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summary

The research presented in thesis deals with several calculation methods, concerning
electrostatic coalescence, i.e. the merging of two conducting drops in an insulating
medium due to an electric field, light scattering, especially forward light scattering,
and optical particle sizing . The final goal was measurement and calculation of the
evolution of a drop size distribution during electrostatic coalescence.

The first chapter presents besides a short introduction to all considered calculation
methods also a short overview of publications concerned with both a conducting and
an insulating phase in an electric field, considering emulsions as well as single drops.

Chapter 2 gives a general introduction for light scattering by spherical particles,
especially for the geometric optics approximation.

In Chapter 3 expressions for the glory and edge contribution are derived from the
exact Mie solution for scattering by spheres.

Chapter 4 gives minimal averaging requirements for the calculation of a scattering
matrix with a specified accuracy. In a very dilute dispersion a scattering matrix A
provides a linear relation Ax=b between a discrete scattering pattern'b and a discrete
size distribution x. Calculation times for scattering matrices are given using both the
exact Mie solution and the geometric optics approximation.

Chapter 5 presents an experimental method for determining drop size distributions
during electrostatic coalescence, and a method to account for multiple scattering in the
calculation of a size distribution, i.e. if the above mentioned relation is no longer valid.
A resulting measured evolution of the size distribution during electrostatic coalescence
is presented.

In Chapter 6 the electrostatics of two conducting spheres in a parallel electric field are
treated by an image method using both charge and dipole images.

In Chapter 7 relative trajectories are calculated for two spherical neutral drops due to
gravity, an applied electric field, the van der Waals interaction, and hydrodynamic
interaction. All interactions are assumed to be unretarded. The relative trajectories lead
to collision efficiencies and collision rates. A model is presented to predict the change
of a given size distribution, based on gravity induced settling of the drops, and electric
field dependent collision cross sections for all pairs of drops. The resulting height-
dependent evolution of an initially homogeneous size distribution is compared to an
experimentally determined evolution. Because only binary interactions are considered,
this model is only valid for dilute dispersions.

In Chapter 8 the most important conclusions are summarized and some remaining
discrepancies are discussed.



samenvatting
Het onderzoek zoals beschreven in dit proefschrift behandelt een aantal reken-
methoden betreffende elektrostatische coalescentie, d.w.z. het samenvloeien van twee
geleidende druppels in een niet geleidend medium onder invloed van een electrisch
veld, lichtverstrooiing, in het bijzonder voorwaartse lichtverstrooiing, en optische
deeltjes-grootte-meting. Het uiteindelijke doel was meting en berekening van de
verandering van de druppelgrootte-verdeling tijdens electrostatische coalescentie.

Het eerste hoofdstuk geeft naast een korte introductie voor alle beschouwde
rekenmethoden ook een kort overzicht van publicaties over een geleidende en een
isolerende fase samen in een electrisch veld, waarbij zowel emulsies als enkele druppels
beschouwd worden,

Hoofdstuk 2 geeft een algemene inleiding voor lichtverstrooiing door bolvormige
deeltjes, in het bijzonder voor de geometrische optica benadering.

In hoofdstuk 3 worden uitdrukkingen voor de "glory" en randbijdragen afgeleid van de
exact Mie oplossing voor verstrooiing door bollen.

Hoofdstuk 4 geeft minimale middelingseisen voor de berekening van een verstrooiings-
matrix met een bepaalde nauwkeurigheid. In een zeer verdunde emulsie geeft een
verstrooings-matrix A een lineaire relatie. Ax=b tussen een discreet verstrooiings-
patroon b en een discrete deeltjes-grootte-verdeling x. Berekeningstijden voor een
verstrooiings-matrix worden gegeven waarbij zowel de exacte Mie oplossing als de
geometrische optica benadering gebruikt is.

Hoofdstuk 5 beschrijft een experimentele methode om druppel-grootte-verdelingen
tijdens electrostatische coalescentie te bepalen, en een methode om rekening te houden
met meervoudige verstrooiing bij de berekening van een druppel-grootte-verdeling, als
vergelijking Ax=b niet meer geldt. Een zo bepaald verloop van de druppel-grootte-
verdeling tijdens electrostatische coalescentie wordt getoond.

In hoofdstuk 6 wordt de electrostatische situatie van twee geleidende bollen in een
homogeen electrisch veld behandelt met behulp van beelden van ladingen en dipolen.

In hoofdstuk 7 worden relative banen berekend voor twee bolvormige neutrale
druppels, t.g.v. de zwaartekracht, een opgelegd electrisch veld, de van der Waals
interactie en hydrodynamische interactic. Aangenomen wordt dat alle interacties
ongeretardeerd zijn. De relatieve banen leiden tot botsings-doorsneden en botsings-
frequenties. Er wordt een model gepresenteerd om het verloop van de druppel-
grootte-verdeling te voorspellen, gebaseerd op bezinkende druppels en electrisch-veld-
afhankelijke botsingsdoorsneden voor alle paren van druppels. Het resulterende
verloop van een aanvankelijk homogene druppel-grootte-verdeling word vergeleken
met een experimenteel bepaald verloop. Omdat alleen binaire interacties beschouwd
worden, is dit model alleen bruikbaar voor dispersies met een lage druppel-dichtheid.

In hoofdstuk 8 zijn de belangrijkste conclusies samengevat en worden enkele
overgebleven discrepanties behandeld.
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Chapter 1. Introduction.

Electrostatic coalescence is important for separations of water-in-oil type (w/o)
emulsions, but also for raindrop growth in clouds during thunder storms. An electric
field polarizes the drops of a conducting dispersed phase in an insulating continuous
phase. Two polarized drops attract one another and may coalescence, i.e. merge into
one larger drop. Charging of drops may also lead to faster coalescence and separation.
Electrostatic coalescers have been applied in petrochemical industries for over fifty years
for removal of water from crude oil, that in some cases is mixed with water for
- desalination. A complete fundamental understanding of all mechanisms contributing to
the enhanced coalescence is still lacking. Several authors give a review of suggested
mechanisms!-3,

Light scattering measurements are frequently used to determine particle sizes.
Differently sized particles have different scattering patterns and can thus be
distinguished. Measurement of forward light scattering patterns of dilute dispersions is a
widely used method for determining the sizes of the particles or drops in the dispersion.
The forward scattering pattern of a particle is largely due to the Fraunhofer diffraction
of the non-incident light and depends therefore mainly on the cross section of the
particle and hardly on the material properties of the particle. For accurate- size
measurements the exact scattering patterns should be used.

1.1. Experimental electric coalescers.

Different types of experimental electric coalescers with different electrode
configurations and different time dependencies for the applied electric field, i.e. a.c., d.c.
and pulsed d.c. fields, have been presented during the last decades!-34. The effect of
pulse frequency on the performance of an electric coalescer was subject of a few papers
10-12 Erequently used electrode configurations are two parallel plates or grids, of which
the lower one often in the separated conducting phase, the upper one sometimes coated
with a solid insulating layer or replaced by a glass tube or bulb filled with a saturated salt
solution. These latter insulated electrodes are advantageous for an a.c. and pulsed d.c.
field, because a chain of water drops connecting the electrodes only provides a local
short. cut and draws less current than such a chain between non-insulated electrodes, so
a higher field is maintained7-27. These experimental coalescers are often tested for high
fractions (10%-50%) water and a typical electric field strength is 1kV/cm. A more
complicated electrode geometry is for example a number of charged metal spheres
moving an a d.c. field between two grid electrodes!®. The performance of the
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experimental coalescers is also defined in different ways. A few authors relate the
performance to the evolution of the size distribution in the dispersion28-34,

1.2. Single conducting drops.

An electric field E also deforms single conducting drops33-34. For small deformations a
spherical drop with radius a obtains a prolate shape with semi major axis a' parallel to
the ﬁeld semi minor axis b in the plane normal to the field (a =a b2) and eccentricity
e, e?=1-b2/2% = 3/2.¢E2r/ y where ¢ is the dielectric permittivity of the
continuous phase and y is the surface tension33. The experimental conditions considered
in this work, B2 < 2.3Nm'2, r< 10"4m, y= 005Nm™} lead to the eccentricity
e <7-1072 and a'hb < 1004, i.e. electrostatic deformation of single drops is for this
work negligible. For larger deformations the resulting shape of the drop depends on the
ratio of the dielectric permittivities and on the ratio of the electric conductivities of the
two phases. Conical points may be formed that eject small droplets or an elongated drop
may fall apart in several drops, similar to the Rayleigh instability. An electric field may
also be used to disperse large dropsS3 or influence evaporation of fuel drops for
combustion improvement36.

If a conducting fluid is injected into an insulating fluid through a nozzle, the resulting
drop size may be drastically reduced by a high voltage between the nozzle and another
electrode’7-67. The field therefore increases the surface area and enhances heat and
mass transfer. Transfer to or from a single drop is also enhanced by shape oscillations
and electrically induced circulation (Taylor flow) around and in a single drop®8-91.
Several experimental electro-contactors have been presented that use these effects92-95.

1.3. Coalescence of two drops

Coalescence of two drops may be considered as a multi step process?. Flrst two drops
approach one another. Just before the drops touch, both their near contact areas will
flatten or dimple and a thin film of the continuous phase is left between the drops. The
size of the flattened area depends on the force that pushes the drops together. The same
force also causes the film to drain slowly. If the film is thin enough it will rupture and
the two drops merge, possibly leaving a daughter droplet behind. An electric field
modifies all these separate steps. Chains of water drops are formed. if the approach of
two drops is faster than drainage and rupture of the remaining film. This situation arises
if sufficient surfactants are present and is a commonly observed. Coalescence of a
conducting drop at a flat liquid-liquid interface in an electric field has also been
investigated96-98. '
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1.4. Objectives.

The initial objective of this study was a better fundamental understanding of electrostatic
coalescence. This thesis, however, only considers the effect of an electric field on the
first step of coalescence, i.e. the approach of two drops. The following steps are
assumed to occur instantaneously. This was found to be correct for the considered
experimental system. The theoretical model presented in this thesis leads eventually to
the evolution of a given initial size distribution. The second objective was the
verification of the theoretical model by measuring the evolution of the drop size
distribution during electrostatic coalescence using forward light scattering.

1.5. Microscopic video recordings.

For the experimental work presented in this thesis a special cell has been built,
consisting of two parallel plate electrodes and four transparent perspex walls, having a
content of 1x15x40mm3. Microscopic video recordings of a 1 per cent water-in-
kerosene emulsion in this cell show that in w/o emulsions without surfactants in a large
enough electric field, only the initial approach of two drops in the size range 5-100um
determines the collision rate and that the time required for the final approach, film
drainage and film rupture is negligible. While the initial approach of two drops may be
filmed using a standard 50Hz camera, two very close separate spherical drops require
less than 1/50 second to coalesce into one larger spherical drop. Several occurrences of
two coalescing drops (10-20um) were viewed frame by frame, but no intermediate
situations were found. If surfactants are present, chain formation occurs, and switching
off the electric field allows chained drops to separate again due to gravity. A very clear
observation was due to a small hair of 200pum from a cleaning tissue that remained in the
cell. The hair touched one of the electrodes and caused an electrohydrodynamic flow, as
if charge injected at the point of the hair into the kerosene was pushed away in the
direction pointed to by the hair and the induced observable velocity was approximately
Smm/s.

1.6. Forward light scattering

The mentioned cell was initially built to measure the forward light scattering pattern of a
water-in-kerosene emulsion during electrostatic coalescence. A parallel laser beam
passing through a 1 promille water-in-kerosene emulsion in the cell is partially scattered
by the water drops (Fig.7.1) and the forward scattering pattern of the emulsion is
measured. The scattering patterns of spheres of different sizes are known and assuming
incoherent scattering by different spheres allows calculation of the drop size distribution.
If the scattered laser power is small relative to the undisturbed power then the measured
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discrete scattering pattern b is linearly related to the discrete size distribution x by a
scattering matrix: Ax=b. If scattered power in the emulsion is again significantly
scattered, this linear relation is no longer valid and multiple scattering must be
accounted for.

The size range considered in the presented experimental work allows exact calculation
of the scattering patterns of spherical drops according to Miel0l. In view of future
work or other applications, attention was also given to the faster Geometrical Optics
approximation1®! that leads to accurate scattering patterns for very large spheres. It is
shown that a separate expression for the contribution from the rays incident on the edge
of the sphere to the forward scattering pattern, significantly improves this
approximation, allowing faster calculation of scattering matrices.

1.7. Theoretical model

The theoretical model for electroscatic coalescence presented in this thesis considers the
relative velocity of two spherical drops due to the combined effect of gravity, an applied
electric field, unretarded van der Waals interaction and hydrodynamic interaction
allowing for internal circulation. Inertial forces, Brownian motion, approach due to
shear of the continuous phase, dimpling, electric deformation and surface tension
gradients are not considered. The relative velocity of two drops leads to relative
trajectories, collision efficiencies, collision rates, and the evolution of a given initial size
distribution. ‘

1.8. Thesis overview

In chapter 2 a general introduction to light scattering, especially the Geometric Optics
approximation, will be given. Chapter 3 presents a method to derive values for edge
functions that describe the edge contribution to forward scattering. In chapter 4 minimal
averaging conditions are derived for the calculation of scattering matrices. In chapter 5 a
method is presented for determining size distributions using forward light scattering
measurements during electrostatic coalescence, and a measured evolution of the size
distribution of water drops in kerosene is shown. Chapter 6 presents a method to
calculate the electrostatic interaction between two spheres in an electric field. Chapter 7
describes the theoretical model for electrostatic coalescence in w/o emulsions with a
small water fraction. Chapters 3 and 6 have been published%:100_ Chapters 5 and 7 are
submitted for publication,
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Chapter 2. Forward light scattering

2.1, Introduction : .
Particle sizes can be measured using the particles scattering properties. Differently sized
particles have different scattering patterns and can thus be distinguished. In this chapter
commonly known calculation methods for calculating scattering patterns are discussed.
This is merely done as introduction for the next chapters where calculation methods are
presented for the edge contribution to forward scattering by spheres and for scattering
matrices, that linearly relate discrete scattering patterns and discrete size distributions,

2.2. Amplitude function
Consider a spherical particlein a plane electromagnetic wave with incident electric field
amplitude

E;(z) = B - ef(k&-0t) @.1)
wave number k = /c. The wave scattered by the particle located at position z is a
spherical outgoing wave. Its intensity at large distance is therefore proportional to the
inverse of the squared distance r from the particle: I~r~2. The amplitude (~VI) may
therefore be written as

: : ei(kr—mt)

E (r,9,0)=Eq '5(3@)'—““—
defining the dimensionless complex amplitude function 8(8,9). The coordinate 8 gives

(2.2)

the angle between the direction of the incident and scattered wave, while @ gives the
azimuth angle (Fig.2.1). The reason for the factor i = V=1 in the denominator in this
definition will be explained in section 4.

Assume a plane wave incident on the sphere polarized with the electric field paraliel to
the plane of the drawing (Fig.2.2). Symmetry considerations lead to a scattered wave
that is in the plane of the drawing (¢=n/2) and in the perpendicular plane (¢=0) also
polarized with electric field parallel to the plane of the drawing, while for other azimuth
angles (0 <@ <n/2) the scattered wave may have a deviating polarization. The
complex amplitude functions Sy and S in the scattering planes for =0 and ¢=r/2 may
be different and are defined by combining Eqs.2.1 and 2.2 as

_/ -
Figure 2.1. Definition of angles 9 and ¢.
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Figure 2.2. Linear polarized light is after scattering by a sphere still linearly
polarized in two perpendicular planes.

ei(kr—kz)
Es(r,9,0) = E;-8)(8) —— (23)
. ei(kr-kz)
Es(r,S,—z—) =E; .s;,_(s)-—“(}———. (2.49)

With respect to an arbitrary scattering plane the electric field of a general incident wave
consists of a normal (polarization 1) and a parallel (polarization 2) component, leading to
a corresponding normal and a parallel component of the scattered wave.

If the incident wave with intensity I is unpolarized or exactly circular polarized, then the
intensity distribution for any azimuth angle ¢ is the average of the intensity distributions
from both scattering amplitude functions;

i-1 . i+ o 2
1(9)="2 =112 i=IsiP (@29
k%r2 2 3

where j=1,2. The amplitude function Sj and the intensity functions 1J and i are

dimensionless and describe scattering for large r.

2.3. Mie theory
Mie gave an exact solution for the scattering of a plane electromagnetic wave by a

sphere of arbitrary size and arbitrary refractive index. A full description of the theory is
given by van de Hulst! and also Bohren and Huffman2. The latter also give a computer
algorithm that is used in this work to calculate exact scattering patterns.

The complete scattering pattern of a spherical homogeneous particle depends on two
parameters: the relative refractive index m=ny /n| and the size parameter x. The
refractive index nj of the medium is assumed to be a real number, the refractive index n,
of the particle may be a-complex number n22 =gy = 8,8, —4mo /v, where g, is the
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relative dielectric permittivity, €, is the vacuum dielectric permitivity, ¢ is the particle
conductivity and o/(27%) is the frequency. An imaginary component of the refractive
index corresponds with absorption of light, due to the conductivity o of the medium. The
size parameter x =ka=2na/}, with external wave number k and particle radius a, gives
the ratio of the circumference of the particle and the external wavelength A.

A plane electromagnetic wave is the simplest solution of the Maxwell equations in
orthogonal coordinates (x,y,z). For the Maxwell equations in spherical coordinates
(r,3,0) the same plane wave is an infinite summation of elementary solutions with known
coefficients. Besides the external incident wave, there is also an internal wave and an
external scattered wave with coefficients determined by the boundary conditions at the
sphere surface.

The number of elementary solutions, required for an accurate solution, depends on the
size parameter, approximately as x+4x1/3+2. A faster approximate method that may be
used for large values of the size parameter x is the ray optics or geomefrical optics (GO)
approximation as discussed in section 2.6. The concept 'light ray' is only usefull if at least
a width of the order of the wave length at an interface is refracted to approximately the
same direction, requiring a>>}, i.e. x>>10,

2.4, Rayleigh scattering - small particles
If a particle with an isotropic complex dielectric permittivity &9 in a medium with
dielectric permittivity £, is very small compared to the wavelength of the incident wave

- x <<l (2.6)
and also compared to the wavelength inside the particle
x-lm| <<1 2.7
where m? =g7 /€], then the particle becomes a radiating dipole with dipole moment

p = ;- E; parallel to the electric field of the incident wave, where the polarizability

p=S27EL 3
g9 +2¢;

is proportional to the volume of the particle. Dipole radiation in the plane normal to the

dipole (©=0) is independent of the angle 8, and in the plane of the dipole (p=n/2)

proportional to co(s&). The complex amplitude functions are given by!

Sits ) 1

s; (3)}= 1-ap~k3{coss 2.38)

If only the first condition (Eq.2.6) is fulfilled then the particle becomes a radiating

multipole, leading to resonance peaks as just can be seen for m=1.33 in Fig.2.3. For
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Figure 2.3. Exact intensity function ix=S according to Mie as function of
scattering angle 0< 8<rx and size parameter x for m=1.33, showing the change
Jfrom Rayleigh scattering at x=10-! to forward directed scattering at x=10.

larger values of m resonance is more significant. The intensity function for unpolarized
waves

2 )2 2

i(9)=[m2—1J 1+cos 3-x6 2.9)
m-+2 2

depends therefore very strongly on the size parameter x. Rayleigh scattering is the

limiting case of the exact solution for x — 0 (Fig.2.3).

2.5. Fraunhofer diffraction

The total scattering pattern of a particle is assumed to consist of contributions due to
incident rays that are reflected and refracted in different directions (Fig.2.7). An other
contribution comes from the non incident rays that cause a specific angular intensity
distribution called Fraunhofer diffraction through interference at large distance. Contrary
to the Rayleigh theory, the Fraunhofer theory is not a limiting case of the exact solution,
but is found by comparison to approach the exact forward scattering pattern for X —~» 00,

Huygens assumed a wave front to consist of an infinite number of coherent sources all
contributing to a new wave front in forward direction. Fresnel formulated a quantitative
relation for this principle by an integration over the first wave front '

E=[[E -ﬁ-e“‘"dA (2.10)

where E; and Eg are the amplitudes of both wave fronts, r is the distance between the
wave fronts and d is the distance between area dA and point P on the wave fronts
(Fig.2.4). This relation is valid for kr>>1.
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Figure 2.4. Fresnel zones in one wave front that contribute with alternating
sign to a point of a next wave front. ‘

2a cos@_-~ =2 sine sind
a cosQ d(p3

reference ray

Figure 2.5. Small strip in circular wave front contributing to diffraction.

Integration of this expression over a large enough area (>>rA) results in the required
relation for the amplitudes of two infinite wave fronts at a distance r from each other

E, = E; -l (2.11)
The factor 1/(rd) in Eq.2.10 indicates that an area rA of the primary wave front
effectively contributes to the amplitude in a point of the second wave front. The factor i
indicates that the average distance between this area and the considered point in the
second front is a quarter wave length longer then the (shortest) distance r (d,,=r+A/4).

A partially blocked infinite wave front may be constructed by adding a small wave front
with opposite amplitude. An infinite wave front has no scattering pattern. The intensity
function gy =[SFm |2 of an infinite wave front blocked by a small particle is therefor
equal to the intensity function of a corresponding small hole in an infinite screen
(Babinet's principle). Assume a plane electromagnetic wave illuminating a screen at z=0
with a circular opening with radius a and size parameter x=ka>>1 (Fig.2.5). The
integration according to Eq.2.10 is then limited to the circular opening. The area of an
infinitesimal strip is given by dA =2acos¢-acosede. The total amplitude in a point far

away (r — o) in direction 3 is found by integration according to Eq.2.10 with d also
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Figure 2.6. Fraunhofer amplitude function Sprh(x,a)/x2 =J(z)/ z with
V2,312 qhat is

z=x3, 8 in radians, and its envelope function (2/m)

valid for large z.

depending on the direction 8. The resulting amplitude does not depend on the

polarization of the incident wave,
n/2

E¢(r.9)= _[ ,Ei—eik{"a'sm@sms) 2a%cos?pdo (2.12)
irA
~n/2
- Equation 2.12 leads with Eqs.2.3 or 2.4 and z=x-sin3~x-3 to the real, i.e. not

complex, Fraunhofer amplitude function
2 ™2

Spm(x.8) = 2= [ Z5™coode = x? L) (2.13)
~7f2 z
with J; the in{eger Bessel function of the first kind. The function J;(z)/z is shown in
Fig.2.6. The amplitude function for the Fraunhofer diffraction is the same for both
polarizations. The amplitude function is maximal for 9=0, Sgy,(x,0)=x%/2, and has its
first minimum at 9=3.83/x. The width of the main lobe is thus proportional to the inverse
of the size parameter x.

Equation 2.13 also follows from the Helmholtz-Kirchhoff relation3 for scalar waves,
stating that the field at any point P can be expressed by an integral of the field over a
surrounding surface. A direction factor should then be included, leading to an extra
factor (1+cos8)/2 in Eq.2.13 that is only relevant for large angles.
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The size parameter of a typical laser beam used in forward light scattering
measurements, i.e. the ratio of beam width and wavelength, is of the order of 105, and
spreading of the undisturbed laser beam is limited to very small angles.

A particle in a laser beam scatters a part of the wave front by reflection and refraction,
and leaves an incomplete wave front (Fig.2.7). The new wave front may be represented
by a large wave front with negative amplitude, with a small circular wave front with
positive amplitude added to it. Both circular wave fronts contribute to the resulting
diffraction pattern with the amplitude function given in Eq.2.13, with different values for
x and opposite sign. If more particles are located at random positions in the laser beam,
then the far field diffraction amplitude from the large wave front is for the angle 8=0
slightly diminished by the opposite smaller wave fronts. The large angle scattering is
mainly determined by the particles, provided enough particles are present. The number
of particles Ny, for a particular particle size parameter x,, , leading to the same large angle
scattering as the "laser beam", may be deduced by equating the envelope function
(Fig.2.6) for the Fraunhofer diffraction intensity (ipg = S]:,h?') for both beam and
particles and is found to be Ny=xp/xp, where X, is the size parameter for the laser beam,
Xp is the particle size parameter and N, gives the minimum number of particles required
for particle sizing using forward scattering.

Although Fraunhofer diffraction describes only half of the intensity scattered by a
particle, it is for values of x>10 the major contribution in the forward direction and may
be considered as the basis for particle sizing using forward light scattering. Small
particles have a wide scattering pattern, while large particle have a narrow scattering
pattern.

2.6. Gesmetrical optics (GO)

The part of the wave front incident on the particle is spread over a much wider angle
range than the Fraunhofer diffraction. Its contribution in the exact forward direction
{8=0) is smaller then the Fraunhofer contribution.

Part of a light ray that hits a sphere is directly reflected and a part is refracted into the
sphere. The ray inside the sphere will keep reflecting against the surface, and at every
reflection a part refracts to the outside. The deduction by Van de Hulst! is extended with
the generalized Snell's law allowing complex reflection- and transmission coefficients.
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Figure 2.7, Separation of wave front in incident and non- incident rays.

Jor a sphere with m<l. The non incident rays cause a Fraunhofer
diffraction contribution. The rays that hit the sphere are partly
reflected and partl}* refracted. Four outgoing rays are denoted by
p=0,1,23.

A finite light ray from a plane wave with intensity I is determined by da and de¢ and
contains a flux of energy given by

I, a2 sinat cosa dot dg (2.14)
This energy will be divided among all outgoing. rays denoted by p=0,1,2 etc. (Fig.2.7).
The angle of refraction § of the inside ray is given by Snell's law:

sinf = —— (2.15)

In this equation complex values are permitted for both m (Im[m]>0) and B, the angle of
incidence a. is real.

The electric field amplitudes of reflected and transmitted wave at an interface are given

by the Fresnel reflection and transmission coefficients.
. :cosa—m-cosﬁ 2=m-cosa—cos[3 2.16)
cosa. -+ m- cosf m-cosa. + cosf

The sign of these coefficients corresponds to the components of the electromagnetic
wave perpendicular to the plane of incidence, i.e. the electric field for polarization 1
(Fig.2.2) and the magnetic field for polarization 2, The reflection of polarization 2 is
sometimes defined with the opposite sign, referring to the component of the electric field
parallel to the interface. The definition used here is more appropriate for calculating

scattering amplitudes.
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Figure 2.8. Scattering angle 8' for three values of the relative refractive index
m and several outgoing rays denoted by p (Fig.2.7) as function of the angle of
incidence a. Special angles are indicated. Van de Hulst! earlier presented the

Sfigure for m=1.33.

The above equations describe the reflection and transmission of the incident wave at the
sphere surface. The ray that is transmitted into the sphere will again strike the surface,
but from the other side with angle of incidence B, angle of refraction o and relative
refractive 1/m. The total amplitude transmission coefficient £;(p) is given by £;(0) =rj

while for p>1
ej(p) = (1-12)(~rj)P™! @.17)

The sum for all p of & j(p)|2, representing the relative energy fluxes, is equal to 1.

The total deviation $' from the direction of the original ray for a leaving ray denoted by p
is deduced from Fig.7, ;

8'(at,m,p) =(n—20)~p-(n-2p,) = 2(1-p1') (2.18)
For real m the angle B is real. For complex m the real angle B, is given by Petykiewicz3.
The scattering angle § in the interval (0,) relates to this total scattering angle §' by

§'=-h-2r+q-8 (2.19)

where h is an integer and q=+1 or q=~1. In Fig.2.8 the total scattering angle §' is
shown as function of the angle of incidence a for three values of the relative refractive
index: m=3/4, i.e. an air bubble in water, m=4/3, i.e. a water drop in air and m=2. A ray
that hits a spherical particle at a specific angle of incidence o is divided over several rays
p leaving the particle at different scattering angles §'.
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Figure 2.8 indicates how the functions 8'(ct,p) depend on the relative refractive index m.
For central incidence (a=0) the scattering angle does not depend on m: 8'(0,p) =
(1- p)n. The scattering angle for reflected rays is also independent of m: 9'(c.,0) =

T—2a.

For m<1 a critical angle of incidence o, exists, with sino.;7=m, for which according to

geometrical optics all leaving rays (p=0,1,..) are coincident. For a>a., all light is

reflected. Three extreme cases may be deduced from Fig.2.8:

o for m=0 all functions p>1 are vertical lines at a=0 and only p=0 actually contributes
to the scattering pattern

o for m=1 all functions 3'(at,m,p) are lines passing through the point a=n/2, 3'=0. Both
reflections coefficients for m=1 are equal to zero, and only p=1 contributes to the
scattering pattern. The "rainbows" parabola touches the p=1 line.

» for m=co all functions are lines parallel to the p=0 function. Only p=0 contributes to
the scattering pattern. ' ' '

The range d8 around the scattering angle 9 in which the incident ray with range do is
scattered is found by differentiating 8 using Snell's law, leading for real m to

ds = [2pﬂ— ZJda (2.20)
m-cosf

For complex m the expression for the derivative d3/da is not given here.

The energy flux of the incident ray (Eq.2.14), multiplied with the averaged squared
moduli of the already calculated total transmission coefficients € or &;, gives for a
leaving ray the energy flux. This flux is at a large distance r spread over an area 12 times
the solid angle |sin3d3de|. The intensity for polarization j=1,2 is given by
2 aZ sin o cosadade

r?|sin $d3do|

Using Eqs.2.5 and 2.21 and ka=x the intensity function for both polarizations is written

1i(r,9,0) =lg|| (2.21)

as
ij=IS;*=x%le;’ D (2.22)
) sina. - cosa 1
w (9) sin$(d$ / dot) ) (d8 /dot)? @29

The modulus of the complex amplitude function S; for each ray is given by the root of ij,
the phase of the complex amplitude functions is calculated in the next section.
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Figure 2.9. Scaled intensity functions i for the indicated refractive indices

according to the indicated calculation methods for x=>50. The GO intensity

Junction in figures b and d was calculated by adding the amplitude functions

corresponding with the contributions shown in figures a and c, respectively.

The factor D, called the divergence, describes the geometrical widening of the incident
beam. The factor x2 shows that the intensity is proportional to the cross section of the
sphere. The forward directed Fraunhofer diffraction intensity is proportional to x*. For
very large particles the forward directed intensity (x3<4) is completely determined by
Fraunhofer diffraction. There are different cases for which the nominator of D equals
zero, i.e. D — o, and GO leads to erroneous results. These cases will be considered in
section 2.7.

In Figs.2.9a and 2.9¢ the intensity functions i/x2 for the Fraunhofer diffraction and the
first contributions from the ray optics approximation are shown for x=50 and
respectively m=0.75 and m=1.33. In both cases the Fraunhofer diffraction is the major
contribution for small scattering angles 8. For larger angles the p=1 ray forms the larger
contribution, to be followed by the p=0 ray (reflection). For m=1.33 both the p=2 and
p=3 rays become major contributions in the backward direction (3>1/2).



22 Chapter 2

The total intensity function may in some cases be approximated by adding the intensity
function of all contributions, including the Fraunhofer diffraction contribution. The
correct intensity however is found by adding the complex amplitude functions Sy and Sy
of all contributions, and then calculating the intensity function. Besides the moduli of the
complex amplitude functions, derived in this section, also the phase of the complex
amplitude function is required.

2.7. Phase relations

Besides the phase changes due to reflection and transmission, already given by the total
transmission coefficients €;(p), three other phase contributions must be included to give
the correct phase of a scattered ray, relative to the real Fraunhofer contribution.

- 1. reference ray.

The reference ray is an imaginary ray with constant wavelength outside and inside the
sphere. It travels with no phase change through the center of the sphere and from there
in any direction. The factor i in the denominator in Eqgs.2.3 and 2.4, defining the
amplitude functions, gives a factor i in the amplitude function for the reference ray, or a
phase shift +n/2. The amplitude of the incident wave front is opposite to the amplitude of
the (imaginary) wave front, used to calculate the Fraunhofer amplitude function of a
scattering particle. This gives another phase shift &t for the reference ray. The total phase

of the reference ray relative to the Fraunhofer amplitude function becomes

o= ‘% (2.24)

The following phase shifts are all relative to this reference ray:

- 2. length of optical path
The length | of the optical path directly affects the phase of a leaving ray. The phase shift
relative to the reference ray follows from Fig.2.7, and is given by

0, = 2x-(pRe[mcosB]-cosa) (2.25)

- 3. focal lines

Focal points and focal lines are points and lines in space where several rays of a wave
front cross. Van de Hulst! considers an astigmatic converging beam, i.e. a curved wave
front with two different principal radii of cu:rvatuvre, having two focal distances with two
focal lines instead of one focal point. He shows that calculation, according to Eq.2.10, of
the diffraction pattern of this wave front, gives beyond one focal line 2 wave front with
an extra phase shift —n/2. Beyond both focal lines the extra phase shift is -,
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A ray that is scattered by a sphere crosses p—(1-s)/2 times an adjacent ray, with s=1 or
—1 the opposite of the sign of dS/da. Each crossing happens similar for all azimuth
angles. Connecting one such crossing for all azimuth angles gives a circle around the axis

=0. This circle represents a focal line. The same ray passes —2k+(1-q)/2 times the axis
9=0 and crosses there the matching rays from all other azimuth angles. The full axis
therefore is a focal line. The total advance in phase due to focal lines is

o3 = —;(p-—2k+%q) (2.26)

The total phase of all separate rays reiative to the Fraunhofer contribution is the sum of
all mentioned phase shifts.

oc=0)toytoy

o= —g +2x(pRe[m cosp] - cosar) —g(p -2k +%) 2.27)

These three contributions to the phase shift are independent of polarization. Knowing the

modulus (Eq.2.22) and phase the complex amplitude function for each ray becomes
Sj=x-gj-DY2.¢l° (2.28)

The total complex amplitude for a specific angle 3 is the sum of the Fraunhofer

amplitude and the amplitudes for all possible rays going in that specific direction 8. A

certain value of p may have no contribution for a certain scattering angle 3, while

another value of p may have more than one contribution to a specific scattering angle 3.

Figures 2.9b and 2.9d show the intensity functions for the GO approximation calculated
by summing the complex amplitude functions for all contributions shown in Figs.2.9a and
2.9c¢, leading to other values than the summation of intensities of these contributions
would give. Their agreement with the exact Mie calculation is for m=0.75 and 9>n/2
very good. For larger values of x, the inaccurate angle ranges become smaller (Fig.2.10).
The inaccuracies of the GO approximation occur near special angles as discussed in the
next section.

2.8. Exceptional rays
In this section five cases with different types of rays that are not correctly described by
GO are discussed. Some of them are indicated in Fig.2.8.

-1. rainbow
For m>1 and values of p>m the scattering angle $(ct) has a maximum where d3/da=0
(D — oo, Eq.2.23). Close to the rainbow angles the geometrical optics approximation
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Figure 2.10. Intensity function i/x? of the indicated contributions for
x=1024 near the rainbow angle for m=1.33.

deviates from the exact solution. Rewriting Eq.2.18 with the condition d3/da=0, leads to
the following equation for the angle of incidence a for a ray scattered to a rainbow angle

2 -
m -1 2.29)

cos’oL =—
pr -1

This equation leads to a function () through all rainbow angles for all values of p,
indicated by a dashed line in Fig.2.8.

A rainbow angle 3 depends through the refractive index on the wavelength. Different
colors have their intensity maximum at slightly different angles. The well known rainbow
corresponds to the p=2 contribution from cloud or rain droplets scattering sun light. The
p=3 rainbow with its colors in reversed order is less intense but also often visible. For §
just below a rainbow angle two rays with different angles of incidence are scattered in
the same direction. Their interference causes minima and maxima in the scattering
pattern, as can just be seen for the p=2 contribution in Fig.2.9, but more clearly in
Fig.2.10 giving the larger fluctuations. The exact Mie calculation shows that not the
exact geometrical rainbow angle, but the angle of the first interference maximum
corresponds to the actual angle of highest intensity. For larger size parameters this angle
will be closer to the geometrical rainbow angle, and the angle range for which the ray
optics approximation fails is smaller. The small ripple in Fig.2.10 is due to interference
with the reflection p=0.

An approximation for the amplitude function near the rainbow was obtained by Airyl,
who constructed a virtual wave front from all rays leaving near the rainbow, and then
calculated the diffraction pattern of that wave front.
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-2. axial focus - "glory"

Rays with scattering angle 8=nn and o =0 (D — », Eq.2.23), indicated by small
ellipses in Fig.2.8, leave the particle parallel to the axis 9=0 at the same distance from
the axis as they arrive: a-sina. Fig.2.7 shows the p=2 contribution for m<1. These rays
have contrary to rays with 8 = nn for all azimuth angles ¢ the same direction in space,
i.e. they have a focal point on the axis at infinity. This is sometimes referred to as axial
focusing or glory scattering. Langley and Marston%3 calculated the amplitude function
for glory rays by constructing a wave front for all rays leaving in a direction close to $=0
for all azimuth angles ¢, and calculating the diffraction pattern of this wave front. They
also observed corresponding virtual ring sources inside a sphere. This approach was
already suggested by van de Hulst, who also gave an asymptotic approximation for the
exact solution allowing a direct derivation of the equation for axially focused rays
(Chapter 3). In the backward direction such rays are major contributions to the intensity.
In the forward direction they slightly modify the Fraunhofer diffraction pattern.

The optical effect leading to the name "glory" is due to a relative strong backward
reflection from mist or clouds. This makes driving a car with lights on in a thick fog
difficult, but the name results from the colored rings around a shadow on a cloud, as can
be seen from a mountain top or an aircraft, making each observer 'his own saint'. The
near backward p=2 contribution from water drops for o = n/2, leading to this "glory",
requires a small extra angular displacement (15°) to be emitted exactly backwards
(m=1.33, Fig.2.8). This extra angular displacement was first quantitatively explained by
Nussenzveig using complex wave numbers (see -4. critical angle). Nussenzveig also
gives a historical review of recorded observations of the "glory" and references that
present color photographs.

-3. edge rays ‘

Rays that hit near the edge (a=n/2) of the sphere are reflected close to the forward
direction (8~0). This grazing reflection occurs for all azimuth angles @. As for the glory
a limited wave front and its diffraction pattern could be calculated. Because the phase of
the edge reflection in forward direction, contrary to the earlier mentioned contributions
from axial focusing, does not depend on the size parameter x, the amplitude function
should be added to the Fraunhofer amplitude function and is likely to be more significant.
The edge contribution may be derived from the exact solution as shown in Chapter 3.

For m>1 the extreme edge ray (o=n/2) is partly refracted into the sphere and leaves the
sphere partly at regular 3 intervals (Fig.2.8). This ray is both inside and for all p>1
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outside the sphere a boundary between a lit and shadow region. Some light diffracts from
the lit region to the shadow region. Therefore the ray optics approximation is also
inaccurate close to the angles 8 to which a part of the edge ray is refracted, .

-4, critical angle ,
A two-dimensional plane wave with wave vector k; = (kj x,k; ;) incident at a plane

interface z=0 between two media 1 and 2 with refractive indices n; and n; <n,
respectively, leads to a reflected wave k;=(ky,~kj,) and a transmitted wave
kj = (k3 x,ky ;), where the transmitted wave vector components satisfy ‘sz’x =k«
and kgvzz =k, 2 —-kz,xz =(ny / nl)zlkll2 —kaz. For a wave incident at an angle larger
then the critical angle oy, where sinotgy = ny /ny, the z-component in medium 2 kj ,
is imaginary. In this case the wave vector kj represents a surface wave, that travels along
the interface having an amplitude that exponentially depends on the distance from the
interface. No power is refracted into the medium 2, but the power of an incident wave is
shifted along the interface before it emerges as a reflected wave. (Goose- Hanchen
effect3). The complex angular momentum zipproximation8 accounts for these types of
waves traveling along the sphere interface.

Right below the criticle angle the reflection coefficients steeply increase to the value 1
causing the steep increase for the reflected wave p=0 in Fig.9a. Kingsbury and
Marston®7 constructed a virtual wave front for the p=0 and p=1 rays near that angle and
calculated the diffraction pattern. They neglected the Goose-Hanchen effect, but they
found a reasonable match with the Mie theory. The angle range for which this effect
plays an important role also depends on the size parameter.

-5. Anomalous Diffraction

Counsidering only the near forward direction, then for m = 1 only the ray p=1 contributes
significantly. Instead of considering separate rays the circular wave front that passes the
sphere is considered. Just as for the Fraunhofer contribution the diffraction pattern of
this front is calculated, taking the position dependent phase delay into account (van de
Hulst!, Chap.11, p.183).

2.9. Extinction ‘

Extinction describes the intensity decrease of light due to the presence of particles. The
extinction cross section Cgy is the area that effectively removes energy from a
proceeding wave. The extinction efficiency of a particle is defined as the ratio of this area
Cext and the geometric cross section a2,
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Figure 2.11. Extinction efficiency Q,,, as function of size parameter x for m=1.33
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The extinction efficiency for perfectly absorbing particles (Eq.2.13) Q. =2, i.e. the area
that effectively removes energy, is twice the geometric cross section. This ratio is
explained by "Babinet's principle", i.e. the diffraction pattern of a wave front, partially
blocked by a particle, is equal to the diffraction pattern of a hole with the same geometric
cross section as the particle. The diffraction of the surrounding rays removes thus an
equal amount of energy from the original direction as the particle itself. The geometric
cross section effectively lowers the forward scattering amplitude of the undisturbed wave
front, giving a factor 2 in the resulting square of the remaining forward intensity. Figure
2.11 shows that for relative refractive index m=1.33 the extinction efficiency approaches
slowly this value. ‘

2.10. Complex angular momentum (CAM) theory

Several features in the exact solution of scattering by a sphere are not or inaccurately
described by ray tracing and simple diffraction theory. The CAM theory, described by
Nussenzveig®, includes surface waves, i.e. complex wave numbers, and gives a
quantitative explanation for virtually all noticed features. The Mie theory shows that e.m.
scattering by a sphere may be exactly described by three sets of infinite summations of
certain solutions of the Maxwell equations in spherical coordinates for the incident,
internal and scattered wave, respectively, that satisfy the boundary conditions at the
sphere surface. A transformation is possible, that allows all internal solutions to be
separated in contributions that represent waves travelling towards or away from the
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center. A wave travelling towards the center implies the presence of a similar outgoing
wave. The incident wave, the directly reflected wave, and the first of the inside waves
travelling towards the center together satisfy the boundary conditions. The first of the
internal waves travelling away from the center is partially reflected and partially
transmitted at the sphere surface by spherical reflection coefficients, etc. This
transformation of the exact solution has as the GO approximation separate contributions
corresponding with a different number of internal paths. The subsequent summation of
all terms corresponding with one ray allows approximate expressions for
|m— l|l/2xl/3 >>1 and (1+m2)1/2 <3 o

2.11. Conclusion.

The scattering properties of spherical particles with any size parameter x and any relative
refractive index m are exactly given by the solution from Mie, that requires however for
large x a long calculation time. Geometrical Optics gives for large values of x and
p =2x(m —1) >> 1 an approximation for the scattering pattern. The accuracy of the GO
approximation is better for larger x, but this depends strongly on m and the considered
scattering angle.

References

1. H. C. van de Hulst, Light Scattering by Small Particles, Wiley New York (1957)

2. G. F. Bohren and D. R. Huffman, Absorption and Scattering by Small Particles,
Wiley, New York (1983)

3. J. Petykiewicz, Wave Optics, Kluwer Academic Publishers (1992)

4. D. S. Langley and P. L. Marston, "Forward Glory Scattering From Bubbles," Appl.
Opt. 30, 3452-3458 (1991). ‘

5. D. S. Langley and M. J. Morrell, "Rainbow Enhanced Forward and Backward Glory
Scattering," Appl. Opt. 30, 3459-3467 (1991).

6. P. L. Marston and D. L. Kingsbury, "Scattering by a bubble in water near the critical
angle: interference effects", J.Opt.Soc.Am.71, 192 (1981).

7. D. L. Kingsbury and P. L. Marston, "Mie scattering near the critical angle of bubbles
in water" J.0.S.A Letters 71, 358 (1981)

8. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering, (Cambridge
University Press, 1992).



29

Chapter 3. Edge contribution to forward scattering.

Edge functions T and T, which describe the polarization-dependent edge contribution
to forward scattering by spheres, are derived from the exact Mie solution. The edge
functions significantly improve approximate methods to calculate forward scattering
patterns. All the relative refractive indices and the 64<x<2048 size parameter range are
considered. For smaller values of x the approximations are inaccurate while for larger
values of x the edge contribution is very small. For m close to 1 an asymptotic
approximation is used. Otherwise the familiar geometrical optics approximation and the
similar physical optics approximation for glory rays are used. Both geometrical and
physical optics equations can be deduced from the above mentioned asymptotic
approximation,

3.1. Introduction ,

The scattering pattern of spherical particles, with any relative refractive index
M = Ngphere / Nmedium 2nd size parameter x = 2ma/A, where a is the radius of the sphere
and A is the wavelength, may be calculated using the exact solution according to Miel4,
but this requires a long calculation time for large values of x.

For x large and m not close to 1, it is possible to calculate the scattering pattern of a
sphere by calculating separately the contributions from incident and non-incident rays.
The incomplete wave front of the non-incident rays gives a Fraunhofer diffraction
pattern. The energy of an incident ray is divided among several leaving rays p, sce
Fig.2.7, giizing several contributions to the scattering pattern that can be calculated using
geometrical optics (GO).

Glory rays, i.e. non-axial rays that are scattered in forward or backward direction, have
infinite intensity according to the GO approximation. Langley and Marston?.3 detail a
Physical Optics (PO) approximation, using both ray optics and diffraction theory. It is
shown in this chapter that like the GO equations, the PO equations may be derived from
the exact solution via an asymptotic approximation presented by Van de Hulst!
(Chap.12, p.208).

This asymptotic approximation may not be used for rays incident on the edge of the
sphere, i.e. for small values of © (Fig.2.7). The partially reflected rays close to the
forward direction will diffract into the shadow region behind the sphere just like the rays
that miss the particle and cause the Fraunhofer diffraction. The edge domain for which
reflected rays are significantly diffracted depends on the size parameter and is given by
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-13

T<X (Van de Hulst! Chap.17, p.349), ie. for very large values of x the edge

contribution may be neglected.

It will be shown that the difference. between the exact Mie solution and the
approximation for forward scattering patterns, for moderate values of x (64-2048) and
averaged over a size range Ax, results from the edge domain. This edge contribution can
be expressed by two edge functions T) and T, that can be represented by several
polynomials of x and m. The averaged Mie solution may now be reconstructed by adding
the approximation and the edge contribution.

Two authors describe other approximate calculation methods for light scattering that
also have separate terms for the edge contribution. ‘

Nussenzveig3:6:7 presents the complex angular momentum (CAM) theory that gives a
physical explanation for all features of the exact Mie solution. The CAM theory allows
approximate expressions that are valid for x3 >>1 and |m -~ IIU 2355 A presented
expression for the extinction efficiency’ is compared with our result.

Chen39 generalizes the Eikonal Approximation (valid for scalar waves and m near 1)
with two parameters and adapts these parameters to fit the approximation to the exact
solution in the exact forward direction. The maximum size parameter, for which a
scattering pattern 0 <8 <30° is presented, is x =30 together with m =1.33. The GO
approximation with an edge contribution is a better approximation for this case, maybe
because the difference for both polarizations at the edge is not accounted for in the
generalized eikonal approximation. Calculation times for both methods are not
compared.

3.2. Asymptotic approximation. .

In this section the asymptotic approximation that was presented by van de Hulst!.Ch.12
to demonstrate the correspondence of the exact solution and the GO approximation is
used to derive an asymptotic formula (AF) that will be used to approximate the forward
scattering pattern for m ~ 1. Sharmal? used the same approximation to explain the large
range of m values where the anomalous diffraction approximationl.Ch-11 gives good
results for the extinction efficiency Qgy; =4-S(0)/ x2.

The exact solution is given by (van de Hulstl, Chap.9)
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- 2n+1
Si(x,9) = Elm[annn(cow)+bn'cn(c038)] 3.1

and a corresponding expression for S with a,, and b, interchanged. The terms of Eq.3.1
are large for n < x, and drop sharply to zero for n near x. Only approximate expressions
- for the Mie coefficients a,,, b, and the spherical harmonics 1, &, are presented in this
thesis. The exact solution may be calculated faster using an algorithm by Bohren and
Huffiman4. Both scattering coefficients can be exactly written as (van de Hulst, Chap.10)

2y = %(l—e‘zi%) by %(l—e"”ﬁn) (3.2

Both coefficients contain a term 1/2 that corresponds with the Fraunhofer diffraction and
is omitted in the further consideration. The remaining terms depend on the size
parameter x and the relative refractive index m. For large x and excluding the edge
domain the following asymptotic approximation may be used (van de Hulst, Chap.12)
—e2%  yo u+r u 2) <« -1
S g |0 Zer | e

where reflection coefficient rp = tan(t - 1:')/ tan(t+1'). The angles © and t' are defined
by

x-cosT=x"cosT'=n+1/2 (G4
where x'= m-x. Equation 3.4 demonstrates the localization principle, i.e. each term n in
Eq.3.1 corresponds with a ray incident at a specific angle of incidence. The separate
terms in the right hand side of Eq.3.3 correspond to the leaving rays p=0,1,2..etc
(Fig2.7). A similar approximation is allowed for b, with ry replaced by
r = sin(t—1')/sin(t +1'). The function

ug=-i-e 2T with f=sint-1-cost (3.5
contains external values, and
i ‘% ¢ * -
u; = —i-e2 Xt with f'=sint'-1"cost' (3.6)

contains internal values for angle and size parameter. The notation used here deviates

from the notation used by van de Hulst in the meaning that e instead of ! is used
as time dependence.
For one value of p>1 the scattering coefficients are given by
p P
uyu -1 _ugu
a, ~ 021 (l-fzz)(-rz)p = 02‘ 82‘p (37)
p _ P
by ~ uo;h (1_ rl2)(_"1)9 1_ Uo;l €Lp (3.8)

where the total amplitude transmission coefficients g p were already defined by Eq.2.17.
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Van de Hulst! replaces besides the scattering coefficients a, and by, also the spherical
harmonics 7, and 1, in Eq.3.1 by asymptotic approximations, that are valid for all angles
except close to the forward and backward direction. The function m, is much smaller
than 7, so the amplitude functions S; are mainly determined by the corresponding total
amplitude transmission coefficients & p- A subsequent stgtionary phase approximation
leads to the GO equations.

Van de Hulst already suggests replacing the spherical harmonics x, and 1, by asymptotic
approximations that are valid near the forward or backward direction for large n, i.e.
excluding axial rays

n,(cos8) ~n(n+ l)w;&(—uls“'l =n(n+ I)WSD_I - (3.9)
7,(cos8) = n(n+l)M s = n(n+1)J;"(u)s (3.10)

2
where for the forward direction u=(n+1/2)-8 and s=1, while for the backward

direction u ;(n+1/2)(1t—8) and s=-1, and Jg, J; and J, are the first three integer
Bessel functions of the first kind.

The forward scattering amplitude, excluding the Fraunhofer diffraction and reflection
terms and using the average reflection coefficient r = (rl +r2)f‘ 2, leads to the scattering

coefficients
ca,=by zuo-[l—iﬁ—r)
Substituting in Eq.3.1 also Eq.3.4 and the first part of Eqs.3.9 and 10 leads to following
approximation
SJ(X,S) "2 uj +r
= [ u [

x2 1+uj-r

-r)decosvS)»cosr'sinrdt, (3.11)
Tiow

that is independent of the polarization j=1,2 and where the summation of Eq.3.1 is
replaced by an integral over dn =d(xcost) = xsintdt, using the fact that only terms
n<x significantly contribute. This replacement is allowed if the integrand is a slowly
varying function of t. For m <1 the function u; (Eq.3.6) is a rapid fluctuating function
for 0<t <1y, where costyy =m defines the critical angle for refraction into a
medium with lower refractive index. The lower limit of the integral in Eq.3.11 is
therefore taken as T4, = Ty, While for m>1 1y, =0. The anomalous diffraction
approximation (see Ch.2, p.26) that is valid for m~1 results from Eq3.11 by
ipsint

substituting r =0, u,-u; =—e ,p=2x(m=-1) and 1), = 0.
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The advantage of this asymptotic formula over the exact Mie solution is the following,
The Mie algorithm makes, regardless of the value of m, a summation over a little more
then x terms. The integrand in Eq.3.11 is for m near 1 a slowly varying function of t and
for sizing systems using forward scattering the integral is determined numerically
accurately enough with O(1)- x23 terms.

While the cumulative integral of the anomalous diffraction approximation for z=0,8 =0
in the complex domain gives a smooth spiral, the corresponding cumulative result
Eq.3.11, for z=0 gives approximately the same spiral with oscillating curvature. The
use of the asymptotic formula Eq.3.11 will be referred to by the abbreviation AF,

3.3. Glory rays

In this section an equation for glory rays, i.e. non axial rays that are scattered in forward
or backward direction {(e.g. p=2 in Fig.2.7) is derived using the approximations of the
previous section. The result matches the Physical Optics (PO) approximation by Langley
and Marston2-3. They also consider the rainbow enhanced glory, that is not considered
here.

The presented derivation is similar to the derivation of the GO equations by van de
Hulst!. Substituting Eqs.3.7, 3.8, 3.9 and 3.10 in Eq.3.1 and the corresponding equation
for $ leads for both polarizations j=1,2 to
oo
i J (u) ,
Sj’p(x,S) = Zl[n +—2-)[33_j,p t+8j,pJ1 (u):l-uo P -s? (3.12)
= R
where for the forward direction u=(n+ 1/2)-8 and s=1, while for the backward
direction u={n+1/2)(n-$8) and s=-1, and u, and u; are given by Eqs.3.5 and 3.6.
The last three factors of Eq.3.12 may be rewritten as
ug-uP-s"=e0n G, = 2(xf—px'f')+(p+1)-2’5—1,m (3.13)

In the forward direction L = 0 and in the backward direction L = 1. The complex terms
nearly cancel one another except near a value n=ny where G4 -G, +h-2r=0 is

nearly satisfied. Replacing the difference with a derivative
d 1 d -1 d

dn  xdcost xsintdt
leads to the condition

Gy +h-2n=-271+2pt'~Ln+h-2n=0 (3.14)
for a forward or backward directed ray. The term h-27n may be omitted if L is allowed
to assume any even value in the forward direction and any uneven value in the backward
direction. This condition determines the values of ng, 7 and 7. Multiplying this equation
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with ng +1/2 = xcosT = x'cost' and subtracting the product from G,, gives the following
expression for the phase delay of such a ray

n

Gpo =.’?,xsint—‘2px*sim:'~!—(p+1+L)2 (3.15)

For the summation around ny the first two factors of Eq.3.12 are quasi constant.
Replacing the summation by an infinite integral and G, by a second order approximation
leads to the Fresnel integral

P VR P 2
.[e iGpo 12(9 no) G nod =( 2‘.‘1{ J e—lGno—-l(nfl%)sA (3.16)
IGml
where
G" -_A A= 2
M0 xcost ’ tant' tant

and sg is the sign of A. The resulting amplitude function is given by
12

32( 2n J1(u) o) |G —i{m/4 ,
Sj’p(x,8)=(xcos1:)/ [I-A—J [83_J~,p-—if—s—+sj,pll (u) [¢™"Om i(n/4)sa G.17)
where u=xcost-§ or u=xcost(n—9) for the forward or backward direction
respectively and 1 is determined by Eq.3.14. The expression in square brackets
corresponds with a virtual ring source with diameter u/9 = xcost as photographed by
Langley and Marston3, who find a corresponding equation using ray optics and
diffraction theory (Physical Optics approximation). Contrary to the GO amplitude
functions (Eq.2.28) the PO amplitude functions depend on both transmission coefficients
€] en gy ’

For specific values of the relative refractive index m>1 rainbow enhanced glory
contributions occur, i.e. if both A=0 and Eq3.14 are satisfied. A third order
approximation of Gy, is then required, which is not detailed any further, because it does
not apply to our experimental system of water drops in kerosene for which m = 0.93.

3.4. Edge functions from Mie solution

The edge rays are reflected in forward direction. If their contributions S ¢4o and S2 edg
to the total amplitude functions are assumed to be diffraction patterns that radiate from a
circle around the sphere (dotted circle in Fig.2.2), then the angular dependence of the
forward diffraction pattern is similar as for the glory contributions that have a virtual ring
source. The factor in square brackets in Eq.3.17 is used to represent this forward (s=1)
angular dependence, ‘

Sjﬁdg(x‘ 2) =T3_j(x)£,izl+'l‘j(x)]1’(z), (3.18)
2%

z
where z=x-sin3 = x-$ and the amplitude transmission coefficients g p are replaced by
two unknown edge functions Tj and the factor 2x in the left-hand sides corresponds with
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the definition of the edge functions by van de Hulst! (Chap.17). The edge functions are
assumed independent of the scattering angle 3.

The same angular dependence is also found by considering the virtual ring source for
glory contributions, or the ring-shaped reflected wave front at the edge of the sphere,
where for all azimuth angles the incident wave leads to two components in the plane of
the ring, a component parallel and a component perpendicular to the plane of incidence.
These components are transmitted (glory) or reflected (edge) according to the
transmission coefficients g or reflection coefficients T Decomposition of the two
resulting amplitudes to the incident and perpendicular polarization direction, and
calculating the resulting diffraction pattern of both components by integration over the
azimuth angle also leads to the angular dependence of Eq.18. (van de Hulst!, Chap.11)

The width of the relevant wave front is neglected in the assumption of Eqs.18. The
actual relevant edge domain is given by a specific value of the angle t (Fig.2.7) that
depends on the size parameter X: T4y = x~ 13 (van de Hulst!, Chap.17). The width of the

relevant part of the incident wave front is thus given by x(1- COSTedg) ~x¥3 /2 which is

for large values of x small compared to the circumference of the circle.

In the following sections the edge contributions S; ¢4 are calculated by subtracting from
the exact ‘Mie' solution, the Fraunhofer pattern and one or more contributions (p=1,2...)
calculated using the asymptotic approximation (leading to the GO and PO
approximation) presented by van de Hulst. The resulting difference should have an
angular dependence corresponding with Eq.18 and the edge functions Tj, =12 follow
directly from the first null point in J 1'(23) =0, z,=1.84.... (referred to as method a),

S3-j edg(xaza)
T =——dtTer 2 AT 3.19
J’a( ) 2x°Jl(Za)/za G19)
and also from the first null point in J l(zb) =0, z,=3.83.....(referred to as method b),
Sjed (X’Zb)
T o LA 3.20
Jeb(x) 2X‘J1'(Zb) ( )

If the considered amplitude functions Sj,edg indeed radiates from the circle at the edge of
the sphere then both methods should give identical edge functions: T; ; =T; ;. Due to
the actual ratio of the width of the relevant wave front to the diameter of the circle
around the sphere, given by x!/3/x=x=2/3, the differences Tj, —Tjp will be smaller for
larger values of x. Using J 0(0) =1 and J 2(0) =0 the following relations must also be
true:

S j,edg(xso) ~ X(Tl,a +Tz,a) ~ X(Tl,b +T2,b)
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Figure 3.1. Real part of the edge functions Ty and Ty multiplied by x~ 13 , calculated
using method b for 0.1 <m <100, Im{m]=Re{m] and 64 < x < 2048.

Re[T1b-T1a}*x*-1/3 ‘Mie-Frh'

Re[T2b-T2a]"x*-1/3 ‘Mie-Frh'

LI
e,

I LT P 25

B A T T 7
uclnll,':f‘,“ ALY IR LT LT It
LJ I L LML AL L F IR 4RI F I I AT

W!"‘ T

Figure 3.2. Difference between the edge functions from Fig.3.1 and the corresponding
edge functions calculated using method a .

The amplitude functions S eqg and Sy ¢4 are calculated by subtracting from the exact
Mie solution different approximations in different ranges of the complex relative
refractive index m,

3.5. Absorbing sphere

The simplest case for determining the edge functions according to the previous section is
a value of m with large imaginary part so all p>0 contributions are absorbed and only the
Fraunhofer diffraction and edge contribution are irﬁportant for the forward scattering
pattern: S edo = Sj Mie — SFrh- For such a subtraction a short notation of the type Mie—
Frh' will be used. Figure 3.1 shows the resulting real part of edge functions T and Ty
according to method b for 64 <x <2048, 0.1<m <100 and Im{m]=Re[m]. Figure 3.2
shows that the differences T, — T, between the results from method a and method b
for x = 64 is an order of magnitude smaller then Tj,b: while for larger values of x the

23 This result shows that it is indeed possible to deduce the

difference decreases as x
edge functions from the exact Mie solution, and that including these edge functions in

the approximation will decrease its error significantly.
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25}
log(x)

0.5

Figure 3.3. The m-x area for 0.3 <m <3 and 64 <x <1024,
divided in areas bounded by indicated conditions for u, p
and q.

It was found from the comparison of the differences S ¢qg (x,0)—%(T) 5 +T2,a) and
S1,edg (%,0)—x(Ty,p + Ty p) that method b gives a slightly better approximation in the

exact forward direction than does method a.

3.6. Transparent sphere
The largest contribution to forward scattering besides the Fraunhofer diffraction and the
edge reflection for real values of m is the twice refracted p=1 ray, leading to the

definition

8,60 = SFth +Sj,p=1
where S, is calculated according to GO. The p>1 contributions to Sy are
diminished by averaging Sj Mic —Sj GO over a size range Ax ~x/8 leading to a

scattering amplitude that results from the edge S; cdg = Sj Mie — 5,60 -

This is true for the largest part of the m-x range shown in Fig.3.3 but not for the area
around m=1 bounded by p=-16 and p=2x(m~1)=51. The parameter p is defined

here as p={m-1) x?3 » (Terit / Tedg )2, giving a measure for the critical angle position

in the edge domain,

For —16 < u < -5 the glory rays of the type as discussed in section 2 are not sufficiently

diminished by averaging and are included in the definition
§;,p0 =8;,G0 *+Sj,p=2,9
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where the second term is the sum of the glory contributions according to the PO
approximation for p=2 to p=9 with L = 0, In this range the averaged differencé with
the exact solution is found to result from the edge Sj edg =Sj Mie —Sj,PO -

In the remaining range for -5 < and p <51 the difference between the exact solution
Sj Mic and the asymptotic approximation of Eq.3.11 including the Fraunhofer diffraction,

referred to as Sj Ap, also leads to a scattering amplitude resulting from the edge
Sjedg =5jMie — S AF- Figure 3.4 shows for the range —4 <1 <4 the resulting edge

function T} p, (Eq.3.19) and the difference Ty ; — Ty p, that is much smaller than T p,

indicating that in this range T| j, for ‘Mie—AF' may indeed be interpreted as an edge
function.

The edge functions, multiplied by x~1/3, are in this range a function of parameter i and
hardly a function of x. Right below =0 the Goose Hanchen effect!-7-11 probably causes
the deep dip in the edge function, while the rest of the fluctuations may be interpreted as
the result of continuous diffraction interaction between incident, reflected and inside
waves in the edge domain. »

For |p| <0.01 the Rayleigh-Gans! approximation is used. In the presented figures only

the m =1 line corresponds to this case.

For m>1 the reflection coefficient ry changes sign at the Brewster angle 1p,,, where
T+7T'=7/2. A parameter q is defined here that gives the inverse of the relative position
of the Brewster angle in the edge domain ¢ = (1+ mz)l/ 2. 132 Tedg /sin Tpmw - Figure
3.5 shows the functions Ty and T, p as function of this parameter q calculated for
Sjedg =SjMie —S;j,Go. The remaining ripple in Fig.3.5 is due to rays with p>1 and
may be diminished with a better averaging method. Near q=0.1 and x=64 the
refractive index m would be less then 1 according to the definition of q, so the edge

function is simply set to 0. The flat region is calculated for a refractive index with a small
imaginary component (Im[m]/Re[m] < 10_4) without averaging.

For 64 <x <1024 different polynomials of the functions Tj p x~ Y3 and Tp- x~V3 as

function of x and one of the real parameters m, p or q are determined. It seems not to
difficult to extend the polynomials to complex values of m.
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Figure 3.4. Real part of the edge function T| multiplied by xV 3 calculated according
to method b (upper figure) for —4 <p <4 and 64 <x <2048, and the difference with

the corresponding function calculated according to method a (lower figure).

The edge functions lead through Eq.3.18 back to the forward scattering pattern resulting
from the edge that may be added to the appropriate averaged approximation (GO, PO or
AF) for the forward scattering pattern, thereby improving its accuracy significantly. The
next section discusses the resulting accuracy for the exact forward direction (8 =0)
compared to the accuracy of an approximation resulting from the CAM approach’.

The calculation time required for the GO and PO approximation including the edge
contribution, using a polynomial fit, is approximately a factor x lower then time required
for the exact Mie solution?. The calculation time required for the AF depends strongly in
the number of terms used for numerical evaluation of Eq.3.11, but is for the mentioned
13 faster then the exact solution. Only the size
parameter range 64 < x <2048 and calculation for a specific x value is considered here.

number of terms approximately a factor x

For calculation of scattering matrix elements, where adding of intensities of different
contributions for large enough values of x is allowed, the time to be gained for the GO
and PO approximation will be larger.

3.7. Comparison with CAM extinction efficiency.

The approximation presented here is compared to the CAM approximation presented by
Nussenzveig? for the extinction efficiency Qe =4-S(0)/x?, 64<x <1024 and
11<m <25. For the major part of this m-x area both approximations are equally good”’.
The CAM approximation is near p=4 (Fig.3.3) better, due to an improved p=l
contribution. For p <4 and q> 0.5, using the AF and GO respectively, the method
presented here is better. The CAM approximation neglects penetration of outside
complex surface waves into the sphere’ leading to the condition ]m-l]lﬂxv 3=
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Figure 3.5. Real part of the edge functions Ty and Ty multiplied by x Y3, calculated
using method b for 0.1 < q <316, Im{m]=0 and 64 < x <1024,

ul/ 2 5> 1. If the Brewster angle approaches the edge (q > 0.5, section 3.5) transmission
into the sphere for polarization 2 is probably not negligible, leading to -less accurate
CAM results. For smaller values of x the width of the edge domain is larger, so the
method presented here leads to worse results.

3.8. Summary ;

It has been shown that the edge functions T} and T, as used by Van de Hulst! can be
determined through the rigorous Mie solution by subtracting appropriate
approximations. The relative error of the edge functions determined this way is

23 for higher values

approximately 10% for size parameter x = 64 and decreases as x
of x. Adding the edge contributions significantly improves the approximate methods to
calculate forward scattering patterns. The presented method does not give a physical
explanation for the resulting edge functions, but leads for some cases to a better
approximation for the extinction efficiency, and probably also the near forward

scattering, then an earlier presented approximation of the powerful CAM approach.
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Chapter 4. Scattering matrix

4.1. Introduction.
Different particle sizes can be distinguished using the scattering properties of the
particles. In a commonly used set-up (Fig.5.1) a parallel laser beam is partly scattered by
a Iafge number of particles, contained by a transparent cell. A so called Fourier lens
focuses the undisturbed beam on a central detector and the scattered light on the
surrounding semi-circular detector elements. A specific direction before the lens
corresponds with a specific position on the detector that is located in the focal plane of
the lens. The forward or small a,ngle scattering pattern is measured by a number of
detectors and may be represented by a vector b, where each element b, represents the
signal of one detector. The considered size range is divided in a number of size classes,
so the required size distribution is also represented by a vector x, not to be confused with
the size parameter x. If it is assumed that the scattered intensities of all individual
particles may simply be added, then the discrete size distribution x and the scattering
pattern b are linearly related via a scattering matrix A

Ax=b @“.1)
where the columns of A consist of the discrete scattering patterns of the different size
classes. This assumption requires that the light scattered by a particle is not scattered
again significantly by other particles, i.e. multiple scattering must be negligible. At the
same time the signal/noise ratio for the measured scattering pattern must be high enough.
Another requirement for the mentioned assumption is a random relative position for the
different scattering particles, so their scattered e.m. fields are incoherent and intensities
may be added. The calculated matrix A and the measured scattering pattern b lead to the
required size distribution x. In this chapter averaging requirements for the calculation of
a scattering matrix are derived by considering the largest contributions to the forward
scattering pattern as discussed in Chapter 2.

4.2, Calculation of scattering matrix.

The apparatus used in this work is the "Malvern particle sizer 2600, Its detector
consists of N=31 semi-rings with diameters approximately divided equidistant on a
logarithmic scale, i.e. neighbouring ring diameters differ an approximately constant
factor f,. The nth detector with inner and outer radii R; and Ry, receives the light
scattered by a particle into a solid angle bounded by Ry, <FL-sin8 <R, and
0 <@ <7, where FL is the focal length of the lens. For the calculation of a scattering
matrix the total azimuth angle range O0<@ <2n is used, and for multiple scattering
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calculations the scattering angle intervals are defined to include the insensitive zones
between the detectors, because all power must be accounted for.

One column of a scattering matrix A is defined to contain the averaged discrete
scattering pattern of a number P of particle sizes for the considered size class. All
columns are scaled so they represent scattering patterns of equal geometric cross
sections, leading to similar maximum values in each column and an optimal inversion
according to Hirlemanl, The nth component of the discrete scattering pattern a of a
specific size is given by the integral of the intensity function i(x,8)=(ij+iy)/2,
ij=IS j|2 for one particle over the solid angle corresponding to the nth detector area

divided by the relative geometric Cross section X2,
8 no 2 TC

ap(x)= sin 8dod3, 4.2)

Sp O o
where the angle 8, is given by mgy-sin8p; =sin(Ry/FL), and 9,, by a
corresponding relation, where m; gives the refractive index of the medium containing
the particle relative to the medium ocutside the cell.

This integral gives the nth component of the discrete scattering vector ¢(x) for size
parameter x. The integration with respect to the azimuth angle ¢ gives for unpolarized
light a factor 2. An analytical expression for the intensity as function of the angle 8 is
not available for the exact Mie solution, so integration is carried out numerically as
follows, using a logarithmic angle scale with K intervals, evaluated at their logarithmic
center.

an(x) = Z(f/K £ /K]Z 5 ‘;}k)sk sin 9 4.3)

k=1 X

where 3y =38 -fn(k“l/ 2)/K and f, = 8,9/8y;. For K=1 the difference in Eq.4.3
gives the relative angle width for the nth detector W, =f,2—f, 12
(O po = 84i)/ 8, where 8, =(8,;8 no)ll 2is the logarithmic center scattering angle for
the nth detector.

The considered size range is divided in C=45 size classes with center size values x
equidistant on a logarithmic scale with subsequent size classes differing a factor
fy =Xc /Xc~1. Within the range of each size class a discrete scattering pattern b is
calculated for a number P of particle sizes, also chosen equidistant on the same
logarithmic size scale. The patterns of the sizes in one class are averaged to give the
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det.ring
Figure 4.1. Scattering matrix for the detector of the Malvern
2600 with Focal Length = 63mm, considering only Fraunhofer
diffraction.

scattering vector of that class, i.e. a column in matrix A. Matrix element Ay for class ¢

-172 £ 112

X tox= x¢ and detector element n is thus calculated according to

| _ _ .
Acy -3 > an(xc £, 172+(p 1/2)11)) (4.4)
p=1
The values P and K leading to a specified accuracy depend on the ratio of the

from x = fy

contributions that are quasi constant or rapidly fluctuating as function of the size
parameter x and angle 8, as discussed in the following section. Similar to the relative

angle width a relative size class width is defined as Wy = fxl" 2_ fx'l‘f 2

4.3. Fraunhofer diffraction ‘

Figure 4.1 shows a scattering matrix for perfectly absorbing particles, i.e. only
Fraunhofer diffraction contributes to the scattering pattern. The discrete pattern over 31
detector elements is calculated for C=45 classes. The similar scattering pattern for
different sizes follows directly by substituting i=Sgp, (Eq.2.13), K=1, P=1 and

sin8,=8, in Eqs.4.3 and 4.4:
2
S‘nz ( 2 J1(xc84)
Xe —

S ] =2W, I3 (x:8,) (4.5)
Xe xcsn

Agy =2W,

The parameter W, has for all 31 detectors approximately the same value W;=0.12. For
different size parameters x,, the maximum value J;2(1.84)=0.338 is positioned at different
angles 8, leading to the maximum value A puy = 2WoJimax> =0.08 on a diagonal of
the matrix. Due to the fact that the relative width W, of the inner circular detectors
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deviates from the relative width of the other detectors, the corresponding matrix
elements are larger.

4.4, Averaging requirements.

In this section it is shown that the numbers K and P (Eqs.4.3 and 4.4) may be determined
by requiring for each matrix element a maximum deviation Err from the exact result for
P — o, K — co. Whether the required accuracy is indeed obtained depends on the value
of Err and the refractive index as explained at the end of this section.

The difference Err between the exact average of the function Asine in a small interval
Aw <7 and the average of N equidistant evaluations ®; in this interval is limited by
Err<A(Aa/ N)2 /24. For an interval Aw >=n the contribution to the difference
changes sign if ® increases =, leading to the following error for any interval Ao and
N> Ao / m, i.e. every period is evaluated at least twice,
A-Ao -Min(Ao, )
Emr< 5
24N ‘
where the function Min gives the minimum of two values. In order to use this accuracy

(4.6)

relation, the different contributions to the scattering pattern are written as the product of
a quasi constant and a rapid fluctuating function of x and 9.

For the following order of magnitude consideration the Fraunhofer and edge contribution
and the two largest GO contributions are considered. The total amplitude function is in
two angular regions approximated by

9 <<v: Sj ot =SFth tSjedg *5jp=I X))
8$>>7: Sjtot =SFrh t5jp=0*5;jp=1 (4.8)

where j=1,2. The éngle v defined by Nussenzveig>
y=(2/x)13 (4.9)

separates the near forward scattering range in a penumbra region 1/x < 8 <y where the
~ diffraction contribution is larger and a complementary region 39 >y where the GO
-reflection is larger. Near this angle the three amplitude functions S, Sjedg and S; p=o
have nearly the same magnitude. Both the edge diffraction and the geometrical reflection
are less accurate approximations close to this angle. The CAM theory provides better,
but more complicated, approximations. For the purpose of this section the small angle
approximation is sufficient.
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The angle range that is relevant for the dimensions of the mentioned detector lies mainly
in the penumbra region, so the intensity function i(x,8)=(i;+i3)/2 is assumed to

consist of the following contributions

. * * *

1= Re[Sj,diij,dif +28; 4ifSj p=1 ] +8; p=15j,p=1 4.10)
where

2 11(x8) 1)(x8) :
Sj,dif =X T+2x[T3_j—73—+Tle (XS) (4.11)

is the sum of the Fraunhofer and the edge diffraction. The difference between
polarizations j=1,2 is in the rest of this section neglected.

For x8>2.5 the Bessel function in the combined diffraction amplitude is approximated as
h(z)=2/ (nz))l/ 2 sin(z—7/4), containing a quasi constant factor and a rapidly
fluctuating factor as function of z=x8. The edge function T is always limited by [T|<x1/3
(Chapter 3) leading to the following approximation of the combined diffraction
amplitude function '

Sdif = %Esin(x&) 4.12)

E(x,9)= [1+2(i+s)x‘”)-Min[o.é,(%)l/zJ (4.13)

gives an approximate envelope function and the sin(x3) describes the rapidly fluctuating
behavior. A constant phase term that is independent of x and $ and different for the

where

approximate Bessel function J; and its derivative J{', is irrelevant for the purpose of this
section and is therefore omitted.

The GO p=1 contribution is similarly written as the product of a quasi constant and
rapidly fluctuating function of x and 3,
Sp=1(x,8) =x-G(8)-¢'P 4.14)

where i =+/~1 and a constant phase term in the imaginary exponent is omitted. The

function

)1/2

p'(x,8) = 2x(1+mr2—2m,c05(9/2) 4.15)

gives the absolute value of the angle dependent phase delay, i.e. p'(x,0) =|p|=2x|/m-1],
m=Re[m] and G($) =[Sp=1|/x is for =0 given by

__zm ]
G(0) emm) 4.16)
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For 0.525<m<3.38 and Im[m]=0 this small angle transmission [S,—y| is larger then the
small angle GO reflection |S;—o[=x/2, otherwise the reflection is larger. The three terms
of Eq.4.10 lead to the following contributions to a specific scattering matrix element

Agp =Wy -i-8%x72

1 [SSSSUSUU—
Aen(dif dif) <Wa -Ez(xc,sn)~5(1—cos(2x9)) 4.17)
Acn(dif p=1) <Wn2-E(x,95)G(8,)85 -sin(x8)e'?  (4.18)
Acn(p=1,p=1) = WaG*(8n)9 0 (4.19)

where the slowly varying functions E and G are both evaluated at the angle 8, for the
considered detector and size x; for the considered size class. The rapidly fluctuating
functions need to be properly averaged. The interference contribution will contain sine
functions with parameters x8 +p' and x8 —p'. The GO p=1 intensity is quasi constant

and does not lead to any requirements.

Allowing a maximum deviation Err for the calculation of a matrix element A, leads
according to Eq.4.6 and Eqs.4.17 and 4.18 to the following requirements of P
< WuE2 -Aw -Min(Aw, 7t)

p2 4.20
24-Err (4.20)

where Ao =2x.3,W, and P > Aw / © must also be satisfied, and
P2<Wn2-E~G-Am-Mm(Aa),1c) @21)

24-Err
where Ao = (X9, +p' )Wy and P> Aw /% must also be satisfied. In a Mie algorithm

the entire scattering pattern for a specific size parameter x is usually determined at once,
so the largest number P resulting from Egs.4.20 and 4.21 for all detector elements is
used to calculate the matrix elements A, for all detectors n=1-N.

The averaging requirement for the number of angles K per detector is found by replacing
in Eqs. 420 and 421 P is by K and using in these equations phase differences
Ao =2x.3, W, and Ae =(x 9, +dp'/dS3)W, = (1+(m,/p")sin(8/2))xc9 Wh,

respectively.

For m—1 the p=1 contribution will become higher and less wide, being exactly

opposite to the Fraunhofer peak for m=1, i.e. the GO approximation that gives for
m=1 a delta peak cannot be used. The p =1 contribution is significantly diffracted for
ip|< 1and the resulting matrix elements are found to be limited by

2 —
Agy <Wy 'p( "Cf" éi»E(xc,Sn)) %(1 - cos(2x9)) (422)
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The first term results from the small angle Rayleigh-Gans scattering or the imaginary
component of the Anomalous Diffraction?, that is valid for p—> 0. The second term
accounts for the substantial Fraunhofer and edge diffraction for p=1 that becomes
smaller for decreasing p due to the opposite phase of the p =1 diffraction. This is really
the only motivation for Eq.4.22. A more severe limitation for p =0 could be formulated
by using the series for p <1 and p > 1 by van de Hulst4 for the Anomalous Diffraction.

The glory contributions are not included in this section. This may lead to less accurate
calculation of the scattering matrix then according to Eqs. 4.20 and 4.21. The resulting
deviation depends on the amplitude and the fluctuating behavior of these glory
contributions as function of the size parameter x. For m <1 the largest forward glory
contributions do not cross the symmetry axis (L = 0) and travel only a relative short
distance through the sphere, i.e. their phases change only slowly as function of x, and
their contributions are evaluated sufficiently by Eqgs. 4.20 and 4.21. The forward glory
rays that cross the axis twice or more (L =2.4,.) travel a relatively large distance
through the sphere. The resulting rapid fluctuations as function of x are not sufficiently
evaluated by Eqs. 4.20 and 4.21. The resulting intensity contribution are however very
small, and the values P and K as given by Eqgs. 4.20 and 4.21 lead for m<1 to the
indicated maximum deviation if Err > A 0, 1075,

For m > 1 only glory rays exist for L > 0 that contrary to m <1 may also have a rainbow
condition (section 3.3), leading to a relatively large amplitude. For m > 1 the deviation .
for a matrix calculated using the given values for P and K and the exact Mie solution
only remains below the chosen maximum deviation if Err>Amax10_2. To obtain a
better scattering matrix, larger values of P and K should be used, or better, the
approximation for these rays may be incorporated in the requirements for P and K.

The intensity of a glory ray doesn't lead to large errors, the errors are mainly due to
coincidental evaluations at x,9 values where positive interference of a glory ray and
either the Fraunhofer or the GO p=1 contribution occurs.

4.5. GO approximation.

For large enough size parameter x the GO approximation (Eq.4.10) may lead to a
sufficiently accurate intensity function i = (SI2 + 822 )/ 2 and scattering matrix A, using
the already given numbers P and K for sufficient evaluations. For m<1 the glory
contributions for L = 0 must be included. For m>1 it is advantageous to omit the glory
contribution for the reason mentioned in the previous section. Rainbow enhanced glory
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Figure 4.2. For m approaching 1 the p=1 contribution becomes increasingly
important, leading to larger deviations from the Fraunhofer scattering matrix

(Fig.1)
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contribution® that occur for m=1.250, m=1.465 and less important ones for other

specific values of m , are exceptions and require better approximations. For moderate

important due to diffraction3.

values of x near forward rainbows for m close to both mentioned values are also

For cases (m > 1) where glory contributions are not important the following conditions

lead to a very fast calculation of the scattering matrix elements. Equation 4.17 indicates

that for the condition

W,E?
X8 p Min(W, , W,

) < Err {4.23)

the fluctuating part of the diffraction contribution may be neglected. Equation 4.18

shows similarly that the interference of the diffraction and the GO p=1 ray may be

neglected if
W,2-E-G- 8,
Min((x8,, +p' )Wy, (X +dp'/d8)8 W)

)<Err (4.24)

If both conditions are satisfied then the scattering matrix element A, may be

approximated by

Acy 1 Re[T} + T ] 2 2 242
2en 1+4 +43°UTJc +T +G“9 4.25
Wn m(ct(}n[ Xe n([ ”2 | 2, ) n ( )




50 - Chapter 4

02\ MicEm=IEH q OgEﬁI}dIiSZ)-(EI\rf:lEJ l
0.16 W7irirrrae il (’Il lll' ':5'77[/] ’ ‘
IR MR 7 )
. ('l[,’llli,!lll;’.m;;;{'/ 073 | LA TP
0.04 ‘ "q[;;;;I';I;:gzgilllll[l log(28) ’0’?7;6%’({(1§A!¢mt»\4;f/
0 ‘Qllffffvfffffffé%;’ > 'ﬁ’;‘“ "v Vﬁ@%’}@ log2e)
detring 20 257 3073 detring ¥/ 25 <3
(En}"f?égm&oi? Omgsnhii%;‘(f'h@“i‘i?é?))
0o0s| S l NI 1 ° [z |
0.002 J‘(ll Ill ’ V 13 6.0001 /gz‘”lllll"!!”,”’&/!ﬁ/ 1'5
oo \NIWRINING | (0L
Wl i L
det.ring 25 30 det.ring 5735

Figure 4.3. Comparison between matrices calculated for the Malvern 2600 detecior,
m=1.33 and Focal Length=300mm.

where the smallest contributions are neglected. This approximation is only accurate for
very large size parameters x. '

4.6. Results.
Figure 4.2 shows the effect of the p=1 contribution on the Fraunhofer dominated

scattering matrix for m — 1. The matrices are calculated using the Mie algorithm by
Bohren and Huffman® and P and K values according to Eqs.4.20 and 4.21 with
Eri =102, For m=0.5 the p=1 contribution is smaller then the reflection, leading
approximately to the Fraunhofer matrix with a small large angle contribution due to both
edge reflection and p=1 contribution and an x dependent maximum value due to
interference of the Fraunhofer and the p =1 contribution. For m=0.7 and m = 0.9 both
effects are increased, while for m=0.95 the width of the p=1 contribution is
approaching the width of the detector. The large oscillations at the largest angles are due
to the glory contributions, For m>1 a similar effect of the p=1 contribution occurs

with less oscillations at large angles for m near 1.

Figure 4.3 shows an "exact" matrix for m=1.33, Focal Length=300 (for measuring larger
particles) calculated using the Mie algorithm and P and K values according to Egs. 4.20
and 4.21. with Err= 10—4, and the difference with three other matrices. Only scattering
patterns for one out of four size classes is calculated and only 2a>31um
(A =0.6328um,x > 150) is considered. The required calculation times on a MS-DOS
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486DX 33Mhz computer are for the Mie calculation and Err = 107# 20 hours, for the
Mie calculation and Err=107> 5 hours, while the approximation with Err = 1073 with
or without the edge contribution only requires 2 minutes. In the lower left matrix of
Fig.4.3 the edge contribution is not subtracted from the 'exact’ matrix, and can be seen to
decrease as x increases. In the considered size range it significantly improves the
accuracy for calculating forward scattering patterns using the GO approximation.

For m <1, including also the largest glory contributions in Eq.4.10, the accuracies for
the approximation as shown in Fig.4.3 are only obtained well inside the penumbra
region, i.e. 3 <<y. The assumption of an edge contribution coming from an infinitely
small edge range is for m <1 and 9 >y probably insufficient due to the Goose Hanchen
effect or inaccurate glory contributions. The calculation times for sufficiently accurate
Mie calculations are smaller then required for m > 1.
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An experimental method is presented to determine drop size distributions (2-100um)
in a water-in-oil emulsion during electric field enhanced coalescence. A standard small
angle or forward scattering measurement set-up is equipped with a special cell
allowing an electric field up to 3.6 kV/cm. Tested emulsions are free from surfactants
and contain only a small fraction of the electrically conducting dispersed phase. Drop
size distributions are calculated accounting for multiple scattering using a series of thin
single scattering slabs, which each linearly redistribute a discrete axisymmetric forward
scattering pattern. An estimated single scaitering pattern and the resulting size
distribution are modified until the calculated multiple scattering pattern is nearly equal
to the measured scattering pattern.

5.1. Introduction.

In order to verify the calculated evolution of a drop size distribution during
electrostatic coalescence as presented in Chapter 7, a commonly used forward
scattering measurement set-up (Malvern particle sizer model 2600) is equipped with a
special transparant cell to measure drop size distributions of water in kerosene
emulsions (Fig.5.1). The content of the cell may be submitted to an electric field up to
3.6 kV/cm. An unpolarized parallel laser beam is partly scattered by water drops in the
emulsion, and the small angle or forward scattering pattern is measured by 31 coaxial
semi-circular detector elements. FEarlier results for the measurement of size
distributions during electric field enhanced coalescence were presented by Williams
and Bailey! and van den Bosch?.

In this work multiple scattering accounts for light that is scattered more than once and
only the far field solution for scattering by spheres is used. The scattering medium is
divided into a number of thin slabs perpendicular to the laser beam, so in each slab
multiple scattering is negligible. The discrete scattering pattern leaving a slab is linearly
related to the entering scattering pattern by a redistribution matrix. The scattering
pattern entering the cell is modified by each slab, leading to the multiple scattering
pattern at the end of the cell. The single scattering pattern for one slab, and thus also
the redistribution matrix is adjusted until the calculated multiple scattering pattern
matches the measured scattering pattern.

Other authors have presented inversion methods for multiple scattering data.
Hirleman® uses the same discrete axisymmetric scattering angles, referred to as
discrete ordinates, but like van de Hulst? he considers scattering orders, instead of a
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Figure 5.1. Schematic drawing of experimental set-up. The sample cell may be
rotated around the optical axis, so both a vertical and a horizontal electric field may
be applied.

series of thin single scattering slabs. Besides a suggestion for an iterative scheme as
used in this work, Hirleman also proposes a much more extended measuring method
to obtain the total redistribution matrix. More independent scattering properties are
measured and a higher degree of multiple scattering may probably still be inverted to a
reliable size distribution. Gomi® uses a discrete ordinate approach and a series of single
scattering slabs, as is done in this work, but he only considers very large particles
allowing a Fraunhofer approximation. Both Hirleman and Gomi use a small angle
approximation for the relations between incident solid angles, scattering solid angies,
and resulting solid angles, whereas this work allows all angles for these geometrical
relations. Schnablegger” uses a multiple scattering order method presented by Hartel®
to obtain submicron-size distributions from large angle multiple scattering data,
measured in a cylindrical sample cell. This method uses the expansion of a single
scattering pattern in Legendre polynomials, leading to an analytical relation for
multiple scattering. Although this method could be used for the situation presented
here, it would require a relatively huge calculation capacity due to the large considered
size range.

5.2. Experimental set-up

The apparatus used for the light scattering measurements is a Malvern particle sizer
model 2600. It consists of a 2 mW He-Ne laser source (A =632.8nm), a beam
expander (leading to a beam width of 8mm), a sample cell containing the scattering
particles and a lens to focus the undisturbed laser beam onto a central detector and the
scattered light onto 31 concentric semi-circular detectors (Fig.5.1), with radii on an
approximately logarithmic scale3. The detector dimensions and the focal length of the
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first
cell wall

second
cell wall

Figure 5.2. If the angle f between the incident beam Iy and the
normal 1o the first cel wall is larger then the angle a between the
transmitted beam I, and the normal to the second cell wall, then
the twice reflected ray Iy, is directed downwards relative to the
directly transmitted ray I, or The angles are exaggerated.

lens (63mm) allow particles with radii ranging from a~0.7 to a~70 to be
distinguished. The sample cell consists of two thick metal plates serving as electrodes,
and two side walls for the laser beam to pass through. The two small remaining walls
are also made of perspex. The dimensions of the cell content are 1x15x40mm3. To
limit the amount of multiple scattering, the illuminated length is only d = Imm (£2%),
i.e. the laser beam only travels through 1mm of emulsion. The electrodes are 20 mm
wide and the distance d between the electrodes is 15 mm. This configuration gives an
acceptable parallel electric field inside the cell. The maximum allowed voltage
Veff =5.5kV (a.c. 50Hz) leads to an effective electric field Eqp =Vegr/d=
3.6kV/cm.

The kerosene was first contacted with water in order to remove surfactants and left to
settle. The emulsions used for the experiments were prepared by mixing this "cleaned"
kerosene with 0.1% demi water in an ultrasonic bath. After some minutes, during
which the largest drops settled a certain distance, the remaining upper layer could be
introduced into the sample cell using a pipet. Microscopic video-recordings of the
same cell and an a.c. field showed that for this case approaching drops coalesced
instantaneously at contact. If the surfactant Span 80 was added, chain formation as
observed earlier could be seen. A problem of this experimental set-up is the attachment
of drops to the transparant side walls, resulting in an unwanted scattering pattern.
Perspex is used because unlike glass it is hydrofobic in a kerosene environment, so less
drops attach to the wall. Microscopic video-recordings of the same cell with a d.¢c.
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Figure 5.3. Scattering matrix A* for water drops (n=1.333) in kerosene
(n =1.43). The discrete solid angles correspond with the values in table 1,
and the drop radii range from aj = lum fo ags = 160um. For solid angle
no. 0 -A*t},i /5 instead of A*(}, ; is shown.

field instead of an a.c. field show that lots of probably charged drops attach to the
perspex walls, making usable light scattering experiments impossible for the d.c. field
case.

The angles of the cell walls with respect to the laser beam must be as indicated in
Fig.5.2. The central detector is the focus point for all unscattered laser light and will
act as a secondary light source. The second cell wall should not reflect the light of this
secondary source upwards, to one of the semi-circular detectors, and is thus inclined
with the indicated angle . The reflection by the second cell wall of the primary beam
is therefor necesarily upward. To prevent the subsequent reflection by the first cell wall
from reaching one of the semi-circular detectors, the first cell wall must be inclined as
indicated with §>ca. Both angles of the cell walls can be determined using the
reflections of the primary beam on the laser source housing, and were set to
approximately o = 0.02rad. and B = 0.04rad. The angle between the sides of one cell
wall is usually much smaller. Moreover, the reflection by the interface between air and
perspex wall with relative refractive index 1.5 is much larger than the reflection by the
interface between wall and kerosene with relative refractive index 1.5/1.43. The latter
reflection is neglected.

The intensity of the undisturbed twice reflected beam, traveling towards the detector,
is given by Iy, = Ip,~§ri4, where I =1, -(I-]r]2 )2 is the intensity of the undisturbed
primary beam beyond the cell, and r = (my, —1)/(my, +1) is the reflection coefficient
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for the interface between air and the cell wall. For my =135 this leads to
Ttw =Ipr -1073. This twice reflected beam travels three times through the scattering
medium and, contrary to the beam itself, the corresponding scattered light does reach
the detectors. The intensity of this scattered light is approximately 3-Ipy /Ipr = 0.005
times the direct scattering pattern for single scattering and has the same angle
deviation as the secondary beam. This contribution is very small compared to direct
scattering, and is also neglected. '

If for a specific plane if incidence the laser beam makes an angle o, with the normal to
the second cell wall, then the relation of the scattering angle 3 inside the cell and the
corresponding angle 9, outside the cell in this plane is given by:
Mg sin(oe+9) = sin(og + 3p),

where mgg| - sino = sinal, and mee) = 1 / ngy is the refractive index ratio of the inside
and outside medium, and the second cell wall interfaces are assumed to be parallel. For
the matrix calculation of chapter 3 the scattering angle 9' that corresponds with the
outside angle 8 is calculated according to mgg sin 8'=sin 9 leading to a small
error. The relative error 1—-3'/8 in the considered plane of incidence is for the outer
detector of the order of 10~ and is negligible compared to the multiple scattering
error. For the normal plane the value of 1-8'/8 is even smaller.

5.3. Single scattering inversion

If multiple scattering is neglected, a discrete size distribution x may be derived from a
discrete measured scattering paitern b and a known scattering matrix A as calculated
in Chapter 4 by minimizing the expression

A k-P]=0 5.1
L) o

where the scalar « and matrix
-1 2 -1 0 . O
0 -1 2 -1 .
H:=
¢
0 . ¢ -1 2 -1
provide an adjustable smoothing constraint. An algorithm by Lawson and Hanson? is
used to determine x constrained by x > 0. The dimensionless size distribution x gives
the relative cross section per size category x; = ncdnacz, where ng is the number
density, d is the illuminated length and a_ is the drop radius. Matrix element A, 4 gives
the fraction of the incident power scattered towards a solid angle i corresponding with
detector number i for x =84 (Kronecker delta). The element b; gives the fraction of

the incident power scattered to solid angle i by the entire size distribution. The central
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solid angle corresponding with the central detector is not used in the inversion
according to Eq.5.1. In commercial measurement set-ups like this, the vector b
contains a constant that depends on the reflections by the cell walls, that are used for a
specific measurement. The central detector signal is used to measure the obscuration
of the central beam due to the scattering particles. This obscuration is used after the
inversion to scale the size distribution x.

If both terms of Eq.5.1 are multiplied by the transpose of the combined matrix of the
first term, a smaller inversion is found (Twomey!0). Due to the rather complex nature
of the scattering matrix required for our system (fig.5.3), better results are obtained if
this latter step is omitted.

The number of size categories used in this work is 45, the center value for the first
category is a) = lpm while a =ac_;-10” 20 e 20 categories per decade are
defined. The scattering matrix is calculated according to the exact Mie solution for
scattering by spheres using an algorithm by Bohren and Huﬁinan” and sufficient
averaging (Err=10-4, Chapter 3).

5.4. Redistribution matrix

The near forward angle range is divided in a number of discrete intervals. All intervals,
i.e. solid angles, are separated by axisymmetrical conical surfaces around the beam
axis, at angles on an approximately logarithmic scale. The intervals 1-31 correspond
with the detectors of the Malvern particle sizer 2600, using a lens with a focal length
of 63mm, and taking into account the refractive index of the cell fluid. On a
logarithmic scale the insensitive zone between two detectors is equally divided
between the adjacent intervals, while intervals 1 and 31 are similarly extended on both
sides. Eight extra intervals are added at the large angle side, on a logarithmic scale
equal to interval 31, and the central interval O is the remainder below interval 1. This
amounts for our system to 1+31+8=40 discrete angular intervals, covering the entire
central angle range 3 <0.39. Light scattered towards larger angles and then scattered
back into the considered angle range is neglected. Tabie 1 shows all upper angles 6;,
while the (logarithmic) center angles are given by 8; = \J8;i_18; , except for interval 0
for which center angle 3 = 0. It is pointless to define more than one interval below
interval 1, because the laser beam is only focussed well enough to satisfy 9 <0y.
Equation 5.1 only considers solid angles 1-31.
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000152 110 100144 [20 [0.0499 |30 [0.155
000260 |11 [0.0163 |21 [0.0563 {31 [0.172
000370 112 | 0.0185 [22 [0.0635 |32 |0.191
0.00480 [ 13 ] 0.0209 (23 |0.0715 |33 [0.211
0.00592 | 14 10.0237 |24 |0.0804 |34 |0.234
0.00710 | 15 [ 0.0269 {25 [0.0902 |35 |0.259
0.00834 | 16 [0.0304 {26 {0.1011 |36 |0.287
0.00967 | 17 |0.0344 |27 |o0.1130 |37 |0.318
0.01110 118 10.0390 {28 |0.1261 |38 10352
0.01267 | 19 [0.0441 {29 |0.1403 |39 |0.390
Table 5.1. The upper angles 6; of the 40 considered axisymmetric solid

O o0 1~3 [Oy [ B WD e O

angles. The angles 0-31 are based on the detector of the Malvern
particle sizer 2600, and a lens with a focal length of 63mm.

Multiple scattering leads to a pattern that scatters more light on the outer detectors
than the corresponding single scattering pattern. The maximum value in a specific
single scattering pattern is shifted towards larger angles, and if multiple scattering is
not accounted for in the inversion of a measured pattern the measured particle sizes
are shifted towards smaller values.

If multiple scattering is not negligible then the scattering medium is divided in a
number of single scattering slabs, parallel to the transparant cell walls, that one after
another redistribute a forward directed scattering pattern. The unscattered incident
laser beam is represented by a vector by = [1,0,...,0], i.e. all power is incident at the
central solid angle 8 <8j. A single scattering slab redistributes the incident power
over all considered solid angles, i.e. vector by is redistributed to vector by, for which
Z by j <1 because some power is scattered outside the outer solid angle. The resulting
power vector by is by the following single scattering slab redistributed to a vector by,
This second redistribution is more complicated because by contains non-zero power
fractions in off-axis solid angles, etc. The linear redistribution from by to by by the
first single scattering slab, containing a size distribution x, is given by

by =bg +b, . (52)

bsj=2, A*j,cxc A*j,c = Aje=00,jQext,c (5.3)

c

where §; ; is the Kronecker delta. Matrix A and the vectors b consider power scattered
to all solid angles 0-39. In Eq.5.1 the same matrix is used, but only the elements
corresponding with the solid angles 1-31. Matrix A* also accounts for the extinction
efficiency Qgyt ¢, S0 A*o,c <0, bgo <0 A simple check for the matrix elements is
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3

possible for the theoretical case size that for a class ¢ only Fraunhofer diffraction
contributes and all power remains completely in the considered angular range, then
ZjAjc=1 or Z jA* je==1. If reflection and/or transmission also contribute
significantly then the scattering patterns for larger particles satisfy
z jA*j,c.u ~ L jA*j,c. Figure 5.3 shows the scattering matrix A* for water drops in
kerosene as used in the experiments. The first column is for small particles virtually
equal to —Qey ¢, while due to the relative large scattering towards interval 0 for larger
particles —A‘o,c may be interpreted as a decreased measurable extinction efficiency.
The linear modification bg of the incident power vector by is equal to by for all off-
axis solid angles, and may be considered as the result of single scattering if |bg|<<1ie
Ix|]<<1.

A single scattering slab m redistributes the entering light power vector by,..| linearly to

a vector by, as follows

bmk =2 Rk ibm-1i | (5.4
i :
The redistribution matrix R is given by
Gij,jxbs,j
R . :6 <+ . —-————-’J’ ) 55
k,i k.i %[ cos9; (5.5)

which depends on the linear effects of one slab, given by bg, and a function G which
relates incident, scattering and resulting solid angles (indices i,j,k, respectively) as
shown in the appendix. The factor cos9; accounts for the longer path in a slab of
already scattered light. Using bg; =060 and Gg jix =8;x (appendix) it may be
verified that by =ZjRg ibg; correctly leads to byx =Ry g=8ko+bsy in
accordance with Eq.5.2.

5.5. Iterative multiple scattering inversion

Two scattering vectors are separately measured to determine a particle size
distribution. First a background signal, proportional to by, is measured while the
sample cell only contains the continuous phase without scattering particles, and is
mainly due to scattering of the laser beam by scratches on the cell walls. Then the
particles are introduced into the cell and a scattering signal, proportional to by, is
measured. Both measured vectors are enlarged to accourt for the power scattered
towards the insensitive zones between the detectors. The relative increase is not
exactly the same for all detectors or solid angles, Background contributions that do not
originate from the laser source are simply subtracted from both measurements, and are
not considered here. Due to imperfect focusing of the laser beam, the components
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bpg 0 and by g are used separately from the rest of the vectors bpg and bg. If in this
section a deviating equation applies for the central solid angle, this should be obvious.

Both cell walls are assumed to contribute equally to the background signal, and
scattering by one cell wall is assumed to be accurately described by a single scattering
vector by, =byg /2. The values for the outer angular solid angles j>31 are chosen
equal to the last measured value by, j =by 31. The scattering on the first arbitrarily
chosen 25 rings is assumed to be due to Fraunhofer diffraction, leading to a removal of
twice this power from the central laser beam, by, ¢ = —22?__5_ 1Pw.j

The scattering medium is divided in M single scattering slabs for which multiple
scattering is negligible, and a first estimate for the single scattering pattern (1-31) is
given by
_ bsc B bbg bsc,o/bbg,{}
s M
The measured background pattern is not subtracted entirely from the measured total

(5.6)

scattering pattern, but only a fraction by o/bpg o, because it is assumed that the
background contribution during the measurement of the scattering pattern is
diminished as the central beam. The number of slabs M is chosen such that the
transmittance (<1) for one slab satisfies

be o )M
1+bgg =[L°] >0.99. (5.7
" (bogo :

ie. =0.01<bgg <0. The size distribution x; may be derived from by according to
Eq.5.1, using only the elements of bg and A corresponding with solid angles 1-31. If
the measured vectors bgc and byg are not scaled according to section 5.3 then the
equation describing the transmittance for one slab

1+bgg=exp Y AT0cxXec (58
- _

is used to scale x5 and accordingly the vectors by, byg and by, In our continuous
measurement series this is only necesary for the first measurement, while the following
measured vectors b, are scaled with the same factor. The value of xg leads to a
scattering pattern by = A*xs (0-39), and to a redistribution matrix Ry using by =b,
and Eq.5.5. Scattering pattern by, leads similarly to a redistribution matrix R,y. A
fraction 1/M of the (smoothed) difference between the scaled measured scattering
pattern and the pattern according to the 1+M+1 redistributions of the incident
scattering pattern by =[1,0,...,0]
Ab =bg - R R MR by (5.9)
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Figure 5.4. Development of multiple scattering pattern b for 20
redistributions of a flat single scattering pattern. The total sinle
scattering pattern is also shown. The center value by is divided by
100.

is added to the estimated single scattering pattern bg, leading to a new size distribution
X, @ new scaling, new redistribution matrices and new Ab. This procedure may be
repeated until |Ab]/|bgc| is small enough or minimal. For transmittances below 0.8 a
larger fraction of Ab or other modifications of the estimated single scattering may be
used. The resulting volume fraction for each size class is given by v, = nc4mc3 /3
=(4/3)x.a.M/d, using the illuminated length per slab d/M. The size distribution
may be represented as a function g(lna,) = v /In(ac /a;_)) according to Rogers and
Davis!2 that is independent of the discretization and satisfies

J:;Og(ln a)dlna=¢, ‘ - (5.10)

where ¢ is the total fraction of water.

Figure 5.4 shows an example of the development of a multiple scattering pattern, for
20 redistributions of a flat single scattering pattern and total extinction Qgy=0.3, i.e.
b1 o=exp(In(0.7)/20). It is assumed that 70% of the scattered power is equally divided
among the 39 non-central solid angles, i.e. by j>(=0.7(1-bj )/39. Scattering by cell
walls is not considered in this example. Multiple scattering pattern leads to more large
angle scattering then the corresponding single scattering pattern. If multiple scattering
is neglected a larger single scattering pattern is found due to the fact that extinction of
the scatterd light is not acounted for. The outer multiple scattering signal is slightly
diminished due to the fact that light scattered outside and than back into the
considered angle range is neglected.
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detector ring no. !
Figure 5.5. Measured discrete light scattering patierns as function of
log(100+1), where t gives the time in seconds from the start of the coalescence
proces. This time scale distributes the relative changes better over the
corresponding axis. The patterns are not scaled 1o represent fraction of the
incident power. '

5.6. Results

Figure 5.5 shows an example of the measured discrete scattering pattern of water
drops in kerosene as function of time if a horizontal effective electric field of 3kV/em
is applied. One measurement is the average signal over two seconds. The pattern,
including the central detector signal, is not scaled according to section 5.3. The power
of our laser source fluctuated slowly with a few per cent amplitude and a period of
approximately 3 minutes, as shown by the last part of the central detector signal in
Fig.5.5.

The last shown pattern bg,q is nearly equal to the background pattern bbg» partly
visible in Fig.5.5, which was measured before the emulsion was entered into the cell
while the cell contained clear kerosene. If corrected for the laser instability the
difference is given by [beng —bbg]f]bbg’ <1072, The time required for removing the
clear kerosene and entering the emulsion was less than 5 seconds. Turning on the
electric potential and starting the measurement series was done within a second. The
change of the laser power during the time between background and first measurement
is neglected. These times are relatively short compared to the entire monitored process
and it is assumed that the process starts with a homogeneous emulsion. Because the
background pattern contributes significantly to the total, measured scattering pattern,
it is not simply subtracted but accounted for in the redistribution scheme in section 5.
The absolute scaling of the detector signals 1-31 according to section 3 is done for the
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Figure 5.6. Evolution of size distribution g during electric field enhanced
coalescence. The sphere radius a is given in (um and the time t in seconds.
The total initial fraction of water in kerosene is 3.2- 1074

first measurement according to Eq.5.8, while for the remaining measurements Eq.5.8 is
used to correct for the laser power fluctuations.

Figure 5.6 shows the resulting evolution of the size distribution g. For the single
scattering inversion (Eq.5.1) in the iterative scheme in section 5 a smoothing constant
o =0.2 is used. The relative remaining error |Ab|/|bg.| increases from initially 0.003
to approximately 0.01 at the end of the measurement. Initially the maximum drop size
increases until the largest drops have settled to a position beneath the laser beam due
to the limited cell height, and the maximum drop size decreases again. If only the
single scattering inversion is used, the initial distributions have a larger fraction of
smaller drops. In Chapter 7 this evolution of the size distribution is compared with a
calculated evolution.

If a similar initial size distribution is monitored without an electric field, then the size
distribution remains constant, while the total fraction dispersed phase decreases slowly.

Numerical tests of the proposed multiple scattering inversion were done for cases
similar to the experimental one, i.e. for the given scattering matrix, transmittances
above 0.8, multiplicative noise, leading to corresponding remaining relative errors
|Ab|/|bgc|, and size distributions similar to the ones calculated from measured data.

The test results were good, i.e. |Ax|/[x| < 1072, Other numerical tests using a relative
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refractive index of m=1.333, similar size distributions but less multiplicative noise lead
to good results for transmittances as low as 0.1

5.7. Conclusion

It is shown that it is possible to measure drop size distributions during electric field
enhanced coalescence of a w/o emulsion, using forward light scattering. The exact
knowledge of the scattering behaviour of the drops allows a more accurate calculation
of the size distribution than normally is the case for particle sizing using forward light
scattering measurements. An iterative multiple scattering inversion scheme, using a
series of thin single scattering slabs, is applied to improve the calculated size
distributions for transmittances not very close to one.

Appendix ,

The fuction G; Jjk that relates incident, scattering and resulting axisymmetric solid
angles is calculated as follows. Figure 5.7 shows two angular intervals j and k offset an
angle 8;, which should be depicted as ring-shaped areas on a unit sphere. The power
incident at angle 9;, i.e. within the solid angle i, and scattered by the slab towards solid

angle j relative to the angle of incidence, is divided among several solid angles relative
to the optical axis, and a fraction Gj j  is scattered towards solid angle k. The

condition 8 +8j <Oy leads to ZxG; j k = 1. For power not yet scattered prior to

the considered slab, i.e. i = 0, the scattering intervals in the slab correspond exactly to
the resulting angular intervals, so Goj x =9k, while similarly Gj g x =8; . For

Figure 5.7. Common solid angle for solid angle k
and solid angle j that is ojjﬁet an angle 8; relative to
the laser beam direction 8 =0, in the small angle
approach.
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Figure 5.8. Two circles on a unit sphere with centers P; and Py, radii sin6; and sin6,
(a) front view, (B) top view. The areas bounded by these circles are given by 2x(1-
cos;) and 2n(1-cosBy), while the common area also depends on the offset angle ;.

1>0A j>0 the fraction Gj j x is given by the ratio of the area shared by both rings in

Fig.5.7 and the total area of the ring j:
Sijk —Si,j-1k —Si,jk-1+5i j-1k-1

Giik= (5.11)
b Zn(cose j—1—cos® j)
where ’
2h
Siik=2y;ill-cosB;— 1-cosa;
i,5.k \VJ( J) sinaj( J) 512

+2y (1-cosy ) - sijzk (1-cosay)
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is the common part of the two solid angles represented in Fig.5.8 as two circular areas
on a unit sphere with radii sind;, sinby, centers Pj and Py, areas n(1-cos3j) and

n(1-cos 8y ) offset an angle 8. The angles Q and yj are given by

“E<0ﬂj _ arctan P;T . ’ PT= cosO —.cosej cos 9 ,
2 cosdj 2 sin 8
0< Y j = arctan — h <t h2 =sin29j _(pj’]‘)2
smaj
P Al
11 o e e S v ey \ 35
08‘ r'-'l'!';""':' d 30
] EEEH 25
0.6- >
04: """"" 15 J
0.2- 10
0- 5
0 0

5 10 L1520 25 30 35
Figure 5.9. Part of the function G for incident scattering solid angle
i=8.
and oy and y, are found if j and k are interchanged in the four equations above. The
first and third term of Eq.5.12 are positive pie-shaped fractions q;j/n and yy/nt of the
circular areas (centers Pj and Py) on the unit sphere, while the second and fourth term
are corresponding triangular areas with two sides corresponding with the two straight
sides of the "pies" and the curved side replaced by the vertical line with length 2h

through point T, which due to the sign of angle o may be positive or negative. The
angles must satisfy o j +ax = 9 and calculation of h using index j or index k should

lead to the same value. For the example in Fig.5.8 o > 0 and oty < 0. The function
Gi, j k as given by Eq.5.11 must be averaged over the angle of incidence, i.e. the offset
angle 8;_1 <98; <0;. The factor cos8; in Eq.5.5 should be included in this averaging,
leading to negligibly deviating values for G ; | /cos8; = Gj j i /cos3;. Figure 5.9

shows Gg j | for j,k €[0,35], giving the resulting light fractions in solid angle k that
were incident in solid angle 8 and scattered by the slab within a solid angle j. For small
angles these relations correspond with the approximation of Hirleman> and Gomif.
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Chapter 6. Two conducting spheres

in a parallel electric field
A method is presented to calculate the force exerted on a conducting sphere by another
conducting sphere in a parallel electric field. The method allows any size ratio, distance,
electric charge and field angle. It uses a number of electric charge images and dipole
images, depending on the required accuracy and the distance between the spheres.

6.1. Introduction

Electrostatic coalescence, i.e. the merging of two small drops into a larger one due to
an electric field, has been used in the petrochemical industry for more than fifty years to
enhance the separation of water-in-oil emulsions. One of the requirements in modeling
the behavior of this system of small spherical water drops in a non-conducting fluid is
knowledge of the forces acting on two electrically conducting spheres in an electrical
field.

The field outside a polarizable sphere, having any dielectric permittivity, in a uniform
electric field is exactly represented by the field of a dipole image at the centre of the
sphere. The value of this dipole depends on the field strength, sphere size and the
relative permittivity. For two spheres it is possible to calculate the central image dipole
for each sphere taking mutual induction into account, but this is not exact. This paper
shows that for conducting spheres it is possible to calculate more electric images, both
charges and dipoles, inside both spheres leading to a field description with any required
accuracy. The force exerted by one sphere on the other is calculated by summing the
forces between all electric images.

This image method is verified by calculating the electric potential at several points on
the surface of one sphere due to the uniform field and all images. For a conducting
sphere these potentials should be equal. The calculated forces are compared to results
of other authors.

Davis! presented earlier a complete analytical solution using bispherical coordinates for
two conducting spheres and the same general conditions, i.e any size ratio, distance
(>0), electric charge and field angle. His solution contains infinite series that require
significantly more programming than the image method presented here. Lebedev and
Skal'skaya? used degenerate bispherical coordinates to find an analytical solution for the
force between two conducting equal touching spheres.
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Arp and Mason? evaluated the infinite series by Davis to obtain simple expressions for
large and small distances between two equal conducting spheres. Clercx and Bossis*
presented results for two equal polarizable spheres, obtained by a method using
multipoles, and found a perfect match with results from Arp and Mason, They also
presented results concerning two different configurations with three spheres. Their main
interest, however, was in many body electrostatics.

Another equally valid image method was presented by Jones>. He used pairs of image
charges to represent the electrostatics of two unequal conducting spheres. He did not
calculate the interparticle force but the effective dipole moment and resulting torque.
He also presented results concerning chains of more than two spheres® and intersecting
spheres’.

Lindell!! and Sten!Zalso present a method using images. Besides point images they
also use line images and consider besidexconducting spheres also dielectric spheres.

6.2. Dipole image )

A conducting earthed sphere with radius a is placed at the origin in the electric potential
of a source charge g at position rg A surface charge on the sphere is induced, while the
electric potential on the surface of the sphere remains zero. The electric potential
caused by this surface charge may be represented by the potential of an image charge$.?

g =-fq, f=|—f—l (6.1)

at position

6.2)

For the same conducting earthed sphere placed in the electric potential of a source
dipole pg at rg, the potential of the induced surface charge may also be represented by
the potential of electric images inside the sphere.

r=f2.r

1 8

The source dipole pg = (p&x,p&y, p&z) is placed on the x-axis at rg=(x,,0,0) and may be
described by a charge qg at rg and a charge —-qg at rg—ry, where pg=qgry in the limit
ry — 0 (Fig.6.1). The images of this dipole consist of an image charge q; at r; (Eqs.6.1
and 6.2) and an image charge q;' = ~q;(1+ x4 / X4) at position r; +f2(xd,~yd,-zd),
leading to an image dipole

Psx

Pi = 1| ~pgy (6.3)

~Psz

and an image charge q; ,;=q;+q;’
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Figure 6.1. Relative positions for a pair of source charges
and their induced images.

Psx _ Pix
= f2ISK L TIX 6.4
dip . fa (6.4)

both at position r;. In this derivation, squares of x4, y4 and z4 are neglected. The charge
image induced by an outside dipole is positive if the source dipole and the image dipole
point away from the spheres centre, otherwise the charge image is negative.

The potential due to the surface charge induced by a dipole on a earthed conducting
sphere is thus exactly represented by an image dipole and an image charge. If the
conducting sphere is isolated, the total charge on the sphere remains unchanged, and
any induced charge is compensated by an extra opposite image charge located at the
centre of the sphere.

6.3. Two spheres

Consider two spheres A and B with radii a, and ag placed at r, and rg in a parallel
electric field Ej with arbitrary orientation (Fig.6.2). The dielectric permittivities of the
continuous phase and the particles are given by € and &, respectively. The field may be

decomposed in a component parallel and a component perpendicular to the distance
vector d (d=rg —ra) given by Eq =[Eo|cos$ and Eg) = |Eq|sin 9, where 8 is the

angle between the field direction and the distance vector. Two unit vectors Y and e
are defined to give E = Eg|-¢| +EoL-¢e,. The first-order dipole images p, | and pp )
at the centres of the spheres have coniponents parallel and normal to the distance vector
d given by39

Paj =4naB‘aA3~E0" PAIL =4neB-a,’Eq, (6.5)

3
Ppy| =4meB-ag™-Ey Ppiy = 4meB-ag’ Eqy (6.6)
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09 085 1

Figure 6.2. Dipole images inside two different spheres induced by an external electric
field. The radii are ay and ag=0.7 a4, the distance ish = d—ap —apg = 0.001-a4 and

the field makes an angle 8=7/3 with the drawn axis. A close-up shows the deviating
Nth dipole and the mutual inversion point X400

where B = (g, —€)/ (g +2¢). For large distances between the spheres these first order

dipoles give a good approximation for the electrostatics. A better approximation, that
takes mutual induction into account, is treated in the next section. The remainder of the
paper describes an 'exact’ method, using multiple image positions, that is valid only for
conducting spheres (B =1).

Two extra conditions must be imposed upon the system. Two possible ways for
choosing these conditions are discussed in this thesis:

case 1: The potentials V4 and Vg of both spheres are separately fixed. With V,=Vg=0,
this case is equal to the "grounded" sphere constraint of ref 6.

case 2: For isolated spheres, the charges q, and qg may be separately fixed to any
value. With q,=qp=0, this case is equal to the "isolated” sphere constraint of
ref.6.

Another realisable set of conditions, not discussed in this paper, is a fixed total charge
and a fixed potential difference. This case was treated by Jones’ for two conducting
unequal touching spheres with q,+qp=0 and V,~Vg=0. Other physically motivated sets
of conditions may be envisioned. '

In case 1 (imposed potentials), the first-order charge images induced by those potentials
and the external applied field are given by

qA,1 =4me(Va +Eq-ra Jap 6.7

qp,1 =4me(Vp +Eq-rp)ap (6.8)
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where V, and Vg are the imposed potentials relative to the potential at r = 0. In case 2
(isolated spheres), the first-order charges are not defined.

6.4. One image peosition

The central images in both spheres may be calculated taking mutual induction into
account. This gives at moderate distances a better approximation then the first order
dipoles. The dipoles p, and pg are partly induced by the external field, leading to the
first-order dipoles p, ; and pg | (Egs.6.5 and 6.6), and partly by the dipole image in the
other sphere. The components parallel and normal to the distance vector are again
considered separately. In case 1 (nnposed potentials (B=1)) the d:poles are given by

PA] = PAjj| +4° P PaL=Par1L—fa’PBL (6.9)

PB| = PB,|| +fp° PA] PBL = PB,1L ~ B PAL (6.10)
where fy=a,/d and fz=ap/d with d=|d|. As will frequently occur in the rest of this paper,
the solutions of these pairs of equations are found by substitution and are not presented.
Similarly, the charge images are partly induced by both imposed voltage and field,
leading to the first-order charges q, ; and qg ) (Eqs.6.7 and 6.8), and partly by the
charge and dipole image in the other sphere ‘

£
9 =9a,1-fA 9B +-5-pp| ©.11)

f
98 =4B,1 ~fB"dA 'FBPAH : (6.12)

A positive parallel dipole image in sphere B points away from sphere A and induces a
positive charge in sphere A. A positive parallel dipole image in sphere A points towards
sphere B and induces a negative charge in sphere B.

Case 2 (isolated spheres), with given charges q, and qp, is treated for any value of B.
The parallel dipole image p Al is induced by three field contributions

PAl  _ Py g

4meB-ay’ a7 ame-d®  4me-d
The corresponding relations for Py and the normal components lead for both

directions again to two equations with two unknowns. For neutral spheres these
equations lead to the following dipole images

1+2pB-fg° 1-B-fp
puj = — B _. —— B (6.13)
Al - 4[32 3f 3 PAj PaL = - BZfABfB? ‘Pait
_142Bfy 3 1-B-fa ’
Pyl = - 462f 3f 3 Py PBL = 1- ﬁz 3f 7 PBIL (6.14)

where fy=a,/d and fg=ap/d. The parallel dipole components are enlarged by the mutual
induction, while the normal components are diminished. For very large distances the
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dipoles are equal to the first-order dipoles. For charged spheres, the parallel
components also depend on both charges.

6.5, Multiple image positions

For conducting spheres (B = 1) more images at different positions may be used to
represent the electrostatics, leading to any required accuracy. The x-axis is taken
through the centres of the spheres so r,=0 and rg=(d,0,0) with d>0. All images are
located inside the two spheres on the line connecting their centres, i.e. on the x-axis
(Fig.6.2). The positions of the first images are given by: x, ;=0 and xg ;=d. The
positions of all other images k>1 are given by

a
XA’k=fA@k°aA f}\,k = A (6 1 5)
XBk-1
a
xp x=d~fp k-ap fpx = 5"—3— (6.16)
~ XA k-1

All factors fp y and fg i are positive, and for equal spheres fy | = f . For large values
_ of k the positions of the images are very close to one another. The limit for the image
positions is given by the mutual image positions found by rewriting Eqs.15 and 16 as

Xp 0 = A (6.17)
XBw
aBZ
Xpo =d=——0 (6.18)
~ XA

These mutual image positions correspond to the two centres (ju=—o0,+0) of the
bispherical coordinate system used by Davis!.

To obtain a distance independent accuracy for all distances the value N for the last
image included in the calculation is determined by its smallest value for which

TAn AN g (6.19)

XB,«) - x.A.,co -
where £ may be set to any value £ <1. To obtain a distance independent accuracy for
£ <107 and h>107 the denominator in Eq.6.19 may be replaced with the smallest
sphere radius ap. Other criteria for determining N are also possible.

6.6. Image dipoles *
The values of the dipole images may be calculated with recurrent relations for both
cases mentioned in section 6.3. The first-order dipoles are given by Eqgs.6.5 and 6.6.
Using Eqs.3, 15 and 16 the higher-order dipoles k>1 are given by

Pay| = fA,kJPB,k-ll PAkL= _fA,k3pB,k—u. (6.20)

3 3
Py = fBX PA k- PRiL = TR PAk-11 (6.21)
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Figure 6.3. Number of images N (£ =le-3, Eq.19) used to calculate the

potentials for the situation given in Fig.6.2 with E=1V/a, and both

sivkeres kept at potential V=0 as function of the distance h=d-a -ay,

and also the reached accuméy expressed in the remaining potential
~ differences between the points b and resp. a, ¢ and d (see Fig.2).

The last dipoles p4 x and pp ) may be defined to contain all dipoles for k = N. This is
achieved by assuming that the last dipole in one sphere is the image of the last two
dipoles in the other sphere

3 3
Pan}=fan (pB,N-I}] + PB,N“) PanL =~faN (PB,N-IJ_ +pB,NJ.)
, (6.22)
pax = fan’( +Pan) = —fan( +PANL)
BN|] = BN \PaN-i| T PaN] PBNL = ~IBN \PAN-1L *PANL
(6.23)

The induced charge images are located at the same positions as the dipole images. Their
values depend on the imposed potentials or on the given total charges of the spheres.
The multiple images case of imposed potentials for both spheres is treated in section
6.7, the case of given total charges is treated in section 6.8.

6.7. Imposed electric potentials

For two spheres kept at potentials V, and Vi the image charges can be calculated with
recurrent relations. The first-order charge images are given in Eqs.6.7 and 6.8. All
images in one sphere are electric sources for higher-order images in the other sphere.

For an imposed potential on both spheres the charge images are given by Eqs.6.1 and
6.4, which leads to the following recurrent relations for k>1
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Figure 6.4. As Fig.6.3, but for two isolated neutral spheres.
PaAk '
Ak =F | ~fA k4B k-1 (6.24)
AK3A
PB.k
9Bk =% | ~fB,k9A k-1 (6.25)
Bk2B

1}

The last charge image in a sphere is again the image of the last two images in the other
sphere and is found by solving the foliowing two equations

PA N
AN =7 ‘ ~fan(aBN+apN-1) (6.26)
A N3
PB.N
9BN="7 “ "fB,N(QA,N +QA,N—1) 6.27)
B.NAB

The accuracy of the method can be found by calculating the electric potential for
different points on the surface of a sphere (see section 9, Fig.3).

6.8. Isolated spheres

For an isolated sphere, every induced éharge image is compensated by an extra opposite
charge image at the centre of the sphere. Every higher-order correction modifies the
central charge images and by that also all lower-order charge images are modified. It is
possible to modify all charge images using recurrent relations. A more direct approach,
leading to a faster algorithm, is described in this section.

Considering only the charges induced by the image dipoles (Eq.6.4) leads for k22 to
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' Pak . PRk
9'ak= | q'px = H (6.28)
fak-aa fpx-ap
The central image charges are then given by
N N
qar=qa -2 9'ax 9Bi=98~ 2 9Bk (6.29)
k=2 k=2

The different sets of the aligned components of the image dipoles and image charges
located at the positions given in section 6.5 are represented as vectors P,=
[pA,l“, ........ ’pA.N"]’ PB’ Q'Az [q'A,l"""q‘A,N]’ Q'B, QA= [qA,l"""qA,N] and QB' The

normal components of the image dipoles have no effect on the image charges.

The contributions to the image charges inside one sphere induced by image charges in
the other sphere are simply added as follows
Q=Q's,+FAQp (6.30)
Qp=Q's+FpQ4 (6.31)
where Q, and Qg are unknown. An image charge g at xg i in sphere B induces an
image charge ~f, x+1qp x at Xa k+1 and an opposite image charge at the centre x, | of
sphere A. Matrix F, is thus given by '

[ a2 fas fan-1  fan  fan
_fA,z
—fA,3
Fy = 0 (6.32)
0 -fA,N-l
i —fan —fan|

where the last two image charges in sphere B contribute in the same way to the last
image charge in sphere A. Matrix Fy is similar to F, with fgy instead of fy .
Substituting Eq.31 in Eq.30 gives

(I-FAFp)Qa= Q'4+FAQ'p . 063)
with T the identity matrix: I;;=5;j. The matrix I-FoFp and the right-hand side of this
equation are known. The charge vector Q, is solved by Crout's algorithm (LU-
decomposition) for general matrix inversion.

For the symmetric case, i.e. ag =a,, qg =—q,, Py =P,, Q'z=-Q'4, Qg =-Q, and
Fg = F,, only one matrix equation is left, leading to
(I+FA)Qa = Q' (6.34)
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For the inversion of the matrix equation (6.34) a much faster algorithm, allowing much
more images, is made to find Q4. For an equal number of images the result is not as
accurate as Crout's algorithm because no pivoting is used.

The accuracy can again be found by calculating the electric potential for different points
on the surface of a sphere (see section 6.9 and Fig.6.4).

6.9. Potentials

The method presented in this paper is verified by calculating the potentials on several
points on the surface of the spheres. All points on a conducting sphere should have the
same potential. The sum of the potentials by the applied field and all calculated images

for both spheres is given by
N . R
V(r) =-E-r +L qJA.i + PAii (r 'I'A:,l)

(6.35)
47te Ae(A,B)i=1 |r"'rA,i| |r_rA,i

For the case of two equal earthed spheres (V4,=Vp=0) and two isolated neutral
spheres, respectively, Figs.6.3 and 6.4 show the potential differences: between point b
and the points a, ¢ and d (Fig.6.2) according to Eq.6.35. The number of images N is
determined by Eq.6.19 for £ =1e—3. Both Figs.6.3 and 6.4 show that for a stepwise
increase of N the remaining potential differences decrease stepwise, i.e. including an
extra image makes the calculation more accurate. The accuracy is limited by the
maximum number of images and the precision of the variable types used. For the results
shown the maximum value for N was set at 80, causing an increase of the remaining
potential differences at the smallest distance.

For two isolated spheres it follows from Fig.6.4 that the potential difference between
both spheres (Vb-Vd) hardly changes for small values of h. For decreasing distance h
the electric field between two isolated spheres, given by (Vb-Vd)/h, may reach any
value3. Since any isolating material will only allow a certain field, electric breakdown
will decrease the field between the spheres. The electric forces in the high field area
may also cause mechanical deformations, i.e. the spherical shape that is required for this
calculation method is then distorted.

6.10. Sphere - sphere force

The total force exerted on sphere B consists of a force due to the external field and a
force due to the surface charge on sphere A, i.e. the mutual force. Using known force
relations3.? between charges and dipoles, this mutual force is found by a double
summation . The motivation for the three separate rows is given below.
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1 N N
Fp ='4—REZZ

i1 jol
94,i"9B,j , ., PAi[9B,j “9A,iPB,j| __ PAi|PB,j|
+2 -6
di2 d:.3 d.?
ij ij I
PA,iLPB,jL
AR S (6.36)
ij

| JAiPB.jL ‘3PA,i_LQB, i, yPAPB.L +4PA,i_LPB, il J e,
L djj djj
where dij =XB,j— XA - The force Fg e is opposite to the force exerted on sphere A
by sphere B, i.e. Fa ut = ~Fp mu, 50 the total force exerted on each sphere is given by

Fp =qaEp - FB,mut 6.37)

Fg = qgEq + Fp mut (6.38)
For two isolated neutral spheres (q,=qg=0) both the parallel image dipoles and image
charges are proportional to EQH’ while the normal image dipoles are proportional to
Eg, - The total field consists thus of a contribution due to Eqj and a contribution due to
Ey, . The total force, that is equal to the mutual force, consists correspondingly of
three coniributions. The first row of Eq.6.36 is proportional to E0||2, the second row to
Eq, 2, and the third row to 2EqEq_L . Divided by these field products and by 4ncay2,
the three rows of Eq.6.36 correspond to the force functions Fy, F, and Fg, respectively,
as defined by Davisl. These functions only depend on the relative geometry of the
problem, i.e. ap/a, and h/a,. Dividing the three rows of Eq.6.36 by the corresponding
expressions for the first-order dipoles only, i.e. —6p A’lgpg,lgd"“, 3pa11PBi d7* and
3(PA,IjPB,1L +PA,L _;_p};,’lﬁ)d*4 leads to three positive dimensionless forces fj, f, and
f.., respectively, all approaching one for large distances, as used by Klingenberg!® and
Clercx and Bossis?. Once these three dimensionless forces are known, as function of
size ratio and distance, the total force acting on sphere B is directly given by

Fg= —24neE(2)aia3Bd“4 [(f" cos* § — %L sin S)- €~ %I:-sin 28- e_}_](6.39)

Our results for these dimensionless forces for two equal conducting spheres
(as =ap =a) correspond exactly to the values tabulated for h/az 2-107 by Clercx
and Bossis* and by Arp and Mason3 (expressed as F,F, and Fg). For smaller values of
h/a our results approach the analytical expressions valid for h/a <<1, derived by Arp
and Mason3 from the infinite series by Davis!. This was verified for h/a>3-107" using
the faster inversion algorithm for Eq.34 and 8000 image positions.

Figures 6.5, 6.6 and 6.7 show the dimensionless forces fi, f, and f; as function of size
ratio a, /ap >1 and relative distance h/ap. At the elevated flat region of the surface
plot for fj at larger size ratios, only the polarization of the small sphere is affected by
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Figure 6.5. The dimensionless force f j as function of size ratio

I<a,/ags 10° and relative distance 107 < h/ag <10%.

mutual induction leading to fjj=3 (log(fy) ~1/2). The relatively steep region at a
slightly smaller distance corresponds with the strong distance dependence of the central
image charge in the large sphere at that distance, '

For two charged isolated spheres, the total field is a superposition of four independent
contributions due to Eq, Egy, qa and qgp, leading to ten different field products
contributing to the force Fy. Davis! defined ten corresponding force functions
depending only on sphere ratio and distance to give the total force. To determine these
ten force functions with the method presented here requires calculation of three pairs of
charge vectors Q, and Qp induced separately by Eoi» qa and qp, respectively. The
normal field component E;, does not induce any charges.

0.5

23

0.}
1 2 3 4 log(a, /ay)

0-
4 3 2 a1 0
log(h/ap)

Figure 6.6. Dimensionless force f, (ay/ap h/ap) (see Fig.6.3).
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' l 2 ,
4 0log(a,/ay)

Figure 6.7. Dimensionless force f(as/ap h/ag) (see Fig.6.5).

For two earthed spheres with ry ]]rB, the induced charges are proportional to the
parallel field component, and a similar approach as for isolated neutral spheres is
possible, i.e. there are only two independent field contributions proportional to Eﬂi and

6.11. Equal earthed contacting spheres
Two equal earthed contacting spheres (as=ag=a, h=0, V,=Vg=0) lead to the following
simple set of images for sphere B

a Py Py k-1
X =— qx = ;];'2- Py = FH‘ PrL = Pkl—l(“l) (6.40)

where p; = 41csE0a3. The positions are now given relative to the contact point. For
sphere A the positions and charges have opposite signs while the dipoles are the same.
This leads to the same equations for the net charge q = 47(58E0|8.2C(2) on sphere B and
the effective dipole moments p| = 16neE0“a3C(3) and p; =6meE, _,_33(‘;(3) of both
spheres, as presented earlier by JonesS, where the following relations for Riemann's zeta
function {(s) are used

= S .l. < ("l)kvl ={1=2-s '
=21 25 (1-2"%)c(s)

The images also give the correct potential at the contact point V=0. The field near the

contact point of the two earthed sphéres may be expected to be very low. In a small
area proportional to N2 around the contact point, however, the images lead to a
parallel field up to E|[. = Eoﬁ -2N- E0||, where N is the number of included images. This
error may be corrected as follows.

For two touching spheres Eq.6.19 cannot be satisfied. Instead of last images defined
according to section 6.6, the images k>N positioned from x=-a/(N+1) to
x =a/(N+1) are replaced with a continuous line charge q'= Py /a%, a continuous line
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dipole p'= py| -x/a? from x=0 to X, =a/(N+1/2), and opposite line images from
X = —Xp, to x=0. These line images lead to the following contribution to the parallel

field between the spheres at a distance 6 from the axis

2
P||| #x(x? —282) _ 2Ey-a-xy
Ejing(N, 5)" ca’ _[ (x + 82)5/2 (xmz +52) 7

Near the contact point the sum of the inducing field Eoﬂ and the field of both the point

(6.41)

and line images leads correctly to E =

The series for the alternating normal dipoles leads in a small area proportional to N—2
around the contact point to a normal field between the spheres given by E; =+E,,.

This is of no importance for N large enough.

The images of Eq.6.40 that are proportional to the parallel field, i.e. charges and
parallel dipoles, lead to the following contribution to the mutual force (first row in
Eq.6.36)

R Y () - kS
F, =4meE’a EE i1}
as was also presented earlier by Jones’. Performing the summation in two triangular
regions in the i,j plane separated by the diagonal i+j=N leads for N large enough (see

Appendix) to

(6.42)

qut|| = 4eE’a’ (C(:;) - C(Z) - %) : (6.43)

In this force the line images ¢' and p' are not included. Neglecting these line images
leads to a non-zero field —Eline“ near the contact point, and thus introduces a force

error given by
[+ o]

Fog = j % (Eng(® 5)) 275 d6 = neEa? (6.44)

independent of N. The total parallel dimensionless force is thus given by
1
ﬁl qEO“ +F utﬂ +F rr|| = 41[8E0||a (C( ) ) (6.45)
which is equal to the result of Lebedev and Skal'skayas, and Arp and Mason3 (F°)).

The double summation of Eq.42 is not absolutely convergent and the result depends on
the way the sum is taken. In the Appendix already two possible ways are shown.
Whether the second triangular region (i <N,j<N,i+ j>N) is included or not, both
cases lead to a finite result for N — oo . During computations a curious summation
result was found. Including only terms with i- j < k2 in the summation of Eq.6.42 leads
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numerically (for k>103 with 6 significant figures) to the correct mutual force, i.e.
FruttFerr as given in Eqs.6.43 and 6.44. An explanation for this result is not found.

The dimensionless force of Eq.6.45 is given by fy= —(87 3)(C(3) +1/ 6). Contrary to the
first-order dipoles, the spheres repel one another. The second and third row of Eq.6.36
lead with the images of Eq.6.40 and the net charge to the dimensionless forces

S (ED™ i 8
f, =16 2 1-2¢(3)-=Im2 6.46
P T =
8 2| i-(=1) +j(-1)! i-j-((-l)j+(—1)‘) 10
fr==C(2)+ -3 =—{@3
IR ZE (+i)° (+)° 30
(6.47)

where only the first part (i+j<N) of the summation method in the Appendix
contributes. The force function fI- only contains the first power of the parallel field
error near the contact point, resulting in a force error equal to zero for N large enough.
The values match the corresponding results of Arp and Mason3 (F°, and Fo).

6.12. Conclusion

It is shown that the potential due to a surface charge, induced by an external dipole
source on a conducting sphere, is equal to the potential of an image dipole and an
image charge at the usual image location. For two conducting spheres in a uniform
electrical field, a large number of mutually induced charge and dipole images may be
calculated, leading to an accurate potential description. The resulting force acting on
both spheres may also be calculated with any required accuracy.

A fit for the dimensionless forces, or related expressions, as function of size ratio and
distance, not presented here, will allow fast retrieval of the results, useful for simulating
the behavior of two conducting spheres in a parallel electric field.

For simulations concerning more than two conducting particles, the dipole image
method leads to a more extended image distribution, but may lead to relatively fast
force calculations with a simply adjustable accuracy.

It should be noted that the dipole image method using multiple image positions is
restricted to conducting spheres. Accurate calculations for polarizable spheres, having
any permittivity &,, are possible with the multipole method, as used by Clercx and
Bossis* or possibly by a method using also line charges presented by Lindelill and
Stenl2.
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Appendix

The double summation of Eq.6.42 is solved analytically by dividing the square region
(i,))=(1..N,1..N) into two triangular regions separated by the diagonal i+j=N. thh
k=i+j the summation of the terms i + j < N is written as

1 k2 3 .
z[ 3 (k2 - 6ki +6i )J
k=2 F i=1

Summation of the different powers of i leads to

N (k?(k-1)- 6k k(k-1)+k(k-1)(2k-1)] XN N
2 |

< YN

k=1 k=1
With k=i+j the summation of the terms i + j > N, i <N and j < Nis written as

N (; N
> [—4 Z(kz—skiﬁiiz)J
k=N+1\ K" i=k-N

Reversing the summation order of the summation over i leads with m=N-i to
-k

2 (T o) mean)

4
k=N+1\ K" ot
The summation over the different powers of m leads to
o 2N RS 6N> 4N3 +2N
= Z K3 K

For N large enough the summation may be replaced with an integration with respect to

k=N+1

k leading to
9 3 2N
IN 1-6N° 4N*+2N[  Now | 1

k2K 3 |y 12
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Chapter 7. Electrostatic coalescence

1. Introduction.

~ Relative trajectories are calculated for two spherical electrically conducting neutral
drops due to gravity, an applied electric field, the van der Waals interaction, and
hydrodynamic interaction in an electrically insulating continuous phase. The relative
trajectories lead to collision efficiencies and collision rates. A model is presented to
predict the change of a given size distribution, based on gravity induced settling of the
drops, and electric field dependent collision cross sections for all pairs of drops. The
resulting height-dependent evolution of an initially homogeneous size distribution is
compared to an experimentally determined evolution, as presented in Chapter 5.

To describe the hydrodynamic interaction between two fluid spheres, an exact solution
for motion along the line of centers and an asymptotic solution for motion normal to
the line of centers, both by Haber and Hetsronil-2, are used. Zhang and Davis3
presented a thorough comparison of these and other exact and asymptotic solutions for
the hydrodynamic interaction between two fluid spheres, expressed as relative mobility
functions according to Batchelor4. The electrostatic interaction is calculated according
to the image method presented in Chapter 6.

Zhang3 presented calculations using the exact hydrodynamic interaction, while he used
for the electrostatic interaction a method by DavisS. Zhang did not consider the
asymmetry in the horizontal field case, i.¢. if the electric field is perpendicular to
gravity. He found much higher collision efficiencies for the horizontal field case than
for the vertical field case, while in this work both cases lead to similar efficiencies.

Sadek and Hendricks presented measurements’ and a model® for electric field
enhanced coalescence in a d.c. field, where oppositely charged drops are assumed to
travel in opposite directions from one electrode to the other.

7.2. Relative velocities

Interactions between drops in the considered dilute dispersions is restricted to binary
interaction, i.e. the movement of two interacting drops will rarely be influenced by a
third drop. For the considered system Stokesian hydrodynamics are assumed and
deviations from the spherical shape (see section 7.6), surface tension gradients, and
Brownian motion are neglected.
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Fig.7.1. Drop radii, angles and fields for the case
o=r/2. The azimuth angle o is the angle between
rxg and Exg, ie between the planes built by

these vectors.

Consider two spherical, electrically conducting neutral drops with radii a; and a, at a
relative position r =|r; —ry|=(r,9,9) in spherical coordinates (fig.7.1). Gravity g is
" directed along the 8 =z axis and an electric field E is directed along S =n-a,
¢ =0. If hydrodynamic and electric interaction between the spheres is neglected and
the sphere velocities v and v are deduced using the Hadamard-Rybczynski relation
- F=6npxav, where x=(u*+2/3)/(u*+1) and u* =nq/uc is the ratio of the
viscosities of the dispersed and continuous phase, the resulting relative velocities
]vl —vz] due to gravity (Fg= pg-4m3 /3), an aligned electric field (Eq.6.39
Fg = 241nscE2a13a23r'4) and van der Waals interaction (see Appendix) are given by

_ 208 2 52
Vg = Shiex a~(1-x°), 7.1

4 B2 2 28

v a , 7.2
E™ e Tasn3éd (72
U 2 [ 4 4 ]25 73
ATomucx a2 (422 -4 LU+N2-4(1-02) '

respectively. The size ratio is given by A=ay/a|, p=pg—pc is the density
difference, € is the dielectric permittivity of the continuous phase, s=2r/(a) +aj) is
the dimensionless distance and A is the Hamaker constant. Electromagnetic retardation
is neglected in this work. Because the Navier-Stokes equation without inertial term
gives a linear relation between velocities and forces the total position-dependent
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107 |

2 log(éa—Z) 0 I 2
Fig.7.2. Relative vélociiies (m/s) due to gravity pg= 980Nm-3, electric
field E= 10°V/m (eE"2 = 0.23Nm_2) ,van der Waals interaction
(A=10“20Nm ) and continuous phase viscosity =10Nm™2s as
Sunctions of the dimensionless distance s for drop radius a; = 10pm, size

10'8_4 -3

ratio ) = 0.5 and three values of the relative viscosity u* = g/ He-

relative velocity v(s,$,9) =v| ~v) may be written as the sum of all induced relative

velocities3%3 (Eq.6.39)
v= v (—LcosS ‘e, +Msin 8 -eg)

+VE( G(fy cos? v — f2 sin? y)- e+ H% sin 2y - ewJ (7.9)
~vaAG-e;
where 5 5
1
‘v =%e3 +sm9 5\:; ®
cosy = sin 8 cos@ sino — cos 8 cosa
and v gives the angle between the distance vector r =(r,8,¢) and the electric field
E = (E,a,0). Hydrodynamic interaction is accounted for by four relative mobility
functions L,M,G and H, which only depend on s, A and p*, while electrostatic
interaction, i.e. mutual electrical induction, is accounted for by three electric force
functions f”, f) and fI- which only depend on s and A. All seven functions only depend
on the relative geometry and not on the absolute size ay. They all approach 1 for large
distances, the mobility functions and f, are less than 1, fj and f[- are larger than 1.
Figure 7.2 shows the resulting velocities vgl, vEGj and vAG for specified conditions.
Their dependence on the absolute size aj is given by Eqs.7.1,7. 2 and 7.3. The mobility
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functions L and G for relative motion along the line of centers, defined by Batchelor4,
are calculated according to the exact solution for the resistance functions by Haber and
Hetsroni! using bispherical coordinates. (Instead of using the final results presented as
coefficients O;, the 8 equations of their appendix B are reduced to 4 equations, and
solved numerically. The last term of Equation B-8 and the exponent in this term have
the wrong signl.) This exact solution accounts for the internal flow in the drops, but
neglects surface tension gradients and deviations from the spherical shape. For our
purposes the mobility functions M and H for relative motion normal to the line of
- centers are sufficiently accurately given by the far-field asymptotic expressions
presented by Zhang and Davis3. These expressions were derived from the reflections-
solution by Hetsroni and Haber2, and were found to deviate less than 1% from the
exact solution by Zinchenckol® for p*<1. For our experimental case u* =0.63 the
deviation is even smaller. The electric force functions fj, f| and fr- for electrostatic
interaction between two neutral conducting spheres are calculated according to
Chapter 6. Zhang> earlier presented a similar expression for the total relative velocity
using three of ten electric force functions F|-F|q defined by Davis®, who used
bispherical coordinates to calculate the electrostatic interaction between two
conducting spheres. Zhang refers to them as F|, Fp and F3 but does not specifically
state that he uses the force functions Fi, Fy and Fg as referred to by Davis for
interaction between neutral spheres. This is possibly the reason for the mentioned
discrepancy between Zhang's results and the results presented in this thesis.

For a specific viscosity ratio p*, all required size ratios A and 50 values of s in the
range —4 <log(s~2) <1, the functions L, G, fj, f| and ff- are calculated prior to the
trajectory analysis. Cubic spline interpolation allows fast retrieval of the function
values at any point in this range of s with a relative error < 107, For s>12 all mobility
functions are approximated by the far field asymptotic expressions presented by Zhang
and Davis® due to Hetsroni and Haber, and the electric force functions by the

expressions resulting from the one image approximation (Egs.6.13 and 6.14)
_ PIjP2L *+P1LP2|

fi=pypz fI =p1ip21 fr 5 )
where
pi = l+2a3_i3r'3 piL = l—a;;_i3r_3
W=—7— , == = -
il 1—4ai3a3_i3r_6 l—ai3a3_i3r'6

7.3. Trajectories
Relative trajectories s(t) =(s,9,¢)(t) are calculated numerically using a very simple
but effective near second order algorithm. Time is eliminated by defining a normalized

87



88 Chapter 7

g}

-~
' \_
s=2 - E]

Fig.7.3. Relative trajectories for two Fig.7.4. Relative trajectories for two
spherical drops due to gravity and van spherical drops due to a vertical
der Waals interaction for a) = 10%m, electric field (u=0) aj= 10> m,
u* =1 and other conditions of Fig.7.2. p,* =1 and other conditions of Fig.7.2.

velocity vector v* = v /|v

, V=(Vvr,vg,Ve). Knowing velocity vi* at s, velocity vo*
is calculated at the estimated point s, =s; +h-v|*. If the condition |v,* -v*|<x is
true, where x will be called the trajectory accuracy, then a step is taken according to
sy =s;+h-(v|* +v,*)/2, otherwise h is halved and new estimates for s, and v; are
calculated until the required condition is met. If |v,* —v;*|<k /2, then h is doubled
before the next step. Using the already calculated velocity v as v in the next step,
leads to only one velocity calculation per step, as long as h is small enough. The step
size h is given a minimal value of 10‘6, allowing very large curvatures. It should be
realized that constant spherical velocity components allow large steps.

Figure 7.3 shows some relative trajectories induced by gravity and van der Waals
interaction. At the indicated surface s=2r/(aj +a5)=2 the considered drops touch
one another. The critical dimensionless horizontal displacement s, =s-sin$ for
s — oo, which just leads to coalescence, is determined backwards from s=(2,n',0) to
s=o0, where T'=7— 107 (large enough single precision offset). The trajectory from
s=(2,m',0) to s=(sf,9¢,0) is calculated numerically using Eq.7.4. Just below the
s=2 surface the gravity and van der Waals interaction induced velocities compensate
one another, leading to the 90© angle in the trajectory. The trajectory from s=sf > 9
to s=oo, where only gravity is important, may be calculated analytically using the
large-distance mobility functions L and M presented by Zhang and Davis3
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S¢ = S SN Y, =s£8in G ¢ exp(f:o*l'——ldﬂds)
. £ s

~sgsin 9 Ll/z(Sf)
(7.5)

where the use of L1/2 is only valid for the
large distance case. The resulting relative

accuracy of s, was found to be
approximately equal to the trajectory
accuracy K.

Figure 7.4 shows some relative trajectories
for two drops induced by just a vertical
electric field (0=0). Arp and Mason!!
Fig.7.5. Relative trajectories for two eatlier presented similar trajectories for two
spherical drops due to gravity and a equal, hard spheres. Figure 7.5 shows the
vertical electric field (w=0), p =1 relative trajectories for two drops due to
and other conditions of Fig.7.2. gravity and a vertical electrical field. The

contribution from the van der Waals
interaction is insignificant in this case. For this case the critical horizontal displacement
8. cannot be determined backwards starting at s=(2,n',0). The value of s is now

related to another point where the gravity- and electric field-induced velocities
compensate one another, and is determined by forward trajectory analysis starting with
a trial value for s at $=co that is systematically varied. To reduce the calculation time
a large initial value for the trajectory accuracy x is chosen which is decreased along
with the step size for the trial value s, using a factor 2/3 instead of 1/2 so less accurate
initial trajectories may be overruled. The limiting value sf>9 for the analytical

trajectory analysis is now chosen large enough so for s> s¢ the electric field induced
velocity is negligible (vg (sf) << v g)

7.4, Collision cross section

The collision cross section may be imagined as an area at infinity around the $=0
axis, for the axisymmetrical case (ot =0) given by a circle. In the asymmetrical case
{a # 0) the collision cross section is not circular and is calculated by determining first
the values x¢  and x; g for 9=n and ¢ =0 and then a critical value y, for several
values of x¢ x <X¢ <X¢ g, according to the already mentioned trial method. Both x
and y. are scaled the same as s;. A trial value for the pair (x.,y;) leads to
sc2 = xc2 +yc2, ¢ =arctan(y. /x.) and, using Eq.7.5 and the condition
VE(sf) <<Vyg, to the starting point (s¢,8¢,¢) for the numerical trajectory analysis
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Fig.7.6. Relative trajectories for two spherical drops due fo gravity and a horizontal
electric field (o =n/2) for azimuth angles ¢ =0,¢ = n/2,respectively, u* =1 and

other conditions of Fig.7.2.

6 -4 2 0 2 4 6

Fig.7.7. Dimensionless collision areas for three different horizontal electric fields
and other conditions of Fig.7.2.

for s <s¢. Figure 7.6 show some trajectories in the planes ¢ =0 and ¢p==/2 for a
horizontal electric field. The trajectories are obviously not symmetrical around the 3=0
axis and for 0 <¢ <7/2 the azimuth velocity v, is unequal to zero. Figure 7.7 shows
the resulting dimensionless collision cross section for three values of a horizontal field.



Electrostatic coalescence

2 | 3 4 | 5
log Ej)
Fig.7.8 Collision efficiency e}, as function of a vertical electric field (E|g) for
three viscosity ratios and three sizes (um).

A=0.5 [i=0 -

a, =1 -

Fig.7.9 Collision efficiency e}, as function of a horizontal electric field (E1g)

Jfor three viscosity ratios and three sizes (um).

The collision efficiency e, for drop 1 and 2 is defined as the ratio of the actual
collision cross section and the collision cross section resulting from rectilinear
approach3 m(a; +a, )2, and for =0 is given by e}y = s¢2 /4. For a # 0 it is given by

b opxeo
e12 _%jxm yeo(xc)dxg (76)
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where the symmetry with respect to the plane ¢ =0 is used. For a. = /2 the collision
cross section is also symmetrical with respect to ¢ =n/2, s0 Xy = ~X¢g. Equation
7.6 is then evaluated numerically from x=0 to x=x,o using Gauss-Legendre

integration.

Figures 7.8 and 7.9 show the collision efficiencies for three values of the viscosity ratio
u*, and three values of the larger sphere size aj and A = 0.5 as functions of the vertical
electric field and the horizontal field respectively. For low values of the electric field
 the efficiencies are determined by the van der Waals interaction. Contrary to results
presented earlier by Zhang3, all efficiencies increase similarly on the high field side for
both field directions.

7.5. Height-dependent size distribution.

The gravity-induced collision rate J j =ninjn(aj +a j)z ejjvg, where n; is the
number density, a; the average radius for size category i, &;j is the collision efficiency
and vy is the gravity induced relative velocity, leads to a changing drop size
distribution which remains homogeneous. In a limited experimental cell however, an
initially homogeneous drop size distribution will evolve into a height-dependent
distribution, due to the rapid settling of large drops.

To predict the evolution of the drop distribution in a limited cell, the drops are not
only divided in a discrete number of size categories, with drop radii a; equidistant on a
logarithmic scale, but also in a discrete number of linear height categories h, = n-Ah.
Fig.7.10 shows an example of 20 different categories, where each category represents
the drops of a specific size category in a slab of thickness Ah at a specific height,
Different height categories are geometrically separated, but different size categories at
equal heights are located at the same position in space, unlike the schematic
representation in fig.7.10.

The relative dimensionless displacement s; for drops of size category i during a time
step At due to the gravity-induced velocity is given by

$; = Vi %:—, Vi = aiz __92gp )]
HeX

In the following considerations it is assumed that i represents the category of the
smaller size, and j the category of the larger size: i < j, while k and m refer to the
height categories. Collisions between slightly different drops within one size category
i=j are neglected. The number of collisions per unit volume for drops of the



Electrostatic coalescence

a a, a, a,
h AN
h5 ............ o, n,, S,
: s
4+ [n 4
b 1,4 n,, n, -
n
hz 13 n, , n, ns
n
— 12 n,, n, , V=
1
____________ o, n,, n,, Ny,
o, n,
n,

Fig.7.10. Schematic representation of a small set of categories with
different values for height h and size a;. Before a time step the
categories are located according 1o the dotted lines, i.e. s;.=0, after
a time step all categories have settled over different distances sy as
shown.

categories (i,k)(a;,h)and (j,m)(aj,hp,) with the number densities n; i and n; o, during a
time step is given by
Ni k;j,m = fi k;j,mNi kNj,mei,j7(a; +a j)2 Ah (7.8)

where the factor fj k. j m <1 accounts for the fact that two categories have a specific
changing space fraction in common during a time step. If category (j,m) moves from a
position entirely above to a position entirely below category (i,k), then fj y.j m =1. If
the smaller drops are positioned higher (k>m) then fjy.jm=0. The values of
fj k;jm for k<m are shown in Table 7.1 as function of p=s;;modl (0<p<1),

Table 7.1. The third column gives the factor f; j.; m that is used in
Eq.8 for collisions between categories (i,k) and (j,m) as function of
p=sijmodl (0<p<l), where sj=sj-s;i is the relative
displacement for size categories i and j according to Eq.7.

k=m sij <1 p—p2/2
. 1<sij 1/2
k<m sij<m-k-1 |9
. m-k-1<sj<m-k p2/2
. m-k <sjj<m-k+1 1/2+p—p2/2
. m-—k+1 <sjj 1
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where sjj = sj —s; is the relative displacement of two categories. Equation 7.8 is valid
if the calculated number of collisions is relatively small compared to the number of
drops in both categories. This is achieved by choosing At small enough. An accurate
height dependence is obtained by choosing Ah small enough. The number of drops in
category i,m with the smaller size decreases with the number of collisions
An;j g =-Nj k;j,m> and their volume is taken over by category (jm). Due to the total
volume fraction taken over by category (j,m) from all other categories during a time
step, a number of drops is transferred to the next size category at the same height
G+im)

( 3
ZL Z“i,k;j,m?i:;J

i<jksm

Anjiym ==Anjm = (7.9

ajir’ -aj’
In the experimental data the categories for the largest size remain empty, so any
transfer from these categories is irrelevant. During a time step categories (j,m) are
modified as close as possible to the chronolpgical order, i.e. starting with the largest
value of j and for each j with the smallest value of m. After modifying all displaced
categories during a time step, new categories are defined to contain two fractions p;
and 1-p; according to the displacement s; of two previous categories, e.g. the new
categories nyj' and njs' for the next time step in Fig.7.10 are given by
nij'=1/4-nj2 +3/4-n}; and ny5'=3/4-ny5.

7.6. Results and discussion. _
The presented model is compared to the measured evolution of the size distribution of
water drops in kerosene during electrostatic coalescence (Fig.5.5). The relevant
properties of the experimental system are the:density difference, gravity constant,

p=180kg m_3,g =038 ms"z,
continuous phase dielectric permittivity, electric field strength,

£¢ = 2380, Eefr =3-10°V/m(a.c. 50Hz),
the conductivities and the viscosities of the dispersed and continuous phase,

Gy =4.10"%mho/m, .= 10 ' mho /m

ng =1073 Pas, p, =16-10"Pas,
and the surface tension |

¥=0.05N/m
For the conductivity of the dispersed phase the value of pure water is given here, while
actually demineralized water with a higher conductivity is used. The drops may be
regarded as conducting spheres if the ratio B=(gq —&.)/ (g4 +2¢.) in Eqs.6.5 and
6.6 is very close to one. The total dielectric permittivity of a medium



Electrostatic coalescence

€= g,8, —4TC/ 0 (10)

has a real part that depends on the relative dielectric permittivity €, and an imaginary
part that depends on the conductivity . For the continuous phase and
o /(2r)=50Hz the second term in Eq.10 is relatively small and € is real. The
dispersed phase permittivity €4 however, is completely determined by the second term,
i.e. the conductivity 64, and is much larger than €.. This leads to a value for B that
deviates less then 104 from B = 1, allowing the assumption of conducting spheres. At
"optical” frequencies (¢/A=35- 101 i{z) the contribution from the second term in
Eq.10 to g4 may be neglected, allowing the use of a real refractive index ng = Je: in
the calculation of the light scattering matrices.

For a typical drop radius a = 30um falling due to gravity the Reynolds number is given
by Re=vg-a-p/p; = 2a3p2g/(9uc2) ~2.8-107* For two drops with radius
ap =30um, A=05 at a relative distance s—2= 1072 approaching due to an electric
field (Fig.7.2) the Reynolds number for the near contact area is given by
Re=vgGfj-a;s-p/pc = 5-1073, i.e. the creeping flow condition are satisfied for the
major part of the drops trajectories. :

The validity of the assumption that a drop with radius a =30um remains spherical

depends on the ratio of the surface tension induced pressure p =2y /a and the largest.

electrical pressure pzscE2 /2 at the sphere surface, i.e. at y=0. This ratio also
appears in the expression of O'Konskil2 for the eccentricity of a drop in an electric
field, where the drop is assumed to obtain a prolate shape with major axis a' and minor
axis b, satisfying a2’ =a'b2. The eccentricity e is given by e =1-b% /2% =
3/ 2-8E02a/ v =~ 0.002, i.e. a'b=1001. This small deformation was found for the
surface tension and electric field induced pressures 2y/a=3000 and acE2 /2=10,
where E=3-Eqg at y=0 is used. For two equal drops at relative distances
s—2=10"" and s-2=10"2 the field between the drops is approximately ten and
hundred times (see appendix 3) the applied electrical field leading to SCE2 /2%10%
and scE2 /2~10%. If the deformation is also presented as the ratio of major and minor
axis it changes between the distances s—2= 107! and s-2=10"2 from a'b =101 to
an impossible value, i.e. from a small deformation to completely deformed. Because
the time that two drops require to move from s—2 = 107! to coalescence is very small
the assumption of randomly oriented spheres during light scattering measurement and
also for the electrostatic coalescence model is correct for the considered experimental
situation.
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Fig.7.11. Calculated size-height distributions after 145 and 219
seconds for the also shown initial distribution, which is assumed
homogeneous, i.e. independent of height. The z-axis gives the volume
Jraction per category. After 145 seconds the lower half is still
homogeneous. The total initial water fraction is 3.2- 1074,

The hydrodynamic pressure between the drops that may also be calculated exactly for
spherical drops (Haber and Hetsronil-2) partially compensates the electric field
induced deformation at small distances, extending the valid range a little. For the
considered size range and the giveh electric field a realistic Hamaker constant has no
influence on the collision efficiency (Fig.7.9) and is of no importance in this case. The
considered size range has 45 categories, 20 categories per decade, and center radii
ajp; =1.122-a;, aj=1um, while 36 height categories with Ah=05mm are
considered.

Figures 7.12 and 7.13 show the total volume fraction ¢ and the values of djg, dsqg and
dgq, i.e. the upper drop diameters for 10%, 50% and 90% of the total volume fraction,
of a measured evolution of the drop size distribution, corresponding with Fig.4.5.
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Fig.7.12. The total volume fraction of water in kerosene during electric field
enhanced coalescence, both measured and calculated with and without
accounting for slowly dissolving drops. The chosen logarithmic time scale for (t
in seconds) shows the initial stage better.
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Fig.7.13. Upper diameters (d=2a[m]) d}g, dsg and dgg for 10%, 50% and 90%

of the total volume fraction as shown in Fig.12.

These very low fractions of water allow the negligence of settling hindrance by other

drops.
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Figure 7.11 shows two examples of calculated size-height distributions using the
corresponding  initial size distribution. During the forward light scattering
measurements only a circular part of the lower 8mm of the emulsion is monitored, and
a corresponding part of the simulated settling distribution leads to a calculated size
distribution as function of time. The thus calculated total volume fraction ¢ and
diameters djg, dsg and dgg are also shown in Figs.7.12 and 7.13. The relative size
distribution is initially quite accurate but starts to deviate after t=25 seconds
(log(100+t)=2.1). The main difference, however, is between the measured and the
calculated total fraction ¢ as function of time. The calculated fraction initially remains
constant while the measured fraction decreases. This decrease may be explained by the
assumption that, due to a higher solubility of water in kerosene in an electric field, the
water drops slowly dissolve. If Fickian diffusion of water from the saturated kerosene
at the drop surfaces into the bulk is assumed, then the calculated total fraction, and
also the diameters djg, d5g and dgg deviate less from the measured values. Quast
stationary diffusion in spherical coordinates leads to 41tai2(dai /dt) = DACa;, where
D(m2 /s) is the diffusivity and AC (m3 / m?’) is the concentration difference between
the bulk and the drop surface. The best fit was found for DAC=6-10"14. The
smallest drops dissolve completely during a time step. Some larger drops are
transferred to smaller-size categories. The total water volume, both contained by drops
and dissolved in the kerosene, remains unchanged. The measured decrease of djg is
also explained. This suggested explanation for the discrepancies between measured and
calculated evolution of the size distribution should actually be verified with other
experiments. Other possible depletion mechanisms, which accounts for drops being
attracted towards images or actual drops on the electrodes, or Oswald ripening from
drops towards the wetted electrodes, or position dependent shear initiated coalescence
through electrohydrodynamic circulation in the cell, are not quantified.

7.7. Conclusion.

The calculation is presented of collision efficiencies and collision rates for conducting
neutral spherical drops in an electric field in a limited experimental cell. Contrary to
results presented earlier>, the horizontal and vertical field cases lead to similar collision
efficiencies. The calculated evolution of the drop size distribution during electrostatic
coalescence is compared to a measured evolution and agrees beyond expectation. A
few not explained discrepancies, however, remain to be solved.
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Figure 7.14. The bispherical coordinate system is
axisymmetrical around the z-axis.

Appendix 1.

The coordinate transformation between the bispherical (bipolar) coordinate system
(1,1,9), as used by several authors!-6:10 to solve two sphere problems, and Cartesion
coordinates (x,y,z) is given by

<= c-sin M- cosp _ c-sinmy-sin @ 2= ¢-sinh
coshp—cosn’ coshp —cosn’ coshp —cosn’
where
2 =D2-a? =Dy% -a,%, D,+D, =D

(Fig.7.14). The spheres with radii a; and aj are given by the surfaces pu=p; and
K = [ig, respectively.

Appendix 2.
The expression presented by Hamaker3.9 for the potential energy @ of two spherical
particles due to the non-retarded van der Waals interaction

2 2
A ]:Za]az . 2ajay +lnf_p} fp=r"-(a+a3)

o=-2
fpb  fm  fm

6 fn =1 —(a-2,)*

leads to the following expression for the mutual attractive force
_g(‘_li - A —41’3182 + ~—4rala2 + fm 2r(fm - fp)
6 2 2 T 2
dr 6 fp fp f'p f m

F =

A
= ——d4draa
6 1 2!:

fr? +57 = 2ff, _Adap,y)’r
£ fin 6 (fpfm)?
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Substituting  ap =ha;, r=sa(1+1)/2,  fp=a 1+ 1)} (" -4)/4
£ =8,2(s2(1+2)2 - 4(1-1)%) /4 leads to the attractive force

2

F As 4% 4 4

AT
6 2a; (1+A.)3 sf-4 52(1+%)2—4(1-?«,)2

Appendix 3.

and

Figure 7.15 shows the electric field in the middie between two equal spheres or the
field on a conducting plate near a conducting sphere, as function of the dimensionless
distance s= 2r/(2a) between the spheres centers or sphere and image centers. The
- solid line is the exact solution according to chapter 6, that is compared to the small and
large distance asymptotic approximations of the exact solution of Davis® that were

presented by Arp and Mason!!

2
2 32
E=Eoﬁjn ~, E=E0[1+—3]

3(s—2)1nf;,,2 J s

where y* = 12689 is derived from Euler's constant.

157

log(E)

o ‘\\
I .
0.5

-2 -1.5 -1 -0.5
log(s-2)
Fig.7.15. The electric field E in the middle between two equal
spheres as function of the dimensionless distance s. The solid line
gives the exact solution of Chapter 6, while the dotted lines present
asympiotic approximations.
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Chapter 8. Conclusions

8.1. Forward light scattering

In this thesis a method has been presented to study electrostatic coalescence
quantitatively by determining the evolution of the size distribution of conducting drops
in an insulating continuous phase in an electric field. For this purpose the forward
scattering pattern is measured due to a laser beam incident on a dilute dispersion of
water drops in kerosene in an experimental cell. The perfect spherical shape of the
small water drops allows exact calculations of the scattering pattern of individual drops
according to Mie. Although the experimental work is limited to drop sizes for which
exact scattering patterns may be calculated within a reasonable time, attention was also
given to the faster geometrical optics approximation, required for large spheres. This
known approximation may be improved by adding a so called physical optics
approximation for glory rays and a separate edge contribution to the forward
scattering amplitude. A simple expression for the glory rays is derived from a known
asymptotic approximation of the rigorous Mie scattering (chapter 3). To deduce a size
distribution from a measured scattering pattern a scattering matrix may be calculated
that consists of the averaged scattering patterns of a number of discrete size
categories. It is demonstrated that knowledge of the separate contributions to the total
scattering pattern and a specific required accuracy for this scattering matrix leads to
minimal averaging conditions. These averaging conditions depend on the size and the
relative refractive indices and apply for both exact and the approximate calculations
(chapter 4). The scattering matrix only gives the correct relation between the measured
scattering pattern and size distribution if multiple scattering is negligible. A muitiple
scattering inversion method is also presented, that calculates the redistribution of a
discrete forward scattering pattern due to a thin single scattering slab perpendicular to
the laser beam, leading after a number of such slabs to a multiple scattering pattern,
that may be compared to the measured scattering pattern, and is used to modify an
estimated single scattering pattern and size distribution for one slab (Chapter 5). The
transparent walls of the experimental cell were made of perspex, that contrary to glass
is hydrophobic in a kerosene environment, and less water drops attach to the walls.
Due to the inferior surface quality of perspex, five cells were made initially, of which
only two could be used to obtain usable scattering measurements. Later on five extra
cells were made of which not a single one was usable. The scattering pattern resulting
from just the cell walls of these cells was already quite large, making the inversion of
the measured scattering patterns to size distributions less reliable.



Conclusions

8.2, Electrostatic coalescence

The resulting measured evolution of the size distribution of water drops is compared to
the evolution according to a model that only considers binary interactions between
drops in dilute dispersion, due to gravity, an electric field and the unretarded van der
Waals force. Inertial forces, drop deformation and surface tension gradients are
neglected. For the calculation of the electrostatic force between two spherical drops an
exact calculation method based on electrical images is presented (Chapter 6). The
relative velocity due to the three mentioned forces is calculated using exact solutions
for quasi static hydrodynamic interaction between two fluid spheres. For very small
distances the attractive electrostatic force may become very high so inertial forces and
deformation of the drop will become important. The surface tension gradients in our
experimental case was not large enough to lead to a remaining kerosene film between
two water drops in an electrical field, but this does not directly justify its negligence. A
calculation method that accounts-for a surface tension gradient in two drop interaction
is however not available yet. The relative velocity leads to relative trajectories and
collision cross sections, due to the fact that only gravity induces a large distance
relative velocity. The resulting evolution of a drop size distribution, using a measured
initial distribution has however a significant difference with the measured evolution.
The measured total fraction of water contained by drops in the dispersion decreases,
while the model predicts that the total fraction remains initially constant. A higher
solubility and thus a better diffusion of water in kerosene in an electric field leads to a
better agreement between the calculated and the measured evolution of the drop size
distribution. Besides the so far mentioned discrepancies between the model and
reality, another difference with commercially used coalescers is that also shear instead
of only gravity induces the first approach of two drops. Fuentes, Kim and Jeffrey!.2
have already presented some calculations for this case using velocity images.

- 1. Fuentes, Y.O., Kim, § and Jeffrey, D.J. Phys Fluids 31, 2445 (1988).
2. Fuentes, Y.O., Kim, S and Jeffrey, D.J. Phys.Fluids Al, 61 (1989).
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List of symbols

a sphere radius

a,b spheroidal axis's

A rainbow parameter (section 3.3), Hamaker constant
A Scattering matrix

ay, by Mie scattering coefficients

b discrete scattering pattern

¢ wave velocity

Cext extinction cross section

d distance (between centers of spheres)

D : geometrical divergence (Eq.2.23)

€] collision efficiency

E,E electric field strength, diffraction envelope function
Err maximum deviation for scattering matrix calculation
ff asymptotic phases (Eqs.3.5 and 3.6)

e factor for subsequent discrete angles and size categones respectively
fi £, fr electric force functions

FL focal length of lens

F force vector, charge induction matrix (Eq.6.32)

g size distribution function (Eq.5.10), gravity

G phase of glory ray (Eq.3.13), forward p=1 modulus (Eq.4.14),
Gijk function relating axisymmetric solid angles (Eq.5.5)
G H hydrodynamic mobility functions

H smoothing matrix (Eq.5.1)

i, V-, intensity function

I ' light intensity

Jo,12 integer Bessel functions of the first kind

k k wave vector, wave number

K averaging number in one solid angle (Eq.4.3)

L number of times that a glory ray passes the optical axis
LM hydrodynamic mobility functions

m relative refractive index n; /n,

M Number of single scattering slabs

Min(,) minimum of two values

n refractive index, integer value

number of electric image positions
number of internal paths of a light ray, dipole component

oo 2

averaging number in one size category
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dipole

array of aligned dipole components

sign: —1,+1 (Ch.2), (1+m?)¥2x~¥3 (Ch.3), point charge (Ch 6)
extinction efficiency

array of point charges-

spherical coordinate, reflection coefficient

(relative) position vector

detector radius

redistribution matrix

sign (—1,+1), dimensionless distance 2r/(a; +a,)(Ch.7)
amplitude function

time

edge function

parameter defined below Eq.3.10

asymptotic phase functions (Eqs.3.5 and 3.6)

(relative) velocity

electric potential

relative scattering angle width, relative size category width
size parameter 2ma/A ‘

discrete size distribution

Cartesian coordinates

angle of incidence, polarizability, electric field angle (Fig.7.1)
cell wall angles

angle of refraction, polarizability o/a3

angle (2/ x)l/ 3, surface tension

Kronecker delta, distance from axis

general phase difference

dielectric permittivity, total transmission coefficient
Hadamard-Rybczynski factor (u* +2/3)/ (u* +1)
trajectory accuracy

wave length, size ratio

spherical coordinates ‘

(m~1)x%3 (Ch.3), viscosity (ratio) (Ch.7)
frequency

phase delay of central ray 2x(m - 1), mass density
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c Phase delay, electric conductivity

Ty Ty spherical harmonics

T complementary angle of incidence /2 ~a
] electric field angle (Fig.7.1)

C Riemann's zeta function (Eq.6.41)

The symbols of appendices are not all included in this list.
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Stellingen
behorende bij het proefschrift van Erik van den Bosch

De dubbele oneindige sommatie voor de krachtberekening tussen twee even
grote, elkaar rakende, electrisch geleidende bollen in een electrisch veld is een
leuke wiskunde som.

“Dipole moments of conducting particle chains”, T.B.Jones, J. Appl Phys.60, 2226.

Dit proefschrift hoofdstuk 6.

Het feit dat de combinatie van een verticaal zwaartekrachtveld en een
horizontaal electrisch veld niet rotatiesymetrisch is, kan door een auteur van
wetenschappelijke publicaties over het hoofd gezien worden

"Theoretical prediction of electric field-enhanced coalescence of spherical drops”, X.Zhang,
AICHE Journal 41, 1629 (1995),

Dit proefschrift hoofdstuk 7.

De afleiding door Langley en Marston van een extra faseterm voor een axiaal
gefocuseerde  oftewel "glory” bijdrage aan licht- of geluid- verstrooiing door
bolvormige deeltjes bevat een inzichtelijke fout. De betreffende faseterm volgt
dan ook niet uit een asymptotische benadering van de exacte oplossing voor
lichtverstrooiing. ' ,
"Forward Glory Scattering From Bubbles", D. S. Langley and P. L. Marston, Appl. Opt. 30,
3452-3458 (1991).

“Glory- and rainbow-enhanced acoustic backscattering from fluid spheres: Models for
diffracted axial focusing”, P. L. Marston and D. S. Langley, J. Acoust.Soc. Am.73, 1464 (1983)
(Appendix B, ka(1 - cosy)).

Dit proefschrift, hoofdstuk 3.

Zowel de kracht die bij electrostatische coalescentie van een druppel water in
olie met een vlak wateropperviak voor afplatting van de druppel zorgt, als de
kracht die zorgt dat de oliefilm tussen druppel en wateroppervlak leegstroomt,
zijn vele malen groter dan Brown and Hanson veronderstellen.

"The effect of oscilating fields on the coalescence of liquid drops", A.H. Brown and C.Hanson,
Chem Eng.Sci.23, 841 (1968) ).



10.

11

Een goede analyticus gebruikt weinig woorden om een concept uit te leggen.
"On the "dimpliﬁg" during the approach of two interfaces”, S. Frankel and K.J. Mysels,
J.Phys.Chem., 66, 190 (1962).

Bij de beoordeling van de efficiency van industriéle processen komt van beide
hoofdwetten der thermodynamica niet de eerste maar de tweede hoofdwet op de
eerste plaats.

Het is verre van voor de hand liggend dat de "electronische snelweg" tot een
betere wetenschappelijke-kennisoverdracht leidt, dan het gelukkig nog bestaande
systeem van geaccepteerde publicaties in als goed beoordeelde weten-
schappelijke tijdschriften.

"The information highway®, Gianni Astarita, Chem.Eng.Sci. 51, 4353 (1996).

Het mondstuk van een koperen blaasinstrument is, in tegenstelling tot de
algemene opinie, een sterk medebepalende factor voor de stemming van het
instrument. ‘

“Ein beitrag zur ermitthing der stimmung von Blechblasinstrimenten”, K. Wogram,
Dissertation TU Carolo-Wilthelmina zu Braunschweig (1972).

De waardering voor een muzikale of wetenschappelijke prestatie hangt ook af
van de persoon die de prestatie geleverd heefl.

Waarschijnlijk is de correlatie tussen sociale en technische vaardigheden groter
dan de correlatie tussen sociale en muzikale vaardigheden.

De stelling dat BSE in het jaar 2003 vanzelf verdwenen zal zijn, zal binnenkort al
voor een stijgende rundvleesconsumptie zorgen.



