined exper
imentally, by, for instance, comparing the difference between the approximation for different values 
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of J or evaluating whether the quotient 'lfJ+ 1 In 1 is (nearly) equal to z1 for j ~ J. Of course, the value 
of J depends on the required accuracy. 

So, we have now considered the stationary imbedded queue-length distribution. We conclude this sec
tion with returning to one of its main purposes, namely, the determination of the stationary queue
length distribution at arrival instants. These distributions can easily be computed recursively. 

Let Yn denote the number of customers in the system at the n-th slot boundary in the cycle in statis
tical equilibrium, for n = I, 2, ... , C. Then, the probability distribution of Y1 is {n 1, j = 0, 1, 2, ... }. 
Suppose that the probability distribution of Yn is known for some n, with n 1, 2, ... , C - l. It is 
easily seen that 

Y,,+l = max{O, Y,, + Bn- On), 

where Bn denotes the number of arrivals in slot nand on indicates whether slot n is an off-slot (on := 0) 
or an on-slot (on := 1). From this relation, it is clear that, if slot n is an off-slot, 

Pr{Y,,+ 1 = 0} = Pr{Y,, 0}(1- p), 

Pr{Y,,+ 1 =j}=Pr{Y,, j l}p+Pr{Y,, j}(l p), 

and that, if slot n is an on-slot, 

Pr{Y,,+ 1 ::::: 0} Pr{Y,, = 0}( I - p) + Pr{Y,, = I}( I - p ), 

Pr{Y,,+ 1 = j} = Pr{Y,, j}p +Pr(Y,, j + 1}(1- p), 

j ~ 1, 

j~ I. 

Hence, in this way, we can recursively compute the stationary queue-length distribution at slot bound
aries. 

By the Bernoulli-arrivals-see-time-average property ( cf. Hal fin [ 1983 ]), the stationary distribution 
of the queue length as seen by a arbitrary customer arriving in slot n is equal to the stationary queue
length distribution at the n-th slot boundary. 

2.5 A moment-iteration technique 

In practice, one often only has information about the first two moments of the service-time distribution 
of customers. Think, for instance, of the demand of orders. Therefore, we develop a moment-iteration 
method for approximating the performance measures of interest, which uses this limited information 
only. For the main idea ofthis approximation, we return to the stochastic process { Xb k = 1, 2, 3, ... } 
of the number of customers at the first slot boundary of cycles, as introduced in Section 2.2. 

For this process, we derived the recurrence relation ( cf. equation (2.1)) 

Xk+l = max{O, X,+ Nk A}, k 1,2,3, ... (2.23) 

where Nk denotes the number of customers arriving in the k-th cycle consisting of C slots. We recog
nise this relation as Lindley's equation for the waiting time Xk+ 1 of the (k + I )-st customer arriving in 
a DIG /I queueing system with interarrival time A and discrete service-time distribution {a(n), n 
0, 1, ... , C) (see, for instance, Grimmett & Stirzaker [1992]). Hence, the analysis of the imbedded 
queue-length process reduces to the analysis of the waiting-time process of customers in a D/GII 
queueing system. 
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Relation (2.23) and, more generally, Lindley's equation for the waiting-time process of customers 
in a G I 1 G 11 queueing system can be solved, fork tending to infinity, analytically in a few exceptional 
cases only. Therefore, we develop a numerical method for approximating the limiting solution of this 
equation fork tending to infinity. 

For the continuous-time G I I G II queueing system, De Kok [ 1989] presents a simple and quite 
accurate algorithm for the determination of the waiting-time characteristics by using the corresponding 
version of Lindley's equation. We briefly describe this algorithm for approximating the waiting-time 
characteristics for the case of a continuous-time DIG II queueing system. More precisely, we use the 
equation 

(2.24) 

where the random variables B, and Wk denote the service time and the waiting time of the k-th arriving 
customer, to approximate 

E(W} limE{W"}, and nw:= limPr(W*>O}. 
k.~oo k~oo 

These limits are well defined, if the average service time is smaller than the average interarrival time 
and if the first two moments of the service-times are finite (see, for example, Asmussen [ 1987]). 

Let the generic random variable B have the same distribution as Bk, with k = 1, 2, 3, ... , and define 
a, as the standard deviation of w •. We initialise E{Wd 0 and E(Wf} = 0, so that a1 = 0, and set 
k = 1. The iteration step consists of two parts. Firstly, we compute E( Wk + B} and E{ ( W* + B)2

} and 
fit a tractable distribution FkO on the first two moments of Wk + B. Below, we return to the issue 
of tractable distributions. Secondly, using relation (2.24) and the distribution Fk(· ), we compute the 
approximations for the first tWO moments of Wk+ 1, that is, 

Wk+d = ~~ (x A)dF,(x), and EfWLd ~~ (x- A)2dF.(x), (2.25) 

and compute (J'k+J· If both IE(Wk+d- E(Wdl and lak+l akl are small, then we stop and have the 
approximations E{Wk+d and I - F,(A) for E(W} and n w. respectively. Otherwise, we set k k + 1 
and repeat the iteration step. 

To apply this moment-iteration algorithm, we have to find tractable distributions for fitting proba
bility distributions on the first two moments of a non-negative random variable (note that the random 
variable X,+ B is always non-negative). With tractable distributions, we mean distributions such that 
the formulae in (2.25) can easily be evaluated numerically. A commonly used way to fit a tractable 
distribution on the first moment E( Y} and on the coefficient of variation cy (that is, the quotient of the 
standard deviation and mean) of a continuous non-negative random variable Y is the following (see, 
for instance, Tijms [I 986]). If cy < 1, then one fits a mixture of two Erlang distributions with the same 
scale parameter fl. If cy 2: I, then one fits a mixture of two exponential distributions (also known as 
a hyperexponential distribution) with balanced means. This way of fitting is used for Fk(·) in De Kok 
[ 1989]. 

As already mentioned, this moment-iteration algorithm performs well for continuous-time queue
ing systems. However, since we have discrete distributions and because for computing tail probabil
ities we have to discretise, it seems more natural to apply a discrete version of this algorithm. For 
fitting discrete distributions on the first moment and on the coefficient of variation, several procedures 
are known. However, some of these procedures do not capture all possible combinations of the first 
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two moments of non-negative discrete random variables, whereas others are not that useful for the 
moment-iteration algorithm. Therefore, we develop a novel procedure that is a discrete analogue to 
the fitting method described above. In order to fit all possible values of the first moment E{ Z} and the 
coefficient of variation Cz of a discrete random variable Z on the non-negative integers, we use four 
classes of distributions instead of two: a mixture of two binomial distributions, a Poisson distribution, 
a mixture of two negative binomial distributions, and a mixture of two geometric distributions. The 
reason for four instead of two probability distributions is that the discrete analogues to mixtures ofEr
lang and exponential distributions are not sufficient to cover all possible values of E{Z} and Cz. By 
adding the Poisson and binomial distribution, this gap is filled. Further, in contrast to a continuous 
random variable, not all combinations of (E{ Z}, c2 ) are possible for a discrete random variable on 
the non-negative integers. For example, a discrete random variable on the non-negative integers with 
mean 1.5 and coefficient of variation 0 is obviously not possible. A formal description of all possible 
pairs (E{Z}, c2 ) is given in the next theorem. 

Theorem 2.5.1 For a pair of non-negative real numbers (m, c), there exists a random variable on the 
non-negative integers with mean m and coefficient of variation c, if, and only if, 

, (n + I - m)(m- n) 
c- ~ --------,~-----, 

m-

where n is the unique integer sati.~fying 11 _:::: m < 11 + I. 

Proof. See Theorem 5.5.1 in Chapter 5. 

In Figure 2.7, the 'impossible' regions in the (m, c)-plane are shaded. 

0 

Before presenting the method for fitting discrete distributions on a discrete non-negative random 
variable, we introduce the following notation. Geo(q) denotes a random variable having probability 
distribution {(I - q)q;, i = 0, I, 2, ... }, NB(n, q) a random variable that is the sum of n independent 
Geo(q) variables, and Bin(n, q) a random variable that is binomially distributed, with n the number of 
trials and q the success probability. Then, the method for fitting discrete distributions is briefly given 
in the next theorem. 

Theorem 2.5.2 Let Z be a random variable on the non-negative integers with mean m and coefficient 
of variation c > 0, and let(}= c2 - I I m. Then, the random variable Y matches the first two moments 
of Z if Y is chosen as follows: 

1. If -!In_::::(}< -ll(n +I )for certain n = I, 2, 3, ... , then Y is a mixture of a Bin(n, q) and a 
Bin(n + I, q) random variable. 

2. If(}= 0, then Y is a Poisson distribution. 

3. If II (n + I) _:::: (} < I In for certain n = I, 2, 3, ... , then Y is a mixture of an NB(n, q) and an 
NB(n + I, q) random variable. 

4. If(}~ I, then Y is a mixture ofa Geo(q 1) and a Geo(q2 ) random variable with balanced means. 

Proof. See Theorem 5.5.2 in Chapter 5. 0 
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Figure 2.7: The shaded regions denote the impossible regions for a discrete random variable on the 
non-negative integers, and the other regions are the four regions fore indicating which distribution is 
used to match the first two moments of'this random variable. 

For more details, we refer to Chapter 5. The last two cases of Theorem 2.5.2 are the discrete ana
logues to the mixture of two Erlang distributions with the same parameter J1 and to the hyperexponen
tial distribution with balanced means. The results of Theorem 2.5.1 and Theorem 2.5.2 are illustrated 
in Figure 2.7. 

The discrete fits can now be used for the moment-iteration method described above for approximat
ing the stationary queue-length distribution at the start of cycles. We use only the first two moments of 
the number of arrivals in a cycle. Let the generic random variable N have the same distribution as Nk, 
with k = I, 2. 3, ... , and rr, the standard deviation of X"' fork= I, 2, 3, .... By the method described 
in Theorem 2.5.2, fitting a discrete distribution on the first two moments of N yields the Bin( C, p) dis
tribution. So, for this special case, we do not really use an approximation for the random variable N. 
Further, we use a refined version of the moment-iteration algorithm in the sense that we fit a distribu
tion on the first two moments of (X, I X, > 0) I instead of X, + N. In this way, we reduce the impact 
of the probability that the queue is empty at the start of a cycles. 

Step 1. Initialisation. Set E(X!} = E(Xn 0, so that rr 1 = 0 and X2 max{O, N- A). Compute 
Pr{X" > 0} and the first two moments of X2 from relation (2.23). Set k := 2. 

Step 2. Iteration. 
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(i) Set Yk 4 (XdXk > 0)- I, and compute the first two moments of Yk. 

(ii) Fit a tractable distribution to the first two moments of Yt according to the procedure in 
Theorem 2.5.2. 

(iii) Compute Pr{Xk+l > 0} and the mean and standard deviation of Xk+l from the relation 

XH 1 = max(O, N A}Pr{Xk 0} + max(O, I+ Yk + N- A}Pr{Xt > 0}. 

Step 3. If both IE{XHd - E{Xk}l and loH 1 okl are sufficiently small, then execute Step 4. Other-
wise, set k := k + 1 and repeat Step 2. 

Step 4. Approximate the probability of a non-empty queue by Pr{ Xk+ 1 > 0} and the mean and standard 
deviation of the imbedded queue-length distribution by E{Xk+l} and ok+ 1 . 

In Adan, Van Eenige & Resing [1995], the discrete fits have been developed and used for this re
fined version. This moment-iteration technique shows excellent performance for the examples of Sec
tion 2.3, as can be seen in Table 2.5. Furthermore, the computational effort is rather small. 

Pr{X > 0} E[X} 
c Exact Ml Exact MI 
10 0.5653 0.5655 1.7769 1.7768 
20 0.4905 0.4909 1.5693 1.5692 
40 0.3952 0.3955 1.3004 1.3002 
80 0.2851 0.2852 0.9775 0.9773 

Table 2.5: Exact results and results of the moment-iteration technique (Ml)for the examples with A= 
0.2C and p = 0.17. 

Further, we remark that once we start with a random variable X1 which satisfies the condition of 
Theorem 2.5.1, then during the iteration step it is not possible to obtain pairs (E( Xt}, c~). which be
long to the shaded region in Figure 2.7. 

From the approximated stationary distribution for the number of customers at the start of the cycle, 
we can compute the queue-length distribution at the other slot boundaries in the cycle similarly as 
described at the end of Section 2.4. 

2.6 Conclusions 

In this chapter, we used two analytical techniques to study a queueing system with periodic service, 
namely, the method of particular solutions and the generating-function technique. As we saw, these 
techniques unfortunately face two numerical problems. The first problem is the determination of the 
roots of a (polynomial) equation. The second problem results from the (possible) clustering of roots. 
Except for some specific cases, it is not clear under what conditions and properties of the model these 
numerical problems do and do not occur. Since these analytical techniques are not generally applica
ble, we presented two numerical approaches, which appear to be numerically stable and which give 
excellent results for this queueing system. 



2.6. Conclusions 39 

The first numerical technique (GT technique, for short) exploits the geometric tail behaviour of the 
stationary imbedded queue-length distribution. The second numerical technique (the MI technique) 
utilises the link between the Markov chain and the DIG I l queueing system by approximating the 
limiting solution of Lindley's equation for this latter system by a moment-iteration approach. 

The GT technique can be applied when the equilibrium equations of a one-dimensional Markov 
chain constitute a system of homogeneous linear difference equations with constant coefficients. As 
we shall see, the equilibrium equations of a Markov chain describing the imbedded queue-length pro
cess of a broad class of queueing systems with periodic service form such a difference equation. There
fore, we shall explore the GT technique further in Chapter 3. We shall apply it to queueing systems 
with periodic service in Chapter 4 and to modifications of these systems in Chapter 6 and Chapter 7. 

The MI technique is applicable to an even broader class of queueing systems with periodic service 
than the GT technique, because the MI technique only requires the first two moments of the service 
time instead of the complete distribution. This technique will be explored further and applied to these 
systems in Chapter 5. In Chapter 6 and Chapter 7, we shall apply this technique to approximate the 
performance measures of modifications of these systems. 
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3 
A Numerical Technique for a Class of 

One-Dimensional Markov Chains 

3.1 Introduction 

In Chapter 2, we proposed two numerical techniques for analysing the queue-length process for a 
queueing system with periodic service. This analysis, after imbedding the queue-length process at 
the start of cycles, reduces to the determination of the stationary distribution of a Markov chain with a 
one-dimensional state space. The first technique (that is, the geometric tail (GT) technique) utilises the 
geometric tail behaviour of this distribution. The other technique (that is, the moment-iteration (Ml) 
technique) exploits the observation that this Markov chain has the same structure as the waiting-time 
process of customers in a special discrete DIG I 1 queueing system. More precisely, the MI technique 
is a moment-iteration method for determining the limiting solution of Lindley's equation for this pro
cess and, hence, for approximating the stationary distribution. This technique will be explored further 
in Chapter 5. 

The present chapter is devoted to the GT technique. In Chapter 2, the asymptotically geometric tail 
of the stationary distribution resulted from the fact that the equilibrium equations of the Markov chain, 
describing the imbedded queue-length process, constitute a homogeneous linear difference equation 
with constant coefficients. As we shall see in Chapter 4, the equilibrium equations of the Markov chain, 
describing this process, form such a difference equation for a broad class of queueing systems with 
periodic service. So, it seems obvious to use techniques from the theory of difference equations to 
solve these equations. 

The use of analytical techniques from the theory of difference equations for solving the equilib
rium equations of Markov chains is very natural as these equations often constitute a homogeneous 
linear difference equation with constant coefficients. Therefore, these techniques are applied in many 
papers and books to a variety of problems that require the determination of the stationary distribution 
of Markov chains. In fact, A.A. Markov, the initiator of the study of these chains, used such techniques 

41 
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already (cf. Romanovsky [1970]). By these techniques, we can in principle determine the stationary 
distribution and its tail behaviour. However, since the main objective of this monograph is to develop 
techniques for analysing queueing systems with periodic service, we are not only interested in how to 
determine the stationary (imbedded) queue-length distribution in principle, but also in the usefulness 
of these techniques for computational purposes. 

As is well known from the theory of difference equations, the solution of a homogeneous linear 
difference equation of finite order with constant coefficients is a linear combination of powers. There 
are two standard analytical techniques for the determination of this linear combination. One is (what 
Feller [1968] calls) the method of particular solutions, and the other is the generating-function tech
nique. These two techniques are closely related, and, of course, they give the same results. Both tech
niques basically consist of the following two steps. Firstly, the roots of an equation, related to the con
stant equations, have to be determined. These roots are then used to solve a system oflinear equations, 
related to the boundary equations, to obtain the coefficients of the linear combination. Unfortunately, 
(application of) these analytical techniques can lead to numerical difficulties, as we saw in Chapter 2. 
Further, even if the parameters can be computed accurately, the form of the solution (that is, a linear 
combination of geometric distributions) may easily cause loss of accuracy when it is implemented, 
because terms with opposite signs and of very different magnitude may have to be added up. 

Except for some special cases, it is unclear under what conditions and properties of the model these 
techniques are useful from a computational point of view. For example, if the degree of a polynomial is 
high, then it is more likely that the accurate determination of all zeroes is harder and that these zeroes 
are clustered. But whether they are indeed clustered can only be observed and cannot be predicted. 
Since we are interested in techniques that are generally applicable to solve equilibrium equations of 
Markov chains, which constitute a homogeneous linear difference equation with constant coefficients, 
we use a numerical approach. 

Nevertheless, the analytical techniques provide structural results, and these results can be exploited 
for computational purposes. For Markov chains with equilibrium equations constituting a homoge
neous linear difference equation with constant coefficients, the stationary distribution is a linear com
bination of a finite number of geometric distributions (some of them possibly with a parameter which is 
complex). Hence, the tail behaviour of this distribution is determined by the geometric distribution(s) 
with the largest parameter in absolute value. The parameter of one of these geometric distributions 
with the largest parameter in absolute value is positive and can be computed accurately. We exploit 
this observation in a similar way as in Tijms & Van de Coevering [ 1991 ]. 

The outline of this chapter is as follows. In Section 3.2, we give a formal description of the Markov 
chains for which the equilibrium equations form a homogeneous linear difference equation with con
stant coefficients. In Section 3.3, we use the two analytical techniques mentioned to show that the 
stationary distribution of these chains can be expressed as a linear combination of a finite number of 
geometric distributions. If the number of boundary equations of the difference equation is larger than 
the number of geometric distributions of the linear combination, then a finite number of stationary 
probabilities do not have this form. These stationary probabilities belong to states at the boundary of 
the state space. 

Since the two analytical techniques may lead to computational difficulties, we present in Section 
3.4 the GT technique to approximate the stationary distribution. This technique exploits the tail be
haviour of the stationary distribution. This tail behaviour is asymptotical1y geometric, and it is com
pletely determined by the unique positive root inside the unit circle of a non-linear equation. This 
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equation is related to the constant equations, and it is known as the characteristic equation of the dif
ference equation. Moreover, this root can be determined accurately in a stable way without numerical 
difficulties. This circumstance is then exploited by an adapted version of the numerical approach in 
Tijms & Van de Coevering [1991]. 

The performance of the GT technique depends on the rate at which this largest root dominates 
the linear combination of geometric distributions. In other words, the performance depends on the 
quotient of the largest and second-largest root in absolute value of the characteristic equation. To get 
an idea of this quotient and of how fast the largest root dominates this linear combination, we study the 
queue-length process of the G/ IE,/ 1 queueing system in Section 3.5. For this system, A dan & Zhao 
[ 1994] derive sufficient conditions for the method of particular solutions to be successfully applicable. 
Numerical examples show that the largest root dominates for states fairly close to the boundary of the 
state space already. As a result, the computational effort of the GT technique, to obtain accurate results, 
appears to be fairly low. 

Finally. Section 3.6 gives a summary of this chapter and looks ahead at the subsequent chapters in 
which the GT technique will be used to study queueing systems with periodic service and modifications 
of these systems. 

3.2 The Markov chain and the equilibrium equations 

Let the stochastic process {Xb k = 1, 2, 3, ... ) be a discrete-time Markov chain. We assume that the 
state space of this chain consists of the non-negative integers {0, 1, 2, ... ) and that X1 = n, with n 
a (possibly random) non-negative integer. Fori, j = 0. 1, 2, ... , the stationary transition probability 
from state ito state j of the Markov chain is denoted by p;.;. that is, for all k 1, 2, 3, ... , 

Pi.;:= Pr{Xk+l = j]Xk = i), i, j, = 0, I, 2, .... 

This chain is assumed to be irreducible and aperiodic. Moreover, we assume that it is positive recurrent 
by supposing that ( cf. Pakes [ 1969]) 

jpi.j < 00, i = 0, 1' 2, ...• (3.1) 

and that 

00 

limsupE{Xk+l - X,]Xk 
i____.oo 

i)=limsupL(j i)p;;<O. 
t->oo }=0 

(3.2) 

These assumptions imply that the Markov chain is ergodic. so that it has a unique stationary distribution 
{rri,j 0,1,2, ... ). 

For the Markov chain in Chapter 2, inequality (3.1) holds, because in a cycle at most C slots of 
work can arrive. For this chain, the inequality (3.2) is fulfilled as well, since, fori 2: C, 

because we assumed that the average numher of slots of work arriving in a cycle is strictly less than 
the average service capacity of the server per cycle. 
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The stationary distribution of the Markov chain is the unique solution of the equilibrium equations, 
which are in general 

7t 1 TCoPo.J + TCt P1.1 + TC2P2.1 + · · · , j 0, I, 2, ... , (3.3) 

and the normalisation equation 

(3.4) 

In this chapter, we suppose that the equilibrium equations constitute a homogeneous linear differ
ence equation with constant coefficients. For this purpose, we assume the following structure for the 
Markov chain. 

Firstly, the transition probabilities Pi.J depend on i and j only through their difference j i, for 
i ?: D and j ?: I, with D a fixed non-negative integer. Secondly, the jump sizes from state i, with 
i?: D, to higher states are uniformly bounded by some constant TH, with TH a positive integer (that 
is, the jumps to the right are limited). In other words, the highest state that can be reached by a single 
transition from a state i, with i?: D, is state i + TH, so that Pi.J 0, for j > i + TH. The subscript His 
used to indicate transitions to higher states, since, in Section 3.3.2, we shall consider the case that the 
jumps to lower states are also uniformly bounded by some constant, denoted by TL· Finally, for states 
i < D, the highest state that can be reached by a single transition from this state i is state D + T H 1. 
To sum up, we make the following assumptions 

(i) Pi.J =: qJ-i• i?: Dandj?: I, 
(ii) qh =0, h > TH, 

(iii) qrH > 0, 
TH 

(iv) Lq,= l, 
h=-00 

-i 

(v) Pi.O =I- z:q,, i?: D. 
11=-oo 

(vi) Pi.J 0, i < D and j > D + TH. 

Notice that the inequality (3.1) is now automatically fulfilled, fori= 0, 1, ... , D 1, and that it reads, 
fori?: D, 

Further, the inequality (3.2) reduces to 

i+Tu 
l:Jqj-i < oo. 
i~l 

1/i 

2: hqh <0. 
11=-oo 

(3.5) 
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To illuminate the structure of the Markov chain, we display the transition matrix P of this chain 

Po.o Po. I Po.z Po.D+TH-1 0 0 0 0 
PI.O Pl.l PI.2 PI.D+TH-1 0 0 0 0 
Pz.o P2.1 P2.2 P2.D+TH-I 0 0 0 0 

p PD-1.0 PD-1.1 PD-1.2 PD-I.D+TH-1 0 0 0 0 
PD.O qi-D qz-D qr"-1 qrH 0 0 0 
PD+I.O q_D qi-D qrH-2 qrH-1 qrH 0 0 
PD+2.0 q-1-D q_D qrH-3 qTH-2 qrH-1 qrH 0 

From this structure of the Markov chain, the equilibrium equations (3.3) can be partitioned as fol
lows 

no YroPo.o + :rr, P1.o + YrzPz.o + · · · . (3.6) 

j 2: D+ Tu. (3.8) 

As in Chapter 2, we call the equations (3.6) and (3.7) the boundary equations and the equations (3.8) 
the inner equations. The constant structure of the inner equations is exploited in the next sections. 

As we have already shown, the equilibrium equations (2.2) of the Markov chain in Chapter 2 can 
be partitioned in this way, namely, the boundary equations (2.6) and (2. 7) and the inner equations (2.8). 
For this chain, we clearly have D 0, Tu C A, and q11 = ah+A• for h -A, -A+ 1, ... , C
A, and q1, = 0 otherwise. In the next chapter, we shall show that the equilibrium equations of the 
Markov chain, describing the imbedded queue-length process, can be partitioned in a similar way for 
a broad class of queueing systems with periodic service. Further, for many other queueing systems, the 
equilibrium equations of the Markov chain, describing the queue-length process, possess this structure. 
A nice example is the number of uncompleted service phases just prior to an arrival in a Glf Phjl 
queueing system with service times having a distribution that is mixture of Erlang distributions with 
the same scale parameter J.L 

3.3 Solving the equilibrium equations analytically 

In this section, we solve the equilibrium equations (3.6), (3.7), and (3.8), and the normalisation equa
tion (3.4) analytically by exploiting that the equations (3.8) constitute a homogeneous linear difference 
equation with constant coefficients. To solve such a difference equation, there are two standard and 
widely used techniques. 

Firstly, we can seek solutions of the form :rr 1 = zl and try to linearly combine these solutions to 
satisfy the boundary equations and the normalisation equation. In other words, we try to express the 
stationary distribution as a linear combination of geometric distributions. Adopting the terminology of 
Feller [1968], we call this approach the method of particular solutions. This technique is discussed in 
Section 3.3.1. Notice that the order of the difference equation is not necessarily finite. The reason that 
the method of particular solutions can cope with an infinitely large order is that we only use solutions 
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rr i = zi with lzl < 1, because otherwise equation (3.4) cannot be satisfied, and the number of these 
solutions is finite. 

In the literature, the method of particular solutions has been applied to Markov chains and queueing 
systems by, for example, Conolly [1958a,1958b], Morse [1958], Feller [1968], Romanovsky [1970], 
and Gross & Harris [1974]. This method is also exposed in many books on the theory of difference 
equations. 

The second technique we can use to solve the equilibrium equations and the normalisation equation 
is the generating-function technique. Section 3.3.2 is devoted to this technique. 

The generating-function technique is applied more widely to analyse Markov chains and queueing 
systems than the method of particular solutions. Applications to Markov chains and queueing systems 
of this technique are given by, for example, A.A. Markov (cf. Romanovsky [1970]), Bailey [1954a], 
Luchak [1958], Prabhu [1965], Giffin [1975], and Cohen [1982]. This technique is also widely used 
in books and papers on the theory of difference equations. 

Before presenting these two techniques, we note that Winsten [ 1959] studies the Markov chain with 
transition matrix Pin Section 3.2, for which TH =I. By sample-path arguments, he shows that the sta
tionary distribution of this chain is geometric, except for the stationary probabilities rr0 , rr1, •.• , rr 0 _1• 

3.3.1 The method of particular solutions 

In this section, we try to express the stationary distribution of the Markov chain as a linear combination 
of geometric distributions directly. We begin with treating the inner equations (3.8) to seek solutions 
of the form rr J zi. After that, we linearly combine these solutions to satisfy the boundary equations 
(3.6) and (3.7), and the normalisation equation (3.4). Further, we give for a special case the coefficients 
of this linear combination explicitly. Finally, we mention a recently obtained result that extends the 
idea of the method of particular solutions to higher dimensional Markov chains. 

3.3.1.1 Solving the inner equations 

To solve the inner equations (3.8) by the method of particular solutions, we first substitute the form 
1TJ = zi into these equations, and then we divide these equations by to obtain 

(3.9) 

This equation is called the characteristic equation of the difference equation. 
We only use solutions z in the complex plane of the characteristic equation (3.9) with lzl < 1, 

since otherwise the normalisation equation (3.4) cannot be satisfied. The next lemma states that, if 
the Markov chain is ergodic, this characteristic equation has exactly TH solutions z inside the unit cir
cle. This lemma can be found in Takacs [ 1962], and it is proved by using Rouche's Theorem. 

Theorem 3.3.1 (Rouche's Theorem) 
If the functions j(z) and g(z) are analytic inside and on a closed contour C. and jg(z)i < lf(z)l on 
C. then j(z) and f(z) + g(z) have the same numher of zeroes inside C. 

Proof. See, for instance, pages 116-117 in Titchmarsh [ 1960]. 0 

Lemma 3.3.1 Equation (3.9) has exactly TH mots inside the unit circle, ({(3.5) holds. 
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Proof. Let f(z) := ZT11 and g(z) := qr11 + qr11- 1z + qr/[-2z2 + · · ·. Since the Markov chain is positive 
recurrent, we have the inequality (3.5), so that 

Til TH 

g'(l) = L (TH- h)qh TH- L hqh > TH f'(l). 
h=-oo h=-00 

Hence, since f (1) = ;;(1 ), it holds for all sufficiently small c > 0 that 

f(l c)> g(l c). (3.10) 

Fix some c > 0, satisfying inequality (3.10). Then, for all z with lzl 
inequality that 

c, we have by the triangle 

l;;(z)l < qr11 + qr11 -1lzl + qr11-2lz2l + · · · 
qT11 + q7u-1 (1- c)+ qr11 -2(1 - c)2 + · · · = ;;(l c), 

lf(z)l lzr"l = (l c)r11 = f(l c). 

Thus, together with inequality (3.10), we have 

g(z)l = l;;(z)l < lf(z)l. lzl = 1- c. 

Applying Rouche's Theorem (cf. Theorem 3.3.1) to the circle lzl 1 - c yields that equation (3.9) 
has exactly TH roots inside this circle. Finally, letting c tend to zero completes the proof. D 

The characteristic equation (3.9) for the Markov chain in Chapter 2 reduces to 

=etc +ac_,z + · · · +a0zc, 

with {a,, h = 0, I, .... C} the binomial distribution with C the number of trials and p the success 
probability (see equation (2.1 0)). Lemma 3.3.1 states that this equation has exactly C- A roots inside 
the unit circle, so that this lemma proves Lemma 2.3.1. 

Let the TH solutions inside the unit circle of the characteristic equation (3.9) be denoted by z1, z2 , 

... , Zrw By the linearity of the inner equations (3.8), any linear combination of the solutions zf is a 
solution of these equations as well. So, we try to satisfy the boundary equations (3.6) and (3.7), and 
the normalisation equation (3.4) by linearly combining these solutions. Since the solutions Zk may not 
be all distinct, the number of independent solutions for this combination may be less than TH. The next 
lemma shows how to construct TH independent solutions from the TH roots inside the unit circle of the 
characteristic equation. This lemma is a well-known result from the theory of difference equations. 

Lemma 3.3.2 Let equation ( 3.9) have the K distinct roots inside the unit circle z1, ••• , ZK, with 

K :;5 Tfl, and let root Zk have multiplicity mk> so that L:~, mk = TH. Then, the K sequences with 
elements z£. jz£, ... , r·-' zi, with k = 1, 2, ... , K, form a system of TH independent solutions for 
the difference equation ( 3.8). 

Proof. See, for instance, Theorem 5.3 in Henrici [ 1968]. D 

For notational convenience, we assume that the solutions z1, z2 , .•• , z711 are distinct. According to 
Feller [ 1968], these solutions are distinct indeed for most practical cases. So, we have TH independent 
solutions z;, which fulfil the inner equations (3.8), and any linear combination of these solutions 

(3.11) 
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is a solution of the inner equations as well, where the >..k 's denote complex numbers. Hence, we repre
sent the stationary distribution as a linear combination of geometric distributions with parameters Zk· 

In the next section, we use this representation to satisfy the boundary equations (3.6) and (3.7), and 
the normalisation equation (3.4). 

3.3.1.2 Solving the boundary equations and the normalisation equation 

Before using the representation (3.11) for solving the boundary equations (3.6) and (3.7), and the nor
malisation equation (3.4), we make the following observation. By seeking solutions of the form zi 
satisfying the inner equations, we impose this form not only on the stationary probabilities rei, with 
j;:: D + TH, but also on the TH stationary probabilities rc 0 , rc D+l, ••• , rc D+TH-It since these latter prob
abilities appear in the inner equations (3.8). However, the equilibrium equations for the corresponding 
states j, with j = D, D +I, ... , D + TH- I, belong to the boundary equations (3.6) and (3.7). In 
general, the solutions z1 do not satisfy the equilibrium equations for these states. Hence, the TH coeffi
cients >..k have to be used to satisfy these equations. Finally, we notice that the stationary probabilities 
rc0 , rc 1, ••• , rc 0 _ 1 do not appear in the inner equations, so that we did not impose the form zion these 
probabilities. Therefore, these stationary probabilities can be regarded as unknowns, which have to be 
the solution of the equilibrium equations and the normalisation equation. 

The representation (3.II) is now used to satisfy the boundary equations (3.6) and (3.7), and the 
normalisation equation (3.4). We substitute this form, for j ;:: D, into the boundary equations (3.7) 
and treat, if D > 0, the stationary probabilities rc0 , rc1, ••• , rc 0 _ 1 as unknowns. Thus, for the moment, 
we omit the equilibrium equation for state j 0. Recall that the form (3.11) already satisfies the inner 
equations (3.8). This system of D + TH I equations (3.7) (after substituting the form (3.11)) is a 
system of D + TH - I homogeneous linear equations with the D unknown stationary probabilities 
rc0 , rc1, ••• , rc0 _ 1 and the TH unknown coefficients >..k. So, this system has a non-trivial (that is, a non
null) solution. 

Consider a non-trivial solution of the boundary equations (3. 7) for the coefficients >..k and the sta
tionary probabilities rc 1, for j 0, I, ... , D - I. Then, since adding the equations (3.7) and (3.8) 
gives the equilibrium equation for state j 0, this solution automatically satisfies the equation (3.6). 
Thus, we have a solution of the equilibrium equations with 

because izk I < I, for all k. So, by a Foster's criterion (cf. Foster [ 1953]), this solution, after normalising 
it by using (3.4 ), is unique and, hence, it is the stationary distribution. We note that this implies that the 
boundary equations (3. 7) and the normalisation equation (3.4) form a system of D linearly independent 
equations. Consequently, the coefficients >..k and the stationary probabilities rc0 , rc 1, ••• , rc 0 _ 1 can be 
determined directly from solving the system of equations (3.7) (after substituting the form (3.11 )) and 
the normalisation equation (3.4). 

3.3.1.3 An explicit solution for the coefficients if D 0 

For the special case that the roots Zk are distinct and D = 0, the coefficients >..k can even be given 
explicitly. It appears that these coefficients are the solution of a system of Vandermonde equations. 
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Define rr; 0, fori - TH + 1, - T H + 2, ... , -1. Then, it is easily verified thatthe equilibrium 
equations for the states j, with j 1, 2, 3, ... , all have the constant structure 

From Section 3.3.1.1, we know that any linear combination of z~, with k l, 2, ... , TH, satisfies these 
equations. However, we also have the conditions that n1 = 0, for j -TH +I, -TH + 2, ... , -1, 
that is, 

TH 

lrj L AkZ~ = 0, (3.12) 
k=l 

To these equations, we add the normalisation equation 

I. (3.13) 

In the next lemma, we solve the system of equations (3.12) and (3.13) by Cramer's rule, from which it 
appears that this system can he transformed into a Vandermonde system, so that we can give its solution 
explicitly. 

Lemma 3.3.3 If the roots Zk, with k 1, 2 .... , T H· are distinct and D = 0, then the coefficient l..k is 
given by 

l..k = (1-

'~it 

TI<zi' 1) 
i=l 
i# 

k= 1, 2, ...• TH. 

Proof. For convenience, we define ~k := l..d (1 z.d and rk := 1/ Zb fork I, 2, ... , TH, and write 
the system of TH equations (3.12) and (3.13) in matrix notation as AA b, with 

TT
11

- I 

A= rTu(TT11 1) 

I) ... I) 

the column vector A consisting of the cocfllcients ik> and b the column vector with first entry one and 
the other entries equal to zero. We now solve this system of equations hy Cramer's rule. 

By Cramer's rule, we have 

k =I, 2 .... 'TH. 
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where the matrix Ak denotes the matrix A for which the k-th column is replaced by the column vector 
b. We first determine the determinant of the matrix A, and then the determinant of the matrix Ak. Both 
determinants appear to be Vandermonde determinants. 

For the matrix A, we add to each row k, fork = 2, 3, ... , Tn, the rows l with l < k, to obtain the 
Vandermonde matrix 

!1 !2 'l'TH 

v·- r2 1 r2 2 r}H 

TH-l 't 
TH-1 

!2 
TH-l 

'rH 

By addition of rows, the determinant of the matrix A is transformed into a Vandermonde determinant, 
so that (see, for instance, Bellman [1970]) 

det(A) det(V) = fl (rJ- r;). 
l~i<j~TH 

To compute the determinant of the matrix Ak> we expand this matrix on the k-th column. So, 

TH !1 'k-1 !k+l 'l'TH 
det(Ak) (-1)k+l Tl<•J 1) 

j=1 
TH-2 TH-2 TH-2 TH-2 j# ri 'k-1 'k+1 !TH 

(3.14) 

(3.I5) 

Since the determinant at the right-hand side of (3.15) is a Vandermonde determinant, combining this 
observation with (3.I4) yields, fork= I, 2, ... , Tn. 

= 

~ ~ 

fl ( r J - 1 ) fl ( r J - r;) (- 1 )k+ 1 fl ( r J - I ) 
)=l i:::Ci<):::CTH j=i 

l)k+l_JI._* __ =_i_.J_f.k ____ = ---c= ____ fl._k-==-----

Tl (<;- r;) fl (rk r;) fl (rJ- rk) 

TH 

fl<rJ-1) 
j=l 
jf.k 
Tn 

fl (rJ- rk) 
j=l 
}# 

l~.i<j:::CTH i:;:i<k:::CTH l:::Ck<j:::CTH 

so that the proof is complete. 0 

In Section 3.3.2, we use the generating-function technique for solving the equilibrium equations of 
the Markov chain. Before that, we mention a recent extension of the idea of the method of particular 
solutions to solve the equilibrium equations of a class of higher dimensional Markov chains. 
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3.3.1.4 The compensation approach 

The idea of the method of particular solutions for solving the equilibrium equations is to try to express 
the stationary distribution as a linear combination of powers. More specifically, we look for solutions 
rc1 = zJ of the inner equations with lzl < 1, and then we try to linearly combine these solutions to 
satisfy the boundary equations and the normalisation equation. Adan [1991] extends this idea to the 
determination of the stationary distribution of a class of Markov chains with a two-dimensional state 
space, which is denumerable in both dimensions. This technique is appropriately called the compen
sation approach, and the basic idea for this approach stems from numerical studies for the stationary 
distribution. Van Houtum [1995] extends this approach to a class of Markov chains with a higher di
mensional state space. For completeness, we remark that the results of Adan [ 1991] have recently been 
interpreted in properties of generating functions by Cohen [ 1994]. 

For the compensation approach, the starting point is again the partitioning of the equilibrium equa
tions into inner and boundary equations. The inner equations lead to a set of powers, which are linearly 
combined to satisfy the boundary equations and the normalisation equation. The difference with the 
method of particular solutions is that this set contains infinitely many powers. Furthermore, the method 
of particular solutions uses all powers of this set, whereas the compensation approach uses only a sub
set of the set of powers. Finally. the compensation approach selects these powers in a special way. For 
a comprehensive exposition of the compensation approach we refer to the aforementioned authors and 
to Adan, Wessels & Zijm [ 1993]. 

3.3.2 The generating-function technique 

From Section 3.3.1. we know that the stationary distribution of the ~arkov chain is a linear combina
tion of powers. Hence, the probability generating function of this distribution is a rational function. 
However, when transitions to lower states are not uniformly bounded by some constant, the use of the 
generating-function technique seems to be rather difficult for solving the equilibrium equations of this 
chain. To simplify the analysis, we make the following additional assumption. For i 2: D, the jump 
sizes from state ito lower states are uniformly bounded by a constant, just like the jump sizes to higher 
states. More precisely, we assume that the lowest state that can be reached by a single transition from 
state i is state i T1,, with T1. a fixed positive integer, so that p,.; = qH 0, for j- i < h. Thus, 
the equilibrium equations (3.3) now read 

lfo IrofJ(UJ + TCJ PI ,0 + · · · + lrmax[/l-I.T;,) Pmax[/l-1. 7f).O• 

TCJ = rropn 1 + · · · + rrn-1 {JJJ-1. 1 + nnqJ o + · · · + lf1+hq-h, I :::.: .i < D + TH, 

TCj = Ir;-r!!qT" + TCJ-(T11 -i)qTw·l + · · · + TCJ+hq-71. .i 2: D + TH. 

(3.16) 

(3.17) 

(3.18) 

We notice that, to determine the TH solutions inside the unit circle of the characteristic equation (3.9) 
numerically, we sometimes make this additional assumption implicitly, since the right-hand side of 
this equation may have to be truncated. Further, note that we have = A for the Markov chain in 
Chapter 2. 

Since the Markov chain has a unique stationary distribution. the probability generating function 

CXJ 

n(z) := L 
J •.• () 
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is well defined, for lzl :::: 1. Moreover, this function is uniquely determined by the stationary distribu
tion {rr j• j = 0, 1, 2, ... } and vice versa. Let Q(z) denote the shifted probability generating function 
of the probability distribution {qh, h = -TL,- TL + 1, ... , TH}. More specifically, 

TH 

Q(z) := zh L Qhz". 
h=-h 

To apply the generating-function technique, we multiply the equilibrium equation (3.18) for state j by 
zj, with j::: D + TH. and we add these equations. Then, we obtain after some algebra 

n(z) 
- Q(z) 

(3.19) 

Since n (z) is a probability generating function, it is convergent inside and on the unit circle, so that 
the roots inside and on the unit circle of the denominator of (3.19) must also be roots of the numerator 
of (3.19), and with the same multiplicity. This denominator has T H + Tt roots z in the complex plane. 
The next lemma ( cf. Takacs [ 1962]) states that exactly Tt- of these roots are inside and on the unit 
circle. These roots will be denoted by hu-rl• hH+2• ... , ~Tu+h· 

Lemma 3.3.4 The function zh Q(z) has exactly Tt roots inside and on the unit circle, if(3.5) holds. 

Proof. Like Lemma 3.3.1, we prove this lemma by Rouche's Theorem (cf. Theorem 3.3.1). Define 
f(z) zh and g(z) := Q(z). From the inequality (3.5), it follows that 

Tu 
g'(l) L:<Tt+h)q, 

h=-r.. 

TH 

Tt+ L hq, < h 
h=-1i. 

Because f (1) = g (I ) , it holds for all sufficiently small e > 0 that 

.f(l +£) > g(l +£). 

f' (I). 

(3.20) 

Fix some e > 0, satisfying the inequality (3.20). Then, for all z with I zl = I +£,we have by the triangle 
inequality that 

lg(z)l 
1/(z)l 

< Q-r.. + q .. 1i.-dzl + · · · + Qr"lzlru+TL 

lzl7i (I+ e)rL = f(l + £). 

Thus, together with the inequality (3.20), 

g(l + £), 

I - g(z)l = [g(z)l < I /(z)f, lzl I +s-. 

Applying Rouche's Theorem to the circle lzl I + s yields that zTt. 
or on this circle. Finally, letting £ tend to zero completes the proof. 

Q(z) has exactly T1_roots inside 
0 

So, the denominator of (3.19) has T H zeroes outside the unit circle. As can be verified, these zeroes 
are the reciprocals of the zeroes inside the unit circle of the characteristic equation (3.9), when the 
additional assumption is made that jump sizes to lower states are bounded by Tt. 
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For the probability generating function n (z) to be convergent inside and on the unit circle, the nu
merator of (3.19) must have the same zeroes as the denominator of (3.19) and with the same multiplic
ity, for < 1. These conditions are also known as regularity conditions for this probability generating 
function. Clearly, z = 1 is a root of the denominator, and it can be verified that this root has multiplic
ity one. Thus, this root, ~r +h say, is also a root of the numerator of (3.19), irrespective of the values 
of Jr j• for j 0, 1, ... , D + T H 1. So, the root h H+ 1 does not restrict the values of these stationary 
probabilities at all. Substituting the other roots into this numerator and using that ~k is a root of the 
denominator give a system of TL - I homogeneous linear equations with D + T H unknowns. 

Further, the stationary probabilities n0, rr1, ... , rrn.,.rH-I have to satisfy the boundary equations 
(3.16) and (3.17) and the normalisation equation as well. The normalisation equation is given by 

lim n (z) I. 
;:-..1-

Thus, we have TL I regularity conditions for the probability generating function n (z), the D + 
TH boundary equations (3.16) and (3.17), and the normalisation equation, and we have the D + TH + 
T1, unknown stationary probabilities rr0, rr1, ... , rrnHH+h-l appearing in these equations. Since the 
Markov chain has a unique stationary distribution, we have that this system of equations has a unique 
solution for rro, rr1, ... , rr D+TH+h-I· 

So, we have the unique stationary probabilities rr0, rr 1, ... , rr D+Iit+h-i and the probability gener
ating function n(z), which is convergent inside and on the unit circle. The final step for the determi
nation of the stationary distribution is to invert this probability generating function. 

We divide the numerator and denominator of (3.19) by -q(TH ), and cancel out the common terms 
z- ~ .. fork= TH + I, TH + 2, ... , TH + TL. The resulting numerator N(z) is a polynomial of degree 
D + TH I, and the resulting denominator D(z) is a polynomial of degree TH. Since the degree of the 
polynomial of the denominator is not strictly larger than the degree of the polynomial of the numerator, 
for D > 0, we cannot directly expand the probability generating function n (z) into partial fractions. 

To expand n(z) into partial fractions, we write the numerator N(z) as P(z)D(z) + R(z), where 
P(z) is a polynomial of degree D and R(z) a polynomial of degree Jess than TH. So, we have 

R(z) 
n (z) = P(z) + D(z). 

The quotient R(z)/ D(z) can now be expanded into partial fractions, so that 

R( ) T11 
z =I:__!!!__, 

D(z) k=I ~k-z 
(3.21) 

because the roots are assumed to be distinct (if root ~ has multiplicity m > 1, then we should have 
expanded this quotient into the partial fractions 1/ (l; - z), 1/ (~ - , ... , 1/ (l,= - z)m-I ). 

The coefficients IJk of the partial-fraction expansion (3.21) can be determined explicitly (see, for 
instance, Jury [1964]). To determine the coefficient IJA, we multiply both sides of equation (3.21) by 
z ~~ and let z tend to !;" so that 

I. ( t:,.) -R(z) 
Ill Z <;, 

z.~(x D(z) 1H 

TI <~k -;) 
i=l 
'"'k 
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Now, the probability generating function can be inverted, and from this inversion it is easily ver
ified that the stationary distribution is a linear combination of geometric distributions, except for the 
stationary probabilities n0 , 1l't. •.• , 1l'D-l· 

3.3.3 Numerical difficulties of the analytical techniques 

To apply the method of particular solutions or the generating-function technique, we basically have to 
determine the roots of an equation first, and then we have to solve a system of linear equations into 
which these roots are substituted. Both the computation of these roots and the determination of the 
solution of this system can give computational difficulties, as we have observed in Chapter 2. 

The determination of roots of an equation plays a fundamental role in the study of many queueing 
systems and Markov chains (see, for example, page 129 in Kleinrock [ 1975]). This determination is 
well known for its numerical instabilities (see, for instance, Press, Flannery, Teukolsky & Vetterling 
[1986]). In general, it is hard to determine the required roots accurately. It seems that these roots can 
be computed accurately only if the number of roots to be computed is small, if this equation can be 
reduced to solving a system of polynomial equations of low degree (as, for example, in Chapter 2), or 
if this equation can be reduced to solving a system contraction equations (as, for instance, in Adan & 
Zhao [1994]). 

Further, even if we are able to compute all the required roots accurately, these roots may be closely 
clustered. However, we cannot link the clustering of roots to properties of the model, but we can only 
observe that roots are clustered. If the roots are clustered, then the system of equations into which 
these roots are substituted may become nearly singular (see, for instance, Table 2.1 and Table 2.2 in 
Chapter 2, Section 1.6 in Neuts [1981], and Press, Flannery, Teukolsky & Vetterling [1986]). Only 
for some specific cases, the solution of this system of equations may be expressed explicitly into the 
computed roots (see, for instance, Lemma 3.3.3). 

In general, we cannot give (sufficient) conditions for the properties of the probability distribution 
{qh. h = .... TH l, TH} such that the roots can be computed accurately and that these roots are not 
closely clustered. Therefore, in the next section, we present a numerical approach for determining the 
stationary distribution. This approach exploits the tail behaviour of the stationary distribution and is 
an adapted version of the algorithm of Tijms & Van de Coevering [ 1991]. 

3.4 Solving the equilibrium equations numerically 

In this section, we present a numerical approach for the determination of the stationary distribution 
of the Markov chains as introduced in Section 3.2. This approach approximates the solution of the 
equilibrium equations (3.7) and (3.8), and the normalisation equation (3.4). Equation (3.6) is omitted, 
because this equation is redundant, as noted in Section 3.3. This approximation is based on exploiting 
the tail behaviour of the stationary distribution. For the determination of this tail behaviour, we use 
the notation and results from the method of particular solutions in Section 3.3.1. The reason for this is 
that this method is applicable to the class of Markov chains introduced in Section 3.2, whereas for the 
generating-function technique we restricted this class slig~tly. Furthermore, the method of particular 
solutions directly yields the desired form for the stationary distribution, that is, a linear combination 
of geometric distributions. 

From the form (3.11) for the stationary probabilities n1, it directly follows that the largest root 
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in absolute value of the characteristic equation (3.9) determines the tail behaviour of the stationary 
distribution. Note that this result also holds if the roots inside the unit circle of this equation are not all 
distinct. We first prove that there is exactly one positive root inside the unit circle of the characteristic 
equation, and then that this is the largest root in absolute value amongst the roots inside the unit circle. 
These results are well known in queueing theory, but they are usually stated without reference or proof. 
Further, this kind of results also appears in the theory ofbranching processes (see, for instance, Athreya 
& Ney [1972]). 

Lemma 3.4.1 Exactly one of the roots of equation ( 3.9) lies in the interval (0, 1 ). 

Proof. To prove this lemma, we divide equation (3.9) by zTH, to get 

(3.22) 

and we denote the right-hand side of this equation by f(z). Since f" (x) > 0, for all x > 0, the function 
f(x) is strictly convex on (0, oo). Hence, equation (3.22) has at most two positive solutions. Further, 
since 

Tu 

limf(x) = oo, f(l) 
xlO 

Lqh=I, and f'(l) 
h=-oo 

where the limit results from qr
11 

> 0 and the inequality from the inequality (3.5), the desired result 
follows immediately. 0 

This unique positive root of the characteristic equation (3.9) is denoted by z1• The next lemma 
states that all the other roots inside the unit circle have absolute value at most z1• But, before giving 
this lemma, we introduced as the greatest common divisor of TH and the powers of z having positive 
coefficients at the right-hand side of equation (3.9). 

Lemma 3.4.2 If d 
and lzkl < Z1 fork 

1, then lzkl < z1,for k 2, 3, .. , TH. Otherwise, lzkl = z1,for k = 2, 3, ... , d, 
d+ l,d+2 ..... TH. 

Proof. We first show that lz,j ::::: z 1 , fork= 2, 3, ... , TH. Let f(z) denote the right-hand side of equa
tion (3.22). By the triangle inequality and the strict convexity of f(x) on (0, oo ), 

lf(z)l :S f(lzl) < I, Z1 < lzl < 1. 

Hence, the equation f(z) I has no roots z with z1 < lzl < 1, so that lz•l :S z~o fork= 2, 3, ... , TH. 
Next, we complete the proof for the case d = 1. By the triangle inequality, 

Tu 

f(lzkl) = L q11IZk k=2,3, ... ,TH. (3.23) 
11=-oo 

If equality holds in (3.23), then = z1, because the equation f(lz
1

) 1 has only one solution on 
lzl E (0, I), namely, lzl = z1. Since qr11 > 0 and because I is the greatest common divisor of the 
powers of f(z), equality in (3.23) holds only if z,;" is real and positive for all h with qh > 0. Suppose 
that > 0. for all h with q11 > 0, and so, assume that I = z1• Then, we have that Zk = cpz1 for 
some cp which is not equal to 1 and which satisfies cp-h J for all h with q17 > 0 (so, cp lies on the unit 
circle). However, since I is the greatest common divisor of the powers off (z), cp-" i 1 for all h with 
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qh > 0, except for cp = I. Consequently, cpz1 is not a root of the equation f(z) = I, and so the equality 
of (3.23) does not hold. Hence, we have proved ford = 1 that 

For the cased> I, we can rewrite equation (3.9) by substituting y = z! as 

YTH/d = qTH + qTH-dY + qTH-2di + ''' • (3.24) 

By Lemma 3.3.1, this equation has TH/d roots inside the unit circle, and these roots are denoted by 
Y1, Y2, ... , YTHfd· From Lemma 3.4.1 and the first part of the present lemma, we have 

The proof is completed by noticing that (since y = zd) with each root Yk of equation (3.24), d roots z 
of equation (3.9) correspond, and these d roots have the same absolute value. 0 

FromLemma3.4.I, Lemma 3.4.2, and the form (3.II), it is easily seen that the tail of the stationary 
distribution is asymptotically 

1. Jr j+d d 
Im -- =z1, 

J-+00 Jr j 
(3.25) 

so that the unique positive root inside the unit circle of the characteristic equation (3.9) determines this 
tail behaviour completely. Thus, if d = 1, then the tail of the stationary distribution is asymptotically 
geometric in the strict sense. Although d may be larger than one, we henceforth say that, if the limit 
(3.25) holds, the stationary distribution has a geometric tail behaviour. 

For the case d I, Tijms & Van de Coevering [ I991] present an efficient numerical algorithm 
for the computation of the stationary distribution, which exploits the geometric tail behaviour of this 
distribution. Since, for our model, d is not necessarily equal to one, we adapt their algorithm to the 
case d > 1. This algorithm is in the sequel denoted by the geometric tail (GT) technique. 

By the existence of the limit (3.25), we have, for j tending to infinity, 

Hence, a straightforward approximation is 

j?:: J, (3.26) 

with J an integer for which the quotient TC.t+d I rr: 1 is (fairly) good approximated by zf. So, it remains to 
compute the probabilities 1r0 , rc 1, ••• , TCJ+d-l· As mentioned earlier, we omit the equilibrium equation 
for state j = 0. Then, these stationary probabilities are the unique solution of the equilibrium equa
tions for states j, with j = 1, 2, ... , J + d- I. and the normalisation equation, after substituting the 
approximation (3.26) into these equations. The normalisation equation then reads 

(3.27) 

In this way, we obtain an approximation for the stationary distribution. 
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To use this approximation, we have to compute the root z1 of the characteristic equation (3.9) ac
curately. Since this is the unique root in the interval (0, 1 ), bisection is a natural technique for the 
determination of this root. However, this technique may lead to numerical problems. The reason for 
this is that the right-hand side of the characteristic equation, after subtracting zTH from both sides, may 
become rather flat in the neighbourhood of the actual root z1, so that the values in this neighbourhood 
may not be distinguishable from zero within the machine precision. Therefore, as suggested by Tijms 
& Van de Coevering [1991], we use logarithms to avoid this numerical difficulty. More precisely, we 
divide both sides of the characteristic equation (3.9) by zTH and then take logarithms at both sides. In 
this way, the resulting right-hand side is not flat anymore in the neighbourhood of the root z1, so that 
the positive root z1 can be computed accurately. 

To illustrate this numerical difficulty, we consider the characteristic equation 

zTH = e-Jdl-z>, 

which follows from qrH-h = f3h = e-1' JI 11 I h!, that is, {f3h, h = 0, l, 2, ... } is a Poisson distribution 
with mean JI. As we shall see in Section 3.5, this characteristic equation corresponds to a Markov 
chain describing the queue-length process considered at arrival instants in a Dl ErHI 1 queueing sys-
tem. Now, let J(z) e 11 < l-z) zTH. In Figure 3.1, we depict this function f (z) in the neighbourhood 
of the actual positive zero z1 0.107, for the case TH =50 and JI = 125. Although it may seem that 
the function is identically zero for 0 < z < Zt. this function assumes values that are quite small but 
strictly positive. Using single machine precision£, the computer cannot distinguish f(z) from zero, if 
lf(z)l < c:. In this case, lf(z)l < c: forO< z < 0.125. Thus, the machine precision is insufficient to 
accurately compute the root z1 by bisection within a fairly reasonable relative error of w-6• As already 
mentioned, this problem can be circumvented by dividing both sides of the characteristic equation (3.9) 
by z1il and then taking logarithms at both sides. However, we note that this particular numerical prob
lem could also have been avoided by using double machine precision. But, even when using double 
machine precision, there are still many examples for which applying bisection to the characteristic 
equation fails. So, for safety, we shall use logarithms to compute the root z1 by bisection. 

Clearly, for the GT technique, the computational effort is low and the results are accurate if (3.26) is 
a good approximation for the quotient rr f+dlrr 1 for small values of J. It turns out that this algorithm per
forms quite well for relatively small values of J (see, for instance, Tijms & Van de Coevering [1991], 
and Section 3.5 and Chapter4 of this monograph). For our numerical examples, to be presented in the 
subsequent chapters, J is usually smaller than D + TH, which is equal to the number of (boundary) 
equations which have to be solved by the method of particular solutions. 

Nevertheless, the theoretical foundation of the GT technique is still incomplete, so that it is unclear 
why it performs so well, and it is not possible to give general rules for the value of J. The appropriate 
value of J has to be determined experimentally, for instance, by investigating different values of J 
until the stationary probabilities do not alter significantly or until the quotient rr j+d I rr j is sufficiently 
close to zf for j = J. J + 1, ... , J + d I. The appropriate value depends of course on the accuracy 
required. We shall apply this technique in subsequent chapters for determining the stationary queue
length distribution of systems with periodic service. 

3.5 The G I I Er I I queueing system 

As we have seen, the quality of the approximations by the GT technique depends on the rate at which 
the root z1 becomes the dominating term in the linear combination (3.11). Consequently, this quality 
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Figure 3.1: The function f(z) = e- 125<1-zl z50 in the neighbourhood of the zero z1• 

depends on how fast the quotient nj+d/nj is sufficiently well approximated by z~. To get an idea of 
this rate, we look at a Markov chain that can be studied analytically, like the one defined in Section 
3.2. 

For the G I I Er/ I queueing system, Adan & Zhao [ 1994] derive sufficient conditions on the arrival 
process of customers for the method of particular solutions to be successfully applicable. In this sec
tion, we use this system to investigate how fast the root z1 dominates the linear combination (3.11 ). In 
Section 3.5.1, we describe the queueing system and determine the equilibrium equations ofthe Markov 
chain representing the queue-length process at arrival instants. The analysis of this process is briefly 
given in Section 3.5.2. The reasons that numerical problems can be avoided are as follows. Firstly, 
the determination of roots reduces to solving r fixed-point and contraction equations and, secondly, 
the boundary equations can be solved explicitly. In Section 3.5.3, we investigate the rate at which the 
quotient nj+1/nj is approximated by z 1• 

3.5.1 The model and the equilibrium equations 

We consider a single-server queueing system at which customers arrive with interarrival times having 
a common distribution function {A(t), t > 0} with mean II A.. The service times of customers are Er
langian distributed with r service phases and mean r 1 JJ., and customers are served in the order of their 
arrival. Finally, we assume that the utilisation factor of the system p : = A.r I JJ. is strictly less than one. 

Let Xk denote the number of uncompleted service phases just prior to the arrival of the k-th cus
tomer. Then, the stochastic process {Xh k = 1, 2, 3, ... } is a discrete-time Markov chain with state 
space {0, I, 2, ... } and with X1 = n, where n is a (possibly random) non-negative integer. The station-
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ary transition probability p;,; from state i to state j of this chain is given by 

Pi.J I 
00 

L {3,, i = 0, 1, 2, ... and j = 0, 
n=t+-r 

f3,~r-J• i 0,1,2, ... andj=1,2, ... ,i+r, 
0, 0,1,2, ... andj~i+r+I. 

where f3n denotes the probability that n service phases are completed during an interarrival time, that 
is, 

100 (JLt)" -1'1 
f3n = - 1-e dA(t), n = 0, I, 2, .... 

t=O n. 
The Markov chain is obviously aperiodic and irreducible, so that together with the assumption that 

p < I, this chain is ergodic ( cf. Pakes [ 1969]). Thus, this chain has a unique stationary distribution 
(rr 1 , j = 0, 1, 2, ... }, which is the unique solution of the equilibrium equations 

00 ::x,) 00 

rro=rroLf3,+rr, L f3,+n2 L f3n+···, 
tt=r n=r+l n=r+2 

rr; = 7Tof3r-j + rr, f3r- h-1 + 7Tzf3r- }+2 + . '. ' 

+···, 
j = I, 2, ... , r I, 

j = r, r + 1, r + 2, ... , 

(3.28) 

(3.29) 

(3.30) 

and the normalisation equation. As before, the equations (3.30) are called the inner equations and the 
equations (3.28) and (3.29) are called the boundary equations. 

Clearly, the Markov chain belongs to the class of Markov chains which is defined in Section 3.2, 
with, as can easily be verified, D = 0, TH r, and q11 = f3h+r for h = 0, I, 2, .... Hence, we can apply 
the method of particular solutions of Section 3.3.1 for determining the stationary distribution, that is, 
expressing this distribution as a linear combination of geometric distributions. 

3.5.2 Solving the equilibrium equations 

To express the stationary distribution as a linear combination of geometric distributions, we substitute, 
along the lines of Section 3.3.1, rr; = zi into the inner equations (3.30) and divide these equations by 
zl-r. So, we obtain the characteristic equation 

+···=A(JL(l z)). (3.31) 

with A(s) the Laplace-Stieltjes transform of the interarrival-time distribution. By Lemma 3.3.1, this 
equation has exactly r solutions inside the unit circle. As is shown in Adan & Zhao [ 1994 ], if both the 
conditions that A (s) has no zeroes in the half plane Re (s) > 0 and that 

1
- A1

(s) I:::_ ~~(Re(s))' 
A(Re(s)) 

for all s with Re(s) > 0, 

are fulfilled, then these r solutions are determined by the r fixed-point and contraction equations 

:::) ) , k O,l, ... ,r I, 
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with f/Jk = e2"ik/r and i = J=T. so that the f/Jk's are the r roots of the equation(/)'= I. Consequently, 
these r roots of the characteristic equation are simple. Examples of interarrival-time distributions sat
isfying the two conditions are deterministic, shifted exponential, mixed Erlang, Gamma, and hyper
exponential interarrival times. 

To complete the determination of the stationary distribution, we have to solve the boundary equa
tions (3.28) and (3.29), and the normalisation equation. These equations are solved by linearly com
bining the solutions z[. that is, using the form 

r 

1rJ = L:>·kzf. 
k=l 

with the A.k 's denoting complex numbers. Since the roots Zk inside the unit circle of the characteristic 
equation (3.31) are simple and because D = 0, the conditions for applying Lemma 3.3.3 are fulfilled, 
so that the coefficients A.k are explicitly given by 

r 

TI<z}l -I) 
)=I 
J# 

A.k = (1- Zk)-,-. ----

[1<z}1 -z;-1
) 

)=1 
)# 

k =I, 2, ... , r. 

In the next section, we consider several interarrival-time distributions to investigate the rate at which 
the largest root of the equation (3.31) dominates the linear combination. 

3.5.3 Numerical examples 

As noted before, the quality of the approximation for fixed 1 and the computational effort of the GT 
technique depend on the rate at which 1r J+ 1 1 1r J is approximated well by z 1 and on how fast z1 dominates 
the linear combination of geometric distributions (3.11 ). To get an idea of these two aspects, we use the 
G I IE, I I queueing system for several interarrival-time distributions, namely, deterministic, Erlangian, 
and hyperexponential interarrival times. 

In the examples, we set J.L r, so that the average service time is equal to l, and we take A. equal to 
p. Hyperexponential interarrival times are with probability q exponentially distributed with parameter 
J.Lt and with probability I q exponentially distributed with parameter J.L2 • So, the average interarrival 
time is equal to p1IJ.L 1 + (l p)IJ.Lz. The parameters of the hyperexponential distribution H2 are 
chosen such that pI J.L 1 = (I - p) I J.Lz (that is, a hyperexponential distribution with balanced means), 
and that the squared coefficient of variation is equal to 2. 

In Table 3.1, we list the quotient of the second-largest root (denoted by z2) of equation (3.31) and 
z1• This table shows that the quotients lz2illzd may differ considerably for the different examples. 
Further, these quotients may be close to one, indicating that the rate at which z1 dominates the linear 
combination of geometric distributions may be rather slow. 

However, more important are the results presented in Table 3.2. In this table, we list the quotient 
1r J+ 1 I 1r J for the exact values of 1r J and 1r J+ 1• From this table, we observe that the geometric tail be
haviour seems to appear rather fast, if the quotient lz2 illz 11 is fairly small (see, for example, there
sults for the D I E,.l l queueing system). But, if this quotient is rather close to one, as for the H21 E501 I 
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p r Dj E,/1 Ew/ E,jl H2f E,/1 
0.95 5 0.381 0.453 0.724 

10 0.493 0.603 0.842 
50 0.739 0.876 0.965 

0.99 5 0.365 0.441 0.723 
10 0.473 0.591 0.841 
50 0.711 0.870 0.965 

Table 3.1: The quotient of the second-largest root z2 and the largest root z1 in absolute value. 

queueing system, then this tail behaviour only seems to hold approximately for states at a fairly large 
distance from the boundary of the state space. 

j r= 
1 1.0383 0.9852 1.0255 1.2348 
2 0.9497 0.9724 1.0234 1.2429 1.1172 
3 0.9023 0.9604 1.0153 1.0214 1.2503 1.1194 
4 0.8935 0.9494 0.9871 1.0193 1.2571 1.1216 
5 0.9011 0.9393 0.9640 1.0172 0.6294 1.1237 

10 0.9017 0.9020 0.9069 0.9339 0.9520 1.0067 0.9163 0.5771 1.0234 
15 0.9017 0.9017 0.9002 0.9337 0.9498 0.9966 0.9808 1.0252 1.0239 
20 0.9017 0.9017 0.9016 0.9337 0.9500 0.9881 0.9899 0.9419 1.0244 
25 0.9017 0.9017 0.9018 0.9337 0.9500 0.9826 0.9907 0.9980 1.0248 
50 0.9017 0.9017 0.9017 0.9337 0.9500 0.9932 0.9906 0.9952 0.5328 
75 0.9017 0.9017 0.9017 0.9337 0.9500 0.9931 0.9906 0.9950 1.0058 

100 0.9017 0.9017 0.9017 0.9337 0.9500 0.9931 0.9906 0.9950 0.9843 
150 0.9017 0.9017 0.9017 0.9337 0.9500 0.9931 0.9906 0.9950 0.9990 
00 0.9017 0.9017 0.9017 0.9337 0.9500 0.9931 0.9906 0.9950 0.9990 

Table 3.2: The quotient ni+dndor p = 0.95. 

We notice that, in the Hd E,jl queueing system, the quotient nr+ 1fnr differs considerably from 
the other quotients rr J+ 1fn 1 with j near r. An intuitive explanation is that the interarrival times have a 
high variability. These times are often small, but incidentally they are large; customers almost arrive in 
batches. For the sake of argument, suppose that customers arrive in batches of size two. The customers 
in the first batch of a busy period see 0 and r phases, respectively. So, when rr0 is fairly large, so will 
be rr,. The interarrival times of the other batches in this busy period are random and large. Therefore, 
one may expect that, when these batches arrive, the number of uncompleted phases of the customer in 
service is more or less random. This suggests that the probability rr, is considerably larger than rr,+l 
due to the 'start-up' effect at the beginning of a busy period. 

So, we expect that the GT technique gives accurate results for the D 1 Er/l queueing system, when 
1 is at least equal to 10 (for r 5 and r 10) and 25 (for r 50). For the Hd E,jl queueing system, 
we expect that it suffices to take 1 equal to 25 (for r = 5), 50 (for r 10), and 150 (for r =50). These 
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expectations are confirmed by the results in the Tables 3.3 and 3.4. In these tables, we list the computed 
values of some stationary probabilities for different values of J, for the D I E,j I and H2j E, jl queueing 
system with p = 0.95. We notice that smaller values of J can be used, when less accurate results are 
required. 

J 
r j 5 10 15 25 50 75 100 Exact 
5 0 0.1729 0.1754 0.1754 0.1754 0.1754 0.1754 0.1754 0.1754 

1 0.0681 0.0687 0.0687 0.0687 0.0687 0.0687 0.0687 0.0687 
2 0.0708 0.0713 0.0713 0.0713 0.0713 0.0713 0.0713 0.0713 
3 0.0674 0.0677 0.0677 0.0677 0.0677 0.0677 0.0677 0.0677 

10 0 0.2323 0.2309 0.2307 0.2307 0.2307 0.2307 0.2307 0.2307 
0.0613 0.0612 0.0611 0.0611 0.0611 0.0611 0.0611 0.0611 

2 0.0629 0.0628 0.0628 0.0627 0.0627 0.0627 0.0627 0.0627 
3 0.0612 0.0612 0.0612 0.0612 0.0612 0.0612 0.0612 0.0612 

50 0 0.4822 0.4365 0.4314 0.4325 0.4325 0.4325 0.4325 0.4325 
I 0.0043 0.0042 0.0041 0.0042 0.0042 0.0042 0.0042 0.0042 
2 0.0042 0.0042 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 
3 0.0041 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 

Table 3.3: Approximations obtained by the GT technique for the stationary probabilities n1 of the 
Dj E,/1 queueing system with p 0. 95 for different values of J. 

r j Exact 
5 0 0.0280 0.0275 0.0289 0.0296 0.0296 0.0296 0.0296 0.0296 

1 0.0047 0.0046 0.0048 0.0049 0.0049 0.0049 0.0049 0.0049 
2 0.0058 0.0057 0.0059 0.0060 0.0060 0.0060 0.0060 0.0060 
3 0.0072 0.0071 0.0074 0.0075 0.0075 0.0075 0.0075 0.0075 

10 0 0.0530 0.0206 0.0319 0.0288 0.0288 0.0288 0.0288 0.0288 
I 0.0033 0.0020 0.0025 0.0023 0.0023 0.0023 0.0023 0.0023 
2 0.0037 0.0022 0.0028 0.0026 0.0026 0.0026 0.0026 0.0026 
3 0.0041 0.0024 0.0031 0.0029 0.0029 0.0029 0.0029 0.0029 

50 0 0.0903 0.0764 0.0641 0.0444 0.0322 0.0290 0.0282 0.0282 
I 0.0009 0.0008 0.0007 0.0006 0.0003 0.0004 0.0004 0.0004 
2 0.0009 0.0008 0.0007 0.0006 0.0003 0.0004 0.0004 0.0004 
3 0.0009 0.0008 0.0007 0.0006 0.0003 0.0004 0.0005 0.0005 

Table 3.4: Approximations obtained by the GT technique for the stationary probabilities n1 of the 
H2/ E,j 1 queueing system with p = 0.95 for different values of J. 
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3.6 Conclusions 

In this chapter, we imposed restrictions on a one-dimensional Markov chain such that the equilibrium 
equations of this chain constitute a homogeneous linear difference equation with constant coefficients. 
Firstly, from a certain state i onwards, the transition probability to states j, with j ~ 1, depend on j 
only. Secondly, jump sizes to higher states are uniformly bounded by some constant. 

Because of this structure of the equilibrium equations, the stationary distribution of the Markov 
chain is a linear combination of geometric distributions. Standard analytical techniques from the the
ory of difference equations can be used to obtain this linear combination. However, in Chapter 2, we 
saw that these techniques give numerical difficulties. Since we cannot link these difficulties to prop
erties of the Markov chain, we used a numerical technique to approximate the stationary distribution. 
This numerical approach (the GT technique) exploits the geometric tail behaviour. As a result, we 
obtained an efficient algorithm to approximate the stationary distribution of the Markov chain and, 
moreover, this algorithm gives excellent approximations without too much computational effort. 

In Chapter 4, we shall apply the GT technique to study the queue-length process of a broad class 
of queueing systems with periodic service. Furthermore, we shall study the queue-length process of 
some modifications of these systems in the Chapters 6 and 7 by this technique as well. Just like we saw 
in Chapter 2 and Section 3.5, the GT technique will give excellent approximations for the stationary 
queue-length distributions, and the computational effort to obtain these results will be fairly low. 



64 3. A Numerical Technique for a Class of One-Dimensional Markov Chains 



4 
A Numerical Technique for Queueing Systems 

with Periodic Service 

4.1 Introduction 

In Chapter 3, we presented a numerical technique for the determination of the stationary distribution of 
a class of one-dimensional Markov chains. We show in this chapter that this technique can be used for 
analysing a broad class of discrete-time queueing systems with periodic service. Hence, this enables 
one to evaluate a wide range of interesting real-life situations like fixed-cycle traffic lights, communi
cation systems with periodic access schemes, and periodic production rules. Furthermore, it enables 
one to compare periodic service with other service policies. 

We consider a single-server multi-queue system with periodic service. For this system, the time 
axis consists of intervals of equal length, called cycles. In a cycle, the server visits the different queues 
to serve customers. The order in which he visits the queues is the same for all cycles. Furthermore, 
the time instants within a cycle at which he starts switching from one queue to another are fixed and 
the same for all cycles. Switching from one queue to another may take some time. In Figure 4.1, we 
repeat the representation for. the example in Section 1.1, with two queues and deterministic switch-over 
times. In this example, the server attends queue 1 for three time units to serve customers in this queue. 
After that, he requires two time units to switch to queue 2. Then, he attends queue 2 for four time units 
to serve customers in this queue. Finally, the server switches back to queue 1, which requires one time 
unit, after which the service policy starts over again. In this example, the time interval (0, 10) can be 
considered as a cycle. 

For queueing systems with periodic service, the queue-length processes do not affect each other, 
because the switching policy of the server is rigid. As a result, the analysis of the joint queue-length 
process (and hence, the determination of the sojourn-time distributions) reduces to the analysis of a 
number of single-queue systems; one for each queue. To study the queue-length process of customers 
in a specific queue, we consider the system at the start of cycles. We try to apply the numerical tech-
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queue 1 queue 2 queue I queue 2 

0 3 5 9 10 13 15 19 20 

Figure 4.1: A representation of a periodic service policy for a queueing system with two queues and 
deterministic switch-over times. 

nique of Chapter 3, that is, the geometric tail (GT) technique, to determine the stationary queue-length 
distribution at these imbedded time instants. 

However, the applicability of the GT technique is restricted to the class of one-dimensional Markov 
chains for which the stationary distribution has an asymptotically geometric tail. Therefore, we have to 
impose restrictions on the queueing system, such as restrictions on the arrival process and service-time 
distribution of customers. Fortunately, these restrictions are not too severe, so that we are able to evalu
ate a broad class of queueing systems with periodic service. More precisely, this class includes queue
ing systems with periodic service where customers arrive according to a periodically time-dependent 
Bernoulli process, with service times having either an arbitrary distribution with bounded support or 
a distribution that is a mixture of a finite number of negative binomial distributions with the same pa
rameter q. 

After the application of the GT technique to the imbedded queue-length process, we can study the 
queue-length process at arbitrary (and in particular at arrival) instants. However, we are not merely 
interested in these processes, but also in the sojourn times of customers. Therefore, in this chapter, 
we pay attention to the determination of the sojourn-time distribution as well. Once the stationary 
imbedded queue-length distribution is found, the sojourn-time distribution can be calculated exactly. 

As stated in Chapter 1, our main objective is to develop techniques for evaluating queueing sys
tems with periodic service. Therefore, the emphasis in this chapter lies on the application of the GT 
technique and the determination of the sojourn-time distribution. However, we are also interested in 
the quality of the approximation of the GT technique and in the computational effidency of the deter
mination of the sojourn-time distribution. 

The GT technique reduces the infinite system of equilibrium equations of a Markov chain to a finite 
one by imposing that the solution to the infinite system is geometric from a certain state onwards. To 
form an idea of the quality of the approximation of the GT technique for queueing systems with pe
riodic service, we compare the results with those obtained by solving these equations after truncating 
the state space (and hence, also reducing the infinite system of equilibrium equations to a finite one). 
This quality turns out to be excellent, even if the geometric tail is imposed on the stationary proba
bilities of states fairly close to the boundary of the state space. Besides, by this comparison, we also 
get an idea of the benefits resulting from 'cleverly' reducing the infinite system to a finite system as 
compared to using brute computational force. 

The queue-length process of the class of queueing systems, which we consider in this chapter, can 
also be studied exactly by the matrix-analytic approach introduced in Neuts [1981,1989]. This ap
proach requires the solution of a polynomial matrix equation. As mentioned in Chapter 1, the com
putation of this solution is quite sensitive to the utilisation of the system, and this approach faces a 
'dimensionality curse'. For the case that this polynomial matrix equation reduces to a quadratic ma
trix equation, Ramaswami & Lucantoni [ 1985] give an algorithm for the determination of the waiting
time distribution. After adapting this algorithm to the determination of the sojourn-time distribution, 
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we show that the procedure developed in this chapter requires less computational effort for most of the 
relevant cases. 

The outline of this chapter is as follows. In Section 4.2, we first describe the periodic service policy 
in detaiL After that, we introduce a broad class of arrival processes and service-time distributions. In 
Section 4.3, we show that the queue-length process of the corresponding class of queueing systems 
with periodic service can be studied by the GT technique. In Section 4.4, we present an algorithm for 
the computation of the sojourn-time distribution of customers. These three sections are extensions of 
the exposition in Van Eenige, A dan, Resing & Van der Wal [ 1995b]. 

In Section 4.5, we briefly outline the matrix-analytic approach to analyse the queue-length process 
of customers for a subclass of the models introduced in Section 4.2. This part is based on the discussion 
in Van Eenige, Resing & VanderWal [1993]. After that, we compare the computational effort of the 
algorithm in Ramaswami & Lucan toni [ 1985] for the determination of the sojourn-time distribution 
with the procedure of Section 4.4. In Section 4.6, we apply the GT technique to numerical examples, 
and we compare the computational effort of this technique with that of a simple truncation in order 
to obtain the same accuracy. Finally, we give a summary and the main conclusions of this chapter in 
Section 4.7. 

4.2 The model 

In this section, we present a rich class of queueing systems with periodic service that, as will be con
firmed in Section 4.3, can be analysed by the GT technique developed in Chapter 3. We describe the 
periodic switching pattern of the server and introduce some notation in Section 4.2.1. In Section 4.2.2, 
we give the class of arrival processes and service-time distributions of customers to be considered in 
this chapter. Finally, in Section 4.2.3, we introduce some additional notation and conventions to facil
itate the analysis in subsequent sections. 

4.2.1 The periodic service policy 

Queueing systems with periodic service can be characterised as follows. A server attends a finite num
ber of queues to serve customers. Switching from one queue to another may take some time. As noted 
before, the time axis consists of intervals of the same length, called cycles. The order in which the 
server visits the queues is the same for all cycles. Moreover, the time instants within a cycle at which 
he starts switching from one queue to another are fixed and the same for all cycles. Further, it is as
sumed that the arrival processes and service times of customers are independent. 

So, in a periodic service policy, the time instants at which the server starts switching do not depend 
on the queue lengths. Furthermore, since the arrival and service processes are assumed to be indepen
dent, the queue-length processes can be studied separately. Therefore, from now on, we consider one 
queue only. 

Jn a cycle, the server is alternately attending (on-periods) and not attending (off-periods) the queue 
under consideration. For convenience, it is assumed that a cycle begins with an off-period and ends 
with an on-period. An off-period and the next on-period together are called a subcycle. Let the number 
of subcycles in a cycle be equal to N. Recall that the time instants within a cycle at which the server 
starts switching are fixed and the same for all cycles. So, the length of a subcycle is constant. 
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As mentioned in Chapter 1, we consider these queueing systems in discrete time. Therefore, we di
vide each cycle into C intervals of the same length, called slots and numbered 1, 2, ... , C. We assume 
that, in each slot of the cycle, the server is either attending the queue or not. As a result, we suppose 
that the on- and off-periods begin at slot boundaries. Further, the slots in an on-period and off-period 
are called on-slots and off-slots. 

Because the switch-over times to the queue under consideration may be random, the length of the 
off-periods and of the on-periods may also be random (but recall that the length of an off-period and the 
next on-period together is constant). These switch-overs are assumed to be completed before the server 
departs from this queue. Let the length of the i-th subcycle be denoted by C;, with i = I, 2, ... , N, 
so that :EZ,1 C; = C. Further, the (random) length of the on-period in the i-th subcycle is denoted by 
(the random variable) A; with probability distribution {a;(j), j 0, I, ... , C;}, fori= 1, 2, ... , N. 
Hence, the length of the off-period in the i-th subcycle is equal to C; - A;. In Figure 4.2, we represent 
a cycle graphically, where the dotted lines indicate the random part of the length of the on- and off
periods. 

AJ A2 A3 -- <-- <------
--, --, -----, 

I 
' ' I 

off ' off off I 

' I 
I ' 

cl c2 c3 

c 

Figure 4.2: A representation of a cycle for N = 3. 

4.2.2 A class of arrival processes and service-time distributions 

In this section, we present the class of arrival processes and service-time distributions to be considered 
in this chapter. This class is broad, and it captures or approximates well most of the important arrival 
processes and service-time distributions considered in the literature on queueing systems with periodic 
service. 

We assume that in slot n of the cycle, with n = 1, 2, ... , C, one customer arrives with probability Pn. 
where 0 :::;: p, :::: 1. So, with probability I - p,. no customer arrives in slot n of the cycle. Arrivals in 
different slots are assumed to be independent. Hence .• the arrival process of customers is a periodically 
time-dependent Bernoulli process. 

The service times of customers are measured in numbers of slots. For a customer arriving in slot 
n ofthe cycle, with n = I, 2, ... , C, the probability generating function F,,(z) of his service time is 

B. ( I _ fJ ); . 
F,, (z) = t; b"(i) I _ {Jz z', 0:::;{3<1. 

where B, is a non-negative constant and {b,(i), i = I, 2, ... , B,} a probability distribution. In other 
words, the service time of this customer is i slots, if{J = 0, or is distributed as the sum of i independent 
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geometric distributions with parameter {3, if 0 < {3 < 1. For convenience, in the sequel, we say that 
the service of a customer arriving in slot n consists of i service phases with probability bn(i). Such a 
phase is called deterministic, if {3 0, and geometric, if 0 < {3 < L 

Clearly, the class of arrival processes is broad, and it captures many important arrival processes. 
Further, the class of service-time distributions consists of probability distributions with bounded sup
port and of finite mixtures of negative binomial distributions with the same parameter q. Moreover, 
any arbitrary probability distribution can be approximated as accurately as desired by a probability 
distribution with bounded support (although one may have to take Bn quite large). For the case that 
probability distributions are Poisson mixtures, we can approximate them arbitrarily close by a mix
ture of negative binomial distributions (cf. Steutel & Van Eenige [1996]). Thus, most of the arrival 
processes and service-time distributions considered in the literature on queueing systems with peri
odic service (see Section 1.2) are captured or approximated well by this class of arrival processes and 
service-time distributions. Hence, we conclude that this class is rich and important. 

For the class of arrival processes and service-time distributions mentioned, the stochastic process de
scribing the number of service phases in the queue at the start of cycles can be analysed by the GT 
technique, as we shall formally show in Section 4.3. The reason for this is that this process fulfils the 
condition that the queue-length process at the start of cycles can be described by a Markov chain for 
which the equilibrium equations constitute a homogeneous linear difference equation with constant 
coefficients. That is, this process satisfies the following three conditions (see Section 3.2) 

(i) the process can be described by a one-dimensional Markov chain, 

(ii) the transition probabilities from state ito state j of this chain, with j 2:: I, depend on i and j only 
through their difference j - i from a certain state i onwards, 

(iii) the maximal jump size (that is, the maximal difference j- i) is uniformly bounded from above 
by some positive constant. 

For the arrival process of customers, the first condition implies that this process has to be inde
pendent and identical for all cycles, so that no supplementary state descriptors are necessary. Further, 
this arrival process may not depend on the queue length, if this queue length exceeds some constant, 
because otherwise the second condition is violated. Finally, the number of arrivals in a cycle has to 
be limited, since otherwise the jump sizes are not uniformly bounded. Notice that these implications 
allow some generalisations of the aforementioned class of arrival processes. For example, we may al
low dependencies between arrivals in different slots in the same cycle, and dependencies between the 
arrival process and the queue length, if this queue length is smaller than some constant. However, we 
do not consider these generalisations in order to facilitate the exposition. 

For the service-time distributions of customers, condition (i) implies that all service phases have 
to be stochastically identical and that the number of on-slots needed to handle one such phase has to 
satisfy the lack-of-memory property. Otherwise, we have to use supplementary state descriptors. To 
avoid violation of condition (ii), the number of service phases arriving in a slot may depend on the 
queue length upon arrival, but only if this queue length is not larger than some constant. The impli
cation of condition (iii) is that the number of service phases arriving in a slot is uniformly bounded 
by some constant. So, the class of service-time distributions could have been extended to the case that 
the number of service phases arriving in a slot depends on the queue length upon arrival as long as this 



70 4. A Numerical Technique for Queueing Systems with Periodic Service 

queue length is smaller than some constant. We do not consider this extension for convenience. How
ever, at the end of Section 4.3, we shall make a small exception, because there we shall briefly discuss 
the queue-length process at a fixed-cycle traffic-light queue. For traffic-light queues, there is a natural 
dependence between the service time and the queue length (recall the traffic-light queue assumption, 
that is, the TLQ assumption, as defined in Section 1.2). We emphasise that the three conditions pro
hibit that some customers have deterministic service phases and that other customers have geometric 
service phases, or that the service times have a general discrete phase-type distribution as defined in 
Neuts [1981]. 

So, the class of arrival processes and service-time distributions as introduced at the beginning of 
this section is broad. Furthermore, this class captures almost all possible arrival processes and service
time distributions that satisfy the condition mentioned that the queue-length process at the start of cy
cles can be described by a Markov chain for which the equilibrium equations constitute a homogeneous 
linear difference equation with constant coefficients. Hence, the GT technique is applicable to a rich 
class of queueing systems with periodic service. To facilitate the analysis in subsequent sections, we 
introduce some notation and conventions. 

4.2.3 Additional notation and conventions 

Let A min and Amax denote the minimal and maximal number of on-slots in a cycle, that is, 

N 

Amin := ,L:min{jla;(j) > 0, j 0, 1, ... , C;}, 

A max 

i=l 

N 

,L:max{jla;(j) > 0, j = 0, 1, ... , C}. 
i=l 

(4.1) 

(4.2) 

For notational convenience, we set B11 := 0 and b,,(O) := 1, if p 11 = 0, with n 1, 2, ... , C. Further
more, when appropriate, we consider deterministic service phases as geometric service phases with 
fJ = 0. Further, let Bmin and Bmax denote the minimal and maximal number of service phases arriving 
in a cycle, that is, 

c 
Bmin := ,L:min{ilb,(i) > O,i=O, 1, ... , B 11 } and 

n=l 

c 
Bmax := LBn· 

n=l 

(4.3) 

Customers are served in the order of their arrival, and the number of service phases of the arriving 
customer is assumed to be known upon arrival. The arrival process and service times are supposed 
to be independent. Moreover, the service of a customer that is interrupted (due to an off-period) is 
resumed where it was interrupted. 

Finally, customer arrivals, and the start and completion of a service phase occur at slot boundaries. 
Hence, services start and are completed at slot boundaries as well. For convenience, we assume that the 
completions of service phases occur just before slot boundaries, and that customer arrivals and the start 
of service phases occur just after slot boundaries. A customer arriving at the boundary between slot 
n 1 and slot n in the cycle (that is, the n-th slot boundary) is said to arrive in slot n, and a customer for 
whom the service is completed at the n-th slot boundary is said to depart in slot n- 1 (see Figure 4.3). 
Further, if the server is idle upon a customer arrival, then he starts servicing this customer immediately. 
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I slot n -I ~ slot n 

I II I 
Figure 4.3: A customer departure in slot n- 1, and a customer arrival in slot n. 

4.3 The queue-length process 

In this section, we show that the queue-length process of customers of the model introduced in Section 
4.2 can indeed be treated by the GT technique. Furthermore, we exploit the structure of this model to 
conclude that more equilibrium equations have the constant structure than is suggested in Section 3.2. 
This observation can be utilised by the GT technique. Finally, we illustrate that this technique can also 
be applied, if there is some dependence between the service time of a customer and the queue length 
at his arrival. This illustration is based upon and motivated by the study of fixed-cycle traffic-light 
queues, where cars arriving in a green period at an empty queue experience no delay at all. Before 
presenting the outline of this section, we introduce a Markov chain, which is the main object of study 
in this section. 

To analyse the queue-length process of customers, we consider the system at the first slot boundary 
of cycles, that is, the slot boundaries between two consecutive cycles (see Figure 4.4). Hence, these 
imbedded time instants are just after a possible service phase completion (and just after an on-period), 
but just before a possible arrival (and just before the start of an off-period). Then, the number of un
completed service phases at these imbedded instants constitutes a homogeneous discrete-time Markov 
chain. 

Figure 4.4: The imbedded time instants for the case N = 3. 

We assume that the state space of this Markov chain consists of the non-negative integers (by some 
small and straightforward adaptations, the analysis of this section can be applied when this state space 
consists of multiples of some integer, which may be the case for fJ 0). Further, we assume that 
this chain is irreducible and aperiodic. Finally, it is assumed that the average number of slots of work 
arriving per cycle is strictly less than the average service capacity per cycle, that is, 

C Bn • 

~~p"h,(i) l ~ fJ < E{A}, 

where E( A) denotes the average total length of the on-periods in a cycle, that is, 

N 

E{A) := _LE{A,). 
i=l 



72 4. A Numerical Technique for Queueing Systems with Periodic Service 

Under these assumptions, the Markov chain is ergodic (cf. Pakes [1969]), so that it has a unique sta
tionary distribution {nj. j 0, I, 2, ... }. 

For the queueing system in Chapter 2, with Pn ::::: p, Bn I, bnO) = I, for all n = 1, 2, ... , C, 
and N = 1 and A1 A, the latter assumption simply reduces to Cp < A. 

We notice that, by assuming that the Markov chain is irreducible, we have implicitly assumed for 
deterministic service phases that Bmax > A min· In this way, we exclude trivialities. Otherwise, the state 
space of this chain would be finite. 

Further, once the stationary distribution {n i• j = 0, I, 2, ... } is obtained, we can straightforwardly 
determine the stationary imbedded queue-length distributions at other slot boundaries in the cycle. 
Given the stationary queue-length distribution at the n-th slot boundary, we can compute this distri
bution for the (n + I )-st slot boundary by considering the one-slot transition probabilities, for n = 
2, 3, ... , C. However, since these transition probabilities may depend on the length of the on-period 
of the subcycle to which slot n belongs, we first have to condition on this length. For n 1, 2, ... , C, 
the stationary imbedded queue-length distribution at the n-th slot boundary is denoted by { 1r j,n,o. j 
0, 1, 2, ... }, if slot n is an off-slot, and by {n j,ll," j = 0, l, 2, ... } , if slot n is an on-slot. 

This section is organised as follows. In Section 4.3.1, we show that the stationary distribution of the 
Markov chain can be determined by the GT technique. Furthermore, we utilise the structure of this 
chain to characterise its transition probabilities. From this characterisation, it follows that the number 
of boundary equations is smaller than the number suggested in Section 3.2. In Section 4.3.2, we show, 
for a specific example, that the GT technique can also be applied, if there is some dependence between 
the service time of a customer and the queue length upon his arrival. This specific example is motivated 
by studies of fixed-cycle traffic-light queues. 

Before presenting the results, we remark that these results are valid for the general model intro
duced in Section 4.2. They may, however, be improved for special cases of the model. 

4.3.1 Validation of the applicability of the GT technique 

In the first part of this section, we show that the Markov chain defined in Section 4.2.2 belongs to the 
class of Markov chains defined in Section 3.2. Thereafter, we characterise the transition probabilities 
of this chain. From this characterisation, we conclude that the number of boundary equations is smaller 
than the number of boundary equations (3.6) and (3.7) in Section 3.2. 

The results in this section depend on whether the service phases are deterministic or geometric. 
The reason for this is that, for geometric service phases, no service phase may be completed in an on
slot, even if there is one such phase at the start of this slot, whereas for deterministic service phases, 
exactly one such phase (if any) is handled in each on-slot. 

As in Chapter 3, we use the non-negative integers D, h. and T H. For completeness, D denotes the 
minimal integer for which the transition probabilities Pi.j of the Markov chain are equal to qj-i• for 
i 2: D and j 2: l. The integers TL and TH indicate the largest possible jump out of state i to a lower 
and a higher state, respectively, fori ;::: D. 

In the next lemma, we show that the Markov chain belongs to the class of Markov chains introduced 
in Section 3.2 by specifying the values of the quantities D, TL, and TH, where 

0 ·-{I, if~ 0, 
11 .- 0, if 0 < f3 < I. 
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Lemma 4.3.1 For the Markov chain of Section 4.2, we have 

Proof. We begin with proving that D _:::: A max· The number of on-slots in a cycle is at most A max• so 
that the server cannot become idle in a cycle if the number of uncompleted service phases i at the start 
of this cycle is at least Amax· Of course, the number of uncompleted service phases j at the start of 
the next cycle is simply equal to i minus the number of service phases completed in the cycle plus the 
number of service phases arriving in the cycle. But, if i ;::: A max, then this transition from state ito state 
j does not depend on the slots in which these phases arrive and in which they are completed. So, we 
have D :::_:: A max. 

The lowest state that can be reached by a single transition occurs if the maximal number of service 
phases is completed in a cycle and if the minimal number of service phases arrives in this cycle, so that 
we have TL = Amax Bmin· 

Finally, the result TH Bmax• for 0 < f3 < I (that is, for geometric service phases), immediately 
follows from the observation that the maximal transition occurs if no service phase is completed in a 
cycle at all and if the maximal number of service phases arrives in the same cycle. The result TH = 
Bmax - Amin· for f3 0 (that is, for deterministic service phases), is obtained in a similar way by in
cluding that, fori D, at least Amin phases are completed in a cycle. 0 

So, we have proved that the Markov chain belongs to the class of Markov chains of Section 3.2. 
As a result, the transition probabilities Pi.; of this chain depend on i and j only through their difference 
j- i, fori;::: D and j;::: 1, and they may be nonzero for j- i =-TL. - TL +I, ... , TH. Consequently, 
when defining q 11 p1 i+h• fori 2: D and h TL, + 1 .... , TH, the equilibrium equations of 
the Markov chain can be partitioned as follows (cf. the equations (3.6), (3.7), and (3.8)) 

7ro 7roPo.o + lr1P1.0 + · · · + lrmaxin-I.TJJPmaxiJ)-I.Td.O· 

rr 1 7roPo.j + · · · + rr n-1 PD-l.J + 7r nqi-D + · · · + rri+hq- rL' 

lrj = lrj-THqTII + lrj··(Tu-·IJqTH-1 +' '. + 7rj+1iq-fc, 

1 ::::: j < D + TH. 

j D + TH. 

(4.4) 

(4.5) 

(4.6) 

In the remainder of this section, we assume that D A max. However, D may be less than A max. as 
we saw for the Markov chain in Chapter 2, where D was equal to one, whereas Amax was equal to A. 

Since the Markov chain under study belongs to the class of Markov chains of Section 3.2, it follows 
that the stationary distribution of this chain can be determined from the equilibrium equations (4.4), 
(4.5), and (4.6) by the GT technique. In order to actually solve these equilibrium equations, it remains 
to determine the probabilities q 11 and the transition probabilities Pi.J• with i < Am;).:o appearing in these 
equations. 

To determine the probability distribution {q11 , h h, - h + 1, ... , TH}. we introduce its shifted 
probability generating function Q(z). Furthermore, we define the probability generating functions 
a, (z) and {311 (z) of the length of the on-period in the i-th subcycle of the cycle and of the number of 



74 4. A Numerical Technique for Queueing Systems with Periodic Service 

service phases arriving in slot n of the cycle, respectively. More precisely, 

TH 

Q(z) := zh L qhl. 
h""-h 

C; 

a;(Z) := I:a;(J)zi, 
j=O 

Bn 

fJn(Z) := l- P11 + Pn Lhn(i)zi, 
i=l 

i = 1,2, ... , N, 

n= 1,2, ... ,C. 

(4.7) 

(4.8) 

(4.9) 

The reason for the use of the shifted probability generating function is merely to avoid negative powers. 

Lemma 4.3.2 The shifted probability generating/unction Q(z) of the probability distribution {qh. h = 
-TL +I, ... , TH} satisfies 

N C 

Q(z) zTLna;(,B+ (1- fJ)/z)nfJn(Z). 
i=l n=l 

Proof. For h = -TL. -T1, + 1, ... , TH, the probability Qh is actually the conditional probability that 
the net increase of the number of uncompleted service phases in a cycle is equal to h phases, given that 
the initial number of service phases at the start of the cycle prevents the server from becoming idle in 
this cycle. Let the random variable H denote this net increase, and the random variables X and Y; the 
number of service phases arriving in a cycle and the number of service phases completed in the i-th 
subcycle of the cycle (given that the server does not become idle) with i I, 2, ... , N, respectively. 
Then, we have obviously the following relation between these random variables 

N 

H X LYi· 
i=l 

From this relation, it immediately follows that 

N 

Q(z) = zhE{zH} = zhE{zx-E~, Y,} zhE{zx} n E{(l/z)r'}, (4.10} 
i=l 

where we use that the arrival process and service process are independent. Clearly, the probability 
generating function of the random variable X satisfies 

c 
E{zx) = n fJII(z), (4.11) 

n=l 

so that it remains to determine E{ (1/ z)Y'}, fori I, 2, ... , N. 
To determine E{ (1/z)Y'), with i = I, 2, ... , N, let the random variable K;,, denote the number of 

service phases completed in the n-th on-slot of the i-th subcycle, for n I, 2, ...• A;. These random 
variables are independent and have a Bernoulli distribution with parameter I - fJ. Since 

A; 

Yi LK'·"' i =I, 2, ... , N. 
n=l 
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and because the random variable Ai has probability generating function ai(s), we have 

1,2, ... , N. (4.12) 

Substituting the relations (4.11) and (4.12) into equation (4.10) completes the proof. D 

From the generating function Q(z), we can determine the probabilities qh by equating the coeffi-
cients which belong to the same power, for h = +I, ... , TH. So, it remains to characterise 
the transition probabilities Pi.j of the Markov chain, fori < Amax· 

If the number of uncompleted service phases i at the start of the cycle is smaller than Amax. then 
a transition to state j may depend on the slots in which service phases arrive and are completed. The 
reason for this is that the server may be idle in the cycle. Hence, the transition probabilities Pi,j of 
the Markov chain, fori < Ammo are in general not equal to qj-i· However, for some i < Amax and j, 
the transition probabilities Pi.j appear to be equal to q J-i· The implication of this result is that, as we 
shall see, more equilibrium equations have the constant structure ( 4.6) than is suggested in Section 3.2. 
Before giving the lemma presenting this result, we introduce an integer K, illustrate the importance of 
this integer by an example, and mention a subtlety that may occur for the case of deterministic service 
phases. 

Consider the last possible on-slot in a cycle in which a customer may arrive (that is, the last possible 
on-slot n in a cycle with p11 > 0). If slot n lies in the N-th subcycle, then the integer K denotes the 
number of possible on-slots in the cycle, before slot n, in which no customer can arrive. Otherwise, the 
integer K denotes the number of possible on-slots, which lie in the first N 1 subcycles, in which no 
customer can arrive. In Figure 4.5, we give three examples of cycles with on-periods of fixed duration. 
For the first example, the last on-slot of the cycle in which a customer may arrive is slot 5, whereas it 
is slot 4 for the second example. Nevertheless, for both examples, the number of on-slots, before this 
on-slot (that is, slot 5 and slot 4, respectively), in which no customer can arrive is equal to one (namely, 
slot 3). So, since slot 4 and slot 5 lie in the last (and only) subcycle of the cycle, we have K 1 for 
both cases. For the third example, N is equal to two and the last on-slot in which a customer can arrive 
is slot 4. Since this slot lies in the first of the two subcycles and because pc. = 0, we have K = 1. 

For geometric service phases, the next lemma states that, for K ::=: i < Amax and j :::: Bma•• the 
transition probabilities Pi; are equal to CfH as well. The transition probability from state ito state j, 
with i < K and j :::: Bmax• is not equal to CJ;-;, because the server may be idle. To illustrate this latter 
remark (and so, the importance of the integer K), consider the following example. 

Consider a cycle consisting of one on- and off-period, and let the length of this cycle be equal 
to three slots. The length of the on-period is supposed to be constant and equal to two slots. In the 
first two slots of the cycle, no customer can arrive. In the last slot of the cycle a customer can arrive, 
whose service consists of at most three phases. So, we have K = 1 and Bmax = 3 (see also Figure 
4.6). Suppose that there is no uncompleted service phase at the start of the cycle. Then, if in the last 
slot of the cycle the maximal number of service phases arrives and if none of these arriving phases is 
completed in this slot, then the number of uncompleted service phases at the start of the next cycle is 
equal to 3. The probability that this transition occurs is equal to f3b 3(3), whereas q3 = f32b3(3). 

For deterministic service phases, the reason behind the introduction of the integer K is similar as for 
geometric service phases. For these service phases, the result presented in the next lemma also deals 
with the subtlety that there are on-slots n with both p11 > 0 and b" (I) = I (that is, on-slots in which an 
arriving customer has always a service time equal to one slot). To illuminate this subtlety, we use the 
example corresponding to Figure 4.7, where K 0 and the length of the on-period is constant If the 
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Figure 4.5: Three cycles for which K is equal to one. 
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Figure 4.6: The maximal number of service phases arriving in the slots of a cycle. 

queue is empty at the boundary between slot l and slot 2, then it is still empty at the next slot boundary, 
irrespective of whether a customer arrives in slot 2 or not. Further, if the queue is empty at the start of 
the cycle, then exactly three service phases have to arrive in slot 3 in order to have two service phases 
at the start of the next cycle. However, these three phases may not arrive as one phase in slot 2 and two 
phases in slot 3. This indicates that the transition depends on the arrival pattern of the phases and not 
on the number of arriving service phases only. So, this transition cannot be equal to q2• To deal with 
this subtlety, we consider transitions from states i, with K + 1 ~ i < A max instead of K ~ i < A max• to 
states j, with j 2: Bmax- max{O, Amin- K} + 1 instead of j 2: Bmax- max{O, Amin K} (notice that 
K may be larger than Amin). 

Lemma4.3.3 
For geometric service phases, we have 

Pi.J = qJ-i• K ~ i < Amax and j 2: Bmax· 

For deterministic service phases, we have 

Pi.J qJ-i• K + I ~ i < Amax and j 2: Bmax- max{O, Amin- K} + 1. 
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Figure 4.7: The maximal number of service phases arriving in the slots of a cycle. 

Proof. For both geometric (0 < f3 < I) and deterministic (fJ 0) service phases, the proof of the 
present lemma consists of two parts. We first prove that a transition from state ito state j (with i and j 
satisfying the above conditions) implies that the server cannot become idle in the cycle. If the server 
may not become idle in the cycle, then this may imply that service phases must arrive in certain slots 
of the cycle. In that case, the transition probability Pi.j is not equal to qj-i· However, in the second 
part of the proof, we show that the initial number of uncompleted service phases i prevents the server 
from becoming idle, even if the service phases arrive as late as possible in the cycle. Combining these 
two parts yields the desired result. 

Let i and j satisfy the above conditions, and assume that the total length of the on-periods is equal 
to A slots with i < A :5 A max· If A :5 i, then the proof of the present lemma is trivial, because the server 
cannot become idle in the cycle, so that a transition from state i to state j depends on the number of 
arriving service phases only. 

To prove the first part for 0 < f3 < 1, suppose that the server is idle in the n-th on-slot. Clearly, n 2::: 
i + 1, and in at most K out of the first n on-slots no customer can arrive. Since n - K 2::: i + 1 - K 2::: 1, 
there is at least one on-slot m with m :5 n and Pm > 0. Hence, at most Bmax 1 service phases can 
arrive after on-slot n in the cycle, so that a transition to state j 2::: Bmax is not possible. 

For the second part of the proof for 0 < f3 < 1, let j Bmax + k, with k = 0, 1, ... , i (notice that 
Pi.J 0 for j > Bmax + i). Then, a transition from state ito state Bmax + k indicates that at most i- k 
service phases may be completed in the cycle; otherwise a transition to state Bmax + k is not possible, 
because at most Bmax phases arrive in a cycle. If less than i phases are completed in the cycle, then 
it is clear that the server cannot have been idle, irrespective of when the phases arrived. If i service 
phases are completed in the cycle (so, k 0) then, in order to make a transition to state j, Bmax phases 
must have arrived in this cycle. Hence, in this case, the server is certainly not idle in the on-slots n 
with p 11 > 0. Further, since i 2::: K. he is also not idle in the first K on-slots m with Pm = 0. Finally, 
because the server may not complete any of the arriving phases, he does not become idle between the 
last on-slot n, with p 11 > 0, and the start of the next cycle. Thus, we have proved the second part, so 
that combining this part with the first part completes the proof for the case 0 < f3 < 1. 

To prove the first part for f3 0, we assume that K from the i initial service phases are handled 
in the first K on-slots m with p111 0, so that the server is not idle in these slots. Furthermore, we 
remove these K on-slots from the cycle, so that the resulting cycle has the same off-periods, but has 
now only A K on-slots. This resulting cycle is called the new cycle in order to distinguish it from 
the original cycle. Notice that, by the definition of K, it is still possible that this new cycle has on-slots 
m with p111 = 0. However, between the start of any of these on-slots and the start of the next cycle, no 
customer can arrive. Hence, if the server is idle in any of these on-slots, then the queue is empty at the 
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start of the next cycle, so that a transition to state j is not possible. 
To complete the first part for f3 = 0, suppose that the server is idle in the n-th on-slot of the new 

cycle, with Pn > 0. We recall that, in the new cycle, there are no on-slots m, with Pm 0, between two 
arbitrary on-slots in which customers may arrive. Hence, the number of service phases at the start of 
the next cycle is maximal if the maximal number of phases arrives in each of the on-slots after on-slot 
n. We remark that, if the first on-slots m, after on-slot n, have bm ( l) = I, the number of service phases 
at both the start and the end of these slots is zero, irrespective of whether the service phase arrives or 
not. For convenience, however, we assume that in these on-slots the service phase arrives. Obviously, 
the maximal number of phases arriving after on-slot n is at most Bma:t. - n. If the maximal number of 
phases arrives, then A K- n of these phases or all arriving phases are completed in this new cycle, 
whichever is smaller. So, the maximal number of phases at the start of the next cycle is at most 

max{O, Bmax- n (A- K- n)} < Bmax- max{O, Amin- K} + 1. 

Thus, for f3 = 0, we conclude that the server cannot be idle in the cycle, if a transition from state i to 
state j occurs. 

Next, we prove the second part for f3 0. If a transition from state ito state j occurs, then exactly 
j- i +A service phases arrive in the (original) cycle. The reason for this is that, from the first part of 
the proof of the present lemma, the server cannot become idle if a transition to state j occurs. Suppose 
that these j - i + A service phases arrive as late as possible in the cycle. Since 

j - i + A ?:. Bmax max{O, Amin- K) +A+ 1, 

no service phase may arrive in at most the first i + max{O, A111;n- K} A- 1 on-slots m with Pm > 0. 
This implies that no service phase may arrive in at most the first i + max{O, A111;n - K}- (A - K) 
on-slots, because there are at most K on-slots in the cycle, before the first on-slot n with Pn > 0, in 
which no service phase can arrive. Since the initial number of service phases is equal to i and 

i?:. i + max{O, Amin- K)- (A- K)- 1, 

the server cannot become idle in the cycle, even if the j- i +A service phases arrive as late as possible 
in the cycle. Combining this part with the first part proves the result of the present lemma for the case 
{J=Q 0 

So, we have now characterised theprobabilitiesq11 in Lemma4.3.2, for h - TL.- TL + 1, ... , TH. 
and the transition probabilities Pi.J in Lemma 4.3.3, forK::: i < Amax and j?:. Bma:t. (ifO < f3 < 1) and 
forK+ 1 ::S i < A max and j ?:. Bmax -max {0, A min- K} + 1 (if fJ = 0). As a result of this characterisa
tion, we have that Pi.J = q J-i for j?:. Bmax + K (ifO < fJ < 1) and for j?:. Bmax- max{O, A min-K}+ 
K + 1 (if f3 0). So, the number of boundary equations is equal to Bmax + K and Bma:t. -max {0, A min -
K) + K + I, respectively, instead of Bmax + TH as is suggested by the equations (4.4) and (4.5). This 
circumstance can be exploited by the GT technique. 

Finally, to apply the GT technique, we have to determine the transition probabilities Pi,J• with 
i < A max. that are not contained within Lemma 4.3.3. Unfortunately, these transition probabilities gen
erally depend on the slots in which service phases arrive and are completed. Hence, in general, it is 
hard to characterise these probabilities explicitly. We can, however, determine them recursively by the 
on-slot transition probabilities (after conditioning on the lengths of the on-periods). 



4.4. The sojourn-time distribution 79 

4.3.2 The fixed-cycle traffic-light queue 

In the above analysis of queueing systems with periodic service, we did not allow any dependence 
between the service times of a customer and the queue length upon his arrival. This assumption can 
be relaxed such that the GT technique is still applicable. In this section, we illustrate this for a specific 
case, namely, the case that the service times of customers are equal to zero, if they arrive in an on
period at an empty queue. This case is motivated by studies of fixed-cycle traffic-light queues, where 
this dependence arises quite naturally (see also Section 1.2). 

With this adaptation, Lemma 4.3.1 is still valid. The reason for this is that the server cannot become 
idle in the cycle, if the number of service phases at the start of this cycle is at least Amax· As a result, 
all customers arriving in this cycle have service times that are stochastically identical to those defined 
in Section 4.2. Hence, the arguments in the proof of Lemma 4.3.1 can be applied directly, so that this 
lemma holds. 

The fact that Lemma 4.3.1 is valid implies that the Markov chain describing the imbedded queue
length process can be analysed by the GT technique. Furthermore, by this lemma, the shifted proba
bility generating function Q(z) of the probabilities q h = p;, 1, fori:::: D and j:::: 1, is given by Lemma 
4.3.2. 

Finally, Lemma 4.3.3 is valid as well, because the transitions in this lemma prevent the server from 
becoming idle, even if customers arrive as late as possible in the cycle. So, we conclude that the equi
librium equations for states j, with j:::: Bmax + K (ifO < p < 1) or j:::: Bmax max{O, Amin- K} + 
K + 1 (if p = 0), are identical to those for the queueing system without the dependence between the 
service time and queue length. We again notice that the transition probabilities, which are not cap
tured by Lemma 4.3.2 and Lemma 4.3.3, can be determined recursively. Furthermore, these transition 
probabilities are in general not equal to those in Section 4.3.1, because of the imposed dependence. 

4.4 The sojourn-time distribution 

In this section, we present a procedure for the computation of the sojourn-time distribution of an arbi
trary customer arriving at the system in statistical equilibrium. In contrast to the study of the queue
length process, this computation is exact (given the stationary imbedded queue-length distribution). 
The sojourn time of a customer is defined as the length of the time interval between his arrival and 
his departure, and is measured in numbers of slots. Notice that the sojourn time of a customer is not 
affected by customers who arrive after him, so that we can disregard any subsequent arrival. 

We compute the probability that the sojourn time S of an arbitrary customer is at most equal to s 
slots, with s 1, 2. 3, .... To compute this probability, we first condition on the slot of arrival (and 
whether this slot is an on- or off-slot) and determine the number of service phases immediately after 
this arrivaL Because the number of on-slots between the slot of arrival and the s-th slot after this arrival 
is not necessarily fixed, we also condition on the number of on-slots between these two slots. Then, 
conditional on this number of on-slots, we derive the probability that the number of service phases just 
after the arrival is completed within this number of on-slots, so that the sojourn time of the customer 
is at most equal to s slots. 

So, we first condition on the slot of arrival n, with n = I, 2, ... , C, and on whether slot n is an off
slot (811 := 0) or an on-slot (811 := 1). For n = 1, 2, ... , C, let the function i(n) denote the subcycle in 
which slot n lies, and define Ck := L~=l C;. fork I, 2, ... , N. Then, the probability t/!11 .o that an 
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arbitrary customer arrives in slot n and that this slot is an off-slot is equal to 

ci(n)-n 

lfr,.o = L%n L ai(n)(h), (4.13) 
k=l Pk h=O 

and the probability lfr,. 1 that the slot of arrival is slot nand that this slot is an on-slot is equal to 

1/r,,l (4.14) 

The number of service phases just after the arrival in slot n is equal to the sum of the number of ser
vice phases upon arrival and the number of service phases of the arriving customer. By the Bernoulli
arrivals-see-time-average property (BASTA property, cf. Halfin [ 1983 ]), the number of service phases 
upon arrival has probability distribution {:rr;. 11 .&., j = 0, 1, 2, ... } . So, the conditional probability that 
the number of service phases W, .• , immediately after the arrival in slot n is equal to w slots is given 
by 

w-1 

Pr{W11 .&. w} = LJr;.u.&.h11 (W- j), w =I, 2,3, ... , (4.15) 
j=O 

where, of course, b,(j) = 0 for j > 8 11 • 

We are interested in the probability that the sojourn time of an arbitrary customer is at most s slots, 
with s = I, 2, 3, .... This indicates that we have to determine the probability that w service phases 
are completed within the firsts slots (including slot n) after the arrival. Since the number of on-slots 
within the firsts slots after the arrival is not necessarily deterministic, we also condition on this number 
of on-slots. To determine the probability generating function H"·"·"· (z) of this number of on-slots, we 
make a distinction between the following three cases. Firstly, we consider the case that slot n and the 
s-th slot after (and including) slot n lie in the same subcycle, secondly, the case that these slots lie in 
the same cycle (but in different subcycles), and thirdly the case that these slots lie in different cycles. 
Notice that, in the first two cases, the s-th slot after the arrival instant is slot n + s- 1, because we 
assumed that customers arrive just after slot boundaries and depart just before slot boundaries (see 
Figure 4.8). 

slot n slot 
n+s-l 

Figure 4.8: A customer arriving in slot slot n, and the latest slot n + s- I in which this customer may 
depart such that his sojourn time is at most s slots, for the cases 4. 

Case 1. Slot n and slot n + s - I lie in the same suhcycle. 
If, in this case, slot n is an on-slot, then clearly, slot n + s I is an on-slot as well, so that 

H, ..... ('z) = z". 
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Suppose that slot n is an off-slot. Then, there are no on-slots between slot n and slot n + s- 1, if the 
length of the on-period in the i(n )-th subcycle is less than or equal to ci(n) - (n + s - 1 ), and there 
are jon-slots, if this length is equal to C;1111 (n + s- 1) + j, with j = 1, 2, ... , s- I. Hence, 

Hn.s.o(z) 

Case 2. Slot nand slot n + s I lie in the same cycle, but in difference subcycles. 
In this case, the computation of H11 .s.!i, (z) is divided into three parts. Firstly, we determine the number 
of on-slots between the start of slot nand the start of subcycle i(n) + 1. Secondly, we compute the 
number of on-slots in the subcycles i (n) + 1, i (n) + 2, ... , i (n + s - I) I together. Thirdly, we 
determine the number of on-slots between the start of suhcycle i(n + s- I) and the end of slot n + 
s- I. 

By similar arguments as in case I, the probability generating function PJ. 11 .. ,(z) of the number of 
on-slots between the start of slot n and the start of subcycle i (11) + 1 is 

if slot n is an off-slot, 
Pl.n.,.(z) = 

if slot n is an on-slot. 

The probability generating function P211 .,(z) of the total number of on-slots in the subcycles i(n) + 
I, i(n) + 2, ... , i(n + s- 1)- I is obviously 

i(ll+.<-1)-1 

p211s(z)= n D'j(Z). 
J=ilnHI 

Further. using similar arguments as in case l, the probability generating function P3.n.s(Z) of the num
ber of on~slots between the start of subcycle i(n + s- I) and the end of slot n + s- I is 

c!Ul+-•-[)-(ll+J-1) (11+.\'---1 )~~111+•-1)-! 

L ai(nc-s-ll(h) + L ai(ll+s-ll(Ci[n+J-1) (n + s- I)+ h)zh. 
h=ll h=l 

Combining these results, we have Hn.d);::) Pl.ll.,(z)P2.,u(z)P:.,." ,(z). 

Case 3. Slot n and the s-th slot (({ter the start (Jf sf or n lie in different cycles. 
For convenience, we denote the s-th slot after the start of slot 11 by n + s I, and the subcycle of the 
cycle in which this slot lies i(n + s I). In this case, the determination of the probability generat
ing function Hn .. d,(Z) consists of three parts. Firstly, we determine the probability distribution of the 
number of on-slots between the arrival instant and the start of the first cycle after the arrival. Secondly, 
we use a recursive relation to incorporate the number of on-slots between the start of the first cycle af
ter the arrival and the start of the cycle in which slot n + s 1 lies. Finally, we determine the number 
of on-slots between the start of the cycle in which slot 11 + s I lies and slot n + s- I. In Figure 4.9, 
we represent these three parts. 
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Part l Part 2 Part 3 

c c c 

n n+s-l 

s 

Figure 4.9: A representation of the three parts to detennine the number of on-slots between the slot of 
arrival n and slot n + s 1. 

Using the arguments in case 1, the probability generating function G 1,11 (z) of the number of on-slots 
in the first part (that is, part 1) is given by 

N 

z'C'•<•l-n+l n o:k(Z), 
k=i(ll)+i 

(4.16) 

if slot n is an on-slot. 

For the second part, let Gk.n(z) denote the probability generating function of the number of on-slots 
between the slot of arrival n and the start of the k-th cycle after the arrival, with k = I, 2, 3, .... Then, 
it is easily verified that the following recursive relation holds 

N 

Gk+l.n(Z) = Gk.ll(z) n 0: j(Z), 
j=l 

k = 1, 2, 3, .... (4.17) 

Finally, for part 3, let the s-th slot in subcycle i(n + s- l) correspond to slot n + s 1. Then, the 
probability generating function G11 .. ,(z) of the number of on-slots between the start ofthe cycle in which 
slot n + s - 1 lies and slot n + s - I is given by 

Combining the relations ( 4.16), (4.17), and (4.18) yields the probability generating function H,. .•. &.(Z) 
for case 3. 

From Hn.s.s. (z), we can now determine the probability distribution of the number of on-slots between 
slot n and the s-th slot after the start of slot n. Let { h11 .... a. (j), j 0, 1, ... , s} denote this probability 
distribution. Then, the conditional probability w11.~.(w, s) that w service phases are completed in s 
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slots or less, given the slot of arrival nand 8,, equals 

W 11 .8,(w, s) = ~ ( ~! -=_
1
1 

) (1- fJ)"'fJj-whn.s.8,(J), w = 1, 2, ... , s; s = 1, 2, 3,.... (4.19) 

Combining the above steps yields the following procedure for the computation of the sojourn-time 
distribution. 

An algorithm for the computation of the sojourn-time distribution 

Step 1. Initialisation. Set G1 (z) : = 1 and n := 1, and compute Gk (z), fork = 1, 2, ... , Is I Cl, using 
the recursive relation 

Step 2. Iteration. 

N 

Gk+l (z) = Gk(Z) n D'j(Z). 
j=l 

(i) For w = 1, 2, ... , s, compute the probabilities Pr{W,.o = w) and Pr{W,, 1 = w) that the 
number of service phases just after the arrival in slot n equals w, given that this slot is an 
off-slot or on-slot, according to equation (4.15). 

(ii) Compute the probability distribution {h,.s.8, (j), j = 0, 1, 2, ... , s} of the number of on
slots between slot n and the s-th slot after the start of slot n in the way described above 
(using the generating functions Gk(Z) as computed in Step 1). For w = 1, 2, ... , s, com
pute the probabilities w,. 0 ( w. s) and w,. 1 ( w, s) using (4.19). 

(iii) Compute the probabilities Pr{S,.o _:::: s} and Pr{ S,. 1 _:::: s} that the sojourn time of the cus-
tomer arriving in slot n, given that this slot is an off-slot or on-slot, is at most s slots 

s 

Pr{S,.o _:::: s} = LPr{W,.o = w)w,.o(w, s), 
Ill= I 

s 

Pr{S,. 1 _:::: s} = L::Pr{W,.I = w)w,. 1 (w, s). 
!II= I 

Step 3. If n < C, then set n = n + 1 and execute Step 2. Otherwise, compute the probability that the 
sojourn time of an arbitrary customer is at most s slots (using (4.13) and (4.14)) 

c 
Pr{S _:::: s) = L(lf!, 0Pr{S,. 0 _:::: s) + lf!,. 1Pr{S,.I _:::: s} ). 

II= I 

To conclude this section, we determine the time complexity of this algorithm. The computations 
in Step 1 have to be executed only once. The time complexity for the computation of the generating 
functions Gk (z) is 0( Is I Cl sC). Part (i) of Step 2 requires a number of operations that is proportional 
to s B*, with B* := max{B11 , n = l, 2 ..... C). Part (ii) of this step has time complexity O(s2 ). Finally, 
the number of operations to execute part (iii) of Step 2 is proportional to s. From these arguments, we 
conclude that the total time complexity of Step 2 is O(s2 

). Let r be equal to C plus the number of slots 
in a cycle that can be an off-slot in one cycle and an on-slot in another. Then, Step 2 has to be executed 
r times, so that the total number of operations for this algorithm is proportional to rs2

• 
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4.5 A matrix-analytic approach 

For the queueing system introduced in Section 4.2, an exact technique for analysing the queue-length 
process is the matrix-analytic approach as introduced in Neuts [1981,1989]. To apply the matrix
analytic approach for analysing Markov chains, these chains have to fulfil the following two condi
tions. Firstly, the state space of these chains has to be two dimensional, and it may be denumerably 
large in one dimension only (the first dimension, say). Secondly, for all i, a transition from state {i, j) 
to state (i', j') is only possible if either i' :::;: i + 1 or i' ~ i- 1. For this latter condition, transitions are 
said to be skip-free to the right or to the left with respect to the first dimension. The first condition in
dicates that the first dimension should represent the queue length. The second condition suggests that 
we have to consider the queue length at slot boundaries, because otherwise the corresponding Markov 
chains may not be skip-free to the right or to the left. So, these chains are periodic with period C. Yet, 
different Markov chains describing the queue-length process can be defined that can be analysed by 
the matrix-analytic approach. 

The matrix-analytic approach consists of solving a polynomial matrix equation first, and then sev
eral systems of linear equations. The degree of this polynomial matrix equation and the number of 
equations to be solved depend on the Markov chain defined. In this section, we focus on the Markov 
chain describing the queue-length process in terms of the number of customers. For this case, the de
gree of the polynomial equation is minimal and equal to two. Hence, we can use an adapted version 
of the algorithm of Ramaswami & Lucantoni [ 1985] to determine the sojourn-time distribution of cus
tomers. Since the algorithm in Section 4.4 is exact, once the stationary imbedded queue-length distri
bution has been found, we can compare the computational effort of these algorithms. 

This section is organised as follows. The Markov chain to be studied is defined and analysed by the 
matrix-analytic approach in Section 4.5.1, because Ramaswami & Lucantoni [1985] use notation and 
results from this analysis. For this chain, they exploit its structure to determine the waiting-time dis
tribution of a customer. In Section 4.5.2, we adapt this algorithm to determine the sojourn-time distri
bution of a customer and show that the procedure in Section 4.4 is more efficient from a computational 
point of view than this algorithm for most of the important cases. 

4.5.1 The queue-length process 

For convenience, we make in this section the additional assumption that the service times are inde
pendent and identically distributed. More precisely, for n = 1, 2, ... , C, we assume that Bn = Band 
bn(i) = b(i), with i = 1, 2, ... , B. In this section, we first describe the Markov chain to study the 
queue-length process. After that, we analyse this chain by the matrix-analytic approach. Actually, we 
apply the matrix-geometric approach ofNeuts [1981]. 

Let X1 denote the number of customers in the queue under consideration, including a possible cus
tomer in service, at the t-th slot boundary, fort= 1, 2, 3, .... Further, let l't denote the triple consisting 
of, firstly, the slot in the cycle that starts at the t-th slot boundary, secondly, whether this slot is an on
slot or not, and finally, the residual number of uncompleted service phases of the customer in service 
at the t-th slot boundary. Notice that the state space of l't is finite, so that this state space is essentially 
one dimensional. More precisely, if r denotes the number of slots in the cycle C plus the number of 
slots that can be an on-slot in one cycle and an off-slot in another cycle, then l't can assume r B different 
states. Therefore, we consider the state space of l't as being one dimensional. 
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The stochastic process {(X,, Y, ), t = I, 2, 3, ... } is a two-dimensional discrete-time Markov chain 
with state space S. This chain is periodic with period C, and as before it is assumed to be irreducible. 
Because, in Section 4.3, we assumed that the average number of slots of work arriving per cycle is 
strictly less than the average service capacity per cycle, this Markov chain is positive recurrent (cf. 
Pakes [ 1969]), so that it has a unique stationary distribution. 

To determine this stationary distribution by the matrix-analytic approach, we partition the state 
spaceS into levels. Level i, fori 0, I, 2, ... , is defined as the setS; of all states for which the number 
of customers is equal to i, that is, 

S; := {(i, j)l(i, j) E S}, 0, 1,2, .... 

We order the states at these levels lexicographically. Using this partition of the state space, the transi
tion matrix P of the Markov chain has the following block tri-diagonal form 

Bo 81 0 0 0 
82 A, Ao 0 0 
0 A2 A, Ao 0 

P= 0 0 A2 A, Ao 
0 0 0 A2 AI 

where the matrices 8 0 , 8 1, and 8 2 denote the matrices consisting of the transition probabilities from 
states at level 0 to states at level 0, from states at level 0 to states at level I, and from states at level 
I to states at level 0, respectively. Fori I, 2, 3, ... , the square matrices A0 , A 1, and A2 denote the 
matrices consisting of the transition probabilities from states at level ito states at level i + I, to states at 
level i, and to states at level i- I, respectively. The precise entries of these matrices are not relevant for 
the exposition in this section. Markov chains for which the transition matrix has a block tri-diagonal 
form are also known as quasi-birth-death processes. 

Now, we can apply the matrix-analytic approach to determine the stationary distribution of the 
Markov chain. For i = I, 2, 3 .... , let 11;, denote the row vector consisting of the stationary proba
bilities n;.1, for the states (i, j) E S;. The set of row vectors { 111, i 0, I, 2, ... } is the unique solution 
of the equilibrium equations 

11; 

11o8o + 11182, 

11o81 +111A1 +112A2, 

11;~1Ao + 11;A1 + 11;+1A2. 

and the normalisation equation. Further, define the matrix A as 

A 

2, 3,4, ... ' 

(4.20) 

(4.21) 

(4.22) 

Clearly, the matrix A is a stochastic matrix. We assume that this matrix corresponds to a transition 
matrix of a finite, irreducible and periodic Markov chain. Then, by Theorem 1.3.2 in Neuts [1981], 
we have 

I. 2, 3,. .. ' 



86 4. A Numerical Technique for Queueing Systems with Periodic Service 

where the matrix R is the non-negative solution of the quadratic matrix equation 

with R ::: R , for any other non-negative solution R of this matrix equation. The remaining vectors rr0 

and rr 1 can be obtained from the matrix equations (4.20) and (4.21), and the normalisation equation. 
When e denotes the column vector with all its entries equal to one, the normalisation equations reads 

since the spectral radius of R is positive and strictly less than one ( cf. Theorem 1.2.1 and Lemma 1.3.5 
in Neuts [1981]). The stationary distribution is said to have a modified matrix-geometric form. Next, 
we use the algorithm of Ramaswami & Lucantoni [ 1985] to determine the sojourn-time distribution 
of customers. 

4.5.2 The sojourn-time distribution 

For the continuous-time G I I Ph11 queueing system, Ramaswami & Lucan toni [1985] present an al
gorithm for the computation of the waiting-time distribution. Their algorithm can also be used to de
termine the waiting-time distribution for quasi-birth-death processes by exploiting the similarity in the 
structure of these processes and of the G I I Phil queueing system. In this section, we first adapt this 
algorithm for computing the sojourn-time distribution of a customer in statistical equilibrium. After 
that, we compare the computational effort of this algorithm with that of Section 4.4.2. We remark that 
both these algorithms are exact, provided that the stationary queue-length distribution has been found. 

The sojourn time of a customer corresponds to the time until absorption in the Markov chain with 
transition matrix P, in which all subsequent arrivals are ignored, that is, with transition matrix 

I 0 0 0 0 
B2 A 1 +Ao 0 0 0 
0 A2 A, +Ao 0 0 

p 
0 0 A2 A, +Ao 0 
0 0 0 A2 A, +Ao 

and with initial probability vector 
(0, ,r,, 7r2. ?r,, 0 0 0 ). 

The row vector 7i"; consists of the probabilities ir;.j that the state of the system immediately after the 
arrival is state (i, j) E S. We first determine the initial probability vector, and then the sojourn-time 
distribution. 

The probability that an arbitrary customer arrives in slot n of the cycle is equal to 

p, 
n =I, 2, ... , C. 

We condition on the slot of arrival, and recall that L::o L~~' rr;.j = I and that the period of the Markov 
chain, with transition matrix P, is C. Then, by the BASTA property, the state of this chain upon arrival 
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is (i, j) E S, with probability rr;.jC· Hence, we have 

2, 3,4, ... ' (4.23) 

where j corresponds (among other things) to slot n. From (4.23), we see that there is a square matrix 
C, with nonzero entries at the main diagonal only, such that 

7T; 7f;_ 1C, i 2, 3, 4, .... 

For 7r 1, we can obtain a similar expression as (4.23). But, since level zero may have less states than 
level one, we present this relation as 

1i-1 = 1roB1C, 

where the matrix iJ 1 maps the states at level 0 to states at level 1 just after the arrival. 
Now, the initial probability vector of the Markov chain with transition probability matrix P is 

given by 

Before we determine the sojourn-time distribution, we introduce some additional notation to facilitate 
the exposition. 

Consider the finite Markov chain consisting of r B states, with transition probability matrix A as 
defined by (4.22). Let, for n 0, 1, 2, ... and m = 0, 1, ... , 11, the square matrix x;;;l of order r B 
have as its (i, j) entry the conditional probability that, given that this finite chain starts in state i and 
that it has made 11 transitions, m of these transitions correspond to customer departures and that the 
state of this chain after these n transitions is j. Then, we have clearly 

x<nl ~(A +A)" 0 ~ I 0 , n = 0, 1, 2, ... , and Ki 1
l = A 2 , (4.24) 

and the recursive relation 

x<n-ll = K<"l A + K<" 1(A +A ) m m-1 2 m I 0 ' 11 = I. 2, 3, ... and m = 1, 2, ... , n + 1. (4.25) 

Further, notice that 

m>n. (4.26) 

Let Pr[S > s} denote the probability that the sojourn time of the customer is larger than s slots, 
with s 1, 2, 3, .... Then, this probability can be related to the matrices K;,71 (and hence, to the finite 
Markov chain with transition probability matrix A) as follows. Suppose that the state of the system 
just after the arrival is state (k, i) E S, which corresponds to state i of the finite Markov chain. If this 
chain makes s transitions (starting in state i) and at most k - 1 of these transitions correspond to a 
customer departure, then the sojourn time of the customer is larger than s slots. The probability that 
at most k 1 customer departures correspond to theses transitions (starting in state i) is given by the 
i-th entry in 

k-1 

_LK~1e. 
m=O 
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The probability of state (k, i) just after the arrival is given by irk,i• so that we have 

00 k-1 

Pr{S > s} = L L 1rkK~•>e, s=1,2,3, .... (4.27) 
k=l •=0 

When we use the approximations of 1rk in Section 4.3, we have an alternative way of computing the 
sojourn-time distribution. Calculating the sojourn-time distribution in this way, most of the computa
tional effort is used for computing the matrices K~•>, for n = 0, 1, 2, .... Using the relations (4.24) and 
(4.25), we multiply s + k square matrices of order rB for computing these matrices. The time com
plexity of multiplying two square matrices of order r B is 0( (r B)3 ). So, the total time complexity for 
computing the matrices K~">, for n = 0, 1, 2, ... , is O((s + k)(rB)3). The number of operations for 
computing the sojourn-time distribution by the algorithm in Section 4.4 is proportional to rs2• Hence, 
as long as the magnitude of sis at most proportional to r2 B3, the procedure in Section 4.4 is at least as 
efficient as the one in this section. 

If we use the probabilities ii";,j as given by (4.23), then relation (4.27) can be computed in a recursive 
fashion, as we show in the next lemma. 

Theorem 4.5.1 The sojourn-time distribution can be computed by 

Pr{S > s} = (7roBt + 1r1 (1- R)- 1)C(A, + Ao)"e + 1rtC(I R)- 1 Hse, S=1,2,3, ... , 

where 

Proof. The proof of this lemma is similar to the one in in Ramaswami & Lucantoni [1985]. From 
( 4.27), we have, for s == 1, 2, 3 ... , 

Pr{S > s} 
00 k-1 

"""" - K(r) L....., L....., 1rk ,;, e. 
k=l m=O 

We partition the sum over minto m 0 and m = I, 2 .... , k- I, and we use relation (4.24) to obtain 

00 00 k-1 

Pr{S > s} L 1r•(A, + Ao)"e + L L .;r.x~:'e 
k=l k=2 m=l 

00 00 k-1 

= (7roB 1 + L1r 1R*- 1)C(A, +AoYe+ LL7rk-ICK~;>e 
k=l k=2 m=l 

00 k 

= (1r0B1 + 1r 1 (1- R)- 1)C(A 1 + A0 )'e + L L 1rkCK~; 1e. 
k=l m=l 

So, it remains to rewrite the last part of the right-hand side of this equation. Interchanging the summons 
over k and m, and using relation (4.26) yield 

00 k ;tt 00 s 00 

"""" 1r C x<"1
e L...J L.., k m L L 1rkCK~>e = 1r 1C L L Rk-l K~le 

k=l m=l m=l k=m m=l k=m 

·' 
1r,C(I- R)-1 LRm-IK!;;1e. 

m=l 
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Define 
J 

H ·= ~ Rm-lK(JJ 
s· ~ m • 

m=l 

Then, by relation (4.25), we obtain the recursive relation, for n = 0, I, 2, ... , 

n+l n+l 
~ Rm--1 K(n+l) 
L....t m 

~ Rm- 1(K("J(A +A ) + x<nl A ) 
~ m I 0 m-l 2 

m=l m=l 

n n+l 
~Rm-Jg<nl(A +A )+K(nJA +R~Rm-Zg!nl A 
~ m I 0 0 2 ~ m-l 2 
m=l m=2 

Hn(Al + Ao) + Kb"lA2 + RHnA2. 

Finally, observing that H 1 = K\ 1
) = A2 , completes the proof. 
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D 

In this section, we present some numerical examples. These examples first of all illustrate that the 
GT technique gives excellent results for the approximation of the stationary imbedded queue-length 
distribution, even if the geometric tail behaviour is imposed on the stationary probabilities of states 
fairly close to the boundary of the state space. Further, these examples show that, to obtain the same 
accuracy, the computational effort of the GT technique is much lower than that of simple truncation. 

As an example, we consider a cycle that consists of one subcycle and assume that the length A of 
the on-periods is constant. Customers are supposed to arrive according to a homogeneous Bernoulli 
process with parameter p. For the service of customers, we consider the following three cases: it con
sists of three deterministic service phases, of one geometric service phase requiring on average three 
on-slots, and of two geometric service phases, each of them requiring on average one and a half on
slots. Notice that these service times correspond to service times that are deterministic, geometric, and 
negative binomial, respectively, and that the average service times are equal to three on-slots. These 
three cases are denoted by Det, Geo, and NBin. In the examples, we examine for the cycle length C 
the cases C = 60, 120. 180 and for A the cases A = 0.25C. 0.50C, 0.75C. 

We begin with illustrating that the GT technique gives excellent results when the geometric tail 
behaviour is imposed on the stationary probabilities of states fairly close to the boundary of the state 
space. In Table 4.1, we display the average number of service phases in statistical equilibrium at the 
first slot boundary of a cycle, as obtained by the application of the GT technique for different values of 
the threshold J. In Table 4.2, we list these results for the standard deviation of this number of service 
phases. In the columns Exact, we display the 'exact' results as obtained by truncating the states j > T 
of the Markov chain, with T sufficiently large. For all the examples, we have set the effective utilisation 
factor p equal to 0.95, that is, the arrival intensity pis chosen such that 3(C/ A)p 0.95. As these 
tables show, the GT technique gives good results for all examples, even if J is fairly small; using J == 40 
gives results that are sufficiently accurate for most of the examples. 

Next, we compare the computational efficiency of the GT technique with that of simple truncation. 
For this purpose, we list in Table 4.3 the minimal thresholds hand l."d (the minimal thresholds TE 
and T, 1d) such that the average and the standard deviation of the number of service phases, respectively, 
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c A Exact 1 == 20 1=40 1=60 1=80 1 = 100 
Det 60 15 23.337 23.346 23.337 23.337 23.337 23.337 

30 20.391 20.403 20.391 20.391 20.391 20.391 
45 18.433 18.379 18.433 18.433 18.433 18.433 

120 30 22.035 22.044 22.035 22.035 22.035 22.035 
60 18.759 18.608 18.761 18.759 18.579 18.759 
90 16.805 16.406 16.811 16.805 16.806 16.805 

180 45 21.062 20.994 21.062 21.062 21.062 21.062 
90 17.561 17.141 17.578 17.560 17.561 17.561 

135 15.596 14.870 15.622 15.596 15.596 15.597 
Geo 60 15 14.006 14.006 14.006 14.006 14.006 14.006 

30 12.949 12.949 12.949 12.949 12.949 12.949 
45 12.334 12.333 12.334 12.334 12.334 12.334 

120 30 13.430 13.430 13.430 13.430 13.430 13.430 
60 12.217 12.216 12.217 12.217 12.217 12.217 
90 11.615 11.618 11.615 11.615 11.615 11.615 

180 45 12.991 12.990 12.991 12.991 12.991 12.991 
90 11.660 11.662 11.660 11.660 11.660 11.660 

135 11.052 11.068 11.052 11.052 11.052 11.052 
NBin 60 15 18.688 18.688 18.688 18.688 18.688 18.688 

30 16.661 16.665 16.661 16.661 16.661 16.661 
45 15.369 15.381 15.368 15.369 15.369 15.369 

120 30 17.730 17.735 17.730 17.730 17.730 17.730 
60 15.461 15.486 15.461 15.461 15.461 15.461 
90 14.176 14.152 14.175 14.176 14.176 14.176 

180 45 17.013 17.033 17.013 17.013 17.013 17.013 
90 14.570 14.567 14.569 14.571 14.570 14.570 

135 13.274 13.124 13.277 13.274 13.274 13.274 

Table 4.1: The exact values and the approximations of the average number of service phases at the 
start of a cycle for the examples, for d~fferent values of the threshold 1 and with p = 0. 95. 

have a six-decimal accuracy when applying the GT technique (when using simple truncation). As we 
see from this table, the computational effort of the GT technique is much lower than that for simple 
truncation. So, it is more advantageous from a numerical point of view to use the GT technique than 
truncation. Further, the number of equations to be solved increa'les dramatically for simple truncation 
when the utilisation of the system is increased. For the GT technique, however, the thresholds increase 
only slowly, when the utilisation increases. We remark that these observations are in compliance with 
those in Tijms & Van de Coevering [1991]. 

Finally, we list in Table 4.4 the number of boundary equations for the different configurations. We 
remark that this number exploits the additional structure imposed, compared to the general model de-
scribed in Section 4.2. Comparing this number of boundary equations with the thresholds for the GT 
technique in Table 4.1 and Table 4.2, we observe that excellent results are obtained when 1 is taken 
considerably smaller than the number of boundary equations. 
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c A Exact 1=20 1=40 1=60 1 = 80 1 = 100 
Det 60 15 26.858 26.860 26.858 26.858 26.858 26.858 

30 24.299 24.307 24.299 24.299 24.299 24.299 
45 21.826 21.806 21.827 21.826 21.826 21.826 

120 30 26.676 26.682 26.676 26.676 26.676 26.676 
60 23.977 23.911 23.964 23.977 23.977 23.977 
90 21.406 21.188 21.414 21.406 21.406 21.406 

180 45 26.506 26.482 26.506 26.506 26.506 26.506 
90 23.674 23.451 23.700 23.676 23.674 23.674 

135 21.007 20.531 21.034 21.007 21.007 21.007 
Geo 60 15 15.466 15.466 15.466 15.466 15.466 15.466 

30 14.633 14.633 14.633 14.633 14.633 14.633 
45 13.832 13.832 13.832 13.832 13.832 13.832 

120 30 15.408 15.408 15.408 15.408 15.408 15.408 
60 14.528 14.527 14.528 14.528 14.528 14.528 
90 13.698 13.700 13.698 13.698 13.698 13.698 

180 45 15.353 15.353 15.353 15.353 15.353 15.353 
90 14.426 14.427 14.426 14.426 14.426 14.426 

135 13.565 13.576 13.565 13.565 13.565 13.565 
NBin 60 15 21.176 21.176 21.176 21.176 2l.l76 21.176 

30 19.485 19.480 19.485 19.485 19.485 19.485 
45 17.856 17.862 17.855 17.856 17.856 17.856 

120 30 21.057 21.059 21.057 21.057 21.057 21.057 
60 I 9.27 I 19.286 19.271 19.271 19.271 19.271 
90 I 7.578 17.567 17.577 17.578 17.578 17.578 

180 45 20.943 20.952 20.943 20.943 20.943 20.943 
90 19.068 19.070 19.067 19.068 19.068 19.068 

135 17.310 17.214 17.312 17.310 17.310 17.310 

Table 4.2: The exact values and the approximations of the standard deviation of the number of service 
phases at the start (Jf'a cycle, for different ralues of the threshold 1 and with p 0.95. 
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Deterministic Geometric Negative Binomial 
p c 

0.75 60 15 40 40 110 110 20 20 50 60 30 30 70 80 
30 40 50 80 100 20 20 50 60 30 30 70 70 
45 40 40 80 90 30 30 60 60 30 40 60 70 

120 30 40 50 90 130 20 20 50 60 40 40 80 80 
60 50 50 80 90 30 30 50 60 40 40 60 70 
90 50 60 70 80 30 30 50 50 40 40 80 70 

180 45 50 60 90 100 30 30 50 60 30 40 70 90 
90 60 60 90 90 30 30 60 50 40 40 70 80 

135 50 60 70 90 30 30 50 50 40 50 60 60 
0.90 60 15 50 40 260 250 20 20 150 170 30 30 210 230 

30 50 50 240 230 30 30 140 180 40 40 190 270 
45 60 60 240 250 30 30 140 140 50 50 170 200 

120 30 50 50 260 260 30 30 150 200 40 40 210 200 
60 60 60 230 230 30 40 140 170 50 60 200 200 
90 70 90 230 230 30 30 130 150 70 60 160 190 

180 45 60 60 250 280 30 30 140 170 40 50 210 220 
90 70 90 220 220 30 50 150 160 60 70 180 200 

135 90 110 210 220 40 50 140 140 60 80 160 180 
0.95 60 15 40 40 480 530 20 20 300 310 30 30 370 430 

30 60 50 440 490 30 30 250 280 30 30 340 390 
45 50 60 430 450 30 30 250 280 40 50 330 350 

120 30 so 50 480 530 20 30 280 300 50 40 370 450 
60 60 60 450 550 30 30 260 350 50 60 380 380 
90 70 70 400 460 30 30 260 280 50 70 330 340 

180 45 60 70 490 530 30 30 270 310 50 40 370 420 
90 i 80 90 470 480 30 30 260 280 50 60 350 440 

135 90 90 390 450 40 40 280 270 60 60 300 350 

Table 4.3: The thresholds J E and 151,tfor the GT technique and the thresholds hand T<~dfor the simple 
truncation in order to compute the average and the standard deviation of the number of service phases 
in six-decimal accuracy for the examples with p = 0.95. 

15 45 30 90 45 135 
Det 165 150 135 330 300 270 495 450 405 
Geo 60 60 60 120 120 120 180 180 180 
NBin 120 120 120 240 240 240 360 360 360 

Table 4.4: The number of boundary equations for the examples. 
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4. 7 Conclusions 

In this chapter, we have shown that the GT technique is applicable to a broad and important class of ar
rival processes and service time distributions for discrete-time queueing systems with periodic service. 
This class contains almost all of the possible arrival processes and service-time distributions that fulfil 
the condition that the equilibrium equations of the Markov chain, describing the queue-length process 
at the start of cycles, constitute a homogeneous linear difference equation with constant coefficients. 
Further, numerical examples show that this technique yields excellent results, even if the geometric tail 
behaviour is imposed on the stationary probabilities of states fairly close to the boundary of the state 
space. Moreover, these results show that the GT technique is much less sensitive to the utilisation of 
the system than other techniques like simple truncation. 

Further, we have developed an algorithm for determining of the sojourn-time distribution. Given 
the stationary imbedded queue-length distribution, this algorithm computes the sojourn-time distribu
tion exactly. Moreover, for most practically relevant cases, this algorithm is more efficient than the 
algorithm of Ramaswami & Lucan toni [ 1985] to compute the sojourn-time distribution. 
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5 
A Moment-Iteration Technique for Queueing 

Systems with Periodic Service 

5.1 Introduction 

In Chapter 4, we applied the GT technique to study the queue-length process in queueing systems with 
periodic service. This technique makes a detailed use of the service-time distribution of customers. In 
practice, however, one usually has only (approximate) knowledge about the first two moments of this 
distribution. So, it makes sense to develop a technique that uses only this information. 

In this chapter, we develop such a technique for queueing systems with periodic service. This tech
nique approximates the stationary queue-length distributions at the slot boundaries in the cycle. Fur
thermore, it can deal with a larger class of service-time distributions than the class defined in Section 
4.2. More specifically, the service time of a customer has a general discrete probability distribution 
that, as in the previous chapter, may depend on the slot of arrival. Once the stationary queue-length 
distributions are approximated, we use the algorithm of Section 4.4 to compute the sojourn-time dis
tribution of customers. 

The main idea for this approximation technique results from the circumstance that the relation be
tween the queue length at consecutive slot boundaries has a form similar to Lindley's equation for the 
GI 1 G/1 queueing system (see, for example, Grimmett & Stirzaker [1992]). As mentioned in Chapter 
2, De Kok [ 1989] develops an efficient moment-iteration algorithm for approximating the limiting so
lution to this equation. Furthermore, this algorithm only uses the first two moments of the interarriva1-
time and of the service-time distributions of customers. The iteration technique developed in this chap
ter is an adapted version of this algorithm, and it is called the moment-iteration (MI) technique. 

To the first two moments of the interarrival-time and of the service-time distributions, De Kok 
[ 1989] fits probability distributions that are easy to evaluate numerically. More precisely, he uses the 
well-known procedure for continuous distributions as described in Tijms [ 1986] (we give this proce
dure in the next section). Since the random variables involved in the MI technique are discrete, it is 

95 
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more natural to fit discrete distributions instead of continuous ones. In the literature, several proce
dures for fitting discrete distributions on the first two moments of a non-negative random variable can 
be found. However, some of these procedures do not capture all possible combinations of these mo
ments, whereas others are not that useful for applying in the MI technique. Therefore, in this chapter, 
we also develop a novel procedure for fitting discrete distributions by matching the first two moments. 
The distributions involved capture all possible combinations of the first two moments and they are 
convenient from a numerical point of view. This procedure is a discrete analogue to the one in Tijms 
[1986]. 

We remark that the MI technique can also be used to study the transient behaviour of the queue
length process, but we do not consider this behaviour. 

This chapter, which is largely based on Adan, Van Eenige & Resing [1995], is organised as follows. 
In Section 5.2, we describe the moment-iteration method of De Kok [1989] for the continuous-time 
G I I G I 1 queueing system. The queueing system with periodic service is briefly described in Section 
5.3. In Section 5.4, we first show that the relation between queue-lengths at consecutive slot boundaries 
has a structure similar to Lindley's equation. After that, we present an adapted version of the method in 
Section 5.2 to approximate the stationary queue-length distributions at slot boundaries. The procedure 
for fitting discrete distributions on the first two moments of a non-negative random variable is presented 
in Section 5.5. In Section 5.6, we use the approximations of the stationary queue-length distributions 
to compute the sojourn-time distribution by the algorithm in Section 4.4. To illustrate the performance 
of the MI technique, we present some numerical examples in Section 5.7. Finally, Section 5.8 gives a 
summary of this chapter. 

5.2 A moment-iteration method for the G I I G 11 queueing system 

This section shows the moment-iteration method of De Kok [1989] for determining the limiting so
lution of Lindley's equation for the continuous-time G I I G I I queueing system. Later in this chapter, 
this will facilitate the step to applying (an adapted version of) this method to the evaluation of queueing 
systems with periodic service. In fact, this step will appear to be quite natural. 

We first give a description of the G I 1 G 11 queueing system. After that, we give Lindley's equation 
for the waiting-time process of customers in this system, and finally, we approximate the limiting so
lution of this equation by the moment-iteration method of De Kok [1989]. The idea of iterating such 
equations has already been employed by, for instance, Bagchi & Templeton [1972], Kleinrock [1976], 
Ackroyd [ 1980], and Powell [ 1986]. 

Consider a single-server queueing system at which customers arrive at the epochs t 1, t2 , f), .... For 
k = 1, 2, 3, ... , the interarrival times Ak = tk+ 1 - tk are independent and identically distributed random 
variables with distribution function {A (t), t > 0} and finite mean a. In order to use the fitting procedure 
in Tijms [ 1986] for the algorithm of De Kok [ 1989], it is assumed that the second moment of these 
times is also finite. The service times of customers are independent and identically distributed random 
variables 8 1, 8 2 , 8 3 , ••• with distribution function { 8(t), t > 0} and finite mean {3. For reasons to be 
stated later, we assume that the second moment of these times is finite as well. All interarrival times 
and service times are assumed to be independent, and customers are served in the order of their arrivaL 
Finally, we assume that the queue is stable, that is, we assume that f3 < a. 

Let the random variable Wk denote the waiting time of the k-th customer, fork= 1, 2, 3, .... Sup-
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pose that the first customer arrives at t1 = 0 at an empty system, so that W1 = 0. Then, it is easily seen 
that the following relation holds 

k=l,2,3, .... (5.1) 

This equation is known as Lindley's equation (cf. Grimmett & Stirzaker [1992]). 
Because of the stability assumption, the limiting solution of this equation, for k tending to infin

ity, exists (see Lindley [1952]). In general, however, it is hard to determine this solution. Therefore, 
De Kok [1989] develops a method to approximate two important waiting-time characteristics in sta
tistical equilibrium, namely, the probability of waiting and the average waiting time. These quantities 
are well defined, since we have assumed that the queue is stable, and that the first moment of the inter
arrival times and the first two moments of the service times are all finite (see, for instance, Asmussen 
[ 1987]). This method uses only the first two moments of the interarrival-time and of service-time dis
tributions, and, starting with an initial solution, it iterates Lindley's equation. Furthermore, it involves 
the fitting of continuous distributions on the first two moments of non-negative random variables. Be
fore presenting this method, we give a well-known fitting procedure. 

A common way to fit a continuous distribution to the mean m and the coefficient of variation c (that 
is, the quotient of the standard deviation and the mean) of a given non-negative random variable is the 
following (see, for example, Tijms [ 1986]). 

A procedure for fitting a continuous distribution on the first two moments 

0 < c < I: Fit a mixture of two Erlang distributions with the same parameter J-i. More specifically, fit 
a distribution with probability density function 

c ::::: 1: 

( t)"- 1 11(1/f)" 
f(t) = q/1 J1 e-11' +(I- q)-~""-~""-e-11', 

(n- I)! (n)! 

where 1/(n +I):::: c2 < ljn, for certain n = 1, 2, 3, ... and 

(n + I )c2 - J (n + I)( I + c 2 ) - (n + I )2c2 

q= l+c2 
and 

k+1-q 
J-i= 

m 

Fit a hyperexponential distribution with balanced means. This distribution has probability 
density function 

with 

1 ( jcCI) 2q 
q=2 1+y~' J-il=-;;;· and 

2(1- q) 
/12 = m 

It is easily verified that the parameters involved in this procedure are unique. Moreover, we notice that 
these distributions can be evaluated well for numerical purposes. Let the generic random variables A 
and B have distribution function {A(t), t > 0} and {B(t), t > 0}, respectively. Further, W denotes the 
limiting solution of equation (5.1 ). The moment-iteration method of De Kok [1989] can be described 
as follows, where E{ Wk ), E{W1), and crk should be read as the approximations for the first two moments 
and the standard deviation of Wk. 



98 5. A Moment-Iteration Technique for Queueing Systems with Periodic Service 

A moment-iteration algorithm for the G I 1 G 1 1 queueing system 

Step 1. Initialisation: Set E{Wd = E{Wn := 0, so that a 1 = 0, and set k := 1. Define FA(-) as the 
distribution obtained by matching the first two moments of the random variable A according 
to the above procedure. 

Step 2. Iteration: Compute the first two moments of Wk + B, using the approximations for the first two 
moments of Wk. Define Fk ( ·) as the distribution obtained by matching the first two moments 
of Wk + B according to the above procedure. Compute the approximations for the first two 
moments and the standard deviation of Wk+ 1 using equation (5.1), that is, 

E{Wk+d 1=: 1: (x- t) dFk(x) dFA(t), 

E{Wff+d 1=: 1: (x- t)
2 

dFk(x) dFA(t), 

and ak+I = JE! w;+I} - (E{ Wk+d )2
• respectively. 

Step 3. Stopping criterion: If both IE{ Wk+ d - E( Wd I and laH 1 - akl are small enough, then execute 
Step 4. Otherwise, set k := k + I and repeat Step 2. 

Step 4. Approximation: The mean and standard deviation of Ware approximated by E{Wk+I} and 
ak+ 1, and Pr{W > 0} is approximated by 

1=: (I- Fk(t)) dFA(t). 

So, the moment-iteration algorithm only uses the first two moments of the interarrival-time and of the 
service-time distribution of customers. In De Kok [ 1989], it is conjectured that this method always 
terminates. Numerical examples in the same paper show good performance of this method. 

5.3 The model 

In this chapter, we consider almost the same queueing system as in Chapter 4. The difference is that 
we extend the class of service-time distributions of Section 4.2. For completeness, we first repeat some 
notation and conventions. After that, we give the extension of this class of service-time distributions. 

As before, we consider one queue only. The time periods during which the server is attending and 
not attending this queue are called on-periods and off-periods. In a periodic service policy, the time 
axis consists of time intervals of equal length, called cycles. The number of on- and off-periods in a 
cycle is the same for all cycles. Moreover, the time instants within a cycle at which off-periods begin 
are fixed and the same for all cycles. For convenience, we assume that a cycle begins with an off
period. The number of off-periods (and of on-periods) in a cycle is denoted by N. One off-period and 
the next on-period together are called a subcycle, and slots in on-periods and in off-periods are called 
on-slots and off-slots, respectively. Further, we again use 

C the number of slots in a cycle, 

C the fixed length of the i-th subcycle, i = I, 2, ... , N, 

A; the random variable of the length of the i-th on-period in the cycle, i = I, 2, ... , N. 
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The probability distribution of Ai is denoted by { ai (j), j = 0, 1, ... , Cd, for i = 1, 2, ... , N. 
Customers are supposed to arrive according to a periodically time-dependent Bernoulli process. 

More precisely, with probability p, exactly one customer arrives in slot n of the cycle and with prob
ability I - p, no customer, with n = I, 2, ... , C, and the arrivals in different slots are independent. 
The service times are measured in numbers of (on-)slots of work. This number of slots of work for the 
customer arriving in slot n is denoted by the positive random variable B,, where n = 1, 2, ... , C. We 
only use the first two moments of these random variables and assume that these moments are finite. 
So, this extends the class of service-time distributions in Section 4.2. Further, we assume that the ser
vice times are known upon arrival and that these times are independent. Finally, we assume that the 
average number of slots of work arriving in a cycle is smaller than the average service capacity of the 
server per cycle. 

It turns out to be convenient to define the non-negative random variable B, as the number of slots 
of work arriving in slot n, that is, B, := K, B,, with K, and B, independent and 

K ·= { 0, with probability 1 - p,, 
" · I, with probability p,. 

Further, we again assume that arrivals and start of services occur just after slot boundaries, and that 
service completions occur just before slot boundaries (recall Figure 4.3). Finally, the service of a cus
tomer who arrives in an on-period and finds the server being idle, starts immediately. 

5.4 The queue-length process 

In this section, we develop a moment-iteration technique (or MI technique, for short) for studying the 
queue-length process. We first consider this process at the start of cycles, and show that this imbedded 
process can in general not be described by a relation that has a structure similar to Lindley's equation. 
After that, we demonstrate that the relation between the queue lengths at successive slot boundaries 
does have this structure. Because of the structure of this relation, we use (an adapted version of) the 
method in De Kok [ 1989] for approximating the stationary queue-length distributions at the slot bound
aries in the cycle. Throughout this section, we implicitly assume that we have a procedure for fitting 
tractable discrete distributions on the first two moments of a non-negative random variable. In Section 
5.5, we shall present such a procedure. 

In general, the queue length, measured in numbers of customers or slots of work, can increase during 
on-periods. In that case, the number of customers served or the number of slots of work handled in 
a cycle does not only depend on the number of customers or slots of work arrived in this cycle, but 
also on the slots of arrival. This indicates that the queue-length process at the start of cycles can in 
general not be described by relations that have the same structure as Lindley's equation (we recall that 
the queueing system in Chapter 2 is an exception). 

However, if we consider the queue lengths at the start of consecutive slots, then the queue-length 
process can be expressed by relations that have this structure. As an illustration of this circumstance, in 
Section 5.4.1, we first consider the case that N = I (that is, one on- and off-period in a cycle) and that 
the length of the on-periods is deterministic. After that, we describe the small adaptations in order to 
apply this technique when N > I and when the lengths of the on-periods are random. In Section 5.4.2, 
we formalise the ideas of Section 5.4.1 and present the MI technique for approximating the stationary 
queue-length distributions at the slot boundaries in a cycle. 
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5.4.1 The queue-length process at slot boundaries 

Consider the case that N = 1 and that the length of the on-periods is constant. For convenience, let A 
indicate the length of the on-period in a cycle instead of A 1• In this case, for all cycles, the first C- A 
slots are off-slots and the last A slots are on-slots. Fork = 1, 2, 3, ... and n = 1, 2, ... , C, let Xk.n be 
the (random) number of slots of work in the system at the n-th slot boundary in the k-th cycle. Then, 
it is clear that, fork= 1, 2, 3, ... , 

X _ { Xk.n + B,I> n = 1, 2, ... , C - A, 5 2 
k.n+l- max{O,Xk,+B,-1}, n=C-A+1,C-A+2, ... ,C, (.) 

where Xk.C+I should be read as Xk+J. 1• From the assumptions in Section 5.3, it follows that, fork 
tending to infinity and n fixed, the probability distribution of Xk.n converges to the stationary queue
length distribution at the n-th slot boundary in the cycle. 

Fork and n both fixed, relation (5.2) has a form similar to Lindley's equation (equation (5.1)). 
So, once the approximations for the first two moments of Xk.n are given, we can apply Step 2 of the 
algorithm in Section 5.2 to approximate these moments for Xk.n+l. This suggests to adapt this algo
rithm, for approximating the first two moments of the stationary queue-length distributions at the slot 
boundaries in the cycle, as follows. Keep k fixed, and suppose that the approximations for the first two 
moments of Xk. 1 are given. Then, in a similar way as in Step 2, we use relation (5.2) successively for 
approximating the first two moments and the standard deviation uk.n+l of Xk.n+l• for n = 1, 2, ... , C. 
In Step 3, we now compute the difference between the approximations for E{Xk.c+d and E{Xk-l.c+d 
and that between the approximations for ak.C+ 1 and ak-l.C+ 1• If these differences are both small, then 
we have an approximation for the average and standard deviation of the stationary queue-length dis
tribution at the start of cycles. Otherwise, we set k := k + I, and we repeat the iteration step. To sum 
up, Step 2 and Step 3 are altered into 

Step 2. Iteration: For n = 1, 2, ... , C, 

(i) compute the first two moments of Xk.n + B,, using the approximations for the first two 
moments of Xk.n; fit a probability distribution Fk.n0 to the approximate first two mo
ments of xk.n + li,; 

(ii) approximate the first two moments and the standard deviation of Xk.n+ 1, using relation 
(5.2) and Fk.n0 as an approximation for the probability distribution of Xk.n + B,. 

Step 3. Stopping criterion: If the approximations for the differences IE{ xk C+ I} - E{ xk-I.C+ d I and 
lak.C+I- ak··l c+ 1 l, are both small enough, then stop. Otherwise, set Xk+ 1. 1 := Xk.C+I and 
k := k + I, and repeat Step 2. 

Given the approximations for the first two moments of the stationary queue-length distribution at the 
start of a cycle, we use the iteration step to compute these two quantities for the other slot boundaries 
in the cycle. Using the fitting procedure to be presented in Section 5.5, we obtain an approximation 
for the stationary queue-length distributions at the slot boundaries in the cycle. 

Notice that this algorithm only uses the first two moments of B,. In Section 5.4.3, we present a 
refinement of this algorithm. This refinement requires the knowledge of or an approximation for the 
probability that the queue length docs not increase during a slot (that is, the probability Pr{B11 = 0} = 
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p,, if slot n is an off-slot, and the probability Pr(Bn ::::; l) = 1 - p, + PnPr{ Bn = 1), if slot n 
is an on-slot). Furthermore, we refine Step 2 in the sense that the first two moments of Xk.C-A+I are 
approximated using the relation 

C-A 

xk.c-A+l = xk.l + L:li,, 
n=I 

instead of iterating relation (5.2) for n = l, 2, ... , C- A. Before presenting the moment-iteration 
algorithm, we describe the small adaptations of this algorithm in case that the lengths of the on-periods 
are random and in case that N > l. 

On-periods of random duration 
When the length of the on-periods is random (that is, when A is random), then it is not known in ad
vance what slots are on-slots and what slots are off-slots. However, if we condition on the length of 
the on-period in a cycle, then it is known what slots are on-slots and what are off-slots. Hence, con
ditional on this length, we can use the procedure described for on-periods of fixed duration. By using 
this procedure for all possible values of A, we obtain for each possible length of the on-period an ap
proximation for the first two conditional moments of the number of slots of work at the start of the 
next cycle. Unconditioning then yields an approximation for the first two moments of the number of 
slots of work at the start of this cycle. 

More than one on- and otT-period in a cycle 
In the case N > 1, that is, the case that a cycle contains more than one subcycle, we apply the procedure 
described above to each subcycle. More precisely, suppose that we have the approximations for the first 
two moments of Xu, for some fixed k with k 1, 2, 3, .... Then, we use this technique to compute 
the approximations for the first two (unconditional) moments of the number of slots of work at the start 
of the second subcycle. Given these approximations, we use this procedure to the second subcycle for 
approximating the first two (unconditional) moments of the number of slots work at the start of the third 
subcycle. Repeating this procedure for the remaining subcycles in the cycle, we obtain approximations 
for the first two (unconditional) moments of xk+l.l· 

5.4.2 The MI technique 

In Section 5.4.1, we sketched the main ideas of the MI technique. Based on these ideas, we formalise 
this technique for approximating the stationary queue-length distributions at the slot boundaries in the 
cycle. For convenience, we present the MI technique for the case that N = 1 and that on-periods are 
of fixed duration only. Using the adaptations mentioned in Section 5.4.1, this technique can be applied 
to the case that the lengths of the on-periods are random and to the case that N > l. 

Let Y be a non-negative discrete random variable, and let Z have the same distribution as Y con
ditional on Y > 0. In the MI technique, we fit a distribution on the first two moments of Z 1 instead 
of Y; in the sequel we write (YIY > 0)- 1 instead of Z- 1. In this way, we reduce the impact of the 
probability Pr{ Y = 0) on the fitted distribution. Since this refinement explicitly uses that the random 
variables involved are discrete, it is important to have a procedure for fitting discrete distributions. As 
mentioned earlier, such a procedure is developed in Section 5.5. Further, we refine the MI technique in 
the sense that we do not iterate the relation (5.2) for approximating the first two moments of Xk.C-A+I· 
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but we use, for all k, the relation 

C-A 

xk.C-A+I = xk.l + E7ij. 
j=l 

(5.3) 

Finally, as in Chapter 2, we do not fit a distribution to the first two conditional moments of Xk,n + B,., 
but to the first two conditional moments of Xk,n (that is, we fit a distribution to the first two moments 
of (Xk,niXk,n > 0)- 1 instead of to the first two moments of (Xk,n + BniXk,n + B,. > 0) -1). 

A consequence of these refinements is that we have to know the probability Pr{B,. :5 1} = 1 -
p,. + p,.Pr{ B,. = 1} or an approximation for this probability, for all on-slots n in the cycle, that is, for 
n = C A+ 1, C A+ 2, ... , C. To clarify this, let n be an on-slot, and define (in distribution) 

k = 0, 1, 2, ... and n = 1, 2 ... , C. (5.4) 

In order to compute an approximation for Pr{Xk.n+l > 0}, for some fixed k, we use relation (5.2). As 
mentioned, in the refined MI technique, we fit a distribution on the (approximate) first two moments 
of (Xk.niXk.n > 0)- 1. In order to compute the probability Pr{Xk.n+l > 0}, we have to compute 

Pr{Xk+l.n > 0} = Pr{Xk.n + B,- 1 > 0} 

Pr{Xkn = O}Pr{B,, > 1} + Pr{Xk.11 > O}Pr{(Xk ... IXk,n > 0) + B,. > 1} 

= Pr{Xk,, = O}Pr{Bn > 1} + Pr{Xk.n > 0}(1- (1- p11 )Pr{Yk.n = 0}), (5.5) 

so that we need information about Pr{B,, :5 1}. 
The Ml technique for the case N = 1 and on-periods of fixed duration is described as follows. 

The MI technique for the stationary queue-length distributions 

Step 1. Initialisation: Set E{XI.I} E{XLJ := 0, so that a1.1 = 0, and Pr{X~, 1 = 0} = 1. Set k 1 
and i 1. 

Step 2. Iteration: Approximate the first two moments of Xk.C-A+I and the probability Pr{Xk.C-A+I > 
0} from relation (5.3), using the approximations for the first two moments of Xk.l· 
For n C A+ 1, C A+ 2, ... , C, 

(i) compute the approximations for the first two moments of Yk.n (using (5.4)); fit a discrete 
distribution to Y*·" by matching these moments in order to approximate Pr{ Yk,n = 0}; 

(ii) compute the approximations for the first two moments of Xk.n+l using (5.2), and the ap
proximation for the probability Pr{Xk.n+l > 0} using (5.5). 

Step 3. Stopping criterion: Compute the approximation for the standard deviation ak.C+i of Xk,C+l· If 
the approximations for the differences IE{Xk.c+d- E{Xk-I.C+dl and Jak.C+l- ak-l.C+d are 
both small enough, then execute Step 4. Otherwise, set k := k + 1 and Xu := Xk-l,C+~> and 
execute Step 2. 

Step 4. Approximation: The first two moments of the stationary imbedded queue-length distribution 
are approximated by E{Xu+d and E{Xf.c+ 1), and the stationary probability that the queue 
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is not empty by Pr{Xk.C+t > 0}. Starting with these approximations, we approximate these 
quantities for the other slot boundaries n in the cycle; for n 2, 3, ... , C A+ 1 using (5.3), 
with C- A substituted by n- 1, and for n = C- A+ 2, C A+ 3, ... , C using the iteration 
step. 

Using a procedure for fitting discrete distributions on the first two moments, we obtain the approx
imations of the stationary queue-length distributions at the slot boundaries in the cycle. In Section 
5.7, we shall illustrate the performance of this moment-iteration algorithm. But, as noted before, we 
present in the next section a useful procedure for fitting discrete distributions on the first two moments 
of non-negative random variables. 

Numerical examples indicate that this MI technique always terminates. However, we have not been 
able yet to prove this. 

5.5 Fitting discrete distributions on the first two moments 

In the literature, several methods are presented to approximate a discrete distribution by matching mo
ments. Here, we mention some of these methods. Drew [1968] gives an informal approach. More 
specifically, he suggests to fit a binomial distribution, a Poisson distribution, and a negative binomial 
distribution, if the coefficient of variation is appreciably smaller than one, equal to one, and apprecia
bly larger than one, respectively. In Ord [1972], a classification is presented of discrete distributions 
satisfying a difference equation that was already studied by Pearson [ 1895]. This class of distributions 
is the discrete analogue to the Pearson system of (continuous) distributions. Based on this classifica
tion, Ord fits a discrete distribution on the first three moments. Powell [ 1986] uses the shifted negative 
binomial distribution to match the first two moments of a random variable, because of its ability to in
corporate a wide range of coefficients of variation. Unlike the previous three approaches, Brahimi & 
Worthington [ 1991] do not use classical distributions. They derive a system of three non-linear equa
tions to match the first two moments. In this way, they obtain a class of discrete distributions with 
bounded support having these first two moments. 

The methods of Drew [ 1968] and Powell [ 1986] do not capture all possible combinations of the 
first two moments of discrete non-negative random variables. The method of Ord [1972] requires the 
first three moments, and the approach of Brahimi & Worthington [1991] is not that useful for apply
ing in the MI technique. Therefore, in this section, we construct a novel procedure for fitting discrete 
distributions on the first two moments. This procedure is a discrete analogue to the one in Section 5.2. 
It turns out that this construction is not trivial. First of all, unlike the continuous case, for some pairs 
of non-negative numbers (m, c) there does not exist a discrete random variable concentrated on the 
non-negative integers with mean m and coefficient of variation c. Secondly, the discrete analogues to 
the Erlang distribution and hyperexponential distribution (that is, the negative binomial distribution 
and a mixture of two geometric distributions, respectively) are not sufficient to fit all possible pairs of 
non-negative numbers (m. c). 

Consider an arbitrary pair of non-negative and real numbers (m, c). Before we come to the issue of 
how to fit a discrete distribution with mean m and coefficient of variation c, we first answer the ques
tion what combinations (m, c) are possible for discrete distributions concentrated on the non-negative 
integers. For continuous distributions on the non-negative real numbers, all combinations of a positive 
first moment and positive coefficient of variation are possible. For discrete distributions, however, this 
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turns out to be not the case as we show in the next lemma, where [m] denotes the largest integer not 
exceeding m. 

Theorem 5.5.1 For a pair of non-negative and real numbers (m, c), there exists a random variable 
on the non-negative integers with mean m and coefficient of variation c, if, and only if, 

(5.6) 

with k = [m]. 

To prove Theorem 5.5.1, we use the result presented in the next lemma, where :1: denotes equality 
in distribution. 

Lemma 5.5.1 Let X be a random variable on the non-negative integers with mean JL, where 0 < JL :;:: 
I, and coefficient of variation ex. Further, let Y be a random variable on {0, 1) with mean JL and 
coefficient of variation cy. Then, 

with equality if, and only if, X :1: Y. 

Proof. We first notice that 
Pr{Y I} Pr{Y = 0} JL. 

Since X is concentrated on the non-negative integers, we have 

with equality if, and only if, X :1: Y. Hence, 

var(X) E{X2}- (E{X})2 ~ E{X} (E{X})2 = JL(l- JL) = var(Y), 

with equality if, and only if, X 4 Y. Finally, since E{X} = E{Y], we obtain 

var(Y) 2 
~ (E{X])2 = Cy, 

which completes the proof. 

Proof of Theorem 5.5.1. We first prove that the inequality (5.6) is a necessary condition. Define k 
[m], and let Yk.l be a random variable on {k, k + I} with probability distribution 

Pr{ Yk. 1 k + I} Pr(Yk.l = k} = m- k. 

As can easily be verified, 

E{Yu} d 2 (k+!-m)(m-k) 
m an cy = 

2 " m 

D 

The implication of Lemma 5.5.1 is that a discrete random variable Y assuming values on two consec
utive non-negative integers has the smallest coefficient of variation of all discrete random variables 
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on the non-negative integers with the same mean as Y. This implies that, for all discrete non-negative 
random variables X with the same mean as Yk.l, 

Hence, the inequality (5.6) is a necessary condition. To prove that this inequality is a sufficient condi
tion as well, we need to show that, for any pair (m, c) satisfying (5.6), there exists a random variable 
X with E{X} m and ex c. We do this as follows. 

Let k [m] and, for n I, 2, 3, ... , let Yk." be a random variable on (k, k + n} with probability 
distribution 

Pr{Yk. 11 k + n} Pr{Yk.n k} 
m-k 

n 

So, the mean and coefficient of variation of Yk.n are 

E(Yk.,l = m and 

respectively. It is easily verified that, for fixed k, c} is strictly increasing in n and that c~ tends 
~ ~ 

to infinity as n tends to infinity. Thus, for a random variable with mean m and squared coefficient of 
variation c2 satisfying inequality (5.6), there exists ann with 

Furthermore, it is readily verified that the random variable X defined by 

with 

has mean m and squared coefficient of variation c2. Hence, the inequality (5.6) is also a sufficient 
condition, so that the proof is complete. 0 

In Figure 5.1, the 'impossible' regions in the (m, c)-plane are shaded. 
To construct a discrete analogue to the method described in Section 5.2, it does not suffice to use 

the discrete analogues to a mixture of two Erlang distributions and to a hyperexponential distribution. 
The reason for this is that these two discrete analogues do not cover the unshaded area in Figure 5.1. It 
turns out that this area can be covered by four classes of distributions. Before presenting the discrete 
fitting procedure, we introduce some notations. 

Geo(p) denotes a random variable with probability distribution ( ( 1 p) pi, i = 0, l, 2, ... } , with 
0 < p < 1, and NB(n. p) the sum ofn independent Geo(p) random variables; finally, Bin(n, p) de
notes a random variable having a binomial distribution with n the number of trials and p the success 
probability. In the method for fitting discrete distributions, the parameter 

fJ:=c2 -l/m 

plays an important part, where m and c denote the mean and coefficient of variation, respectively, of 
a random variable. Our method for fitting discrete distributions is presented in the next theorem. This 
method is in a sense a formalisation and generalisation of the informal approach used in Drew [1968]. 
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Figure 5.1: The shaded regions denote the 'impossible' regions for a discrete random variable on the 
non-negative integers, and the other regions are the four regions for f:J indicating which distribution is 
used to match the first two moments of this random variable. 

Theorem 5.5.2 Let Z be a random variable on the non-negative integers with mean m and coefficient 
of variation c. Then, the discrete random variable Y matches theftrst two moments of Z, if Y is chosen 
as follows: 

1. /f-1/nsf:J<-Ij(n+I),.forcertainn 1,2,3, ... ,then 

y = { Bin(n, p), with probability q, 
Bin(n + 1, p ), with probability 1 q, 

where 

q 
1 +f:J(n+ 1) + 

and p 
m 

n+I-q" 

2. Jff:J = 0, then Y has a Poisson distribution with mean m. 

3. lflj(n+1)sf:J< ljn,forcertainn=I,2,3, ... ,then 

y 
{ 

NB(n, p), with probability q. 
NB(n + 1 , p),. with probability I q, 
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where 

q 

4. lfO:::: 1, then 

where 

-J(n+ 1)(1-0n) m 
1+0 @d p=n+l 

y = { Geo(p 1 ), with probability q1, 

Geo(p2 ), with probability q2, 

m(l + 0 + .Je2=1) 
PI = ---·····---===-

2+m(l +0 
m(l +8 
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q+m 

Proof. From condition (5.6) and the fact that k is the unique integer satisfying k .:': m < k + 1, we have 

Thus, we have to consider the case that 0 :::: -1 only. Further, it is straightforward to check that the 
given distributions indeed have the same mean and coefficient of variation as Z. 0 

It can be verified that p .:s 1 for case 1 of Theorem 5.5.2 is a consequence of the inequality (5.6). 
Further, if()> 0 (that is, cases 3 and 4 of Theorem 5.5.2), then it is also possible to fit an NB(n, q) 
distribution with real-valued n. An advantage of the solution proposed in Theorem 5.5.2 is that the fit
ted distributions allow a simple interpretation in terms of sums or mixtures of geometric distributions. 
Finally, we note that by the Continuity Theorem (cf. Feller [1968]) the Bin(n, p) and the NB(n, q) 
converge to the Poisson distribution with mean A for p A/nand q nf(n +A), respectively, and 
letting n tend to infinity. 

In the Section 5. 7, we investigate the performance of the MI technique, using the fitting procedure 
of Theorem 5.5.2. But first, we compute the sojourn-time distribution of customers. 

5.6 The sojourn-time distribution 

Given the number of slots of work just after the arrival of a customer, we developed in Section 4.4 an 
algorithm for computing the sojourn-time distribution of this customer exactly. The number of slots of 
work just after an arrival in statistical equilibrium is equal to the number of slots of work upon arrival 
and the number of slots of work of this customer. This latter number of slots has the same probability 
distribution as 8 11 , if the customer arrives in slot n of the cycle, with n 1, 2, ... , C. By the Bernoulli
arrivals-see-time-average property (cf. Hal fin [ 1983]), the number of slots of work upon arrival in slot 
n equals the number of slots of work at the boundary between slot n - 1 and slot n. For this number 
of slots, we use the MI technique for approximating its first two moments (possibly after conditioning 
on the length of the subcycle of arrival). Thus, we have an approximation for the first two moments 
of the total number of slots of work just after the arrival. Using the fitting procedure in Section 5.5, 
we approximate the probability distribution of the number of slots of work just after the arrival. Given 
this approximation, we use the algorithm in Section 4.4 for computing the sojourn-time distribution. 
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5.7 Numerical examples 

In this section, we investigate the performance of the MI technique for approximating the stationary 
queue-length distributions at the slot boundaries in the cycle. Further, we examine the results for the 
sojourn-time distribution when these approximations are used in the algorithm of Section 4.4. More 
specifically, for some numerical examples, we compare the (practically) exact values and the approx
imations of several important performance measures as obtained by the techniques of Chapter 4 and 
this chapter. Firstly, we consider the probability Pr{ Q1 > 0) that the queue is not empty at the first slot 
boundary of a cycle and the average number of slots of work E{ Q1} at this time instant. Secondly, the 
average number of slots of work E{ L} in the system in an arbitrary slot and the average sojourn time 
E{S) of an arbitrary arriving customer is considered. Finally, we investigate the tail probabilities of 
the sojourn-time distribution of an arbitrary arriving customer. For the MI technique, we use the fit 
procedure as exposed in Section 5.6. 

To investigate the performance of the MI technique, we use the same examples as in Section 4.6. 
So, we have a cycle consisting of one subcycle and we assume that the length of the off-periods and 
of the on-periods are both constant. Customers are supposed to arrive according to a homogeneous 
Bernoulli process with parameter p. The average service times of these customers are assumed to be 
equal to three on-slots. For these times, we consider three cases, namely, the cases that they are deter
ministic, geometric, and negative binomial of order two. Further, we examine the cases that the length 
C of a cycle is C = 60, 120, 180 and that the length A of the on-periods is A = 0.25C, 0.50C, 0.75C. 

In Table 5.1, we display the 'exact' (Ex) and approximative (MI) values ofPr{Q1 > 0), E{Qd, 
E{L}, and E{S} for deterministic service times. The 'exact' values are those computed when the states 
j > T are truncated, with T sufficiently large. For geometric and negative binomial service times, 
these results are listed in Table 5.2 and Table 5.3, respectively. In these tables, p denotes the effective 
utilisation of the system, that is, p = 3 p( CIA). 

From these tables, we first of all observe that the MI technique generally gives good approximations 
forE{ Q 1 }. Usually, the relative error is within 7%. When the utilisation is low, the relative error may be 
large, but the absolute errors are small; in these cases, the average number of slots of work corresponds 
to less than one customer in the system on average. For the approximations of Pr{ Q 1 > 0}, we can 
make similar remarks. 

Further, these tables show that the results for E{ L} and E{ S) are all within 6% of the exact values; 
for most of the cases, this error is even much smaller. So, the MI technique approximates the average 
number of customers in the system quite accurate. 

For the tail probabilities of the sojourn-time distribution, we list in Table 5.4 the quantiles of order 
o:, fora= 0.70, 0.80, 0.90, 0.95, in case of deterministic service times. As we see, using the approxi
mations obtained by the MI technique, the shape of the tail of the resulting sojourn-time distribution is 
fairly well described. The corresponding results for the case of geometrically and negative binomially 
distributed service times are similar, and these results are, therefore, omitted. 

The examples considered indicate that the MI technique gives good approximations, compared to 
the information used (that is, the first two moments of the service-time distributions and the probability 
that a service time equals one slot). 
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p c A 
0.75 60 15 0.371 

30 0.397 
45 0.504 11.17 

120 30 0.288 9.99 55.42 
60 0.341 1.19 1.51 11.08 11.33 31.66 
90 0.477 0.493 1.53 1.60 7.70 7.74 14.94 15.04 

180 45 0.241 0.264 1.20 1.50 13.29 13.57 72.65 74.24 
90 0.316 0.311 0.94 1.36 15.38 15.71 42.50 43.23 

135 0.468 0.475 1.39 1.40 10.04 10.04 19.09 19.11 
0.90 60 15 0.683 0.720 9.81 9.90 15.02 15.01 68.50 70.64 

30 0.681 0.706 8.26 8.27 15.12 15.13 35.09 35.63 
45 0.742 0.749 7.60 7.62 12.75 12.77 20.15 20.20 

120 30 0.612 0.642 8.70 8.91 18.84 19.04 85.49 88.96 
60 0.615 0.641 6.97 7.04 20.08 20.14 46.12 46.82 
90 0.701 0.701 6.41 6.61 15.73 15.88 24.55 24.81 

180 45 0.563 0.596 7.91 8.25 22.97 23.31 103.85 108.29 
90 0.572 0.592 6.08 6.12 25.41 25.44 57.97 58.59 

135 0.676 0.668 5.61 6.00 19.01 19.30 29.41 29.81 
0.95 60 15 0.828 0.864 23.33 23.14 28.87 28.68 123.20 124.78 

30 0.824 0.854 20.39 20.01 27.81 27.45 60.05 59.99 
45 0.858 0.875 18.43 18.06 24.18 23.86 35.18 34.87 

120 30 0.784 0.818 22.03 20.01 32.85 32.61 139.92 141.87 
60 0.780 0.816 18.76 18.31 33.04 32.61 71.06 71.38 
90 0.829 0.847 16.80 16.33 27.41 26.00 39.72 39.33 

180 45 0.752 0.784 21.06 20.97 37.14 37.06 157.99 161.51 
90 0.748 0.789 17.56 16.94 38.69 38.10 82.94 83.35 

135 0.808 0.824 15.60 15.04 31.00 30.52 44.76 44.31 
--------- --··-·~ 

Table 5.1: Numerical results for deterministic service times. 
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Pr{Q1 > 0} E{Qd E{L} E{S} 
p c A Ex MI Ex MI Ex MI Ex MI 

0.75 60 15 0.478 0.485 4.87 4.84 9.12 9.09 48.65 48.72 
30 0.468 0.475 4.19 4.16 9.58 9.56 25.54 25.62 
45 0.539 0.539 4.42 4.36 8.23 8.20 14.63 14.58 

120 30 0.387 0.393 3.85 3.97 12.08 12.19 64.40 65.43 
60 0.399 0.398 3.19 3.27 13.27 13.34 35.40 35.53 
90 0.503 0.497 3.66 3.83 10.21 10.30 18.15 18.27 

180 45 0.331 0.340 3.18 3.40 15.36 15.56 81.91 83.25 
90 0.362 0.355 2.60 2.80 17.30 17.47 46.14 46.38 

135 0.486 0.481 3.25 3.65 12.38 12.61 22.02 22.37 
0.90 60 15 0.755 0.774 18.49 18.28 23.70 23.51 105.32 104.66 

30 0.739 0.763 16.71 16.32 23.62 23.26 52.48 52.00 
45 0.777 0.796 16.15 15.72 21.41 21.08 31.71 31.37 

120 30 0.694 0.711 16.95 16.77 27.12 26.94 120.49 120.62 
60 0.682 0.710 14.86 14.41 28.07 27.66 62.38 62.39 
90 0.741 0.756 14.43 13.81 23.98 23.50 35.52 35.02 

180 45 0.650 0.666 15.82 15.80 30.92 30.90 137.38 139.18 
90 0.642 0.670 13.52 12.99 32.99 32.51 73.31 73.51 

135 0.717 0.724 13.17 12.55 26.90 26.42 39.85 39.26 
0.95 60 15 0.871 0.889 42.02 41.67 47.56 47.22 193.70 197.08 

30 0.860 0.887 38.85 38.02 46.29 45.51 97.44 96.03 
45 0.880 0.902 37.00 36.29 42.80 42.18 60.07 59.34 

120 30 0.835 0.859 40.29 39.58 51.12 50.42 208.10 210.62 
60 0.824 0.857 36.65 35.39 50.99 49.79 107.32 105.66 
90 0.857 0.884 34.85 33.29 45.57 44.22 63.96 62.44 

180 45 0.808 0.833 38.97 38.22 55.08 54.34 224.05 227.12 
90 0.798 0.837 34.98 33.43 56.18 54.71 118.25 116.87 

135 0.840 0.868 33.16 31.14 48.75 47.00 68.42 66.55 

Table 5.2: Numerical results for geometric service times. 
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p c A 
0.75 60 15 

30 7.99 
45 6.59 

120 30 10.50 
60 0.355 1.65 1.82 11.92 11.73 
90 0.482 2.02 2.32 8.68 8.48 15.71 15.99 

180 45 0.277 0.288 1.66 1.87 13.96 13.97 75.24 76.32 
90 0.330 0.321 1.31 1.56 16.14 16.03 43.35 43.74 

135 0.473 0.476 1.82 2.26 10.96 10.85 19.78 20.22 
0.90 60 15 0.725 0.741 12.00 11.88 17.63 17.09 79.14 79.03 

30 0.709 0.732 10.36 10.14 17.82 17.03 39.67 39.56 
45 0.756 0.772 9.72 9.44 15.64 14.68 23.05 22.81 

120 30 0.653 0.669 10.76 10.77 21.21 20.91 95.39 96.65 
60 0.643 0.670 8.90 8.60 22.53 21.77 50.31 50.46 
90 0.716 0.721 8.36 8.08 18.38 17.53 27.26 27.00 

180 45 0.604 0.625 9.86 9.99 25.21 25.06 113.19 115.90 
90 0.600 0.622 7.88 7.47 27.71 26.88 61.86 61.92 

135 0.690 0.687 7.42 7.25 21.52 20.79 31.96 31.74 
0.95 60 IS 0.854 0.876 28.03 27.66 34.28 33.20 143.64 142.84 

30 0.842 0.870 24.99 24.33 33.30 31.79 69.69 68.67 
45 0.868 0.890 23.05 22.36 29.86 28.21 41.43 40.71 

120 30 0.811 0.835 26.60 26.11 37.87 36.94 159.64 159.09 
60 0.799 0.837 23.19 22.21 38.14 36.56 80.34 79.44 
90 0.840 0.866 21.26 20.10 32.73 30.90 45.76 44.66 

180 45 0.779 0.804 25.52 25.10 41.99 41.20 177.14 177.93 
90 0.769 0.812 21.86 20.57 43.58 41.78 91.92 91.20 

135 0.820 0.844 19.91 18.44 36.13 34.09 50.63 49.22 

Table 5.3: Numerical results for negative binomial service times. 
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Quantiles of order 
0.70 0.80 0.90 0.95 

p c A Ex Ml Ex MI Ex Ml Ex MI 
0.75 60 15 45 47 50 54 66 70 79 83 

30 28 28 32 32 35 37 42 43 
45 15 15 18 18 21 21 24 24 

120 30 73 75 83 85 93 96 105 113 
60 45 46 53 54 60 61 63 66 
90 22 22 27 28 33 33 35 36 

180 45 102 104 117 118 131 133 138 142 
90 63 64 75 76 86 87 92 93 

135 29 29 37 37 45 45 48 49 
0.90 60 15 81 87 102 107 139 139 176 170 

30 41 43 51 54 68 70 85 84 
45 24 25 30 31 40 40 50 49 

120 30 101 108 123 132 160 167 197 199 
60 59 60 66 69 84 86 100 106 
90 32 33 37 39 46 48 57 58 

180 45 129 134 147 156 186 199 222 234 
90 78 79 88 90 101 104 119 125 

135 41 41 47 48 54 58 64 68 
0.95 60 15 146 154 190 192 265 252 340 310 

30 71 74 91 91 125 121 159 148 
45 42 43 54 54 74 71 95 88 

120 30 165 174 209 213 284 277 359 337 
60 84 87 104 108 138 140 172 168 
90 47 48 59 60 80 79 100 99 

180 45 187 199 230 239 305 304 381 370 
90 99 102 120 121 154 159 188 192 

135 54 56 66 67 87 87 107 109 

Table 5.4: Quantiles of the sojourn-time distribution for deterministic service times. 
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5.8 Conclusions 

In this chapter, we have developed an approximative moment-iteration technique (MI technique) to 
study the queue-length process in discrete-time queueing systems with periodic service. Unlike the GT 
technique in Chapter 4, this technique uses only the first two moments of the service-time distributions. 

The MI technique is based on the circumstance that the queue-lengths at consecutive slot bound
aries can be described by a relation that has a structure similar to Lindley's equation for the G l 1 G 1 1 
queueing system. Using an adapted version of the moment-iteration method of De Kok [1989] and a 
novel procedure for fitting discrete distributions by matching moments, we approximate the stationary 
queue-length distributions. Numerical examples show that the MI technique gives very good approxi
mations for the performance measures of interest. Only when the average queue lengths are very small, 
the relative errors may be larger, but in these cases the absolute errors are small. 
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6 
Make to Stock and Overtime in Queueing 

Systems with Periodic Service 

6.1 Introduction 

In Chapter I, we mentioned that the techniques of the Chapters 4 and 5 are applicable to modifications 
of discrete-time queueing systems with periodic service. These modifications are motivated by the 
study of periodic production rules. Of all possible modifications, we discuss three important ones. 
In Chapter 7, we shall consider the case that there are customers arriving randomly, and that other 
customers arrive according to a periodic pattern, having priority for service over the randomly arriving 
customers. The aim of this chapter is to show that the possibility of making products to stock and of 
working overtime can both be analysed by the techniques of the Chapters 4 and 5. This enables one to 
evaluate the effect of these possibilities on the performance of queueing systems with periodic service. 

Because of the motivation, we say that customers place orders at the server. In practice, once the 
size of an order is given, the service time of this order is usually fairly well known. So, it seems rea
sonable to consider only deterministic service phases. Such a service phase is called a product. 

Make to stock 

The server can only make products to stock in on-periods. Within these periods, products are made to 
stock if there are no orders for these products and if the number of these products in stock is less than 
the maximal number of them allowed in stock. When a product is taken from stock, we can interpret 
this as if the server orders a product at himself. Because of this interpretation, the resulting queue
ing system features the main characteristics of an inventory system governed by a base-stock policy. 
In particular, this queueing system features the main characteristics of an ( S 1, S) inventory sys
tem (see, for instance, Hadley & Whit in [ 1963]), with S the maximal number of products allowed in 
stock. Consequently, this queueing system is closely related to inventory systems with spare parts and 
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repairable items (see, for example, Sherbrooke [ 1968] and Nahmias [1981 ]). Further, this queueing 
system is related to a system studied in Federgruen & Katalan [1995]. Federgruen & Katalan study 
a cyclic polling system in which the server uses a base-stock policy for each queue. The main differ
ence between our model and the other models is the following. In our model the server may not always 
increase the stock to the base-stock level before he switches to the next queue (due to the periodic ser
vice policy), whereas in the other models the server always increases the stock to the base-stock level 
before switching. 

Overtime 

The server can work overtime at the end of on-periods only. The decision whether to work overtime or 
not is taken according to a threshold policy. More precisely, if at the end of an on-period the number 
of ordered products in the corresponding queue exceeds a certain threshold, then the server works a 
specific amount of overtime. We assume that working overtime does not affect the future switch-over 
instants of the server. For example, working overtime represents work executed outside the normal 
working hours, work executed by another server, hiring some additional service capacity, or buying 
products from another firm. The use of overtime is applied, for instance, in Goodwin, Jr., Elvers & 
Goodwin [1978] for a general job shop environment, in Scudder [1985] and Scudder & Chua [1987] 
for a repair shop environment, and in Dellaert [ 1988] for a firm making a variety of products to order. 
Furthermore, overtime can be regarded as a temporary expansion of the service capacity, so that the 
service rate is speeded up temporary. 

This chapter, which is largely based on Van Eenige, Adan, Resing & VanderWal [1995a], is organ
ised as follows. In Section 6.2, we discuss queueing systems with periodic service and make to stock. 
Queueing systems with periodic service and overtime are studied in Section 6.3. Finally, we give a 
summary of this chapter in Section 6.4. 

6.2 Queueing systems with periodic service and make to stock 

In this section, we first specify the possibility of making products to stock. After that, in Section 6.2.2, 
we analyse the queue-length process and compute the sojourn-time distribution of customers by the 
techniques in Chapter 4. In Section 6.2.3, we first apply a moment-iteration technique similar to the 
one in Chapter 5 to analyse the queue-length process. Then, given the approximation for the stationary 
queue-length distributions at arrival instants, we use the technique ofChapter4 to calculate the sojourn
time distribution. Finally, in Section 6.2.4, some numerical examples are given. 

6.2.1 The model 

We consider the queueing system with periodic service as introduced in Chapter 4. For convenience, 
we treat the case N I only, that is, the case that a cycle consists of one on- and off-period (the anal
ysis can easily be extended to the case N > I). As noted earlier, the service phases (which are called 
products in this chapter) are deterministic. 

As already mentioned, products can only be made to stock in on-periods. The decision whether to 
make a product to stock or not is taken immediately after possible arrival instants in on-slots. Recall 
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that we assumed that arrivals occur just after slot boundaries and that products are completed just be
fore slot boundaries (see Figure 4.3). This decision depends on whether the queue is empty or not, and 
on the number of products already in stock. More precisely, the server makes a product to stock in an 
on-slot if, at the decision epoch, the queue is empty and the number of products in stock is smaller than 
V, with V a non-negative integer. So, V denotes the maximal number of products allowed in stock. 
We remark that V may depend on the slot in the cycle, but, for clarity of presentation, we assume that 
V is the same for each slot. 

Customers who find their requested products in stock are served immediately upon arrival, irre
spective of whether they arrive in an on- or off-period. A customer who can be served only partially 
from stock has a reduced service time. Further, it is clear that the case V 0 corresponds to the stan
dard queueing system with periodic service as studied in the Chapters 4 and 5. 

Finally, for completeness, we repeat some notation. Amin and Amax denote the minimal and maxi
mal number of on-slots in a cycle, respectively (see also definitions (4.1) and (4.2) with N 1). The 
minimal and maximal number of products ordered in a cycle are denoted by Bmin and Brru;x, respec
tively (recall definition (4.3)). Further, we again define the integer K, for which we implicitly use that 
N = 1. Consider the last possible on-slot n in a cycle with p,, > 0. Then, K denotes the number of 
possible on-slots in the cycle, before slot n, in which no customer can arrive. 

6.2.2 The GT technique 

In this section, we use the techniques of Chapter 4 to study queueing systems with periodic service 
and make to stock. In Section 6.2.2. I, we show that the queue-length process at the start of cycles is 
stochastically identical to the imbedded queue-length process studied in Chapter 4 after a transforma
tion. This indicates that we can use the results of Section 4.3 directly. In Section 6.2.2.2, we shall see 
that the sojourn time of a customer (that is, the delivery time of an ordered product) can be computed 
exactly. This computation is almost the same as in Section 4.4. The difference is that, with the possi
bility of making products to stock, the sojourn time of a customer may be equal to zero, namely, when 
he is completely delivered from stock. 

6.2.2.1 The queue-length process 

To analyse the queue-length process of customers, we look at the system at the first slot boundary of 
cycles. If the queue is empty at the start of the k-th cycle, then X, denotes the difference between V and 
the number of products in stock, fork I, 2. 3, .... If the queue is not empty at this instant, then Xk 
denotes the number of products in the queue plus V. So, for example, state 0 denotes an empty queue 
and the maximal number of products in stock, state V denotes both an empty queue and no stock, and 
state V + 3 indicates no stock and 3 ordered products in the queue. 

The stochastic process [X,, k I, 2, 3, ... } is a discrete-time Markov chain, and this process is 
also called the imbedded queue-length process. We assume that Bmax > Am10 , so that the state space 
of this chain is denumerable, and suppose that this state space is the set {0, 1, 2, ... } (by some small 
adaptations the analysis can be used when the state space consists of multiples of some integer only). 
Further, it is assumed that the Markov chain is irreducible and aperiodic. Finally, as in Chapter 4, 
we suppose that the average number of products ordered in a cycle is strictly less than the average 
service capacity of the server per cycle. Under these assumptions, the Markov chain has a unique 
stationary distribution (cf. Pakes [ 1969]), which is the unique solution of the equilibrium equations 
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and the normalisation equation. 
These equilibrium equations are identical to those of the Markov chain defined in Section 4.3. This 

can be verified by considering the difference between V and the number of products in stock as addi
tionally ordered products. So, in this case, Xk denotes the number of ordered products including the 
additionally ordered ones. For instance, in this case, state 0 corresponds to an empty queue, and state 
Vindicates that there are V ordered products in the queue (that is, the V additionally ordered products). 
As a result, the queue-length processes in this section and in Section 4.3 are stochastically identical. 
Hence, the Markov chains of these sections are the same, so that the equilibrium equations of both 
chains are the same. Consequently, the results of Section 4.3 can readily be applied. For complete
ness, we restate these results without proofs. 

Recall that D denotes the minimal integer for which the transition probabilities Pi.J of the Markov 
chain are equal to qJ-i• fori 2:: D and j 2:: l. Further, TL and TH indicate the largest possible jump out 
of state i to a lower and higher state, respectively. The values of these quantities are specified in the 
next lemma. 

Lemma 6.2.1 For the Markov chain describing the imbedded queue-length process of the queueing 
system with periodic service and make to stock. we have 

(i) D:::;: Amax• 

Let Q(z) denote the shifted probability generating function of the probability distribution {qh, h = 
- TL, + I, ... , TH} (see also definition (4.7)). Further, a(z) and .8n(z) denote the probability gen
erating function of the length of the on-periods and of the number of products ordered in slot n, respec
tively (see also definitions (4.8), with N = l and omitting the subscript i, and (4.9)). 

Lemma 6.2.2 The shifted probability generating function Q (z) of the probability distribution { q h• h 
-TL, -TL +I, ... , TH} satisfies 

c 
Q(z) = zTLa(ljz) n _8n(Z). 

n=l 

Finally, we recall that some transition probabilities Pi.J with i < Dare equal to q1_; as well. 

Lemma 6.2.3 ForK+ I :::: i < D and j 2:: Bma,- max{O, Amin- K} +I, we have Pi,J q1_;. 

As in Chapter4, the transition probabilities Pi.J• with i < D, that are not captured by Lemma 6.2.3 
are determined recursively by the one-slot transition probabilities. 

6.2.2.2 The sojourn-time distribution 

As in the Chapters 4 and 5, the sojourn time of a customer denotes the length of the time interval (mea
sured in numbers of slots) between his arrival instant and his departure. Notice that, with the possibility 
of making products to stock, the sojourn time of a customer is not affected by any subsequent arrival. 
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In this section, we show that the sojourn-time distribution in statistical equilibrium can be computed 
in almost the same way as in Chapter 4. 

For n I, 2, ... , C, let Y,, denote the number of ordered products in the queue just after an arrival 
in slot n in statistical equilibrium. If Y,, = 0, then this customer is completely delivered from stock, so 
that his sojourn time is equal to zero. Otherwise, this customer stays in the system until the server has 
made Y,, products. Furthermore, in this case, his sojourn time is stochastically identical to the sojourn 
time of a customer arriving in slot n of the model without make to stock of Chapter 4, who has to 
stay Y,. on-slots in the system. Hence, once the number of ordered products in the queue immediately 
after his arrival is known, we can use the algorithm of Section 4.4 to compute his sojourn time. So, it 
remains to calculate the probability distribution of this number of ordered products. 

The number of ordered products immediately after a customer arrival is zero, if, upon arrival, the 
number of products in stock is at least equal to the number of products he ordered. OtheiWise, this num
ber of ordered products is equal to the number of products in the queue upon arrival plus the number of 
products he ordered. To compute the queue-length distribution at arrival instants in statistical equilib
rium, we use the Bernoulli-arrivals-see-time-average property (BASTA property, see Halfin [1983]). 
By the BASTA property, this distribution is equal to the stationary queue-length distribution at the 
boundary between slot n 1 and slot n, for the customer arriving in slot n, with n 1, 2, ... , C. 
Hence, by using the on-slot transition probabilities, this distribution can be obtained from the station
ary imbedded queue-length distribution studied in Section 6.2.2.1. The convolution of this distribution 
and the distribution of the number of products ordered by the customer is the distribution of Yn. 

6.2.3 The MI technique 

From Section 6.2.2.1, we know that the Markov chains describing the imbedded queue-length process 
for the queueing system with make to stock and for the system without make to stock are the same. In 
fact, the periodic Ylarkov chains describing the queue-length process at slot boundaries for these two 
systems are the same. So, except for the interpretation of the state of the system, we can directly use the 
algorithm of Section 5.4 to approximate the stationary queue-length distributions at slot boundaries. 

Further, from Section 6.2.2.2, we know that, given the number of ordered products immediately 
after a customer arrival, the sojourn time of this customer can be computed using the algorithm in 
Section 4.4. So, for computing the sojourn-time distribution of a customer arriving in slot n of the cy
cle, with n 1, 2, ... , C, it remains to calculate the probability distribution of the number of ordered 
products immediately after his arrival. By the same arguments as in Section 6.2.2.2, this distribution 
is the convolution of the stationary queue-length distribution at the n-th slot boundary and the service
time distribution of this customer. The first two moments of the stationary queue-length distribution 
at the n-th slot boundary can be approximated by the MI technique. From these approximations, the 
approximate first two moments of the distribution of the number of ordered products just after the ar
rival are easily computed. Finally, by fitting a discrete distribution to these moments using Theorem 
5.5.2, we obtain an approximation for the complete distribution. 

6.2.4 Numerical examples 

The GT technique is used to approximate the same system of equations as in Chapter 4. In that chap
ter, we already saw that this technique gives excellent approximations for the solution, that is, for the 
(complete) stationmy imbedded queue-length distribution. Therefore, we do not present numerical 
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examples for the investigation of the quality of these approximations. 
As an illustration of the quality of the approximations obtained by the MI technique, we use the 

following example. Consider a cycle, with length C = 120, that consists of one subcycle. For the 
constant length A of the on-periods, we consider the cases A 30, 60, 90. Customers place orders 
according to a Bernoulli process with parameter p, and each customer orders three products. For the 
effective utilisation p of the system, that is, p := 3 pC I A, we consider the cases p 0.15, 0. 90, 0.95. 

For different values of V, in Table6.1, we present the 'exact' values (Ex) and the moment-iteration 
approximation (MI) of the average sojourn time E{S}. In Table 6.2, we display the 'exact' values and 
the MI approximations for the quantiles of the sojourn-time distribution. The 'exact' values are com
puted by the GT technique, when imposing the geometric tail behaviour on the stationary probabilities 
of states sufficiently far from the boundary of the state space. 

p A ~~Ex MI Ex Ex MI Ex MI 
0.75 30 53.70 55.42 40.12 43.34 28.89 32.63 19.95 23.64 

60 31.05 31.66 24.36 25.79 18.80 20.50 14.11 15.87 
90 14.94 15.04 10.71 11.41 7.63 8.30 5.31 5.94 

0.90 30 85.49 88.96 73.03 76.32 61.57 64.82 51.23 54.52 
60 46.12 46.82 39.90 40.29 34.20 34.58 28.96 29.54 
90 24.55 24.81 20.48 20.88 16.93 17.47 13.82 14.52 

0.95 30 139.92 141.87 127.73 129.68 116.06 118.00 105.ot 106.94 
60 71.06 71.38 64.96 65.02 59.14 59.06 53.58 53.48 
90 39.72 39.33 35.68 35.29 31.92 31.58 28.42 28.17 

Table 6.1: Approximations (Ml) and the exact values (Ex) for the average sojourn time E{S). 

From Table 6.1, we see that the quality of the approximations varies considerably for p = 0.75 and 
V = 3, 6, 9; the relative errors are between 6% and 18.5%. The main reason for these errors is that the 
MI technique does not approximate the probability that a customer is delivered from stock accurately, 
that is, the probability that the sojourn time is zero. More precisely, for the case p = 0. 75, this proba
bility is relatively large, so that an error in the approximation of this probability has a relatively large 
effect on the approximation for the average sojourn time. If the utilisation of the system is high, then 
the probability that a customer is delivered from stock is rather small, so that a fairly poor approxi
mation of this probability does not affect the average sojourn time too much. As we see, the relative 
errors are all within 6.5% of the exact values for the cases p = 0.90 and p = 0.95; for most of these 
examples, these errors are even much lower. 

Table 6.2 shows that the MI technique describes the shape of the tail of the sojourn-time distribution 
well. 

6.3 Queueing systems with periodic service and overtime 

In this section, we focus on the second modification of queueing systems with periodic service, namely, 
the possibility of working overtime. This queueing system is described in Section 6.3.1. In Section 
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p A v Ex Ex Ex 
0.75 30 0 73 75 83 85 93 96 113 

3 58 62 70 73 83 88 99 
6 44 48 56 61 71 77 82 90 
9 29 34 42 48 59 66 71 80 

60 0 45 46 53 54 60 61 63 66 
3 38 39 45 47 54 56 59 62 
6 30 32 38 40 47 50 53 57 
9 22 24 30 33 40 43 47 51 

90 0 22 22 27 28 33 33 35 36 
3 17 17 22 23 28 29 31 32 
6 12 12 17 18 24 24 28 28 
9 6 6 12 12 19 19 23 24 

0.90 30 0 101 108 123 132 160 167 197 199 
3 89 96 1 I I 120 148 156 185 188 
6 78 85 99 107 136 145 173 176 
9 66 73 87 94 124 132 161 165 

60 0 59 60 66 69 84 86 100 106 
3 53 54 61 63 78 80 94 100 
6 46 47 55 58 71 74 88 93 
9 40 41 49 52 65 68 82 86 

90 0 32 33 37 39 46 48 57 58 
3 28 29 33 35 42 44 53 54 
6 24 24 29 31 38 41 49 50 
9 20 20 25 27 34 37 45 46 

0.95 30 0 165 174 209 213 284 277 359 337 
3 153 162 197 201 272 266 347 325 
6 141 150 185 189 260 254 335 313 
9 129 139 173 177 248 243 323 301 

60 0 84 87 104 108 138 140 172 168 
3 78 80 98 101 132 134 166 162 
6 72 75 92 95 126 128 160 157 
9 66 69 86 88 120 122 154 151 

90 0 47 48 59 60 80 79 100 99 
3 43 45 55 56 76 75 96 94 
6 39 41 51 52 72 71 92 90 
9 35 37 47 48 68 67 88 86 

Table 6.2: Quantile.\· of the sojourn-time distribution. 
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6.3.2, we study this queueing system by the techniques of Chapter 4. In Section 6.3.3, we first ap
proximate the stationary queue-length distributions at slot boundaries by the MI technique. After that, 
these approximations are used to compute the sojourn-time distribution. Finally, in Section 6.3.4, we 
present some numerical examples. 

6.3.1 The model 

We consider the same model as introduced in Chapter 4. As in Section 6.2, we consider the case that 
N 1 only (by some small adaptations the analysis can be used for analysing the case N > 1 ). Again, 
the service phases (which are called products) are deterministic. 

The decision whether to work overtime or not is taken at the end of each on-period. That is, this 
decision is taken just before the first slot boundary of each cycle, but just after a possible completion of 
a product. This decision depends on the number of ordered products in the queue at these time instants. 
More precisely, if, at the decision epoch, this number of products is at least equal to the lower bound 
L, then the server works OT slots in overtime, where the constants L and OT are non-negative inte
gers. As mentioned in Section 6.1, we assume that working overtime is organised such that it neither 
lengthens the on-periods, nor does it affect the future switch-over instants of the server. One might 
think of work executed outside the normal working hours or work that is put out to contract. Clearly, 
if L = OT = 0, then this queueing system corresponds to the queueing system studied in the Chapters 
4 and 5. Finally, we again use the quantities Amin• A max• Bmin• Bmax• and K as defined in Section 6.2.1. 

6.3.2 The GT technique 

The organisation of this section is equivalent to that of Section 6.2.2. More specifically, we use the 
GT technique to study the queue-length process in Section 6.3.2.1. In Section 6.3.2.2, we compute the 
sojourn-time distribution of an arbitrary customer exactly, given the stationary queue-length distribu
tions at the slot boundaries in the cycle. However, this computation differs from the one in Section 4.4 
in the sense that, for the possibility of working overtime, we have to keep track of the queue length as 
long as the customer is in the system. 

6.3.2.1 The queue-length process 

As usual, we consider the system at the first slot boundary of cycles for studying the queue-length 
process. Note that we look at the system immediately after a possible period of working overtime. 
Then, the stochastic process of the number of ordered products in the queue at these instants constitutes 
a discrete-time Markov chain. This process will also be called the imbedded queue-length process. 

We assume that Bmax > Amin + OT, so that the state space of the Markov chain is denumerable, and 
suppose that this state space is the set {0, I, 2, ... } (a~ before, after some adaptations, this analysis can 
be used for analysing the case that this state space consists of multiples of some integer). Furthermore, 
we suppose that this chain is irreducible and aperiodic. In addition, if the average number of products 
ordered in a cycle is strictly less than the service capacity including overtime per cycle, that is, 

C B., C 

LL.iPnh,M) < LU+ OT)a(j), 
11=1 .i=l j=O 
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with {a(j), j 0, 1, ... , C} the probability distribution of the length of the on-period. Then, the 
Markov chain has a unique stationary distribution (cf. Pakes [1969]). This stationary distribution is 
the unique solution of the equilibrium equations and the normalisation equation. 

To show that the equilibrium equations of the Markov chain can be solved by the GT technique, 
we utilise the following observation that connects the queueing system with overtime to one without 
overtime. Suppose that the initial number of ordered products at the start of a cycle prevents the server 
from being idle in this cycle. In addition, assume that this number of ordered products also ensures 
that the server works the maximal number of slots overtime in this cycle. Then, it is not difficult to 
verify that the corresponding transition probabilities are equal to those of the Markov chain describing 
the imbedded queue-length process of the following system without overtime. Consider the model 
as introduced in Chapter 4 with N = 1 and adapt a cycle as follows. The on-period in each cycle is 
lengthened with OT slots, so that its length becomes A + OT, and in the last OT slots of this new 
on-period, no customer can arrive. 

If the number of ordered products at the start of a cycle is at least Amax• then the server will not 
be idle in the on-period. If we add L + OT to this number of products, then the server works the 
maximal number of slots overtime as well. From these observations, it is easily verified that the tran
sition probabilities Pi.J of the Markov chain are equal to q1_;, fori?: Amax + L + OT. Hence, we have 
D s Amax + L + OT. 

Consider the above queueing system without overtime. Suppose that the number of ordered prod
ucts at the start of a cycle ensures that the server does not idle and that he works the maximal num
ber of slots overtime. Since at least 8 111111 products are ordered and because the server makes at most 
Amax + OT products in a cycle, the largest jump out of state i to a lower state is A max + OT Bmin· 
So, we have TL A max+ OT - Bmin· Finally, since at most Bmax products are ordered and because the 
server makes at least A min+ OT products in a cycle, we have TH Bmax- A min-OT. These results 
are summarised in the next lemma. 

Lemma 6.3.1 For the Markov chain describing the imbedded queue-length process of the queueing 
system with periodic service and overtime. we have 

(i) D s A max + L + OT, 

(ii) Tt_ Amax + OT- Bmin• 

(iii) TH = Bmax- A,; 11 - OT. 

To characterise the probability distribution {q11 , h TL. + 1, ... , TH), we utilise the afore-
mentioned link between queueing systems with and without overtime. This link implies that we can 
use the result of Lemma 4.3.2 directly, if the server does not idle in a cycle and if he has to work the 
maximal number of slots overtime in this cycle. Let Q(z) denote the shifted probability generating 
functionoftheprobabilitydistribution {q11 , h = -T~., -h +I, ... , TH} as defined in(4.7), and /3 11 (Z) 
the probability generating function of the number of service phases arriving in slot n of the cycle, for 
n = I, 2, ... , C (see definition (4.9)). Further, let a*(z) denote the probability generating function of 
the length of an on-period plus the overtime period, that is, 

c 
a*(z) = z01 L a(j)z1 = z 0

T a(z), 
}=0 
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with a(z) as defined in ( 4.8) with N 1 and omitting the subscript i. So, a* (z) can be interpreted as the 
length of the on-period in the above queueing system without overtime that corresponds to the system 
with overtime. Then, the probability distribution {qh, h = - TL, - TL + 1, ... , Til} can be determined 
from its shifted probability generating function Q(z), which is presented in the following lemma. 

Lemma 6.3.2 The shifted probability generatingfunction Q(z) of the probability distribution {qh, h 
-TL, -h+ 1, ... , TH} satisfies 

c 
Q(z) zha*(l/z) n,B.(z). 

n=l 

Fori < D, the transition probabilities Pi.J ofthe Markov chain may in general not be equal to q j-i> 

because the server may idle or may not work overtime in a cycle. As in Chapter 4 and Section 6.2.2.3, 
however, some of these transition probabilities are still equal to q1_;. 

Lemma 6.3.3 For K + L + 1 ::::; i < D and j 2: L + Bmax - max{O, Amin + OT- K} + I, we have 

Pi.J qJ-•· 

Proof. This lemma can be proved along the Jines of Lemma 4.3.3. The difference is that we also have 
to check that the number of ordered products at the end of the last slot in a cycle ensures that the server 
has to work the maximal number of slots overtime. D 

To apply the GT technique, we need the transition probabilities p;,1, with i < D, that are not con
tained within Lemma 6.3.3. As before, these probabilities depend in general on the slots in which 
customers arrive and depart. So, it is in general hard to characterise these probabilities explicitly. As 
before, these probabilities can be determined from the one-slot transition probabilities. 

6.3.2.2 The sojourn-time distribution 

In order to compute the sojourn time of a customer, we have to define how overtime is incorporated. 
In this section, we assume that work executed in overtime takes no time; in overtime, the service rate 
is supposed to be infinity. We give the main ideas for the computation of the sojourn-time distribution 
of the customer arriving in slot n, with n 1, 2, ... , C. For convenience, we consider the case that 
the length of the on-periods is constant and denoted by A; the ideas are easily adapted to the case that 
this length is random. 

The starting point for the computation of the sojourn-time distribution is to calculate the number 
of ordered products W,, immediately after the arrival of the customer in slot n in statistical equilibrium, 
with n = I, 2, ... , C. By the BASTA property, the probability distribution of w. is the convolution of 
the stationary queue-length distribution at the n-th slot boundary and the service-time distribution of 
the customer. As usual, we compute the stationary queue-length distribution at the n-th slot boundary 
from the stationary imbedded queue-length distribution studied in Section 6.3.2.1, by using the one
slot transition probabilities. 

By conditioning on W,, and the number of products ordered after the arrival, the probabilities that 
the customer is served at the end of slot m, with m = n, n +I, ... , C, are easy to compute; in these 
cases, the customer is served in the cycle of arrival. Next, we derive recurrence relations for computing 
the sojourn-time distribution, when the customer is not served in the cycle of arrival. 

Fori, k 1, 2, 3, ... and j = 0, I, 2, ... , let p11 (i, j, k) be the probability that, at the start of the 
k-th eye le after the arrival in slot n, i from the W,, ordered products are still in the queue and j products 
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are ordered after the arrival. Before computing these probabilities, we illustrate how they are used for 
the calculation of the sojourn-time distribution. 

Suppose that, at the start of the k-th cycle after the arrival of the customer in slot n, i from the Wn 
ordered products are in the queue. For 1 ::::; i :::; A and k fixed, it is clear that this customer leaves the sys
tem in the i-th on-slot of the k-th cycle after his arrival. The probability of this event is I.:';o Pn (i, j, k ). 
For A < i ::::; A + OT and k fixed, the customer only leaves the system at the end of the k-th cycle 
after the arrival if the server works overtime. In other words, when j products are ordered between 
slot n and the start of the k-th cycle after this slot, the customer leaves the system at this instant if 
i - A + j + M 2: L, where M denotes the number of products ordered in a cycle. Hence, the proba
bility of this event is given by 

Brr.ax 

L r(m) Pn(i, j, k)Di-A+j-'-m• 
11/=Bmin 

with {r(m), m = Bmin• Bmin + 1, ... , Brnaxl the probability distribution of M and 

{ 
0, ifm < L, 
1, ifm 2: L. 

Thus, once the probabilities p11 (i, j, k) are known for 1 ::::; i ::::; A+ OT, it is straightforward to compute 
the sojourn-time distribution of the customer. So, it remains to compute these probabilities. 

Let {r11 (m), m 0, l, ... , Bmaxl be the probability distribution of the number of products ordered 
in the remainder of the cycle after slot n. The probabilities p 11 (i, j, k) can be computed in a recursive 
fashion as follows. We condition on the number of products ordered after slot n and note that the server 
works overtime when the number of ordered products at the end of the cycle is at least L. Then, it is 
easily verified that, fori= l, 2, 3, ... and j 0, 1, ... , Bmax• 

p"(i, j, l) (1- 8;+1)Pr{W,, = i + A}r,(j) + Pr{W, = i +A+ OTJrn(j)li;+OT+j• 

andfori,k 1,2,3, ... andj=0,1,2, ... 

Bmax 

p 11 (i,j,k+l)= L r(m)((l-lii+JPnU+A,j m,k)+pn(i+A+OT,j m,k)8;+0T+j), 
m=Bmin 

where p11 (i, h, k) 0 for h < 0. So, we can compute the probabilities p,(i, j, k) in a recursive fash
ion, and hence use them to compute the sojourn-time distribution of customers. We remark that the 
computational effort of this procedure is higher than of the procedure in Section 4.4, because we have 
to keep track of the queue length as long as the customer is in the system. 

6.3.3 The MI technique 

In this section, we use an adapted version of the MI technique of Chapter 5 for studying the queue
length process for the system with overtime. We consider overtime as an expansion of the on-period. 
Given the approximations of the stationary queue-length distributions at arrival instants, we use the 
same technique as in Section 6.3.2.2 to compute the sojourn-time distribution of customers. For clarity 
of presentation, in this section, we only discuss the case that the length of the on-periods is constant. 

Before we apply the MI technique to study the queue-length process, we repeat some notation. 
Let Xk,n denote the number of ordered products at the n-th slot boundary in the k-th cycle, for k 
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I, 2, 3, ... and n I, 2, ... , C. Further, Bn denotes the number of products ordered in slot n of the 
cycle. 

For n = I, 2, ... , C - 1, the server does not work overtime at the end of these slots, so that the 
recurrence equation (5.2) holds. Hence, we can use the iteration step of the algorithm in Section 5.4 
to iterate this equation for n 1, 2, ... , C - l. 

At the end of slot C, the server may have to work overtime. Hence, relation (5.2) does not hold for 
n = C. Therefore, we adapt the iteration step for slot C. 

The decision whether to work overtime or not is taken at the end of slot C Gust after a possible 
completion of a product). This decision depends on the number of ordered products in the queue at 
this time instant. Let Yk.c denote the number of ordered products at this instant in the k-th cycle, for 
k 1, 2, 3, .... Then, it is easily seen that 

Yu: max{O, Xk.c + B"- 1), 

so that we can use the iteration step in Section 5.4 for approximating the first two moments of Yk,C· To 
these first two moments, we fit a discrete distribution for approximating the probability Pr{ Yk.C ::: L). 

Let Z* denote the number of ordered products after overtime in the k-th cycle, conditional on the 
event that the server worked overtime. Then, 

Zk = max{O, (Yk.c!Yk.c ::': L)- OTJ. 

Using this equation, we can approximate the first two moments of Z*. The approximations for the first 
two moments of Xh 1, 1 are then given by 

E{Xk+I.tl 
E{x;_,_~,d 

E{Yk.ciYu· < L}Pr{Y*.c < LJ +E{Zk}Pr{Yk.c::: L}, 

= EIYf.ciYk.C < L}Pr{Yk.C < LJ + E{Zf}Pr{Yk.c ::': L}. 

Adapting the iteration step for n = C, in this way, we obtain an MI technique for the queueing system 
with overtime. 

To compute the sojourn-time distribution, we determine as usual the number of ordered products im
mediately after the arrival first, and after that, investigate when these products are made. 

The number of ordered products just after the arrival consists of the number of products upon arrival 
and the number of products ordered by the arriving customer. As before, the probability distribution 
of the number of products upon arrival in statistical equilibrium is equal to the stationary queue-length 
distribution at the slot boundary just before the arrivaL This distribution can be approximated by the 
adapted MI technique described above. Consequently, we can approximate the probability distribution 
of the number of ordered products just after the arrival. 

Given the approximation of the number of ordered products just after a customer arrival, we deter
mine the sojourn-time distribution of this customer in a similar way as in Section 6.3.2.2. The differ
ence is that we use here the MI technique to approximate the probabilities p 11 (i, j, k). 

6.3.4 Numerical examples 

The GT technique basically approximates the same system of equations as in Chapter 4. In that chapter, 
it was already shown that this technique gives excellent approximations. Therefore, we do not present 
numerical examples to demonstrate the accuracy of the approximations. 
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As an illustration of the quality of the approximations obtained by the MI technique, we consider 
the same examples as in Section 6.2.2.3, except that we now allow overtime instead of make to stock. 
In these examples, we have set L := 0. 

In Table 6.3, we display the 'exact' values (Ex) and the approximations obtained by the MI tech
nique (MI) for the average sojourn time E{S}. The 'exact' values are computed by the GT technique. 
The 'exact' values and MI approximations for the quantiles of the sojourn-time distribution are listed 
in 6.4. 

p A 
0.75 30 

60 31.05 28.70 28.18 28.64 28.19 
90 14.94 13.45 13.53 13.11 13.07 12.99 

0.90 30 85.49 58.00 61.49 50.93 53.24 49.91 
60 46.12 46.82 37.05 38.27 33.73 34.86 33.22 
90 24.55 24.81 19.86 20.58 17.89 18.49 17.00 17.37 

0.95 30 139.92 141.87 66.43 70.93 53.83 57.06 49.92 51.94 
60 71.06 71.38 45.20 46.56 37.63 39.15 34.57 36.02 
90 39.72 39.33 26.67 27.20 21.70 22.53 19.48 20.29 

- ~~ ~~ ....... _ 

Table 6.3: The average sojourn time E{S}. 

From Table 6.3, we see that the approximations of the average sojourn time are very good, since the 
relative errors are smaller than 7%. Furthermore, Table 6.4 demonstrates that the MI technique gives 
a good insight in the tail of the sojourn-time distribution. So, we may conclude that the MI technique 
performs very welL 

6.4 Conclusions 

In this chapter, we considered two modifications of queueing systems with periodic service. These 
modifications were the possibilities of making products to stock and of working overtime. By linking 
the corresponding queueing systems to a queueing system without either of these opportunities, we 
could use the techniques of the Chapters 4 and 5 to analyse the modifications. These techniques enable 
one the evaluate the etJect of making products to stock and of working overtime on, for example, the 
sojourn-time distribution of customers. 
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Quantiles of order 
0.70 0.80 0.90 0.95 

p A v Ex MI Ex Ml Ex MI Ex MI 
0.75 30 0 73 75 83 85 93 96 lOS 113 

3 67 69 77 79 87 89 92 95 
6 66 67 75 75 85 85 90 91 
9 65 66 75 75 84 85 89 90 

60 0 45 46 53 54 60 61 63 66 
3 43 44 so 51 58 59 61 63 
6 42 43 49 so 57 58 61 61 
9 42 42 49 so 57 57 61 61 

90 0 22 22 27 27 33 33 35 36 
3 20 20 25 25 30 31 33 33 
6 19 19 24 24 30 30 32 33 
9 19 19 24 24 30 30 32 32 

0.90 30 0 101 108 123 132 160 167 197 199 
3 76 80 86 90 100 109 121 131 
6 70 72 79 82 89 91 93 103 
9 68 69 77 79 86 88 91 93 

60 0 59 60 66 69 84 86 100 106 
3 so 52 57 59 64 68 77 81 
6 47 49 54 55 60 63 64 70 
9 46 47 52 54 59 61 62 66 

90 0 32 33 37 39 46 48 57 58 
3 27 28 31 33 37 40 45 47 
6 25 26 29 30 33 36 38 41 
9 24 25 28 29 32 34 35 38 

0.95 30 0 165 174 209 213 284 277 359 337 
3 83 88 93 101 121 131 145 154 
6 72 76 82 85 91 97 107 116 
9 69 71 78 80 87 90 92 97 

60 0 84 87 104 108 138 140 172 168 
3 57 59 64 68 83 86 101 105 
6 51 52 57 59 63 69 78 82 
9 48 50 54 56 60 63 64 71 

90 0 47 48 59 60 80 79 100 99 
3 33 35 39 42 52 53 65 65 
6 29 30 32 35 40 43 so 51 
9 27 28 30 32 34 38 41 44 

Table 6.4: Quantile.f ~{the sojourn-time distribution. 



7 
Regular and Incidental Customers in Queueing 

Systems with Periodic Service 

7.1 Introduction 

In Chapter 6, we considered two modifications of discrete-time queueing systems with periodic ser
vice, namely, the possibility of making products to stock and of working overtime. These possibilities 
were studied by the techniques of the Chapters 4 and 5. In this chapter, we focus on a third modifica
tion that can be studied by these techniques. In this modification, it is assumed that there are customers 
arriving in a periodic way and that other customers arrive randomly. Moreover, it is assumed that the 
periodically arriving customers have priority for service over the other customers. Like the modifica
tions in Chapter 6, this modification is mainly motivated by the study of a periodic production rule at 
production centres. To give a more detailed motivation, consider the following situation. 

A production centre has regular and incidental customers, who both represent firms. Incidental 
customers place their orders in a highly irregular way, and the size of their orders may vary consider
ably. Each regular customer has a fairly steady production process and is able to place orders accord
ing to a rather steady pattern. However, these steady order patterns do in general not coincide with the 
start of the on-periods for these orders. When, for instance, the production centre makes good agree
ments with these regular customers, these customers may adjust their order patterns to the production 
rule. As a result, the centre faces a rather smooth arrival process of orders from regular customers. 
Moreover, the total size of these orders may be nearly deterministic. When the centre gives the reg
ular customers priority for service over incidental customers, it does not have to use much additional 
capacity to guarantee that these customers are served before the end of the on-period of their arrival. 
Hence, in this case, the orders can practically always be handled in the on-period of arrival, so that the 
regular customers do not have to keep much safety stock. 

In this chapter, we consider a discrete-time queueing system with periodic service. Some cus
tomers (henceforth called regular customers) arrive in a periodic way at the start of on-periods. Other 
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customers (in the sequel called incidental customers) arrive according to a random pattern. Further, 
the regular customers have preemptive priority for service over the incidental customers and are served 
before the start of the next off-period (by working overtime, for example). The aim of this chapter is 
to demonstrate that the techniques of the Chapters 4 and 5 can be used for studying this system. These 
techniques enable one to evaluate, for instance, the effect of splitting the arrival process of customers. 

The remainder of this chapter is organised as follows. In Section 7 .2, we describe the model. In Section 
7.3, we study the additional capacity required in order to serve the regular customers before the start 
of the first off-period after their arrival. In Section 7 .4, we use the techniques of the Chapters 4 and 5 
for determining the stationary queue-length distribution and the sojourn-time distribution of incidental 
customers. We present a numerical example in Section 7 .5. Finally, a summary of this chapter is given 
in Section 7.6. 

7.2 The model 

For convenience, we consider a cycle as defined in Chapter 4 with one on- and off-period. Each cycle 
consists of C slots, and the probability distribution of the length A of the on-periods has probability 
distribution {a(j), j = 0, I. ... , C). 

Regular customers are supposed to arrive just after the first slot boundary of cycles instead of at the 
start of on-periods as mentioned in Section 7.1;. the arrival instants of regular customers may otherwise 
be different for each cycle, because the lengths of the on-periods are not necessarily deterministic. The 
service times of these customers are measured in numbers of slots of work. The total service time BR 
of regular customers arriving at the start of a cycle has probability distribution {bR(j), j 0, I, 2, ... }. 
Furthermore, regular customers who are not served before the start of the first cycle after their arrival 
are all assumed to be served in overtime; the server works at infinite speed or work is put out to contract 
at the end of on-periods. It is important to note that there is no work of regular customers left at the 
start of cycles. 

The arrival process and service times of incidental customers are supposed to be equal to those in 
Chapter 4. More precisely, customers are assumed to arrive according to a periodically time-dependent 
Bernoulli process and the service times have either a discrete distribution with bounded support or a 
distribution that is a mixture of a finite number of negative binomial distributions with the same pa
rameter {3. Incidental customers arriving in the first slot of the cycle are supposed to arrive just after 
regular customers. For the other slots in the cycle, we make the usual assumptions with respect to the 
arrival instants of incidental customers, and the start and completion of service phases (see also Figure 
4.3). 

As mentioned in Section 7 .I, the regular customers have preemptive priority for service over the 
incidental customers as follows. At the start of each on-period, the server begins servicing the regular 
customers until either all regular customers are served or the next cycle begins, whatever occurs first. 
In the latter case, the remaining regular customers are assumed to be served by other means such as 
overtime or other firms. In the former case, the remaining on-period in the present cycle is used to 
serve incidental customers. 
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7.3 Regular customers 

From the service policy, we know that there are no regular customers at the start of cycles. So, the 
queue-length process and the sojourn-time distribution of these customers are no interesting objects 
of study. However, the number of slots of work of regular customers that is not handled in the cycle of 
arrival, but that is handled by other means as overtime, is interesting to investigate from the server's 
point of view. In this section, we focus on this performance measure. 

Let the random variable E denote the extended service capacity required (in terms of slots) in order 
to serve the regular customers in their cycle of arrival. Then, we have 

E = max{O, BR-A). 

From this equation, the probability that the server requires no additional capacity is 

c c j 

Pr{E 0} 'L:Pr{BR S j)a;(j) LLhR(k)a(j), (7.1) 
j~O j=O k=O 

and the probability that the required additional service capacity equals k slots is 

c 
Pr{E k) = LhR(j+k)a(j), k I, 2, 3, .... (7.2) 

]=0 

When only the first two moments of BR, we may use the fitting procedure in Chapter 5 for approxi
mating the probabilities (7 .I) and (7 .2). 

7.4 Incidental customers 

In this section, we determine the stationary queue-length and sojourn-time distribution of incidental 
customers. In fact, we show that the techniques of the Chapters 4 and 5 can readily be applied after a 
redefinition of the on- and off-periods. 

Incidental customers are served during those parts of the on-periods in which no regular customers 
are in service. Due to the arrival process and the preemptive priority of regular customers, the time 
intervals during which these customers are served, effectively lengthen the off-periods faced by inci
dental customers. This circumstance suggests to consider an off-period for incidental customers as the 
original off-period plus the part of the on-period used for servicing regular customers. Accordingly, 
the on-period for incidental customers is the part of the original on-period that is not used for servic
ing regular customers. Let the random variable A* denote the length of the on-period for incidental 
customers in the cycle. For the case that the length of the off-periods is fixed, a representation of the 
off- and on-period in a cycle as faced by incidental customers is given in Figure 7.1. The dotted lines 
denote the part used for servicing regular customers. 

Now, we clearly have 

A*=max(O,A BR}, 
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Figure 7.1: A representation of a cycle as faced by incidental customers. 

Consequently, the probability distribution of A • is given by 

I t f)8 (l)a(j), k = 0, 

Pr{A* = k} = 1~0 I=J 

"'[)R(J- k)a(j), k = 1, 2, ... , C. 
j=k 

By the redefinition of the on- and off-periods, we may use the results and techniques of the Chapters 
4 and Chapter 5 directly, when reading A* instead of A. 

7.5 A numerical example 

As an illustration of the effect of splitting the arrival process of customers, we use the following exam
ple. Consider a production centre that produces raw materials, like plastic granules, to order for both 
incidental and regular customers. As regular customers, one might think of manufacturers of plastic 
toys, dashboards of cars, and plastic bags. For convenience, the regular customers are called firms. 

A firm makes products to order as well. At the firm, the average number of products ordered per 
week is 18. The time to make such a product has a mean and a standard deviation of two hours. For 
each hour of production, the firm uses a fixed amount of raw materials. Its order policy for raw ma
terials is the following. If, at the end of a week, the number of production hours since the last order 
exceeds 400, then the firm places a new order at the production centre for raw materials. The amount 
of raw materials that is used in 400 hours production, is produced in 200 minutes by the centre. 

The number of hours of work arriving at the firm has mean 36 and standard deviation 144. Since 
the coefficient of variation of this number is small, we use a normal distribution to approximate the 
probability distribution of this number of hours work. Suppose that there are 40 firms placing orders 
in this way at the production centre. Using simulation, the total size of the orders placed by these firms 
at the start of each week has a mean of 12 hours and a standard deviation of 6.2 hours. 

The incidental customers place orders for raw materials at the production centre according to a 
Bernoulli process with rate 0.075. Such an order requires on average 2 hours production, with a stan
dard deviation of 3 hours. 

The production centre uses a production cycle of two weeks, in which it can work 80 hours. The last 40 
hours in a cycle are used to manufacture the raw materials. We consider an hour as a slot and assume 



7.5. A numerical example 133 

41 80 

Figure 7.2: A cycle and the instants at which .firms place their orders. 

41 65 80 

Figure 7.3: A cycle as faced by incidental customers 

that firms place orders in the first and 41-st slot of the cycle, just before a possible incidental customer 
(see Figure 7.2). Further, we assume that the centre serves the firms and the incidental customers in 
the order of their arrival; no priority for service is giving to either of them. 

Using the fit procedure of Theorem 5.5.2 and the MI technique, the approximation of the average 
sojourn time of incidental customers is 61.3 hours. The approximation for the quantiles of the sojourn
time distribution for incidental customers are given in the first row of Table 7 .1. 

Quanti les of order 
0.70 0.80 0.90 0.95 

No split 76 94 122 151 
77 104 150 197 

Table 7.1: Quantilesfor the sojourn-time distribution. 

Now, suppose that, by making good agreements, all firms place their orders every five cycles (that is, 
every I 0 weeks). Moreover, the production centre indicates which firm orders at the start of which 
cycle. Then, this centre produces raw materials for 8 customers in each cycle, and delivers them at 
the end of the cycle. In each cycle, the total demand of these firms has an average of 24 production 
hours with a standard deviation of 0.44. So, the part of the production capacity claimed by firms is 
almost deterministic. Neglecting the variabi I ity in this part, we determine the sojourn-time distribution 
for incidental customers, by considering this part as an extension of the off-period. In Figure 7.3, we 
represent the cycle as faced by incidental customers. 

The average sojourn time of incidental customers is now 70.5 hours approximately. In the second 
row of Table 7.1, we list the quantiles of the sojourn-time distribution of these customers. As we see, 
the average sojourn time increases with about 15%. Furthermore, the quantiles for the sojourn-time 
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distribution also increase. However, the degradation in performance for the incidental customers may 
be regarded as small. For instance, roughly 95% of these customers is delivered within 5 weeks instead 
of4weeks. 

7.6 Conclusions 

In this chapter, we demonstrate that a third modification of queueing systems with periodic service can 
be analysed by the techniques of the Chapters 4 and 5. For this modification, some customers arrive 
randomly and other customers arrive according to a periodic pattern. The latter customers arrive at the 
start of cycles only and they have preemptive priority for service over the randomly arriving customers. 
Furthermore, the periodically arriving customers are served in the cycle of their arrival, for instance, 
by overtime. 

For the periodically arriving customers, we investigated the additional capacity required in order 
to serve them before the start of the first off-period after their arrival. For the incidental customers, we 
redefined the on- and off-periods as faced by them. After this redefinition, we could use the results and 
techniques of the Chapters 4 and 5 directly for evaluating the stationary queue-length distributions at 
slot boundaries and their sojourn-time distribution. 



8 
Conclusions and Suggestions for Future 

Research 

In this monograph, we studied single-server multi-queue systems with periodic service. For these sys
tems, the time axis consists of intervals of equal length, called cycles. In a cycle the server visits the 
different queues to serve customers. The order in which he visits the queues is the same for all cycles. 
Moreover, the time instants within a cycle at which he starts switching from one queue to another are 
fixed and the same for all cycles. Further, switching from one queue to another may take some time. 
These systems are used to model, for example, fixed-cycle traffic lights at intersections, communica
tion and computer systems with periodic access schemes, and periodic production rules. 

Under the common assumption that the arrival and service processes of customers are indepen
dent, the analysis of the joint queue-length process reduces to analysing the queue-length process for 
each queue separately. In spite of this reduction, there are not many useful techniques found in the 
literature for studying these processes. On one hand, classical analytical techniques such as the use 
of generating functions and Laplace-Stieltjes transforms may lead to analytical and numerical prob
lems. On the other hand, some numerical techniques seem to be applicable to a rather limited class of 
queueing systems with periodic service, whereas other numerical approaches are focussed on deriv
ing approximations for the average queue length and sojourn time only; information about averages is 
often insufficient for evaluating queueing systems. 

The objective of this monograph was the development of techniques for analysing queueing sys
tems with periodic service; in particular techniques for computing the queue-length and sojourn-time 
distributions of customers in statistical equilibrium. Considering these systems in discrete time and 
looking at one of the queues only, we have described two techniques for determining the stationary 
queue-length distribution for this queue. Once this distribution has been found, the sojourn-time dis
tribution of customers in this queue could be computed exactly. 

As an illustration of the two numerical techniques for determining the queue-length distribution, 
we considered in Chapter 2 a specific queueing system with periodic service. For this system, the 
queue-length process is described by a one-dimensional Markov chain. The equilibrium equations of 
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this chain constitute a homogeneous linear difference equation with constant coefficients, so that the 
stationary queue-length distribution is a linear combination of powers. Before presenting the two nu
merical techniques, we demonstrated the numerical difficulties that can occur when classical analytical 
techniques are used for determining this linear combination. 

The first numerical technique (GT technique) discussed in Chapter 2, exploits the fact that the tail of 
the stationary queue-length distribution is asymptotically geometric. The unique parameter describing 
this tail behaviour can be computed easily and accurately. By imposing this behaviour on the stationary 
probabilities from a certain state onwards, we reduce the denumerable system of equilibrium equations 
to a finite system. Solving this finite system and the normalisation equation yields an approximation of 
the stationary queue-length distribution. This technique is based on Tijms & Van de Coevering [ 1991 ]. 
As numerical examples for the specific queueing system showed, the GT technique gives excellent 
results, even if the tail behaviour is imposed on states fairly close to the boundary of the state space. 

The second numerical technique in Chapter 2 utilises the fact that the Markov chain corresponds to 
the waiting-time process in a special discrete-time D 1 G 1 l queueing system. This process can also be 
represented by Lindley's equation. The limiting solution of this equation equals the stationary queue
length distribution. To compute this solution for the continuous-time case, De Kok [ 1989] developed 
an efficient moment-iteration algorithm that only uses the first two moments of the random variables 
involved. To these two moments, he fits a (continuous) probability distribution. Since we consider the 
queueing system in discrete time, it is more natural to use discrete distributions. Using a (novel) pro
cedure for fitting discrete distributions on the first two moments, we applied the algorithm of De Kok 
[1989] to approximate the stationary queue-length distribution. Numerical examples showed that the 
approximations are excellent. 

The GT technique in Chapter 2 exploited the structure of the solution to the equilibrium equations 
of a Markov chain that constitute a homogeneous linear difference equation with constant coefficients. 
In Chapter 3, we first investigated what class of Markov chains has equilibrium equations constituting 
such a difference equation. For these chains, we showed that transitions from state i to state j may 
depend on j- i only, from a certain state i onwards, and that the upward jumps have to be uniformly 
bounded by some constant. Markov chains with this structure have a stationary distribution that is 
a linear combination of a finite number of powers, possibly except for a finite number of states at the 
boundary of the state space. Unlike the chain in Chapter 2, the tail behaviour of this linear combination 
may be described by more than one parameter. Therefore, we adapted the GT technique in Chapter 
3 to these cases. Numerical results showed that this technique is efficient and that it gives accurate 
results without too much computational effort. 

In Chapter 4, we applied the GT technique for determining the stationary queue-length distribu
tions in queueing systems with periodic service. In order to use this technique, we had to impose re
strictions on the arrival and service processes of customers. Fortunately, these restrictions were not too 
severe. For example, the GT technique is applicable when customers arrive according to a periodically 
time-dependent Bernoulli process and when the service times have an arbitrary discrete distribution 
with bounded support or a distribution that is a mixture of a finite number of negative binomial distri
butions with the same parameter q. Given the stationary queue-length distribution, we developed in 
Chapter 4 also an efficient algorithm for computing the sojourn-time distribution of customers. N umer
ical examples showed that the GT technique gives excellent results, and that it is much less sensitive to 
the utilisation of the system than, for example, simple truncation techniques. Furthermore, these ex
amples demonstrated that the GT technique is much more advantageous from a computational point 
of view than brute computational force. 
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The GT technique used the complete service-time distributions of customers. However, in prac
tice, one usually has only (approximate) information about the first two moments of these distribu
tions. In Chapter 5, we presented the MI technique, which only uses this limited information. As a 
result, a larger class of service-time distributions could be dealt with than in Chapter 4. This tech
nique resulted from the circumstance that the queue length at consecutive discrete time instants could 
be described by a relation that has a structure similar to Lindley's equation for the G I I G I 1 queue
ing system. As mentioned, De Kok [1989] developed an efficient moment-iteration method in order 
to compute the limiting solution to this equation for the continuous-time case, using the first two mo
ments of the interarrival-time and service-time distributions only. To these first two moments, he fitted 
a continuous probability distribution. The MI technique is an adapted version of this method. Since 
the random variables involved in this technique are discrete, it is more natural to fit discrete distribu
tions. For fitting discrete distributions, several approaches can be found in the literature. However, 
some of these approaches do not capture all possible combinations of the first two moments, whereas 
others are not that useful for the MI technique. Therefore, we developed in Chapter 5 a novel proce
dure for fitting discrete distributions on the first two moments. Given the results as obtained by the MI 
technique, we used the algorithm in Chapter 4 to compute the sojourn-time distributions of customers. 
Numerical examples demonstrated that the MI technique, with this fit procedure, gives good results 
for the stationary queue-length and sojourn-time distributions. Only when the average queue lengths 
or sojourn times are very small, the relative errors may be larger, but in these cases the absolute errors 
are smalL 

The techniques developed in the Chapters 4 and 5 can be used to investigate different queueing 
systems with periodic service and to compare the performance of a periodic service policy with other 
service policies. Further, these techniques can also be applied to modifications of these systems. We 
considered three modifications that were motivated by the study of periodic production rules at pro
duction centres. 

In Chapter 6, we considered the case that a production centre may make a limited number of prod
ucts to stock and the case that the centre may work a I imited amount of overtime. The analysis of these 
modifications was based on the circumstance that the corresponding queue-length processes could be 
related to those for a specific queueing system with periodic service but without either of these mod
ifications. After some small adaptations, we computed the sojourn-time distribution of customers by 
the algorithm in Chapter 4. 

In Chapter 7, we considered the case that some customers (regular customers, say) adapt their or
der pattern at a production centre to the periodic production rule. Furthermore, these customers have 
preemptive priority for service over the other customers, and they are served before the server leaves 
the queue (by overtime, for instance). By considering the time periods during which the server serves 
these regular customers as extensions of the switch-over times, the performance measures for the other 
customers could be computed by the same techniques as in the Chapters 4 and 5. 

In this monograph, we presented the GT technique and the MI technique for evaluating the queue
length process in queueing systems with periodic service. Both techniques give approximations for the 
stationary queue-length distributions at the slot boundaries in the cycle. Numerous examples demon
strate that the approximations are accurate. However, in the literature, not much attention is focussed 
on theoretical results that give error bounds for these approximations or that give lower and upper 
bounds for the quantities of interest. For the GT technique, the theoretical results may be used to 
choose an appropriate value for 1 instead of the execution of several experiments for determining this 
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value. For the MI technique, these results may give insight in the accuracy of these approximations 
when no exact results are available. The derivation of such bounds may be an interesting topic for 
future research. 

Further, numerical examples indicate that the MI technique always terminates. However, we have 
not been able to prove this yet, so that it stays open for future research. 

For the queueing systems considered in this monograph, the waiting room was implicitly assumed 
to be infinite. In some applications, such as in communication and production systems, the waiting 
room may be finite. In this case, the Markov chain describing the queue-length process is finite as 
well. The finite system of equilibrium equations can then be solved directly. However, many of these 
equations may have the constant structure that is exploited by the GT technique. A topic for future 
research may be to investigate whether the GT technique (possibly after some adaptations in order 
to deal with the boundary equations at both sides of the state space) can be applied to finite Markov 
chains or not. Another way of approximating the stationary distribution of this finite Markov chain is 
to use the MI technique. In this method, we fit discrete distributions to the first two moments of the 
random variables involved. In this case, however, some of the variables, like the queue length at slot 
boundaries, may assume only a finite number of values. Then, a fitting procedure is needed that uses 
distributions with bounded support. Distributions with a bounded support play a role in many other 
queueing systems as well; for instance in queueing systems with bounded waiting time (cf. Cohen 
[1982] and Tijms [1986]). Therefore, the development of a practical analogue to the one in Chapter 5 
for fitting distributions with bounded support seems to be a challenging and important topic for future 
research. 
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Samenvatting 

Dit proefschrift is gewijd aan het ontwikkelen van technieken voor het analyseren van wachtrijsyste
men met periodieke bediening. Voor deze (en andere) wachtrijsystemen zijn rijlengten en verblijftijden 
van klan ten de meest belangrijke prestatiematen. V rijwel aile andere prestatiematen kunnen hiervan 
worden afgeleid. Daarom besteden we in het bijzonder aandacht aan technieken om de rijlengte- en 
verblijftijdverdelingen van klanten te bepalen. 

Een wachtrijsysteem met periodieke bediening bestaat uit een aantal wachtrijen waar klanten ar
riveren. Klanten verlangen bediening van een gemeenschappelijke bediende, die hen helpt volgens 
een periodieke bedieningsdiscipline. Dit betekent dat de tijdas uit intervallen van gelijke lengte be
staat, welke cycli worden genoemd. Voor iedere cyclus is de volgorde waarin de bediende de rijen 
bezoekt hetzelfde. De momenten binnen een cyclus waarop hij van rij verandert liggen vast en zijn 
voor alle cycli gelijk. Het veranderen van rij door de bediende vergt eventueel tijd. Wachtrijsystemen 
met periodieke bediening worden gebruikt om onder andere verkeerslichtmodellen, communicatie- en 
computersystemen en produktiesystemen te beschrijven en te analyseren. 

Hoewel deze wachtrijsystemen uit meerdere wachtrijen bestaan, kan het rijlengteproces van ie
dere rij afzonderlijk worden bestudeerd. Ondanks deze decompositie zijn er in de literatuur weinig 
geschikte technieken om deze systemen te analyseren. Zo leveren klassieke technieken, als het ge
bruik van genererende functies en Laplace-Stieltjes getransformeerden, analytische en numerieke pro
blemen op. Verder lijken vele numerieke aanpakken slechts toepasbaar op zeer beperkte klassen van 
deze systemen of geven zij benaderingen voor aileen de gemiddelde rijlengte en verblijftijd; informatie 
omtrent gemiddelden is vaak onvoldoende om wachtrijsystemen te evalueren. 

Het doe! van dit proefschrift is om technieken te ontwikkelen voor het evalueren van wachtrij
systemen met periodieke bediening; in het bijzonder technieken voor het bepalen van de rijlengte- en 
verblijftijdverdelingen in de evenwichtssituatie. Hiertoe beschouwen we deze systemen in discrete 
tijd en bekijken we een van de wachtrijen. Voor het bepalen van de rijlengteverdeling van deze rij 
ontwikkelen we twee numerieke technieken. Als de rijlengteverdeling bekend is, dan kan de verblijf
tijdverdeling van klanten in deze rij exact worden berekend. 

Ter illustratie van de basisideeen beschouwen we in hoofdstuk 2 een specifiek wachtrijsysteem 
met periodieke bediening. Voor dit systeem kan het rijlengteproces worden beschreven door een een
dimensionale Markov keten. De evenwichtsvergelijkingen van deze keten vormen een homogene, li
neaire differentievergelijking met constante coefficienten, zodat de oplossing van deze vergelijkingen 
een lineaire combinatie van machten is. Als eerste Iaten we in hoofdstuk 2 zien dat het gebruik van 
standaard technieken om deze oplossing te berekenen kan lei den tot numerieke problemen. In het alge
meen kunnen we deze problemen niet relateren aan eigenschappen van het aankomst- en bedienings
proces van klanten. Dit is voor ons een belangrijke reden om numerieke technieken te gebruiken. 

De eerste numerieke techniek in hoofdstuk 2 benut het staartgedrag van de evenwichtsverdeling 
van de Markov keten, zoals is voorgesteld in Tijms & Van de Coevering [1991]. Dit staartgedrag is 
asymptotisch geometrisch en wordt bepaald door een parameter, welke eenvoudig en nauwkeurig kan 
worden berekend. Deze techniek, die we de GT techniek zullen noemen, legt dit geometrische staart-
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gedrag op aan de evenwichtskansen vanaf een zekere toestand. Hierdoor houden we een eindig stelsel 
evenwichtsvergelijkingen over. Het oplossen van dit stelsel en de normalisatievergelijking Ievert ver
volgens een benadering voor de evenwichtsverdeling op. Numerieke voorbeelden Iaten zien dat de GT 
techniek efficient is en nauwkeurige resultaten geeft. 

De tweede numerieke techniek in hoofdstuk 2 is gebaseerd op het feit dat de voomoemde Markov 
keten correspondeert met het wachttijdproces van klan ten in een speciaal discrete tijd DIG I I wacht
rijsysteem. Dit wachttijdproces kan ook worden beschreven door Lindley's vergelijking. De limiet
oplossing van deze vergelijking is gelijk aan de stationaire verdeling van de Markov keten. Voor het 
continue tijd DIG I I wachtrijsysteem, gebruikt De Kok [ 1989] een momenten-iteratie methode om de 
limietoplossing van Lindley's vergelijking te benaderen. Deze methode gebruikt aileen de eerste twee 
momenten van de bedieningsduurverdelingen. Op deze twee momenten fit hij continue kansverdelin
gen. Een aangepaste versie van de methode van De Kok [ 1989] is de tweede numerieke techniek in 
hoofdstuk 2 (voorts aangeduid met MI techniek). Maar, omdat wij een discrete tijd model hebben, ge
bruiken we een (nieuwe) methode voor het fitten van discrete verdelingen op de eerste twee momenten 
van kansvariabelen. Numerieke voorbeelden Iaten zien dat de MI techniek zeer goede benaderingen 
gee ft. 

De GT techniek toegepast in hoofdstuk 2 is gebaseerd op het benutten van het geometrische staart
gedrag van de evenwichtsverdeling van Markov ketens. Als de evenwichtsvergelijkingen van een Mar
kov keten een homogene, lineaire differentievergelijking met constante coeffcienten vormen, dan heeft 
de evenwichtsverdeling dit staartgedrag; de oplossing van deze vergelijking is namelijk een lineaire 
combinatie van machten (behalve wellicht voor een eindig aantal toestanden aan de rand van de toe
standsruimte ). In hoofdstuk 3 beantwoorden we de vraag: Welke klasse van een-dimensionale Markov 
ketens heeft evenwichtsvergelijkingen met deze structuur? Het staartgedrag van de evenwichtsverde
ling van ketens uit deze klasse kan door meer dan een parameter worden bepaald. In dit hoofdstuk 
passen we de GT techniek uit hoofdstuk 2 aan deze gevallen aan. Numerieke voorbeelden Iaten zien 
dat de GT techniek op efficient wijze zeer nauwkeurige resultaten geeft. 

In hoofdstuk 4 passen we de GT techniek toe om de stationaire rijlengteverdeling in wachtrijsys
temen met periodieke bediening te bepalen. Om deze techniek te gebruiken, dienen we restricties aan 
het aankomst- en bedieningsproces van klanten op te leggen. Deze restricties zijn niet erg beperkend. 
Zo mogen klanten arriveren volgens een periodiek tijdsafhankelijk Bernoulli proces en mogen bedie
ningsduren een willekeurige discrete verde ling hebben met een eindige drager of zijn verdeeld als een 
mengsel van een eindig aantal negatiefbinomiale verdelingen met dezelfde parameter q. Numerieke 
resultaten Iaten zien dat de stationaire rijlengteverdeling betrekkelijk snel het geometrische staartge
drag vertoont, zodat de GT techniek a! goede resultaten geeft wanneer dit staartgedrag wordt opgelegd 
aan relatief lage toestanden. Daarnaast is deze techniek vee! efficienter en minder gevoelig voor de 
bezettingsgraad van het systeem dan bijvoorbeeld standaard truncatiemodellen. In hoofdstuk 4 pre
senteren we ook een efficient algoritme voor het berekenen van de verblijftijdverdeling van klanten. 
Gegeven de rijlengteverdeling, zijn de resultaten van dit algoritme exact. 

De GT techniek gebruikt de gehele bedieningsduurverdeling. In de praktijk echter is vaak niet meer 
informatie beschikbaar dan de eerste twee momenten van de bedieningsduurverdeling. In hoofdstuk 
5 presenteren we de MI techniek die aileen deze informatie gebruikt. Hierdoor kunnen we ook een 
grotere klasse van bedieningsduurverdelingen beschouwen dan in hoofdstuk 4. Deze techniek is een 
aangepaste versie van de eerder aangehaalde methode in De Kok [1989] en is geba<;eerd op het feit dat 
de relatie tussen de rijlengte op twee opeenvolgende tijdstippen eenzelfde structuur heeft als Lindley's 
vergelijking voor een G I I G I 1 wachtrijsysteem. De MI techniek itereert deze relatie, waarbij aileen 
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de eerste twee momenten van de betrokken kansvariabelen worden gebruikt. Op deze kansvariabelen 
fitten we een discrete verdeling. Verschillende procedures voor het fitten van discrete verdelingen zijn 
in de literatuur te vinden. Sommige van deze technieken omvatten niet aile mogelijke combinaties 
van de eerste twee momenten, daar waar andere technieken niet bruikbaar lijken voor de MI techniek. 
Daarom ontwikkelen we in hoofdstuk 5 ook een nieuwe procedure voor het fitten van discrete verdelin
gen op de eerste twee momenten van niet-negatieve kansvariabelen. Numerieke resultaten geven aan 
dat de MI techniek goede benaderingen geeft voor de gemiddelde rijlengte en verblijftijd. Wanneer de 
gemiddelde rijlengten of verblijftijden heel klein zijn, kunnen de relatieve fouten groter zijn, maar in 
deze gevallen zijn de absolute fouten klein. De benadering verkregen met de MI techniek wordt ge
bruikt om de verblijftijdverdeling te berekenen met het algoritme in hoofdstuk 4. De resultaten geven 
aan dat de vorm van de verdeling goed wordt benaderd. 

Met de technieken uit de hoofdstukken 4 en 5 kunnen we nu wachtrijsystemen met periodieke be
diening door te rekenen en de prestatiematen vergelijken met die van systemen met een andere bedie
ningsdiscipline. De GT en MI techniek zijn ook toepasbaar op modificaties van wachtrijsystemen met 
periodieke bediening. In de hoofdstukken 6 en 7 bekijken we drie modificaties die zijn gebaseerd op 
toepassingen in produktiesystemen. 

In hoofdstuk 6 behandelen we de mogelijkheid tot het houden van een beperkte voorraad produk
ten en de mogelijkheid om een beperkte tijd over te werken. In deze systemen is het mogelijk om de 
rijlengteprocessen te relateren aan de rijlengteprocessen in de systemen van hoofdstuk 4 en 5. Hieruit 
volgt dat de GT en MI techniek vrijwel direct toepasbaar zijn. Bovendien kan het algoritme uit hoofd
stuk 4, na kleine aanpassingen, worden gebruikt om de verblijftijdverdeling van klanten te berekenen. 

In hoofdstuk 7 veronderstellen we dat bepaalde klanten (zeg, vaste klanten) volgens een perio
diek proces arriveren welke overeenkomt met de tijdstippen waarop de bediende naar de betreffende 
rij gaat. Bovendien hebben deze klanten prioriteit over de andere klanten en worden zij bediend voor
dat de bediende de rij weer verlaat (door middel van overwerken bijvoorbeeld). Door de tijdsperioden 
gedurende welke de bediende vaste klanten helpt te beschouwen als extra omschakeltijden, is voor het 
rijlengteproces van de andere klanten een directe vertaling mogelijk naar de systemen bestudeerd in 
de hoofdstukken 4 en 5. 
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Stellingen 

behorende bij het proefschrift 

Queueing Systems with Periodic Service 

van 

Michel v.an Eenige 

Beschouw het algoritme in Coppersmith & Raghavan [ 1989] voor het twec-dimensionale on-line bin 
packing probleem met rechthoekige objecten. Veronderstel dat voor ieder object a de hoogte h(a) en 
breedte h(a) voldoen aan 0 h (a) l I r en 0 h(a) ~ l I r, waarbij r een constante is uit de verza
meling {2, 3, 4, ... }. Objecten meth(a) h(a) en objectcn met h(a) ::::_ h(a) worden in verschillende 
bins geplaatst. Dit algoritme rondt de hoogtc (als h(a) h(a)) of de breedte (als h(a) ::::_ b(a)) van 
objecten naar boven af naar de kleinste waarde uit de verzameling 

i, ... , t ( J, )k-1, , , , } 

en plaatst hen in stroken met deze hoogtc of breedte. Door de speciale afmcting kunnen dczc strokcn 
efficient in bins van l bij 1 worden gcplaatst. Als de objecten volgens de First-Fit heuristiek in stroken 
worden geplaatst, dan is de asymptotische worst-case ratio van dit algoritme gelijk aan (r + I 
Hierbii wordt de factor 3/2 veroorzaakt door de maximaal mogelijke afrondfout en is (r + I) 1 r de 
asymptotische worst-case ratio van First-Fit. 

COPPERSMITH, D., AND P. RAGHAVAN [19891, Multidimensional on-line bin packing: Algorithms and worst
case analysis, Operations Research Letters 8, pp. 17-20. 

CsiRIK, 1., J.B.G. FRENK, AND M. LABBE [1993], Two-dimensional rectangle packing: On-line methods 
and results, Discrete Applied Afalhematics 45, pp. 197-204. 

EENIGE, M.J.A. VAN [1992], Worst-case analysis oftwo-dimensional on-line hin packing algorithms, Mas
ter's thesis, Econometrk Institute, Erasmus University Rotterdam. 



II 

Beschouw een continue-tijd Markov-keten met toestandsruimte { {i, j), i 0, 1, ... ; j = 1, 2, .... ];} 
waarbij J; constanten zijn die afhangen van i. Definieer de verzameling { (i, j), j = I, 2, ... , ];} als 
level i voor i 0, 1, 2, ... en verdeel de toestandsruimte in deze levels. Veronderstel dat de generator 
van de Markov-keten de blok-tri-diagonale structuur 

( 

Aoo Ao 1 0 0 0 
A1,0 At,t At,2 0 0 

0 A2,1 A2,2 A2,3 0 
. . . . . . . . . 

... ) ... 

heeft. Stel bovendien dat de matrices A;,;-1 te schrijven zijn als het product van een kolomvector x; en 
een rijvector y; met y;e = 1 voor i = 2, 3, 4, ... , waarbij e de kolomvector met aile elementen gelijk 
aan 1 is. Het rijlengteproces van het wachtrijsysteem in Van Eenige & Van der Wal [1995] geeft een 
voorbeeld van zo een Markov-keten. 

Als de Markov-keten ergodisch is, kan de rijvector 7r; bestaande uit de evenwichtskansen van toe
stan den op level i worden geschreven als 

0, 1,2, .... 

EENIGE, M.J.A. VAN, AND J. VANDERWAL [1995], A non-homogeneous MIPhll queueing system sub
ject to breakdowns, in: U. Derigs, A. Bachem, and A. Drexl (eds.), Operations Research Proceedings 1994, 
Springer-Verlag, Berlin, pp. 221-226. 

III 

Beschouw een M/G/1-wachtrijsysteem met twee typen vakanties en laat n en N niet-negatieve con
stanten zijn met n ::5 N. Zodra het systeem leeg is, gaat de bediende met een type 1 vakantie. Wanneer 
de bediende terugkomt van een vakantie, telt hij het aantal klanten in de rij. Als het aantal klanten i 
kleiner is dan n, gaat de bediende weer met een type 1 vakantie. Als n ::5 i < N, gaat de bediende met 
een type 2 vakantie. Als bij terugkomst het aantal klanten i tenminste N bedraagt, begint de bediende 
met het bedienen van klanten totdat het systeem weer leeg is. De duur van type 1 en type 2 vakanties 
zijn exponentieel verdeeld met parameterwaarde Vt. respectievelijk Vz. Voor het bepalen van het ge
middelde aantal klanten in het systeem is het gebruik van de PASTA-eigenschap (zie Wolff [1982]) 
gecombineerd met een mean-value analyse eenvoudiger en inzichtelijker dan analyses die gebaseerd 
zijn op 'busy periods' in een MIG /1-wachtrij. 

WOLFF, R. W. [ 1982], Poisson arrivals see time averages, Operations Research 30, pp. 223-231. 

ZHANG, Z.G., R.G. VICKSON, AND M.J.A. VAN EENIGE [1995], Optimal two-threshold policies in an 
MIG I l queueing system with two vacation types, Memorandum COSOR 95-36, Department of Mathematics 
and Computing Science, Eindhoven University of Technology (to appear in Performance Evaluation). 



IV 

Beschouw het model beschreven in stelling III met v1 < v2 . Als de wachtkostcn van klan ten evenredig 
zijn met de tijd, de kosten voor het opstarten van een 'busy period' constant zijn en de opbrengsten 
gedurende beide vakanties evenredig zijn met de duur, dan kunnen de optimale waarden van (n, N) in 
een eindig aantal stappen worden bepaald. 

ZHAKG, Z.G., R.G. VICKSON, AND M.J.A. VAN EE?\IGE [1995], Optimal two-Ulreshold policies in an 
Mj Gjl queueing system with two vacation types, Memorandum COS OR 95-36, Department of Mathematics 
and Computing Science, Eindhoven University of Technology (to appear in Performance Evaluation). 

v 

Voor niet-negatieve getallen men c, met 0 < m 2: N, is er een kansvariabele X op (0, 1, ... , N} met 
verwachting m en variatiecoefficient c, dan en slechts dan als 

) N 
...:_:_-=------:c.;_ _ __:__::.:_' < c2 < 1 ' - -m 

met lmJ het grootstc gehele getal dat niet groter is dan m. 

VI 

Zij X een kansvariabele op {0, 1, , .. , N) met verwachting m > 0 en variatiecoefficient c. Definieer 
() := c2 1 I m en zij Bin (n, p) een kansvariabele met een binomiale verdeling waarbij n het aantal po
gingen is en p de kans op succes. Dan heeft de kansvariabele Y op (0, 1, ... , N) dezelfde verwachting 
en variatiecoefficient als X, wanneer Y als volgt wordt gekozcn: 

1. Als - 1 In 2: 0 I I (n -:- I) voor zekere n = I, 2, ... , N 1, dan 

y 

waarbij 

q 

2. Als liN 2:0 2: (N 

y 

waarbij 

PI 

met kans q, 
met kans 1 - q, 

m 
en p= . 

n+l-q 

-1, dan 

{ 
Bin(N,p1 ), metkansmiN, 
Bin(N,p2 ), metkansl miN, 

en P2 
m(l- Pt) 

N-m · 



VII 

Een kansverdeling {pk, k = 0, 1, 2, ... } op 7L+ kan willekeurig dicht worden benaderd door mengsels 
van negatief binomiale verdelingen, dan en slechts dan als {pk, k = 0, l, 2, ... } een Poisson mengsel 
is, d.w.z. dan en slechts dan als de kansgenererende functie P van {pk. k = 0, 1, 2, ... } voldoet aan 

P(z) { e-x(l-z)dF(x), 
J[O,oo) 

met F een verdelingsfunctie op IR+. 

STEUTEL, F.W., AND M.J.A. VAN EENJGE [1996],Noteontheapproximationofdistributionson 7L+ by mix
tures of negative binomial distributions, Memorandum COSOR 96-13, Department of Mathematics and Com
puting Science, Eindhoven University of Technology. 

VIII 

De opkomst en het verval van de Republiek der Verenigde Nederlanden als wereldmacht lopen voor 
een belangrijk deel parallel aan de opkomst en het verval van deze Republiek als zeemacht. 

IX 

In de voorwaarden en regels die van toepassing zijn op de Seizoen Club Card van een organisatie voor 
betaald voetbal staat te lezen dat: 'Uitlenen van de kaart aan iemand anders is uiteraard toegestaan'. 
Hiermee lijken de KNVB en deze organisatie naast een belangrijk doel van deze kaart te schieten. 

X 

De zorgvuldigheid waarmee sommige wiskundigen eigenschappen toekennen aan wiskundige func
ties staat soms in schril contrast met de onzorgvuldigheid waarmee z~j eigenschappen toeschrijven aan 
supporters van bepaalde voetbalverenigingen. 




