

The proceedings of the first international symposium on Visual
Formal Methods VFM'99, Eindhoven, August 23rd, 1989
Citation for published version (APA):
Bosnacki, D., Mauw, S., & Willemse, T. A. C. (Eds.) (1999). The proceedings of the first international symposium
on Visual Formal Methods VFM'99, Eindhoven, August 23rd, 1989. (Computing science reports; Vol. 9908).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/fdd68440-2a89-4401-af7d-fde2703e0831

�������

����� ��� ��� ��	
����
�� 	� ��� ������ �	���� ����	�� � ������ ����	����� ���� 	

������ ���� ���� �
 ��
��	 �
� ��� !�������
��"

��� ���� #���
� �	���� ����	�� ��� ��$��� #��
 �	 �� � ����	�� ���	$�
� �	� �
��#���%

	��� ���������
���� ���
��� ���
�����	
� 	� � ������� ����	���
� �	���� �
������" &	$� ���

��� �������

� 	� � �	���� ����	� �� 	���
 #���� 	
 ��� �
������
� ���������
�� ���	���

$��
�� ����	��� �
����� � �	 ��� ��	��� ���
������� �
 ���� �����
���� �	���� ����	�� ��
	�

�����
������ �
����� � �	 	��������" ����	��� ��� ��� 	� �	���� ����	�� �
 ��� �
������ ���

#��
 ��	������� ��

� ����� ��� ��$
� ������� ����
� ���� ����� �

����

� �� �����
	� ���

$���%������"

'
 ��� 	���� ��
�� �
 �

�����
� �
������ �� ��	$�
�
	$����� ����
��� �	$���� �����

��
������" � ����	
 �	� ���� ���
� �� ��� ��
� ���� ����� ��
������ ��� ��
�
�	��� �	 ���

$�� �
 $��
� ��	��� ���
($��
 �� ��	��
� � ������) ����� �������

� �� �
����� � �
� ����
���	$ �	� �*������
� ��� ������	
 #��$��
 	#+�
�� ���������� ���� ����
� ��� �
������
��
� 	�

���
�����	
�"

,	�#�
�
� ��� ����
���� 	� #	�� ����	�
��� $��� ������ �
 � �	���� �
� ����� �
����� � ��%

��	�
� �	 ������ �����
" �*������ 	� ��
�
	�#�
���	
� ������� �*���) ����� ��
������ $���

� �	���� ����
��
� $��
� ���	$� �	� �	���� �������	
 -�"�" ������� .�/��

� ,�����0 �
�

�	���� ����	�� $��� � ������
�� �
�����
�" 1� �		(� �� �� �
 ��� ���� ��$ ������ ��� ������
�

	���
��� �� ��(�
� �� ����
�����
��� �
� ���
	�#�
�� ��� 	� �	���� ����	�� �
� ������

2�
������ �� #�
	��
� � �	��
 	� �
������"

��(�
� �� 	
 ���� ���
�� �� $�� ��
���� �
 ��� ��	�� 	� �	���� ����	�� �� ��� ��������
�

	� ,	�����
� .
��

� �� ��� ��
��	 �
 3
� ������ 	� ��
�
	�	��� ���� � ����	���� 	
 ����
�	��
 ��	��� #� 	���
����" ���� ����	�����
������
�� ������ �	���� ����	�� � �������

��
(�� �	 ,	

����� ����� �� #��
��
� �	������ �����
� ������
���� �
� ���
����	
��� ��	� ���

�
�����
��
� ���� 	� ������ 2�
������ �
� �	���� ����	��"

��� ���� 	� ������ �	���� ����	�� �� ������ #�	�� #�� �	����� ��
�
 #� �� ���� �
�	 �$	

�����

� �����" '
 ��� 	
� ��
�� ����	�� ��� #��
� �� ��	��� �	 ���� $��� ��� ��
����
����

	� �������" '���
� ��� ��
����
����� $��� ��� �������� 	
 �	��$��� ��
����
����� ����� �

���	���
� �	�� �
 ��� �� ��	���
� 	� �	��$��� �������" ����	�� ����	�� �	�
	��
� $���

��� ��	#���� �
 	� �� �
 �������� ��
����
���� ��� �
 ���������� ��
� ���������
� ��4���
�

����
�� 	� ���� ���� �� �� ��	$
 �
 5�	�����6���	
 �
� �������6���	
 	� .	��$��� ��
����
�����7�

$��
� �������� �	$ ��� �	���� ��$ 	� �	��$��� ��
����
����
�
 #� ��������� �
� �	��������"
��� �����
����	
 	
 5'#+�
�%'���
��� �	�����
� �
� .��
�8
���	
 ���
� .&�7 ���
����� �

������ �� �� �	�����
� ��
������ 9''.2� $��
� �� ���� �	 ��
��� ��� �
���
��

	����*���

	�
	����* ����$��� �
� �	��$��� �������" ��� ��� 	� � ����� �	���� ����	� ��
	� �������

�	 �	��$��� ��
����
���� �� ��
	
 �

�
��� ���	
������� �
 5���������
� #���
��� ��	
�����7�

$��
� ���
��#�� �	$ ��� �	���� ����� ��
����� ��:�; �� ������� �	 #���
��� ��
����
�����"

'
 ��� 	���� ��
�� ������
� �� ����
��� �	$���� ��� ���
�8
���	
 �
� �
������ 	� ���

#��� �	�� 	�
	����* �	��$��� �
� ����$��� �������" ����� 	� ���� ��
������ ������ ��� ���

��#+�
� 	� �
 ��������	
� �� �� ��	$
 �
 5,	��	��
� ���	���� �
 <�����
�� 2�
������ �	� ;�%

�

�
�� � .������= ��	� ���	� �	 �	��%���	����7" ������ � ������
��� ��

��	
	�� ����	�
�
�	 ���
����
� ���
�� � ������� �� �*����
��" .�
	
���� �� ��	���
� 	� �		� ����	�� �	� ���

�
������ �
� ���8
���	
 	� ������� �� �
 ���	���
� ������
� ����" 1
 5������ ����	��� 2	�%

�
� �� � ;���� 9�	�	����
� �		�7 �	���� ���
�8
���	
� �
 ����%���� ���#	��
 ����
� ��������

��� ���� �	� �����#�� �
� ����� ��	�	����
�" ��� �����
����	
� 	
 5���	����
 .�
������ 	�

.>2 ��	� �., �
 �	�$��� �
� ;� ���� �
��
����
�7 �
� 5�:��= <�����
�� .��
�8
���	

.���	�� �
 �
 1
�������� �
 ��	
��
�7 �	
�� 	
 ��� ��� 	�
	������%����� �	��$��� �		�� �
�

��� �4�
�� ���� �� � 	
 ��� ����%�	%���(��"

?� ���
(>������ ���+���� ���
���� �� ;		�+ �
� �

�%���� ' ��������
 �	� ����� 	�%

��
�����	
�� �������

�" �	� ��	 ���
� �
� �����
� �� ��� ��/����� ����$��� �
� �	��$���

����	��� :,� �� ���
(��" 2��� #��
	� ������ $� ��� �������� �	� ��� 8
�

��� ����	�� #�
.':3 -��� ,	%	������	
 ,�
��� 	� ���#��� �
� ��
��	 �
 3
� ��������0 19� -��� 1
������� 	�

9�	������
� ;�����
� �
� ���	������
�� !20� �
� ��� ��
��	 �
 3
� ������ 	� ��
�
	�	��"

>����
 :	@�
�@
(� ������ ����
.+	�(� ���$ ��
��	 �

��� ?������� ��� !�������
��

��

���	�
� �
�����

������ ����	��� 2	��
� �� � ;���� 9�	�	����
� �		� " " " " " " " " " " " " " " �

�� ������	
� ��
����

'#+�
�%'���
��� �	�����
� �
� .��
�8
���	
 ���
� .&� " " " " " " " " " " " " �A
������ �
�	
�� ������ ��
�
�

�:��= <�����
�� .��
�8
���	
 .���	�� �
 �
 1
�������� �
 ��	
��
� " " " " �B

�� ������

�	�����6���	
 �
� �������6���	
 	� .	��$��� ��
����
����� " " " " " " " " " " " �A

�� ���������
� �
���� �� ��� ��
����

���	����
 .�
������ 	� .>2 ��	� �., �
 �	�$��� �
� ;� ���� �
��
����
� CC

!� ��������

,	��	��
� ���	���� �
 <�����
�� 2�
������ �	� ;��
�� � .������= ��	� ��%
�	� �	 �	��%���	���� " AB

�� ����������� "� �#
$��%

���������
� :���
��� 9�	
����� " D�

�� �%

����&����� ��
��������� �� ��� %
 �
�
���&� �� ��	� '� ��� %
� �
�&

���

Visual Temporal Logic as

a Rapid Prototyping Tool�

Martin Fr�anzle and Karsten L�uth

Carl von Ossietzky Universit�at Oldenburg
Department of Computer Science

P�O� Box ����� D	�
��� Oldenburg� Germany
fMartin�Fraenzle�Karsten�Luethg�Informatik�Uni�Oldenburg�De

Abstract� As embedded systems become more and more complex� early
availability of unambiguous speci�cation of their intended behaviour
has become an important factor for quality and timely delivery� Con	
sequently� the quest for rapid prototyping methods for such speci�ca	
tions arises� Addressing these issues� the computer architecture group
of Oldenburg University has devoted a major line of research towards
automatic prototyping of embedded controllers from fully formal spec	
i�cations given as real	time symbolic timing diagrams
RTSTDs� for
short�� RTSTDs are a graphical formalism for specifying behavioural re	
quirements on hard real	time embedded systems� They are a full	�edged
metric	time temporal logic� but with a graphical syntax reminiscent of
the informal timing diagrams widely used in electrical engineering�
Within this survey article� we will explain real	time symbolic timing di	
agrams as well as the ICOS tool	box supporting RTSTD	based require	
ments capture and rapid prototyping� ICOS integrates a variety of tools
for RTSTDs� ranging from graphical speci�cation editors over tautology
checking and counterexample generation to code generators emitting C
or VHDL� thus bridging the gap from speci�cation to prototype genera	
tion�

� Introduction

Due to rapidly dropping cost and the increasing power and �exibility of embed�
ded digital hardware� digital control is becoming ubiquitous in technical systems
encountered in everyday life� Often� such embedded systems can hardly be al�
tered once they have been shipped out due to extremely large quantities being
shipped� or they even have to be right �rst time due to their crucial impact on
safety of human life� For example� modern means of transport rely on digital
hardware even in vital sub�systems like anti�locking brakes� �y�by�wire systems�
or signaling hardware� as does medical equipment even in such critical appli�
cations as life�support systems or radiation treatment� As� furthermore� many

� This article re�ects work that has been partially funded by the German Research
Council DFG under grant no� Da �����	�� A preliminary version of this article has
been published as �
��

�

Martin Fr�anzle and Karsten L�uth

embedded systems are developed under tight time�to�market constraints� early
availability of unambiguous speci�cation of their intended behaviour has become
an important factor for quality and timely delivery�

Such a speci�cation is� however� always a compromise between various de�
mands� ought it to be operational� in order to guide developers and program�
mers in the implementation phase� or ought it to be declarative in order to allow
straightforward formulation of safety requirements� thus supporting safety anal�
ysis	 Ought it to be formal� thus facilitating formal analysis and hence providing
correctness guarantees that are not otherwise available� or may it be informal
if this enhances comprehensibility� thus simplifying traditional approaches for
ensuring quality of software� like testing and certi�cation by code inspection	

Due to their prospects for reconciling some of these seemingly contradictory
demands� graphical speci�cations have recently attracted much interest� Their
prospects for gaining comprehensibility of even complex speci�cation are deemed
so high that it should be possible to simultaneously further the level of formal�
ity without sacri�cing understandability� However� even with graphical speci��
cations� the global interaction patterns of complex
for example� distributed�
systems remain complex and� furthermore� it seems that graphical idioms also
tend to hide some of the �ne�grain semantics from the user� at least from the
non�expert one� Thus� while being a big step ahead� graphical speci�cation for�
malisms are not per se a means for ensuring that �what you specify is what you
mean
�

The problem of misconceptions in early development phases is� however� well�
known in software engineering� A traditional remedy is rapid prototyping� where
a partially developed product is brought into executable shape in order to as�
sess its compliance with expectations� We suggest to take over the paradigm
of �rapid prototyping
 to the realm of formal� graphical� and declarative
i�e��
essentially non�operational� speci�cations such that these become executable�
thereby facilitating early evaluation of speci�cations on an operational model�
If such a prototyping process is based on an unambiguous semantics of speci�
�cations and applies rigorous rules for deriving executables from speci�cations
then it can� furthermore� be made sure that the prototype obtained is in strict
correspondence with the speci�cation such that the evaluation is faithful�

In this article� we propose a method of that kind� it builds upon a fully for�
mal semantics of speci�cations and applies automata�theoretic constructions for
fully automatically deriving operational systems that represent the speci�cation
in a �what you specify is what you get
 way� The method has been developed
and implemented by the computer architecture group of Oldenburg University�
which has dedicated part of its rapid prototyping project �EVENTS� ���� towards
automatic prototyping of embedded control hardware from fully formal speci��
cations given as real�time symbolic timing diagrams� Real�time symbolic timing
diagrams
RTSTDs� for short�� as introduced in ���� are a graphical formalism
for specifying behavioural requirements on hard real�time embedded systems�
They are a full��edged metric�time temporal logic� but with a graphical syntax
reminiscent of the informal timing diagrams widely used in electrical engineering�

�

Visual Temporal Logic as a Rapid Prototyping Tool

Req

Ack

~Req Req ~Req

~Ack Ack ~Ack

[1,5][2,4] [2,4]

(0,10]

Fig� �� An RTSTD specifying a simple handshaking protocol� The black arcs represent
strong constraints� while weak constraints
i�e�� assumptions on the environment� are
printed in grey� The perpendicular line to the far left indicates the activation mode of
the diagram� which here is the so	called invariant mode� meaning that the diagram has
to apply whenever its activation condition �res� The activation condition is the state
condition crossed by the perpendicular line� i�e� �Req � �Ack�

In Sect� � and �� we introduce real�time symbolic timing diagrams and give
an overview over the ICOS tool�box supporting requirements capture and rapid
prototyping using RTSTDs� As the ICOS approach to rapid prototyping is based
on synthesis of embedded control hardware � in general� FPGAs � satisfying
the speci�cation� we then turn to game�theoretic methods of controller synthesis�
Section � introduces the controller synthesis problem� and Sect� ��� outlines a
classical controller synthesis framework based on the e�ective correspondence
of propositional temporal logic to �nite automata on in�nite words and on the
theory of ��regular games ����� A compositional variant of this approach� which
is more suitable for rapid prototyping purposes due to its reduced complexity� is
shown in section ���� This is our current synthesis method� which has been fully
implemented in the ICOS tools ���� ���� The results obtained using this method
on e�g� the FZI production cell ���� indicate that the compositional extension
yields a signi�cant enhancement for reactive systems� yet a further compositional
treatment of timing is necessary for real�time systems� Section ��� sketches the
basic design decisions underlying such an extension which is currently being
implemented for a new release of ICOS� while Sect� � compares this to the state
of the art�

� Real�time symbolic timing diagrams

The RTSTD language is a metric discrete�time temporal logic with an � as we
hope � intuitive graphical syntax reminiscent of the informal timing diagrams
widely used in electrical engineering� and with a declarative semantics which is
formalized through a mapping to propositional temporal logic
PTL�� In contrast
to some other approaches using timing diagrams� e�g� those described in ���
��� symbolic timing diagrams do not have any imperative control structure like
iteration or sequencing� Instead� the recurrence structure of RTSTDs is expressed
in terms of the modalities of linear�time temporal logic� thus providing a direct
logical interpretation� In fact� RTSTDs provide a declarative rather than an
operational speci�cation style� even despite their intuitive syntax� an RTSTD is
interpreted as a constraint on the admissible behaviours of a component� and

�

Martin Fr�anzle and Karsten L�uth

a typical speci�cation consists of several small RTSTDs� with the individual
constraints being conjoined� The main consequence is that RTSTDs are well�
suited for incremental development of requirements speci�cations� However� they
pose harder problems than more operational timing diagrams when used as
source language for code generation� Fig� � shows an example RTSTD� specifying
a simple handshaking protocol using two signals Ack and Req�
A basic� RTSTD consists of the following parts�

� An entity declaration de�ning the interface of the component
not shown in
Fig� ��� It speci�es the signals
e�g� Req� Ack�� their data types
e�g� Bit�
and access modes
in or out� i�e� being driven by the environment or the
component� resp���

� A set of waveforms
here Req�Ack�� A waveform de�nes a sequence of Boolean
expressions associated with a signal
e�g� �Req� then Req� then �Req in the
upper waveform of Fig� ��� The point of change from validity of one expres�
sion to another is called an event� A distinguished activation event� which
speci�es a precondition for applicability of the diagram� is located to the left
over the waveforms�

� A set of constraints� denoted by constraint arcs� which de�ne a partial order
on events� We distinguish between strong constraints and weak constraints�
Strong constraints are those which have to be satis�ed by the system under
development� while weak constraints denote assumptions on the behaviour of
the environment� Violation of a weak constraint implies that the remainder of
the timing diagram poses no further design obligations� Table � summarizes
the di�erent kinds of constraints�

� An activation mode� Initial diagrams describe requirements on the initial
system states whereas an invariant diagrams expresses requirements which
must be satis�ed at any time during system lifetime� Invariant mode corre�
sponds to the �always� modality of linear�time temporal logic� implying that
� in contrast to timing diagram formalisms employing iteration � multi�
ple incarnations of the diagram body may be simultaneously active if the
activation condition �res again before the end of the body has been reached�

More details about syntax and semantics of RTSTDs are given in ����

� The ICOS tool�box

Despite the appealing graphical syntax of RTSTDs� speci�cation of reactive sys�
tems using RTSTDs remains a challenging task� The ICOS tool�box� as shown
in Fig� �� is a comprehensive set of tools that supports this process ��� ��� ����
ICOS is built around a timing diagram database that holds all speci�cation
clauses belonging to the current project� The database is augmented by a layer
of procedures for compiling RTSTDs to other e�ective representations of reac�
tive behaviour� like propositional temporal logic
PTL� ���� or B�uchi automata

� there is some syntactic sugar available for making large speci�cations more concise�

�

Visual Temporal Logic as a Rapid Prototyping Tool

Table �� Basic strong constraint types of symbolic timing diagrams and a compound
constraint� Each of these has a weak counterpart� denoted by a shaded constraint arc�

Simultaneity constraint Con�ictt constraint Leads�tot constraint

e

f

[0,0] οο

e

f

[t,] οο

e

f

[- ,t]

Events e and f have to oc	
cur simultaneously�

e and f do not occur less
than t time	units apart�

Event f occurs no later
than t time	units after e�

Precedence constraint The compound constraint type used in Fig� �

e

f

e

f

[s, t]

Event f does not occur be	
fore e�

A conjunction of precedence� con�icts� and leads	tot con	
straints�

����� These procedures� as well as the corresponding derived representations of
reactive behaviour� are in general hidden from the user� Instead� they are invoked

resp�� constructed� on the �y whenever a particular representation is needed for
some user�selected task
e�g�� for code generation��

User�selectable activities are concerned with design� veri�cation� simulation�
synthesis� and debugging� Design�related activities involve creating and editing
RTSTDs with a graphical editor� as well as browsing the speci�cation database�
Veri�cation entails static analysis� for checking whether interfaces are consis�
tently used� and automatic tautology checking� for formally verifying that some
re�ned speci�cation satis�es the original commitments of the design task� Sim�
ulation is performed upon a keystroke by �rst generating a �nite automaton
faithfully re�ecting the semantics of the speci�cation� then encoding it in the
C programming language� and �nally linking it to a simulation environment�
thus facilitating interactive simulation of speci�cations� The intermediate steps
involved do� however� not require any user interaction�

Simulation shares most of the basic technology with synthesis� Synthesis goes
however a bit further in that it actually yields an FPGA�based embedded con�
trol device that can be plugged into the application context rather than just an
interactive simulation� The steps involved are� �rst� the generation of a set of in�
teracting Moore automata satisfying the speci�cation� second� their translation
to synthesizable VHDL code� and third� synthesis of a corresponding FPGA� We
will expand on the techniques underlying synthesis in the next section� as embed�
ded controller synthesis forms the backbone of our rapid prototyping method�

�

Martin Fr�anzle and Karsten L�uth

Debugging

S
im

ulation

D
es

ig
n

VHDL

editor

C code

generator

Simulation

Synth
esis

code generator

environm.

PTL -> Automaton

Timing diagram -> PTL

Timing diagram

database

Design
browser

Timing
diagram

Tautology

checking

Verification

Error path
generation

Signal

Design

analysis

generator

Test
monitormonitor

Fig� �� The ICOS system

Test monitor generation is a minor variant of this synthesis process which
yields an FPGA that does not control its application context� but instead may
be plugged into the application context as an online monitor� then monitoring
the running system for violations of the speci�cation�

Debugging� �nally� yields error paths pinpointing the problem whenever syn�
thesis fails due to a contradictory
and thus unimplementable� speci�cation� or
if tautology checking �nds a non�tautology�

� Synthesis

Automatic synthesis of FPGA�based controllers is the core of our rapid proto�
typing method for RTSTD speci�cations� The application scenario is that the
user invokes an fully automatic synthesis procedure once the requirement set�
being formalised through RTSTDs� is deemed su�ciently complete� The syn�
thesis algorithm then tries to construct an FPGA�based embedded controller
satisfying the speci�cation � i�e�� an operational prototype � or� if it detects
unimplementability of the speci�cation � delivers diagnostic information�

�

Visual Temporal Logic as a Rapid Prototyping Tool

In fact� the synthesis method is a three�step procedure� �rst� the synthesis
algorithm tries to construct a Moore automaton satisfying all stated require�
ments� However� no appropriate Moore automaton need exist due to a contra�
dictory speci�cation in which case the algorithm creates error paths to help the
programmer re�ne the speci�cation� Otherwise� the second step can commence�
where the generated Moore automaton is automatically translated to VHDL
code� The subset of VHDL used as target language is synthesizable by the Syn�
opsys tools ��� such that the �nal step of actually implementing the automaton
by a given target technology
e�g� FPGAs� can be done through so�called high�
level synthesis by the Synopsys tools ���� and we have indeed integrated our tools
with the Synopsys and some Xilinx tools to achieve this�
As high�level synthesis is by now an industrially available technology� we will

in the remainder of this article concentrate on the �rst step and will sketch dif�
ferent speci�cation�level synthesis procedures yielding sets of interacting Moore
machines from RTSTD speci�cations� The procedures di�er in the methods used
for dealing with timing constraints and in the number and shapes of the inter�
acting Moore machines generated� which a�ects the average�case complexity of
the synthesis procedure and the size of the hardware devices delivered�
Given a speci�cation �� the problem of constructing a Moore automaton

satisfying the speci�cation� called the synthesis problem� is to �nd a Moore au�
tomaton A� which is

�� well�typed wrt� �� i�e� has the inputs and outputs that the entity declaration
of � requires� and accepts any input at any time
i�e�� only the outputs are
constrained��

�� correct wrt� �� i�e� the possible behaviours of A� are allowed by the speci�ca�
tion �� formally LA�

�M������ whereM����� is the set of behaviours satisfying
� and LA�

is the set of possible behaviours of A��

By adoption of logical standard terminology� an algorithm solving the synthesis
problem is called sound i�� given any speci�cation �� it either delivers an au�
tomaton that is well�typed and correct wrt� the speci�cation �� or no automaton
at all� It is called complete i� it delivers an automaton whenever a well�typed
and correct automaton wrt� the speci�cation exists�

��� Classical controller synthesis and RTSTDs

If the requirements speci�cation language is a classical� non�graphical� discrete�
time temporal logic� like propositional temporal logic
PTL� ����� then algorithms
for solving the synthesis problem are well�known� there is an e�ective mapping of
these logics to in�nite regular games which� together with the �rmly developed
theory of strategy construction in in�nite regular games yields a fully auto�
matic procedure for generating �nite�state winning strategies� i�e� �nite�state
controllers� from temporal logics speci�cations of the allowable behaviour �����
As there is an e�ective mapping of RTSTDs to PTL� which is fully explored

in ����� this approach can be extended to deal with RTSTDs also� Soundness

�

Martin Fr�anzle and Karsten L�uth

(deterministic
Büchi-autom.)

PTL reg. game winning
strategy

synthesiz.
VHDL

tableaux
construct. construct.

strategy
ICOS

Synopsys,
Xilinx tools

FPGA

compilation
(Req. spec.)

(Hardware)

RTSTDs
without

negation

compilation

"high-level" synthesis

Fig� �� The basic synthesis chain�

and completeness of the synthesis method then is directly inherited from the
corresponding properties of winning strategy construction in regular games� In
fact� this chain of algorithms� depicted in Fig� �� forms the backbone of the ICOS
tool set ��� ����

However� this basic synthesis chain su�ers from complexity problems if the
speci�cation is large� i�e� is a conjunction of multiple timing diagrams� as the
regular games constructed then tend to su�er from state explosion� With the
basic method� game graphs grow exponentially in the number of timing dia�
grams due to the automaton product involved in dealing with conjunction� As
this would render application for rapid prototyping impractical� the ICOS tools
o�er modi�ed procedures which reduce the complexity of dealing with large
speci�cations� Obviously� such extensions cannot deal e�ciently with arbitrary
RTSTD speci�cations� but they are� however� carefully designed to cover the
typical speci�cation patterns�

��� Compositional synthesis

The �rst such variant is a compositional extension of the basic algorithm� Within
this approach� which is sketched in Fig� �� the speci�cation is �rst partitioned
into a maximal set of groups of formulae G�� ����Gn such that each output is
constrained by the formulae of at most one group� Then synthesis down to a
winning strategy is performed for each group individually� yielding for each group
Gi a Moore automaton Ai that has just the outputs constrained by Gi as outputs�
and all other ports as inputs� The individual Moore automata are then compiled
to synthesizable VHDL and composed by parallel composition�

FPGA
(Hardware)

RTSTDs
(Req. spec.)

Synopsys,
Xilinx tools

synthesiz.
VHDL

winning
strategy

tableaux
construct. construct.

strategycompilationRTSTDs

winning
strategy

tableaux
construct. construct.

strategy

group 1

compilationRTSTDs
group n

partitioning

"high-level" synthesis

ICOS

compilation,
parallel compos.

PTL reg. game

PTL reg. game

Fig� �� Compositional synthesis�

�

Visual Temporal Logic as a Rapid Prototyping Tool

With this compositional method� growth of the game graph is linear in the
number of groups� and exponential growth is only encountered in the maximal
size of the individual groups� Table � provides empiric results from ���� obtained
by Feyerabend and Schl�or when using both the non�compositional and the com�
positional synthesis procedure of ICOS for synthesizing a controller for the FZI
production cell ����� Overall� Feyerabend and Schl�or have found the composi�
tional approach to save over ��� of the transitions in the game graphs of the
major components�
Soundness of the compositional synthesis technique is easily established�

Theorem �� Let G�� ����Gn be groups of RTSTDs with Oi� � � i � n� being the
outputs constrained by Gi� and with Oi � Oj � for i � j� Let Ai be the Moore
automaton synthesized for Gi� Then A� k � � � k An is well�typed and correct wrt�
G� � � � � � Gn� where k denotes parallel composition of Moore automata�

Proof� Correctness of A� k � � � k An wrt� G� � � � � � Gn is straightforward� as parallel
composition of Moore automata with disjoint output alphabets semantically yields
language intersection� as does conjunction of RTSTDs� Thus� soundness of the basic
synthesis algorithm� which yields LAi � M��Gi�� for the individual groups� implies
LA�k���kAn � LA�

� � � � � LAn �M��G��� � � � � �M��Gn�� �M��G� � � � � � Gn���
Similarly� well	typedness of A� k � � � k An wrt� G� � � � � � Gn follows from soundness of
the basic synthesis procedure since the composition rules for interfaces agree for Moore
automata and RTSTDs if outputs occur at most once in a parallel composition� ut

Completeness is� however� lost using compositional synthesis� The problem
is that a certain group may not be synthesizable without knowledge about the
behaviour of another group� Such problems are regularly encountered within
compositional methods� and we propose to solve them by just the same tech�
niques that proved to be helpful in compositional veri�cation� the necessary
information on the other components can be formalized via assumptions
for
example� through weak constraint arcs�� It should be noted that ICOS helps in
�nding adequate assumptions� as an error path is supplied whenever synthesis
of a component fails�

��� Synthesizing hardware clocks

However� there still is some reason for dissatisfaction� as timing annotations
have to be unwound to an according number of next�operators of PTL by the
translation of RTSTDs to PTL� which introduces corresponding chains of unit�
delay transitions in the game graphs� the modular synthesis method remains
exponential in the number of potentially overlapping timing constraints� This
makes dealing with timing constraints of more than a handful time units hardly
a�ordable � realistic real�time system programming cannot be done with such
code generation methods� Therefore� we are heading for an algorithm that is of
linear complexity in the number of timing constraints� even though complete�
ness is thereby necessarily sacri�ced� What is thus needed is a synthesis method
that separates generation of timers controlling the allowable passage of time from

�

Martin Fr�anzle and Karsten L�uth

Table �� Experimental results obtained when applying non	compositional and com	
positional synthesis to the Karlsruhe production cell ����
after �����

Non�compositional synthesis	 System has � components� One controller
per component is synthesized� The most complex components are�

Component STDs Game graph Controller Time
s�
states transitions states transitions

Press �� ���� ������ �� ��� ����
Crane �	 ���� �
��� ��� ���� ����

Compositional synthesis	 System is automatically partitioned into �

groups� One controller per group is synthesized� Most complex group deals
with controlling vertical movement of the press�

STDs Game graph Controller Time
s�
states transitions states transitions

Press� vertical movement� �
� ��� 	
	 �

synthesis of an untimed control skeleton� In the remainder� we sketch a synthesis
technique currently being integrated into ICOS� which o�ers the desired separa�
tion� In this hybrid approach� small � and thus harmless wrt� the state explosion
problem � time constants are treated by purely ��automata�theoretic means�
whereas large�scale timing constraints� if found to be su�ciently independent�
are directly mapped to hardware timers�

The new approach starts by using timed automata for representing the se�
mantics of real�time symbolic timing diagrams� every RTSTD � is assigned a
timed automaton A� that accepts exactly the counterexamples of �� i�e� all those
traces that are not models of �� An example of a timed automaton recognizing
the counterexamples of an RTSTD can be seen on the left hand side of Fig� ��
where the conjunction of a precedence and a leads�tot constraint between events
e and f is dealt with�

Once a timed automaton accepting counterexamples to the speci�cation is
constructed� synthesis of a controller satisfying the speci�cation can commence�
in a �rst step� all clocks implementing delays of more than a handful time units
are removed from the timed automaton and replaced by external timer com�

RTSTDs
(Req. spec.)

Timed
timed

automaton
tableaux

construct.

timer
decompos.

FPGA
(Hardware)

Synopsys,
Xilinx tools

synthesiz.
VHDL

"high-level" synthesis

winning
strategyconstruct.

strategy

ICOS

Timers

automaton
ω−

adjustment

par

reg. game

compilation

skeleton

Fig�
� Synthesis chain employing timer decomposition�

��

Visual Temporal Logic as a Rapid Prototyping Tool

(c<t) &
~c.elapsed

~c.start &
c.elapsed

c := 0

c.start

c.start

(c=t) & c.elapsed

c:=0

Timed automaton
Parallel composition of sequential

skeleton and timer processes

f & ~c.elapsed
~e & ~f

par

true

Sequential skeleton

true

true

e & c.start c.elapsed

~f & ~c.start

e
c := 0

~f

c >= t

Timed automaton

~e & ~f

Timer process, time constant t

f f

true

e & ~c.start
c.start

q

{c := 0}
{c := 0}

{c := 0}

f & (c < t)
{c := 0}

true
{c := 0}

{c := 0}

{c := 0} means that clock c may or may not be reset
upon the corresponding transition.

Fig� �� Converting clocks to timer components�

ponents acting in parallel� as shown in Fig� �� Thereafter� the remaining clocks
are removed by expanding their e�ect to an appropriate number of unit�delay
transitions� This results in an untimed automaton� called sequential skeleton in
the remainder� which communicates with the environment and with the timer
components� The novelty of our approach is that from then on� synthesis will
treat the timers similar to environment components� which means that the be�
haviour of these components is left untouched during synthesis� The advantages
are twofold� �rst of all� the �xed behavioural description of timers allows for the
use of pre�fabricated� optimized hardware components� and second� controller
synthesis can concentrate on solving the control problem described by the small�
untimed automaton that remains�

Note that the parallel composition
alas automaton product� thus yielding
language intersection� of the sequential skeleton and the timer processes derived
thus far recognizes the counterexamples to the speci�cation� Now� we would like
to implement the timers in hardware and to remove them from the synthesis
problem� i�e� we want to synthesize wrt� the skeleton only without� however�
risking erroneous behaviour of the synthesized controller� As the timer commu�
nications are only internal to the controller� the correctness criterion involved
is

LC � Ltimer� n �t �start � t �elapsed � �
L � Lt� n �t �start � t �elapsed � �
��

where LC and Ltimer are the trace sets of the controller and the timers� resp��
L is the language accepted by the skeleton automaton� �n�t �start � t �elapsed �� de�
notes hiding of the timer communications� and the overbar denotes language
complement�

It might seem that straightforward synthesis wrt� the complement of the
skeleton� which yields a controller C satisfying the language inclusion property
LC � L� su�ces� Unfortunately� LC � L is in general not a su�cient condition

��

Martin Fr�anzle and Karsten L�uth

for
�� due to the existential quanti�cation involved in hiding�� which changes
to universal quanti�cation under the complementation involved in
���
However� this can be repaired by synthesizing wrt� an appropriately adjusted

variant skel � of the skeleton automaton that enforces a certain usage of timers�
The key issue is that the synthesized controller is forced to start a timer and
not interfere its run whenever a violation of the corresponding timing constraint
could possibly occur� The new skeleton skel � is generated by taking the same state
set� same initial states� and same transition relation as in the original skeleton�
yet expanding the set of accepting states by states like state q in Fig� �� which is
entered if the timer signaling the possible violation of the leads�tot constraint is
not properly activated� The detailed construction� which we cannot provide due
to lack of space� is s�t� if a timer action sequence ts exists with w�ts 	 L�Ltimer

then w � ts� 	 Lskel� for each ts� 	 Ltimer � Note that furthermore Lskel�
 L by
construction�
If we now synthesize a controller with inputs I � ft �elapsedg� outputs O �

ft �startg
where I and O are the original in� and outputs� that is correct wrt�
the adjusted control problem� i�e� satis�es LC � Lskel� � then we have obtained a
correct solution�

Lemma �� Correctness of C wrt� Lskel� � i�e� LC � Lskel� � implies ����

Proof� Assume that LC � Lskel� holds and
�� is false� i�e� there exists some w �

LC � Ltimer � n �t �start � t �elapsed � �
L � Ltimer� n �t �start � t �elapsed �� By de�nition of
hiding this implies that there are two timer action sequences ts�� ts� with

w � ts� � LC � Ltimer � w � ts� � L � Ltimer �

Then� by construction of skel �� w � ts� � Lskel� � But on the other hand w � ts� � LC
and LC � Lskel� � which yields a contradiction� ut

Consequently� synthesis wrt� the adjusted control problem is sound� Further�
more� by directly mapping all timing constraints of signi�cant size to hardware
timers� this method is linear in the number of timing constraints� If it is fur�
thermore combined with modular synthesis then super�linear blow�up can only
occur through individual timing diagrams containing unusually large numbers of
events or through large groups of formulae controlling the same outputs� These
situations are� however� atypical� rendering the new method a practical rapid�
prototyping tool for real�time embedded controllers�

Similar methods are� btw�� currently explored by the second author for deal�
ing with data in an essentially uninterpreted way� The idea is that thus the
traditional separation between control and data can be incorporated into game�
theoretic synthesis methods� The net e�ect is that a large data path no longer
yields a blow�up of the game�graph� The complexity of automatic synthesis then
predominantly depends on the control part� making automatic synthesis appli�
cable to much larger� control�dominated systems�

� For a language L �
� �
ft �start � t �elapsedg 	 IB��� and some string w � ���
w � L n �t �start � t �elapsed � holds if some sequence ts �
ft �start � t �elapsedg 	 IB��

of timer actions exists with w � ts � L�

��

Visual Temporal Logic as a Rapid Prototyping Tool

� Discussion

We have presented a rapid�prototyping framework for requirements speci�cations
that are formalised through real�time symbolic timing diagrams� a metric�time
temporal logic with a graphical syntax akin to the informal timing diagrams
used in electrical engineering ���� The underlying core technology is fully auto�
matic synthesis of embedded control hardware from requirements speci�cations�
This involves two major steps� �rst� the generation of Moore automata satisfying
the speci�cation� and second� the actual implementation of these automata by
embedded control hardware� For the latter step� we rely on industrially available
tools from Synopsys and Xilinx that perform FPGA�based implementation of
VHDL�coded Moore�automata ���� In contrast� the former step is based on pro�
cedures that have been speci�cally implemented for the ICOS tool�box ��� ��� ����
While the underlying algorithms have been derived from the well�established the�
ory of winning�strategy construction in ��regular games� the overall approach
is � being targeted towards rapid prototyping � mostly pragmatic� weighing
e�ciency higher than completeness� Two key issues have been identi�ed in this
respect� �rst� the necessity of compositional synthesis of parallel components and
second� early decomposition of timing issues from the synthesis problem� The re�
sult is a synthesis method that is essentially linear in the size of the speci�cation
and thus suitable as a development tool in rapid prototyping contexts�
Within the ICOS tool�box� these algorithms are closely integrated with a

graphical speci�cation editor supporting the speci�cation phase and all compi�
lation and mapping algorithms necessary for mechanically translating down to
automatically synthesizable VHDL code such that implementation is truly au�
tomatic from the speci�cation level all the way down to actual hardware� ICOS
furthermore comprises � under a common user interface � tools for browsing
and manipulating a speci�cation database� as well as for interactively simulating
and for verifying speci�cations� It is thus a comprehensive environment for the
incremental development of RTSTD�based requirements speci�cations� Further�
more� within the rapid�prototyping project �EVENTS
 ����� ICOS is conjoined
with Statemate�based code generation techniques such that rapid prototyping
of hybridly speci�ed systems� where some components have a declarative for�
mulation through RTSTDs while others are operationally described by Stat�
echarts ���� becomes feasible� While this involves integration of di�erent rapid�
prototyping tools through automatic interface generation for the generated com�
ponents� other extensions to the source language accepted can be accomplished
within just the ICOS tool� ICOS is modularly built such that while the current
version is dedicated towards RTSTD�based speci�cation� an adaptation to other
declarative speci�cation formalisms is possible� A possible candidate formalism�
for which front�end tools like graphical editors are already under development at
our department� is that of Live Sequence Charts
LSCs�� an extension of Message
Sequence Charts
MSCs� recently proposed by Damm and Harel ����
On the algorithmic side� we think that the main contribution of the ICOS

tools to game�theoretic synthesis are methods for dealing with timing or with
the data path in an uninterpreted way� Due to the obvious necessity of treating

��

Martin Fr�anzle and Karsten L�uth

timing mostly independent from algorithmic aspects within any reasonably e��
cient synthesis method for hard real�time controllers� quite a few other research
groups work on this theme� However� most approaches are based on primarily
operational rather than declarative speci�cation styles
e�g� ������ Closest to our
approach is ����� where Dierks and Olderog detail a direct mechanism for deriving
timer actions from speci�cations formalised through a very restrictive subset of
Duration Calculus ����� the so�called DC�implementables ����� Dierks� algorithm
is extremely e�cient� but at the price of a very restrictive speci�cation format�
the processable speci�cations are con�ned to be �phased designs� in the sense of
the ProCoS projects ���� which are akin to RTSTDs featuring just three events�
While our formalism is more expressive in this respect� Dierks and Olderog do�
on the other hand� go ahead by dealing with a dense�time logic and analyzing
certain kinds of switching latency�

References

�� G� Borriello� Formalized timing diagrams� In The European Conference on Design
Automation� pages �������� Brussels� Belgium� Mar� ����� IEEE Computer Society
Press�

�� J� P� Bowen� M� Fr�anzle� E�	R� Olderog� and A� P� Ravn� Developing correct
systems� In Proc� �th Euromicro Workshop on Real�Time Systems
 Oulu
 Finland�
pages ��
����� IEEE Computer Society Press� June �����

�� W� Damm and D� Harel� LSCs� Breathing Life into Message Sequence Charts�
Technical Report CS��	��� Weizmann Institute� Apr� �����

�� K� Feyerabend and B� Josko� A visual formalism for real time requirement speci	
�cation� In Transformation�Based Reactive System Development� number ���� in
LNCS� pages ��
��
�� Springer Verlag� �����

�� K� Feyerabend and R� Schl�or� Hardware synthesis from requirement speci�cations�
In Proceedings of EURO�DAC��	 with EURO�VHDL��	� IEEE Computer Society
Press� September ���
�

� M� Fr�anzle and K� L�uth� Compiling graphical real	time speci�cations into silicon�
In Ravn and Rischel ����� pages ��������

�� S� Golsen� State Machine Design Techniques for Verilog and VHDL� Synopsys
Journal of High Level Design� Sept� �����

�� D� Harel� H� Lachover� A� Naamad� A� Pnueli� M� Politi� R� Sherman� and A� Shtul	
Trauring� STATEMATE� a working environment for the development of complex
reactive systems� In Proceedings of the ��th International Conference on Software
Engineering� pages ��
���
� Singapore� Apr� ����� IEEE Computer Society Press�

�� P� Khordoc� M� Dufresne� and E� Czerny� A Stimulus�Response System based on
Hierarchical Timing Diagrams� Publication No����� Technical report� Universite
de Montreal� �����

��� F� Korf� System�Level Synthesewerkzeuge� Von der Theorie zur Anwendung� Dis	
sertation� Fachbereich Informatik� Carl von Ossietzky Universit�at Oldenburg� Ger	
many� �����

��� C� Lewerentz and T� Lindner� editors� Formal Development of Reactive Systems�
Case Study Production Cell� volume ��� of Lecture Notes in Computer Science�
Springer	Verlag� Jan� �����

��

Visual Temporal Logic as a Rapid Prototyping Tool

��� K� L�uth� The ICOS synthesis environment� In Ravn and Rischel ����� pages ����
����

��� K� L�uth� A� Metzner� T� Peikenkamp� and J� Risau� The EVENTS Approach to
Rapid Prototyping for Embedded Control Systems� In Zielarchitekturen eingebet�
teter Systeme �ZES ����
 ��� ITG�GI Fachtagung Architektur von Rechnersyste�
men �ARCS����� Rostock� Germany� September �����

��� Z� Manna and A� Pnueli� The Temporal Logic of Reactive and Concurrent Systems�
volume �� Springer	Verlag� �����

��� E�	R� Olderog and H� Dierks� Decomposing real	time speci�cations� In H� Lang	
maack� W� de Roever� and A� Pnueli� editors� Compositionality� The Signi�cant
Di�erence� Lecture Notes in Computer Science� Springer	Verlag� to appear �����

�
� A� P� Ravn� Design of Embedded Real�Time Computing Systems� Doctoral dis	
sertation� Department of Computer Science� Danish Technical University� Lyngby�
DK� Oct� ����� Available as technical report ID	TR� ����	����

��� A� P� Ravn and H� Rischel� editors� Formal Techniques in Real�Time and Fault�
Tolerant Systems �FTRTFT����� volume ���
 of Lecture Notes in Computer Sci�
ence� Springer	Verlag� �����

��� W� Thomas� Automata on in�nite objects� In J� v� Leeuwen� editor� Handbook of
Theoretical Computer Science� volume B� Formal Models and Semantics� chapter ��
pages �������� North	Holland� �����

��� P� Vanbekbergen� G� Gossens� and B� Lin� Modeling and synthesis of timed asyn	
chronous circuits� In Proceedings EURO�DAC with EURO�VHDL ��� IEEE Comp�
Soc� Press� �����

��� Zhou Chaochen� C� A� R� Hoare� and A� P� Ravn� A calculus of durations� Infor�
mation Processing Letters� ��
����
����
� �����

��

���������	�
��� �
����	
� �
� ����	����	

 ��	
� ���

������ �����	
 ������
����	

������	 �� �	��������	 �	� �����	������	 �������

������� �� ���������� �	��	����	�

��	�����	 	�������� �� !���	�����

��"� #�$ %&'
 %()) �# ��	�����	
 !�� *�������	��

��������

�������� 	�
��	�
 � ��	�	� 	� ��� ���	
� �
 ������� �����������
����� �������� ��� �� ��� 	������	�
 �������	���
���
�� ������� ���
������	�� �
 � ������� 	��� ��� ��� ����	���	�� �
 � ����	�
 ������ 	� ������	�
 ���	���� ��
����
� �������	�� ��� �� ������� ���	
� ������� 	������� 	�
����� �� ���� �� ������ ����� ���
��
�� �������
����	����	�� ��� ���	
�� ��� �
����� ������ ����� ������	�
 ���
��
� ������ !""#$ 	� ���� �������	�� ��� 	�
���� �� ����� �����	� ���� ����%�	�� �����	��� �� ���� �� ����	� �����	������� ��� ������
� ��������� 	� �� ��&���%
��	�����
���	��� ��� ���
��
� 	���
����� � ������� ����� ����� �� ��� ������� ��
���� ''#� �	�� � ���� ����� �����
�� ��� �������� �
 ����	�	���� ��&���%��	����� ���
����	�
 ���
��
��� '�������� � ������ �
 ��������� ��
�����
����� ������ ��	�	�
� �	������� ��� ����	��� ����� ��� ���	����� 	� �� ���	������� ��	�� 	� ������ #()#	�� �����
����� ����� �	���� ����� �
 ��������� ��� ������
� �
 ��� ������� ������� ��� �����	��� �
 	��	�	���� ��������� 	�
��������� 	� �� 	������	�� ������� ���
��
��

� 	
����
����

�������� ����		
�� �
�� ������
�	 ��� ����
������ ������� �� ����
�� ����������������� �������� �����
��
�� ����� ������� ��� �������
�������
���
�� �������� ��
�
���
� �������� ���
��
 ��������
������
�
 ������

������� ��� �������� �
������
��� ����������������� ������� ��� ���
��

�
��
������� ��
�	 ������
 ����� ��
�������� ���������� ��� ����
�� ���

���
�� �������� ����
�	 �� ���
��
�� ������
�	 �������� ����� �������
������� ���� ����
�� �����
��� ��� ���� �� ���
��� ����
�������
 �������
��� ����
����� ����
��
 �
���
���
��
��� ����������������� ����
�
��
�	� �������
��
�������
� ���
�	 � ��
�
�
� ��� ���
	� �� ����� ����
�� �������
 !"� #�� �� ���
� ����
���
�� �� ��$�
�������� ������ ����������������� ������� ���
�������
� ����
�� �� ���
�
	��
��
������ ���
��� ��

����� ���� ��� ����	� �����%� �������
���	���� ���� ��� ���� �����
���

�� ����
��� �� ���
��� ���
�	��� ��$�
������� �� $��

��� &��
�

��� ��

��

�� ��� ������

��� #��
�
�	 �� �� �������
���

��
�������
�� ��� ������
������
�	
� �
Æ��
� ��� �� ��� �
����
�� �� ���

��
� ������
�	� ���������� '�
�
�������������� �
	
��
 �
	��
 ����������� ���

���
�� ����
(�
�������
�� ����������� ���

���
�� ����
(�
���	�����
�
���
��� (�
� ���	������
� 	��� ������� ���
��
�� ������
�	 �������� ��������)� ��������
� ����		

�	 �
�� �
	��
������ �� �
���������*��� �$��

�� ��� ���
���� �
	�
������
�� ����� ��� �
	� ����� ��� ��

����

��
��
�	 ����
(���
�� ��� ���
	� ���������� ��� ��
��	�� *���
�	 ���� �
�� ��� 	����� �� ������ ����
��
���
+�� ��������� ����
�
���
 ���
	� ���������� ��� ��

 �����

���� ��� ���
����
���
� '�����
�����
�	
�� ��	
���� ���
�
	��
���
�
���
) �� ��� ���
	� ���,������� �������� �� ������� ������ ���� ����
��� ��� �����
��
��� �� �����
��������
��
���
� 	��� �� ��	� ���� ���� ������
�����������
�
� ��� ���
	���� ��� ������	���
� ��� ���
	�
���
� -� !"� +�� ��� ����
������ �� ��������� ������� �������
�	 ��� �
	���
���
� �� ��� ���
	� ���,������ ���
���

��
�� ����� �������� �������� ��� ����� ����
���
� ��� ������ ���
	�� ��� ���� �� ��� ��
�
� ��*
�	 ���
	�
���
�
��� ��	���
�	 ����
������� ���������� ����������������� ����
�
��
�	 ��� ��� ������
�	� ���������� �� ��
���

���

./

Requirements analys is Environmental condi t ions

Constraints Funct ional i ty

Model l ing Behaviour Communica t ion Est imat ion

Mult i-discipl inary co-specif icat ion System-level archi tecture

Veri f icat ion Simulat ion Val idat ion

Specif icat ion styles Part i t ioning Decis ion making

Veri f icat ion Est imat ion Design for test /debug

Transformat ion Archi tecture Al locat ion Simulat ion

Descript ion styles Co-s imulat ion

Interfaces Communicat ion channels

Translat ion to technology-dependent formal isms (C,VHDL)

Digital
H W

Analog
H W

Software Interface
Commun i -

cat ion
Mechan ics

Test ing Debugg ing

System
Level

Design
Languages

and
Methods

Requirements
Capture

Specification

Architecture
Exploration

Architecture
Refinement

Synthesis

Integration

Figure 1. The role of system level languages

#�� �� ���
������
�	 ������ ����
��
��� ��� 	�� ������� ��� 	������
�� �� � �������
��� ��� ��� ���

���
�� �� �
���*
�	 ������
� ������
�	 ���
�
�� �� ����	� ����
��
�� ��� �� ������� ���
	� ���
���
�������
� ������ ��
��*
�� ������
���
 ���������� ������� ����
(���
�� ��� ���
	� -� !"� 0�����
���
 ����
(���
�� ��� ���
	� �������
�

�� ��� �����
�� �� �����
� ��������
� ����
� �����
�
�	 � ������
� ��� ���

��� ���	�� �� ��� ���
	� �������� �����
����
� ��� ���������
� �������

��	��	�� ���� ���� ����
�� ������� ��� �� �����
��� �
�� ��
��
��
� ���
��	��	�
����������� 0�����
���
 ����
� �

�� ��� �������
�� �� � ������ �� �� ���
����� �
��
����� ��

����� ��� ���
(��
������ ��
� ������
� �����

� ��
�	 ���

���
� ����� �� �������� ��� �������� ���������� -"� �� ��
� ��� ���
	�
������ ��� �� ��������
� � ���� ���
� ������ ������� �������
�	 ������
�� ��� �
���������
�	 ���
	�
�����
����
��� ����
� ������� �

�� ��� ��������
� ��� ���
� ���
���
�� �� �
1����� ����������������� ����
�������� �� �
�
	�
���
 �� ��������
��� �
����� ���
�	 �� ����� �
�� �� �
��
� �����
�	
��
���

��
�������
���� ��
�
� ��

�������� �������	� �
���
�
� �� ��� �
	���
���
� �� ��������
��� ����� ���
��	��� 	�
��
� ���
	�
�	 %���
��
%
����������������� ������� ��� �� ����
��� -"�

�� ��
� ����� �� ������ �� ��� ������
���
 ����

�	
��	��	� ��

�� 23304 '2���

�
 3�,����3�
����� 0���
�
(���
�� 4��	��	�)� �� 0���
�� - ��� ��$�
������� ��� � ������
���

��	��	� ��� ��
���� ���� 0���
�� 5 ���
�
��
��� ���
� �������� �� 23304 ��� �������� ���� �� ��� �������� �� ��� �����
��
��
��	��	�� 0#4� ����

�� 43�
�30 ��� 6337� �� 0���
�� 8 �� ���� ��� ���
��	��	� ��� �� ���� �� ����
 � ������
�
�
 ���� �� � ����

�*
�������
� 0���
�� ! �����
��� ��� �������� ���
� ���� ��� �������
� ���

��
�� �� �

 �� ����� ��� ����� ���
� �

��
��� ���
���
�� �� � ����������� ��������� �� ��
� �������
� +
��

�
� 0���
�� / �� ������� ��� ����
��
��� ���
�
����
��� ��� ������ ���������

� ������ ����� ��
�
��� ���
�����
��

+
	��� . ����� ��� ��
� �� ������
���

��	��	�� ��� �������
� ��� ���
	� ���,������ ��� �����������������
������� !"� �� �
���

��� ��� �
1����� ���
	� ������ ���
��
����� ��� ���� ����� ��� ��
����� *������� ��� *��
���
�
�
��� �� ����
� �� �
��� ���� ������
���

��	��	�� ��� �����
�

� �����

� ��� ���
� ������ �� ���
	�� ����� �
������
� ��
�	 ���
���� ��� ����
(�� ��� ����� ��� ������
���
 ����
�������
� ��
�	 ���
��� ����� ���� ����
�
��
� �� ��
�	� ��� 	�� ������� ��$�
������� ������� ��� �������
�� ��������� ���� ����
� ��
���
�
��� ���

���
�
�
��
� ��
�
�
��
�

���� ���
	� ��� ���� �� ����������� +�� ��
� ������� � ������
���

��	��	� ����
� ���� ��

������
�� ������� ����
� �� �
��
� ��� ��

� �� � ���

 ��

���
�� �� �
���
�	
��	��	� ��
�
�
��� ."� #��
�	
��� ����
������� ���
����
�� ������ ���
��
�������
�� ������
�	
�� �� �� ���

�� ��� ���
��� ����� �� ��*�
����
������� ���
����
�� ����
�
�� � ������
���
 ����
(���
�� ����
� ��� �� �
���� ������� � ����
��
�� ���
�� ��

��
�������
�� ��� ����
� �� �����
���
� �
��	��	� ���� ��������� ���� ������
�	�� �� ��
� ���
	���� ��
�	� ���
	�� ������� ��$�
������� ������� ��� �������
�� ���$���� ���
 �������
�
��
�������
�� ���
� ��� ��$�
��� �� ��
��
��

����� ���
��� �
��
��� ��� ��������� ����
(���
���� ��� ��� �
�� ������ ��� ��������� ���
���
��� �������
�

.9

�������
�� 	������
�� ��� ������
���
 �������
� �� ����

� ����
(���
��� �� ������
�	������
(�
��	��	�� ���� ��
:�#4 ��� �� �� ������� ��� ����
������ �� ���� ���
�� � ������
���

��	��	� ����
� �� �$�
���� �
�� �
��������
��
 ������
�� ."�

+��� ��� ���������
��
�� �� ����
�� ����������������� �������� � ������ �� �����
��	��	� ��$�
������� ���
�� �������� ��� ������
���
�� ��� �����
���
 �����
��� �� � ����������������� ������
� ����� �� ����

�����
����
�
� $�
��
�����
�
� �� ����������
� �� �� ����

�
�
�� ���
����� ��������� �����
��� ����
� �� �
���
�����
���� ����
�� ����� �����
��� ��� �� ���������� �
����� ���
�	 �� ���������� ��� ���
������� ���� ��� �
����

�� ��
� ��$�
��� ����
�� �� �� ��
�������
���� ����������� ��
��
��
�
����������� ��� ���*
� ����
�� ���
�
���
;� �

 ��

 ����� ���
�
�� ������� ��,����� �� ���������
� ������ 2�������� ��
��
� ���
� ��� �
	��� ���� ���
� ���
�������
�

�
��� ��� ���� ���� ���
� ��� ���
�
�
�� �� �������� ��
�
� �
	�
� ���
���
� �������
� ����
�� ���������
�� �� ������
� �������� ����� ���� ��� ��� ��� ��
�� ���� ���� ��
	
��

� ���
���� 6����
� ���
���� �� ��	��
�
�	
��,����
��� �
������ < �
���
� � ����
��� ���� ��
�� ��,���� ���
������
�����

< ����
�������� ���������
��
� �� ����������������� �������
� ���������� 2���
��
 �� ����
�
 �
���
���
���
����
��
 ����
�	�� ����������������� ����
�
��
�	 ��� ��������
����
�	 ��� �

 �����
�� �� ��������� ����
�����
���������� ��� ����

�	 �� ����
�	� ��$�
��� ��������� �� �� ����������
� � ������* �� ������
�� ��� ����� �����
�� ��������� ��$�
�� ��� ����
�

�� �� 	���� ���������
��� �
	��������� ���
�
��� ��

�� �
������� < �
����� ���� ��
�� �
������
��
 ��������
�� ��
��
������
�� �
�������
� ��
�������� ������� ���� ��
�� �� ����	� ����
��
���
�� ������� ����
��
�� ��� ������ �
������ ����
� �� ��	��
���
��� �
������

2�������� '��� �
������) ��� ��
��
��
�
���������� ��� ���� ��� ������� ���
� ���
�
�
�� ����������
� ��� ��
���
� ��� ������ #���
�� �� ���
� ��������� ��������� �

 ���$����
� ���� �� ������	�
�������
��� �� ��*� ���
����

�	 ������� ��������� '��� �
������) �� ���* �� ����
�
��
�������
�� ������	� ����
� �� ����� ���� �����	�
����
�	� ��� ������
�
 ������� �� �����	� ����
�	
� ����
�������
��
� ������	�� �� ����� �� ��
�������
���
��������� ��

�� � �����	�� ��� ������� �� � �����	�
� �� ������ ��� ����

�	 ������� ��� �����	� ������� ���
��� �����	� ����
���� .-"� �� ������	�
�������
��� ��� ������ ��� ��� ����
��� ��
� ���� �� ����� ��� ������ ���
��� 	�����
 ������
�� �� � �����	�� ���� �� ��� ���� �� *��� �����
�	 ����� ���� �����%�
������
��
��� �����
��
���� ����� ���
������
� �� � ������� ��� ��
� �� �� �������
���� �� � �����	 �������
��
�� ��������� ��� ��
�
��� ��� ����� ��������� �� ������ �����
������
�
� �����	� � �
������� �����	�
���������

< ������� ��� ���
�
� ���� ����
�� �����
���� �� ��� ������� ������
 ���
�
�
��
� ����

�
 ���
� ��
� �� ������	�
�����	��
� ���
��� ���� '������������ �������������
�����������
��� ��� �� ���������)� =����
��� ��� ������
�� '����) ���
��
�� �������� ���� �� �
�������� �������	� ��� ����

���� �� ���� �� ����
�
� �� ������� �

 �����
����� �� �����
���
� � ������
���
 ����

�	
��	��	��

2��������
� ����������������� ������� ��� ��
� �� ������� ����
�� ���
��
��
��� �� ���
� ��
���� �����
=������ ��
���� ���� ��� ���� ����
�� ���������� �� ���
� ���� ���� ����
� �� ����������� �� ��,���� ���� ;�
�

 ��

 ����� ��,���� ���� ��,����� #��� ��,���� ��� �� ������	�� �� ���������� �� �����	�� ������� ����������
;
��
� � �
�	
� �������� ���� ��,���� ��� ������ ��� ������
 ���
�
�
�� ��� �� ���
��
��
�	 ����� ���� ��,����
����������
�� #
1����� ��������� ������ ����� ��� ���� ��,����� �� ��*� ���� ��,���� ������
�� ���� ���� �� ��
��	��
���
��� �
������

� ����� ��
����� �� � ��

�� .!� ." ��
��������� ��� ������ 0���������������� ��	
����
�	 '0��)� 0��
� �� ��,������
����� ����

�	
�����
$��� 0����
�	 ����
������
 	����
��
 ����
�� 0�� �������� �
	����� �����
��� ��� ����
������� ����
�
���������
� ��� �����
 ����
(���
��
��	��	� 23304 .� 5"� ��� 23304
��	��	� ��� ����
(��

� ���� ����
����
�� �� ���� �� � ������
���
 ����

�	
��	��	��

��� 23304
��	��	� ����
��� � ������� ���� �
�� � ���� ����� ��� ������� ����
� ����� �� ��� *��
���� ��
��� ������� �
	���� ��0 9"� ��� ���� ����
� ����� ���� ��� �������� �� ����
�
���
 ��$����
�
 ��,������
����� ����
	����
�	
��	��	�� ���� �� 0��

��
* ��� �>>� �� 23304 ���� ����
�� ���� ���
��
�� �����
���
� �����������
�� � ��

���
�� �� ������������ ���������� ������� ��,���� ���� ������
���� �����������
� �� ������������
� ��
����
�	 �����	�� ���� ����
� ������
�� =����
��� �� ������� ��,����
� �����
��� ��

� ����������� '����
�
���
) �����	� '��� ���� ��,���) ����
�	 ��
�
�
���?

� ������������ '����1����) ��������� �����	� ����
�	 ��
�
�
���?

.@

Figure 2. A Protocol Stack

�
��� ��� ��
��� ��
�
�
���� 	������ ��������� ����

�
 ��� ��$����
�
 ������
�
��� ��������� '������)
��������
�� ��� '��

) ������
��?

�
�������� ��� ����� ��
�
�
���?

� ��
�� ��
�
�
����

A��� �� ���������� 23304 �������� ��� ������� �� �
������ < �
�����
� �������� �� ��������� ��� ����� �
������
��� ���� �� �� ��������
�� �� ������ �
������ ��� ���� �� ������ �� �
������
��
 ��������� �� ����
�� ���� �
�� ���
�

������
 ���������� ��� �����
������ �� � �
����� ��� �������� �� ����

�
 ������
�
��� ������
 �
�
�	 ��� ������

�����
�	� ����� ����
������ ��� ����� ���� �
�

�� ����
������ ��
	
��

� ����
� ��0 9"� ��	������ �
������
��� ������
� ��� ��
���
� ��� �����
�
�	 ����
������� ���������� ����
�	� ���
��
�������
�� �������
�� ."�

�� �����
�� ����
�� �����
���
 �����
���� 23304 �������� ���� ��,����� #��� ��,���� ���� ��$����
�
 ���
���
��� ��� ������
���� �� ����������� �����	� ����
�	� ���� ��� �����
���
� ��������� ��� ���� ����
 ���
��
���� ���� �� ����� ���������� #��� ��,���� ��� �
�� ��

�� �����

�	 ��,����� �
��� ���� ��� �� ������ �������
����������

��� 23304
��	��	�
� �$�
���� �
�� � ����
��� ��������
��
 ������
��� ��� ������
��
� ����� �� � ���
����� ������
�� ����
� ��� ����� �� � ������ ��� �
���� ����	� �� ������������
� ������
�	 ����
� '������
�
���
�� �� ���� �������
�) ���
��� '��*
�	 �� �
��) �� ��
���
�	 �
�� ���� '�����������
�)� ��� ������
�� �� ���
��� ���
��
�� ���� �� 23304
� 	
���
� ."� ��� �����

���
�� �� ��� ���
��
�� ������
��
� �����
���
� 5� 8"�

��� *�� ������� �� 23304
� ��� �������
�� ����� �� ����
 ���� ����
�� ���� ���
��
�� '������
���
�� ���
�����
���
) �����
��� �� ��

 �� ����
� '����
������� ��� ����
�	�) ���������
� �� ��,������
����� ����
��� 23304
��� ���� �� �������� �
�� ��� �����
 �����
��
��
��	��	�� 43�30� 0#4 ��� ����

� .8" ��� ��� ����

�	

��	��	� 6337 .-"� �����
��	��	�� �

 ���� � ��

���(��� ������
��� ��� ��� ��
��
��
� �
��
��� ���� ���
������� ����� �� ����������� �������
���� ������������ ���������� ���
�
�� ���� ��� ���������
� � ����
� ����
�	�
�� ������
� ��� ������
���� ��
�	 ��

���(���
�������
�� ��
�
�
����� �������� ����� ��� ���� ��������
� ��
��
�����
��	��	�� �
1�� ���� 23304� 0���
�������� �
1������� ���B

���� ������	
� ��
���� ��� ��
 ��� ������ 	� � ������ ��������	
�� ���� �� ��� �� �� ���� ���� ���� �� ���	��� ��	� 	� ���
���� ��� ������� ��� �����

���	� �� �
	���� ����� ��� �������� ��� ����� ���!��!�� ��� � ��� ����
�� �	
�����
�
���� �� ����
��
������ ��
������ "��
����� 	�
���� ��� 	�
�� �� �����	���� ��� ���� ��� ��� ��#�
�� ���� ������ ��	�

�����	���� $������������ ��#�
��
�� �� �������� �� ��
����� %&'�

.C

���������	���
 ������
���
��
� 0#4� ����

� ��� 6337�
� ��1���� ������������
��� =�1���� �����
�������� �����	� ����
�	
� �����
�
� � �����
 ������� ��� ����
� �� ���������� ���
�
� ��� ��Æ�
��� ��� �����
������������� �������� ;� ���� �����
����� ���� �����
�

� �� �
	���
���
� �� ��������
��� ��� ������� �� ����
�������� ������
���
���
�
��
�������
�� �� ����
� �� ����� ���� ������������
�������
�� ��� ���

� �� ���������

� ����� �� �����������
�������
��� ��
�
� ��� ����
� ��� ����� �
����
��� 0����������
�������
��
�
�������
�����
� ��� 43�30
��	��	�� <
����	�
�
� ����� �� ���
������ '��
�
����) ���
�� ��������
���
��� ��� ���
�����	� ����
�	�
� ��� �� ���� �� ������� �
������ �����	� ����
�	 ��� C"� ��
�
� �
��� ������
 ���� A��� ��
���
��	��	�� ����� ������� ������������ ��������� ��
�
�
����

��	�

��	� ��� ���
	�
 ���������� ��� ������ ��� ����
�������� ��� �����
�
�	 ����
�� �����
���� ��
���� �� ��
�������� ��� ������� ������ �� �����
���
� ��������

� ��������� ���

 ���
��������
�	 �����
��� ���
����
������ �� ���� �� �� ����� ��� ������� ������ �� �����
���
� ����
����� ��� ��� �����
�	 �����
���
� ��������
��� 43�30
��	��	� ��
� �������� ������� �� 6337 �����
��� ��� ���� �� ������� �� ��

 ��
����������� 0#4
��� ����

� �� ��� ����
�������� �� ����� ���

�
���

��	� �����	�
 +�� �����
�
�	
���
���� �����
� ���� ����������� ��� ������� �� ���� ��,���
�
��
�������
��
������ ��� 6337� ���� �� ���
��	��	�� ������� ���� ��,����� 43�30 ��� 0#4 ��� �������� ���� ����� ���
����

� ���� 2����
 ����� �� ����
 ����� <������� ���� ����� ��� �������
�� ���� � ��������
��
 ��
�� �� �
���
��� ���� ���� �������� �� �� �
Æ��
� �� ���������� .D" ��� ���� ��� ���� �� �
��
��� ���
��
����� �Æ�
���
��
2����

� � ���������

��	��	� ��� ���
���Æ�
��� ������� ��� �������
��
�� ��� ���� ����
��
���
���

�����

���� ��� ���
���
 ��� ����
���
�� �� ����������� ��� ������ ����
� ����� ����
����� ���	�����
�
���
�
��������� �
�� �� ����������
�
��
� ����
� ��� ���
��� �� ��������
���
�� ��� �����
 ���
��
��
����
���� ;� �	��� �
�� ��
�� ��� �� ��
�* � �����
���� ����
���
�� �� ����������� ��� ����
�	
� ��������� ��
����
 ���
�

�� �������� ���������� 23304 ��� � ������������� ���� �

��� �����������
��
�� ���������� ���
�����
��
��

��
� ��� ���� ���� ������
��� �� ���� ��,���� ��� ����
� ��� ����� �����������
� ���������
� ��(���
�� � ������ ������ 	��
�� �� ��
� ��� �����
 ���
��
�� ��� ��������
���
�� ����
��� ��� �� ��
��� ���� ������

��
�
����� ����
��
�	 ���
�
�
�� �� ������� �� ������ ���� ���
��
�� ��� 	��
� �� �����������
� 6337� 0#4� ����

�
��� 43�30
� �� ���
���
 �� ������� ��,������ ����� ��������� ������ ����� ���� ��� ���������
�
� ��� ����
�
�
�� ����
 ���
�
�
�� ���� ������� �� � �
��� �� ������ ���� ����������
��

�����	���
 A��� �� ��� �����
��	��	�� ���� ��Æ�
��� ������� �� ����
 '����) ���
��
�� �����
���� ���
43�30
��	��	� ���� ��� ���� ��� ���

�
�� �� ������� �
�� �� �

�� ����

� �������� � �����
���� �
�
�	 ������
��

� ��� ���� �� �
�� ��
���� �������� ��� ����

� ������
�� �����
��� ���
����������
�� �� �
��
� ��� ���*��� ���
����
�
�� �
��
�	 ��
� ����� ��$�
������� ���� ���
�� ���� �����
�	 ���� �
�� ����� ������� ����
�����
� ���
�

 ����
��
� ��� ���� ��������� .8"� 0#4 ��� � ��

��
� ���
��
�� ������
��� ��
�
�	 �� �� ������������
�
��� ������
�� ����
� ��
� �� ������ � 	
���
 �
��* ������
�	 �� ��� ������� ������
� �
��� ������� ���
��
�� ������� ��� ������ �� �
��� ���
���
�� ��� ��� ������ �� ��
�� ��� 0#4 ����
 ������ �� ��
� ���
��
�
���������� ��������� 0#4
� ��� ��
���
� ��� �������
�	 ��������
 �
�� �����
��� /"� �� ����� ��� ������� �� �
��

� ��� ��
������� �������� �� � ����

� 0#4 ��� �� ��� ����
�
� �����
�
�	 ������
�� ��	
�� �� ������
�	 �������
��� ���� ��
�� ��� ��� 6337
��	��	��

! "#�����

�� .9" �� ���� ����� ��� ��
���

�� �� ��� 0�� ������ ��� 23304
��	��	� ��� ��� ����	����	�� ��� ���	
�
�� ��
������
�
 �
���
����� ������
 ������� �� ��
� ����
�� �� �

 ����������� ��� ��� 23304
��	��	� ��� ��
���� �� ����� � ������
�
�
 ���� �� � �������
 ����* .5"� ��� �������
 ����*
� �����
� ��� �
��
���� �
����
�� +
	��� -� ��� ����* ����
��� �� ��� ���� *������$������ � ����$	��#����� �
�� � �	���� � ����$	��+���	���
��� � !���	���$����� ����� ���
�
�� ������
���� �� ������	
�	 �����	�� ���� ������
�� ��� *������$�����
������	� !������� ���
��� *������$���� ��� ���� �����	�� �� ��� ���� �����������!����� �� ��� ����������
�	
����$	��#����� �� ������
�	 ���$,�����������!����� ������������ ���$
� � ���� �� ��� *������$���� ��,���

�� ������
�� ������ ���� � �����!� �	����� (���	�! ��� ����	���� �� ��� ��
�	����)� !������� �����!�� ��� ��*���� ���	� ����
���
������� �� ��� ��
�	���� ��� ����� ����
	�
������
�� ����
�� ���� �� �	�
������

�� ������ ��� ���� ���� � �����!� 	� ��� ��
�	��� 	� ����� ��� �	��	�! �� ��
�	�� 	��
�)� ���� ����� ��#�
�� ���
����� �
����� 	� ��
 ��
��� 	�����
�� ��� 	� ������� ���� ���
����� ��������
�������!� ���� �� ����� ���� ���� ��	���� �� �+����
���� �	�� � ���	�� �� �	���
���� �����	��� ���
�	 �	��� �� ��� ��������	
���� �	�	��
���
���� ����� ��� �	�	��
��������� ��� ��� !	��� 	� ��	� � ���

-D

Figure 3. PhysicalLayer cluster

��� ��
� ����
� ��������� �� ������
 *$���$� ��� ����$	��#����� ��� ����
�� ����� �����������!����� �����	��
�� ������
�	
���*$-�����������!����� ����������� ���� ����!����� ������� � ���� ��,��� �� ���� �
��� !������
E��� ������
�� �� � !����� ��� ����$	��#����� ����� ��
� !����� '��	����� �
�� ���� ������

�������
��)
� �
���� ��,��� �� �
��� .����� ��
� .����
� ���� ���� �� ��� !���	���$���� ��
�� ����������
� �� ��� ����$	��+�%
��	���� �����$����
�� ��� !�����
� ����
���� ���� ��� .���� ��,���� ���
� ��

����� �� ��� ���� *������$�����

��� !���	���$����
� ����

��
� ��� ���
��� �����	��� �� ��*� ���� ���� �

 !������ ��� ��

�����
� ��� �������
������ ��� �����	��#����� ��� ����$	��+���	��� ��*� ��� �� � ���
�
�� ��*���
��	����� �
�� ��������
��
��
�������
 .5"� ���������� ���� ��� ���� ����
��
�� .����� ������
 �
��� ��� ���� ��� �
�� ���� ��*���
��	�����
.������ �� ��
� ��� ��� ����$	��#����� ��*�� ��� �� � �	��� ��������

��� ����
(���
��� �� ��� ����$	��#������ �	��� ��� ����$	��+���	��� ��� ��� ������� �
��������
� ��
� ������
������� �� �

 ��*� � �
����
��* �� ��� ����
(���
�� �� ��� !���	���$�����

!���	���$����
� � �
����� ����
��
�	 �� ��� #	�����'�������� ��� +
	��� 5� < #	�����'������ ��� ��� �����
	� ��� ���� +��� ���� 	�
� ����
���
������.���� �����	�� ��� ����� ���� ����
(�� ���
�� �� �
��
� ��

����
����� �����	�� �� ���� ���� ��� ����
(���
�� �� ��� �����
��� �� � #	�����'������
� �����
� ��� 2������ �
���
=������ �� +
	��� 8� ;
��
� ��� �������	��	�� !��������� ����� ���
������
��
�� ����������� ������	���	���	��
��� ������	���	���	���	��� ��� ����
(��� ����� ���������� ��� ����� �� ��� ������ � ������� �� �
��� #	�����%
'������
�
������
����� 2�������� ������	���	���	��
� � ���� ��,��� �� ���� �
��� /�������	 ���
� ����
� ���
������

�� ���� � �����	�
� ��� ������

�
���� ��� ���������
� ����� �� �������
�� ����/�������	 �	��%
!�����0�1 ��
�� ��

���� � ��� =�����

 �
���
���
�� �
�� ������� ��������� D�! '��
� �� ��� �����	�� ���
���)�
��� +
	��� 5� ��� ������	���	���	���	�� ��������� ����
� ��� ������
��
�� �
�� �� � �����	� �����	� ��� �����
��
� ��
� ���������
� ����� �� � *����� �
���
���
�� ��,��� �
�� ���� .DD�D ��� ���
���� D�D '��� ������
��
��
�
��
� ��������)�

��� �����
��� �� � �������
� ����
(��
� ����� �� 	������� �������� 7������ ��� �� �������� �� ����������
�� ����
�
���

������
�� ���	����
�	
��	��	�� ���� �� � �� 2����
� E���
������
��
�� �� � ��������
� ��

�
��
	�	�	�� ������� ���
�
�
�
 ������ �� �
��� #	�����'������
� �����
��.������ � � ��� ��(�
�
�� �� ��
� ������
�
	
���
� ���)�	� 2����� �!""#$ ���� �� +
	��� 8� ��� ��(�
�
�� ������ �
�� ������ �����
��.������ � � ���
����*���
��
���� ���� ������� ��� ����
���� ��� ������ ����������� �
���� � �.����3.���� � ���
���� �
���

������ ���
��
� �.���� �� ���� �
��� .����� ��� ���
����
�� ��
���
 ���
��
��
� ��

���� �� ��� �����
 ���� ��
��� ������� 7����	������
�� ��������� 	�-
������.����
��
����� ���� ��� ������� ����� �� ����
�� 'F) �����	�

���� �
�� ��������� �.���� ���� ������
 	�� ��
� ���������
� �
��*
�	?
�
� �������� ��
�
� ���� ����� �������
�������� � ����������
�	 �����	������ 'G) ��������� �� ��� ���� 	�,
���������.���� �

<���� ��� ������
�� �� �����	�
������.���� � #	�����'������ �������� ��� ����������
� ����

�
� 2���

�

������
�
��
�
��
����� �� ��� ��� � � � ��� � � � ��� ���������� ��� (��� ��������� �� ��� ����

�
 ������
�
�� ������
�� ����
�	 � ����
� ���� ��� =�����

 �
���
���
�� ��� �� ����*
�	 ������� ��
� ����
� ������� �������� ��
�
������
��
� ��������� �� ����
�	 ��� �����	� �	����#������ �� ���� ��,��� ������	���	���	��� �� ��
� ���� ��,���
���

�� �
��
���� ��� �����	�
�
��� '��������� ��	�
� ��������)� 3�����
��� ��� #	�����'������ ����� � ����
�

-.

Figure 4. SimplexChannel specification

���� ��� A����
 �
���
���
�� ������	���	���	���	�� �� ����
�	
� ��� �����	� ����� �����$����
�� ��� ������

������ �� ��
�� ��� ��� ����
�%� ������ �� �
�� ��
��� <���� ��
� ��
��� �����	������ ��������� ���,4
������.����

� ��������� ��� GH �����
 ������� ���� ��� �����	�
� ���� ������������
��
��� ��� �����	�
�
���
� �� �������

� �������
� �

�	 �� ����
��
�� ��� ������ ��������� �����
��.������ � �� ��� ����

�
 ������
�
��
� � ������
��

� ��
� ��������� ������ ��� ������� ����
� �������
� ��
�	 �������� �	�
�
� ����

�
� �� ��
� ���� ��� ������

� ��
� �� ��������� �� ��������� ������ ��
����
�	 �����	���

��� ����

�
 ���
�
�
��
� ��� #	�����'������ �� ��� ��$�
�� ��� ������ ����� ;� ���
� �������
�������� ��

������� ���
��
� ������"
.����� ���� ������ ��� ������ �� .������ �������
� ��
�	 ����������� �� ��� ������
�
0��� � ���
��
� ���
� �� ���� �� ���
	��� � ��
�� �� ��� ���������� ���
�
�� �� ���
������
� �
��� ��� ����

�	

��	��	�� �� �
�������
� 0���
�� 5 �� ��� �

�� ���� �����
��� �� �� ����������

A��
�� ���� ��� �����
��� �� ��� #	�����'������
� ��� ���� ��
�
�
� #�� �� ��� �������
�� ����� �� 23304
�������� ��� �����
��� ��� �� ���������
� ��
� � ���

��� �� ���

� ������
� ����� ��
� �������
�� ����� ��*��
23304 �����
�

� ��
���
� ��� �����
�
�	 '��� �����
��� ��) ����
�� ������� �� � �
	�
���
 �� ��������
�� �
�����
���
�	 �� ��
�� ����

��
��
�������
���
� ���� �������� �� �������� �����
��
��
��	��	�� ���� �� :�#4 �� �
'��� ������
� ���

��	�� �� �����
�� ��� �����
��� �� ��� ������

� ��� �� �����
��	��	��)�

$ %��� �
�����

��� ����
�	� �� ����
� ��� ����
��� ����
�� ��� ��������� ��*�� ���� ��
�������
�� ����
 ��
�
�	 ��� �
��
��
�
�� ���
 ��� ��� 0�� ������� ��� ���

� ���� ��
���������

� ����
�� ��� ���
�� �
����� �� ����� ��������� ���
�
������� < ����
(���
�� ���� ��� ���� �� �� ����
��� ������
� ��� �� ������ ��� �
��
����� E�
�	 ��� �
1�����
������� �� ��� ������ �� ��� ����	�
 �
���� �� +
	��� -� ��� ������� '����
�
) ����
 ��� �� ��������
� �
1�����
����� �� �
��
��
��� ��� �����	�� ��� ���������� ���� ��� ������ ������� ��� �
1����� ��������� ��� �
������
���
��
����� �� ��� �������
��� ������
�� ��
� ����
�
� �� ����
��������� �� ���� ����
 ���� '���� ��,�����
������� ��,���� ��� �
������)� ���
��������� ���� ��� ������� ����� �� ���� ���
��
�? ��� ��������� ���� ���� ���
���� ����
� �������
� ��
�	 �������� �� ��

�

��
������ ��� �
����� �� �

 �����	�� ������	�� ������� ��� �
1����� ���
�
���
�������
�� �
�	���� '�
�� ��

��
�����	� ��$����� ������) ��� �� 	�������� �������
��

�� <� �����
� �� ��
�������
�� �
�	���
� �����
� +
	���
!� ��� �
�	��� ����� ��� �
1����� ����
 ���
�
�� ��� ��� �����	�� ������	�� ������� ����� ���
�
��� +�� ����
�����	�� ��� �
��� ��� ������
 ��� ��� ���������� ���
��
������ +��
������� �� �
�� /-.�D� �����	� ������ �
��
��������� - '��
�
� ��� ��$����� ������ �� ��� ����������
�	 !����� ���� ��,���)
� ������	�� ������� ���
����
���� *������$���� ��� ����$	��#������ A��
�� ���� ��� �����
������� �� �����	� ������	�
� �����
� +
	��� !�

--

Figure 5. Interaction Diagram

��� ������
���
���
��
�� ��� !���	���$���� ��� �
����� ���� ��� �� ���� �
�
�
�� �������� �� �
���� ���
��
�	
�� �����
�	 ��� !���	���$����� ��� +
	��� !� <������ ��� �� ����
� ��� ����
��
�� �� �����
���
� �����	� ���
������� �� ������	� .� .."� < ������
� ��(��� � �������� �
��� �� �����
���
� ����� �� ��� ���
�
�� '����������
�
������ ��� ������
�) ���� ���
���
���
� ��
� �����
���� ���
�������
�� �
�	��� �� +
	��� ! �
���

��� ���
�����
��� ����������
�	 �� ��� ���������
�� ������
� ��
�� ��
� ������
�
���
��� ��� ��� *������$������ ���
����$	��#������ ��� ����$	��+���	��� ��� ��� !���	���$���� �� ��

 �� ������
� *$���$� �$��!$5� !$���$6
��� �$��*$� ��� ����� ���
�
�� ���
��
�
�
��

E�
�	 ��� ��������
�� #
�	���� �� ���� ���� ��
� �� �����

� ���
���� ��� �
������ �
�� '�� ��� �	���) ����
�����

���� �� ���
��
 '�
�� ������� �� �����	����)

�* ������� ��� *������$�����	� ��������
���
�
��
�� ��
�
���
��
 �
������ �������� �� ��
�
�	 ������ -9 �
�� ��
�� ��� �
�
�� � �����	���� �� . ���*�� ����� -@8 ��
�� ��
�
��� 3� ������� ���
�	 �� ���
���� ����������� (���� �����

�
� ��� ���
���
�� ��������� ��
�������� ���
�
�� ��� �������� �������� ��� '����
��
��
) ���
���
�� �� ����
 ���������� '���� �� �����������) �������
��

��

=� ��
�	 � �����
 ���
(���
�� ���
 ��� ��0� �� ���� ���� ��
� �� ���
�� ��� ����������� �� �� �������� ��0 ����
��
�� ��� �������
� ���� ��� ��� ��
��
��
� �
��
� ���
�
�� ��*���
��	����� �
�� ��������
��
�� �������
 �� ��� ��
��*� ������ ��������
��� '�
�� ������� �� ���
��
�� ��� ��������� ��$����� ������� �� ���*���) �� ��*� �����

���
(���
�� ����
�
�� ��� �����
� ���� ��� 	�����
 ����
�� �� �������
�� �����
 ���
(���
��
� �
���� �������
��

� ��
�����
��

� ����
���
�� ��������� �� ���
�����
	��
�	 ������� �� ������� �������
�� �����������
�� ���
(���
��
�� ��

 ����
�� �� ��� ��
�
�� ��
�
� ��
�������� ��� ���

��	
�	 ��� �������� ���
��

6�������
� �
�� ��
�	 ����
�� ���
��� ������
���
 �������
� �� 23304 ����
(���
���� ��� (��� ����
��
��� ���
����
�	 �� 23304 ���� �������� ��� ���������
� @"� +�� ��� �������
� ����
�	 ���� �������� '�>>)� ����
�
�	
����
�� ���� ���� ����
���� +������ � ������ �� �����
�����������
�	 �����������
��� ��� ���� ����
���� .� ./"�
=����
�����������
�	 �����������
��� �

�� ��� ����
������� �� 23304 ����
� �� �� ���
(��� �
����� ����	
�	
��� �����
���
 ��� ������
���
�� �����
����

& ��
��
���
� �
� '
�
�� �������(

�� ��
� ����� �� ���� �����
��� ��� ������
���
 ����

�	
��	��	� 23304� 23304
� �
��	��	� �
�� �
����
��� ��������
��
 ������
�� ���
� ����
���� �� ���� �� ��� 0�� '0���������������� ��	
����
�) ������
��� ����������������� �������� ���
��	��	� ����
��� � ������� ���� ����� �� ��0� �
�� � ���� ���� �����
�� ��� �������� �� ����
�
���
 ��,������
����� ���	����
�	
��	��	��� :��� ����
�� ���� ���
��
�� �����
���
�
����������� �� � ��

���
�� �� ������������ ���������� ������� ��,���� ���� ������
���� �����������
� �� ����
�	
�����	�� '�
�� ���� ��,����) ���� ����
� ������
�� =����
��� �� ������� ��,����
� �����
��� �� ����������� �����	�
����
�	 ��
�
�
���� ���
���
��� ��� ��
��� ��
�
�
���� 	������ ��������� ����

�
 ��� ��$����
�
 ������
�
���
������ ��������
��� '��

) ������
�� ���
��������� ����� ��� ��
�� ��
�
�
���� �� �����
��
���
���� ���� �����������

)� ��	� �+ ��	���� �� ���� ���� � ��	!���� ����
�� ��+ ��
���	��	
���

-5

23304 �������� ���� ��,����� #��� ��,���� ��� �����
���
� ��������� ��� ���� ����
 ��� ��
���� ���� �� �����
���������� < �����
���� ���� �� ����������� �� ������ ���� �
��
� � �������
� �

����� <���
������� ��������� ���
����
�	� �� ������� ��� �� ����������� �� �
������ ��� ������
�� < �
�����
� �������� �� ��������� ��� �����
�
������ ��� ���� �� �� ��������
�� �� ������ ��� ����
���
�� �� ��������� �������� ��*�� 23304 � �������

������
���

��	��	� ���� ���
�������� ������	�� ���� ����� ����

�	
��	��	�� ���� �� 0#4� ����

�� 43�30
��� 6337�

< ������ �� �������
�	 �������� ���
� ���� ���� ����
����� <� ���

��
�
�������
�� �
��
���� ���
 �

���
23304 ����
� �� �� �������� �
��
���� ��� ��

������ 7���
 ��

���
��
� ��������� ��
�������
�� �
�	���� ���
������
��� ��������
�� �
�	���� �
�� ������� ��� �����
 ����������� ���
���
�� ����
�� =� ��*
�	 ��������
���

��� ������� �
	���� ��0� �

�
��� ���� �� �����
 ���
(���
�� ��� �� ����
�� ���� ��������� ������� ��������
���
��
���
�� ��� �������
� �����������
�� ���
(���
�� �� '���� ���
��
��) �������
��� ����
��
��
 ���
���
�� ��
����������� ���������� ��� ������
���
 �������� ��� �������� �������
��

������
���

��� �� �� ��	 �
����
�� �� ������� ����������	
 	� ������
� ����������	������ �������� ��� ������� ���
	����� ��
�����	��
� �������	���� ��������� �����	���� �� ����������� ���������� ��� ����	�
���� �!!"�

�#� �� $
%�&�� '� �
���� (�
	
�
��
�� �� $���� ����������	
 �
� �����
 	� �������� �������� �	������)*
��� �����+���
,��-�� �!!.�

�/� 0� $������ 1�
�)���� ,������� ��	 (���+
	�2*
	�+
	� �������	���� 0
���	3� ������� '
�
��� �� �����	��
� �������	����
��������� �����	���� �� ����������� ���������� ��� ����	�
���� �!!4�

�.� 0� $�����
�� �� ������� 1�
�)���� ,������� ��	
 '�	�
� (����5�
���� 6
��

�� ��	 (���+
	�2*
	�+
	� (�������
7� �� ����� �����	� ��	�����
�� 	� ��	������������ !����"� # �$%& $��"
	'	�� ()
����	
� �!!"�

�8� ����0� ������� ��*�9� �
� ��	 �
����� 0�,�:� $������ *����� �	
�&��
�� 0����� (������� ������ *�
�' ���������	

	� �	��'�+ ������ ������� �����
����	
 �� ,���� ������ *�
�' �����
 %	�-�"	�& ,����& ���'�� �
�� ;<�= �!!"�
�	��������� �� +�	&����
	�
�
��
>�� �� ��� +�>? ����?22+++�������	�2����2����������

�4� (� 6�
�� (��������� 1�
�)���� 1�@
�	������ ��	 (�6 (����5�
�����) 9 �����	
� 6����)A
��� 9��	�
��� 7�
�� ���>�B��&�
�� 0� B(����
+
� �����	�� ��	�	�	' ����������	
& $����
� �
� .��������	
 /.� �
��� �!</.� 6������
�!!"� ,�
��
� C *
���

�"� 1� 0����	� �	��)
�����	
 �
� �	
�)���
��� �	������)*
��� �����+��� ,��-�� �+ ��	���� �!;!�
�;� 1� 0���������
�� �� ������� 7��������
���� �� �DD(6 �� *
	�+
	�� �� ��	�����
�� 	� ��	������������ !����"� #

�$%& $��"
	'	�� ()
����	
� ���� ����� ���� �!!"�
�!� 9� 0�	��	
� ���	�)� 0�1���20���
��� 3
�'����� ��� ������� �����	���� �� (��	����� (����
��� �!!.�
��=� E�
	����� (F(�9G ? 9� D>%��� D	������ ������ 0���������� A
��� �� (�6� 7� 1� (
	
���
�� �� ���
�
�� �����	��

��	�����
�� 	� ��*�4�# ����� 	� �"� 3�� �
� ()�)�� $��
��� �
��� #."<#8.� 9����	�
�� �!;"� �	��)*���
���
���� �� �
� ��	 �
����� �� ������� 0� $�����
�� 0� (������� 0
������������
	� ����
	��� �� �
	�+
	�2����+
	� �������	����

�>%���)�	������ ��)�����5�
���� �� ������H �������� 7� �� ����� �����	� ��	�����
�� 	� ��	������������ !����"� #
�$%& $��"
	'	�� ()
����	
� �!!"�

��#� A� (����� $� $
���&����
�� �� :
	�� ���'2$��� 0�1���20���
��� 5	��'�
�� :���� C (���� �+ F�	&� �!!.�
��/� 9� �
���>

�� �	��)��� 6���	�-� 7�� �� �	������)*
��� �����+��� ,��-�� �!!4�
��.� E� �
	��	� !��
� (���' ���������	
 $��"
�8)��� :���� C (���� ,��������	� �!!/�
��8� �� �
� ��	 �
����� �� �������
�� 0� (������� D>%���)D	������ ,�)������ ��	 *
	�+
	�2(���+
	� (������� 7� 0� ,
)

�
�

��� �����	� ��	�����
�� 	� �!�05���0��9� �
��� "�;<"#4� 6�� 9�
������ ,
����	��
� �!!8� 7��� ,���
��	
(������ �	����

��4� �� ������� �� �
� ��	 �
�����
�� 0� (������� A��
���
)�	���	���� �	
����	�
����� �� (*� ? 9 '�	�
� 9��	�
�� ��
9	�������
	� ������� �� ��	�����
�� 	� �!�05���0��:� �� 0�����
�
�� E� E
������&�� ����� 6�� 9�
������ ,
����	��
�
�!!4� ��� �!<#"� 7��� ,���
��	 (������ �	����

��"� �� ������� �� �
� ��	 �
�����
�� 0� (������� (�����
��� ����������� �� 7��
��	�
� ,���	�� (������
���� (���)
+
	�2*
	�+
	� �������	���� 7� �� 0�����
�
�� �� ,�		� �����	�� ��	�����
�� 	� �!�05���0���& �"	�� �	
����)��	
��
�
��� #4</4� 6�� 9�
������ ,
����	��
� �!!;� 7��� ,���
��	 (������ �	����

-8

����� ���	
���
 �	���������� ��		��� �� �� ���������

�����������

���� ������

	
���� ���
��������� �
� ���
�������

��������

��� ����� �	 	�
��� ��
���� ��� ������
���� ��
�� ��	
��
� ����������
 �
����� �� ��������

� ��� ����� ��
�� �����

��� ��	
��
� ����������
 ��
��� ��
��� ����
 �� �
�����
�� �����

������������ ��	
��
� ������ �
������ �� ����
���
�� ����
� ��
����
� ����
��
��� ��
��� ���

�����
���
� ���
�� ����� �	 ��� ��� ��� ��
�� ��	
��
� ������ �
������ !�

��
��
� �� ���� �

�� �"#��
��� 	�

�� �����

 �	 ��� ���������
 ��� �����
�
�� �"#� ���
�$ ��� �����
���

��
�
�� 	�
��� ��� ��%��
����

&'

L. Feijs
Philips Research Laboratories,

Eindhoven University of Technology
R. Krikhaar

Philips Medical Systems
R. van Ommering

Philips Research Laboratories

Formalization and Visualization
of Software Architectures

ABSTRACT

Abstract

Software architectures play an important role in the development of software intensive systems. Examples of such
systems are medical systems (X-Ray, MRI scanners), telecommunication systems (telephony, videocommunica-
tion) and consumer systems (television, VCR).

Different views have been recognised to split up the complex task of defining software architectures: execution
view, logical view, code view, physical view and module view. In our presentation we focus on how parts of the
module view of software architecture can be formalised and visualised. For this purpose we have developed Rela-
tion Partition Algebra (RPA) which is an extension of relation algebra. In the last decade we had the opportunity
to validate our ideas on RPA and its application at different development sites withing Philips.

Besides defining good software architectures one should also ensure that different results of software development
are conform the defined software architecture. We have also applied RPA to introduce software architecture
verification in (existing) development environments.

This abstract describes the lecture to be delivered by R. Krikhaar, whereas Sections 1 to 7 of the present text (par-
ticipants proceedings) is essentially the paper “Architecture Visualisation and Analysis, Motivation and Example”
by L. Feijs and R. Van Ommering, in slightly modified form presented at the ARES International Workshop on
Development and Evolution of Software Architectures for Product Families 1996 (the lecture also covers more
recent results and a new paper is being written).

27

INTRODUCTION AND MOTIVATION

1 Introduction and Motivation

Whereas for programming in the small there exist well-established concepts of specification and implementation,
the subject of ‘programming in the large’ (or software architecture, as we sometimes call it), has hardly any
established terminology. In this report we elaborate the idea that an architectureA is a specification of the intended
structure of a large design, and a concrete design D is a structure ‘as realised’. We present some evidence that
it will become possible to have a vocabulary to express A and the technology to verify whether a given D does
satisfy A.

The software complexity of many Philips products increases, amongst other reasons because many features are
to be realised in software instead of in hardware. Often there is a need to deal with product families instead of
just products. Not only the processor performance grows exponentially, but most often the software size grows
exponentially too. Other complicating factors are that closed boxes become part of open systems, that media
become part of multi-media, and that in many business groups there is a growing interest in optimising software
re-use.

In today’s software engineering practice, products go through a concept phase in which the architecture is well-
visualised by means of diagrams, while the team is still growing, and while a good architect is present. But in the
realisation phase the architecture diagrams may have become obsolete, and although low-level coding standards
and analysis tools exist, it is usually not possible to check the real software against the high-level architecture. In
the realisation phase, there can be serious problems in managing the software complexity. Yet there is hope: some
visualisation techniques exist already and for example the tool TEDDY turned out to be already very useful for
analysing evolving architectures; several other developments point into the same direction, for example QAC and
Graphical Designer.

Some of the ideas reported in the present report were developed in the context of the project ‘design engineering
methods’. We list some key ideas of this report:

� many relevant structures in a software architecture are nothing but binary relations,

� manipulating relations is a way of obtaining views on intended or concrete architectures,

� alternative views on concrete software architectures can be visualised,

� a modest amount of automated support could be of great help.

It is a goal of this report to explain the idea of software architecture verification. We believe that there are technical
options which will help in understanding the evolving Philips architectures. It would be beneficial to have a kind
of continuity in the architecture evolution in the sense that in all project phases there are explicit architecture rules,
and up-to-date high level views which are kept consistent with the real software.

The main body of this report consists of a story about a fictitious software team which develops a fictitious product
and applies some verification techniques to its evolving architecture. In order to keep this report as short as
possible, the fictitious product is just a toy example, but nevertheless the example will convey the idea of software
architecture verification. Sections 2 to 6 present this story. Please note that the data structures used to define the
architecture as well as the structure extracted from the code are just examples.

Related work: The idea of architecture verification is also presented in [1] and [2]. The TEDDY tool is described
until now only in Philips internal reports. There are also Philips internal reports containing a detailed study of the
theory of relations for purposes of softwarearchitecting. For more information about the mathematical theory of
relations we refer to [3].

Acknowledgements: The author would like to thank René Krikhaar for the cooperation on the subject of this
report. In fact, this report is only an extremely simplified case study of things which the second author and René
are already putting into practice in real-life systems. The author would like to thank Peter van den Hamer for the
discussions and for his feedback on an earlier version of this report. Special thanks go to Henk Obbink, project

28

INTRODUCTION AND MOTIVATION

leader of the ‘design engineering methods’ project, which turned out to be a fruitful place for discussions and for
the exchange of ideas.

29

THE INITIAL SOFTWARE ARCHITECTURE

2 The initial software architecture

In the beginning of the system’s conception there is a software architect whose task it is to define the system’s
software architecture. The software architect will listen to all the marketeers, customer’s representatives and hard-
ware specialists. Of course there is a project document listing goals like flexibility, modularity, future-proofness
as well as a list of performance requirements and cost constraints.

Performance requirements and cost constraints strongly influence the number and types of microprocessors, the
programming language (assembly, C-like, C, C++, SDL, and so on) and the kind of operating system or RTK that
is affordable. But the modularity goals are covered by a software architecture diagram. For a real-life 512 Kbyte
system, say, this diagram may in the initial phase take the form of an A4-sized drawing with some 40 to 70 named
boxes, organised in layers.

Fig. 1. The software architecture is presented.

In this paper we shall only follow a mock-up development process of a toy architecture, so instead of 40 boxes
(software components) we look at a diagram of just 4. But we shall be explicit about the ‘uses’ relations between
these software components.

So let us assume that after some time the software architect presents the key software components and a diagram of
the designed component-level ‘use’ relation. He presents this to the designers and programmer(s) who are going to
further detail this design and who will eventually make the C programs. Let us assume that amongst other things,
the architect says:

“Dear friends, Figure 2 is our software architecture: there are four software components, which I will
explain now. RSRC MNGR is the Resource Manager, which will contain the main procedures of all
our processes and these will be scheduled by the HW and SW of our platform. SYS FUNC contains
the System Functions, and this is the heart of our system. This will provide the data transformations
our customers are waiting for. HW ABSTR is the minimal Abstraction of the special Hardware of our
platform. ERR DRVR is the Error Driver which provides for error printing and contains a driver for
the special error LED. The lines in Figure 2, directed from top to bottom, show the ‘use’ relations
foreseen. So for example from SYS FUNC you are allowed to call the functions of HW ABSTR.”

30

THE INITIAL SOFTWARE ARCHITECTURE

Although here Figure 2 has been made by hand, it could also have been made with TEDDY, a browser which
proposes an initial diagram layout after reading the file with the essential information of the ‘uses’ relation, and
which allows the user (the architect) to modify the layout interactively.

RSRC
MNGR

SYS
FUNC

HW
ABSTR

ERR
DRVR

Fig. 2. Architected component-level ‘use’ relation.

Of course, instead of manual drawing or using TEDDY, other visualisation software could be used. The only
requirement is that a diagram and an explicit binary relation are easily kept consistent. The best way of keeping
two things consistent with each other is to generate one of them automatically from the other. It is important to
note that the essential information of Figure 2 is an intended ‘use’ relations on components, which is as follows:

RSRC_MNGR SYS_FUNC
SYS_FUNC HW_ABSTR
SYS_FUNC ERR_DRVR

In many real projects, the processor is more powerful than the processor of the previous generation of products
and there is two or four times as much ROM available, so most often the team is optimistic that that the software
architecture is feasible. Also in our case, the programmers agree with the software architecture and happily they
start filling in the details.

31

DETAILS OF THE REAL SYSTEM

3 Details of the real system

After some work, the programmers will come up with C code and for example the error driver ERR DRV could
consist of two functions, err pr() which calls led 33() and led 33() which calls err pr().

err_pr() { led_33(); }
led_33() { err_pr(); }

Since in this paper we are only following a mock-up development of a toy architecture, we shall not discuss the
complex algorithmics of real-life software, nor the specification techniques necessary for that, but we only show
some extremely simple C functions, calling each other, but with no meaningful functionality whatsoever. Note
also that we do not stick to the usual layout conventions, in order to save space. After all these disclaimers, we
give the C code of all software components.

/**
* Component: ERR_DRVR *
**/

err_pr() { led_33(); }
led_33() { err_pr(); }

/**
* Component: HW_ABSTR *
**/

#include "ERR_DRVR.h"

power() { err_pr(); i2c(); }
i2c() { }

/**
* Component: RSRC_MNGR *
**/

#include "SYS_FUNC.h"
#include "HW_ABSTR.h"
#include "ERR_DRVR.h"

init() { e(); led_33(); }
reboot() { power(); init(); power(); }
step() { while (1+1==2) a(); }

/**
* Component: SYS_FUNC *
**/

#include "HW_ABSTR.h"
#include "ERR_DRVR.h"

a() { b(); c(); }
b() { power(); }
c() { d(); g(); }
d() { i2c(); }
e() { f(); }
f() { g(); err_pr(); led_33(); }
g() { h(); }
h() { err_pr(); }

32

EXTRACTING RELATIONS FROM THE REAL SYSTEM

4 Extracting relations from the real system

For a 512 Kbyte system, it may take a year from conception to completed code, and then the code is not as easily
surveyed as the one page of C code of our toy example. After this year, there is no more focus on architecture,
because everybody is busy with testing, debugging and adding shortcuts and tricks for meeting the performance
requirements. New people joined the project and maybe the architect has already left.

If this were a real-life project and it would continue for yet another year, the project could find itself in a reverse
engineering phase. There is even a danger that the project finds itself in the middle of a spaghetti: nobody
understands all of the code and nobody understands the system’s modular structure and the associated ‘uses’
relations.

But stop, we shouldn’t wait until the spaghetti-phase. As soon as the initial code is available, it can be checked
against the architecture diagram. Of course in a real-life project, there could be several levels of hierarchy, and
there may be even more kinds of ‘uses’ relations than just the ‘calls’ relation on C functions, but the essential idea
remains the same. It is possible to extract the real ‘uses’ relation, as opposed to the architected ‘uses’ relation from
the code. All the information is on-line available; the only problem is that there is too much information. The
obvious solution is to use automated support for extracting the essential information from the code. Again this
information can be cast into the form of tables. There are technical options to perform this extraction, for example
QAC, although of course they depend on the programming language in use.

For the present example the the essential ‘use’ information is easily extracted and stored in a file called uses.

err_pr led_33
led_33 err_pr
power err_pr
power i2c
init e
init led_33
reboot power
reboot init
reboot power
step a
a b
a c
b power
c d
c g
d i2c
e f
f g
f err_pr
f led_33
g h
h err_pr

But it is not obvious that this satisfies the initial architecture of Figure 2. As a first step, it is already helpful to
visualise this ‘uses’ relation, see Figure 3. This is made with a structure browser (TEDDY). Of course this browser
is not only useful for analysing a design once finished, it could in principle also be used for drawing diagrams of
relations which do not exist yet, but which will be implemented next. Note the thick line between err_pr and
led_33 which reveals the mutual usage (a thick line is a ‘uses’ arrow going upward, and since there is a cycle,
there must be at least one thick arrow).

33

EXTRACTING RELATIONS FROM THE REAL SYSTEM

reboot
step

power

init

a

pr
err

i2c

33
led

e

b c

d

f

g

h

Fig. 3. The use relation at the C function level.

In order to apply a suitable process of abstraction of the ‘use’ relation we need the ‘part-of’ relation too. In this
case, the ‘part of’ relation (which tells for each C function its component) is as given by the TEDDY diagram
of Figure 4. This diagram shows the functions as boxes with rounded corners and the components (files) as
rectangular boxes. Again, the essential information behind the ‘part of’ relation is just a binary relation; it can be
stored as a file containing pairs of identifiers.

34

EXTRACTING RELATIONS FROM THE REAL SYSTEM

DRVR
ERR

ABSTR
HW

MNGR
RSRC

FUNC
SYS

pr
err

33
led

power

i2c

init

reboot

step

a

b

c

d

e

f

g

h

Fig. 4. ‘Part of’ relation between functions and components.

In particular, err pr is part of ERR DRVR. led 33 is part of ERR DRVR. power and i2c are part of HW ABSTR.
The function init is part of RSRC MNGR and so are reboot and step. Finally, a to h are part of SYS FUNC.

Now we have everything needed in order to compare Figure 2 and Figure 3. This is done by transforming the
use relation from the C function level to a relation amongst software components. We call this transformation
lifting: we move the relation from the level of the small objects (the C functions) to the level of the big objects (the
software components). The key to this lifting is of course the ‘part-of’ relation of Figure 4.

In detail, the process of lifting goes as follows: from file uses, note that err pr uses led 33. From the ‘part of’
relation (Figure 4), err pr is in ERR DRVR and led 33 is in ERR DRVR so ERR DRVR uses itself, which is not
so interesting. Conversely led 33 uses err pr, which adds no new information. Next, power uses err pr and
since power is in HW ABSTR and err pr is in ERR DRVR we may conclude that HW ABSTR uses ERR DRVR. In
the same way we find that RSRC MNGR uses SYS FUNC. When carrying along, the following relation is obtained;
Assume that it is stored in a file called Uses.

HW_ABSTR ERR_DRVR
RSRC_MNGR SYS_FUNC
RSRC_MNGR HW_ABSTR
RSRC_MNGR ERR_DRVR
SYS_FUNC HW_ABSTR
SYS_FUNC ERR_DRVR

This transformation of lifting, that is transforming a ‘uses’ relation to get a relation at a higher level, is a key con-
cept for software architecture verification. It combines abstraction and advanced cross-referencing. The outcome
is visualised in Figure 5.

35

EXTRACTING RELATIONS FROM THE REAL SYSTEM

MNGR
RSRC

FUNC
SYS

ABSTR
HW

DRVR
ERR

Fig. 5. The C-level use relation viewed at the component level.

There is also another route to arrive at the same information, namely by looking at the #include lines in the
C code. When using a UNIX system, it suffices to type grep include *.c and after some trvial post-
processing we have a component-level ‘uses’ relation. Fortunately it is the same relation; if the grep ed relation
would have had additional lines, this would indicate that there are superfluous #include lines (which happens
not to be the case). The converse cannot happen at all, because if each component is compiled separately, the
compiler will check that all C functions used are listed in one of the included header (.h) files; here we assume
that the header files themselves are correct, in the sense that they list all headers of functions of their components,
and nothing else.

???

Fig. 6. The architect discovers the real system.

Now it is time for a comparison. The team calls the architect and visualises the contents of the Uses relation, as
in Figure 5. But look, Figures 2 and 5 are not the same. What has happened?

36

DISCUSSION

5 Discussion

Of course everybody wants to know what went wrong and why Figures 2 and 5 are not the same. Maybe the
architect will say that the programmers have turned his clean architecture into a mess and maybe the programmers
will say that the architect has not enough knowledge about real software.

init() { e(); led_33(); }
reboot() { power(); init(); power(); }
step() { while (1+1==2) a(); }

Fig. 7. The programmer explains why RSRC MNGR must use ERR DRVR.

But then the team realises that maybe there are no stupid mistakes at all and that maybe the problem is more subtle.
One of the programmers explains an important observation first:

The resource manager component RSRC MNGR has three C functions, init, reboot, step, each
of which can be viewed as an independent main program. Of these, init and reboot are tied to
the hardware reset interrupt and the software interrupt (trap), whereas step is supposed to be called
in an eternal loop. The architected component-level ‘use’ relation of Figure 2 has been made with the
step function in mind. But everybody knows that for initialisation and rebooting one has to do some
low level tricks every now and then. For example reboot has to call power and indeed, this causes
a direct ‘uses’ line from RSRC MNGR to HW ABSTR. This explains why Figure 5 has more lines than
Figure 2. And if you look at it this way, we have in fact respected the original architecture.

This seems a plausible explanation, but how can one be sure if this is really true? This demands a further analysis.
There is a technique for analysing the code, namely by means of lifting. If one could (for the sake of the analysis)
remove all ‘uses’ lines and all C functions not relevant to step, then one gets a thinned version of Figure 3. And
then lifting could yield a thinned version of Figure 5.

It is clear that for small examples one can perform the lifting transformation manually, but for large systems
automated support could be of great help. Let us assume that we have a piece of software which can do lifting of
‘uses’ relations and a few more related transformations. Let us call this piece of software a relational calculator.
One of the main purposes of the present report is to explain the idea of a relational calculator as a technical option;
we will not discuss any make-or-buy decisions, but we just assume we that we have it (also without the calculator
many of its calculations are easily done by shellscripts or other ad-hoc programs).

37

DISCUSSION

A possible user-interface of the calculator is shown in Figure 8. The calculator works with binary relations, and just
like a normal pocket-calculator it is important to show the outcomes of the calculations on some kind of display.
Maybe one wants to choose between two kinds of display: a text-file format and a graphical format. The text-file
display is trivial and the graphical display is already existing: use TEDDY or similar visualisation software.

lift_to_module_level

binary operations:relations:

usesView

UsesView

partofView

usestransView
step_usestransView

UsesdesignView

indirect_reachable

reachable_from_element

restrict_domain_and_range

compose

invert

Uses_View

go_to_graphical

go_to_text_file

Fig. 8. The relational calculator.

The lower part of the user-interface consists of two halves. The left-hand side part allows for entering file-names for
the storage and retrieval of relations. For example Usesdesignview is the name of Figure 2, partofview is
the name of Figure 4, usesview is Figure 3, Usesview is Figure 5, and the remaining names belong to relation
files which will arise soon if we continue the development of the toy architecture.

The right-hand side part allows has a number of buttons, one for each calculation which can be performed. For
example in order to lift Usesdesignview of Figure 2 with the partofView of Figure 4, these two files must
be selected and then the ‘lift to module level’ button must be pressed.

38

CALCULATING A REVISED ‘USES’ RELATION

6 Calculating a revised ‘Uses’ relation

Next the real analysis is performed, which begins with the removal of all ‘uses’ lines and all C functions not
relevant to step. The first question is: ‘which functions are used by step?’ Somewhat more precise one wants
to have all functions used by step as well as all functions used by such functions and so on. Therefore, one
proceeds as follows: first calculate the transitive closure of the uses relation. This is exactly what the second
button, labeled ‘indirectreachable’ is meant for. The outcome is visualised in Figure 9.

reboot
step

power

init

a

pr
err

i2c

33
led

e

b c

d

f

g

h

Fig. 9. Transitive closure of the ‘use’ relation on functions.

Next, this relation is restricted to those ‘uses’ pairs which begin with step, by means of the button ‘reach-
able from element’. The outcome is visualised in Figure 10.

39

CALCULATING A REVISED ‘USES’ RELATION

reboot
step

power

init

a

pr
err

i2c

33
led

e

b c

d

f

g

h

Fig. 10. Functions transitively connected to step function.

In fact this relation is not really interesting. The interesting things is the set of functions occurring in it. Let
us assume that the calculator can work with sets instead of relations too (the buttons for that are not shown in
Figure 8). Then the main result is the set:

a
b
c
d
err_pr
g
h
i2c
led_33
power
step

which means that e, f, reboot and init have been thrown out. This set must be used to restrict the ‘uses’
relation of Figure 3. Both the domain and the range of the latter ‘uses’ relation must be restricted. The button ‘re-
strict domain and range’ makes the calculator perform this task. After that ‘lift to module level’ must be applied
to that result, which gives the main outcome of the analysis (Figure 11).

40

CALCULATING A REVISED ‘USES’ RELATION

In this particular example, the same outcome would have been obtained by just removing init and reboot
without removal of the functions which are not transitively connected to step, but in general, removal of such
functions makes a difference, and therefore the latter part of the analysis may not be skipped. So now there is a
main outcome, visualised in Figure 11.

MNGR
RSRC

FUNC
SYS

ABSTR
HW

DRVR
ERR

Fig. 11. Component level use relation with surpressed init and reboot calls.

Now it is clear that the programmer’s explanation is partially true, but not all of it. Indeed, most of the differences
between Figures 2 and 5 are caused by init and reboot. But the ‘uses’ line from HW ABSTR to ERR DRVR
is not explained that way. So the team must discuss this further. The team must arriving at one of two possible
conclusions: either HW ABSTR may not use ERR DRVR and thus power should not invoke err pr and should be
modified; or it is really necessary that power invokes err pr and thus the revised architecture of Figure 11 must
be declared to be the official architecture. In this story, the latter alternative is chosen (see [4] for a nice dicussion
of typical causes of such differences). By now, the team arrives at a common understanding of the architecture.
The main lesson is that using some simple concepts about relations and a modest amount of automated support,
several views on the system can be developed and compared.

RSRC_MNGR

sys func

hw abstr

Fig. 12. The team arrives a common understanding of the architecture.

41

CONCLUDING REMARKS

7 Concluding remarks

Of course the story and the case study of the preceding sections is extremely simplified and naive as compared to
the real software development projects happening in Philips. But even for this toy architecture, a clear view on the
transitive dependency amongst the C functions is not immediate: the graph of Figure 9 is already too complicated
for being found manually or for being kept in mind during work. So can you imagine to find manually the transitive
dependency amongst the C functions for a real product with 1000 C functions, or 10.000?

It was also unrealistic to assume that there are two kinds of interesting design objects (C functions and C files);
and so was the assumption that there is only one kind of ‘uses’ relation (‘uses’, based on calling) and that there is
only one dimension of decomposition (‘partof’ based on files). So in reality, when so much more relations exist,
can you imagine trying to reconstruct the high-level architecture from the sources without any automated support?

In our opinion, the automated support should consist of three kinds of software:

� software for extracting relations from specifications and from source code,
� software for visualising structures and (relations),
� software for manipulating and combining relations in order to develop alternative views.

Software of the first kind will necessarily be specific for the languages in use. In certain cases some simple unix
tools like awk and grep will do the job already. An example of software of the second kind is TEDDY. An example
of software of the third kind is the calculator of Figure 8, which at present however has not been fully realised yet
(Figure 8 was derived from a mock-up demo). There are still many open issues with respect to the ergonomical
aspects of the calculator.

It can be argued that all this is only just one aspect of architecture, and that the other aspects of the system’s
behaviour are much more important than static ‘uses’ and ‘partof’ relations. One could ask how important the
static ‘uses’ and ‘partof’ relations are when compared with:

� dynamic aspects and contention for shared resources,
� technology choices (e.g. for message passing),
� choice of algorithms (e.g. for scheduling),
� error handling,
� diversity and product families,
� choice of commercially available building blocks (e.g. kernel, DMBS),
� evaluation of alternative architectures (e.g. performance).

There is no doubt that these issues are important, but if one looses control over the complexity of the actual code,
and if the nice architecture descriptions are not related to the real systems, one has a fundamental problem which
will hinder most efforts to address dynamic aspects, algorithms etc.

Moreover, a significant part of the complexity of e.g. distributed object-oriented applications consist of all the
objects having attributes, most of which are nothing but pointers to other objects: clients know servers, servers
keep track of delivery addresses for active clients, routing tables map addresses to addresses, and so on. These
pointers and address tables can be summarised as relations too. There certainly is a need for the analysis of
these dynamic relations, and maybe the same technology of calculating with relations can be used (provided we
can extract relations dynamically from the running system). Continuing this line of though we could find that
visualisation software and the relational calculator become software components which can be linked and loaded
as a part of the system whose architecture is monitored.

42

REFERENCES

8 References

[1] G.C. Murphy, D. Notkin, K. Sullivan. Reflecting source code relations in higher-level modules of software
systems. Technical report 94-09-03 Department of computer science and engineering, University of Wash-
ington,(1994). (or see http://www.cs/washington.edu/research/tr/techreports.html).

[2] D.R. Harris, H.B. Reubenstein, A.S. Yeh. Reverse Engineering to the architectural level. ACM 0-89791-708-
1/95/0004 (1995).

[3] G. Schmidt, T. Ströhlein. Relations and Graphs, Springer-Verlag (1993).

[4] I. Carmichael, V. Tzerpos, R.C. Holt. Design maintenance: unexpected architectural interactions. IEEE,
ICSM (1995)

43

44

Automatic Synthesis of SDL from MSC in Forward and Reverse Engineering

Nikolai Mansurov

Department for CASE tools
Institute for System Programming, Moscow Russia
25 B. Kommunisticheskaya,
Moscow, Russia
Email: nick@ispras.ru

Abstract

In this paper we present Message Sequence Charts (MSC) as a formal technique
applicable both for very early and very late phases of the software development
process. We demonstrate how the synthesis technique, producing executable
specifications in telecommunications standard Specifications and Description
Language (SDL) from MSC can be used to support early phases of software
development in a forward engineering process as well as integration with older,
legacy software as a reverse engineering technique. The methodology presented in
this paper is aimed at lowering the “barriers” for wider adoption of formal
specification languages in industrial context.

1. Introduction

CASE-based approaches offer significant improvements in quality, productivity,
and time to market [5]. However there exist certain barriers for wider adoption of
formal methods in industry. We identify two major barriers – support of early
development phases [4] and support for integration with legacy software [2].

There exists a significant gap between mathematical-based formal methods and
design practice at the early phases of the software development process [8]. The
design of a new system usually starts in an exploratory and iterative way with a
Requirements Capture phase. At this phase the problem domain is surveyed, and
fragments of a trial solution are sketched. Most of these sketches lead a short life, and
are modified frequently. In the initial phases of a design, comprehensive formal
specification and verification techniques offer little help to the designer [8]. They
appear to require a level of formality and precision that is not available yet. In return,
only fairly abstract properties may be established. The initial price to be paid is too
high, the initial rewards are far too small [8].

 Instead, the so-called use case based methodologies are becoming predominant in
software development [9,16]. Use case based methodologies share the common way
of capturing the customer requirements as scenarios. Message Sequence Charts
(MSC) [7] or Sequence Diagrams of the Unified Modeling Language (UML) [16] can
be used to model use cases. The MSC language is especially attractive as an FDT for
the early phases of the software development process because it is well accepted in
the telecommunications industry and has a low learning curve and, while at the same
time it has a well-defined formal semantics. We believe that significant improvements
of the time-to-market can be gained by expanding the use of FDT-based CASE tools
to the early phases of the software development process [5,4,8].

Apart from the support for the early design phases, there is another important
issue which needs to be addressed in order for formal methods-based CASE tools for

45

communications software engineering to become common practice. Formal
methodologies are only applicable to the so-called “green-field” projects, in which the
system is developed completely from scratch. However, most projects in the industrial
context involve the older, “legacy” base software. This software is being maintained,
updated by developing new features, or reused in new projects. For the formal
methods to be adopted in industry, it is necessary to provide cost-effective methods
for integrating CASE-produced components and systems with older, “legacy” base
software [1]. Legacy software systems were produced with older development
methods, often involving a blend of higher-level code, and system-level code, with
heterogeneous languages, architectures, and styles, and often very poorly
documented. Up to now, this fact has constituted a “legacy barrier” to the cost
effective use of formal methods-based development technologies and tools [2]. In
order to overcome the “legacy barrier”, there is an increasing demand for developing
cost-efficient re-engineering methods which will significantly reduce the effort
involved in creating formal specifications of the base software platforms.

In this paper we describe our experience in lowering the barriers for wider
adoption of formal methods in telecommunication industry. We have selected MSC as
the “interface” formal method, intended for use by humans. We developed synthesis
methodology aimed at producing executable specification in another
telecommunications standard formal language called Specification and Description
Language (SDL) [6]. We discuss methodological issues of using MSCs and
synthesized SDL specifications at both early and later phases of the development
process.

The rest of the paper has the following organization. Section 2 presents our
synthesis technique, including data extensions to MSC language and the key concepts
of the synthesis algorithm. Section 3 describes application of synthesis for forward
engineering phases of the software development. We describe high-yield requirements
validation and architecture validation technique. We also provide comparison to
several related approaches for using synthesis as part of forward engineering process.
In Section 4 we describe applications of synthesis for reverse engineering. We present
our dynamic scenario-based approach to re-engineering of formal SDL specifications
of legacy telecommunications software. We also provide comparison to some related
approaches for re-engineering formal specifications. Section 5 concludes our
presentation.

2. Synthesis of Executable SDL Specifications from MSC

In this section we present our technique of technique for synthesis of SDL
models from scenarios formalized in MSC. We describe formalization of scenarios,
our data extensions to MSC, describe the key concepts of the synthesis algorithm, and
provide an illustrative example.

2.1. Overview

Our approach to formalization includes the following guidelines:
• Each scenario is formalized using a Basic Message Sequence Chart (bMSC) [15]
• Control-flow relationships between scenarios are formalized using High-Level

MSCs (HMSC) [7]. Control-flow relationships between scenarios include
alternative (sub-) scenarios, iterations of (sub-) scenarios, “uses” and “extends”
relations between scenarios [16]

46

• Data-flow relationships between scenarios are formalized using our data
extensions [4] to MSC language

• Certain composition rule is used [4]:
• Sequential rule (single scenario is executed “to completion”)
• Parallel rule (different scenarios can execute simultaneously)
• Multiple instance rule (multiple instances of the same scenario can execute

simultaneously)
• MSC instances are mapped to finite state automata extended with data operations
• SDL models are automatically synthesized, such that they are:

- complete (both structure and behavior) & ready to run
- non-deterministic
- typebased

2.2. Data Extensions to MSC

Let’s consider our data extensions [4] in more detail.

1. Variable definitions. We allow to define variables of different types. SDL
semantics is assumed. Variable definition is placed into a text symbol in any
MSC diagram. A local copy of each variable is propagated to each actor.
Simplified SDL syntax is used for variable definitions:

<variable definition> ::= dcl <var_name> <type>;

2. Actions. We allow MSC action symbols to contain operations on local
variables. SDL semantics is assumed. Simplified SDL syntax is used for
actions:

<assignment> ::= <var_name> := <expr>
<function call> ::= <func> (<expr1>,…,<exprn>)

3. Message parameters. We allow messages to have parameters. We restrict the
syntax of message parameters to variable names. SDL semantics is assumed
for parameter passing.

4. Create parameters. Actors are allowed to have parameters which are passed
from the parent instance to the child instance during the create event. We
restrict the syntax of create parameters to variable names. SDL semantics is
assumed.

5. Local conditions. We allow to specify local decisions using boolean
expressions over instance variables. Syntactically, local decisions are specified
as local conditions on the axis of the corresponding instance. The boolean
expression is written in a comment box attached to the local condition.
Semantics of such condition is that the subsequent events are considered only
when the value of the boolean expression is true. Boolean expressions are
restricted to the following syntax:

<boolean expression> ::= <var_name> <op> <var_name>
 <var_name> <op> <const>

47

Alternative sequences of events can be specified in a different MSC using a
local condition with the same name and a different guard. All guards must be
mutually exclusive.
6. Timers. Subsequent set and timeout events on an MSC instance axis may be

used to specify a delay during use case execution. In an abnormal scenario
such delay may specify an expired timeout which causes an error. Note that
timers with parameters are not supported.

Our extensions to the MSC language describe the flows of data through
individual scenarios (local data flows) as well as data flow dependencies between
scenarios (global data flows). The concept of data flows over scenarios is illustrated in
Figure 1 and Figure 2. Two local data flows through scenario abc are shown (as two
dashed lines) in Figure 1. The first flow contains the following MSC events: a: in
x(p,q) from env; a: create b(p,q); b: out w(r) to env; Note, that instances B and C
use different (local) copies of the variable r. Thus the parameter of the message w
which is sent by the instance B to the environment is not necessarily equal to p+1.

The second flow contains the following MSC events: a: in x(p,q) from env; a:
create b(p,q); b: out y(p) to c; c: in y(p) from b; c: action ‘r:=p+1’; c: out z(r) to
env;

�

��� ����

���

��	
�

����
�����������
	�	
�

�

�

��� ���

���

����
����������
	�	
�

�����

��	
�

����������������

��������
�����
�

��� ����������

���
���������

�

�

�

��� ���

�

�����

���� !

��	
�
��	
�

"

�

��#$

%

�

�

�

����������&'

����������&!

��� ����������

���
���������

��� ����������

Figure 1

Figure 2

48

Note that the instance C will send message z(r) to environment only when
condition r>0 is true. Alternative events for the instance C can be specified using the
local condition local with a different guard. Global conditions in the HMSC graph
will be required when alternative events involve other instances.

Figure 2 illustrates the specification of global data flows between use cases. In
Figure 2 parameters of the message value returned by the use case pop as a reaction to
the message get depends on the events in the use case push. push and pop operators
are assumed to be user-defined SDL procedures with in/out parameters implementing
well-known stack operations.

Our main motivation in adding data extensions to MSC is to allow more
accurate specifications of functional requirements. However the same data sub-
language turns extended MSC into a powerful FDT for design phases.

2.3. Synthesis Algorithm

We use the concept of event automata. An event automaton is a finite automaton
corresponding to a single MSC instance, such that the input symbols for the
automaton are MSC events, involving the given MSC instance. We distinguish
between three categories of MSC events: input, active and idle events. An idle event
is a trivial (empty) event, which was added to simplify algorithm description.
• input events (require synchronization with other instances, decision about event is

taken by another instance)
• message input in(i,m)
• timeout timeout(t)

• active events (do not require synchronization with other instances, decision is
local to the current instance)
• message output out(i,m)
• action action(a)
• set timer set(t,d)
• reset timer reset(t)
• stop action stop
• local condition check(c)

Our synthesis algorithm constructs a particular kind of event automata, which we
call MSC slices. An MSC slice (corresponding to an MSC instance i) is an event
automaton, producing all valid event traces for the instance i. We use the following
algorithm to construct MSC slices:
1. initial states of the event automaton correspond to symbols at HMSC graph with

idle events
2. for each bMSC a (sub)sequence of states is created, corresponding to the

sequence of events involving the instance i
3. each MSC reference is replaced by the corresponding (sub)sequence of states
4. the start symbol of the event automaton corresponds to the HMSC start symbol

Our synthesis algorithm consists of the following steps [4]:
1. Integrate HMSC model
2. Construct MSC slices
3. Make MSC slices deterministic
4. Minimize MSC slices

49

5. Generate SDL behavior
6. Generate SDL structure

2.3. Example

Let’s consider a simple MSC model shown in Figure 3. It contains two use
cases Wait and Reply (each of them has only one scenario). We assume sequential
composition rule. Instance R (receiver) corresponds to the system actor and instance S
(sender) is an external actor.

Sender S initiates both use cases. Use case wait is started by sender S sending
message X. Receiver R has to wait for an unspecified period of time. Use case reply is
started by sender S sending message Y. Receiver R has to respond with message W.

s
msc reply

y

w

rs
msc wait

x
r

T

msc composition

start

UC_1 UC_2

NEA S

out(x,r) out(x,r)

out(y,r) in(w,r)q0 q0
q0

3. 5.

out(x,r) out(y,r) in(w,r)
1. 2. 4.

�

��� ����

�
�

��� ����	

�

�

� �

�

��� �����������

�����

��

���

Assumed
composition rule:

system actor (receiver)

external actor (sender)

Input use cases:

Figure 3

Figure 4

50

Figure 4 illustrates our algorithm for constructing an MSC slice for instance S.
The first step of the algorithm constructs an event automaton from the HMSC graph
(step 1). Then an event automaton is constructed from the instance S at MSC wait
(step 2). This automaton has only one transition, labeled with an active event out(x,r).
Then the corresponding transition in the initial event automaton is substituted for the
newly created event automaton for instance S from MSC wait (step 3). The following
two steps (steps 4 and 5) process instance S from MSC reply. The resulting MSC slice
is presented in the bottom right corner of Figure 4. It is labeled non-deterministic
event automaton (NEA).

Figure 5 illustrates subsequent steps of our synthesis process. The non-
deterministic MSC slice for instance S (NEA S) is made deterministic (in the event
automata sense) and minimized (DEA S). An SDL graph is then generated (process
S). Figure 6 illustrates the generated SDL structure for our example.

��� �

����� �	

���
 �	

����� ��

����

� �� �

�����	 �

��

� �� 	

���

����� �	

����� �	
 ���
 �	

��

�� �

Figure 5

Figure 6

� �

��� �� ��	
�

�������

���	
� ��

���	
��	
�

�
�

����
������������
�
�

51

3. Applications for Forward Engineering

3.1. High Yield Requirements Validation

In this section we describe the use of synthesized SDL models for
requirements validation. Requirements validation is used to detect faults in the
customer requirements [5]. Requirements validation is a form of testing applied to an
early phase. Requirements validation is an iterative process consisting of the
following steps (see Figure 7):

1. Formalize requirements in the form of use case scenarios
2. Synthesize executable requirements model from scenarios
3. Create validation scenarios
4. Run validation scenarios through the requirements model
5. Validate the execution sequence of each validation scenario to either

5.1. Accept the validation scenario. In this case the validation scenario can
be included into requirements use cases

5.2. Reject the validation scenario. In this case the initial customer
requirements contain a fault. E.g. the initial requirements can be
inconsistent or incomplete. The rejected validation scenario has to be
transformed into a use case and the initial requirements need to be
updated by including the new use case and removing any existing
inconsistencies.

6. Check termination criteria and start with a new iteration, if necessary
(from step 2).

High-yield requirements validation is a risk-based approach, being developed
by Prof. R. Probert at the Telecommunications Software Engineering Research Group
(TSERG) of the University of Ottawa [5]. Same considerations are applicable to
requirements validation as to testing. One cannot test a program to guarantee that it is
error-free. Since exhaustive testing is out of the question, we must maximize yield on
the testing investment (i.e., maximize the number of errors found by a finite number
of test cases Yield of a validation scenario refers to the number of defects detected at
by a particular scenario. An alternative definition of yield can refer to the amount of

����������	

��	
�

�
� ��
�

������� �
���

��� ����������	
 �
���

������	�
�

�
�
	���	�
�
�

����������
������

�
�������	�
�

Figure 7

52

risk removed by the scenario. Risk refers to the “cost” associated with a failure. By
definition, Risk R = PF * CF (where PF is the probability of failure; CF is the cost
of failure).

Let us introduce some terminology for discussing validation scenarios. We
make a distinction between primary scenarios (normal, everything works as expected,
success paths) and secondary scenarios (alternative, exceptional, race conditions,
collisions, known pathological sequences of client/system interactions, fail paths). All
functional scenarios (scenarios which describe how a user achieves a particular
service or capability) are primary, scenarios which describe how he/she was thwarted
are secondary. In general, scenarios which are essential and desired by a customer are
primary. Primary scenarios are denoted “low-yield” since they describe situations and
actions which are generally well understood. The yield (detected or anticipated error
count) is therefore low. Secondary scenarios, on the other hand are denoted moderate
or high-yield, since they describe situations and interactions which are generally not
well documented, and therefore are not well understood. The associated yield for such
scenarios is high because designer choices are likely to differ from client choices, or
to be non-deterministic.

The objective of the high-yield requirements validation is to focus the effort
on the elements with highest risk. Low-yield scenario is not likely to detect a defect by
causing an observable failure because such scenarios are in general well-understood
by both the customers and the developers. On the other hand, high-yield scenarios
have a high probability of detecting a defect. High-yield scenarios correspond to the
secondary scenarios, e.g. exceptional behavior (error-handling behavior path).
Usually, these scenarios are less well understood by the developers.

In [4] we suggested to automatically synthesize an SDL requirements model at
the requirements analysis phase (Figure 7). Automatic synthesis of SDL models from
MSC has the following benefits:
• MSC modeling allows high-yield requirements validation by simulation of SDL

models using high-yield scenarios
• MSC models can be developed concurrently while architecture integrity can still

be maintained via iterative synthesis
• Regression testing is eliminated because accepted validation scenarios are added

to the set of validation scenarios and the synthesized model is by construction
correct with respect to the previously accepted behavior

• Early fault detection can be performed by the synthesizer
• Different compositions of use cases can be explored (single, concurrent, etc.)
• Slices of the MSC model can be created, explored and reused

The synthesized requirements model (SRM) can be used to generate additional
scenarios which are longer than the original validation and therefore provide better
understanding of the requirements [14]. Simulation of the synthesized requirements
model allows to quickly discover inconsistencies and incompleteness of the
requirements because the synthesized model will generate many variations of the
original scenarios, including abnormal behavior. Such scenarios are likely to be less
well understood by the developers.

53

3.2. Architecture Validation

Automatic synthesis can also be used at the system analysis phase. During this
phase the architecture of the system is being defined and independent groups of
developers produce system scenarios for each architecture component (Figure 8). The
input at this phase is a set of system scenarios. Normally a system scenario will be a
refinement of the corresponding scenario from the requirements analysis phase,
capturing the interaction of the architecture components. The structural information
available in the system scenarios consists of the set of external actors and the
architecture components (represented as distinct instances in the MSC model). The
behavioral information is available in the form of functional scenarios representing
the typical interactions between the architectural components as well as between
external actors and the architectural components. Additional behavioral information
can be captured in the form of the data flows over the system scenarios. The
automatically synthesized model created at this phase is called the synthesized
architecture model (SAM). The feedbacks provided by SDL tools through the SAM
go both to the system scenarios as well as to the architecture model (Figure 8).

In this case the SAM will reproduce the architectural components of the system by
deriving them from the collection of system scenarios, synthesize the behavior of each
component and integrate the model. Automatically derived relationships between
components can be compared to the intended ones (described in the architecture
model). In our experience the synthesized architecture model is helpful in uncovering
system analysis faults. This step is a direct continuation of requirements validation
activity described earlier.

Vertical decomposition of MSC models can be used in conjunction with our
synthesis technique to refine requirements models into architecture models. Figure 9
demonstrates this approach. In use case reply from example at Figure 3, instance R is
decomposed into three instances: R1, R2, R3. Message flow between decomposition
instances has to be compatible with the message flow at the parent MSC diagram.
Additionally, two alternative behavior paths are now specified for the reply use case.
Alternatives are specified using MSC condition with same name. The synthesized
architectural SDL model is presented at Figure 10.

����������	

��	
�

�����	��	���

�
� ��
�

������� �
���

���������	

������	�
�

��
	��
������

 ������	�
� �

�
������	�
�

��� �����	��	���� �
���

��	��
�
���	����	�
�

Figure 8

54

�

��� �����

�

�

�
����������

��

������ �

�

� �!
�

�
��

�

��

��� �

�

�!

��
�

����������� ���

��������

3.3. Comparison to related work

Automatic synthesis of executable models from scenarios is an active research
field. Much work has been done on the subject of translating MSCs to other languages
[14,10]. Synthesizing SDL specifications from MSC is addressed in [10]. Survey of
work on a more general subject of protocol synthesis is available in [13].

Methodological issues of generating a formal executable specification from a
set of use cases are addressed in [11]. This paper summarizes experience in manually
developing a LOTOS specification of a telecommunications standard on the basis of
use cases provided by industry. LOTOS tools were used to validate the specification
and generate all original use cases as well as additional ones. The main motivation of
the project was to use LOTOS tools to analyze and maintain a set of use cases. The
benefit of using the formal executable specification for prototyping purposes was
emphasized.

The University of Montreal synthesizer [15] translates scenarios with timing
constraints into timed automata. The main motivation of the project is to provide
formalization of scenarios and ensure the accuracy of requirements analysis.

� ��

��� �� ��	
�

����� ��

���	
� ��

���	
� �	
�

�����

��

����	�

��	��

���

���

�����

����

����

������
����

������ �����

Figure 10

Figure 9

55

The Waterloo synthesizer [14] translates MSC models into ROOM
specifications. The main motivation of this project is to create an executable
architectural model supporting design phases. Firstly, an executable architecture
model was considered useful for prototyping purposes. Synthesized ROOM models
can be simulated by ObjecTime Developer tool with the possibility to visualize
execution sequences as bMSCs. According to [14], the MSC traces are useful for
visualizing execution sequences that are longer that the bMSC scenarios in the
original MSC specification and therefore provide a better overview and understanding
of the system. Executable architecture models were considered helpful in supporting
communication and education of new team members. Secondly, automatic synthesis
of architectural models was considered useful in evolutionary prototyping by
providing refinements to the model. Designers can modify the synthesized model,
execute a number of scenarios, and then feed the results back into the domain of MSC
specifications. The possibility of ObjecTime Developer to automatically generate
C++ code skeletons was also considered beneficial.

The motivation of the Moscow synthesizer is similar, however we also use
automatic synthesis to create executable requirements models. We decided to use
SDL as the target language because of the better tool support available for SDL.

 The Waterloo synthesizer produces architectural models with both structural
and behavioral components [14]. The Waterloo synthesizer derives static process
structure based on the instances in bMSC. Similar approach is taken in the Moscow
synthesizer. Additionally, the Moscow synthesizer derives dynamic process structure
by considering bMSC with instance creation and deletion. When synthesizing
behavior components, the Waterloo synthesizer considers only message input and
output events. The Moscow synthesizer additionally considers timer events and
supports data flow extensions to the MSC language (variables, message and create
parameters, actions and local conditions with guards).

The Concordia University synthesizer [10] translates MSC models into SDL
specifications. The main motivation of the project is to eliminate validation of SDL
specifications against the set of MSCs by ensuring consistency between the SDL
specification and the MSC specification through automatic synthesis [10]. The main
characteristic of the Concordia synthesizer is that the architecture of the target SDL
specification is required as an input to the synthesis algorithm and the question of
implementability of the given set of MSCs within the given SDL architecture is
addressed [10]. Thus the Concordia synthesizer produces only behavioral
components. Composition of bMSCs using HMSC was not addressed in [10] although
it was considered as a direction for future work.

Although the Moscow synthesizer was developed independently, some of the
technical decisions are similar, e.g. the use of SDL save statement to avoid deadlocks
in the synthesized SDL models. However the motivation of the Moscow synthesizer is
somewhat different. The Moscow synthesizer produces both the behavioral and the
structural components (similar to [14]) which allows us to synthesize executable
requirements models (similar to [11]) as well as executable architecture models [14].
Consideration of data flows in the Moscow synthesizer allows more accurate capture
of the functional requirements as well as more accurate capture of the architectural
issues.

56

4. Applications for Reverse Engineering

Legacy software systems were produced with older development methods,
often involving a blend of higher-level code, and system-level code, with
heterogeneous languages, architectures, and styles, and often very poorly
documented. Up to now, this fact has constituted a “legacy barrier” to the cost
effective use of new development technologies [5,2].

In order to overcome the “legacy barrier”, there is an increasing demand for
developing automatic (or semi-automatic) re-engineering methods which will
significantly reduce the effort involved in creating formal specifications of the base
software platforms. Cost-effective methods for producing SDL models of the base
software platform will allow the following benefits (Figure 11):
• better understanding of the operation of the legacy software through dynamic

simulation of the SDL model, which often produces more intuitive results and
does not involve the costly use of the target hardware;

• automated generation of regression test cases for the base software platform;

���� ����	��
����

���� ����

���� 	
� ����

��
������� � ������������

��������������

���� ���� �����

���� ����� ��	�
����	

���� ����	��
����

��
����

��� ����	

���
���
������� �	
�

���������

��� ��� ����	

�������

��	������� � ������
�����

�����
�������

Figure 11

Figure 12

57

Additional benefits can be obtained for using formal methods for new feature
development (Figure 12):
• analysis and validation of the formal specifications of the new features built on

top of the SDL model of the base software platform;
• feature interaction analysis including existing and new features;
• automated generation of test cases for new features;
• automatic generation of implementations of the new features.

4.1. Dynamic scenario-based approach to re-engineering

In this section we describe our methodology of dynamic scenario-based re-
engineering of legacy telecommunications systems into a system design model
expressed in SDL [2].

Our approach consists of
• placing semantic probes [2] into the legacy code at strategic locations based on

structural analysis of the code,
• selecting key representative scenarios from the regression test database and other

sources,
• executing the scenarios by the legacy code to generate probe sequences, which are

then converted to MSCs with conditions and
• synthesizing an SDL-92 model from this set of Message Sequence Charts (MSCs)

using the Moscow Synthesizer Tool [4].

This process is repeated until the SDL design model satisfies certain validity
constraints [2]. This SDL model is then used to assess and improve the quality and
coverage of legacy system tests, including regression tests. The approach may be
used to re-engineer and re-test legacy code from a black-box (environment), white-
box (source code), or grey-box (collaborations among subsystems) point of view [2].

4.1.1. Overview

Dynamic scenario-based re-engineering of legacy software into SDL models is
a process, where an SDL model is synthesized from probe traces [2], collected from
dynamically executing the instrumented legacy system (see Figure 13,14). More

����� ���	�

�	���

�
�
�
�

�������
�
���

��� ���������� �����

	��
���	���� ��

�������
	������

�����
�
 �

��
������������
�����
�

Figure 13

58

specifically, in the process of scenario-based re-engineering, the SDL model is
synthesized from a higher-level representation - extended MSC-92 model (later
referred to simply as MSC model) which is abstracted from probe traces. The
execution is driven by a test suite [2].

The enabling technology for our dynamic scenario-based re-engineering
process is automatic synthesis of SDL models from a set of MSCs [4]. So far
automatic synthesis of SDL models from MSC was considered only as a forward
engineering technology (see Section 3). In our dynamic scenario-based re-engineering
process we exploit the duality of MSCs as both a requirements capturing language
and a trace description language which allows us to treat probe traces as requirements
for the SDL model.

Our re-engineering methodology is an iterative process, consisting of the
following four phases.
1. Preparation
2. Dynamic collection of probe traces
3. Synthesis of SDL model
4. Investigation of the SDL model

Legacy software Perform Static Analysis of code

Select viewpoint;
 Set coverage
 goals;
 Select probes;

Call GraphArchitecture

Legacy with probes

SDL model

Translate into MSC

Synthesize SDL

Run legacy

Event-oriented MSC

MSC model

Probe traces

Regression tests

Other impor-
tant known pri-
mary scenarios

Compare

Instrument legacy

Add conditions
non-determinism

 metrics

Probe coverage

and complexity

Figure 14

59

Each phase involves a few steps. Iterations are controlled by validity criteria,
which are checked during the last phase. An overview of all steps of the methodology
is shown in Figure 13,14. In Figure 14 the methodology is presented as a dataflow
diagram. Important artifacts are represented as rectangles; methodology steps (sub-
processes) are represented by ovals. The main artifacts of our re-engineering process
are highlighted. Lines in Figure 14 represent flows of data, which determine the
sequence of methodology steps. A detailed description of methodology steps is
contained in the next section.

4.1.2. Preparation phase

This aim of this phase is to develop a probe placement strategy and select the set of
scenarios which will drive execution of the instrumented system and resulting probe
trace capture.

Step 1. Analyze code. This step uses well-known methods of static structural
analysis to select probe placements. Two models of software can be used as
guidelines for probe placement - the architectural model of the system (major
components and their relationships) and the call graph of the system [3]. The call
graph of the system should identify external interfaces of the system (usually - system
calls of the target operating system, or assembly inline code).

Step 2. Select modeling viewpoint. Our approach may be used to re-engineer and re-
test legacy code from a black-box (environment), white-box (core code), or grey-box
(collaborations among subsystems) point of view. Viewpoint determines the structure
of the resulting SDL model.

Step 3. Set coverage goal and select probes. At this step we finalize probe placement
by selecting particular locations in the source code of the system where probes are to
be placed, and defining the format of the information generated by each probe. By
selecting the coverage goal we control the level of details in traces and thus determine
the external interface of the model. The external interface of the model is determined
in terms of locations on the architectural model of the system and the call graph, such
that probes register desired events and collect desired data.

Semantic probing [2] is assumed. Coverage requirement is not phrased in
terms of syntactic entities such as statements or branches, but in terms of semantic
entities, namely equivalence classes of program behavior [2]. These equivalence
classes of program behavior are determined solely from the system design. Probe
traces obtained by executing instrumented code can be related directly to the system
design. Inspection of probe traces may drive modification of semantic probes and thus
lead to further iterations of the re-engineering process.

Step 4. Collect known primary scenarios + regression tests. The dynamic capture
of probe traces is driven by the test suite. We suggest that the (legacy) regression test
suite be used to drive the first iteration of scenario-based methodology.

We start our iterative re-engineering process with regression tests. Regression
tests consist of a blend of conformance tests (usually success paths and therefore low-
yield), primary scenarios (low-yield), and a few known important secondary scenarios
(moderate to high yield). We continue with additional functional (primary) scenarios
as required to improve the semantic capture of our SDL model. As our iterations

60

converge, we are more interested in secondary higher-yield scenarios. Discussion of
the yield of scenarios with respect to requirements validation was presented in Section
3.

4.1.3. Dynamic collection of probe traces

The aim of this phase is to capture the set of probe traces, which correspond to the
probe placement strategy and selected scenarios.

Step 5. Instrument legacy. Suitable probing infrastructure for generation and
collection of probe traces needs to be established. Probes need to be inserted into the
source code according to the placement strategy.

Step 6. Run legacy code to generate probe traces. The legacy system needs to be
built and executed on a test suite. The target or simulated environment together with
the existing testing infrastructure are used. The result of this step is a collection of
probe traces. Another result of this step is the measurement of probe coverage of the
system by the current test suite.

4.1.4. Synthesis of SDL model

This is the key phase in our methodology. The aim of this phase is to synthesize an
SDL model of the legacy system.

Step 7. Translate probe traces into event-oriented MSCs. This step was introduced
into the methodology in order to separate two different concerns - dynamically
capturing scenarios from legacy and synthesizing SDL models from scenarios. This
step performs a (simple) translation between traces and MSC. This step is determined
mostly by the differences between the format of probe traces (as defined at the
instrumentation step), and the format of input to the synthesizer tool.

Step 8. Add conditions to MSCs. This step was described as “abstraction” in
Figure 1. The aim of this step is to identify transaction-like sequences of interactions,
corresponding to requirement use cases. Linear MSCs (corresponding to traces) are
then converted into an MSC model, which corresponds to requirement use cases. This
is done by inserting conditions [7] into places where loops or branching are possible.
Note, that we are using an extended event-oriented MSC-92 notation as the input to
the MOST-SDL tool [4]. In MSC-96 this corresponds to creating an HMSC.

Adding conditions to MSCs can significantly improve the amount of
information, contained in MSCs which will lead to synthesis of models with more
interesting behavior.

Step 9. Synthesize SDL model. This step is done automatically by applying the
Moscow Synthesizer Tool (MOST-SDL). Synthesizer technology is briefly described
in the next section. A more detailed description is contained in [4].

The outputs of this step are the 1) synthesized SDL model; and some
complexity metrics of the model: 2) number of states in SDL model and 3) non-
determinism metric of the model. The later metric is an indirect termination criteria
for the re-engineering process. A non-deterministic choice is generated each time
when two or more input scenarios have different behavior on the same external

61

stimulus. In practice this often means that behavior of the system is determined by the
previous history, but the traces captured during the previous steps do not contain
enough data. High values of the non-determinism metric should lead to further
iterations of the re-engineering process.

4.1.5. Investigation of SDL model

The aim of this phase is to check termination criteria by investigating the
probe coverage and complexity metrics of the synthesized model, including a very
important non-determinism metric.

Step 10. Terminating criteria. We need to make sure that the generated model
adequately captures the behavior of the legacy system. This may require several
iterations of the re-engineering process. Inadequate behavior of the model may be
caused by at least two factors: 1) some important primary scenario is not captured in
(legacy) regression tests; 2) an abstracted interface of the system is incorrectly
selected (missing probe or incorrectly placed probe).

A probe can be incorrectly placed when it a) does not correspond to a desired
behavior equivalence class (e.g. two different probes are placed in the same
equivalence class); b) probe is placed into correct behavior equivalence class, but is
placed in an incorrect syntactical place - into a code location which is not executed
when at least some locations of the desired behavior class are executed (e.g. probe is
placed into only one branch of a conditional statement).

In our experience, incorrectly placed probes result in errors in probe coverage.
Missed probes on input interfaces result in high values of the model non-determinism
metric. Missed probes on output interfaces result in errors in generated test coverage.
Thus when the probe coverage, non-determinism metric and generated test coverage
together are satisfactory the iterations can be terminated.

4.2. Comparison to related approaches

In this section we compare our dynamic scenario-based approach to the so-
called direct re-engineering [1] and the so-called partial re-engineering [17].
Schematic representation of the transformations performed by these approaches is
shown in Figure 15.

� � � � � � � �

	
 � � � � �

� 	 � � � � �

� � � � � �� � � � � � � �

�� � � � � � � � �� � � � � � � � � � � � � � � � �

� �� � � �

� � � 	
 �� � � � � 	 � �
 �� 	 � � �

� 	 � � �	 �

� �� �� � � � �� � � �

Figure 15

62

Direct re-engineering approach derives SDL model statically from the source
code by performing semantic-preserving translation [1]. Thus the direct SDL model
contains at least the same amount of information as the implementation itself. In fact,
directly generated SDL models contain on average 8-12 times more information than
the implementation, because the mapping from a conventional language to SDL is
divergent, as demonstrated in [1]. In contrast, SDL models which are synthesized
according to our dynamic scenario-based approach always contains less information
than the implementation.

The so-called partial re-engineering [17] is another static approach. It provides an
interesting alternative to direct re-engineering. According to this approach, only the
framework of the model is extracted automatically (in [17] a state machine model was
extracted from a program in C). Extraction of any details of the legacy is controlled
by the so-called statements map. The statements map contains all different source
statements (in some canonical form) and their translation into the model statements
within the automatically generated framework. The statements map is inspected and
filled-in manually. By default, the source statements are simply skipped, thus
resulting in quite abstract models. Thus the statements map controls the precision of
the extracted model. The statements map is relatively stable to the changes in the
source code, which makes this approach suitable for evolutionary re-engineering.

Static approaches have certain advantages over dynamic ones since they are
independent of (legacy) regression tests, and they usually easier to achieve complete
semantic coverage of the legacy. Another important advantage is that static
approaches are independent of the target platform. Static re-engineering techniques in
general require considerably deeper analysis of source code, and thus are much more
expensive. The disadvantage of the direct mapping is that it has to handle large
volumes of base software platform source code, therefore - SDL tools need to handle
larger SDL models. Partial re-engineering seems quite promising, since it provides a
balance of effort between expensive automatic static analysis and manual
modification of the statements map. However, the automatic extraction of the state
machine framework can be also quite expensive. In [17] cost-efficient extraction of
the finite state machine framework was made possible because of the incidental use of
a special notation in the code. This notation was introduced for an unrelated purpose,
but made extraction of states fairly trivial [17].

The biggest advantages of dynamic scenario-based approach as compared to direct
approach, is the flexibility to produce a broad range of distinct models by varying
input scenarios and probe placement strategies. In general, scenario-based approach
yields more abstract models, which are free from implementation detail. Thus SDL
tools could be easier applied to such models. Both kinds of SDL models are trace-
preserving with respect to the traces produced by the test suite. However, a directly
generated SDL model is capable of producing more traces, than those produced by the
original test suite, while a scenario-based SDL model is fully defined by the original
test suite. On the other hand, traces produced by two SDL models have different
levels of detail. Traces produced by directly generated SDL model contain all
implementation detail, plus some additional detail, introduced by the mapping [1].
The level of detail of directly generated SDL models can be controlled by selecting
external interface of the implementation. Traces, produced by scenario-based SDL
model are expected to contain much less detail. As demonstrated above, the level of
detail of the scenario-based model is controlled by the probe placement strategy.

63

5. Conclusions

Support for early phases of the development process and support for integration
with older, legacy software are, in our opinion, two major barriers for wider adoption
of formal methods in industry. Ironically, at the early phases, there is “too little” to
formalize, while on the other hand, at the later phases there is often “too much” to
formalize. However, early formalization is required because it can enable tool-aided
feedback and thus allow rapid iterative development. Requirements for an early
formalization technique include ease of use, low learning curve, very quick turn-
around cycle, maintainability. It is also beneficial to be able to re-engineer formal
models of legacy in a cost-efficient way, because it allows to use formal methods for
subsequent development of new features, as well as to use tools for better validation
of the base software platform.

The key idea, presented in this paper is that MSC is suitable both for the forward
and reverse engineering purposes. As a formal technique for capturing requirements,
MSC satisfies all usability criteria for early development phases. On the other hand,
MSC are suitable to capture “real” scenarios of legacy through collecting probe traces
from suitably instrumented source code.

We presented our approach to synthesizing executable SDL models from
scenarios formalized in MSC. As demonstrated in this paper, it turns out that this
technique provides adequate support for both forward and reverse engineering.

We have given a broad overview of our accelerated development
methodology, based on MSC and SDL, which can be used to significantly improve
time-to-market in an industrial software development context. In our experience, the
use of this accelerated development methodology combined with the use of SDL tools
allows between 20 and 30% speedup in time-to-market for a typical
telecommunication system. The use of tools in a related project was found to yield a
20-25% improvement in time-to-market; therefore the estimate above is likely quite
conservative.

6. References

 [1] N. Mansurov, E. Laskavaya, A. Ragozin, A. Chernov, On one approach to
using SDL-92 and MSC for reverse engineering, in Voprosy kibernetiki: System
Programming Applications, N. 3, Moscow, 1997 (in Russian)
 [2] N. Mansurov, R. Probert, Dynamic scenario-based approach to re-engineering
of legacy telecommunication software, in Proc. 9th SDL Forum, Montreal, Canada,
June 21-26, 1999, Elsevier Science Publishers B.V. (North-Holland).
 [3] N. Rajala, D. Campara, N. Mansurov, inSight Reverse Engineering CASE
Tool, in Proc. of the ICSE’99, Los Angeles, USA, 1998.
[4] N. Mansurov, D. Zhukov, Automatic synthesis of SDL models in Use Case
Methodology, in Proc. 9th SDL Forum, Montreal, Canada, June 21-26, 1999, Elsevier
Science Publishers B.V. (North-Holland).
 [5] R. Probert, N. Mansurov, Improving time-to-market using SDL tools and
techniques (tutorial), Proc. 9th SDL Forum, Montreal, Canada, June 21-26, 1999.
[6] ITU-T (1993), CCITT Specification and Description Language (SDL), ITU-T,
June 1994
[7] Z.120 (1996) CCITT Message Sequence Charts (MSC), ITU-T, June 1992

64

 [8] G. Holzmann, Formal Methods for Early Fault Detection, (invited paper) in 4th

Int. School and Symposium on Formal Techniques in Real Time and Fault Tolerant
Systems, September 1996, Uppsala, Sweden.
[9] I. Jacobson, M. Christerson., P. Jonsson, G. Overgaard, Object-Oriented
Software Engineering: A Use Case Driven Approach, Addison-Wesley, Reading,
MA, 1992.
[10] G. Robert, F. Khendek, P. Grogono, Deriving an SDL specification with a
given architecture from a set of MSCs, in Proc. of the 8-th SDL Forum, Evry, France,
23-26 September, 1997, Elsevier Science Publishers B.V. (North-Holland), pp. 197-
212
[11] R.Tuok, L. Logrippo, Formal specification and use case generation for a
mobile telephony system, Computer Networks and ISDN Systems, 30 (1998), pp.
1045-1063.
[12] M. Andersson, J. Bergstrand, Formalization of Use Cases with Message
Sequence Charts, MSc Thesis, Lund Institute of Technology, May 1995
[13] R. L. Probert, K. Saleh, Synthesis of communication protocols: survey and
assessment, IEEE Transactions on Computers, 40(4), pp. 468-475, April 1991
[14] S. Leue, L. Mehrmann, M. Rezai, Synthesizing ROOM Models from Message
Sequence Chart Specifications, University of Waterloo, Technical Report 98-06, 1998
[15] S. Some, R. Dssouli, and J. Vaucher, From scenarios to timed automata:
Building specifications from user requirements, In Proc. 2nd Asia Pacific Software
Engineering Conference, IEEE, December 1995.
 [16] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language
Reference Manual, Addison-Wesley, 1999
[17] G. Holzmann, M.H. Smith, A practical method for the verification of event-
driven software, in Proc. ICSE’99, pp.597-607, Los Angeles CA USA, May 1999.

Composing Automata in Graphical Languages

for Reactive Systems�

from Argos to Mode�Automata�

Florence Maraninchi Yann R�emond

VERIMAGy� Centre Equation� � Av� de Vignate � F��	
� GIERES
http���www�verimag�imag�fr�PEOPLE�Florence�Maraninchi

� Introduction

We are interested in graphical languages for the description of reactive systems�
mainly in the synchronous approach�
The term reactive was introduced by A� Pnueli �HP��� to qualify the class of

systems like communication protocols� real time process controllers� man�machine
interfaces���� Speci�c problems arise for these systems� because of their intrinsic
complexity�
Reactive systems are opposed to transformational ones� like compilers� which

can be described in an appropriate manner by giving the output as a function of
the input� There exist methods that allow to decompose the behaviour of such a
system into smaller parts� and there exist languages which support these methods
	functional languages� with the composition of function as high level construct� or
imperative languages� with the notion of procedure
�
For reactive systems� this is not very clear yet what decomposition methods

can be applied� and what language constructs can be introduced to support them�
Indeed� a reactive system maintains a continuous interaction with an environment�
and its behaviour is a set of sequences of elementary interactions between the system
and the environment� Reactive bahaviours are intrinsically parallel� because the
system is considered as evolving in parallel with its environment� taking input from
it� and sending output to it�
However� a lot of work is being done on the topic of reactive systems� and there

exist several languages for the description of such systems� together with program�
ming environments� We are particularly interested in synchronous programming lan�

�This work has been partially supported by Esprit Long Term Research Project SYRF �����
yVerimag is a joint laboratory of Universit�e Joseph Fourier �Grenoble I�	 CNRS and INPG

�

guages� like Esterel ���� Lustre ���� the Statecharts �Har��� Har��� or Argos �Mar����
whose semantics rely more or less on the same model� This model is the notion of
automaton� or labeled transition system� which is very well adapted to the repre�
sentation of reactive behaviours�
The paper is structured as follows� Section �� is a general introduction to reac�

tive systems and the synchronous approach � Section �� presents Argos 	a purely
synchronous and compositional version of Statecharts
 � Section �� presents the lan�
guage of Mode�Automata 	the result of mixing Argos with data�ow equations� for
the description of running modes in reactive systems
�

� Reactive Systems and the Synchronous Approach

��� Examples of Reactive Systems

Typical examples of reactive systems include the regulation systems� and the event�
driven systems�

��� Typical synchronous program for a reactive system

Synchronous languages are high level languages that should be compiled into se�
quential code of the following form�

Initializations

while true

Get input i

Compute output o

Emit output o

A pass in the loop corresponds to an instant of the program discrete time� At
instant n� the program reads input in� and outputs the output on�
In general� the relation between inputs and outputs is as follows� �n� on �

f	i�� i�� ���� in
� which raises several remarks�
First� on may not depend on future inputs in����� this is called the causality

constraint�
Second� on may depend on in istself� not only on previous inputs� this is called

the synchrony hypothesis�
Finally� if no restriction on f is made� the history of inputs is unbounded� and

the above function cannot be programmed with a statically allocated memory�
For reactive systems and embedded systems� we de�nitely do not want the pro�

grams to have dynamic errors like �no more memory� allocation failed�� and we
require that the memory needed for f be bounded�
This means that the output at each instant n does not depend on the whole his�

tory of inputs� but only on a bounded abstraction of it� �n� on � f	Abs	i�� i�� ���� in

��

where Abs is the abstraction function� with the following property� �B j Image	Abs
 j
� B

If the function Abs induces an equivalence of input histories that is a congruence
for the rightmost extension of such sequences�

�g� Abs	i�� i�� ���� in
 � g	Abs	i�� i�� ���� in��
� in

then the typical program becomes�

Initialization of the memory M
while true

Invariant � M � Abs	i�� i�� ���� in��

Get input in
Compute output on � f	M� in

Update memory M � g	M� in

Property here � M � Abs	i�� i�� ���� in

Emit output on

��� Synchronous languages

All the synchronous languages are devoted to the description of such programs or�
better� to the description of their so�called reactive kernel� i�e� the f and g functions
of the above algorithm� Following these ideas� they are mainly two approaches that
can be adopted in order to design a high level language for reactive systems�
The state�transition paradigm can be considered to be too low level� It is used

only at the model level� and the language constructs are chosen according to another
way of designing the reactive systems� This is the case for Esterel� Lustre and Signal�
The designer does not �think� in terms of automata� Lustre and Signal are data�ow
languages� and describe such programs by sets of equations relating the �ows of
values of M � i and o along time� Esterel is a textual imperative language in which
speci�c construct correspond to the access to inputs and emission of outputs� and
other constructs to control structures like watchdogs� etc�
The other approach is to consider that the state�transition paradigm is powerful

enough� in the case of reactive systems� to be the basis of a high level language�
This means that the user will have to �think� in terms of automata� In Statecharts
and Argos� the state�transition paradigm is considered to be powerful enough to be
the basis of a high level language� Statecharts and Argos deal with explicit memory�
since M is bounded� each value may be represented by a state� In this case� the f
and g functions above correspond to the output and transition functions of a Mealy
machine�
The limits of this approach are reached quickly� the design of a complex reac�

tive system� as a single automaton� is completely unrealistic� A way of structuring
automata descriptions has to be found�

��

� Argos

A system like the digital watch is described in a very convenient manner by seing
the running modes of the watch as states� and the changing of modes as transitions�
States can be Watch� Stopwatch� Setwatch and Alarm� and the user may change
modes by depressing buttons Upper Left or Lower Left� This constitutes the phys�
ical events� We associate to them the logical events UL and LL� to be used in the
description of the watch� as the labeling of transitions� The description of a reactive
system is the description of its reactive kernel� which deals with logical events� The
interface between the environment and the reactive kernel� which translates physi�
cal input events into logical ones � and logical output events into physical output
events� has to be described in another language�
The Argos syntax is originally inspired from that of Statecharts� but the lan�

guage constructs are di�erent� To the author�s opinion� Statecharts make a more
extensive use of the graphical syntax than Argos� For small systems� the Statecharts
representation may be more concise than the Argos one� and� in this sense� more
readable�
But concision is not the only criterion for readability� especially when the size of

the systems we consider grows� Even if a picture is worth a thousand words� there
will always be systems big and complex enough that cannot be represented on one
physical paper sheet� So the language must provide a way to cut the representation
into smaller parts� The point is that this operation must not be only syntactical�
Cutting a representation a posteriori� without taking into account the semantics of
the system described will make it unreadable 	the same is true for textual languages�
listings are cut between procedures� or between control structures� if procedures
are too long
� The representation must have a graphical structure� in order to be
cuttable� and this structure must be the semantical structure of the system� for the
di�erent parts to be meaningful�
In the Statecharts� this is clearly not possible� because there is no way the repre�

sentation of a complex system can be cut into small graphical parts which represent
sub�systems 	see section ���� which gives some hints to understand this
� A system
has to be designed globally� and represented globally�
Argos proposes a di�erent use of the graphical representation of automata� A

program is either an automaton� or the result of applying a unary� binary or n�ary
operator to program operands� Each automaton is drawn with boxes and arrows�
Each operator is given a graphical syntax and the representation of operators con�
stitutes the squeletton of the program� its graphical and semantical structure�

��� From Statecharts to Argos

The motivation for Argos was to use a set of constructs taken from Statecharts� in
order to describe Mealy machines� It is really important to remark that the target
of the semantics was chosen before the language was designed�

��

A lot of semantics for Statecharts have been proposed� Often they are described
as functions from statecharts to a domain especially designed for that�

����� Designing a concrete grammar of Statecharts

The �rst thing to be done is to design a grammar of Statecharts� A lot of papers
on Statecharts use a complex global description of Statecharts� and there is no hope
to design a syntax�directed semantics from such a description� Some other papers
propose to describe complex Statecharts � including inter�level transitions � as the
combinations of a small set of basic graphical objects� One of these basic objects is a
state with dangling input and output arrows� One may obtain a concrete grammar
of the graphical objects that constitute Statecharts in such a way� but the problem
will be that there is no chance to associate a meaning to such basic objects� What
could the reactive behaviour of a dangling arrow be�
It appeared that a necessary condition for being able to de�ne a grammar of

Statecharts� with meaningful basic objects� was to get rid of inter�level transitions�
Without interlevel transitions� a Statecharts may be viewed as a set of automata
	states and transitions can be properly grouped at one level
� involved in two kinds of
compositions� the parallel composition� depicted by a dashed line between two 	pos�
sibly composed
 objects� the hierarchic composition� depicted by drawing a 	possibly
composed
 object into the state of another one�
Removing interlevel arrows is su�cient for obtaining a concrete grammar of

Statecharts� We will see below that this is not su�cient for obtaining a compositional
semantics� but it is still necessary for that�
other features we do not deal with� history input� conditional arrows� ���

����� Requiring a Compositional Semantics

The story of the �� semantics of Statecharts variant taught us that every semantics
may be made compositional� if one does not care about the domain of the semantic
function�

��� A set of operations on Boolean Mealy machines

The parallel composition� which has to be associative and commutative�
The priority between the transitions sourced in the same state� some graphical

interfaces for automaton�based languages use a graphical version of the case con�
struct of sequential languages� the order of the transitions is relevant� starting from
�noon�� and turning as a watch ���
Hierarchy� a good place for encapsulating subprograms like procedures of se�

quential languages� Conversely� an automaton should not be split into several parts�
described on distinct pages of the program�

��

AlarmWatch

SetWatch

LL

StopWatch

LL

LL�ST o�� Watch on

LL�Alarm o��ST on

LL�Alarm on�Watch o�

Figure �� A reactive behaviour

��� Argos

����� Basic behaviours

A simple reactive behaviour may be described by a labeled transition system as
shown by �gure �� The transition system has one initial state� Transition labels
are made of two parts� the input part i� and the output part o� The complete label
is denoted by i�o� Both parts are built upon a set E of elementary interactions
with the environment� called events� The input part is a conjunction of events or
negations of events� It describe a condition to be full�lled by the environment in
order to make the system react� The output part gives the events the system outputs
to its environment� when reacting to a given input� In the sequel� we shall refer to
the buttons of the watch as LL� LR� UL and UR� standing for� Lower Left� Lower
Right� Upper Left and Upper Right� We introduce logical output events to control
the physical state of some lamps� used to show the current running mode of the
watch 	in a more realistic description of the watch� the changing of modes makes
the display of the watch change� but it is not reduced to �lamps�� see below
� The
X lamp may be switched on and o� with events X on and X off respectively� The
Watch lamp is initially on�
The �rst advantage of the graphical representation is that it makes the detection

of non�determinism very easy� it is an important notion for reactive systems� In spite
of the inherent non�determinism in the description of the environment� the programs
should describe deterministic behaviours� In this framework� non�determinism of a
reactive behaviour is simply the existence of two transitions sourced in the same
state� with the same input part� and di�erent output parts and�or target states� In
the textual representation of an automaton� the labels of the transitions sourced in
a given state are not necessarily grouped� and con�icts like non�determinism may be
di�cult to read� In the example of �gure �� the reaction of the watch to button LL

when in Watch mode is not deterministic� A single button cannot be used for two
functions� and one LL input of the two transitions sourced in Watch mode should be
replaced by a new logical event� related to a new button 	see �gure �
�

��

����� The Argos constructs

This section constitutes a very brief presentation of the language constructs� focus�
ing on the relation between semantical and graphical constraints� It is necessarily
incomplete concerning the precise semantical de�nition of the language� However�
the following points can give su�cient hints for the understanding of the paper� The
graphical representation is only a syntax� with meaningful aspects 	i�e� connections
between boxes and arrows
 and meaningless ones 	i�e� size of boxes
� There exists
an equivalent textual syntax� There exists a unique underlying model 	the compiled
form of a program
 for each valid graphical representation� There exists a graphical
representation for each valid model� since this is an automaton� and all automata
can be represented in the Argos syntax� There exists several graphical representa�
tions for any valid model� they may di�er on meaningless aspects 	as two identical
textual programs may have texts which di�er on the number of blank lines
� or on
meaningful ones 	the compiled form of a program may be obtained by using di�erent
constructs at the language level
�

Parallel composition and local events

We consider now a more realistic digital watch� Observe �gure �� We describe the
watch as a set of parallel components� which communicate with each other� The in�
terface we described partially is completed� and we add special components in order
to control the display of the watch� Components are separated by dashed lines� In
this example� they are all automata� but they could be composed systems as well�
The parallel operator is de�ned formally as a binary operator� but it is commuta�
tive and associative� so the graphical syntax illustrated by the �gure makes sense�
there is no need for explicit parenthesis when there are more than two components�
Associativity and commutativity of the parallel composition is a rather strong se�
mantical constraint� but explicit parenthesis 	for instance with rectangles to group
components together
 would make the graphical syntax too complex�
The interface deals with input events 	the four buttons
 and contains exactly

the information which is necessary to interpret them correctly� The interface is the
only component of the system which �knows� that LL when in Watch mode means
�change mode�� UL when in Watch or Alarm mode means �enter the corresponding

set mode�� UR means �toggle alarm indicator�� but only when in Alarm mode� etc�
Other components do not deal with input events directly� The interface performs a
translation from the logical events which correspond to buttons� to events like comAL
	for �commute alarm indicator�
 or comMODE 	for �commute mode�
� Conversely� the
interface does not deal with the display of the watch� Other components do�
The Alarm indicator component is used to memorize the state of the alarm

indicator� When changing states on comAL� it switches on or o� a little lamp of
the watch display� which can� for instance� display a little bell when alarm is on�
This lamp is initially o�� The Main display component maintains the state of the
main numeric display� It can show either Hours� Minutes and Seconds� or Hours

��

and Minutes only� or Minutes� Seconds and milliseconds�
Communication between components is done by the events which are output

by one component and input by another one� like comAL� The semantics of the
communication mechanism is de�ned formally as a synchronous broadcast ���� When
a component outputs an event� it broadcasts it towards its whole environment 	the
other components� and the global environment of the system
� Similarly� its inputs
may be inputs from the global environment� or events output by another component�
The description of a reactive system often introduces a lot of events which are

used only for internal communication� Argos provides the designer with a way to
declare local events 	see �gure �
� The rectangular box labeled with comAL� comMODE

de�nes the scope of events comAL� comMODE� inside the box� these events can be used
as inputs or outputs between components� But� when used as input� they cannot
come from the environment outside the box� and when output� they are not visible
outside the box�

��

LL�comMODE

comMODE� comAL

hoursON
comMODE�milliOFF�

Interface

LL�comMODE

UL UL UL

HMHMS

MS���

Alarm indicator
comAL�AlIndicON

comAL�AlIndicO�

Alarm OFFAlarm ON

Main display

milliON
comMODE�hoursOFF�

comMODE�secondsOFF

SetWatch SetAlarm
UL

LL�comMODE

UR�comAL
StopWatch

AlarmWatch

Figure �� interface and ressources of the watch�
an example of parallel components

Re�nement operation

We focus on the interface component now� As described above� it does not express all
the meaning of the buttons� Figure � shows a complete description of the interface�
We introduce the following events� comLAP and comRUN to control the stopwatch
behaviour� comCH to commute chime mode 	when chime is active� the watch beeps
each hour
� incrx H and incrx A to control the time keeper component�

��

SetAlarm

LL�comMODE

Watch

SetWatch

Seconds

HoursMinutes

LL

LL
LL

LR�incrS W

LR�incrH WLR�incrMN W

UL UL

LL�comMODE

StopWatch

UL

UL

LL�comMODE

LR�comRUN
UR�comLAP

LR�comCH
UR�comAL

Alarm

Hours Minutes
LL

LL

LR�incrMN ALR�incrH A

Figure �� interface of the watch�
an example of re�nement

The SetWatch and the SetAlarm states are re�ned by sub�systems� Observe the
SetWatch state� When the watch is in Watch mode� and the users presses UL� the
SetWatch state is entered� and the sub�system which re�nes it is started� in its initial
state� i�e� Seconds� Then� two sub�systems are active�

� the controllerwith states Watch� Alarm� SetWatch� SetAlarm and StopWatch�
which can react to UL

� the controlled sub�system with states Seconds� Hours and Minutes which can
react to LL or LR� LL is used to change �elds� and LR is used to increment a �eld�
The incrementation outputs appropriate events to a time keeper component
not represented here�

When the controller reacts to UL� the controlled sub�system is killed� and the watch
reenters Watch mode�

��

Setalarm

Setwatch

Stopwatch

Watch
Digital Watch

Run

Lap

runo�runon

lapo�lapon

S

MH

Alarm

Lap Run

lapon

lapo�

OR OR

Setwatch Stopwatch

H

M

S

runon

runo�

OR AND

Setalarm

OR

Alarm

Watch

Digital Watch

Figure �� a Statechart and the corresponding state space decomposition

��� Comparison with Statecharts

Due to its graphical syntax� Argos may seem to be very similar to Statecharts �Har����
one of the possible applications of the notion of Higraph presented in �Har���� This
paper gives a lot of ideas about the constructs that can be introduced in a graphical
syntax in order to improve the representation of a big and complex state�transition
diagram� It introduces the notions of orthogonality 	cartesian product
 and hierar�
chy 	ability to cluster states into a macro�state
�
When applied to the description of reactive systems� these ideas give Statecharts�

They lead quite naturally to design methods and programming style which are very
di�erent from that of Argos� Indeed� Statecharts are very well adapted to the
decomposition of the state space of the system� as an and�or tree� and nodes
correspond to orthogonality� and or nodes to hierarchy� The intuitive meaning
is the following� when the system is in an or state� it is in one of it sub�states�
when it is in an and state� it is in all its sub�states at the same time� Figure �
illustrates the state space structure for a version of the watch where the behaviour
of the StopWatch state is detailed� Two examples of authorized arrows are given
in the Statechart� The con�gurations 	global states
 of the watch are� Watch� H�
M� S� Alarm� SetAlarm� lapon � runon� lapon � runoff� lapoff � runon and
lapoff � runoff�
The behaviour of the watch� which is a set of transitions between con�gurations�

is expressed by drawing arrows between boxes of the state space representation� Stat�
echarts allow arrows between any two boxes of the representation� even at di�erent
levels� The upper dashed arrow of �gure � is a transition between con�gurations
lapoff � runoff and Watch� The lower dashed arrow is a a set of transitions�
lapon � runon to M� and lapoff � runon to M�

�

This is the feature which makes the Statecharts more concise than Argos some�
times� But this is also the reason why there is no way to distinguish sub�systems in
a big Statechart� and� consequently� it is very di�cult to cut the �gure into mean�
ingful parts� In some sense� inter�level transitions can be compared to gotos in
classical sequential languages�

��� Recovering some Statecharts Features in Argos

From this set of constructs� using the properties of perfect synchrony� one may design
macro�notations for some features of Statecharts we had to reject in the �rst step�
Inter�level transitions are of this kind�

��� Related work

SyncCharts� Argos Esterel

��� Implementation concerns

����� Editing Argos programs

Le r!esum!e des re�exions et commentaires tir!es de ces exp!eriences tient en quelques
points importants� Tout d�abord� pour r!ealiser un !editeur de langage graphique�
il a deux solution extr"emes� entre lesquelles on peut imaginer toute une vari!et!e de
solutions mixtes �

Analyse syntaxique �D � on peut utiliser un !editeur graphique g!en!eral� et r!ealiser
une analyse de la �gure pour y rep!erer les objets du langage 	c�est exactement
l�approche suivie pour les langages s!equentiels� o#u l�on invente une syntaxe con�
cr#ete #a base de s!eparateurs et de mots�cl!es pour repr!esenter lin!eairement� sans
perte d�information� une structure typiquement arborescente� L�analyse syn�
taxique consiste alors #a reconstruire l�arbre abstrait #a partir du texte lin!eaire
�
Il est pr!ef!erable d�utiliser un !editeur qui fournit des objets de base comme les
rectangles et les lignes� plut"ot qu�un !editeur de bitmap� Si tous les !el!ements
de syntaxe concr#ete du langage correspondent #a des objets graphiques con�
nus de l�!editeur� une partie du travail de reconnaissance est !epargn!e� Reste
toutefois #a rep!erer l�organisation de ces objets 	typiquement� dans un !edi�
teur d�automate� quel crit#ere de proximit!e peut�on utiliser pour reconna"$tre
l�association �#eche�texte qui d!e�nit une transition �
� Cette approche� qui
peut sembler sans espoir� a pourtant !et!e utilis!ee dans d�autres contextes� en
particulier avec l�!editeur Idraw de l�INRIA qui produit du postscript com�
ment!e par les types d�objets� D�autre part il existe des travaux th!eoriques sur
la g!en!eralisation des algorithmes d�analyse syntaxique de texte #a des sources
�D� Voir par exemple �CTC��� CTC���� dans lesquels on utilise une relation
spatiale entre objets�

��

Edition syntaxique � on peut d!evelopper un !editeur syntaxique� bas!e sur un
outil de dessin� On se trouve alors confront!e #a trois types de probl#emes �

� des probl#emes de dessin plus ou moins interactif � typiquement� dans
un !editeur d�automates� il est bien agr!eable de disposer d�un placeur
automatique de transitions� et on aimerait que le d!eplacement de la bo"$te
qui repr!esente un !etat s�accompagne d�un d!eplacement harmonieux des
�#eches repr!esentant les transitions qui y sont attach!ees

� des probl#emes classiques de manipulation d�arbre abstrait � doit�on im�
poser une construction ascendante ou descendante� quelles op!erations de
suppression de sous�arbre peut�on autoriser���� sont quelques unes des
questions qui se posent au concepteur�

� des probl#emes de choix du degr!e d�analyse garanti par l�!editeur � peut�on
se contenter d�un !editeur qui ne g#ere que les aspects de syntaxe hors�
contexte� ou doit�on !egalement garantir une analyse des aspects de syn�
taxe contextuelle 	ou s!emantique statique
 � Dans ce dernier cas� #a quels
blocs s�applique l�analyse� et quand � 	La r!eponse �partout� tout le temps�
conduit #a d!e�nir un !editeur dans lequel tout objet #a peine !ebauch!e doit
"etre correctement constitu!e avant de pouvoir "etre utilis!e comme com�
posant d�un objet plus complexe� C�est un comportement extr"emement
contraignant� pour ne pas dire p!enible
�

Nous n�avons jusque l#a consid!er!e que les aspects de cr!eation et modi�cation de
programmes� Un autre aspect important concerne les choix de pr!esentation des pro�
grammes� En e�et� comme expos!e dans �Mar��� pour argos� un langage graphique
est intrins#equement peu concis�� Il faut donc pr!evoir des techniques de pr!esentation
partielle des programmes � par exemple en ne montrant pas syst!ematiquement
le contenu des !etats ra�n!es � et imaginer des op!erations de manipulation de la
pr!esentation � zoom sur un composant ra�nant� etc�
Related work� Autograph� Arged 	GMD� Sankt Augustin� projet Synchronie
�

Editeur des SyncCharts 	Universit!e de Nice

����� Compiling Argos programs

� Mode�automata � Argos � data�ow equations

��� Motivations

In the �eld of reactive system programming� engineers who have to design control
laws and their discrete form were used to block�diagrams� data�ow synchronous lan�
guages like Lustre �BCH��
� CHPP��� or Signal �GBBG�
� o�er a syntax similar to
block�diagrams� and can be e�ciently compiled into C code� for instance� Designing

�Contrairement
a l�id�ee re�cue qui veut qu�un dessin vaille mieux qu�un long discours

��

a system that clearly exhibits several �independent� running modes is not di�cult
since the mode structure can be encoded explicitly with the available data�ow con�
structs� However the mode structure is no longer readable in the resulting program�
modifying it is error prone� and it cannot be used to improve the quality of the
generated code�
We proposed to introduce a special construct devoted to the expression of a mode

structure in a reactive system �MR��� MR���� We called it mode�automaton� for it
is basically an automaton whose states are labeled by data�ow programs� We also
proposed a set of operations that allow the composition of several mode�automata
	parallel and hierarchic compositions taken from Argos �Mar���
� and we studied
the properties of our model� like the existence of a congruence of mode�automata
for instance� as well as implementation issues�

��� Overview of Lustre

Here is a very simple example of a Lustre program�

INPUT � X int
OUTPUT � Y int init �
LOCAL � Z bool init false
Equations
Y � pre	 Y
 	if Z then X else � X

Z � if X modulo � � � then pre	Z
 else not pre	 Z

The input� output and local variables are names for �ows� A �ow is an in�nite
sequence of values� indexed by integers� The index is also called the instant� in a
Lustre program we have a discrete notion of time�
The behaviour of the program may be observed on the �lowing picture�
Equations are valid at each instant� V � exp means �n � ��Vn � exp

n

� � � � �
 �

X � � � � � �� �

Z � �� �� �� �
 �� ��� ���

Z � � � � tt � � tt Temps

%

����n �

��� A Construct for Dealing with Modes

Suppose we have to describe� in Lustre� the behaviour of a �ow X� as pictured below�

��

��

�

This system clearly has three distinct evolution patterns� at the beginning� X
increases by one at each instant� then it increases by a half� then it decreases by
two�
The behaviour of the variableX is very easy to describe in Lustre� using the con�

ditional structure� But we would like to provide the users with a speci�c construct�
that allow to deal with modes explicitly�
The idea is that the three distinct evolution patterns should be described inde�

pendently from each other �

��� A Very Simple Mode	Automaton

The mode�automaton of �gure � describes a program that outputs an integer X�
The initial value is �� Then� the program has two modes� an incrementing mode�
and a decrementing one� Changing modes is done according to the value reached
by variable X� when it reaches ��� the mode is switched to �decrementing�� when
X reaches � again� the mode is switched to �incrementing��

A B

X � pre�X� � �

X � �

X � ��

X � pre�X� � �

X � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

	

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

�	

�

�

��

��

��

��

��

��

��

��

��

��

X

�

�

�

�
�

�

�

�

	

�

	

�

�

�

�
�

�

�

�

�

�

�

�

Figure �� Mode�automata� a simple example� the program and its temporal be�
haviour

��

��� Composing Mode	Automata

��� A Realistic Example

��� Implementation Concerns

	���� Editing Mode
Automata

parler de Lustre�SCADE � already a graphical and syntactic editor for data�ow
programs� with a synchronization between the graphical and the Lustre textual
forms of a program�

	���� Compiling Mode
Automata

	���� Simulating Mode
Automata� the tool Sim�chro

	 Conclusions and General Comments

References

�BCH��
� J�L� Bergerand� P� Caspi� N� Halbwachs� D� Pilaud� and E� Pilaud� Out�
line of a real time data��ow language� In Real Time Systems Symposium�
San Diego� September ���
�

�BG��� G� Berry and G� Gonthier� The esterel synchronous programming lan�
guage� Design� semantics� implementation� Technical report� INRIA
report ���� �����

�CHPP��� P� Caspi� N� Halbwachs� D� Pilaud� and J� Plaice� lustre� a declarative
language for programming synchronous systems� In �	th Symposium on

Principles of Programming Languages� Munich� January �����

�CTC��� G� Costagliola� M� Tomita� and S� Chang� Dr parsers� a generalization
of lr parsers� In IEEE Workshop on Visual Languages� pages ���%����
Skokie 	Illinois
� October ����� IEEE Computer Society Press�

�CTC��� G� Costagliola� M� Tomita� and S� Chang� A generalized parser for ��d
languages� In IEEE Workshop on Visual Languages� pages ��%���� Kobe
	Japan
� October ����� IEEE Computer Society Press�

�GBBG�
� P� Le Guernic� A� Benveniste� P� Bournai� and T� Gauthier� Signal�
A data �ow oriented language for signal processing� Technical report�
IRISA report ���� IRISA� Rennes� France� ���
�

�Har��� D� Harel� Statecharts � A visual approach to complex systems� Science
of Computer Programming� �����%��
� �����

��

�Har��� D� Harel� On visual formalisms� CACM� ��� �����

�HP��� D� Harel and A� Pnueli� On the development of reactive systems� In Logic
and Models of Concurrent Systems� NATO Advanced Study Institute on

Logics and Models for Veri�cation and Speci�cation of Concurrent Sys�

tems� volume ��� NATO ASI series F� Springer Verlag� �����

�Mar��� F� Maraninchi� The argos language� Graphical representation of au�
tomata and description of reactive systems� In IEEE Workshop on Vi�

sual Languages� Kobe� Japan� October �����

�Mar��� F� Maraninchi� Operational and compositional semantics of synchronous
automaton compositions� In CONCUR� LNCS ���� Springer Verlag�
August �����

�MR��� F� Maraninchi and Y� R!emond� Compositionality criteria for de�n�
ing mixed�styles synchronous languages 	invited paper
� In Interna�

tional Symposium� Compositionality � The Signi�cant Di
erence� Ma�
lente 	Holstein� Germany
� September ����� Springer Verlag�

�MR��� F� Maraninchi and Y� R!emond� Mode�automata� About modes and
states for reactive systems� In European Symposium On Programming�
Lisbon 	Portugal
� March ����� Springer Verlag� LNCS �����

��

82

Visualising business processes

Paul Oude Luttighuis

Marc Lankhorst

Rob van de Wetering

René Bal

Harmen van den Berg

Contact:

Paul Oude Luttighuis

Telematics Institute

P.O. Box 589, 7500 AN Enschede, The Netherlands

Phone +31 53 485 0417, Fax +31 53 485 04 00

e-mail: luttighu@telin.nl

83

Abstract

Graphical representations of business process models are an important means by which business

architects can grasp the inherent complexity of business processes. This paper reports on the visualisation

features of AMBER, the graphical and formal business process language of the Testbed project, and

Testbed Studio, the toolkit developed by the project. The visualisation features fulfil explicit

requirements for visualisation of business process models, which are based on an investigation of a

business architect's main activities. The paper presents the three main areas in which visualisation is used

in AMBER and Testbed Studio: (1) the graphical representation of the language itself, (2) the

representation conventions suggested in the Testbed handbook, and (3) a set of business process views in

Testbed Studio.

84

1. Introduction

Organisations are complex for those who try to master them. They involve different customer groups,

business units, people, resources, and systems. They stretch over numerous different processes that

interact in a seemingly chaotic way. When trying to change business processes within organisations, one

is confronted with that inherent complexity [1].

The Testbed project develops methods, techniques, and tools to handle change of business processes,

particularly in the financial services sector [3]. A main objective is to give insight in the structure of

business processes and their relations. This insight can be obtained by creating business process models

that clearly and precisely represent the essence of the business organisation. These models should

encompass different levels of organisational detail, thus allowing to find bottlenecks and to assess the

consequences of proposed changes for the customers and the organisation itself. Formal methods allow

for detailed analysis of models and facilitate tool support.

The results of the Testbed project include a graphical business process modelling language, called AMBER

[2], and a tool environment, called Testbed Studio, with which AMBER models can be created,

manipulated, analysed, and viewed from different perspectives.

One set of considerations in designing AMBER concerned its graphical representation of business process

models and their analysis results. Adequate visualisation of these was considered to be an important

contribution to Testbed's objective: providing means for tackling complexity in business processes.

85

In this paper, we focus our attention on these visualisation aspects. Section 2 starts with an investigation

of the role of graphical representations in business process modelling. This leads to the identification of

visualisation requirements for AMBER and Testbed Studio, based on a model of business process change.

Section 3 then presents AMBER, with particular attention to the graphical representation. Two other

graphical features are treated in section 4 —namely representation conventions— and section 5 —namely

views, which show business models from different perspectives. In section 6, we show how the

visualisation features of AMBER match the requirements presented. We conclude with a summarising

discussion and directions for further work in section 7.

It should be noted that the focus of this paper is on the visualisation of business process models, not on

the entire graphical user interface (GUI) of Testbed Studio. Still, some GUI design principles [5] apply to

visualisation of business processes as well.

2. Requirements for visualising business processes

2.1 The role of visualisation in AMBER

As mentioned, the semantics of AMBER have been formally specified. The main objective of this formal

semantics is to enable automated analysis of business processes by mapping the language concepts onto a

mathematical domain. In fact, for different types of analysis, different formal semantics may be provided.

The role of a graphical representation of AMBER however is not to visualise formal aspects of business

processes. This is because the user of AMBER —the business architect— should be shielded from the

formal details of the language, be they partial-order models or Petri-nets. The representation of AMBER

should convey to the business architect the meaning of the language elements. The graphical

86

representation should allow easy interpretation of the models by the business architect, such that the

interpretation matches the intended meaning. This is depicted in Figure 1.

language concepts

visual business
process models

mathematical concepts

(graphical) representation

formalisation

business architect’s
mental concepts

interpretation

AMBER

business
architect

Figure 1 — The role of graphical representation.

It is beyond debate that this representation be a graphical one. As opposed to one-dimensional textual

representations, two-dimensional graphical representations are richer in structuring possibilities. In fact,

business processes involve even more than two dimensions, which are interdependent in complex ways.

For instance, there are many actors, activities and data involved in business processes. The same data may

be manipulated by many different activities, which in their turn may manipulate other data as well. Actors

may carry out different activities and activities may be carried out by different actors. Activities also have

87

mutual dependencies. They may access the same data at the same time or they may be ordered in complex

ways.

Textual representations must make a mapping of this complexity into a single dimension and therefore

require typical elements such as delimiters, operators and identifiers. In formal terms, no meaning is lost,

but the structure of a large business process is difficult to retrieve from a textual representation. In some

cases layout may help, for instance by using indentation to express nested structures.

Take for instance the parallelism occurring in business processes. This parallelism is naturally expressed

in graphical languages by paralleling the representations of the constituents, whereas a textual

representation must resort to an explicit operator, such as ||. In graphical languages, associations between

model elements can be indicated naturally by using an arrow or line between them, instead of symbolic

referencing, which should be used in textual representations. In addition, graphical symbols have a visual

appearance, as well as a name. The existence of the symbol in the model declares the object, its visual

appearance classifies it, whereas its name identifies it. This is close to the way humans perceive real-

world objects. Textual representations have to use separate mechanisms: declarations, explicit typing, and

identifiers. Only where textual representation is usual (as in names) or graphical representation would be

too verbose (as in simple formulas), AMBER chooses a textual representation.

In this sense, textual representations are more abstract than graphical ones. However, the language

concepts in AMBER are abstract concepts, not concrete ones, because only abstraction helps to master

complexity [1,8]. This is why the graphical representation of AMBER uses abstract symbols, such as

circles, arrows, and so on, instead of detailed icons. In this sense, the semantic conciseness of the

concepts should be reflected in the simplicity of the symbol. The use of icons implies a risk of over-

88

interpretation, because they may contain irrelevant details and hence unintentionally suggest additional

meaning.

With the business architect being the main user of AMBER, we first investigate his main activities in

order to formulate visualisation requirements for AMBER.

2.2 Activities of a business architect

In this section, we will take a closer look at these activities and couple them with specific visualisation

requirements. In following sections, we will then show how different visualisation features of Testbed

Studio comply with these requirements.

current
business
process

improved
business
process

model of
current

business process

realityreality

model worldmodel world

analysis and modeling realisation

analysis of bottlenecks and
suggestions for improvement

change and migration

preparations of change

model of
improved

business process

Figure 2 — Change of business processes supported by Testbed.

The current business organisation is the starting point for a change in business processes. In order to

match it to the company mission and change objective, it is important to gain insight into the current

situation and use it as a baseline. An analysis of the current business organisation provides this insight.

Figure 2 depicts the over-all Testbed approach. Several alternative new situations can be designed and

89

repeatedly analysis and compared. Off-line analysis cuts down on the costs and risks of business process

change. Stepwise migration is supported by a roadmap of consecutive models of intermediate situations.

These models can be validated and used for all sorts of computations to analyse, visualise and justify

changes.

Concluding, we identify the following main activities of the business architect:

– modelling current business processes as well as future alternatives,

– analysing business process models,

– planning and guiding business process migration, and

– communication with different stakeholders in any of the above activities.

2.3 Visualisation requirements

Modelling

First, when modelling the current business process, a business architect should be able to tackle the

inherent complexity of business processes [1] and get a grip on their size, their many facets and their

variety. For this purpose, the business architect is offered a graphical language for business process

modelling. Appropriate visualisation should help the business architect to create clear models. We will

introduce the language in section 3.

In our visualisation choices for AMBER, we were led by considerations of unambiguity, organisation,

economy, orthogonality, and external consistency (see also [5]). In general, it is impossible to entirely

adhere to all these guidelines simultaneously. Especially external consistency may be difficult to

accomplish simultaneously with economy and orthogonality.

90

Unambiguity

There should be a single (formal) meaning for every symbol and model. Without this requirement, the

main role of graphical representation —conveying a model’s single meaning— is jeopardised.

Organisation

The business architect should be offered means to organise business process models, not only

conceptually but also graphically. No matter how sophisticated the language concepts, no complex

business process can be grasped in a simple model. Visually arranging the model’s representation further

aids in mastering complexity.

Economy

Business process models should be conveyed by modest means, simple symbols, and few symbols. Many

symbols or complex symbols (such as icons) increase visual complexity and hence decrease the

accessibility of a representation.

Orthogonality

Orthogonality (also called internal consistency [5]) requires that differences and similarities between

language concepts should be reflected in their graphical representations. For instance, consider a language

with two distinct sets of related concepts. The representation of the concepts within a single set should

share a visual characteristic, such as their colour or an aspect of their form. This allows the business

architect to associate meaning with individual visual characteristics of a symbol or representation. He can

then correctly reconstruct the meaning of a representation by individually interpreting its visual

characteristics and combining these interpretations.

91

External consistency

A business architect’s expectations and experience should be adhered to. This lowers the business

architect’s threshold for learning the language and limits the size and complexity of his entire set of

mental concepts.

General visualisation choices

Formal and informal meaning

Next to the strict meaning of a business model, visualisation features may help to convey informal

meaning to or between business architects and other stakeholders. Our decision has been to have shape

carry meaning. That is, for each concept in the language, as well as for each way of associating them,

there should be a uniquely shaped symbol.

Colour therefore does not carry strict meaning: a red circle has the same meaning as a blue one. Still,

colour is a powerful visualisation means and is used extensively in our views. Furthermore, the editing

tool of Testbed uses different default colours for different concepts. This may be seen as a form of

redundant visualisation, which is often recommended as a means to clarify the meaning of models.

However, the business architect may alter the colour of any symbol according to his wishes.

Size and orientation

The (absolute or relative) size of symbols nor their (relative) orientation may carry any formal meaning,

since we want models to be rotation and magnification invariant. The shapes of the symbols are simple.

Although this might make them more abstract than, say, icons, it helps to keep models light and less

confusing, as well as easy to draw by hand

92

Associations

In general, associations between concepts can be graphically represented in a number of ways:

− by having one symbol include the other,

− by having the symbols overlap or touch,

− by connecting them with another symbol, or

− by placing the symbols in each other's proximity.

Inclusion can be used for hierarchical relations between concepts, as it is an asymmetric association.

Touching, overlap or proximity can be used for non-hierarchical associations, either symmetric or where

the difference between the model elements is clear from the symbols themselves.

Proximity has its drawbacks, as it is not precise. Especially in dense models, with many symbols, it may

be difficult to decide (at least at first glance) which symbols are associated, or proximity among symbols

may suggest relations which are not there. On the other hand, in case of associations between textual

language elements on the one hand and one-dimensional symbols on the other (lines, arrows, etc.),

inclusion is impossible, and touching or overlap are no real options. Wrapping the text in a box and

connecting it to the associated symbols is an option in this case, but would make the graphical

representation denser than needed.

In AMBER therefore, we mostly use inclusion, overlap, and connection for association. For instance,

names of model elements are included in the symbol.

Of course, grouping is another way of association. AMBER therefore includes grouping concepts such as

blocks and actors, with appropriate visualisation.

93

Analysis

Second, the analysis of business processes should be accompanied with accessible representations of the

analysis results. Analysis results can have many forms, such as tables, mathematical expressions,

numbers, or parts of the business process itself. We will restrict our discussion to those analysis results

that are business processes themselves or parts thereof. We call these analysis features views. Views are

used for hiding of highlighting specific elements of business process models or for presenting a business

process model from a specific perspective. They are discussed in section 5. Hence, we will not go into

details of the analysis possibilities offered, nor how they should be used by a business architect.

Planning and migration

In planning and migration, a business architect should be able to visualise entire trajectories of business

process models. Additionally, Testbed should support the guidance of the implementation of the new

process to some extent. This includes generating functional specifications for system development,

writing working instructions for employees, training and educating people of the organisation, and

exporting business processes to for instance workflow management systems.

Communication

In any step in this process, a business architect should be supported in his or her communication with

specific groups inside the company or companies involved. As these groups will have different goals and

different backgrounds and hence different visualisation needs, visualisation has to offer ways of tuning

business process visualisation to their specifics. For instance, company management may have little

interest in elaborate presentations of all business process details; to them, black-box abstractions may be

94

shown. On the other hand, when for instance translating business process models into operational

instructions for shop floor employees, many details may have to be included.

3. AMBER — a graphical business process language

This section introduces the business process design language AMBER and its graphical representation. A

separate paper [2] is dedicated to a more elaborate presentation of the language. When introducing a

language concept, we mention its representation between square brackets, as follows: action [circle].

AMBER's core recognises three aspect domains:

− the actor domain, describing the resources (deployed for) carrying out business processes; and

− the behaviour domain, describing the activities happening in a business process;

− the item domain, describing the items (forms, files, databases, etc.) handled in business processes.

AMBER models are not depicted by one huge representation. The language includes several concepts for

decomposing models into smaller parts, such as blocks and components. Besides, model representations

can be split up into diagrams. Each diagram is an actor diagram, a behaviour diagram or an item diagram.

The separation between diagrams however has no formal semantics; it serves no other purpose than to

split the representation.

3.1 The actor domain

The basic concept in the actor domain is the actor [octagon]. It designates a function, role, organisational

unit, person, or system (used for) carrying out a business process. Actors may be nested as well as

replicated [shadowed oval]. Actors generally have interaction points [oval], which are physical or logical

locations at which the actor may interact with its environment. Interaction-point relations [(multi)lines]

95

connect interaction points. Any interaction point can be involved in more than one relation. In addition, a

relation may connect more than two interaction points. Figure 3 shows a typical actor model.

Insurance Company

Treasury
Department

bankbank

Claims
Department

mailmail

Applications
Department

mailmail

Insurant [*]

bankbank

mailmail

Figure 3 — A typical actor model.

For actors containing other actors, a nested representation is preferred over a tree-like representation. This

enables a better representation of the relation between the interaction points of the constituents on the one

hand with the interaction points of the containing actor at the other. However, Testbed Studio provides a

view, in which the tree-like representation can be automatically generated (see 5.3).

3.2 The behaviour domain

The basic concept in the behaviour domain is the action [circle]. It models a unit of activity in business

processes. An action can only happen when its enabling condition [arrows] is satisfied. These conditions

are formulated in terms of other actions having occurred yet, or not. The most simple is the enabling

relation [simple arrow]. When included between actions � and �, it models that � cannot happen but after

� has finished. Its mirror image is the disabling relation [arrow with crossing line], modelling that �

96

cannot happen any more, once � has occurred. Enabling relations can be composed using splits [diamond]

and joins [little rectangle]. An and-split [filled diamond] models a parallel fork, an or-split [empty

diamond] models exclusive choice, an and-join [filled rectangle] synchronises, and an or-join [empty

rectangle] enables only when enabled by at least one enabler. See Figure 5.

Additional constraints [text] (typically, on attribute values of preceding actions) can be used to further

restrict the enabling relation. Actions, interactions, and blocks may be replicated [shadow]. Iteration is

used for modelling repeated behaviour [double edge and double-headed arrow].

A special kind of action is a trigger [frayed semicircle]. Triggers are like actions, except that they are

always immediately enabled. Actions can be grouped in blocks [rounded rectangle]. Blocks can be nested.

There are two ways to separate a block from its environment. One is between actions; the other is inside

actions. When a block separates behaviour between actions, a causality relation is cut. An entry [inward

triangle] or exit [outward triangle], depending on the direction of the causality relation indicates the

cutting point (at the block’s edge). This is typically used for phasing different parts of a business process.

When a block separates behaviour inside actions, the action is divided in a number of interactions

[semicircle]. Interaction relations [(multi)lines] are like interaction-point relations in the actor domain.

An interaction can only happen simultaneously with all of its related interactions, which must therefore

all be enabled. This type of structuring is typically used for modelling interaction between actors. Phased

and interaction-based structuring may be arbitrarily mixed. Figure 4 presents a typical behaviour model.

97

Behaviour Insurance Company

settle
claim
settle
claim

request
information

request
information

receive
claim

receive
claim

send
rejection

send
rejection

accept
claim
accept
claim

reject
claim
reject
claim

process
claim

process
claim

assess
claim

assess
claimcomplete

not ok

ok

not complete

Behaviour Insurant

receive
payment
receive

payment
supply

information
supply

information
file

claim
file

claim
receive

rejection
receive

rejection

damage
occurs

Figure 4 — A typical behaviour model.

Figure 5 — From left to right: and-split, and-join, or-split, or-join.

3.3 The item domain

The item domain models the items [rhomboid] (files, forms, data) on which (inter)actions are performed

by the actors. In the actor and behaviour models, items can be included and coupled to the various

elements of these models. In the actor domain, items are coupled to interaction-point relations, indicating

that in the interaction-point relation involved, the indicated item is used.

98

Behaviour Insurant

file
claim

file
claim

receive
payment
receive

payment
supply

information
supply

information
receive

rejection
receive

rejection

*

Behaviour Insurance Company

receive
claim

receive
claim

request
information

request
information

settle
claim
settle
claim

send
rejection

send
rejection

assess
claim

assess
claim

accept
claim
accept
claim

reject
claim
reject
claim

process
claim

process
claim complete

not ok

ok

not complete

damage
occurs

claim

Figure 6 — Items in a behaviour model.

Coupling items to elements of behaviour models is different in two ways. First, the items are coupled to

actions and interactions, instead of to interaction relations. Second, item coupling in behaviour models

distinguishes between five modes: create, read, write, read/write, delete [Figure 7]. This mode indicates

what type of action is performed on the item involved. Figure 6 shows how items can be used in a

behaviour model. Usage in an actor model is similar.

create read write read/write delete

item

* †* †

Figure 7 — Items in behaviour models.

99

Currently, an item definition language is being added to AMBER. This language is based on a subset of the

Unified Modelling Language UML [7]. It will provide structuring of, operations on, and relations

between items.

3.4 Components

Where actors and blocks are concepts for structuring individual business-process models, AMBER also

contains a concept for inter-relating different business process models: components. Components are

(partial) business process models, which exist on their own and may be stored in a repository. Each

component contains at most one of each of the following: an actor model, a behaviour model, and an item

list. Components can be used in other models, and can themselves carry gaps, in which other components

can be fitted in. In this way, component re-use and concurrent business-process design is enabled. Figure

8 shows how component gaps [grey box with an underlined name] are visualised in a behaviour model:

‘Behaviour Insurance Company’ is a component gap. By default, the component contents are hidden, but

they can be made visible as well.

Behaviour Insurant

file
claim

file
claim

supply
information

supply
information

receive
rejection
receive

rejection
receive

payment
receive

payment

Behaviour Insurance Company

receive
claim

receive
claim

request
information

request
information

settle
claim
settle
claim

send
rejection

send
rejection

damage
occurs

Figure 8 — Component in a behaviour model.

100

3.5 Attributes and profiles

As pointed out, actors are (used for) carrying out business processes. Hence, elements of the actor domain

should be coupled to elements of the behaviour domain. This is done by associating attributes with

blocks, actions, and interactions. These attributes are references to actors. There may be several of these

attributes, because actors may play different roles. In some cases, actors are the resources used in

business processes, whereas in other cases, actors may be the ones responsible for certain business

processes. An option would have been to introduce several actor concepts and representations for each of

these roles. This however would affect the conciseness of the language. Yet, it is possible to specifically

visualise a single role by means of views (see section 5).

In fact, any language concept may carry attributes, for any purpose. Attributes are grouped in so-called

profiles. Profiles allow for specialising concepts for specific purposes, such as for domain-specific

modelling (modelling logistics processes, for instance) or for specific analysis purposes (lead-time

analysis, for instance, requires specific attributes with actions).

4. Representation conventions

As pointed out above, many visualisation requirements have been incorporated into the design of the

AMBER language. Notwithstanding their helpfulness in creating clear models, a number of visualisation

features however should not be entrenched in the language, because it is undesirable to force the business

architect to apply them. In [6], where these features are called 'secondary notation', their importance and

effects are discussed. We call them representation conventions.

101

Representation conventions can be applied to increase the ease of understanding models. Especially for

the experienced user, they may provide useful clues for the meaning of a model. Using conventions does

not influence the formal meaning of the model. Typical conventions encountered in textual programming

are naming conventions and indentations conventions for clarifying the nesting structure of the code.

Conventions cannot be applied very strictly in all situations. Sometimes conventions conflict and

sometimes it is unavoidable to violate a convention. Below, we present a number of useful conventions.

Though included in the handbook accompanying Testbed Studio, the use of conventions is optional.

From left to right

By letting enabling relations point from left to right, the time dimension in behaviour models matches the

natural reading direction in Western cultures. Of course, this convention has to be violated in case of a

loop.

Symmetry

Symmetry can be used to suggest or stress similarities between parts of the model (Figure 9).

compute verify correct

verify

correct

inform

compute

assessstart

cheap

costly

compute

compute

assess

verify

verify correct

correct

informstart

cheap

costly

Figure 9 — Symmetry in business model visualisation.

102

Colour

Another way of indicating that certain elements have something in common is using the same colour. As

pointed out, colour has no formal meaning in AMBER. For instance, actions performed by the same

resources can be given the same colour as the representation of the resource. In Testbed Studio, colour

views can be based on several criteria (attributes), such as the actor involved.

Naming

Naming conventions can be used for indicating the kind of element, such as verbs for actions and nouns

for resources.

Suggestion of time duration

By exploiting the space between actions, time duration can be suggested. The left model in Figure 10

suggests that first a and b take place and c takes place only after a rather long time. The right one,

however, suggests that a, b and c take place with more or less equal time slots in between.

a b c a b c

Figure 10 — Suggestion of time.

Normal versus exceptional cases

In order to reduce the complexity of a model, it is useful to make a clear distinction between the normal

proceedings and exceptions thereto. This can for instance be realised by presenting the normal activities

103

within a process at a straight line, while placing the exceptional activities above or below that line. See

Figure 11.

start
receive
claim

check
claim

correct
claim

reject
claim

pay
claim

process
claim

start

receive
claim

check
claim

correct
claim

process
claim

reject
claim

pay
claim

Figure 11 — Visually separating normal course of action from exceptions.

Avoiding crossing lines

Avoiding crossing lines can increase the readability of a model. In case of a crossing line, the user may

have to spend extra time to figure out in what direction each of the lines continues.

5. Views of business process models

5.1 Four types of views

Different users and different goals require different representations or views of a model. Many aspects

and elements of a model need not be visible in all views of that model. If we would, for example,

textually display all profile attribute values (see 3.5) of a complex model, the result would be unreadable.

We prefer to selectively show only those aspects of a model that fit a specific purpose.

Views might use symbols, structure, colour, line style, and other features to emphasise specific aspects of

a model. Having to draw all these different types of views by hand would be a rather demanding task,

which would unnecessarily duplicate much of the work invested in the basic model.

104

Therefore, Testbed Studio supports automatic generation of different types of views:

− graphical views, which highlight elements of a model, by using colour, line style, and other

graphical attributes.

− textual views, which display non-graphical information (typically, attribute values) contained in a

model, by labelling model elements with text.

− structural views, which restructure a models representation, such as an organigram depicting the

nesting hierarchy of an organisation’s departments as a tree structure, or process lanes.

− simulation, which is a dynamic representation of a business process.

5.2 Hiding and showing model elements

An important application of views concerns the selective hiding of parts of a model, for instance for the

purpose of presenting high-level business models for management. Given a large, complicated model, it is

important that the user can choose which parts of that model he or she wants to see.

Behaviour Insurance Company

receive
claim

receive
claim

request
information

request
information

settle
claim
settle
claim

send
rejection

send
rejection

a c c e p t
c la im

a c c e p t
c la im

re jec t
c la im
re jec t
c la im

p roc e s s
c la im

p roc e s s
c la im

a s s e s s
c la im

a s s e s s
c la imcomplete

not ok

ok

not complete
a c c e p t
c la im

a c c e p t
c la im

re jec t
c la im
re jec t
c la im

p roc e s s
c la im

p roc e s s
c la im

a s s e s s
c la im

a s s e s s
c la imcomplete

not ok

ok

not complete

Behaviour Insurant

file
claim

file
claim

supply
information

supply
information

receive
rejection
receive

rejection
receive

payment
receive

payment

damage
occurs

Figure 12 — Scaled block contents.

105

If, for example, a behaviour model contains a deeply nested block structure, a user might want to see only

the top-level blocks. To this end, Testbed Studio offers an implode/explode view, which can hide or show

the contents of selected actors and blocks. An imploded actor or block has its name underlined. It can be

exploded in a separate diagram; its contents may also be shown in the original model, if necessary scaled

to fit a resized actor or block, as illustrated in Figure 12. The same view can be applied to the contents of

components (see Section 3.4).

5.3 Organigrams

An organigram is a structural view, helpful in the analysis of the hierarchical structure of an organisation,

omitting other aspects such as resource capacities. Testbed Studio can automatically generate

organigrams and other hierarchical diagrams. Organigrams are tree-formed representations of nested actor

models. For instance, the organigram of Figure 13 corresponds to the nested organisation structure of

Figure 3.

insurance company

damage
department

archiveclaim
department

Figure 13 — Organigram of an insurance company.

5.4 Viewing attributes

Using attribute views, the information contained in the attributes of model elements can be shown in

several ways. An example is the assignment of behaviour to actors. As we have seen in Section 3,

behaviour elements are assigned to one or more actors that carry out this behaviour.

106

InsurantInsurant Insurance companyInsurance company

GarageGarage

Figure 14 — Actor model.

Consider the actor model of Figure 14, in which the colours have been adjusted manually. To represent

the actor information in a behaviour model, we can use different types of views:

− The behaviour elements can be given text labels with their actors.

− The behaviour elements can be given the colour of the corresponding actors (Figure 15). Some

actions have multiple actors; they remain white. Another option would have been to use all

colours at once, but this would have yielded very colourful models.

− The behaviour model can be structured according to the assignment of behaviour to actors: the

behaviour assigned to a single actor is shown as a horizontal band in the behaviour model (Figure

16). Actions with multiple actors are split in connected interactions, one for each actor.

assess
damage

settle
claim

file
claim

inform
insurant

damage
occurs

accept
claim

reject
claim

assess
claim

Figure 15 — Actions coloured according to their assignment to actors.

107

Process band "Insurant"

settle
claim
settle
claim

file
claim

file
claim

inform
insurant
inform

insurant

damage
occurs

damage
occurs

Process band "Insurance company"

settle
claim
settle
claim

file
claim

file
claim

inform
insurant
inform

insurant

accept
claim
accept
claim

reject
claim
reject
claim

assess
claim

assess
claim

Process band "Garage"

assess
damage
assess
damage

Figure 16 — Behaviour structured according to the assignment to actors.

5.5 Analysis views

Views can also be used to represent results of the analysis of a model. Testbed Studio makes extensive

use of this, in several types of analysis:

− Quantitative analysis computes several quantitative performance and cost measures. Based upon

these measures, the tool can, for example, highlight the critical path, i.e., the actions in the model

that are primarily responsible for the completion time of a process.

− Functional analysis uses model checking [4] to analyse functional properties of a model, such as

“is action a always followed by action b?”, or “can actions a, b, and c occur together?” If a

counterexample of such a property exists, it is graphically represented using colour in the original

model.

− Precedence analysis colours the actions that necessarily or possibly precede a given action.

108

− Data-flow analysis highlights the paths by which information, represented by items, flows

through the behaviour model.

5.6 Simulation

A model can be simulated (or animated) by Testbed Studio. Different colours are used to signify whether

an action is enabled (green), is executing (orange), or has executed (grey). See Figure 17.

accept
claim

reject
claim

assess
claim

file
claim

assess
damage

damage
occurs

settle
claim

inform
insurant

Figure 17 — ‘damage occurs’ has executed, ‘assess damage’ is enabled, ‘file claim’ is executing.

6. Adherence to requirements

In this section, we discuss the way in which AMBER’s visualisation features, as discussed in sections 3–5,

match the major requirements of section 2.

Unambiguity

A major, yet simple decision for avoiding ambiguity is taking different symbols for different language

concepts. Notice however, that (multi)lines are used for both interaction-point relations and interaction

relations. Their context however easily disambiguates here. Interaction point relations occur in actor

diagrams only, interaction relations in behaviour diagrams only.

109

It is also possible to let the immediate context decide how to interpret arrows, that is, as part of an

enabling relations or as an association between items and (inter)actions. However, because both can occur

in the same diagram, we decided to have item associations denoted by dotted arrows.

In some cases, a combination of symbols may imply an ambiguity risk. This occurs in AMBER when lines

cross. Therefore, crossing lines carry a tiny circle when semantically connected and no tiny circle when

not.

Organisation

AMBER offers many ways of visually organisation models. The first is the separation between diagrams.

Conventions are another option for visual organisation, although they are mere suggestions instead of

language features. AMBER’s views however offer the most powerful way of visually arranging business

process models.

Economy

AMBER has been given simple representations for each of its concepts. Visual orthogonality (see below)

however also helps in designing economical representations, because orthogonality allows for using as

few visual characteristics as possible to express a wide range of meanings.

Orthogonality

Orthogonality is used extensively throughout. First, the actor domain and the behaviour domain include

analogous concepts (interaction points versus interactions, actors versus blocks). The representation of

these analogous concepts is designed analogously.

110

Replication and iteration are indicated by visual variants on the basic symbols. Throughout, replication is

indicated by a shadow. Iteration is indicated by double edges and double-headed arrows.

Interactions are denoted by semicircles, in order to evoke the idea that multiple interactions together form

one action.

The orthogonality principle is also applied in

− the symbols for splits (diamonds) and joins (squares). In either case, the disjunctive version is

unfilled and the conjunctive version is filled (Figure 5).

− choosing for the two-sided arrow for read/write, the symbol for creation (which is a special case

of writing), and deletion (which is the inverse of creation).

External consistency

This is a difficult requirement to meet, because the business architect’s expectations and experience are

largely implicit and may vary between individuals. There is no explicit evidence that AMBER is externally

consistent.

Yet, all results of the Testbed project have been and still are applied in real-world settings in large

information-intensive organisations. In a number of cycles, the AMBER language, including its

visualisation features, has been adjusted to remarks and wishes of business architects. However, there has

so far been no systematic evaluation by users, dedicated to the visual aspects of the language and the tool.

111

Size and orientation

Actions and interactions are stretched when needed to include longer names. This however may cause

differences in size, suggesting difference in importance. Their formal meaning however does not change.

The representation choices for splits (diamonds) and joins (squares) holds an ambiguity risk, since rotated

squares may be seen as diamonds. This however, is solved by letting the arrows apply only at the angles

of diamonds and the edges of squares.

7. Further research

Further work in the area of visualisation remains to be done in the following areas:

− development of a generic colour view, where any attribute of a model element can be used as the

basis for a colour view. This is a generalisation of the specific colour views already available.

− visualisation of data and items. Along with the inclusion of item modelling in Testbed Studio, a

visual data definition language will be offered. The data manipulation language will be textual.

UML will serve as the example.

− visualisation of layered models. Currently, implode and explode views are offered for individual

blocks and actors. In layered models, implosion and explosion might be offered for all blocks or

actors at a certain nesting level at once.

− specific visualisation of different model types and abstraction levels.

112

− visualisation of sophisticated analyses. In the future, additional advanced analysis capabilities

will be included in Testbed Studio, such as stochastic simulation. The more complex analyses are

performed, the more attention should be paid to accessible visualisation of their results.

− visualisation of domain-specific concepts or visualisation for specific user groups.

References

[1] F.P.M. Biemans, M.M. Lankhorst, W.B. Teeuw, and R.G. van de Wetering (1999), Mastering the

complexity of business process design, Submitted to: Systems Research and Behavioral Science,

Wiley.

[2] H. Eertink, W.P.M. Janssen, P.H.W.M. Oude Luttighuis, W. Teeuw & C.A. Vissers (1999) A

Business Process Design Language, In: 1999 World Conference on Formal Methods (FM'99,

Toulouse, France, 20 – 24 September, 1999).

[3] H.M. Franken & W.P.M. Janssen (1998). Get a grip on changing business processes, Knowledge

& Process Management Winter 1998; Wiley.

[4] W.P.M. Janssen, R. Mateescu, S. Mauw & J. Springintveld (1998) Verifying Business Processes

using SPIN. In: G. Holzman, E. Najm E & A. Serhrouchni (eds) Proceedings of the 4th

International SPIN Workshop, Ecole Nationale Superieure des Telecommunications: Paris,

France; Report ENST 98 S 002; pp. 21 – 36.

[5] A. Marcus (1997). Graphical User Interfaces, Chapter 19 in: Handbook of Human-Computer

Interaction, Second edition, Elsevier Science, pp. 423 – 440.

[6] M. Petre (1995). Why Looking Isn’t Always Seeing: Readership Skills and Graphical

Programming. Communications of the ACM 38(6), 33 – 44.

113

[7] Rational Software Corporation. (1997). Unified Modeling Language, Version 1.0.

http://www.rational.com/ot/uml/1.0/index.html.

[8] C. Szyperski (1998). Different programming methods for different programmers, Section 10.1 in:

Component Software — Beyond Object-Oriented Programming, Addison Wesley, 1998 (reprint),

pp. 145 – 147.

Acknowledgement

The authors wish to acknowledge all participants in and sponsors of the Testbed project, a 120 man-year

research initiative to develop languages, methods and tools for business process design in the financial

sectors. The Testbed consortium consists of ABP, the Dutch Tax Department, ING Group, IBM and the

Telematics Institute (The Netherlands). It subcontracts research projects to several research institutes.

The project is further supported by the Dutch Ministry of Economic Affairs. We further acknowledge the

Architecture Group of the University of Twente, Enschede, the Netherlands (Prof. Chris A. Vissers)

which has developed Testbed’s architectural modeling technique.

Furthermore, the authors thank Ynze van Houten, Frank Biemans, and Henry Franken from the

Telematics Institute for their useful comments on earlier versions of this paper.

114

List of Figures

Figure 1 — The role of graphical representation. ... 86

Figure 2 — Change of business processes supported by Testbed. ... 88

Figure 3 — A typical actor model... 95

Figure 4 — A typical behaviour model... 97

Figure 5 — From left to right: and-split, and-join, or-split, or-join.. 97

Figure 6 — Items in a behaviour model.. 98

Figure 7 — Items in behaviour models. .. 98

Figure 8 — Component in a behaviour model. ... 99

Figure 9 — Symmetry in business model visualisation. ... 101

Figure 10 — Suggestion of time. .. 102

Figure 11 — Visually separating normal course of action from exceptions. ... 103

Figure 12 — Scaled block contents. ... 104

Figure 13 — Organigram of an insurance company. .. 105

Figure 14 — Actor model. .. 106

Figure 15 — Actions coloured according to their assignment to actors. .. 106

Figure 16 — Behaviour structured according to the assignment to actors. .. 107

Figure 17 — ‘damage occurs’ has executed, ‘assess damage’ is enabled, ‘file claim’ is executing. 108

