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Abstract: This paper deals with integral inventory control in multi-echelon divergent systems with stochastic 

lead times. The policy considered is an echelon stock, periodic review, order-up-to (R, S) policy. A 

computational method is derived to obtain the order-up-to level and the allocation fractions required to achieve 

given target fill rates. Extensive numerical experimentation shows that the accuracy of our approximate method 

is satisfactory. Further we show that variation in the lead times may have a significant effect on the stock levels 

required to achieve given target fIll rates, hence this variation may not be ignored. Also, it appears that the 

correlation structure in the lead times may have a significant impact as well. 
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1. Introduction 

In the last decade considerable progress has been made with respect to the analysis of multi-echelon 

models. In a number of recent review papers this progress has been discussed. Nahmias and Smith [1993] give 

an overview of inventory models in one warehouse - N retailer systems. Axsater [1993] reviews the literature 

on multi-echelon models with installation stock policies, i.e. each stockpoint is controlled based on local 

information about its inventory position and its demand. In Federgruen [1993] an overview is given of the 
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papers focusing on the derivation of discounted cost-optimal echelon stock control policies. Zijm and Van 

Houtum [1996] build on this review to discuss average cost-optimal multi-echelon models. In Diks, de Kok and 

Lagodimos [1996] a review is given of multi-echelon models with service level constraints. They discuss both 

installation stock policies and echelon stock policies. 

A problem that occurs when dealing with real-world supply chains is the randomness of lead times to 

stockpoints. Lead times to the most downstream stockpoints are in fact transportation times and thereby usually 

reliable, but lead times to more upstream stockpoints in a supply chain are random due to the fact that these 

lead times represent manufacturing throughput times. These throughput times are random variables due to e.g. 

capacity constraints, machine-breakdowns, rejects and batching decisions. We have to be aware that the multi

echelon models represent a supply chain for a set of products, but which share resources together with other 

sets of products. This sharing of resources is the major cause for randomness of lead times. So far no analysis is 

available of multi-echelon models with echelon stock policies and random lead times with the exception of the 

paper by Zipkin [1991], who deals with continuous review (S-I,S) models. It follows from the analysis in De 

Kok[1990], Verrijdt and De Kok[1995] and De Kok et al [1994] that random lead times to the most 

downstream stockpoints can easily be incorporated in the analysis of multi-echelon models with constant lead 

times. However, the more practical situation of random lead times to more upstream stockpoints cannot be 

straightforwardly incorporated. 

In this paper we consider divergent N-echelon models, where each stockpoint is controlled according to a 

echelon order-up-to-policy. We define the echelon inventory position as the amount of the stock in the 

stockpoint itself plus all downstream stocks plus the stock in transit to the stockpoint minus all backorders its 

downstream stockpoints. Due to the fact that we deal with random lead times we have to be more specific about 

the replenishment mechanism of the order-up-to-policies. The most upstream stockpoint follows a periodic 

review (R,S)-policy, i.e. at each review moment the echelon inventory position is raised to the order-up-to-Ievel 

S. However, a more downstream stockpoint raises its echelon inventory position to the order-up-to-level upon 

arrival of a replenishment at the (unique) stockpoint that precedes this stockpoint. Hence the ordering decisions 

are taken at random points in time. The rate at which ordering decisions are taken is obviously equal to llR. 

Through this way of timing the replenishment decisions we optimally synchronize these decisions. 

The lead times to the stockpoints are identically distributed random variables. Subsequent replenishment orders 

do not overtake. This implies that the subsequent lead times are correlated. In this paper we model this 

(auto)correlation assuming that the lead times constitute an AR(l) process. Simulation experiments show that 

this modelling assumption yields good approximations for performance measures even if the lead time process 

is not AR(l). The demand process is assumed to be stationary and time-homogeneous, i.e. the demand during 

an interval (s,s+t] is independent of demand before s and after Hs and not dependent on s itself. Since we 

consider divergent N-echelon systems we have to cope with situations where stock at a stockpoint is 
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insufficient to satisfy the demand of its successors. In that case we use a linear rationing rule as defined in Van 

der Heijden[1996], the Balanced Stock rationing rule. 

In this paper we concentrate on the determination of the control parameters, i.e. the order-up-to-Ievels and the 

parameters of the BS rationing rule, such that target fill rates at downstream stockpoints are achieved. Here the 

fill rate is defined as the fraction of demand satisfied from stock on hand. We assume that so-called maximum 

stock levels at intermediate stockpoints are given. The maximum stock level is the difference between the 

order-up-to-Ievel at the stockpoint and the sum of the order-up-to-Ievels at its successors. By varying the 

maximum stock levels we can varying the average physical stocks at all intermediate stockpoints. In principle 

one can use standard Newton methods, cf. Stoer and Bulirsch [1993], to find the cost-optimal maximum stock 

levels subject to the fill rate constraints. The motivation for using a service measure concept instead of a 

penalty cost concept is the fact that due to the use of business information systems data are available in practice 

about target fill rates, whereas hardly any data are available about penalty costs. Therefore a service measure 

concept is more appropriate. 

We develop a heuristic algorithm to compute the control parameters. Therefore we have done extensive testing 

of the algorithm using discrete event simulation. These numerical experiments show that the algorithm 

performs quite well. Thereupon we use the algorithms to investigate whether the incorporation of 

autocorrelation of the lead times into the analysis is important for the accuracy of the algorithm. Furthermore 

we investigate the managerial issue of the impact of randomness of lead times on stock investments. 

This paper is organized as follows. First we give a detailed model description (section 2). In the sections 3-5 we 

derive the analysis of this model. We start with the most simple case in section 3, the two-echelon model with 

stockless central depot. The analysis is extended to two-echelon systems with central stocks in section 4 and to 

general N-echelon systems in section 5. A summary of the algorithm is given in section 6. Next we validate our 

approximate method by comparison to simulation results, both for two-echelon and for three-echelon systems 

(section 7). Some sensitivity analysis is shown in section 8. Finally, we give our conclusions and suggest 

directions for further research in section 9. 

2. The mathematical model 

To define the mathematical model, we first describe the network structure and the material flow 

through the network (section 2.1). Next, we describe the inventory control policy (section 2.2). Finally, we give 

the model assumptions and an overview of notation (section 2.3). 

2.1. Network structure and material flow 

We consider a single item, N-echelon divergent system as shown in Figure 1. That is, each stockpoint 

receives products from exactly one supplier. These products are either distributed further to one or more 
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successive stockpoints or used to satisfy (stochastic) external demand. This demand takes place at the end 

stockpoints (numbers 4-12 in Figure 1). The other nodes are called intermediate stockpoints. The material 

flows through the network from the single external supplier via one or more stockpoints to the final customers. 

For a given stockpoint i. we define the set of upstream stockpoints as all stockpoints between the external 

supplier and stockpoint i. Then the set of downstream stockpoints is defined as all stockpoints between 

stockpoint i and the final customers. To describe the network structure, we use the following notation: 

= stockpoint index, where i=O denotes the most upstream stockpoint, 

pre(i) = the single supplier of stockpoint i, e.g. pre(8)=2 in Figure I, 

succ(i) = the set of all stockpoints immediately supplied by stockpoint i, e.g. succ(2)={7, 8, 9} in Figure 1. 

Supply y.. 

Figure 1. Divergent network structure 

Downstream 
)I 

V' .... 
~--+V"" " .... V"" 
~------~~ .... Demand 

W .... 
V"" 

E---+? .... 
V .... 

The lead times to move the material between two subsequent stages are random variables. Hence we 

have both demand- and supply uncertainty. The ultimate goal is to control the material flow such, that 

predetermined service levels to the final customers are attained. We will not optimize the stock levels at each 

node in the network, but we will derive a method to calculate the stock required at the end stockpoints given the 

maximum stock levels at intermediate stockpoints. 

The service measure that we use is the fill rate, i.e. the fraction of demand that is satisfied immediately 

from stock on hand. We assume that demand that cannot be satisfied immediately is backordered. We allow 

that different target fill rates are used for different end stockpoints. 

2.2. Inventory control mechanism 

The material flow in the network is controlled by an echelon stock (R,S) policy, a periodic review, 

order-up-to policy. That is, the most upstream stockpoint releases a replenishment order each R time units, such 
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that its echelon inventory position is raised to the order-up-to level S. A replenishment order arriving at an end 

stockpoint can be used to satisfy local customer demand. When a replenishment order arrives at an intermediate 

stockpoint. one should decide what to do with it. Of course, the replenishment order can be sent on immediately 

to downstream stockpoints to satisfy local customer demand. Then one should decide how the order should be 

allocated amongst the downstream stockpoints. Once this decision is taken, the downstream stocks cannot be 

reallocated anymore (in practice this may be possible, but at high costs). When the allocation quantities per 

stockpoint are calculated, negative quantities are theoretically possible. This may occur if the demand during 

the last period at one stockpoint has been considerably higher then expected, while the demand at an other end 

stockpoint has been considerably lower then expected. Such a situation is called imbalance. To reduce 

imbalance, one might keep back stocks at an intermediate stockpoint for allocation at a later point in time. 

So the following decisions have to be taken after arrival of a replenishment order at an intermediate 

stockpoint: 

• which part of the replenishment order should be kept back for allocation at a later point in time? 

• how should the remaining part of the order be allocated amongst the downstream stockpoints? 

To explain the control mechanism, we will first describe the situation in which the entire replenishment order is 

allocated. Next we will add the option of keeping back some stock for allocation later on. 

Consider a replenishment order arriving at an intermediate stockpoint i. This order should be allocated 

to the succeeding stockpoints je succ(i). The allocation decision is similar to the one described in Van der 

Heijden [1996]. This decision is based on: 

• the size of the replenishment order Q, 

• the echelon inventory positions of the successors j just before allocation, represented by Zj, je succ(i), 

• a set of order-up-to levels sj ,je succ(i), 

• a set of allocation fractions Pj, je succ(i). 

Now the allocation rule is as follows: Successor j gets an amount that raises its echelon inventory 

position from the level Zj before allocation to the level Sj after allocation, defined by 

Sj =sj -Pj{ L(S~ -Zk)-Q} 
kesucc(i) 

(1) 

Hence stockpoint j receives an amount Sj - Zj, which is a random variable because both the inventory positions 

before and after allocation, Zj and Sj, are random variables. Note that summation of both sides of (1) over j 

yields:ESj = Q+:EZj. which means that the replenishment order is allocated entirely indeed. We refer to Van der 

Heijden [1996] for a further explanation of this rule. 
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If no stock is kept back at stockpoint i, we have the relation S: = L sj . We can extend allocation 
jesucc(i) 

rule (1) to situations with intermediate stocks by introducing a parameter ~h the maximum amount of stock to 

be hold in stockpoint i. As mentioned in section 2.1, we consider ~i as a given parameter. In fact, the relation 

between succeeding order-up-to levels changes to 

Now it may be possible that the size of the replenishment order Q exceeds the amount needed to raise all 

inventory positions to their maximum levels sj . Negative rationing is not allowed, because then stock is not 

kept back at stockpoint i, so rule (1) has to be changed to 

(2) 

Sj =S; -Pj *max{o. L(S~ -Zk)-Q}=S; -Pj *max{o. S; -(~i +Q+ LZk)} (3) 
kesucc(i) kesucc(i) 

This rule will be used in the sequel. The problem is to find the control parameters {Pj' S; } for each stockpoint 

j, given demand characteristics, lead time characteristics, target fill rates at the end stockpoints and given 

maximum intermediate stock levels ~i. For the most upstream stockpoint, say number 0, we have to find the 

order-up-to level S~ with allocation fraction po=l of course. 

One additional remark about the inventory control in the network has to be made. We assume that 

allocation decisions at intermediate stockpoints are taken immediately after an order arrives. This seems to be 

reasonable at first sight, because it is important to transfer products without delay to avoid shortages at the end 

stockpoints. It means also that the time between two subsequent shipments from intermediate stockpoints is a 

random variable as well (with mean R and positive variance). This may not be desirable in all cases, for 

example with respect to transport planning. 

Further this policy is not optimal in the case of stochastic lead times. As an example, consider the 

arrival of two subsequent replenishment orders at an intermediate stockpoint. If the lead time of the first order 

is relatively short and the lead time of the second order is relatively long, the following may occur. When 

allocating the first order, the echelon inventory positions Zj of the successors are relatively high and a 

significant part of the replenishment order is kept back. If it takes a long time before the next replenishment 

order arrives, shortages may have occurred downstream whilst sufficient stock would have been available 

downstream. On the other hand, if we would have chosen for a model in which allocation decisions are made at 

fixed points in time as well, it may occur that the stock is allocated at the wrong moment, namely just before a 

replenishment order arrives instead of just after. This would give similar results. A solution to this problem 
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might be a model with fixed allocation epochs, but at a higher frequency in the downstream part of the network. 

This is another model extension next to lead time variation, which should be subject for further research. 

2.3. Assumptions and notation 

The mathematical model uses the following assumptions 

a) Customer demand only occurs at end stockpoints. 

b) The demand per period is random and stationary in time. 

c) The demand is both independent across end stockpoints and across periods in time. 

d) All customer demand that can not be satisfied directly from stock on hand is backlogged. 

e) Partial delivery of customer orders is allowed. 

f) Replenishment orders do not cross in time. This implies that successive lead times can be correlated. 

g) Lot sizing is not used, so any quantity can be ordered and delivered and any allocation rule for material 

rationing to the local depots is allowed (as far as the quantity allocated is nonnegative). 

h) There are no capacity constraints on production, storage or transport. 

Assumption a) can be made without loss of generality, since we can add an end stockpoint with lead 

time zero for each intermediate stockpoint facing customer demand. With respect to assumption c), remark that 

extension to demand that is correlated between end stockpoints is straightforward, see also Van der Heijden et 

al [1996]. This is however not true for demand that is correlated across periods in time. With respect to 

assumption f), we assume for a practical application that lead times can be measured, such that correlations 

between successive lead times can be estimated. In section 7 we will give numerical results on the effect of the 

lead time correlations. 

Further we will use the following general balance assumption for the approximation of the order-up-to levels: 

General balance assumption: Allocation using rule (3) yields nonnegative allocation quantities only. 

This assumption is usually made and simplifies the analysis considerably (see e.g. De Kok [1990], De Kok et 

al. [1994] and Van der Heijden [1996]). Empirical evidence shows that even rather strong violation ofthis 

assumption has only a limited effect on the quality of the approximations, unless the variation of demand 

during lead time is very high (see Van Donselaar en Wijngaard [1987]). 

For the mathematical analysis we use the notation as listed below. 

stock point status 

Zj = echelon inventory position of stockpoint j, just before allocation of a replenishment order that has 

arrived at its supplier i=pre(j). 

-7-



M. C. van der Heijden, E.B. Diks and A. G. de Kok I inventory control in multi-echelon divergent systems with random lead times 

Sj = echelon inventory position of stockpoint j, just after allocation of a replenishment order that has 

arrived at its supplier i=pre(j). 

lead times and demand 

Lj = lead time between the stockpoints pre(j) and j, a random variable with mean E[Lj], variance Var[Lj ] 

and first-order autocorrelation Pj. 

Ljk = kth lead time between the stockpoints pre(j) and j, this is used to distinguish subsequent 

replenishment orders in the analysis. 

R = review period. 

Rj = the (stochastic) time period between the arrival of two replenishment orders at stockpointj, the so

called replenishment cycle. 

Dj = period demand at stockpoint j, a random variable with mean J.lj and standard deviation OJ. If j is an 

intermediate stockpoint, Dj denotes all downstream demand, e.g. D2 is the period demand at the 

stockpoints 7, 8 and 9. 

Dj,lJ = demand at stockpoint j during a lead time Lj-

D j,Lj+Ri = demand at stockpoint j during a lead time Lj plus a replenishment cycle Ri of its predecessor. 

X+ = max{X,O}. 

performance measures 

I3j = target fill rate for end stockpoint j. 

'I1j = mean physical stock at stockpoint j. 

control parameters 

pj = rationing fraction for stockpoint j. 

S; = maximum echelon inventory position of stockpointj. 

Aj = maximum physical stock allowed at stockpoint j, a pre specified parameter. 

Note that the system order-up-to level equals S~ , because the external supplier is assumed to have sufficient 

capacity and rationing is not necessary, see assumption i). 

3. Analysis of two-echelon systems with stockless central depot 

In this section we will derive the mathematical expressions to calculate the system control parameters 

and the performance measures for the simplest model, namely a two-echelon system with stockless central 

depot. We consider ont'! upstream stockpoint having index 0 and a number of end stockpoints je succ(O). In 

section 4 we will add the option that the central depot is allowed to hold stock. Extension of the results to 

general N-echelon systems is discussed in section 5. 
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The mathematical model is analyzed using the approach of Van der Heijden [1996]. However, we have 

to account for the stochastic, correlated lead times. In section 3.1 we describe the calculation of the maximum 

inventory positions sj assuming that the allocation fractions pj are known. It will appear that some aggregate 

demand characteristics are required for the calculations, which are derived in section 3.2. In section 3.3 we 

derive an expression for the allocation fractions pj, such that an approximate expression for the mean system 

imbalance is minimized. It will appear that we can calculate these allocation fractions based on demand and 

lead time characteristics only, so independently of fill rate requirements and order-up-to levels. This is 

attractive, both from an analytical and a computational point of view. Together, sections 3.1-3.3 give the 

control parameters {pj, sj} of the system. Finally, we will show how to calculate the mean physical stock in 

section 3.4. 

3.1. Maximum echelon inventory positions S; 
Our starting point is the simple singe location (R, Sj) system. It is well known that for this model the 

following equation should be solved for Sj (see Diks, de Kok and Lagodimos [1996]): 

The denominator equals the expected demand in a replenishment cycle. The numerator equals the difference 

between the expected shortage at the end and at the start of a replenishment cycle. In many (but not all) 

practical situations, the second term in the numerator can be ignored, see e.g. Hadley and Whitin [1963]. 

As shown in De Kok [1990] and Van der Heijden [1996], the expression to calculate sj in a two

echelon system is a straightforward extension of (4), assuming that the allocation parameters pj are known. 

Given the general imbalance assumption as stated in section 2.3, we find that we can obtain sj by solving 

E[{D j,Lj+RO + PjDO,LO -sj }+] - E[{D j,Lj + PjDO,LO -S1} +] 

R~j 

(4) 

(5) 

This expression is valid for general demand- and lead time distributions. To solve equation (5) 

numerically, it is convenient to use some simple two-moment approximation for the stochastic components in 

both terms in the numerator, Xlj := D j,Lj+RO + PjDO.LO and X 2j := Dj,Lj + PjDO,LO' see Appendix for details. 

Then equation (5) can be solved for sj using bisection. In this way the maximum echelon inventory positions 

* S j can be calculated one-by-one for each end stockpoint j, if the allocation fractions pj are known. Next the 

order-up-to level S~ is obtained by summation of the sj, since the central depot does not hold stock (see (2)). 
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Now the problem is the derivation of the mean and variance of Xlj and X2j. We find that 

E[X1j ] = E[D j,Lj+RO] + PjE[Do,LO] 

Var[X1j ] = Var[D j.Lj+RO] + p1Var[Do,LO] + 2p jCov[D j,Lj+RO' Do,LOl 

= E[D· L'] + p .E[DoLO] J, ~ J ' 

(6a) 

(6b) 

(7a) 

(7b) 

We see that we need several demand characteristics to evaluate (6a)-(7b), among which two covariances. In the 

next section we show how these characteristics can be obtained_ 

3.2. Calculation of the demand characteristics 

From the previous subsection we see that we need the following demand characteristics to calculate the 

control parameters sj, given the allocation fractions Pj: 

(i) the mean and variance of Dj,Lj for all end stockpoints jE succ(O), 

(ii) the mean and variance of Do,J...O, 

(iii) the mean and variance of D. L' RO for all end stockpoints jE succ(O), 
J. ~+ 

(iv) Cov[D j,Lj+RO,Do,LO] for all end stockpoints jE succ(O), 

(v) COV[Dj,Lj,Do,LO] for all end stockpointsjEsuCC(O). 

We can easily show that Cov[D j,Lj' DO,LO] = O. The demand D j,Lj relates to the time interval [Lol> 

LOl+Ljd, so the length of this time interval is independent ofLoI. Below we derive expressions for the other 

four demand characteristics. 

First, we can easily derive the mean and variance of Dj,Lj for each end stockpoint j by conditioning on y, cf. 

Silver and Peterson [1985]. 

E[D j,Lj ] = f.1 jE[L j] 

Var[D j,Lj] = crJE[L j] + f.1JVar[L j ] 

(8a) 

(8b) 

Second, the mean and variance of DO,LO can be obtained using the same equations, once we have the 

mean and variance of Do. The latter can easily be obtained by summation, because the demand at different end 

stockpoints is independent, see assumption c): 

f.1o = L f.1 j and cr~ = L crj 
jesucc(O) jesucc(O) 

(9) 

Note that correlation between demand at different end stockpoints could be included easily here. 
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Third, the mean and variance of D. L' RO for all end stockpoints j should be calculated. To do this, we 
J. ~+ 

should carefully specify the time interval of the demand. Without loss of generality, suppose that at time 0 the 

central depot issues replenishment order 1 that raises the echelon inventory position to the level S~ . This order 

arrives after a random lead time Lol and is immediately allocated. The amount allocated to stockpoint j, 

together with the current physical stock and pipeline stock, should be sufficient to cover the demand until the 

arrival of the second replenishment order at stockpointj, which occurs at time R+Lo2+Lj2' Hence we are 

interested in the distribution of the demand at end stockpointj in the time interval [LoJ. R+L02+Lj21. Now we 

can derive by conditioning on the interval length R+Lj2+L02-LoI that 

E[Dj,Lj+RO] = Jlj(R + E[Lj ]) 

Var[Dj.Lj+RO] = crf(R + E[L j ]) + Jlr{Var[L j ] + 2(1- po)Var[Lo]} 

Fourth, we derive an expression for Cov[D j,Lj+RO' DO,LO] , again by carefully specifying the time 

intervals of the demand. As stated above, D, L' RO is the demand at stockpoint j in the time interval [Lot. 
J. ~+ 

(lOa) 

(lOb) 

R +L02+Lj2]. The other term is derived from the fact S; should also cover a fraction Pj of the total demand during 

the first replenishment lead time Lol' Hence DO,LO is the total system demand in the time interval [0, LoI]. 

From this we see that D j,Lj+RO and DO,LO are negatively correlated: If the first lead time Lol is relatively long, 

the total demand in [0, Lol] will be relatively high, but also [LOI , R+L02+Lj2] is relatively short and hence the 

demand at stockpoint j during this interval will be relatively low. If we ignore this negative correlation, the 

variance of X 1j = D j,Lj+RO + p jDO,LO will be overestimated, resulting in higher stock levels than actually 

necessary, see equation (5). We will return on this subject at our numerical analysis in section 8. 

We obtain an expression for Cov[D, L' RO' DOLO] by conditioning on Lot and using that in general J, ~ , 

Cov[Xt ,X2 ] = E[Cov(X] ,X2 IY)]+Cov (E[X1IY],E[X2IY]) 
(11) 

Expression (11) is derived analogously to the well-known equivalent for the variance as derived in Mood et al 

[1974]. We have that Cov[D. L' Ro,Do LOILOl 1 = 0 ,since the demand in subsequent periods is independent 
J. ~+ , 

(see assumption c). Therefore the first term of (11) is zero in this case. Assuming that the lead times Lok follow 

an AR(1) process with first order autocorrelation Po. we have that E[Lo21Lod = PoLO! + (1- Po)E[Lo] . Using 

these facts, we find a negative correlation indeed: 

(12) 
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3.3. Calculation of the allocation fractions Pj 

From the results in section 3.1 we see that we can tune the sj to the target service levels ~j for any 

arbitrary set of rationing parameters Pj. provided that the general balance assumption is not violated. It can be 

expected that the approximations are better if the general balance assumption is violated only slightly. This can 

be achieved choosing the allocation parameters Pj such, that the expected imbalance is minimized. We achieve 

this using the approach by Van der Heijden [1996], taking into account the stochastic, correlated lead times. 

We define the amount of imbalance OJ at stockpointj as the negative allocation quantity, so 

OJ = (z j - S j ) + , see also De Kok [1990]. Assuming a balanced situation at the previous allocation epoch, we 

find that Zj - Sj = PjDo[R,R + L 02 ] - PjDo[0,L o1 ] - Dj[Lol ,R + L 02 ] where the numbers between squared 

brackets denote time intervals. Analogously to Van der Heijden [1996] and using the expressions for the 

various demand characteristics from section 3.2, we find that 

E[z j - S j ] = RIl j 

Var[zj - Sj] = 2PJE[Mo]cr6 + {R - 2p jE[Mo]}crJ + 2Var[Lo](1- Po)(llj - Pjllo)2 

where Mo = min{R, La}. 

(13a) 

(13b) 

Now two approaches are suggested in Van der Heijden et al [1996]. Firstly, we can approximate ZrSj 

by a normal distribution and derive an explicit expression for E[Ol Using a numerical method, the allocation 

fractions Pj can be obtained such that E[Oj] is minimized. Secondly, we can use Var[zrSj] as a surrogate 

expression for the imbalance and minimize (13b) subject to l:pj=l. The latter approach was suggested by Van 

Donselaar [1996] for the model with deterministic lead times. Numerical tests in Van der Heijden et al [1996] 

revealed that the first approach is somewhat better, but the second approach is considerably simpler. Because 

our numerical experiments indicated that the difference between the two approaches decrease if stochastic lead 

times are introduced, we restrict ourselves here to the second approach. Taking into account the variance and 

correlation ofLo, we can derive by minimizing (13b) subject to l:pj=1 that 

1 E[Mo]crJ + llo(1-po)Var[Lo]*(21l j _Il
n
o) 

Pj=-+ 2 2 
2n 2E[M]cro +2Ilo(1-po)Var[Lo] 

(14) 

where n denotes the number of end stockpoints. From (14) it can be shown that O:::;;Pf:;;l for all j and that l:Pj=l. 

Note that E[Mo]=E[min{R,La}] should be calculated to evaluate (14). This can be done by fitting e.g. a mixture 

of Erlang distributions to the first two moments of La. 
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3.4. Physical stock 

Just as for S; , we can find expressions for the mean physical stock per local depot 'l'i that are simple 

extensions of the single depot (R,S) model. We have approximately that 

E[stock at start of replenishment cycle] + E[stock at end of replenishment cycle] 
'l'j~~----------~------~~~2--~--------~~------~~ 

which can be written as 

(15) 

The two expectations represent the mean shortage at the start and at the end of a replenishment cycle, which are 

already calculated in (5). 

4. Two-echelon system with central stock 

We can extend the results from section 3 to the situation where the central depot is allowed to hold 

stock. The same subjects will be treated in the same order as in section 3. 

4.1. Maximum echelon inventory positions S; 
Equation (5) can easily be modified such that the central depot holds central stock up to some 

prespecified level 80, see e.g. De Kok et a1 [1994] and Van der Heijden [1996]: 

Again, equation (16) can be solved numerically using two-moment approximations for both terms in the 

numerator, X lj := Dj,Lj+Ro + Pj(DO,LO - .6.ot and X 2j :== Dj,Lj + P/DO,LO - .6.ot. For the mean and 

variance of Xlj and X2j we now find that 

E[X1j ] = E[Dj,Lj+RO]+ PjE[(Do,LO - .6.0 )+] 

Var[X1j ] = Var[Dj,Lj+RO] + PJVar[(DO,LO - .6.0 )+] + 2pFov[D j ,Lj+RO,(Do,LO - .6.0 )+] 

Var[X2j ] = Var[Dj,Lj] + PJVar[(DO,LO - .6.0 )+] + 2p j Cov[Dj,Lj,(Do,LO - .6.otl 

(16) 

(17a) 

(17b) 

(18a) 

(18b) 

We see that we need several other demand characteristics to evaluate (17 a)-( 18b), among which two complex 

covariances. In the next section we show how these characteristics can be obtained. 
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4.2. Calculation of the demand characteristics 

We need the following additional demand characteristics to calculate the control parameters S~ ,given 

the allocation fractions pj: 

(i) the mean and variance of (DO,LO - Ao)+ 

(ii) Cov[D j,Lj+RO' (DO,LO - Ao) +] for all end stockpoints je succ(O) 

(iii)Cov[D j,Lj ,(DO,LO - Ao)+] for all end stockpoints je succ(O) 

First, a common way to approximate the mean and variance of (DO,LO - Ao)+ is to approximate Do,LO 

by a mixture of Erlang distributions, see Appendix. 

Second, we need an expression for Cov[D. L' RO' (Do LO - Ao) +] 0 By considering the time intervals 
J, ~+ , 

and using (11), we can derive that 

(19) 

where g(Lo) = E[(Do,LO - Ao)+ILo]. This expression is difficult to evaluate in general. Therefore we 

approximate Cov[Lo,g(Lo)] by a first-order Taylor expansion around E[Lo]: Cov[Lo,g(Lo)]=g'(E[Lo])*Var[Lo]. 

In this way we obtain 

(20) 

Although some approximation for g'(.) is possible, this function gets increasingly complicated if the number of 

echelons in the network increase, see section 5. Therefore we calculate g'(.) using a numerical derivative: 

g'(E[LoD z g(E[Lol + £) - g(E[LoD 
£ 

where £ is some small number (we took £=0.001 *E[LoD. 

(21) 

Third, we need an expression for Cov[D j,Lj , (DO,LO - Ao)+] . Using the same reasoning as in section 

3.2, we can show that this covariance is zero. 

4.3. Calculation of the allocation fractions Pi 

The derivation of near-optimal allocation fractions gets more complicated in the presence of central 

stock. Therefore we will use the allocation fractions (14) as obtained from the situation with stockless central 

depot. Van der Heijden et al [1996] showed that this approach yields satisfactory results. 
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4.4. Physical stock 

For the mean physical stock in the end stockpoints, only a small modification of expression (15) is 

required. We find that 

'l'j =s; -PjE[(Do.LO -~o)+]-(E[Lj]+tR)llj 

E[(D'L' +P·(DOLO -~o)+ -S~)+]+E[(D .. - +p.(DOLQ -~o)+ -S:)+] + j, ~ J, j J,LJ+RO j , J 

2 

Again, all the terms required are already available. 

(22) 

However, now we have to calculate the mean physical stock in the central depot as well. Note that the 

central stock remains constant between the arrival of two successive replenishment orders, so at first sight we 

only need the mean physical stock at the central depot just after allocation, E[(~o - DO,LQ)+] . However, the 

time period between two order arrivals Ro is a random variable now, which is correlated with the stock level 

just after allocation: If the first replenishment order lead time is relatively short, then: 

• the time between two successive order arrivals is relatively long, and 

• the total demand during the first lead time is relatively low, so that the central stock just after allocation is 

relatively high. 

Hence we should account for the length of the time between order arrivals Ro = R + L02 - LOI as welL The 

appropriate expression for the mean physical stock at the central depot is 

Conditioning on LOI , we fmd 

The latter covariance can be approximated similarly to (20)-(21). 

5. General N-echelon systems 

(23) 

(24) 

In this section we extend our results to general N-echelon models. For sake of convenience, the 

expressions are given for three-echelon systems. Modification to more than three echelons is straightforward. 

5.1. Maximum echelon inventory positions S; 
We consider an end-stockpoint j with pre(j)=i and pre(i)=O. Vander Heijden et al [1996] show that 

then the following modification of (16) is required: 
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E[(X\. -S~t]-E[(X2" -S~)+] 
J J J J =1-~" 

R~j J 

whereX1j = Dj,Lj+Ri +Pj(Pi(Do,LO -Ao)+ + Di,Li -Air 

andX 2j = Dj,Lj +Pj(Pi(Do,LO -Ao)+ + Di,Li -Air 

which can be solved numerically using two-moment approximations for Xlj and X2j. Eliminating zero 

covariances, we find for the mean and variance of Xlj and X2j: 

E[X1j ] =E[Dj,Lj+Ri]+PjE[(Pi(DO,LO -Ao)+ + Di,Li -Air] 

Var[X 1j ] =var[Dj,Lj+Ri]+PJvar[(Pi(DO,LO -Aot + Di,Li -Air] 

+ 2PFov[ Dj,LJ+Ri' (Pi (DO,LO - Aot + Di,Li - Ai r] 
E[X2j ] =E[Dj,Lj]+ PjE[(Pi(DO,LO -Ao)+ + Di,Li -Air] 

Var[X 2j ] = Var[Dj,Lj]+ PJvar[(Pi(DO,LO - Ao)+ + Dj,Li - Air] 

5.2. Calculation of the demand characteristics 

(25) 

(26a) 

(26b) 

(27a) 

(27b) 

We need the following additional demand characteristics to calculate the control parameters S; ,given 

the allocation fractions pj: 

(i) the mean and variance of D. L" RO for all end stockpoints je succ(O), 
J, ~+ 

(ii) the mean and variance of (Pi (DO,LO - Ao)+ + Di,Li - Ai r . 
(iii) cov[ Dj,Lj+Ri ,(Pi (DO,LO - Ao)+ + Di,Li - Ai r] for all end stockpoints je succ(O). 

First, the mean and variance of D j,Lj+RO can be obtained analogously to the two-echelon system. Now 

we need the demand characteristics in a slightly different time interval, namely [LOl+LiI' R+Lo2+Li2+Lj2] instead 

of [1..01> R+Lo2+Lj21 as for the two-echelon system. Again, by conditioning on the interval length R+Lj2+LiZ

Lu+L02-Lol that 

E[D j,Lj+RO 1 = ~ j (R + E[L j]) 

Var[Dj,Lj+Rol = ar (R + E[Lj ]) + J.lr{Var[L j ] + 2(1- po)Var[Lol + 2(1- Pi)Var[Lil} 

Extension to general N-echelon systems is straightforward. 

- 16-

(28a) 

(28b) 



M.e. van der Heijden, E.B. Diks and A.G. de Kokl inventory control in multi·echelon divergent systems with random lead times 

Second, the approximation of the mean and variance of (Pi (DO,LO - L\o)+ + Di,Li - L\d+ is a 

straightforward extension of the two-echelon system. First we approximate DO,LO by an Erlang mixture. Next we 

calculate the first two moments of (DO,LO - L\o)+ as described in the Appendix. Using these two moments, we 

approximate Pi (DO,LO - L\ot + Di,Li by an Erlang mixture. Finally we obtain the desired mean and variance of 

(Pi (DO,LO - L\o)+ + Di,Li - L\i r using the Appendix once more. It is clear that this approach can be extended 

to general N-echelon systems. 

Third, we need an expression forcov[ D j,Lj+Ri' (Pi (DO,LO - L\o) + + Di,Li - L\i r] . By considering the 

time intervals and using (11), we can derive that 

where go(LO) = E[(Pi (DO,LO -L\ot + Dj,Li -L\jrILo] 

and gi(Lo)=E[(Pi(Do,LO -L\o)+ + Di,Li -L\ifILi] . 

Similarly to (19), this expression can be approximated using first-order Taylor expansions. Also these 

calculations can straightforwardly be extended to general N-echelon systems. 

5.3. Calculation of the allocation fractions Pi 

(29) 

Similar to Van der Heijden et a1 [1996], the allocation fractions are calculated according to (14), 

ignoring the effect of lead times in earlier stages. For the intermediate stockpoints, we also use (14) making the 

appropriate substitutions for Il j' crf, Ilo and cr~ . 

5.4. Physical stock 

Similar to the preceding sections, we can make the following extension for the mean physical stock in 

the end stockpoints: 

where E[(X1j -sj)+] and E[(X 2j -sjt] denote the expected shortage at the end and at the startofa 

replenishment cycle respectively, see equation (25). 
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For the mean physical stock in the intermediate stockpoints we find analogously to section 4.4: 

'I'i :::; E[(Aj Dj,Li - Pi (DO,LO - Ao)+ r]- 1-;0 cov[ Lo,(A j - Dj,Li - Pi (DO,LO - Aot r ] 
- l;i cov[ Lj,(Ai -Di,Li -pi(Do,LO -Ao)+r ] 

The latter covariances can be approximated similarly to (29). 

Finally note that expression (24) for the stock in the most upstream stockpoint '1'0 remains valid. 

6. Summary of the algorithm 

The purpose of our algorithm is to calculate the allocation parameters pj and maximum echelon 

inventory positions S; for all stockpoints in the network. such that (different) target fill rates ~j for the end 

(31) 

stockpoints are attained using minimal inventory imbalance. Then ordering decisions can take place using the 

order-up-to level S~ and allocation decisions can be made using both pj and sj according to (3). 

We need the following information as a starting point for our algorithm: 

• the length of the review period R 

• the mean and standard deviation of the demand at each end stockpoint j: J1 j and (J r 
• the target fill rates ~j for all end stockpoints j. 

• the mean, variance and first-order autocorrelation of all lead times E[Lj ], Var[LiJ and pj. 

• the maximum inventory levels Ai for each intermediate stockpoint i. 

Our algorithm consists of the following steps: 

1. Calculate the following demand characteristics, working from the end stockpoints in the upstream 

direction: 

a) 

b) 

c) 

d) 

the mean and standard deviation of Dj for all intermediate stockpoints i using (9) 

the mean and variance of Dj,Lj for all intermediate and end stockpoints j using (8a-b) 

the mean and variance of D. L' RO for all end stockpoints using (28a-b) 
J, ~+ 

the covariances required for the evaluation of the fill rate expressions (25), like 

cov[ D j,Lj+Ri' (Pi (DO,LO - Ao t + Di,Li - Ai rJ for a three-echelon system, where i=prec(j) 

and O=prec(i). These can be obtained from (29) using a Taylor expansion and numerical 

differentiation. In the case of stockless depots, the simple expression (12) with extension to 

multiple echelons can be used. 
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e) similarly, the covariances required to evaluate intermediate stock levels, like 

cov[ LO,(.1. i - Di,Li - Pi (DO,LO - Aot t ] ' cov[ L j ,(Ai - Di,Li - Pi (DO,LO - ..1.0)+ t ] and 

Cov[Lo,(Ao - DO,LO)+] for three-echelon systems, see (24) and (31) 

2. Determine the allocation fractions pj for all stockpoints i from equation (14), where stockpoint 0 is 

replaced by stockpoint i=prec(j). 

3. Determine the maximum echelon inventory positions sj for each end stockpoint j: 

a) Approximate the distributions ofX1j and X2j as given by (25) using (successive) approximation 

by Erlang mixtures as described in section 5.1. Again, i=prec(j) and O=prec(i). The mean and 

variance ofXlj and X2j are given by (26a)-(27b). The two-moment fitting is described in the 

Appendix. 

b) Use bisection to find from (25) the maximum echelon inventory positions sj that match the 

target fill rates ~j. 

4. Determine maximum echelon inventory positions for the intermediate stockpoints using (2), working 

from end stockpoints in the upstream direction, until we have found the order-up-to level s~. 

5. Determine the mean physical stock per end stockpoint from equation (30) using the expected shortage 

at the start and at the end of a replenishment cycle as found in step 3. 

6. Finally determine the mean physical stock per intermediate stockpoint from equations (24) and (31) 

7. Numerical validation 

The algorithm that we developed is approximate, therefore we establish the accuracy of our 

approximations using extensive numerical experimentation, both for two-echelon systems (experimental design 

in section 7.1, results in section 7.2) and for three echelon systems (experimental design in section 7.3, results 

in section 7.4). We use the difference between target fill rate and actual (simulated) fill rate as a measure of 

accuracy. Next to the mean absolute deviation from the target fill rate, we also consider the maximum deviation 

as a measure of robustness. 

7.1. Experimental design/or two-echelon models 

In the first experiment we test two-echelon systems, in which one central depot supplies products to 

two so-called service groups. For sake of convenience we refer to these groups as service group A and B 

respectively. A service group consists of a number of local stockpoints with the same service, demand and lead 

time characteristics. Both service groups consist of three end stockpoints, so we have six end stockpoints in 

total. To normalise time and quantities, we made the following choices for all test runs: 

• the review period equals R= 1 

• the mean demand per time unit for each local stockpoint in service group A equals E[DA]=lO 
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A special point of attention is the stochastic process by which successive lead times are generated. 

Assumption 1) in section 2.3 stated that orders may not cross. This is reasonable in practice, but it complicates 

simulation. If we simply generate independent lead times, we can not prevent that orders cross in generaL 

Therefore we choose the following mechanism. A replenishment order first enters a single server queue. If the 

order leaves the queue, it passes a pipeline with deterministic sojourn time. In this way, orders can not cross, 

while also a large range of lead time distributions can be modelled, see Diks and Van der Heijden [1996]. What 

remains is the choice how to divide the lead time in the stochastic queuing sojourn time Ls and the 

deterministic pipeline sojourn time LD. We found that the division Ls = ctE[L] is a good choice, where CL 

denotes the coefficient of variation of L (=ratio of standard deviation and mean). This division is only valid for 

OScL:!:;;t, since LD = E[L]-Ls<O otherwise. However, lead times with CL> 1 are exceptional. 

Now we proceed as follows. First, we split the lead time in a deterministic and a stochastic part 

according to Ls == ctE[L]. Next, we determine the parameters of the queuing model such, that the sojourn time 

of a customer in the single server queuing system plus LD has mean E[L] and variance Var[L]. This is done 

using the method as described in Diks and Van der Heijden [1996]. We simulate this lead time process to 

estimate the first-order autocorrelation p. This value is used in our approximate method to determine the 

control parameters Pj and sj. Finally we simulate the two-echelon system with the same stochastic lead time 

processes and the control parameters pj and sj to estimate the approximation accuracy. Note that this method 

is only used for validation purposes. Once we know that our method is accurate, we only have to measure the 

mean, variance and first-order autocorrelation of all lead times from actual data. 

Let us return to the choice of the parameter values. Unfortunately, the number of parameters that can be 

varied in our experiment is still quite large. To keep the size of the experiment within reasonable limits, we take 

the following parameters fixed: 

• The mean lead time to the central depot equals E[Lo]=3. Reason for this is that most upstream (production) 

lead times are usually larger than a review period. Besides, the experiments for deterministic lead times in 

Vander Heijden et al [1996] revealed that the accuracy of the approximation was better for Lo= 1 than for 

Lo=3, so the latter should be tested. 

• The downstream lead times are usually small, because these lead times represent usually order picking. 

handling and transport times. Therefore we take E[Lj ]==l in all test runs. 

Eight other parameters are varied in our experiment. We choose two different values for each parameter 

(see Table 5.1), except for the variation in the upstream lead time Lo. Since the variation ofLO is largest in 

practice, we should carefully examine the effect of this variance. To choose the maximum amount of central 

stock .t\o, we proceed as follows. Equation (24) shows that the amount of central stock heavily depends on 
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(.6. 0 - DO,LO)+ . Therefore it is convenient to express.6.0 in the mean system demand during the lead time 1.0, 

say .6. 0 = ao * E[Do,LO] for some constant c. We have significant central stock if ao>1, so we choose ao=l.2. 

Also, we consider the situation with stockless central depot, ao=O. Using the value of the constant ao, we 

determine the appropriate value of .6.0 for each case. 

We tested all possible parameter combinations, yielding 3*27=384 cases. The performance of the 

algorithm is tested by an extensive simulation of 75,000 time periods for each case to ensure high simulation 

accuracy. 

P~J"{l,:, 

meter 
E[DB] 

c[DA] 

c[DB] 

~A 
~B 
c[1.o] 
c[Lj] 

ao 

the mean demand per period at an end stockpoint in service group B 
coefficient of variation of demand per period at an end stockpoint in service group A 
coefficient of variation of demand per period at an end stockpoint in service group B 
target fill rate at an end stockpoint in service group A (%) 

target fill rate at an end stockpoint in service group B (%) 

coefficient of variation of 1.0 
coefficient of variation of Lj 

constant, describing the level of stock at the central warehouse .6. 0 = ao * E[Do,LO] 

Table 1. Parameter values in the experiment with two-echelon systems. 

7.2. Results for two-echelon models 

valuesioy· 
t~frllns~'" 

10,30 
0.4,0.8 
0.4,0.8 
90,99 
90,99 

0,0.25,0.5 
0,0.5 
0, 1.2 

The accuracy of our algorithm is shown in the tables 2-4 below. This accuracy is expressed as mean 

and maximum absolute deviation from target in percent points. Because a deviation from the target service level 

has usually more serious consequences in the case of a high target service level, we separately give the 

rationing policy performance for each fill rate level in Table 2. Further we show the performance for stockless 

and stock holding central depot separately (Table 3). Reason for this is that we may expect a better performance 

in the case of a stockless central depot, since we do not need a Taylor expansion then, cf. equations (12) and 

(20). Finally we show the accuracy of the approximation for the system stock in Table 4, expressed as the mean 

and maximum relative deviation from simulation results. Here the system stock is defined as the sum of the 

mean physical stock in the central depot and the end stockpoints plus the pipeline stock between central depot 

and end stockpoints. The pipeline stock from the external supplier to the central depot is not included, because 

this is usual for external account. 

.. l'arg~~;:: 
IiUrate 

(~) 

90 
99 

ALL 

0.52 
0.41 
0.45 

~~ 
abSolute 

'4~\iiation 
1.80 
1.06 
1.80 

Table 2. Fill rate accuracy per target fill rate 

CentraJ ,. . ... , 
stock . 
:]evel ". 
ao=O 

ao = 1.2 
ALL 

Mean ······Maxmi:iDn 
a~sobite.~ "abs~r~tiWf~ 
deviation ." deviation: 

0.39 1.06 
0.54 1.80 
0.45 1.80 

Table 3. Fill rate accuracy per central stock level 
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Central Mean Maximum 
stock absolute absolute 
level deviation deviatiC;u 
ao=O 0.4% 1.6% 

au= 1.2 2.2% 5.0% 
ALL 1.3% 5.0% 

Table 4. Stock accuracy per central stock level 

The overall results show that the accuracy is sufficient for practical applications, although the accuracy 

for the stock levels is clearly better if ao = o. Of course, zero central stock is easy to 'approximate', For more 

detailed numerical analysis we refer to section 8. 

7.3. Experimental design for three-echelon models 

To design an experiment for three-echelon models, we proceed from the design that is developed in 

Van der Heijden et al [1996] for the situation with deterministic lead times. We consider a system consisting of 

one central depot, supplying 4 intermediate stockpoints. Each intermediate stockpoint supplies 6 end 

stockpoints, so the system consists of 24 end stockpoints totally. This is the largest system considered in Van 

der Heijden et al [1996], showing the highest approximation errors in the case of deterministic lead times. 

Because the accuracy is usually better for smaller systems, we chose this large three-echelon system with 

1 +4+24=29 stockpoints. 

To keep the number of test runs within reasonable limits, we take the following parameters fixed: 

• the review period equals R= 1 

• the lead time to the central depot 0 has mean E[Lo]=3 and coefficient of variation c[Lo]=O.5 

• the lead time to each intermediate stockpoint i from its supplier pre(i)=O has mean E[~]=1 

• the lead time to each end stockpoint j from its supplier preG) has mean E[Lj]=l 

For the other parameters, we selected the values as shown in Table 5, 

para
meter~ 
E[D] 
c[D] 

P 
c[Lj] 
c[L;] 

the mean demand per period at an end stockpoint 
coefficient of variation of demand per period at an end stockpoint 
target fill rate at an end stockpoint (%) 
.coefficient of variation of the lead time Li to each intermediate stockpoint i 
coefficient of variation of the lead time Lj to each end stockpoint j 
constant, describing the level of stock at the central warehouse Ao = ao * E[Do,LO] 

constant, describing the level of stock at each intermediate stockpoint 

Ai = ai * E[Di,Li + Pi (DO,LO - Ao)+] 

Table 5. Parameter values in the experiment with two-echelon systems. 
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ues .ill 
runs 

10,30 
0.4,0.8 

90,99 
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For the demand and service characteristics, we used the experimental design as described in Vander 

Heijden et al [1996], where it is shown that 87 parameter sets are sufficient to cover this part of the design. We 

combined these 87 sets with all possible combinations of c[Lj), c[Lj ], ao and a;, resulting in 24*87=1392 test 

runs. The accuracy of our approximation is tested by a simulation of 25,000 time periods for each case. 

7.4. Results for three-echelon models 

Similar to section 7.2, we present results on the accuracy of our algorithm for the three-echelon systems 

in the tables 6-8 below. We give the fill rate accuracy both per target fill rate (Table 6) and per intermediate 

stock level (Table 7). The stock accuracy per intermediate stock level is shown in Table 8. 

Target ! •••.•••.. Mean ......... Maximum 
filii-ate '·····absolute '; absolute 

(P) deviation deviation 

90 1.14 2.48 
99 0.75 1.60 

ALL 0.95 2.48 
Table 6. Stock accuracy per target fIll rate 

Central and Mean . Maximum Central and Mean Maximum 
intermediate absol.lte absolute intermedi~te' absolute absolute 

:: stock level deviation deviation ... . ~stock level···· deviation.' deviation 
(ao, ail = (0, 0) 0.78 1.69 (80, al) = (0, 0) 2.0% 2.9% 

(80, ai) = (0, 1.2) 0.96 2.48 (ao, ail = (0, 1.2) 4.6% 6.3% 
(ao, al) = (1.2, 0) 1.01 2.01 (ao, al) = (1.2, 0) 3.8% 5.5% 

(80, a,) = (1.2, 1.2) 1.04 2.40 (80. al) = (1.2. 1.2) 4.3% 5.6% 
ALL 0.95 2.48 ALL 3.7% 6.3% 

Table 7. FIll rate accuracy per intermediate stock level Table 8. Stock accuracy per intermediate stock level 

Although the results are worse, we think that our method is still accurate enough for practical 

applications. This is especially true for systems with stockless intermediate stockpoints, such as the hierarchical 

planning procedure as described by De Kok [1990]. 

7.5. Computational effort 

It appears that the approximate method is fast. CPU time using a Pentium 100Mhz PC equals 0.13 

seconds per case on average for the two-echelon systems and 0.30 seconds on average for the three-echelon 

systems. Little computational effort is important, because often control rules have to be established for 

hundreds or thousands.of products. 

8. Sensitivity analysis 

Now that a tool is available, it can be used for some sensitivity analysis to get some insight in the 

effects of lead time variation and autocorrelation. We focus on the following two questions: 
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1. Which effect have lead time variation on the amount of stock required to obtain pre specified target service 

levels? 

2. Is it really important to include correlations in the approximate method? Life becomes considerable easier if 

we ignore it, so can't we keep it simple? 

We will answer these questions by more detailed analysis of the results for two-echelon models only to keep 

the results clear. 

To start with the first question, we take a look at Table 9 in which the average amount of system stock 

is shown for various combinations of lead time variation. To make the various cases comparable, we expressed 

the average stock in weeks of total customer demand. 

c[Li]=O c[Lu=0.5 ALL 
c[Lo]=O 3.4 3.7 3.5 

c[Lol=O.25 4.1 4.4 4.3 
c[Lo]=0.5 5.4 5.6 5.5 

ALL 4.3 4.6 4.4 
Table 9. Average number of weeks stock, depending on lead time variation 

We see that especially the upstream lead time variation has a significant impact on the amount of stock 

required to reach the target fill rates. The effect of the lead time variation between central depot en intermediate 

stockpoints is less, which can partly be explained by the fact that E[Lo]=3 and E[Li]=I. so Var[Lol is larger than 

Var[~]. Anyway, we see that we can not ignore the lead time variation, because in practice significant lead 

time variation is present in the upstream part of the network. 

Now the question raises what has more impact, demand variation or lead time variation? Usually the 

attention is focused on demand variation, but is this justified? This question can be answered by looking at 

Table 10. Here we consider the most important source of lead time variation c[Lo] and the various combinations 

of demand variation in the two service groups. 

o 
0.25 
0.5 
ALL 

2.8 
3.6 
4.9 
3.8 

0.4, 0.8 0.8, 

3.5 4.3 
4.3 4.9 
5.5 6.1 
4.4 5.1 

3.5 
4.3 
5.5 
4.4 

Table 10. Effect of lead time variation and demand variation on the average stock in weeks. 

Table 10 shows that in our experiment the effect of lead time variation even dominates the effect of 

demand variation on the stock levels required to achieve the target fill rates! Although this can be parameter 

dependent, it is clear that both supply and demand variation should be taken into account when determining 
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safety stock levels in multi-echelon divergent systems. This conclusion is in line with the results obtained by 

Gross and Soriano [1969] for a single stockpoint. 

The second question is important to judge whether our method can be simplified considerably by 

excluding the correlations. such as given by the equations (12), (20) and (29). We recalculated the control 

parameters {pj, sj } for all 384 cases, ignoring all these correlations. Also, we simulated the 384 cases with the 

modified control parameters. In Table 11 below we compare the accuracy of the simplified method to the 

original results. As can be seen from the formulas, this difference is only relevant if c[Lo]>O. 

perf()rma~c~ measuref?T c[LO] original ignore 
, 

.......•..•.... . ... i ... correlationS ':-' " .y',{<,.' .•..••. 

mean absolute deviation 0.25 0.45 1.39 
from taf2et fill rate 0.5 0.67 1.54 
maximum absolute deviation 0.25 1.41 4.03 
from target fill rate 0.5 1.80 3.45 
Table 11. The effect of neglecting correlations: 

We see that the performance of our method is considerably better if we take into account the correlation effects. 

The price paid is that of considerable additional complexity. 

9. Conclusions 

In this paper we developed an algorithm to analyze multi-echelon divergent networks with integral (R, 

S) inventory control under both stochastic demand and lead times. Validation of our method by extensive 

comparison to simulation results, both for two-level and for three-level systems, shows that our algorithm is 

sufficiently accurate for practical applications. This is in particular true for situations where the intermediate 

depots do not carry stocks and are only used as allocation points. An example is the hierarchical planning 

procedure as described by De Kok [1990]. Using our method, it is easy to include stochastic production lead 

times in this procedure, yielding accurate results. 

Our method can be simplified by ignoring the (complicating) correlations involved, but at considerable 

loss of accuracy, as is shown by numerical experimentation. Further we showed the importance of including 

lead time variation in the model. Although frequently the attention is focused on demand variation. we showed 

that the effect of lead time variation may be larger than the effect of demand variation on the stock levels 

required to obtain prespecified target fill rates. 

One of the differences between our model and practical situations is the fact that the replenishment 

frequency is usually not the same throughout the logistic chain in practice. For example. production orders are 
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released monthly, while transport from warehouses to local stockpoints may be carried out weekly or multiple 

times a week. Therefore, subsequent research will be focused on the inclusion of differentiated replenishment 

frequencies in our model. 
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Appendix. Approximation ofE[(X-Sn and Var[(X-Stl 

In this appendix we give a method to calculate the first two moments of (X-st, where X is a random 

variable with mean E[X] and variance Var[X] and S is a nonnegative constant. We approximate the density of 

X by a mixture of Erlang densities with the same scale parameter, see e.g. Tijms [1994]: 

h () Ar-lxc-2e-Ax (1) Arxr-le-lx 
r,q). x =q (r-2)! + -q (r-l)! 

(AI) 

with the corresponding probability distribution function Hr,q, .. (x), defined by 

r 2('1 )1 -Ax 1 ('I x) r-le-1x 
1- H (x) = ~ I\..X e I\.. 

r,q,l £..t • , + ( - q) (r _ 1) '. 
i=O 1. 

(A2) 

Defining the squared coefficient of variation of a random variable X as c2[X]=Var[X]1E2[X], we can determine 

the parameters of the Erlang mixture using a two-moment fit as follows (see e.g. Tijrns [1994]): 

r-q 
A=

E[X] 

where r is chosen such, that r-1 =s;c 2[X] < (r _1)-1. After some algebra, we obtain from (A3)-(A4) that 

Similarly, we can derive for the second moment 

+ 2 r(r+l) 2Sr 2 
E[{(X-S) }]= A2 [1-H r+2,q,1(S)]+T [l-Hr+l,q,l(S)] - S [l-Hr,q,l(S)] 

Of course, we have the variance of (X - S)+ now that we have the first two moments. 
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