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Application of the Wigner distribution function in optics
Martin J. Bastiaans

Technische Universiteit Eindhoven, Faculteit Elektrotechniek,
Postbus 513, 5600 MB Eindhoven, Netherlands

Abstract

This contribution presents a review of the Wigner distribution function and
of some of its applications to optical problems. The Wigner distribution function
describes a signal in space and (spatial) frequency simultaneously and can be con-
sidered as the local frequency spectrum of the signal. Although derived in terms
of Fourier optics, the description of a signal by means of its Wigner distribution
function closely resembles the ray concept in geometrical optics. It thus presents a
link between Fourier optics and geometrical optics.

The concept of the Wigner distribution function is not restricted to deterministic
signals; it can be applied to stochastic signals, as well, thus presenting a link
between partial coherence and radiometry. Some interesting properties of partially
coherent light can thus be derived easily by means of the Wigner distribution
function.

Properties of the Wigner distribution function, for deterministic as well as for
stochastic signals (i.e., for completely coherent as well as for partially coherent
light, respectively), and its propagation through linear systems are considered,;
the corresponding description of signals and systems can directly be interpreted
in geometric-optical terms. Some examples are included to show how the Wigner
distribution function can be applied to problems that arise in the field of optics.

1. INTRODUCTION

In 1932 Wigner introduced a distribution function in mechanics that permitted a
description of mechanical phenomena in a phase space. Such a Wigner distribution
function was introduced in optics by Walther in 1968, to relate partial coherence
with radiometry. A few years later, the Wigner distribution function was introduced
In optics again (especially in the area of Fourier optics), and, since then, a great
number of applications of the Wigner distribution function have been reported. It
Is the aim of this contribution to review the Wigner distribution function and some
of its applications to problems that arise in the field of optics.

The Wigner distribution function is introduced in Section 2, and some of its most
elementary properties are discussed there. In Section 3 we consider some examples
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of Wigner distribution functions, mainly chosen from the field of optics. Properties
of the Wigner distribution function are studied in Section 4. In Sections 5 and 6 we
study the propagation of the Wigner distribution function through linear systems
by formulating input-output relations and transport equations. While in Sections 2
through 6 we confine ourselves to completely coherent light, the use of the Wigner
distribution function to describe partially coherent light is considered in Section
7. Finally, in Section 8, we present some applications of the Wigner distribution
function to optical problems.

We conclude this introduction with some remarks about the signals that we are
dealing with. We will consider scalar optical signals, which will be described by,
say, ¢(X,Y, zt), where x, y, and z denote space variables and where t represents
the time variable. The temporal Fourier transform ¢(X,y, z, ) of such a signal
will be defined as ¢(X,y,z, @) = [@(X,Y, z,t) exp[iot]dt. (Unless otherwise stated,
all integrations and summations in this contribution extend from —oo to +00.) For
the sake of convenience, we shall omit the temporal-frequency variable » from the
formulas, since in the present discussion the temporal-frequency description is of
no importance. In other words, we can restrict ourselves to a time-harmonic signal
(X, Y, 2) expliwt], which is completely described by its complex amplitude ¢(X, y, 2).
Very often we shall consider signals in a plane z = constant, in which case we
can omit the space variable z from the formulas. Furthermore, we shall restrict
ourselves to the one-dimensional case, where the signals are functions of the space
variable x, only; the extension to two dimensions is straightforward. The signals
that we are dealing with are thus described by a function ¢(x).

2. WIGNER DISTRIBUTION FUNCTION AS A LOCAL
FREQUENCY SPECTRUM

It is sometimes convenient to describe a space signal ¢(x), say, not in the space
domain, but in the frequency domain by means of its frequency spectrum, i.e., the
Fourier transform ¢(u) of the function ¢(x), which is defined by

B(U) = f o () exp[—iux]dx; (2.0-1)

a bar on top of a symbol will mean throughout that we are dealing with a function
in the frequency domain. The frequency spectrum shows us the global distribu-
tion of the energy of the signal as a function of frequency. However, one is often
more interested in the local distribution of the energy as a function of frequency.
Geometrical optics, for instance, is usually treated in terms of rays, and the signal
is described by giving the directions (i.e., frequencies) of the rays that should be
present at a certain point. Hence, we look for a description of the signal that might
be called the local frequency spectrum of the signal.

The need for a local frequency spectrum arises in other disciplines, too. It arises
in music, for instance, where a signal is usually described not by a time function nor
by the Fourier transform of that function, but by its musical score; indeed, when a



composer writes a score, he prescribes the frequencies of the tones that should be
present at a certain moment. It arises also in mechanics, where the position and
the momentum of a particle are given simultaneously, leading to a description of
mechanical phenomena in a phase space.

In this section we introduce a strong candidate for the local frequency spectrum
of a signal, viz. the Wigner distribution function, and consider its relation to other
signal representations.

2.1. Definition of the Wigner distribution function

The Wigner distribution function [Wig-32, Mor-62, Bru-73, Bas-78,80b,81b,84b,
Fri-80, Cla-80, Szu-80] F(x, u) of the signal ¢(x) is defined by

F(x,u) = f (X + 2x)p*(x — 2x') exp[—iux]dx’; (2.1-1)

an asterisk will denote throughout complex conjugation. A distribution function
according to definition (2.1-1) was first introduced by E. Wigner in mechanics [Wig-
32] and provided a description of mechanical phenomena in a phase space.

The Wigner distribution function is a function that may act as a local frequency
spectrum of the signal; indeed, with x as a parameter, the integral in its definition
represents a Fourier transformation (with frequency variable u) of the product
o(X + %x/)qf“(x — %x/). Instead of the definition in the space domain, there exists an
equivalent definition in the frequency domain, reading

F(x,u) = % f @(U+2u)p*(u— 2u') expliu'x]du’. (2.1-2)

The Wigner distribution function F(x, u) represents the signal in space and fre-
guency simultaneously. It thus forms an intermediate signal description between
the pure space representation ¢(x) and the pure frequency representation ¢(u).
Furthermore, this simultaneous space-frequency description closely resembles the
ray concept in geometrical optics, where the position and direction of a ray are also
given simultaneously. In a way, F(x, u) is the amplitude of a ray, passing through
the point x and having a frequency (i.e., direction) u.

Properties of the Wigner distribution function will be studied in subsequent
sections; we only mention here that it is a real function, and that it is almost a com-
plete description of the signal. Indeed, from the inverse relations that correspond
to definitions (2.1-1) and (2.1-2),

1 .

P(X)@" (%) = > f F[2(% + X2), u] exp[iu(x — X2)]du (2.1-3)
and

(U@ (Up) = f FX, 2(Uz + U2)] exp[—i (uy — u)x]dXx, (2.1-4)



we conclude that the signal can be reconstructed from its Wigner distribution
function up to a constant phase factor; such a phase factor, however, is often less
important.

A local frequency spectrum, such as the Wigner distribution function, describes
the signal in space x and frequency u, simultaneously. It is thus a function of two
variables, derived, however, from a function of one variable. Therefore, it must sat-
isfy certain restrictions, or, to put it another way: not any function of two variables
is alocal frequency spectrum. The restrictions that a local frequency spectrum must
satisfy correspond to Heisenberg’s uncertainty principle in mechanics, which states
the impossibility of a too accurate determination of both position and momentum
of a particle.

It is not difficult to derive the necessary and sufficient conditions that a function
of two variables must satisfy in order to be a Wigner distribution function. A
real function F(x, u) is a Wigner distribution function if and only if it satisfies the
condition [Gro-72]

F@+ix,.b+3uF@—3x,.b—iu) =

1 .
= o ff Fa+ %Xo, b+ %uo)F(a— %Xo, b— %uo) exp[—i (UXo — UpX)]dXod U, (2.1-5)

for any a and b; a proof of this statement can be found in Appendix A.

2.2. Relatives of the Wigner distribution function

The Wigner distribution function is a representative of a rather broad class of
space-frequency functions [Coh-66,89, Cla-80], which are related to each other by
linear transformations. Some well-known space-frequency representations — like
Woodward’'s ambiguity function [Woo-53, Pap-74,77, Szu-80], Rihaczek’s complex
energy density function [Rih-68], and Mark’s physical spectrum [Mar-70] — belong
to this class. Woodward’'s ambiguity function A(X’, u’), which is defined by

AX,U) = f P(X + 2x)p*(x — 2x') exp[—iu'x]dX, (2.2-1)

Is related to the Wigner distribution function through a double Fourier transforma-
tion:

A(X,u) = %f expli (UoX — UXo)] F(Xo, Uo)dXodU,. (2.2-2)

Rihaczek's complex energy density function C(x, u), which is defined by
C(x,u) = p(x)¢" (u) exp[—iux], (2.2-3)

Is related to the Wigner distribution function through the convolution
1 .
Coxu) = o f f 2exp[—2i (U — Uo) (X — Xo)] F (Xo, Uo)dXodUo. (2.2-4)
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The real part R(x, u) of the complex energy density function is related to the Wigner
distribution function via the convolution

R(X,u) = % ff 2C09[2(U — Uo) (X — Xo)] F (X0, Uo)dXodU, (2.2-5)

where the realness of the Wigner distribution function has been used. Mark’s
physical spectrum, which is defined as the squared modulus of the cross-ambiguity
function S,(x, u) of the signal ¢(x) and a window function w(x),

S,(% U) = f o (Y)W (y — ) exp[—iuyldy. (2.2-6)

is related to the Wigner distribution function via the relation

1
1S, (X, W) = — Fu (X0 — X, Up — U) F(Xo, Uo)dXodUo, (2.2-7)
2

inwhich F,(x, u) represents the Wigner distribution function of the window function
w(X); note that the function S,(x,u) resembles the short-time Fourier transform
known in speech processing [Rab-78, Opp-78].

The space-frequency functions mentioned above belong to a broad class of space-
frequency functions known as the Cohen class [Coh-66]. Any function of this class
Is described by the general formula

1 _ /
2n fff P(y + 3X)@"(y — 3X)K(X, u, X', U) exp[—i (ux' — u'x + u'y)]dydx'du’,  (2.2-8)

and the choice of the kernel k(x, u, X, u") selects one particular function of the Cohen
class. The Wigner distribution function, for instance, arises for k(x,u, X,u’) = 1,
whereas k(x, u, X', u) = 2r8(x — x')§(u — U) yields the ambiguity function. In this
contribution we shall confine ourselves to the Wigner distribution function and
we shall not consider other members out of this general class of space-frequency
functions.

2.3. Extension to stochastic signals

The Wigner distribution function depends quadratically upon the signal. This
implies that a linear combination of signals leads to all kinds of cross Wigner distri-
bution functions and that the resulting Wigner distribution function is not just the
linear combination of the Wigner distribution functions of the respective signals.
While this may be a disadvantage in some cases, a quadratical dependence can be
advantageous, too. Indeed, the quadratical behaviour of the Wigner distribution
function enables us to extend the theory to stochastic signals instead of determinis-
tic signals, without increasing the dimensionality of the formulas. Let us consider
this point in more detail.

Suppose that we are dealing with a stochastic signal ¢(x) that can be described
by the ensemble average of the product ¢ (X )¢*(%2), known as the correlation function
['(X1, X2) [Pap-77]:

(X1, %) = E{o(x)¢" (%)} . (2.3-1)



The Wigner distribution function of such a stochastic signal can then be defined by
[Bas-78,80b,81b]

F(x,u) = f I'(x+ 32X, x — 2X) exp[—iux']dX, (2.3-2)

which definition is equivalent to the original definition (2.1-1) for a deterministic
signal, but with the product (p(X—i—%X/)(p*(X— %x/) replaced by the correlation function
I'(x + 32X, x — 1x)). We remark that the latter definition (2.3-2) is similar to the
definition of Walther’'s generalized radiance [Wal-68, Wol-78, Fri-79]. Such an
extension of the theory allows us to describe partially coherent light by means of a
Wigner distribution function, as well [Bas-78,81b,86a]. We shall study this subject
in more detail in Section 7.

3. EXAMPLES OF WIGNER DISTRIBUTION FUNCTIONS

We shall illustrate the concept of the Wigner distribution function by some exam-
ples from Fourier optics. For the time being, we confine ourselves to time-harmonic
optical signals of the form ¢(x,t) = ¢(X) exp[—iwt]. Since the time dependence is
known a priori, the complex amplitude ¢(x) serves as an adequate description of
the signal, and the time dependence can be omitted from the formulas. For conve-
nience, we restrict ourselves to one-dimensional space functions ¢(x) to denote the
complex amplitude; the extension to more dimensions is straightforward.

3.1. Point source

A point source located at the position x, can be described by the impulse signal
@(X) = 8(X — Xo). Its Wigner distribution function takes the form F(x, u) = §(X — %).
At one point x = %, all frequencies are present, whereas there is no contribution at
other points. This is exactly what we expect as the local frequency spectrum of a
point source.

3.2. Plane wave

As a second example we consider a plane wave, described in the frequency
domain by the frequency impulse ¢(u) = 275(u — U,), or, equivalently, in the space
domain by the harmonic signal ¢(x) = exp[iu.X]. A plane wave and a point source
are dual to each other, i.e., the Fourier transform of one function has the same
form as the other function. Due to this duality, the Wigner distribution function
of a plane wave will be the same as the one of the point source, but rotated in
the space-frequency domain through 90 degrees. Indeed, the Wigner distribution
function of the plane wave takes the form F(x, u) = 27§(u — u,). At all points, only
one frequency u = u, manifests itself, which is exactly what we expect as the local
frequency spectrum of a plane wave.



3.3. Quadratic-phase signal

The quadratic-phase signal ¢(x) = exp[i%ozxz] represents, at least for small x,
I.e., in the paraxial approximation, a spherical wave whose curvature is equal to
a. The Wigner distribution function of such a signal is F(x,u) = 27§(u — «x), and
we conclude that at any point x only one frequency u = ax manifests itself. This
corresponds exactly to the ray picture of a spherical wave.

3.4. Smooth-phase signal

The Wigner distribution function of the smooth-phase signal ¢(x) = exp[iy (X)],
where y (x) is a sufficiently smooth function of x, takes the form F(x, u) >~ 27§(u —
dy/dx). We remark that at any point x only one frequency u = dy/dx manifests
itself. Note that the latter expression for the Wigner distribution function becomes
an equality when y (x) varies only linearly or quadratically in x (see Examples 3.2
and 3.3). The concept of a smooth-phase signal and its Wigner distribution function
may be useful, for instance, in the geometrical theory of aberrations [Bor-75] and in
describing Bryngdahl's geometrical transformations [Bry-74] and geometric-optical
systems (see Example 5.6 and Section 8.2).

3.5. Gaussian signal

Let us consider the Gaussian signal

p(X) = <%> 4 exp [—%(X — X)? + iUOX] : (3.5-1)

where p is a positive quantity. The Wigner distribution function of this Gaussian
signal reads

2
F(x,u) = 2exp [— <2—Z(x —x)2+ - u0)2>] . (3.5-2)
0 2

Note that it is a function that is Gaussian in both x and u, centered on the space-
frequency point (X, Uy). The effective widths in the x- and the u-direction follow
readily from the normalized second-order central moments %(,02/277) and %(271/,02)
in the respective directions.

When we consider Gaussian beams, we have to deal with a Gaussian signal that
Is multiplied by a quadratic-phase signal, e.g.,

2\ 1 .
@(X) = <—2> exp [—%xz + i %axz] . (3.5-3)
P P
The Wigner distribution function of such a signal takes the form
2 2
F(x, U) = 2 exp [— <—Zx2 + 2 w- ax)2>] : (3.5-4)
Jo 2



It may be convenient to consider the Gaussian beam as a quadratic-phase signal
having a complex curvature o +i(27/p?) [Des-72, Bas-79d]; this complex curvature
sometimes behaves like the ordinary curvature of a quadratic-phase signal, as we
shall see later on in Section 8.5.

3.6. Hermite functions

As a final example we shall consider the Hermite functions yi(§) im=0,1, ...)
that are defined, for instance, by means of the generating function [Bru-67, Abr-70,
Jan-81b]

explr&? — 21 (n — £)%) = 275 Y (M) 72 (4m) ™" (£); (3.6-1)

m=0

the Hermite functions can be expressed in the form [Bru-67]
Ym(E) = 2027 3M(ml) "2 exp[—7E Hn(v/27E) (M=0,1,...), (3.6-2)

where Hn(§) (m =0, 1, ...) are the Hermite polynomials [Abr-70]. Note that y(¢) is
just a Gaussian function, and that, consequently, ¥n(X/p) is exactly the Gaussian
signal that we considered in Example 3.5 with X, = u, = 0. We remark that the
Hermite functions satisfy the orthonormality relation

fwm(S)w:(S)ds =0n_n (IMnN=0,1,..). (3.6-3)

It can be shown [Jan-81b] that the Wigner distribution function of the signal
Ym(X/p) (Mm=0,1,...) takes the form

2 2
F(x,u) = 2(—1)™exp [— <2—7Zx2 + '0—u2>] Lm [2 <2—7Zx2 + '0—u2>] , (3.6-4)
0 2 0 2

where Ln(§) (m = 0,1, ...) are the Laguerre polynomials [Erd-53]. We shall use
the Hermite functions and their Wigner distribution functions later on in this
contribution.

4. PROPERTIES OF THE WIGNER DISTRIBUTION
FUNCTION

In this section we list some properties of the Wigner distribution function. Other
properties can be found elsewhere [Mor-62, Bru-67,73, Cla-80, Szu-80, Bre-83].

4.1. Inversion formulas

The inverse relations that correspond to the definitions of the Wigner distribu-
tion function have already been presented by the relations (2.1-3) and (2.1-4). In
fact, these inverse relations formulate the conditions that a function of two vari-
ables must satisfy in order to be a Wigner distribution function: a function of x and
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u is a Wigner distribution function if and only if the right-hand integral in rela-
tion (2.1-3) or (2.1-4) is separable in the form of the left-hand side of that relation.
From relations (2.1-3) and (2.1-4) we conclude that the signal ¢(x) and its frequency
spectrum ¢(u) can be reconstructed from the Wigner distribution function up to a
constant phase factor.

4.2. Realness

It follows immediately from the definitions of the Wigner distribution function
that it is a real function. Unfortunately, the Wigner distribution function is not
necessarily nonnegative, which prohibits a direct interpretation of this function as
an energy density function.

4.3. Space and frequency limitation

It follows directly from the definitions that, if the signal ¢(x) is limited to a
certain space interval, the Wigner distribution function is limited to the same
interval. Similarly, if the frequency spectrum ¢(u) is limited to a certain frequency
interval, the Wigner distribution function is limited to the same interval.

4.4. Space and frequency shift

It follows immediately from the definitions that a space shift of the signal ¢(x)
yields the same shift for the Wigner distribution function. Similarly, a frequency
shift of the frequency spectrum ¢(u), which corresponds to a modulation of the
signal ¢(x), yields the same shift for the Wigner distribution function. We have
already met these space and frequency shifts when we considered the Gaussian
signal in Example 3.5.

4.5. Some equalities and inequalities

Several integrals of the Wigner distribution function have clear physical mean-
ings. The integral over the frequency variable u, for instance,

zif F(x, wdu = [p(x)[?, (4.5-1)
JT

represents the intensity of the signal, whereas the integral over the space variable
X,

f F(x, uydx = |g(u)?, (4.5-2)

Is equal to the intensity of the frequency spectrum. These integrals are evidently
nonnegative. The same holds for the integral over the entire space-frequency
domain,

1 1
Eff F(x, u)dxdu =f|<p(x)|2dx= Ef|¢(u)|2du, (4.5-3)
9



which represents the total energy of the signal. It is not difficult to recognize
Parseval’'s theorem in relation (4.5-3).

The integral in relation (4.5-3) represents in fact the zero-order moment of the
Wigner distribution function. The normalized first-order moment of the Wigner
distribution function in the x-direction,

—ffo(x u)dxdu fx|<p(x)|2dx
(4.5-4)

—ff F(x, uydxdu f|<p(x)|2dx ’

is equal to the center of gravity [Pap-77] of the intensity |¢(x)|?> of the signal; a
similar relation holds for the normalized first-order moment in the u-direction,

—fqu(x u)dxdu —fu|<p(u)|2du
ff F(x, u)dxdu —f|<p(u)|2du

which is equal to the center of gravity of the intensity |¢(u)P of the frequency
spectrum. The normalized second-order central moment in the x-direction,

(4.5-5)

% ff(x — my)%F(x, u)dxdu f(x — my)?p(x)|?dx

iff F(x, u)dxdu - f|<p(x)|2dx
21

iIs equal to the square of the duration [Pap-77] or effective width of the signal
¢(X); a similar relation holds for the normalized second-order central moment in
the u-direction

zi ff(u — my)2F(x, u)dxdu 2i f(u — my)?|@(u)|?du
My, = <& s =d?, (4.5-7)

1 1 [ _
Eff F(x, u)dxdu Ef|<p(u)| du

which is related to the effective width of the frequency spectrum ¢(u). Note that,
again, these second-order moments are nonnegative. We can also define the mixed
second-order moment

i ff(x — my)(u—my) F(x, uydxdu
2

Myx = = d, (4.5-6)

Myx = Myy = 1 (4.5-8)
—ff F(x, u)dxdu
2
The real symmetric matrix of second-order moments
M = Myx My (45_9)
mUX mUU

IS nonnegative definite, as we shall prove in Section 8.5.
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Instead of the global moments like in relations (4.5-3)-(4.5-8), where the integra-
tion is over both the space and the frequency variable, we can also consider local
moments, like in relations (4.5-1) and (4.5-2), where we integrate over one vari-
able only. The normalized first-order local moment with respect to the frequency
variable,

1

z—fUF(X, u)dxdu d
7; = Im {— Inw(x)} , (4.5-10)
—f F(x, u)dxdu

2

U0 = dx

can be interpreted as the average frequency of the Wigner distribution function at
position x. When we represent the signal ¢(x) by its absolute value |¢(x)| and its
phase arg¢(x), we obtain the relation

d
U =—a , 4.5-11
X) = 7 @99 (X) ( )
from which we conclude that the average frequency U (x) is equal to the derivative
of the phase of the signal. Other interesting local moments can be found elsewhere
[Cla-80].

Several integrals of the Wigner distribution function can be interpreted as ra-
diometric quantities. We already found the intensity of the signal [see equation
(4.5-1)] and the intensity of the frequency spectrum [see equation (4.5-2)]; the
latter is, apart from a usual factor cos’d (where 6 is the angle of observation in
radiometry), proportional to the radiant intensity [Car-77, Wol-78]. The integral

1 [Vk®—u?
300 = — f Y~ e, uydu (4.5-12)
2 k
(where k = 27/1 = w/c is the usual wave number) is proportional to the radiant
emittance [Car-77, Wol-78]; when we combine the latter integral with the integral

3(2) = %fEF(x, uydu, (4.5-13)

we can construct the two-dimensional vector
J=(J L), (4.5-14)

which is proportional to the geometrical vector flux [Win-79]. The total radiant flux
[Car-77] follows from integrating the radiant emittance over the space variable.

An important relationship between the Wigner distribution functions of two
signals and the signals themselves has been formulated by Moyal [Moy-49]; it
reads

1 2 11 2
o ff Fi(x, u) F(x, u)dxdu = 'f@l(x)wﬁ(x)dx = '—f@l(u)@(u)du (4.5-15)
T 21

11



This relationship has an application in averaging one Wigner distribution function
with another Wigner distribution function. The result, unlike the Wigner distribu-
tion function itself, is always nonnegative. A direct consequence of Moyal’s formula
Is the property that if two functions are orthonormal then their corresponding
Wigner distribution functions are orthonormal, as well. We shall use this property
later on, when we consider modal expansions of partially coherent light.

Relations (4.5-3) and (4.5-15), together with Schwarz’ inequality, yield the rela-
tionship

iff Fi(x, u) F(x, wydxdu < <i ff Fi(X, u)dxdu) <i ff F (X, u)dxdu),
21 21 21

(4.5-16)

which can be considered as Schwarz’ inequality for Wigner distribution functions.
Another important inequality, which has been formulated by De Bruijn [Bru-67],
reads

1 2 2 " 1
—ff —n(x— Xo)? + '0—(u —Uo)?) F(x,udxdu > n!—ff F(x,u)dxdu, (4.5-17)
2 02 2 2
where n is a nonnegative integer. For the special case n = 1, and choosing % = my
and u, = m,, this inequality reduces to

2
ra
from which we can directly derive the uncertainty principle [Pap-68,77]

2
d2 + g_ndf > 1, (4.5-18)

20,y > 1 (4.5-19)

by choosing p? = 27 (dy/d,). Note that the equality sign in relation (4.5-19) holds
iIf and only if the signal is Gaussian, as in Example 3.5; for all other signals, the
product of the effective widths in the space and the frequency directions is larger.
We thus conclude that the Gaussian Wigner distribution function occupies the
smallest possible area in the space-frequency plane.

5. RAY SPREAD FUNCTION OF AN OPTICAL SYSTEM

It is not difficult to derive how the Wigner distribution function is propagated
through a linear system. A linear system that transforms a signal ¢ in the input
plane into a signal ¢, in the output plane, can be described in four different ways,

depending on whether we describe the input and the output signal in the space or
in the frequency domain. We thus have four equivalent input-output relationships,

PolXe) = f i (Xo. X )1 (X )l . (5.0-1)

Po(Uo) = f ux (Uo, X )i (%) dX, (5.0-2)
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1
Po(Xo) = E[hxu(xo’ Ui (U du;, (5.0-3)

1
Po(Ug) = thuu(uo, up)@i (uj)du;, (5.0-4)

in which the four system functions hy, hyx, hy, and hy, are completely determined
by the system. Relation (5.0-1) is the usual system representation in the space
domain by means of the impulse response hyy (X, %), which is also known as the
(coherent) point spread function in Fourier optics; the function hy(x, X) is the
space domain response of the system at point x due to the input impulse signal
@i (X) = §(Xx—X). Relation (5.0-4) is a similar system representation in the frequency
domain; the function hy,(u, u;) is the frequency domain response of the system at
frequency u due to the input impulse signal ¢ (u) = 27§(u—u;), which is the Fourier
transform of the harmonic input signal ¢ (x) = exp[iu;x]. In Fourier optics such a
harmonic signal is a representation of the space dependence of a uniform, obliquely
incident, time-harmonic plane wave; in this context we might call hy(u,, u;) the
wave spread function of the system. Relations (5.0-2) and (5.0-3) are hybrid system
representations, since the input and the output signal are described in different
domains.

There is a similarity between the four system functions hy, hy, hx,, and hy, and
the four Hamilton characteristics [Bor-75] that can be used to describe geometric-
optical systems. Indeed, for a geometric-optical system the point characteristic is
nothing but the phase of the point spread function [Bas-79a]; similar relations hold
between the angle characteristic and the wave spread function, and between the
mixed characteristics and the hybrid system representations.

Unlike the four system representations (5.0-1)-(5.0-4), there is only one system
representation when we describe the input and the output signal by their Wigner
distribution functions. Combining the system representations (5.0-1)-(5.0-4) with
the definitions (2.1-1) and (2.1-2) of the Wigner distribution function results in the
relationship [Bas-78,80Db]

1
Fo(Xo, Uo) = Eff K (Xo, Uo, Xi, Ui) Fi (X, up)dxdu;, (5.0-5)

in which the Wigner distribution functions of the input and the output signal are
related through a superposition integral.

The function K (X, Uo, X, Uj) In the input-output relationship (5.0-5) is completely
determined by the system and can be expressed in terms of the four system functions
hyx, hux, hx, @and hy,, by combining the system representations (5.0-1)-(5.0-4) with
the definitions (2.1-1) and (2.1-2) of the Wigner distribution function; we find

K(Xo,Uo,Xi,Ui) =

= ff ho (X + 3%, % + PO = 3%, X = 3X) expl—iuox, +iuxldxdx,  (5.0-6)
1 1 H / / /

=5 ff hux (Uo + 3Ub, % 4+ X)), (Uo — Sub, % — 1x) expliugXo + iuix]1dujdx;, (5.0-7)
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1 . .
= f f i (Xo -+ 50, Us -+ 2UDhS, (%o — 5., Uy — 1) expl—iUoX, — i/ % ]dx,du/. (5.0-8)

1\° . :
— <E> ff huu (Uo+ 3Up, Ui ++ 2ud) i, (Uo— Sup, Ui — Su)) expliugXe —iuf X Jduydu;.(5.0-9)

Relations (5.0-6)-(5.0-9) can be considered as the definitions of a double Wigner
distribution function; hence, the function K(x, Uo, X, U;) has all the properties of
a Wigner distribution function, for instance the property of realness. Physical
constraints that can be imposed upon a system, can be expressed in terms of this
double Wigner distribution function. Losslessness of a system [But-77,81], for
instance, with which we mean that the total energies of the input and the output
signal are equal, can thus be expressed as

1
gff K (Xo, Uo, %, Ui )dXodUo = 1. (5.0-10)

In a formal way, the function K(x, u, %, U;) is the space-frequency domain re-
sponse of the system at space-frequency point (x, u) due to K (X, u) = 278 (X—X;)8(u—
ui). We emphasize that this is in a formal way only, since there does not exist an
actual signal whose Wigner distribution function has the form 2748(x — %)5(u — u;).
Nevertheless, thinking in optical terms, such an input signal could be considered to
represent a single ray, entering the system at the point ¥ with a frequency (direc-
tion) u;. Hence, we might call the function K (X, U, X, Uj) the ray spread function of
the system.

It is not difficult to express the ray spread function of a cascade of two systems
in terms of the respective ray spread functions Kj(Xo, Uo, X, Uj) and Kz (X, Ug, X, Uj).
The ray spread function of the overall system has the form

1
K(XO’ u03 X| ’ U|) = E ff KZ(X03 u03 X3 u) Kl(x3 u3 X| 9 ul)dXdu' (50-11)

Some examples of ray spread functions of elementary Fourier-optical systems
[But-77,81] might elucidate the concept of the ray spread function.

5.1. Thin lens; spreadless system

A thin lens having a focal distance f can be described by the point spread
function

Kk
hux (%o, Xi) = eXp [—I EXﬁ] (X0 — X%); (5.1-1)

its input-output relation thus reads ¢,(X) = exp[—i(k/2 f)x?]¢;(X). The correspond-
ing ray spread function takes the form

Kk
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and the input-output-relationship (5.0-5) for a thin lens reduces to

Fo(x,u) = K <x, u-+ $x> . (5.1-3)

Relation (5.1-2) represents exactly the geometric-optical behaviour of a thin lens:
iIf a single ray is incident on a thin lens, it leaves the lens from the same position
but its direction is changed as a function of the position.

The thin lens is a special kind of a spreadless system, which can generally be
described by the input-output relation ¢,(X) = m(X)¢;(x). In this general case the
input-output relation (5.0-5) reduces to

Fo(X,u) = %f Fn(X, U — U F (X, uj)du; (5.1-4)

and has the form of a mere multiplication in the x-direction and a convolution in
the u-direction of the input Wigner distribution function F(x, u) and the Wigner
distribution function Fy,(x, u) of the modulation function m(x).

5.2. Free space in the Fresnel approximation; shift-invariant
system

The point spread function of a section of free space having a length z has, in the
Fresnel approximation, the form

NS k2 i
hxx(xo,x)—,/zmzap[lzz(xo x)], (5.2-1)

while the corresponding wave spread function reads
z
2k
its input-output relation thus reads ¢, (u) = exp[—i(z/2k)u?]@; (u). The similarity
between the wave spread function of free space and the point spread function of a

lens shows that these two systems are duals of one another. This becomes apparent
also from the ray spread function, which for free space takes the form

hu (Uo, Uj) = exp [—i ug] 278 (Ui — Uy); (5.2-2)

z
K (X0, Uo, %, Ui) = 2778 (>q — %o + Euo) 8(Ui — Uo): (5.2-3)
we conclude that the frequency behaviour of one system is similar to the space
behaviour of the other system. The input-output relationship (5.0-5) for a section
of free space reduces to

Fx,u) =FK (x — Eu, u). (5.2-4)

Relation (5.2-3) again represents exactly the geometric-optical behaviour of a sec-
tion of free space: ifasingle ray propagates through free space, its direction remains
the same but its position changes according to the actual direction.
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Free space in the Fresnel approximation is a special kind of a shift-invariant
system, which can generally be described by the input-output relationship ¢,(x) =
[ m(x — %)ei(x)dx, or, equivalently, by @,(u) = m(u)¢i (u). In this general case the
input-output relation (5.0-5) reduces to

Fo(X, U) = f Fn(X — X, U) F (%, Uy, (5.2-5)

and has the form of a mere multiplication in the u-direction and a convolution in
the x-direction of the input Wigner distribution function F(x,u) and the Wigner
distribution function F,(x, u) of the modulating function m(u).

5.3. Fourier transformer

An optical Fourier transformation can easily be achieved between the two focal
planes of a lens. For a Fourier transformer whose point spread function reads

hix(Xo, X)) = 4/ Z%GXD[—iﬁxom] (5.3-1)

and whose input-output relation can most easily be expressed in the hybrid form
wo(X) = 4/B/2m1¢i (BX), the ray spread function takes the form

u
and the input-output relationship (5.0-5) reduces to

Fo(x,U) = F <—%,ﬁX> . (5.3-3)

We conclude that the space and frequency domains are interchanged, as can be
expected for a Fourier transformer.

5.4. Magnifier

A magnification can easily be achieved in optics with the help of a lens and two
appropriate sections of free space. Let a magnifier be represented by the point
spread function

hyx(Xo, %) = +/MS(MXo — X); (5.4-1)

its input-output relation thus reads ¢,(x) = /Mg; (Mx). Then its ray spread function
will read

u
K 0%, Uo, X, ) = 278(% — mxo)3 (s = —2). (5.4-2)
m
and the input-output relationship (5.0-5) reduces to
u
Fox, ) = R (mx, —). (5.4-3)

We note that the space and frequency domains are merely scaled, as can be expected
for a magnifier.
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5.5. First-order optical systems

Examples 5.1, 5.2, 5.3, and 5.4 are special cases of Luneburg’s first-order optical
systems [Lun-66]. A first-order optical system can, of course, be characterized
by its system functions hyy, hy, hx,, and hy: they all have a constant absolute
value, and their phases vary quadratically in the pertinent variables. Note that a
Dirac function can be considered as a limiting case of such a quadratically varying
function: indeed,

lim \/gexp[iaxz] = §(X). (5.5-1)

A system representation in terms of Wigner distribution functions, however, is far
more elegant: the ray spread function of a first-order optical system has the form
[Bas-79d]

K (X0, Uo, Xi, Ui) = 2y 8 (X — AX — BUo)d(Ui — CX — DUy), (5.5-2)
and its input-output relationship (5.0-5) reduces to
Fo(x,u) = y K (AX + Bu, Cx + Du). (5.5-3)

The constant y in these equations is nonnegative; it equals unity if the system is
lossless [Bas-79d], i.e., if for any input signal the total energy of the output signal
equals that of the input signal [cf. equation (5.0-10)]. The four real constants A, B,
C, and D constitute a matrix

A B
T= [ c b } (5.5-4)

which is symplectic [Lun-66, Des-72, Bas-79d]; for a 2x2 matrix, symplecticity can
be expressed by the condition AD — BC = 1.

From relation (5.5-2) we conclude that a single input ray entering a first-order
system at the point x with a frequency u;, yields a single output ray leaving the
system at the point %, with a frequency u,, where X, Ui, X,, and u, are related by

HINERS b 659

Relation (5.5-5) is a well-known geometric-optical matrix description of a first-order
optical system [Lun-66]; the ABCD-matrix (5.5-4) is known as the ray transforma-
tion matrix [Des-72]. As examples we give the ray transformation matrices of the
four basic systems — lens, free space, Fourier transformer, and magnifier — consid-
ered in Sections 5.1 through 5.4, respectively:

1 0 1 _Z 0 _1 m 0
Kk , k |, , 1 . 5.5-6
B el O P Y 559

m
If two rays, with positions x; and x,, and directions u; and u,, propagate through
a first-order system, then the quantity xu, — u;X; remains invariant. This quantity
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Is known as the Lagrange invariant [Lun-66,Des-72] and is a generalization of
the Smith-Helmholtz invariant [Bor-75]; the latter invariant applies to an ideal
Imaging system, with one of the rays passing through the origin. The invariance
of the quantity x;u, — uiX; is, in fact, equivalent to the property that a first-order
system is symplectic.

Quadratic-phase signals (see Example 3.3) fit very well to a first-order optical
system, since their general character remains unchanged when they propagate
through such a system. We recall that a quadratic-phase signal is completely de-
scribed by its curvature «. Let o; be the input curvature, then the output curvature
a, IS related to «; by the bilinear relation [Bas-79d]

_ C+ Dao

= —, (5.5-7)
A+ Bag

o

which follows immediately from relation (5.5-3). For the special first-order systems
considered in Sections 5.1 through 5.4, the bilinear relations reduce to

k
ai = ? + aO’ (55-8)
1 1
- = Iy (5.5-9)
o K o
2
o = —’3—, (5.5-10)
Qo
(0%
o = H‘; (5.5-11)

respectively, which follows directly from substituting the respective ray transfor-
mation matrix elements [see expressions (5.5-6)] into the bilinear relation (5.5-7).
In fact, the bilinear relation (5.5-7) also applies to Gaussian beams, if we describe
such a beam formally by a complex curvature [Bas-79d], cf. Example 3.5; we will
discuss this point in more detail in Section 8.5.

5.6. Coordinate transformer

As a final example we consider Bryngdahl's coordinate transformer [Bry-74],
whose point spread function reads as

hyx (X0, %) = ,/Z%GXD[W(M) — 1% Xi], (5.6-1)
with y (x) aslowly varying function of x. The ray spread function of such a coordinate
transformer thus takes the form

)~ AP dy i
K(XO,UO,X|,U|)—2775<X|+IB>8<U| ﬁxo+d)q>. (5.6-2)

We note that for low-frequency input signals (i.e., u; >~ 0), relation (5.6-2) directly
represents the desired coordinate transformation gx = dy/dx.

18



6. TRANSPORT EQUATIONS FOR THE WIGNER
DISTRIBUTION FUNCTION

In the previous section we studied, in Example 5.2, the propagation of the
Wigner distribution function through free space, by considering a section of free
space as an optical system. It is possible, however, to find the propagation of
the Wigner distribution function through free space directly from the differential
equation that the signal must satisfy. To show this, we let the space variable z
enter into the formulas, and we thus express the signal by ¢(x;z) and its Wigner
distribution function by F(x, u;z); for convenience, we recall the definition of the
Wigner distribution function

F(x,u;2) = fq)(x + IX;2)9"(x — X;2) exp[—iux]dx. (6.0-1)

In the Fresnel approximation of free space, the signal ¢(x;z) satisfies a differential
equation which has the form of a diffusion equation of the parabolic type [Pap-68]:

. 1 92
—IEZ k + Eﬁ @. (60'2)

The propagation of the Wigner distribution function is described by a transport
equation [Bre-73,79 Bes-76, McC-76, Bas-79b,79c], which in this case takes the
form
uoF oF
Kox T 9z
[Relation (6.0-3) is a special case of the transport equation (6.0-6) that corresponds
to the more general differential equation (6.0-5), which will be studied in the next
paragraph.] The transport equation (6.0-3) has the solution

z
F(x,u;z) = F (x — U, u,O) , (6.0-4)

which is equivalent to the previously derived relation (5.2-4).
The differential equation (6.0-2) is a special case of the more general equation
.0 .0
—iI— =L X, —-1—;Z] ¢, 6.0-5
0z < X ) v ( )
where L is some explicit function of the space variables x and z, and of the par-
tial derivative of ¢ contained in the operator d/dx. The transport equation that
corresponds to this differential equation reads
oF ad ad
——=2Im{L({x+3%i— u—-3ii—:z)} F; 6.0-6
0z { < a5y 2 9% )} ( )
a derivation of this formula can be found in Appendix B. In the elegant, symbolic
notation of Besieris and Tappert [Bes-76], the transport equation (6.0-6) takes the
form

—%—E:Z Im{L(x,u;z)exp [%i(ii—ii)“ F, (6.0-7)

0. (6.0-3)

JdXadu oduadx
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where, depending on the directions of the arrows, the differential operators on the
right-hand side operate on L(Xx, u;z) or F(x, u;z). In the Liouville approximation (or
geometric-optical approximation) the transport equation (6.0-7) reduces to

9F 99 90
—— =2Im{Lxu2 |1+ di(—— - ——) |} F, 6.0-8
0z { (xu )[ +2(8x8u auax)“ ( )

which is a linearized version of relation (6.0-7). In the usual notation this linearized
transport equation reads
oF oReLOF OReLOF
——=2(mL) F+ ———
0z ax adu au  oX

Relation (6.0-9) is a first-order partial differential equation, which can be solved
by the method of characteristics [Cou-60]: along a path described in a parameter
notation by x = x(s), z = z(s), and u = u(s), and defined by the differential equations

dx odRel dz_1 du o9Rel
ds du ' ds T ds  ax
the partial differential equation (6.0-9) reduces to the ordinary differential equation

(6.0-9)

(6.0-10)

i—: +2(mL) F=0. (6.0-11)

In the special case that L(x, u;2) is a real function of x, u, and z, relation (6.0-11)
implies that along the path defined by relations (6.0-10) the Wigner distribution
function has a constant value (see also, for instance, [Fri-81]).

Let us consider some examples.

6.1. Free space in the Fresnel approximation

In free space in the Fresnel approximation the signal is governed by equation
(6.0-2), and the function L(x, u;2) reads L(x,u;z) = k — u?/2k. The corresponding
transport equation (6.0-3) and its solution (6.0-4) have already been mentioned in
the introductory paragraph of this section.

6.2. Free space

In free space (but not necessarily in the Fresnel approximation) the signal ¢(x;2)
must satisfy the Helmholtz equation, which we write in the form

L0 / 02
—i— =,/k2+ —0. 6.2-1
! 0z + axz(/J ( )

The function L(X, u;z) reads

L(x,u;2) = vk2 —u?, (6.2-2)
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and the linearized transport equation takes the form
uoF N vkZ —u?9F 0
k ax k 9z
This linearized transport equation can again be solved explicitly; the solution reads

(6.2-3)

F(x,u;z) = F <x — (6.2-4)

u
———2zu;0]).
VK2 —u? )
Note that in the Fresnel approximation the relations (6.2-1), (6.2-3), and (6.2-4)
reduce to (6.0-2), (6.0-3), and (6.0-4), respectively.

When we integrate the linearized transport equation (6.2-3) over the frequency
variable u and we use the definitions (4.5-12)-(4.5-14), we find
a ‘]X + a JZ
aX a9z

which shows that the geometrical vector flux J has zero divergence [Win-79].

— 0, (6.2-5)

6.3. Weakly inhomogeneous medium

In a weakly inhomogeneous medium the differential equation that the signal
must satisfy, and the function L(x, u;z), are described by relations (6.2-1) and (6.2-
2), respectively, but now with k = k(x, z). The linearized transport equation now
takes the form

uoF N vk —Uu29F N ok 0 F B
k 9x k 9z  9xou
which, in general, cannot be solved explicitly. With the method of characteristics
we conclude that along the path defined by

dx u dz vk¥-—-u?z du 9k (6.3-2)
ds k' ds k ° ds ax’ '
the Wigner distribution function has a constant value. When we eliminate the
frequency variable u from equations (6.3-2), we are immediately led to

d /, dx ok d [/ dz ok

JE— —_— —_— — _ k— = —_— IT
ds <kds> ax’ ds < ds) 0z’ (6.3-3)
which are the equations for an optical light ray in geometrical optics [Bor-75]. Note

that in a homogeneous medium (i.e., dk/ax = 0k/dz = 0) the linearized transport
equation (6.3-1) reduces to (6.2-3), and that the ray paths become straight lines.

0, (6.3-1)
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6.4. Higher-dimensional Wigner distribution function

Until now the space variables x and z in the Wigner distribution function were
treated differently: a frequency variable u was associated with the space variable
X, but there was not such a frequency variable associated with the space variable
z. This different treatment of the space variables corresponds to the fact that the
signal ¢(x;z) may be chosen arbitrarily, for instance, in a plane z = constant; the
z-dependence then follows from the properties of the medium through which the
signal is propagating. We can, however, define a higher-dimensional Wigner distri-
bution function, treating the space variables x and z in like manner, by

F(x,u, z,w) = ff o(X+ X2+ 32)¢* (X — Xz — 37) exp[—i (X + wZ)]dX'dZ.(6.4-1)

We can always regain the original Wigner distribution function F(x, u;z) from the
higher-dimensional one through the relation

1
F(x,u;z) = E[F(x,u,z, w)dw. (6.4-2)

The use of the higher-dimensional Wigner distribution function may lead to some
mathematical elegance, as we shall show in this section.
The differential equation (6.0-5) is a special case of the more general equation

d d
L(x, —i—,z —i— |g=0. 6.4-3
<x, Iax’ Z, |82> =0 ( )

The corresponding equation for the Wigner distribution function F(x, u, z, w) can
easily be derived to read

99 94 84 90
2 Im{L(x,u,z, w) exp |:%|(8—XE — Ea—x-i- a_Zﬁ — —w—)i” F=0. (64-4)

As an example we shall study again the propagation in free space, which is governed
by the Helmholtz equation

1/92 92
“—=+—=+K)gp=0. 6.4-5
k<ax2+azZJr )‘0 0 (6-4-9)

The function L(x, u, z, w) reads L(x, u, z, w) = k — (> 4+ w?)/k, and the higher-order
Wigner distribution function satisfies the partial differential equation

uoF  wok _
kox koaz
which resembles relation (6.2-3), but, unlike the latter one, is exact.

0, (6.4-6)
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7. WIGNER DISTRIBUTION FUNCTION FOR PARTIALLY
COHERENT LIGHT

As we mentioned before in Section 2.3, the theory of the Wigner distribution
function can easily be extended from deterministic signals (completely coherent
light) to stochastic signals (partially coherent light), without increasing the dimen-
sionality of the formulas. In Section 7.1 we shall first give a description of partially
coherent light and define the Wigner distribution function in this case. Some ex-
amples of partially coherent light with their corresponding Wigner distribution
function are considered in Section 7.2. In Section 7.3 we will introduce modal ex-
pansions for partially coherent light and we will find some new properties for the
Wigner distribution function. An overall degree of coherence for partially coherent
light will be introduced in Section 7.4.

7.1. Description of partially coherent light

Let partially coherent light be described by a temporally stationary stochastic
process ¢(Xx,t); the ensemble average of the product ¢ (X, t2)@* (X, t2) is then only a
function of the time difference t; — ty:

E{@ (%, 1)@ (X, t2)} = T(Xq, %o, tg — o). (7.1-1)

The function T'(x4, X, 7) is known as the (mutual) coherence function [Wol-54,55,
Pap-68, Bas-77] of the stochastic process. The (mutual) power spectrum [Pap-68,
Bas-77] or cross-spectral density function [Man-76] I'(x;, X2, ) is defined as the
temporal Fourier transform of the coherence function:

(X1, X2, w) = ff‘(xl,xz,r)exp[iwr]dr. (7.1-2)

The basic property [Man-76, Bas-77] of the power spectrum is that it is a nonnega-
tive definite Hermitian function of x; and x,, i.e.,

(X1, X2, w) = T (%, X1, ) (7.1-3)
and
ff g(X1, )T (X1, X2, )" (X, w)dX X2 > 0 (7.1-4)

for any function g(x, w).

Instead of describing a stochastic process in a space domain by means of its
power spectrum I'(x, X2, w), we can represent it equally well in a spatial-frequency
domain by means of the spatial Fourier transformT (us, Uy, ) of the power spectrum:

f‘(ul, Us, w) = ff I'(Xq, X2, @) exp[—l (UgXy — U2X2)]dX1dX2. (71-5)

Unlike the power spectrum I'(xi, X2, @), Which expresses the coherence of the light
at two different positions, its Fourier transform I (uy, U,, w) expresses the coherence

23



of the light in two different directions. Therefore we call I'(x, X2, w) the positional
power spectrum [Bas-81b,86a] and I' (us, Uy, w) the directional power spectrum [Bas-
81b,86a] of the light. It is evident that the directional power spectrum I"(uy, Uy, ®)
Is a nonnegative definite Hermitian function of u; and u,.

Apart from the pure space representation of a stochastic process by means
of its positional power spectrum or the pure spatial-frequency representation by
means of its directional power spectrum, we can describe a stochastic process in
space and spatial frequency simultaneously. In this section we therefore use the
Wigner distribution function. Since in the present discussion the explicit temporal-
frequency dependence is of no importance, we shall, for the sake of convenience,
omit the temporal-frequency variable » from the formulas in the remainder of this
section.

The Wigner distribution function of a stochastic process can be defined in terms
of the positional power spectrum by

F(x,u) = f I'(x+ 23X, x — ) exp[—iux']dx’ (7.1-6)
or, equivalently, in terms of the directional power spectrum by

1 _ .
F(x,u) = > f F(u+ 2u',u— 2u) expliu'x]du’. (7.1-7)

A distribution function according to definitions (7.1-6) and (7.1-7) was first intro-
duced in optics by Walther [Wal-68,78], who called it the generalized radiance.

7.2. Examples of Wigner distribution functions

Let us consider some simple examples.

(1) Spatially incoherent light can be described by its positional power spectrum,
which reads as I'(x + %x/, X — %x/) = p(X)8(X’), where the ‘intensity’ p(x) is a non-
negative function. The corresponding Wigner distribution function takes the form
F(x,u) = p(x); note that it is a function only of the space variable x and that it does
not depend on u.

(2) As a second example, we consider light that is dual to incoherent light, i.e.,
light whose frequency behaviour is similar to the space behaviour of incoherent light
and vice versa. Such light is known as spatially stationary light. The positional
power spectrum of spatially stationary light takes the form I'(x + %x/, X — %x/) =
s(X); its directional power spectrum thus reads as I'(u + iU, u — 2u’) = S(U)s(U),
where the nonnegative function S(u) is the Fourier transform of s(X). Note that,
indeed, the directional power spectrum of spatially stationary light has a form that
Is similar to the positional power spectrum of incoherent light. The duality between
incoherent light and spatially stationary light is, in fact, the Van Cittert-Zernike
theorem.

The Wigner distribution function of spatially stationary light reads as F(x, u) =
S(u); note that it is a function only of the frequency variable u and that it does
not depend on x. It thus has the same form as the Wigner distribution function of
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incoherent light, except that it is rotated through 90 degrees in the space-frequency
plane.

(3) Incoherent light and spatially stationary light are special cases of so-called
guasi-homogeneous light [Car-77, Wol-78, Bas-81b]. Such quasi-homogeneous light
can be locally considered as spatially stationary, having, however, a slowly varying
intensity. It can be represented by a positional power spectrum such as I'(x +
IX,x — ix) >~ p(x)s(x’), where p is a slowly varying function compared with s.
The Wigner distribution function of quasi-homogeneous light takes the form of a
product: F(x,u) >~ p(x)S(u); both p(x) and S(u) are nonnegative, which implies that
the Wigner distribution function is nonnegative. The special case of incoherent
light arises for S(u) = 1, whereas for spatially stationary light we have p(x) = 1.

We remark that — except in some very special cases, like the case of partially
coherent Gaussian light treated in the next example, and the obvious cases of
spatially incoherent light and spatially stationary light treated in the previous
examples — the product forms that arise in the power spectrum and in the Wigner
distribution function of quasi-homogeneous light do not hold exactly. One of the
problems is that we cannot formulate precisely what should be understood by ‘p is
a slowly varying function compared with s.” Nevertheless, although in general not
physically realizable, the concept of quasi-homogeneous light is often used in optics
and may yield useful results. But it should be applied with care!

(4) Let us consider Gaussian light, also known as Gaussian Schell-model light
[Sch-61, Gor-80], whose positional power spectrum reads as

T(X, %) = V2 exp [— <1> (o(xl x4 = (x — xZ>2>] O<o<1; (7.2-1)
p 2p? o

the quantity o is a measure of the coherence of the Gaussian light. The nonnegative

definiteness of the power spectrum requires that ¢ be bounded by 0O and 1; 0 = 1

leads to Gaussian light that is completely coherent (see Example 3.5, with X, = u, =

0), whereas o — 0 leads to the incoherent limit. The Wigner distribution function

of such Gaussian light takes the form

21 5 P%
F(x,u) =20 exp |:—0 <—2X +—u )] O<o <), (7.2-2)
Jo 2
which is again Gaussian both in x and in u. Note that Gaussian light is a special
case of quasi-homogeneous light, and that in this special case the product forms
hold exactly.

(5) Completely coherent light is our final example. Its positional power spectrum
(X1, X2) = q(X)g* (%) has the form of a product of a function with its complex-
conjugate version [Bas-77]. The Wigner distribution function of coherent light thus
reads

F(x,u) = f qx + %x/)q*(x — %x/) exp[—iux’]dx/, (7.2-3)

and has the same form as the Wigner distribution function for deterministic signals
[see definition (2.1-1)].
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7.3. Modal expansions

The properties of the Wigner distribution function that we derived in Section 4
hold for the Wigner distribution function of partially coherent light, as well (see also
[Ped-82, Bre-84]). Of course, we must replace the intensity |¢(x)|* of the signal by
the positional intensity I'(x, x) and the intensity |@(u)|? of the frequency spectrum
by the directional intensity I"(u, u).

Moyal’s formula needs some special attention. It now takes the form

2iff Fi(X, u) F(x, uydxdu = ff C1(Xq, X2) 5 (X1, X2)dXdXp =
JT

1\ [ [ - _
— <E> ff I‘l(ul, Uz)F;(Ul, U2)dU1dU2. (73-1)

But it still has the property that the integrals yield a nonnegative result, as we
shall show in this section.

To derive some inequalities for the Wigner distribution function of partially
coherent light, we introduce modal expansions for the power spectrum and the
Wigner distribution function. We represent the positional power spectrum I"(x, X2)
by its modal expansion (see, for instance, [Wol-82], and also [Gam-64, Gor-80]
where a modal expansion of the nonnegative definite Hermitian mutual intensity
' (X1, X2, 0) is introduced)

I'(X1, %) = 1 > Amlim <ﬁ> o <§> ; (7.3-2)
P =% P P
a similar expansion holds for the directional power spectrum. For the mathematical
subtleties of this expansion, we refer to the standard mathematical literature [Cou-
53, Rie-55]. In the modal expansion (7.3-2), the functions g, (m =0, 1, ...) are the
eigenfunctions, and the numbers 4, (m =0, 1, ...) are the eigenvalues of the integral
equation

f I"(X1, X2)Om <%> dX; = AmOm <%> (m=0,1,..); (7.3-3)

the positive factor p is a mere scaling factor. Since the kernel I'(x, x2) is Hermitian
and under the assumption of discrete eigenvalues, the eigenfunctions can be made
orthonormal:

fqm(S)q:(S)ds =8mn (Mn=01,..). (7.3-4)

Moreover, since the kernel I'(x, X2) IS nonnegative definite Hermitian, the eigen-
values are nonnegative. Note that the light is completely coherent if there is only
one nonvanishing eigenvalue. As a matter of fact, the modal expansion (7.3-2)
expresses the partially coherent light as a superposition of coherent modes.
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When we substitute the modal expansion (7.3-2) into the definition (7.1-6) of the
Wigner distribution function, the Wigner distribution function can be expressed as

F(X’ U) = i)\m fm <%, ,0U> s (7.3-5)
m=0

where

(B, 1) = f Gn(E + 265 (6 — 26 exp[—ing]de’ (m=0,1,...) (7.3-6)

are the Wigner distribution functions of the eigenfunctions q,. By applying Moyal’s
generalized formula (7.3-1) and using the orthonormality property (7.3-4), it can
easily be seen that the Wigner distribution functions f,, satisfy the orthonormality
relation

1 2
o f f fm(é,n)fn($,n)d$dn=' f OGO =6 MN=01.)  (7.37)

As an example, we remark that the eigenvalues A, of the Gaussian light (7.2-1)
take the form [Gor-80, Sta-82a, Bas-83b]

= 22 (Lmo)" O<o<1 m=0,1,..) (7.3-8)
m—1+0 1+0 <0 =1, =U, 1, ...), .
whereas the eigenfunctions g, are just the Hermite functions described in Example
3.6; the Wigner distribution functions f,, thus take the form

2 2
fm(€,n) =2(=1)"exp [— <27r$2 + n_)] Lm [2 <27r$2 + n_)] (m=0,1,..), (7.3-9)
2 2
cf. Example 3.6. Note that for ¢ = 1, the eigenvalue X, is the only nonvanishing
eigenvalue and that the Gaussian light is completely coherent.

The modal expansion (7.3-2) allows us to reestablish some inequalities for the
Wigner distribution function of partially coherent light, which we have already
mentioned in Section 4.5.

(1) Using the modal expansion, it is easy to see that De Bruijn’s inequality (4.5-
17) holds not only in the completely coherent (or deterministic) case, but also for the
Wigner distribution function of partially coherent light. The uncertainty relation
2d,d, > 1, derived in Section 4.5, also holds for partially coherent light; a more
sophisticated uncertainty principle for partially coherent light, which will take into
account the overall degree of coherence of the light, will be derived in Section 8.7.

(2) If we use Moyal's generalized formula (7.3-1) and we expand the power
spectra I'1(Xg, X2) and I'2(xq, X2) in the form (7.3-2), it can readily be shown that

%ff Fi(x, u) F(x, u)ydxdu > 0. (7.3-10)

Thus, as we remarked before, averaging one Wigner distribution function with an-
other one always yields a nonnegative result. In particular, the averaging with the
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Wigner distribution function of completely coherent Gaussian light is of some prac-
tical importance [Bru-67, Mar-70, Jan-81a], since the coherent Gaussian Wigner
distribution function occupies the smallest possible area in the space-frequency
domain, as we concluded before.

(3) An upper bound for the expression that arises in relation (7.3-10) can be
found by applying Schwarz’ inequality, which yields the relationship

1
—ff Fi(x, u) F(x, wydxdu <
21

L ([ Jau. : _
< <E f/ F2(x, u)dxdu) <E ff F5 (X, U)dde> : (7.3-11)

The right-hand side of relation (7.3-11) again has an upper bound, which leads to
Schwarz’ inequality (4.5-16); indeed,we have the important inequality

2
iff F2(x, u)dxdu < <i ff F(x, u)dxdu) . (7.3-12)
2 2

To prove this inequality, we first remark that, by using the modal expansion (7.3-5),
the identity

1 o0

Eff F(x, uydxdu = mZ:OAm (7.3-13)
holds. Secondly, we observe the identity

1 o0

> f f F2(x, u)dxdu = mzzox;, (7.3-14)

which can be easily proved by applying the modal expansion (7.3-5) and by using
the orthonormality property (7.3-7). Finally, we remark that, since all eigenvalues
Am a@re nonnegative, the inequality

2
> k< ( Am) (7.3-15)
m=0 m=0
holds, which completes the proof of relation (7.3-12). Note that the equality sign in
relation (7.3-15), and hence in relation (7.3-12), holds if there is only one nonvan-
ishing eigenvalue, i.e., in the case of complete coherence. The quotient of the two
expressions that arise in relation (7.3-12) or relation (7.3-15) can therefore serve
as a measure of the overall degree of coherence of the light. We shall explore the
overall degree of coherence in the next section.
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7.4. Overall degree of coherence

To measure the overall degree of coherence of partially coherent light, we intro-
duce quantities that are based on the eigenvalues X, of the light. As long as they
are based on the eigenvalues 1, and not on the eigenfunctions ¢,, they have an
interesting property. Since a lossless system does not alter the eigenvalues of the
power spectrum [Bas-81b], an overall degree of coherence that is based on these
eigenvalues remains invariant when the light propagates through such a system.

For the sake of convenience, we define normalized versions v, of the eigenvalues
Am by

V= (Mm=0,1,..); (7.4-1)

we have, of course, the relation
> vm=1 (7.4-2)
m=0

As a measure for the overall degree of coherence, we then define the class of quan-
tities up (with parameter p) by [Bas-84a,86b]

1

p—1

Kp = (Z vn‘i) (p>1. (7.4-3)
m=0

Note that for the parameter value p = 2, we have in fact the case already mentioned
in Section 7.3: u, is just the quotient of the expressions that arise in relation (7.3-
15). Note also that, as a consequence of relations (7.3-13) and (7.3-14), we do not
have to calculate any eigenvalues when we want to determine . In this section
we shall study some properties of the quantities .

It can readily be seen that p, is bounded by 0 and 1, and that the case p, = 1
corresponds to complete coherence, in which case there is only one nonvanishing
eigenvalue. Moreover, we remark that p, is independent of the parameter p, if
there are M identical nonvanishing eigenvalues; in that case pu, takes the value
wp =1/M.

Considered as a function of p, i, has the following properties [Bas-86b]:

Moo = p!l—[go M“p = Vmax, (74-4)

pa=limu, =exp| > vmlnvy |, (7.4-5)
il m=0

t—‘;" >0 (p>1). (7.4-6)
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Property (7.4-4) is evident. Property (7.4-5) can be proved as follows. We write 1,
in the form

Mp:exp[m], with f(p)=In) v and g(p)=p-1;
m=0

g(p)
hence,
Z vPInvn g
f'(p) m and g'(p) d—g =1
p Z b p
m=0

We remark that limy;, f(p) = limp1 9(p) = 0, and with L'Hospital’s rule [Abr-70]
we conclude that

. f(p . f(p)
P g valnvm

From the continuity of the exp-function, we finally get property (7.4-5). Property
(7.4-6) can be proved as follows. Let g > p > 1; we then have the (in)equality

0 = 0 p-1  g-p (Pl
o [z } _ [Z Tl= <vm>q—1} )
m=0

p—1 4-P7] p-1 1

GRS

where use has been made of Holder’s (in)equality [Abr-70] and relation (7.4-2). We
thus conclude that p, is a nondecreasing function of the parameter p. We remark
that 1/u IS the ‘effective number N of uncorrelated random variables representing
a signal’ as defined by Starikov and that 1/u, is used as an upper bound for this
number (see [Sta-82b], Eqgs. (20) and (26), respectively).

From property (7.4-6) we conclude that u; is the smallest overall degree of
coherence out of the class u,. In a certain sense it is the best overall degree of
coherence, because it exhibits best the departure of partially coherent light from
the completely coherent case. Note that u, is related to Shannon’s informational
entropy [O'N-61,63, Gam-64], defined by the expression

o0
m=0

30



As an example we consider again partially coherent Gaussian light, described by
relation (7.2-1), with eigenvalues described by relation (7.3-8). Substituting from
relation (7.3-8) into the definition (7.4-3) of up yields (for p | 1, p=2, and p — o0)

B 20 1—0)\ 20 (7.4-7)
H1= 1+0 \14+0 ’ '
U2 = 0, (7.4-8)
20
oo = ) 7.4-
w Tro (7.4-9)

with 0 < o0 < 1. We remark that for 0 < 0 < 1, we have u; >~ (2/e)0 >~ 0 and
oo =~ 20 >~ 0, while for 0 = 1 —2¢ with 0 < ¢ < 1, we have u; ~ ¢ ~ 1 and
Uoo =~ 1 — € ~ 1; furthermore, we note that u; > (2/€)o and that u., > o. We finally
observe the property 1 < u2 < o, in accordance with relation (7.4-6).

8. APPLICATIONS OF THE WIGNER DISTRIBUTION
FUNCTION IN OPTICS

We have already considered a number of simple applications of the Wigner
distribution function in the previous sections of this contribution: in fact, any
example that we have considered represents such an application. In this section
we shall study some more advanced applications. We begin with the description of
some optical set-ups for the optical generation of the Wigner distribution function
in Section 8.1. We then focus on three main categories of optical problems in which
the concept of the Wigner distribution function can be applied usefully: first, the
application to geometric-optical systems (Sections 8.2, 8.3, and 8.4) and, especially,
first-order optical systems (Section 8.5); second, the application to problems in
which the signals appear quadratically (Section 8.6); and third, the application
to problems where properties of the signal are studied in space and frequency
simultaneously (Section 8.7).

8.1. Optical generation of the Wigner distribution function

We will first consider a category of applications to problems that are not really
optical but in which optics can be very helpful. In acoustics it often appears to be
advantageous to describe the one-dimensional acoustical time signal in time and
frequency simultaneously, leading to the musical score of the signal; as we have
noted before, the musical score is the acoustical counterpart of the ray concept in
geometrical optics. Many applications occur where the Wigner distribution function
might be a valuable means to extract relevant information from the acoustical
signal. We mention speech recognition and speaker identification [Bar-80a,b, Pre-
83], acoustical perception [Pre-82], under-water acoustics [Szu-82], etc. Special
attention should be paid to the quality evaluation of loud-speakers [Jan-83]; it

31



appears that what you hear when you listen to a loud-speaker, can directly be
observed in the Wigner distribution function of the impulse response of the loud-
speaker! Hence, it makes sense to generate the musical score of one-dimensional
time signals. In order to visualize the musical score, the two-dimensional Wigner
distribution function of the one-dimensional signal could be generated by optical
means and displayed in the output plane of an optical system. We shall describe
some optical set-ups that generate the Wigner distribution function.

The Wigner distribution function of a one-dimensional signal can easily be dis-
played by optical means. In principle, we can use the optical arrangements that are
designed to display the ambiguity function [Sai-73, Mar-77,79, Rho-81]; it suffices
to rotate one part of these arrangements around the optical axis through 90 degrees,
thus displaying the Wigner distribution function instead of the ambiguity function
[Bas-80a]. This can readily be understood by observing that both the Wigner distri-
bution function and the ambiguity function can be considered as Fourier transforms
of the product ¢(x + %y)w*(x — %y): the former as a Fourier transform with respect
to y, and the latter as a Fourier transform with respect to x.

If we do not have to work in real time and if the signal is real, then the generation
of the Wigner distribution function by optical means is rather easy. A simple way
to generate the Wigner distribution function is the following [Eic-82]. We fabricate
two identical transparencies that are constant in one dimension and that vary in
the other dimension according to the signal’'s amplitude. These two transparencies
are placed in cascade — rotated relatively to each other — and illuminated by a plane
wave of coherent laser light. We thus generate the product ¢(x + %y)q)(x — %y) [cf.
the definition (2.1-1) of the Wigner distribution function]. An astigmatic optical
system follows the two transparencies, and performs a Fourier transformation in
the y-direction and an ideal imaging in the x-direction. In the output plane we then
have the Wigner distribution function.

It is not difficult to generate the Wigner distribution function, using only one
transparency [Mar-79, Bas-80a, Bre-82]. In the set-up described by Brenner and
Lohmann [Bre-82], the product ¢(x + 3y)¢(x — 1y) is generated by imaging the
rotated transparency onto itself in such a way that the y-coordinate in the image
Is inverted; a roof top prism is used to realize this coordinate inversion. After the
second passage through the transparency, the light is Fourier-transformed in the
y-direction and ideally imaged in the x-direction, as described before.

In the case of complex signals, the production of the Wigner distribution function
Is not as simple as in the real case. The reason for this becomes apparent from the
definitions (2.1-1) and (2.1-2) of the Wigner distribution function, which shows that
we need the complex conjugate version of the signal, too. To generate the Wigner
distribution function in this case, Brenner and Lohmann [Bre-82] have described
two ways. One way uses almost the same set-up as before, but with the trans-
parency of the signal replaced by a hologram of the signal; the hologram contains
the required conjugate version of the signal, as well. With some suitable masks, we
select the wanted term, and the Wigner distribution function of the complex signal
appears in the output plane. The second way mentioned by Brenner and Lohmann
starts with the complex signal itself and generates its complex conjugate version
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by means of a nonlinear material. This second set-up can, in principle, be used for
real-time generation of the Wigner distribution function.

One possible application to the processing of one-dimensional signals is obvious.
We can generate the two-dimensional Wigner distribution function of the signal,
then perform an optical filtering in the Wigner distribution function domain, and
derive again a one-dimensional signal from the filtered Wigner distribution func-
tion. The overall processing will be a shift-variant filtering of the one-dimensional
signal. It is not clear whether this processing technique offers advantages over
other shift-variant processing techniques.

The Wigner distribution function of a two-dimensional signal is four-dimen-
sional. It is difficult, however, to display such a four-dimensional function. Never-
theless, several set-ups for the optical generation of the Wigner distribution func-
tion of two-dimensional signals have been proposed already. Bamler and Glunder
[Bam-83] display the Wigner distribution function as two-dimensional slices of the
four-dimensional Wigner distribution function, using techniques that are similar
to the ones described above for the one-dimensional case. Easton et al. [Eas-84]
use a different approach; they use the Radon transformation to generate a Fourier
transform and display the one-dimensional Wigner distribution function as one-
dimensional slices of the four-dimensional Wigner distribution function. Again,
the Wigner distribution function of the two-dimensional signal might be a valuable
tool to extract relevant information from the signal, for instance in distinguishing
patterns with known texture direction.

8.2. Geometric-optical systems

Let us start by studying a modulator (cf. Example 5.1) described by the coherent
input-output relationship ¢,(X) = M(xX)¢; (x); for partially coherent light, the input-
output relationship reads as 'y (X1, X2) = M(X) T (X1, X2)M*(X2). The input and output
Wigner distribution functions are related by the relationship

Fo(X, Ug) = %f F (X, uj)du; f m(X + 2x)m*(x — 2x) exp[—i (Uo — u)X]dx.  (8.2-1)

This input-output relationship can be written in two distinct forms. On the one
hand we can represent it in a differential format reading as follows:

Fo(X,Uu) =m <x + 3 %) m* <x — i %) F (X, u). (8.2-2)

On the other hand, we can represent it in an integral format that reads as follows
[cf. relation (5.1-4)]:

Fo(x,u) = %f Fn(X, u — U)K (X, uj)du;, (8.2-3)

where Fn(X, u) is the Wigner distribution function of the modulation function m(x).
Which of these two forms is superior depends on the problem.
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We now confine ourselves to the case of a pure phase modulation function m(x) =
exp[iy (X)]. We then get

o0

/ * / H 2 4
mM(X + 3X)M*(x — 2x') = exp [| kZ:; my(Zk-i-l)(x)(%x )2k+li| ’ (8.2-4)

where the expression y™ (x) denotes the nth derivative of y (x). If we consider only
the first-order derivative in relation (8.2-4), we arrive at the following expressions:

.0 .0 dy 0
L * L)~ _ -

m<x+2|au>m <x 2|8u>_exp[ dxau]’ (8.2-5)
Fn(X,u) >~ 276 u—d—y (8.2-6)

m ) — dX ) .
and the input-output relationship of the pure phase modulator becomes

dy
F =~ I:I ) - I ) LT
o(X, U) <x u dx) (8.2-7)

which is a mere coordinate transformation. We conclude that a single input ray
yields a single output ray.

The ideas described above have been applied to the design of optical coordinate
transformers [Bry-74, Jia-84] and to the theory of aberrations [Loh-83]. Now, if
the first-order approximation is not sufficiently accurate, i.e., if we have to take
into account higher-order derivatives in relation (8.2-4), the Wigner distribution
function allows us to overcome this problem. Indeed, we still have the exact input-
output relationships (8.2-2) and (8.2-3), and we can take into account as many
derivatives in relation (8.2-4) as necessary. We thus end up with a more general
differential form [Fra-82] than expression (8.2-5) or a more general integral form
[Jan-82] than expression (8.2-6). The latter case, for instance, will yield an Airy
function [Abr-70] instead of a Dirac function, when we take not only the first but
also the third derivative into account.

From expression (8.2-7) we concluded that a single input ray yields a single
output ray. This may also happen in more general — not just modulation-type —
systems; we call such systems geometric-optical systems. These systems have the
simple input-output relationship

Fo(X, U) > R[g«(X, u), gu(X, W], (8.2-8)

where the ~ sign becomes an = sign in the case of linear functions g, and g, i.e.,
in the case of Luneburg’s first-order optical systems, which we have considered in
Section 5.5. There appears to be a close relationship to the description of such
geometric-optical systems by means of the Hamilton characteristics [Bas-79a].
Instead of the black-box approach of a geometric-optical system, which leads
to the input-output relationship (8.2-8), we can also consider the system as a con-
tinuous medium and formulate transport equations, as we did in Section 6. For
geometric-optical systems, this transport equation takes the form of a first-order
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partial differential equation [Mar-80], which can be solved by the method of charac-
teristics. In Section 6 we reached the general conclusion that these characteristics
represent the geometric-optical ray paths and that along these ray paths the Wigner
distribution function has a constant value.

The use of the transport equation is not restricted to deterministic media; Brem-
mer [Bre-79] has applied it to stochastic media. Neither is the transport equation
restricted to the scalar treatment of wave fields; Bugnolo and Bremmer [Bug-83]
have applied it to study the propagation of vectorial wave fields. In the vectorial
case, the concept of the Wigner distribution function leads to a Hermitian matrix
rather than to a scalar function and permits the description of nonisotropic media
as well.

We have already considered some examples of geometric-optical systems in Sec-
tion 6; two more advanced examples are studied in the next two sections. Other
examples are described by Ojeda-Castafieda and Sicre [Oje-85].

8.3. Flux transport through free space

Let us consider, in the z = 0 plane, a quasi-homogeneous planar Lambertian
source [Car-77, Wol-78], whose positional intensity is uniform in the interval
IX| < Xmax and vanishes outside that interval, and whose radiant intensity has
the directional dependence cosé in the interval |#| < 6n and vanishes outside that
interval; as usual in radiometry, 6 is the observation angle with respect to the z
axis. The Wigner distribution function of such a source is given by

b4 X u k
F(x,u) = - rect rect . ; 8.3-1
oW 2XmaxK SINOmax <2Xmax> <2ksm9max> VkZ —u? ( )
for convenience, we have normalized the total radiant flux [Car-77] to unity:
1 VK? —u?
z—ff F(x, U)Tudxdu =1 (8.3-2)
JT

We wish to determine the radiant flux through an aperture with width 2x.,«, paral-
lel to the source plane, and symmetrically located around the z axis at a distance z,
from the source plane. In the geometric-optical approximation, the Wigner distri-
bution function at the z = z plane reads as F(x + zZ,u/+/k? — u?, u), and the radiant
flux through the aperture follows readily from the integral

! eraxdxfduF X + - u kz_uz—
2n —Xmax v k2 — UZZO’ Kk B
_ Xmax SNy — Zo(1 — cosy)

2Xmax Sin@max

: (8.3-3)

where y = min[fmax, arctan(2Xmax/Z)].
Similar techniques can be applied in the more general case when the source and
the aperture have different widths and when the optical axes of the source and the
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aperture planes are translated or even rotated with respect to each other. Such
problems arise, for instance, when two optical fibers are not ideally connected to
each other and we want to determine the energy transfer from one fiber to the other
[Ett-85].

8.4. Rotationally symmetric fiber

As our last example of a geometric-optical system, let us consider — by way of
exception — a two-dimensional one. In an optical fiber that extends along the z axis,
the signal depends, at a certain z value, on the two transverse space variables x
and y; its Wigner distribution function depends on these space variables and on the
two frequency variables u and v. The transport equation in the fiber now has the
form

F O e s L (KORE | OKOF
Uax Toay TYK - @+ Tk TRy e —
which is the two-dimensional analogue of the transport equation (6.3-1). We now
assume that the index of refraction has a rotationally symmetric profile; hence,
k = k(y/x? + y?). When we apply the coordinate transformation

0, (8.4-1)

X=rcosg, y=rsng, h=ux—vy, k®>=u?+v>+w? (8.4-2)

we arrive at the transport equation

h29F hoF  oF
K2 -2 — —— 4 —— 4 w— =0, 4-
Y- e 2 TV =0 (8.4-3)

We remark that the derivatives of the Wigner distribution function with respect to
the ray invariants h and w do not enter the transport equation (8.4-3). From the
definition of the characteristics

dh dw dr h2 de h

—_— = —_— = —_— = 2 _ 2 _ __ _— = — -
w 0, wdz 0, wdz k2 —w 2 wdz 2 (8.4-4)
we conclude that dh/dz = dw/dz = 0, and h and w are, indeed, invariant along a
ray.

8.5. Gaussian beams and first-order optical systems

The propagation of the first- and second-order moments of the Wigner distribu-
tion function through a first-order optical system, described by a ray transformation
matrix (cf. Section 5.5)

A B
T:[C D], (8.5-1)

can be phrased in an easy way [Bas-79d]. For the first-order moments m, and m,
of the input and the output signal we find

m]:[ég][m (8.5-2)
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whereas for the second-order moments my,, my,, My, and my, we have
(7 5 -(2 8](% R[4 5]
m, m,| |[|C D mg, mg, B D |’ '

Relation (8.5-3) yields a number of relationships between the second-order moments
of the Wigner distribution functions of the input and the output signal at a first-
order system. These relations are equivalent to the relationships formulated by
Papoulis [Pap-74] for the second derivatives of the ambiguity functions of these
signals. This can easily be understood: since the ambiguity function and the
Wigner distribution function are related through a Fourier transformation [see
relation (2.2-2)], moments of one function are equal to derivatives of the other, and
vice versa.

Relation (8.5-3) provides a proof for the nonnegative definiteness of the symmet-
ric matrix M [see relation (4.5-9)] of second-order moments. Indeed, from relation
(8.5-3) we conclude that the quadratic form A’mS, + AB(mS, + mS,) + B?mg, is non-

negative for arbitrary values of Aand B. Nonnegative definiteness of the symmetric
matrix M implies the following inequalities:

My > 0, (8.5-4)
my, > 0, (8.5-5)
MyxMyy — M2, > 0. (8.5-6)

We shall now find a different representation for the propagation of the second-
order moments through a first-order system. First we note that as a direct conse-
guence of the symplecticity of the ray transformation matrix T, the determinant of
the matrix M is invariant when the light propagates through a first-order system.
To find a further propagation law, we first consider the second-order moments of a
general Gaussian signal.

If a Gaussian signal whose Wigner distribution function has the form (7.2-2) is
the input signal of a first-order optical system described by the ray transformation
matrix (8.5-1), then the output Wigner distribution function has the form

2r 2, PP 2
F(x,u) =20 exp |:—0 <—2(Ax + Bu)*+ —(Cx + Du) . (8.5-7)
0 2

Since the ray transformation matrix is symplectic, this output Wigner distribution
function can be expressed in the form

F(X,u) = 20 exp [—a <,Bx2 + %(u — ax)2>] (>0 0<o0<1), (8.5-8)

where the parameters « and g are related to A, B, C, D, and p through the formulas

2 02

1

3 = ?BZJFEDZ, (8.5-9)
o 2 0>

-5 = ?AB—I—ECD. (8.5-10)
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The Wigner distribution function of the form (8.5-8) is in fact the Wigner dis-
tribution function of a cross section through a Gaussian beam [cf. relation (3.5-4)].
When this beam propagates through a first-order optical system, the beam parame-
ters @ and B change, but the general form (8.5-8) of the Wigner distribution function
Is preserved. To be more specific, we calculate the matrix of second-order moments
for a signal of the form (8.5-8),

1 o
N

M= gaz_/ﬁﬁz (>0 0<o <1, (8.5-11)
B B

and substitute it in the propagation law (8.5-3). We find that if a Gaussian beam
with beam parameters «;, £i, and o; forms the input of a first-order optical system
with the ray transformation matrix (8.5-1), then the Gaussian beam at the output
of the system has parameters a,, 8o, and o,, Where o, = 0; and where «, and S, are
related to «; and B; by the relations

Bo

5 — (AT Bao)” + B4, (8.5-12)
ai% = (A+ Bao)(C + Dao) + BDBZ. (8.5-13)

When we introduce the complex beam parameter y through y = o + i8, relations
(8.5-12) and (8.5-13) can be combined into one relation that has the bilinear form
(5.5-7)

_ C+ Dy,

= —; 8.5-14
Y A+ By, ( )

hence, the complex beam parameter y behaves like the curvature of a quadratic-
phase signal.

Now, since any nonnegative definite symmetrix matrix M can be expressed
in the form (8.5-11), the propagation law (8.5-14) also holds for the second-order
moments of an arbitrary signal. If we express the matrix M in the form (8.5-11),
the parameters «, 8, and o are determined by the second-order moments through
the relations

o = , (8.5-15)

B = ~My _ M (8.5-16)

(8.5-17)

1
2\/ mXX muu - miu 2m ’

where we have introduced the quantity m = ,/mymy, —m2,. Since m? is equal to
the determinant of M, it remains invariant when the light propagates through a
first-order optical system. From this invariance and the definition of the quantity
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m, we directly conclude that m,,my, takes its minimum value m? when m,, = 0. In
terms of the beam parameters, this situation occurs when « = 0; if we were dealing
with Gaussian beams, this would mean that we are at the waist of the beam. From
the uncertainty principle 2d,d, > 1, we conclude that the quantity m is larger than
%, which corresponds to the condition ¢ < 1 that arises in relation (8.5-11).

8.6. Quadratic signal dependence

An important category of applications of the Wigner distribution function is
formed by those problems in which the signal enters the theory quadratically. The
most important application in this category is to the theory of partial coherence.
We have already discussed this application in great detail in Section 7 (see also the
applications mentioned in Section 8).

Another obvious example in this category is the treatment of so-called bilinear
systems, as studied by Ojeda-Castafieda and Sicre [Oje-84]. Such a bilinear system
Is described by the input-output relationship

|0o(Xo) > = f 9(Xo; X1, X2) @i (X1) ;" (X2)dX1d Xz, (8.6-1)

in which the system kernel is Hermitian, g(x; X1, X2) = g*(Xo; X2, X1), and nonnega-
tive definite. With

Fo(Xo; X, U) = fg(Xo;X + 32X, x — 3X) exp[—iux]dX, (8.6-2)
we can write the input-output relationship (8.6-1) in the form

1
|0o(Xo) > = Eff Fg(Xo; X, U) F (X, u)dxdu. (8.6-3)

Suppose now that we may identify F; with the projection of a so-called bilinear ray
spread function G(X,, Uo; X, U):

1
Fg(Xo; X, U) = E[G(XO’ Uo; X, U)dUo. (8.6-4)

We may then formulate the input-output relationship in terms of Wigner distribu-
tion functions as

1
Fo(Xo, Uo) = o ff G(Xo, Uo; Xi, Up) K (X, up)dx du;, (8.6-5)
and the output intensity follows by means of the identity
1
|00 (Xo) | = E[ F(Xo, Uo)dUo. (8.6-6)

Note the similarity between relations (8.6-5) and (5.0-5). Of course, the bilinear
ray spread function G cannot be fully determined from the projection relationship
(8.6-4). However, the link between the system kernel g and the bilinear ray spread
function G can be very instructive, as was shown by Ojeda-Castafneda and Sicre
[Oje-84].
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8.7. Uncertainty principle and informational entropy

The ordinary uncertainty principle 2did, > 1 tells us that the product of the
effective widths of the intensity functions in the space and the frequency domain
has a lower bound and that this lower bound is reached when the light is completely
coherent and Gaussian. We found the same uncertainty relation for partially
coherent light in Section 7.3. In this section we derive more advanced uncertainty
principles [Bas-84a,86b], by taking into account the overall degree of coherence of
the light. As a matter of fact, what we expect from an uncertainty principle for
partially coherent light is that the product of the effective widths still has a lower
bound but that this lower bound depends on the overall degree of coherence of the
light: the better the coherence, the smaller the lower bound. Hence we need a
measure of the overall degree of coherence, for which the quantity pu, defined in
Section 7.4 will turn out to be a good choice.

We start the derivation of the uncertainty principle with the important identity
(see, for instance, [Jan-81b], Sec.3.2, Ex.(viii), case u = 1)

p_dz + —d2 vaZ@n +1) ' f O &)V

The expression (27/p?)d? + (p?/27)d? is thus described in terms of the normalized
eigenvalues vy, and the inner products of the eigenfunctions g, with the Hermite
functions ¥,. Note that due to the orthonormality of the eigenfunctions [relation
(7.3-4)] and the Hermite functions [relation (3.6-3)], the inner products satisfy the
orthonormality property

(8.7-1)

> <f ¢] <s>w:<s>ds> <f qm(s)w,;“(s)ds> =8_m (I,m=0,1,..). (8.7-2)
n=0

If we assume (without loss of generality) that the eigenvalues are ordered in de-
creasing order, vp > v; > ... > 0, then the right-hand side of relation (8.7-1) has the
lower bound [Bas-83a,84a]

S Y @+ ' [ an@rvierds
m=0 n=0

the proof of this (in)equality can be found in Appendix C. The equality sign in rela-
tion (8.7-3) holds if | [ qm(§) ¥} (§)d§| = dm_n, which means that the eigenfunctions
Om are just the Hermite functions . Combining relations (8.7-1) and (8.7-3), and
choosing p? = 27 (dy/d,), we are led to the basic relationship

2

> um(2m+ 1); (8.7-3)
m=0

20,y > > vm(2m+ 1). (8.7-4)
m=0

To find an uncertainty principle for partially coherent light, we have to find a lower
bound for the right-hand side of the (in)equality (8.7-4); this will be the subject of
this section.
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The (in)equality

D @M+ 1) =D vn =1, (8.7-5)
m=0 m=0
in which the equality sign holds if v, = 1and vy = v, = ... = 0, is evident; it leads

to the ordinary uncertainty relation 2d.d, > 1, in which the equality sign holds
for completely coherent Gaussian light. A less evident uncertainty relation follows
from the (in)equality [Bas-84a]

0 1\ 5 (& A=
> vmm41) > 2 <2 — 5) > b (p>1), (8.7-6)
m=0 m=0

where the equality sign holds for p — oo and identical nonvanishing eigenvalues
vm; Note that the overall degree of coherence p, [cf. relation (7.4-3)] has entered
the formula. Relation (8.7-6) together with relation (8.7-4) leads to the uncertainty
relation
c
2d.d, > <P (p>1), (8.7-7)
Mp
where the function c(p) (whose values are in the order of 1) depends on the param-
eter p through the relation

1\ 7
c(p) =2 <2 — B) (p>1. (8.7-8)

Note that c(1) = 2/e >~ 0.736, c(2) = 8/9 ~ 0.889, and c(c0) = 1.

To formulate an even more sophisticated uncertainty relation for partially co-
herent light, we proceed in the following way [Bas-86b]. We choose a measure for
the overall degree of coherence of the light, for which we use the quantity u,, based
on Shannon’s informational entropy (see Section 7.4)

o0
m=0

and then solve the following problem: among all partially coherent wave fields
having the same informational entropy, find the wave field that minimizes the
product dyd,. To solve this problem, we have to find the distribution of normalized
eigenvalues vy, for which the right-hand side of relation (8.7-4) takes its minimum
value under the constraints

o o
Vo> vy > ... >0, va —1 and - valnvm — constant.
m=0

m=0

Using standard variation techniques, it is not difficult to show that the minimum
of this right-hand side occurs when the normalized eigenvalues take the form of
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relation (7.3-8) and that this minimum takes the value 1/20; the quantity o is
related to the informational entropy through the formula

l—0o

> 20 1—-0)\ 20
exp |:mZ:Ovm|nvmi| = Tro <1+0> O<o <) (8.7-9)

[cf. relations (7.4-5) and (7.4-7)]. We thus conclude that an uncertainty principle
for partially coherent light reads as

1
2dxdu Z I (87'10)
o

where o is related to the informational entropy through relation (8.7-9) and where
the equality sign holds if the light is Gaussian (but not necessarily coherent). Note
that, since u; > c(1)o = (2/e)o (cf. the final remarks in Section 7.4), the right-hand
side of relation (8.7-10) is larger than the right-hand side of relation (8.7-7) for
p = 1, which shows that the final uncertainty relation (8.7-10) is indeed the most
restrictive one.

9. APPENDICES
9.1. Appendix A. Proof of condition (2.1-5)

The proof that relation (2.1-5) is a necessary condition can easily be given by
showing that a Wigner distribution function indeed satisfies this relation. The
proof that relation (2.1-5) is a sufficient condition is slightly more difficult. We first
note that a real function F(x, u) can always be expressed in the form

F(x,u) = f I'(x+ 32X, x — 2X) exp[—iux']dX,, (A-1)

with I'(x3, X2) a Hermitian function, i.e., I'(X, X2) = I'(X, X1). We shall now prove
the sufficiency of relation (2.1-5) by showing that if a real function F(x, u) of the
form (A-1) satisfies relation (2.1-5), the function I'(x, x2) factorizes in the form

['(X1, X%2) = ¢(X) 9™ (%), (A-2)

and the function F(x,u) is thus a Wigner distribution function. We therefore
substitute the form (A-1) into relation (2.1-5). The left-hand side of relation (2.1-5)
can then be written as

ff M@+ 3x+3xX,a+ix— X)) I[*(@a—ix+ ix",a— Ix — 2x")

x exp[—i (b + 2u)x' +i(b — 2u)x")]dx'dx";

after the change of variables X' = & + %S/, X' =& — %S/, we arrive at

ffr(a+ Ix+ie+igarix—Le - @a-Ix+ i -1 a-Ix -1+ 1)

x exp[—i(bg" + ug)]dedg’. (A-3)
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The right-hand side of relation (2.1-5) takes the form

1
o ffff F@+ 3%+ 3X.a+ 3% — 3X)[*@— 5%+ 53X, 8 — 3% — 5X")
x exXp[—i (UXo — UoX) — i (b4 2Ug)X +i(b — us)X"]dX'dX"dXodUo,

which, after the change of variables X' = & + &', x” = £ — 1£’, can be written as

1
E////F(a+%xo+%s+%sﬁa+%xo—% — 78"

xT*(@— 5% + 35 — 76,2 — 5% — 35 + 78" pliUo(x — &) — i (bE’ + uxo)]d&dE dxeduo;
integrating over u, and &, and then changing the variable x, into & results in
ffF(a+ X+t at gt —x— )M @— 36 +3x — 3. a— 38 — 3x + 38

x exp[—i(bg" + ug)]dedg’. (A-4)
Equality of the expressions (A-3) and (A-4) implies

['(X1, %) (X, Xa) = T'(Xa, X3) (X2, Xa) (A-5)

for all x1, X2, X3, and X4. From relation (A-5) we conclude that the function I'"(x, %)
factorizes in the form (A-2), and that the corresponding function F(x, u) is thus a
Wigner distribution function.

9.2. Appendix B. Derivation of the transport equation (6.0-6)

Starting from the differential equation

0 0
i—+L(X,—-1—:;z =0, B-1
{az+ < aX )}(p ( )
we can formulate the relation
ia—i-Lx ia'z L™ | x ia'z (X1, 29" (X%2,2) =0 (B-2)
57 1, 8X1’ 25 8X2’ O(X1, L)@ 25 =

for the product ¢(x, 2)¢*(X2, 2). Expressing this product in terms of the Wigner
distribution function F(x, u;z) through the inversion formula (2.1-3) yields

1/(i8+ina'z L*xia'z
21 0z L aXl’ 2 aXZ’

x F[3(X + %), Uo; Z] explito(Xy — Xp)]du, = O, (B-3)
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which can be expressed as

1 0 0 0
i—+L{x+ix,up—3i—:;z)—L*(x—2ix,u,—%i—:z
21 {a + < XU algy ) < 27770 27 g%

x F (X, Uo; 2) exp[iuex]du, = O. (B-4)

Multiplication of relation (B-4) by exp[—iux’], and writing the integral over X yields

1 .0 , .0 . , .0

_n// {Ia—z—i- L<x+%x,uo—%la—x;z> —L <x—%x,uo—%|a—x;z>}

x F(X, Uo; 2) exp[i (Uo — U)X ]duydx’ = 0, (B-5)
which can be expressed as

9 .9 1D 9
//{I—-l—L(%— |8—X;z>—L <%|@’u°_%la_x’z>}

x F(X, Uo; 2) exp[i (Uo — U)X ]duydx’ = 0. (B-6)
Carrying out the integrations in relation (B-6) leads to

: 3 9 . 9 9

{Ia—z—i- L <x—|— |a ,u— 5la_x;z> —L <X+%I%,u— %la—x,z>} F=0, (B-7)

which is equivalent to the desired result (6.0-6)

JF 0 0
—— =2Im{L(x+%i— u-%i—:z|}F
0z { < a5y 2" 9% )}

9.3. Appendix C. Proof of (in)equality (8.7-3)
Let the sequence of numers b, (m=0, 1, ...) be defined by

[N

bn =) lamly (M=0.1,..), (C-1)

n=0

where the numbers 3, (n = 0,1, ...) are ordered according to yy < 31 < ... and the
coefficients an, satisfy the orthonormality condition [cf. relation (8.7-2)]

> andh, =8-m (.m=01,.). (C-2)

n=0

We now consider the numbers b, (m = 0,1, ..., M) as the diagonal entries of an
(M + 1)-square Hermitian matrix H = [h;;]}'_, with

o0

=Y @@y (.j=01_..MandM >0). (C-3)

n=0
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Let the eigenvalues A, (M =0, 1, ..., M) of this Hermitian matrix be ordered accord-
Ing to Ao < A1 < ... < Am. From Cauchy’s inequalities [Mar-65] for the eigenvalues
of a submatrix of a Hermitian matrix, we conclude that A, > yn (m= 0,1, ..., M),
and hence

M M M M
D bn=2 M=) An=D ymn (C-4)
m=0 m=0 m=0 m=0

Furthermore, with the numbers w, (m =0, 1, ...) satisfying the property vo > v; > ...,
we can formulate the relation

M 00 M M
Z Vm Z |amn|2]/n = Z Vmbm = VObO + Z Vmbm =
n=0 m=0 m=1

m=0
M m m—1 M m M-1 m
_vobo+zvm<zbn-zbn)_vobo+zvmzbn- iz Y =
m=1 n=0 n=0 m=1 n=0 m=0 n=0
M-1 m M M-1 m M M-1 m
=D vmD batv) bh— > vma) bo=wm) bat Y (m—vina) ) by =
m=0 n=0 n=0 m=0 n=0 n=0 m=0 n=0
M M-1 m M
= UM Z Yo+ Z(Vm — Vm+1) Z Yn = Z YmYm. (C-5)
n=0 m=0 n=0 m=0

On choosing y, =2n+1 (n =0, 1, ...) and taking the limit M — oo, we arrive at the
(in)equality

oo oo oo

D vm Y lamlP@n+1) =) vm2m+ 1), (C-6)
m=0 n m=0

=0

The equality sign in this (in)equality holds if |am| = m-n. When we choose

B — f (&)Y (£)dE, (C-7)

relation (C-6) becomes identical to relation (8.7-4), and the proof of the latter
(in)equality is complete.
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