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Summary

In communication systems there is often a feedback link from the receiver to
the transmitter. For example, telephone connections are two-way channels.
When one side speaks, the other listens and the corresponding channel from
the listener to the speaker, i.e. the feedback channel, remains idle. Feedback
strategies use this idle feedback channel in their coding process. Feedback gen-
erally enables these schemes to communicate over the forward channel with
lower decoding complexity, higher reliability, higher capacity, or a combination
of these advantages, compared to feedback-free communication schemes. In
the so-called information feedback schemes the transmitter is able to observe
every received symbol via a noiseless and delayless feedback channel. This
enables the transmitter to correct every error that occurred in the forward
channel. A class of simple and efficient information feedback schemes for Dis-
crete Memoryless Channels (DMC’s) is called Multiple Repetition Feedback
Coding (MRFC) schemes, which forms the core of the presentation in this dis-
sertation. First these schemes are applied to the channels with a noisy feedback
channel. Then some modifications are made on MRFC schemes (with noise-
less feedback) to improve their performance and to extend their application
domain.

An important shortcoming of existing information feedback schemes is that
they assume the feedback channel to be noiseless. In practical situations this
is not always a realistic assumption. To deal with the problem of noisy feed-
back channels, we reduce the amount of information in the backward direction
with respect to that in the forward direction. Therefore, this relatively low
amount of information can be protected against the noise on the feedback chan-
nel. More specifically, a bandwidth efficient modulation method with MRFC
schemes is designed for additive white Gaussian noise channels where both
forward and feedback channels have the same Signal to Noise Ratio (SNR).
The resulting method gives about 5.5 dB improvement over uncoded trans-
missions. In this method, the decoding complexity is considerably simplified
compared to the decoding complexity of the trellis coded modulation. Given

vil



viii Summary

the fact that we need to transmit one bit per dimension in the backward direc-
tion, the feedback channel can essentially be considered noiseless for channels
with moderate SNR’s. The theoretical improvement of the proposed method
is supported by running simulations.

In the remainder of this work, the scope of MRFC schemes is extended.
There are block and recursive coding methods for MRFC. The performance
of the block MRFC is improved by devising two block retransmission strate-
gies. For asymmetric DMC’s, one of the strategies even yields a superior
performance compared to existing block and recursive coding methods. Fur-
thermore, MRFC schemes are modified in order to be applicable to soft-output
DMC(C’s. A soft-output DMC, for example, can be obtained by quantizing the
output of a continuous channel with discrete inputs. First a specific class of
compound channels is used to define soft-output DMC’s. For this class of com-
pound channels, it is also shown that feedback and delayed side information
at the transmitter cannot increase channel capacity. Then, the modification of
MRFC schemes is presented for a two-input four-output (soft-output) DMC.
Using a proper Markov source as the precoder, the scheme yields rates very
close to channel capacity. Note that a MRFC scheme consists of a repetition
part and a precoding part. For the repetition part, the block and recursive
coding methods of the new scheme are described. Since the existing precoding
methods cannot be used in the case of the new scheme, a precoding method
is designed and evaluated at the end of the thesis.
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Notation and abbreviations

M = [my]

vl = (v1,v,... ,0N)
VN=’U1’UQ...‘UN

v§;”+N) = UpUnil ... UninN

N
Vi, = Ui102...UN
V =1109...

V=...0102...
vt =vv...v
vV =pvy...uN

= (v1,v2,... ,UN)
vV = vivie. . n

= (Vi1, V25 -+ - , ViN)
n=1...,N
(z,9)
(z,9), (X,Y)

X (over X)
EX]=X

{Xi}

XN = (X1, X, ...
Pr{A}

, XN)

Matrix with entries M
Vector

Sequence or block of symbols

The ith block
Sequence, unlimited length

Subsequence of n consecutive v’s

Code word

The ith code word

Counter or index, integer values from 1 to N
Interval of real values between z and y
A pair of digits, sets

Set
Finite set having distinct elements

Number of elements of set X
z an element of set X
The set of real numbers

Random variable, defined over set X
Expected value of a random variable
Random process

Vector of random variables

Probability of an event A

xi



xii Notation and abbreviations

| Pr{A|B} Probability of an event A conditioned
on the event B (defined if Pr{B} > 0)

x For discrete random variables

Dx Distribution (or probability mass function) of
X :px(z)=Pr{X =z}, z€X
PX,Y Joint distribution of X,Y :

pxy(z,y) =Pr{X =2Y=ylzec X ye)

+ For continuous random variables

fx Distribution {or probability density function)
of X: fx(z) ,z€X
fxy Joint distribution of X, Y :

fX,Y(x7y)7x € va € y

ARQ: Automatic Repeat reQuest

AWGN: Additive White Gaussian Noise

BDC: Binary Duplex Channel

BEC: Binary Erasure Channel

BIQO: Binary-Input Quaternary-Output

BSC: Binary Symmetric Channel

COMC: Continuous Output Memoryless Channel

DMC: Discrete Memoryless Channel
Input alphabet of a DMC: X = {1,2,...,|X|}
Output alphabet of a DMC: Y = {1,2,...,|V|}
Probability transition matrix of a DMC channel: P = [pg,],
with entries pzy = py|x(y|z), z € XY andy € Y

FCM: Feedback Coded Modulation

iid: independent and identically distributed

ISI: InterSymbol Interference

MRFC: Multiple Repetition Feedback Coding

MRFC scheme: MRFC with specific repetition parameters

MRFC system: to refer to all units of the MRFC as a system

psd: power spectral density

SNR: Signal to Noise Ratio

SRFC: MRFC for soft-output DMC'’s

TCM: Trellis Coded Modulation

O: to mark the end of an example or a remark

%Q: two-sided power spectral density of the AWGN random process
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Chapter 1

An overview of feedback
communication

In 1948, Shannon [67, 68] presented a brilliant mathematical model for the
transmission of information. This pioneering work marked the beginning of
information theory. Since then, information theory has grown in scope from
communication theory into various scientific disciplines such as physics, statis-
tics, economics, mathematics, computer science and etc. [16]. In what follows,
we give a brief introduction to the principles of information theory in the
framework of communication engineering. As we proceed, necessary defini-
tions are given and, gradually, the course of the presentation is directed to-
wards communication systems with feedback. Special attention will be given
to the information feedback systems which are the main topic of this disserta-
tion. In order to gain an insight into information feedback schemes, some of
these schemes are explained from a new point of view which allows a unified
explanation for many information feedback schemes.

1.1 A general view

A communication system is an arrangement which reliably transfers data from
one point or points to another point or points. The transmitted data could
be images, sound, files, documents, etc. The source and destination points
can differ in location, e.g. the speaker and listener in a telephone conversa-
tion, and/or differ in time, e.g. the speaker and listener who use a telephone
answering machine. Usually the goal of the system is to deliver at the desti-
nation(s) the exact data produced at the source(s). Sometimes, however, it
is acceptable to deliver distorted data provided the distortion is acceptable at
the destination.
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The communication model of primary concern consists of two terminals A
and B connected by channel K p in A to B direction and by channel K4 in
B to A direction. We can consider the following cases, see Fig. 1.1.

1.

When the flow of information in one direction is independent from the
flow of information in the other direction we have one-way communica-
tion from A to B or from B to A, see Fig. 1.1a. Most point to point
communication systems are one-way systems, where channels K4p and
Kp4 exist separately or one physical channel is used alternatively in
either direction. Section 1.2 gives a broad view over one-way communi-
cation. Also in the course of this section, whenever it is necessary and
appropriate, we will define those concepts of information theory which
are essential for the presentation in the following sections or chapters.

When the flow of information in one direction interferes with the flow
of information in the other direction we have two-way communication
between A and B [7], see Fig. 1.1b. Two-way communication will be
mentioned very briefly in Section 1.3.

When the flow of information is, let say, from A to B and channel Kp4 is
used to facilitate the flow of information in channel K 4p, we have feed-
back communication. In this case, Ksp and Kp4 are called the forward
channel and the feedback channel, respectively, see Fig. 1.1c. A general
introduction to feedback communication is given in the second half of
this chapter and the rest of the thesis covers the author’s contributions
to this area.

L . A

Ad BS
L) L

a b C

Figure 1.1: General point to point communication models; a: two one-way
communication models; b: a two-way communication model; c: a feedback

communication model.

Before going any further, let us draw an analogy to illustrate the subject.
Assume in an hour’s lecture, a tutor is supposed to teach some topics to a stu-
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dent. Considering the surrounding noises and student’s ability of absorbing
the material, the tutor must also provide the student with some extra ex-
planations and examples in order to make sure that the student understands
the topics. To achieve this goal, teacher’s strategy might be to explain every
lesson in several times, which would result in teaching only a few topics. In-
stead, the teacher could be greedy and give very short explanations. In this
way, the number of topics could increase, but the student won’t be able to
understand some of the topics. On the other hand, an experienced tutor with
a good knowledge of student’s abilities and the surrounding distractions, can
give efficient and sufficient explanations for the lessons. As a result, not only
the number of conveyed topics per hour will be maximum, but also all topics
will be understood. The disadvantage of the last solution is that it is very
difficult to find such an experienced tutor. On the other hand, assume the
case where the teacher is allowed to ask the student some questions in order
to check whether a topic is properly understood. In this way, the tutor is
able to revisit only those topics or parts of topics which have not been clearly
understood. Note that the number of necessary explanations is not reduced
by asking questions because the pupil does not become smarter nor disappear
the surrounding noises. However, it is not necessary for the teacher to be an
extremely sophisticated tutor if he is allowed to ask questions to the student.
Moreover, the student learns easier if the teacher explains only those parts
which are ambiguous.

One-way communication and feedback communication are analogous with
such a tutorial session in which the tutor acts on his own instincts and on
student’s needs, respectively. In the following sections we will try to explain
such communication systems from an information theory point of view.

1.2 One-way communication

One-way communication systems are designed to send information or messages
from a source in point A, which generates these messages, to a destination in
point B. The block diagram of the system is shown in Fig. 1.2. Physical sources
produce different types of information which often contains a lot of redundan-
cies. These redundancies can be removed using source coding techniques. Al-
though source coding is an important part of the communication system and a
substantial part of information theory deals with source coding techniques, we
will assume that the output of the source encoder is the message to be trans-
mitted via the channel. Therefore, we say that the imaginary source, shown
in a dotted box in Fig. 1.2, produces message w € W = {1,2,... ,|W|} inde-

pendent from previous messages with probability py (w) = [1’1\’—[’ w € W. The
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remainder of the one-way communication system is described in the following
subsections in detail.

~

~

W

E ; XV YV w: o
A;G Source |  (Channel Channel Channel] :[ Source :
—> encoder|. ~ |encoder Py|x,s decoder| " :|decoder ;B

Figure 1.2: Block diagram of a one-way communication system.

1.2.1 Communication channels

The medium through which the information is transmitted is called transmis-
sion channel, or channel for short. A transmission channel can be specified in
terms of the sets of input and output symbols available at the input and output
terminals of the channel, i.e. X and Y, respectively, and foreachz € X,y € Y
and s € S a conditional probability py|x s(y|z,s), where s € S represents the
history of the channel up to that transmission or the state of the channel at
that transmission. An ideal channel, for example, would be the one in which
every output symbol uniquely specifies the input symbol. Channels, in gen-
eral, change the input symbols to the output symbols such that uncertainty is
produced at the output, in other words, they introduce noise to the input.

The input or output alphabets, i.e. X and ), can be finite or infinite sets.
All channels considered in this dissertation are discrete time channels, i.e. the
channel is used at discrete time instances. Discrete time channels can either
exhibit memory or be memoryless. In a channel with memory the output
at a given time depends statistically both on the current mnput and on the
current state of the channel. The state of the channel, in turn, can generally
depend on previous states, inputs and outputs as well as on the current input.
Unless stated otherwise, we will assume that the channels are memoryless
throughout the dissertation, i.e. py|x s = pyjx. More specifically, let xV =
T1Z2...zN be a sequence of N inputs to the channel and yN =y1y2...yn be
the corresponding output sequence.

Definition 1.1 (Memoryless channels) In a memoryless channel the out-
put at a given time depends statistically only on the corresponding input. For
the N egtension of the memoryless channel we have

N
Py~ |xN (yN\XN) = H pY\X(ynlzn)- (1.1)

n=1
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Definition 1.2 (Discrete Memoryless Channel (DMC)) A memoryless
channel is called a DMC when the input and output alphabets of the channel
are finite sets. Matriz Ppy,], where entries pgy, = pyix(ylz) forz e X,y e,
is referred to as the probability transition matriz of the channel.

Remark 1.1 We will also consider Continuous Output Memoryless Channels
(COMC) where the output alphabet of the memoryless channel, ), is a subset
of real numbers and the probabilistic relation between input and output is
given by the conditional density function fy|x(y|z), z € X, y € Y.

In [25], Gallager uses a DMC to define basic concepts of information theory.
To keep the dissertation self-contained, some of these concepts are similarly
defined in the next subsection, where a few related definitions are also given.

Some basic concepts of information theory

The input and output symbols of a DMC, say x and y, can be considered
as the realizations of two random variables X and Y, drawn from finite
sample spaces of X and ), respectively. Let px, py and p x,vy denote the
distributions of random variables X and Y and their joint distribution,
respectively. We want a quantitative measure of how much the occur-
rence of a particular output, say y, tells us about the possibility of a
symbol, say z, to be the input to the channel. In other words, at the re-
ceiver, the occurrence of y changes the probability of z from the a-priori
probability of px (z) to the a-posteriori probability of p x|y (z|y). In this
case, the mentioned measure of the conveyed information is defined as
follows.

Definition 1.3 (Mutual information) The mutual information be-
tween events X = x and Y =y in the DMC, i.e. the amount of infor-
mation provided about the input symbol by the occurrence of the output
symbol y, is defined as

x|y (zly) (@ log py|x (y|z)

Pl
[(X=a¥ =y)=log= " v (¥)

. (12)

where (a) follows from the definition of conditional probability'.

!In this definition (and those of the self information and conditional self information) we
assume that the probabilities involved are positive. In other cases, this assumption is not
necessary due to the convention that 0log0 = 0 and Olog 3 = 0.
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From now on the assumption is that the base of all logarithms is 2, unless
stated otherwise. Let us pose this question: what is the average amount
of information received about X? With probability px v (z,y) we trans-
mit and receive symbol pair (z,y) in which the mutual information is
equal to (1.2). Considering all input and output symbols, the answer is
as follows.

Definition 1.4 (Average mutual information) The average mutual
information between the input and output of the DMC' is given by

Pyix (ylz)

I(X;Y) = Y px(z) Y pyix( y|z) log PAXCIE o

TEX yey

- ZZPXY z,y) 1ng pY|X(y| z) . (13)

TEX yey vex Px ()py|x (y]z)

When the occurrence of a given output symbol y uniquely specifies the
input symbol to be z, i.e. pxy(zly) = 1, the amount of information
provided about the input symbol = by occurrence of the output symbol
y is the amount of information that has already existed in the occurrence
of event X = z.

Definition 1.5 (Self information) The amount of information that
we obtain if we know that X = z is the self information of the event
X = z and it is defined as

1
px(z)

I(X =z) =log

This can also be interpreted as the a-priori uncertainty of the event
X =z, or the amount of information required to ascertain that X = z.

Definition 1.6 (Entropy) The average value of the self information
of a random variable X is called the entropy of the random variable and
it is defined as

1
= E px (z)log m

TEX
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If we have a sequence of N realizations of the random variable X, then
with arbitrarily small error probability it is possible to compress it, at
most, into NH(X) bits by making N sufficiently large [25, pp. 43].
Another concept is the conditional self information of event X =
given the occurrence of Y = y. It is defined as

I(X =z|Y =y) =log———.
pX|Y(1' ly)
This is the amount of information about z that we do not know when
y is observed. Note that I(X = z;Y = y) is that amount of information
about z that we do know when Y = y is observed.

Definition 1.7 (Conditional entropy) The conditional entropy is the
average of conditional self information, i.e.

HX[Y) = pxy(zy)log —

seX yey pXJY($|y)

In summary, H(X) is the average amount of information that exists in
the random variable X, I(X;Y) is the average amount of information
that we can get about X by knowing Y and H(X|Y) is the average
amount of information about X that we can not obtain by knowing Y.
From this statement the following relation can be written.

I(X;Y) = H(X) - HX|Y) = H(Y) - H(Y|X),

where the last relation follows from similar arguments. Consider two
probability mass functions px and qx defined on z € X. A measure to
indicate a distance between the two distributions is the relative entropy
which is frequently used in information theory texts.

Definition 1.8 (Relative entropy) The relative entropy or the Kull-
back Leibler distance between two probability mass functions px and qx
1s defined as

D(p |l g =) px(z) Px()

zeX (:E)

We can also define the above concepts for continuous random variables?.
For example, consider the following two definitions.

%For the definition of a continuous random variable refer to [16, pp. 224].
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Definition 1.9 (Differential entropy) The differential entropy of a
continuous random variable with probability density function fx is de-
fined as

H(X) = - [ fx(a)log fx(o)da
Jx
Here X is the support set of continuous random variable X.

Definition 1.10 ((Average) mutual information) The (average)
mutual information between two continuous random variables X and Y
with joint probability density function fxy = fx - fy|x 1s defined as

I(X;Y) = //ny z,y log E;) zdy.

Now let us consider a sequence of random variables that are drawn from
a finite sample space. As a general example, assume the output symbols
of a source to be a stochastic process designated by {©;}. Similar to
Def. 1.6, for a sequence of n random variables ©" = (01, 0,,...,0y),
the entropy per symbol can be defined as

H(©1,0,,...,0,)

n

~ (1.4)

1 1

ﬁ&;gn PT{Q” = (017 i 79n)}log(P,r{®n — (01, . 7971,)})

By letting n — oo, the entropy per symbol of a stochastic process can
be defined.

Definition 1.11 (Entropy rate) The entropy rate of the stochastic
process {©;} is defined by

1
Hoo((")) = lim —H(®1,®2, e ,@n),
n—oo N
under the assumption that the limit exists. If the stochastic process is
stationary, the above limit exists and it can be written as Hoo(©) =

limy—y00 H(Or |0~ 1)3.

3For the proof refer to [16, pp. 64].
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Being stationary means that the joint probability distribution of any se-
quence of source output is invariant with respect to shifts in time. The
concept of entropy rate for a sequence of independent and identically
distributed (iid) random variables reduces to Def. 1.6. For such vari-
ables, the entropy rate is Ho(0) = nH(®:) _ H(©;), i.e. the entropy

n
rate equals to the entropy of a single random variable.

1.2.2 Channel encoding and decoding

In a DMC, by channel encoding each message of the (imaginary) source, i.e.
w e W = {1,2,...,|W]|}, is mapped into a sequence of N channel input
symbols xV = fe(w) = (21,%s,... ,2x), where 2, € X, n = 1,... ,N, and
function f. : W — XV represents the encoding rule. xV is called the code
word of message w. In total we will have |[W| equiprobable code words each
of length N, therefore, this code is called a (|[W|, N) block code. The rate of
this code is the amount of information per transmission, i.e.

log (W . .
R= g]\’f | bits per transmission.
By channel decoding an estimate @ from the set of messages is assigned to
each received sequence y = (y1,vs,... ,yn) according to v = f4(y?), where

fa: V¥ — W is the decoding function. By mapping w to its code word xV, we
add some redundancy to the message. This redundancy protects the message
from the channel noise (up to a degree) by helping the decoder to recover the
transmitted message from the distorted code word y'¥, i.e. by increasing the
probability that W = w. Note that the term of coding will be used to refer
to the combination of the encoding and decoding procedures.

An error occurs when the output of the decoder is not the same as the
transmitted message, i.e. W 7# w. The decoding error probability for message
w 18

Ao = PT{W #w | XN = fe(w)}

and the average and the maximum decoding error probabilities are respectively
defined as

N _
P ez = max Aw,

Wi

1

Poay =D pw (W) = Wi >
w=1

w=1
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Definition 1.12 (Achievable rate) A rate R is said to be achievable if there
exists a sequence of ([2NR], N) codes such that the mazimum® probability of
error Pé}’mm tends to 0 as N — oo [16].

Sequential coding schemes are other coding methods that differ from block
coding methods mentioned above. A sequential encoder, continuously maps a
sequence of message symbols into input symbols of the channel. The decoder,
on the other side, decodes every transmitted symbol after a delay of D channel
transmissions. For example, convolutional codes are sequential codes. For
sequential codes constraint length plays a role analogous to the block length
of block codes.

Definition 1.13 (Constraint length) The constraint length of a sequential
code is the mazimal number of channel symbols which are affected by a single
message symbol.

1.2.3 Channel capacity

At first sight, it seems reasonable to think that increasing the number of
messages in a block of N transmissions, i.e. increasing the transmission rate,
increases the decoding error probability. With reference to our tutor-pupil
example, if the teacher cramps more material in this hour of teaching, he
increases the student’s confusion. Shannon in 1948 showed that the decoding
error probability can still be made arbitrarily small for a DMC, as long as the
transmission rate remains below channel capacity. Therefore, the (operational
channel) capacity of a DMC is defined as the supremum of all achievable rates
on the channel. First let us define the information theoretic capacity of DMC’s.

Definition 1.14 (Information theoretic capacity of DMC’s) The infor-
mation theoretic capacity, C, of a DMC is defined as

C =maxI(X;Y), (1.5)

Px
where the mazimum is taken over all possible input distributions px, where

EZ‘EXPX (.’I)) =1.

The following theorem shows that the (operational channel) capacity of the
DMC is equal to (1.5).

47t can be shown that a small average error probability implies a small maximum error
probability at the same rate, see [16, pp. 194].

5For example, see [25, pp. 263] where the constraint length is defined for convolutional
codes. Note that for a sequential feedback code in [29] the average constraint length is
considered.
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Theorem 1.1 (Channel coding theorem for DMC’s) All rates below
C are achievable. Specifically, for all R < C, there exists a sequence of
([2VE], N) codes with mazimal probability of error PN owz = 0as N = oco.
Conversely, any sequence of ([2VF],N) codes with PN — 0 must have

e,mac
R<C.

Proof : See [16]. Q.E.D.

Due to Theorem 1.1, C' is mostly referred to as channel capacity for short.
Similarly, capacity can also be determined for a continuous alphabet channel
such as an Additive White Gaussian Noise (AWGN) channel. This channel
is an important channel model for many applications. The output random
variable, Y, of an AWGN channel can be written as

Y=X+2,  Z~N(0,d%.

Like in DMC’s, a block code for the AWGN channel maps message w € W
into a sequence of N channel input symbols xV = (z1,z,,... ,z ~), where z,,
is a real number, n =1,... , N. Each code word satisfies the average energy
per symbol constraint, i.e. % 271:[:1 12 < E.

Definition 1.15 (Information theoretic capacity of AWGN channels)
The capacity® of an AWGN channel with the average energy constraint Eg is
s

1
¢= fX;EI?)%%(]SES I(x;Y) = 5 log(1 + g)a bits per transmission.

The Nyquist-Shannon sampling theorem, see [16, pp. 248], shows that a
band-limited signal has only 2IW degrees of freedom per second, where W is the
bandwidth of the signal. In other words, the signal can have 2W independent
samples per second. Therefore, the average energy per signal sample is equal
to the signal power P divided by 2W. The average energy per noise sample
becomes 02 = %, where 522 is the two-sided power spectral density of the

AWGN random process.

Remark 1.2 (Capacity of band limited AWGN channels) The capacity
of a band limited AWGN channel with power constraint P is

C =Wlog(l+ ), bits per second. O

P
WN,
Similar to Theorem 1.1, it can be shown that the channel capacity of AWGN channels
is equal to the information theoretic capacity.




12 An overview of feedback communication

Remark 1.3 (Capacity of wide band AWGN channels) The capacity
of a wide band AWGN channel with power constraint P is

P
) = —loge, bits per second. O

C= I/‘}1_r)1r100W10g(1 + N

P
W N,
1.2.4 Reliability function

Shannon’s channel coding theorem is not constructive, i.e. it does not give
implementable codes. Since the beginning of information theory, many coding
methods have been introduced such as block codes, convolutional codes and,
recently, Turbo codes. An important aspect of a code is the rate at which
Pe]ﬁw vanishes with increasing N — oo. Elias [21], Shannon [73] and others
showed that for the best coding schemes the convergence is exponential in the

block length.

Definition 1.16 (Error exponent) For a specific coding scheme the error
exponent at a given rate is defined as
—log PN

B Jin — 0.9

assuming that the limit exists’ .

Note that in sequential schemes, the constraint length replaces the block
length, N, in (1.6). In some coding schemes which map messages into variable
length code words the average block (or constraint) length N = [E[N] is used
in the above definition, see [29, 66, 22].

Normally, the error exponent is defined in terms of the transmission rate,
i.e. E(R), and it is referred to as the reliability function. The reliability
function is also a measure for the complexity of the coding scheme. To wit,
a given error probability approximately corresponds to a specific value for
N - E(R) and the complexity of the decoding usually increases sharply with
N. In the first chapter of [91], Veugen gives a survey about the reliability
functions of different coding methods.

1.3 Two-way communication

Another kind of point-to-point communication occurs in two-way channels.
Nowadays many practical channels, such as telephone channels, are intrinsi-
cally two-way channels. So far all designers have broken a two-way channel

"Generally, limsupy_,, - - - is considered in (1.6) to avoid the conceptual possibility that
the limit might not exist. We used the limy oo ... notation because the limit exists for the
cases considered in this dissertation.
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into two one-way channels and used one-way codes in each direction. This
seems reasonable if the transmission in one direction does not interfere with
the transmission in the other direction and messages in both ends are statis-
tically independent (even though another solution can be considered for this
situation, for example see Subsection 7.3.1). A general two-way channel where
transmissions in both directions interfere with each other was first studied by
Shannon [72] in 1961. Since then, many authors have worked on this subject,
see for example [32], [62, 87, 8, 40]. The description of two-way communication
is not our intention here and the interested reader is referred to the mentioned
references, specially to the first and second chapters of [40] for an overview on
two-way communication.

1.4 Feedback communication

In some two-way communication systems the flow of information is often in
one direction, i.e. in the forward channel, and there is no transmission in
the other direction. For example, in two-way channels of telephone networks
when one side speaks, the other listens and the corresponding channel from
the listener to the speaker remains idle. This kind of channel is called a
semi-duplex channel. The inactive channel can be used as a feedback channel
through which the transmitter obtains some information about the forward
transmissions. The feedback information could be, for example, the status of
the decoder of the forward channel, the received symbols of the forward channel
or the state of the forward channel during past transmissions. Feedback coding
strategies use the feedback information in their coding process. Throughout
the thesis, we will assume the feedback channel to be noiseless and delayless,
unless specifically stated otherwise.?

1.4.1 DMC’s with noiseless feedback

Assume in addition to a DMC in the forward direction, there is a feedback
link from the receiver to the transmitter. As shown in Fig. 1.3, even when the
feedback channel is noiseless and delayless and the transmitter can observe
every received symbol via the feedback channel, i.e. the so called complete
information feedback, the capacity of a DMC does not increase by feedback.
This was shown by Shannon in [69].

8Chapters 3 will address the noisy feedback case.
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X, Y, .
R ) = S o
l

©

Figure 1.3: A noiseless feedback communication system, the dashed line
schematically represents the decision feedback method.

Theorem 1.2 (Feedback capacity of DMC’s) Let Crp and C denote the
capacity of a DMC with and without feedback, respectively. Then

Crp = C = max I(X;Y).

Px

Proof : See [16] (or see Chapter 5 for a more general proof). Q.E.D.

Thus, in DMC’s we cannot achieve any higher rates with feedback than we
can without feedback (this also applies to other memoryless channels). How-
ever, feedback can help enormously in simplifying the coding process. For
example, consider a binary erasure channel with erasure probability €, see
Fig. 1.4. If a feedback link exists, erasure outputs can be observed by the
transmitter and the corresponding input bits can be repeated. By ignoring all
erasure symbols in the received sequence, the receiver can obtain the transmit-
ted message bits. In such a scheme, the input bit is repeated with probability
¢, therefore, the effective transmission rate is 1 —e bits per transmission, which
coincides with channel capacity.

Figure 1.4: A binary erasure channel.

Coding schemes based on noiseless feedback can be categorized according
to the type of information provided via the feedback channel. Distinction is
made between decision feedback schemes and information feedback schemes,
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as it will be explained in the subsequent sections. However, let first outline
three decoding methods of one-way block codes, namely: list, erasure and
maximum likelihood decoding methods. The erasure decoding principle will
be used to broadly explain the decision feedback methods. The list and erasure
decoding principles will be used to explain the information feedback methods
in Section 1.6.

1.4.2 List, erasure and maximum likelihood decoding

In [23] Forney considered the decoding problem of block codes for DMC’s. In
this paper any decoding rule f4(-) for a (|W|, N) block code is characterized in
terms of decision regions Ry, w = 1,... ,|W|, defined over the space of received
words YV. If received code word y"V belongs to the region R,,, then the
decoder puts out w, the message corresponding to the region, as an estimate
of the transmitted message. Fig. 1.5 schematically shows three forms for the
decision regions. In Fig. 1.5a decision regions do not overlap, but they cover
the whole space of received sequences. This case occurs in the one-way systems
where, for example, maximum a-posteriori probability decoding or maximum
likelihood decoding is used. Here a decoding error occurs when the received
sequence falls in a wrong decision region.

Fig. 1.5b shows the decision regions corresponding to erasure decoding. In
erasure decoding the decision regions are also disjoint, but they do not cover
the entire space YV, i.e. some received words do not belong to any decision
region. When a received sequence falls outside all regions, an erasure is de-
clared. A decoding error occurs when the received sequence falls in a wrong
decision region. Since decision regions are farther apart, the decoding error
probability is, in general, less than that of the maximum likelihood decoding.

Finally, the decision regions of list decoding are shown in Fig. 1.5c. Here
these regions are not disjoint, but they cover the whole space of received
vectors. Since a received vector can belong to more than one decision region, a
list decoder puts out more than one message candidate for the received vector.
A decoding error occurs when the transmitted message is not on the decoded
list of messages. In [23] Forney considers different applications for erasure and
list decoding. For example, in systems with redundant data, in concatenated
coding and in feedback schemes. In the following sections we explain the traces
of erasure and list decoding principles in decision and information feedback
schemes. Note that Forney did not elaborate on the relation between list
decoding and feedback schemes as we do in Section 1.6.
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C

Figure 1.5: Models for decision regions in a: maximum likelihood decoding;
b: erasure decoding; c: list decoding.

1.5 Decision feedback

In decision feedback schemes the feedback channel is used only to report the
decision of the receiver that the received message is either accepted or rejected.
In Fig. 1.4 a dashed feedback link schematically shows a decision feedback
channel. Like in one-way communication, in decision feedback schemes a code
is used to send the message through the forward channel. After receiving
a block of symbols (or more generally, after receiving a specified number of
symbols), the decoder either accepts or rejects the block based on its decoding
criteria. Thereafter, the receiver indicates its acknowledgement or rejection
to the transmitter via the feedback channel by a single yes-no message (one
bit). Then, accordingly, the transmitter either moves on to the next message
or repeats the same one. That is why a coding system based on decision
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feedback is also called the Automatic Repeat reQuest (ARQ) system.® Since
only one bit on the return path is required for each block of symbols on the
forward path, an ARQ system can be used even with noisy feedback channels.
In fact, if the transmission rate of the forward channel is sufficiently higher
than that of the feedback channel, then there is a greater effective Signal to
Noise Ratio (SNR) in the feedback channel. Hence, a strong low-rate error
correcting code can be used in the feedback direction and, consequently, the
noisy feedback may for practical purposes be essentially error-free.

The decoding of ARQ systems based on block codes is similar to Forney’s
erasure decoding option. If the decoder sees that the received code word y?v
is inside a region, it acknowledges the reception and if it detects that y'v is
outside all regions, then it rejects that block and asks for a retransmission or
for sending some extra information. This method dramatically reduces the
probability of wrong decoding (which occurs if y”V falls in a wrong region),
while the reduction of rate due to retransmissions is negligible. Forney showed
that the error exponent of block ARQ methods approaches zero as the rate
approaches capacity, similar to that of one-way block codes. However, the
slope of the error exponent near capacity for ARQ methods is -1 compared to
0 for one-way block codes. This implies that the ratio of the error exponent of
the decision feedback methods to that of one-way block codes becomes infinite
as the rate approaches capacity.

The ARQ scheme can also be implemented using convolutional codes. A
convolutional code has a better error exponent than a block code, particularly
at high rates. Moreover, the decoding of convolutional codes is a sequential
process, hence a retransmission can be requested before reaching the end of a
code word or message. In this way, variable length ARQ schemes are possible
which can reduce the rate loss due to retransmissions. Convolutional codes
can be decoded by the Viterbi algorithm or the Fano algorithm and both
decoding methods can be used in the ARQ systems. Refs. [22] and [100]
are examples of ARQ schemes based on Viterbi decoding, for which the error
exponent is asymptotically doubled in comparison with one-way convolutional
codes. Examples of ARQ schemes based on the Fano algorithm are given in
[20].

Since decision feedback is not the subject of this dissertation, the interested
reader is referred to [91] for an overview and to references therein for more
detail. Ref. [41] provides a balanced blend of theory and application about
ARQ schemes.

°In [28] the decision feedback is referred to as post-decision feedback, i.e. feeding back
the data derived from one or a sequence of decision results.
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1.6 Information feedback

In information feedback, the transmitter is able to observe every received sym-
bol via a noiseless and delayless feedback channel and use this information in
the coding process. Here the information supplied to the transmitter is about
the channel noise itself. Therefore, the information feedback is referred to as
pre-decision feedback [28]. Our work is mostly concerned with information
feedback schemes for DMC’s and AWGN channels. Thus, we shall examine a
few information feedback schemes for these channels from a new point of view,
see also [81]. Note that our objective is to obtain a general insight into such
information feedback schemes not to exactly evaluate them.

In fact, many information feedback schemes yield highly reliable commu-
nication by efficiently repeating messages or message chips (i.e. message seg-
ments). Even in one-way codes, repetition can improve the error performance
or, in other words, lower the coding complexity for the same error performance.
For example, consider the situation where every code word of a (IW|, N) block
code with maximum decoding error probability Pgmm is repeated L times.
Based on a majority decision rule, an error might occur when half or more of
the blocks are received erroneously. The decoding error can be upper bounded
by gL(Pe]Ymaz)%, where g, = £20 and L « N. This shows that the decoded
messages become more reliable as L increases. However, since the mentioned
repetition mechanism is not efficient, the transmission rate also falls, accord-
ingly.

With reference to the tutor-pupil example, repetition in one-way coding
schemes as opposed to repetition in feedback coding schemes is analogous to a
teacher who always gives several alternative explanations of a subject and one
who gives an alternative explanation only when necessary, respectively. We
distinguish two efficient repetition mechanisms which prevent any rate loss in
most of information feedback schemes. These two mechanisms are referred to
as “repeat to resolve uncertainty” and “repeat to correct erroneous receptions”
in this dissertation. Generally speaking, an encoder using the first mechanism
knows what to repeat and that of the latter one knows when to repeat.

1.6.1 Repeat to resolve uncertainty

In the schemes using the first mechanism, the transmitter sends the entire mes-
sage in the initial transmission. Then, from the second transmission onwards,
the transmitter sends corrections needed to resolve the difference between the
true message and the receiver’s latest estimate of this message. Note that
the transmitted difference is sufficient to completely specify the true message
provided that the difference is received correctly. Based on data received pre-
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viously, the receiver has a list (or distribution) of candidates for the true mes-
sage. Every transmitted correction can be interpreted as the index of the true
message on receiver’s list. As the transmission process continues, the size of
the list decreases or, in other words, the correcting data is compressed relative
to the previous transmissions. In this way, the scheme saves on transmission
energy or, alternatively, on the number of transmissions. In the following, we
explain a few schemes for DMC’s and AWGN channels that operate based on
this principle.

Savage’s scheme

Savage [51] presented a block coding strategy which explicitly uses the concept
of the list coding. The strategy for transmitting each message is a two-step
procedure. For each step a one-way block code is used. In the first step, a
block code is used to transmit one of the [W| messages. The decoder receives a
distorted version of the code word and makes a list of L messages which are the
most likely messages given the received code word, i.e. a list decoding of the
first block code is performed. Then the feedback channel is used to inform the
transmitter about the list and the order in which the messages appear on the
list. In the second step, i.e. the first repetition of the message, the transmitter
chooses a code word from the second code to indicate which message on the list
of the L messages is the true message. For detailed description of the scheme
and its performance the reader is referred to the original paper, however, we
would like to draw attention to the efficient repetition mechanism employed in
the second step. Instead of retransmitting one out of |WW| messages, the scheme
transmits one out of L entries on the list, where L < |W)|. One may argue that
Savage’s scheme must be considered a decision feedback scheme since the list
is obtained after processing the received information. Nevertheless, we present
Savage’s scheme here because firstly the feedback link is used heavily in this
scheme and secondly it provides an introduction to the following methods.

Ooi’s scheme

In [48, 49], James Ooi used Ahlswede’s idea employed in a constructive proof
of the coding theorem for DMC’s with feedback [1], and introduced the so
called compressed-error-cancellation framework for transmitting information
over DMC’s with feedback. Ooi’s scheme is a low complexity capacity achiev-
ing feedback scheme for DMC’s though it gives a good performance for discrete
finite state channels, discrete memoryless MAC’s!? and for channels that vary

0MAC stands for the Multiple Access Channel which is a channel with two or more
transmitters and one receiver.
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with time in an unknown way over a set of possible channels, see [47].
Assume a DMC with complete information feedback and capacity achieving
input distribution gx. Message w € W = {0, 1} is mapped into Ny = F(A;f_
iid channel input symbols according to distribution gx. The resulting block,
i.e. the whole message, is transmitted through the channel. The channel
distorts the message and the transmitter observes the received block via the
feedback channel. For the first (efficient) repetition of the message, the trans-
mitter compresses the distortion into N1 H (X|Y") bits and then maps the result

into Np = mg—g((—)'ﬁ iid channel inputs and transmits the resulting message

through the channel. In the ith iteration (or the (i — 1)St effective repetition
of the message), i = 1...N, the distortion of the previous block is com-
pressed to N;_1 H(X|Y') bits, where N_; = N, then the result is mapped into
N; = ﬁ%f(l%_ll’_) iid channel inputs to be transmitted over the channel. When

the process continuous indefinitely, the number of transmitted symbols is

N NHXY) N, H(X|Y)
X T HX) T TEX

N (HH(XW)+,,_+<H_(§£l)“‘ﬁ...>: N
HX) HX) H(X) HX) - HX[Y)

resulting in an average rate equal to the channel capacity. The length of the
transmitted blocks, schematically shown in Fig. 1.6, decreases as the process
proceeds. In practice, the iteration stops after a fixed number of times. The
last block or, in other words, the base block which contains a small number of
symbols is reliably sent over the channel using a strong termination (feedback)
code, see Fig. 1.6. In addition to the information about the channel noise,
every block contains some other information about the previous block, e.g.
the length of the previous block. Before the termination block, a synchroniza-
tion sequence is sent to mark the beginning of the termination code. This
framework shows the problem of channel coding with feedback to be strongly
related to the problem of source coding for which there are both rich theory
and efficient lossless source coding algorithms.

For decoding, the decoder of the scheme looks for the synchronization
sequence in order to find the termination code, decodes the last block and
uses the decoded information to decode the block before the synchronization
sequence. In this way, the decoded information of the it1 iteration is used
to resolve the uncertainty in the (i — 1)St iteration. This process continues
until the uncertainty in the first block, corresponding to the original message,
is removed. This decoding method is called a right-to-left decoding method
because the receiver must receive the entire code word and decode from the
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Figure 1.6: A schematic illustration of transmitted blocks in every iteration
of Ooi’s scheme.

end towards the beginning of the block. Note that the code words of the
scheme are variable length (in [47] Ooi also presents a fixed length version of
his code). The correct decoding of a received code word depends on correctly
finding the synchronization sequence and correctly decoding the termination
code. Then, the reliability function of the scheme becomes

Eowc(R) = Eq (1 _ I(X—Ry)) , (1.7)

where

Ey = D . 12")) .
0 zrélﬁggf (pY|X( lz) || pY|X( |z ))
As Ooi also mentions “Burnashev [10] has shown that Ecgc(R) is an upper

bound to the error exponent of any variable length feedback transmission
scheme for a DMC”.

Weldon’s scheme, presented in a Bell Labs memorandum dated back in
1962 [93], is an information feedback scheme for Binary Symmetric Channels
(BSC). A BSC is a DMC with two inputs and two outputs where the erroneous
transition probability for each input is p. This scheme is basically similar to
Ooi’s scheme. In Weldon’s version, however, all iterations have the same block
length. In doing so, every block consists of two parts: the compressed form
of the distortion of the previous block and the new information for filling the
remaining of the block. Of course, some provision has to be made for sepa-
rating these two parts in the decoding stage. For the last block Weldon used



22 An overview of feedback communication

an ordinary linear code. Weldon’s method yields an error exponent similar to
(1.7), however, with smaller Ey due to using a linear code for the last block.
Fig. 1.7 shows a schematic view of the blocks transmitted in Weldon’s scheme.

1] | N bits

———— — — 2

__________________

. ‘ ---------------------- : }Termination

linear
code

Base NH(X|Y) bits

Figure 1.7: A schematic illustration of transmitted blocks in every iteration
of Weldon’s scheme.

Center-of-gravity methods

In [55], Schalkwijk gave the center-of-gravity information feedback model as an
unifying principle for many information feedback schemes designed for AWGN
channels. In these channels, transmitted signals are constrained in average
power and sometimes in peak power. In this class of schemes, each trans-
mission is also a compressed form of its preceding transmissions. To explain
the center-of-gravity model, consider W = {1,2,... ,|W|} to be the set of ||
equiprobable messages. Every message w € W corresponds to a D-dimensional
vector x(w) = (z1(w),... ,zp(w)) as the input of a vector channel. Therefore,
the set of input symbols of the channel is defined X = IRP, where IR is the
set of real numbers. The center-of-gravity method is a repetition type scheme,
but it does not simply repeat the input signal N times to have a code word
like *V = (x1,X%g,... ,Xn) where x, = x(w) for n = 1,..., N. Instead, before
the nth transmission, n = 1,... , N, a common signal u, 1 € IRP is computed
at the receiver from already received signals and sent back to the transmitter.
On the nt? transmission, or the (n — 1)St repetition of the message, u,_1 is
subtracted at the transmitter and added again at the receiver. Therefore, the
transmitted vector is

N = ((x(w) — ug), (x(w) — w),... , (x(w) —uy-1)).
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Figure 1.8: An example from [56] to illustrate the center-of-gravity method.

Now what is the optimum sequence u,_1, n =1,..., N, in order to minimize
the average transmission power. From (n — 1) received signals y1, ..., yn_1'1,
the receiver can compute Pxjye-n (X(W)[y1,... ,¥n-1), i.e. the a-posteriori

signal probabilities, for all w € W. From the receiver’s point of view, the
expected energy on the nth forward transmission is

W
E{E,} = Z |x(w) — un—1|2Px|y<n—1>(X(w) | Y1, ¥no1)-
w=1

In Schalkwijk’s terms, “this is the moment of inertia of the signal set around
the tip On_1 of the vector u,_;, see Fig. 1.8. But this moment of inertia
around O, can be minimized by placing O,_; at the center of gravity” [56].
The dt! coordinate of the center of gravity is given by

Wi
Upd = Zxd(w)ﬂw, d= 1,....,D,
w=1

lad d=1,...,D;
Un-1)d = Z md(w) pX|Y("—1) (X(w) | Yi,.-- ,Yn—l)a n = 2’ ,N’
w:1 b AR ] 7

""'When n = 1, the set of received signals is assumed to be empty.
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where 71, mg,... , Ty are the prior probabilities of messages before starting
the transmission. In these methods, the center of gravity approaches the true
message point in the D-dimensional signal space and, therefore, the energy
of transmissions decreases as the process proceeds. On the other hand, sub-
tracting and then again adding common signal vectors u,—1, n = 1,..., N,
does not affect the probability of error if we compare it to the original scheme
that repeats the same signal N times. Moreover, it is possible to stop fur-
ther transmissions as soon as the a-posteriori probability of a message at the
receiver reaches a threshold. In this way a sequential decoding, or a left-to-
right decoding, is possible. In this respect, the center-of-gravity schemes are
different from Qoi-Weldon’s scheme, where one must decode from the end to
the beginning of the received blocks, i.e. the right-to-left decoding.

A suboptimum version of center-of-gravity uses the receiver’s best guess in
the place of the center of gravity. The best (n — 1)St guess is the message
w € W which maximizes ple(n_l)(x(w) | ¥1,.-- ,¥n-1). The best guess is
inferior to the center-of-gravity, however, feeding back one out of |[W| possible
signals needs less capacity in the feedback channel than the amount needed
in the center-of-gravity method. Many feedback schemes for AWGN channels
can be explained by the center-of-gravity principle. In the following we briefly
mention a few important information feedback schemes of this kind. For an
in depth study, the interested reader is referred to the original papers [55, 56]
and references therein.

Turin’s scheme is the first scheme which uses the best guess and the center
of gravity feedback strategies to send a message of one bit, i.e. W = {0,1},
through an AWGN channel [84]. The inputs of the channel are two one-
dimensional (D = 1) antipodal signals. The channel has unlimited bandwidth.
The suboptimum and the optimum versions of this scheme achieve approxi-
mately % of channel capacity and the channel capacity, respectively.

Kramer’s scheme is a best guess scheme for a set of |W| orthogonal signals,
where each of the signals corresponds to one message [35]. At the trans-
mitter, the same set of signals is used in every transmission, however, with
different gain constants. In other words, the orthogonal signals have length
VE1,vVFEs,... ,v/En on the N successive forward transmissions, respectively.
For rates smaller than half the channel capacity, the scheme yields an error
exponent, which is N-folded exponential

(N-1) times c
/—_/\_H
P, <exp | —expexp...exp <(§_R)T> , for R < X
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where T is the total duration of a transmission session. In [36], Kramer showed
that if a peak transmission power constraint is also imposed, the N-fold expo-
nential error exponent cannot be obtained. The peak power constraint limits
the error probability expression to only a single exponential form. However,
even with this constraint the proposed scheme can still provide a significant
improvement over the equivalent one-way scheme.

Schalkwijk-Kailath’s scheme [65] applies to AWGN channels. The input
signal set X is the one-dimensional close interval [5%, £]. The input interval is
divided into |WW| equal length message intervals. The middle point of intervals
is the message point 6 to be transmitted to the other side. An error occurs
if the output y = 6 + 2, where Z ~ N (0, 0?), falls outside of the transmitted
message interval. For simplicity, if every message was repeated N times, and
then N received samples were averaged, we would obtain an estimate

1
9(N)=9+—N—(21+22+...+ZN),

which would have a normal distribution with mean 6 and variance %vz How-
ever, the average transmitted energy during these N transmissions would be

a2
E[EN—repetitions] N_
12
When Schalkwijk and Kailath applied the center-of-gravity principle to the
transmitted signals, they greatly reduced the average transmission energy to

"1
E[ESK —+02 E ;
=1

The error exponent of the scheme is double exponential'? at the rates up to
channel capacity. To wit,

P, <exp (4N

er(Cc - RY),

where T and % are the total duration of a message transmission session
and the two-sided power spectral density of the AWGN, respectively. In [54],
Schalkwijk extended this result to band limited AWGN channels by expanding

12Tn [98], Wyner showed that imposing peak power constraint yields a single exponential
error exponent.
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the signal structure after each iterative transmission and obtained the first
deterministic scheme to achieve the capacity of a band limited AWGN channel.

Butman’s scheme is an extension of Schalkwijk’s scheme to Gaussian chan-
nels with memory [12]. He takes into account the memory in the forward
channel in making the linear least mean square estimate at the receiver. For a
Gaussian channels with memory (first-order autoregressive noise), Butman’s
scheme increases the capacity of the feedback-free channel. Ozarrow [50] ex-
tended Schalkwijk’s scheme to AWGN MAC’s with two users and to broadcast
channels. In this way, the capacity region of the MAC with feedback is shown
to be larger than that of the feedback-free MAC and the achievable region
for most broadcast channels with feedback is shown to lie outside the set of
rates achievable in the absence of feedback. Omura [44], Kashyap [34] and
Campbell [14] devised methods similar to Schalkwijk’s scheme.

1.6.2 Repeat to correct erroneous receptions

The information feedback schemes using the second mechanism repeat mes-
sages or message chips whenever necessary. If a message (chip) is received
correctly, the transmitter moves on to the next message (chip). Otherwise,
the entire message (chip) is repeated. From this point of view, these schemes
are similar to the ARQ schemes discussed in Section 1.5. However, here the
transmitter side which observes the received message (chip) via the feedback
channel initiates the acknowledgement or rejection decision. Therefore, there
is a need for a mechanism to convey the acknowledgement or rejection signals
to the receiver for every message (chip). In the schemes using this mechanism,
the rejected message (chip) is totally neglected and it is not possible to com-
press the correcting repetitions or to optimize their transmission power (in
fact, sometimes there is an expansion of transmissions in order to correct an
erroneous reception). The optimum performance in these schemes is gained
due to immediately repeating the erroneous receptions. In the following we
explain a few information feedback schemes that use this mechanism to correct
transmission errors.

Schalkwijk-Barron’s scheme

This is a sequential signalling over AWGN channels subject to a peak power
constraint [64]. The signalling has two modes: the message mode and the
control mode. In the message mode, one of |W)| messages is sent over the
channel using a set of [W| orthogonal signals. Then the receiver sends back
the decoded message or the transmitter deduces it by observing the received
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|| message decoded || control decoded || the next transmission ”
correctly correctly (ack — ack) new message
erroneously correctly (rej — rej) retransmission
correctly erroneously (ack — rej) retransmission
erroneously erroneously (rej — ack) new message

Table 1.1: The decoding outcomes of the message and the control signal in
Schalkwijk-Barron’s scheme, where ack and rej stand for acknowledgement
and rejection control signals, respectively.

signal. In the control mode, the transmitter sends the acknowledgement or
the rejection signal depending on whether the decoder is correct or not, re-
spectively. The receiver decodes the control part and if the decoded result is
an acknowledgement, the receiver accepts the decoded message as correct. If
the control part is decoded as a rejection, the receiver discards the decoded
message and waits for a retransmission. Table 1.1 summarizes the possible
alternatives in decoding the message and control parts, as well as the content
of the next transmission. Notice the third row where the message is decoded
correctly but the acknowledgement is decoded as a rejection. Since the trans-
mitter is also informed about the decoded control signal, it retransmits the
same message to undo the error. A decoding error occurs only when the mes-
sage is decoded erroneously and the rejection control signal is decoded as an
acknowledgement, see the forth row of Table 1.1.

As mentioned before, Schalkwijk and Barron used a set of orthogonal sig-
nals to send the message part. For the control part, they used a sequential
decision feedback scheme for the AWGN channel, which was first described
by Viterbi [92]. Two antipodal signals \/P,, and —+/P,, are repeatedly sent
through the channel to convey the acknowledgement and the rejection signals,
respectively. The receiver computes the log-likelihood ratio ln(g—f), where p,

and p_ are the posteriori probabilities for v/P,, and —+/P,, signals, respec-
tively. As soon as this ratio reaches a positive or a negative threshold the
transmission of the control signal is terminated.

Unlike the scheme of Schalkwijk and Kailath which requires unlimited peak
power, this scheme has limited peak power. In the message mode, the energy
of the orthogonal signals is P,,Ty, and in the control mode the average energy
of the antipodal signals is P,,T,, where T}, and T are the duration of the mes-
sage signal and the average duration of the control signal, respectively. This
scheme was devised in order to show that even with a peak power constraint,
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an information feedback scheme can communicate at rates up to channel ca-
pacity with a rehablht]y function larger than that of the one-way methods.
In general, when o = —’ﬂ > 1 Schalkwijk and Barron derived the following
error exponent

E.(R) = (VaC —R++VC — R)*. (1.8)
Note that we only explained the case of o = 1.

Yamamoto-Itoh’s scheme for AWGN channels [99] is a modification of
Schalkwijk-Barron’s scheme, where in the control mode Yamamoto and Itoh
employed a new blockwise decision scheme instead of Viterbi’s sequential deci-
sion scheme. In this way, a totally fixed length transmission method is obtained
such that the same reliability function as (1.8) is asymptotically attained.

Yamamoto and Itoh also generalized Schalkwijk-Barron’s scheme for use
in DMC’s. In a block of N transmissions, a block code of length yN is used to
send the message part, 7 < 1. They used the rest of the block for the control
part to convey the acknowledgement or the rejection signals to the receiver
using two code words x(!I=VN = (z,z,... ,z) and xIIN = (¢ o' ... 1),
where z and z' € X, respectively. A received control part is decoded to an
acknowledgement if n,, the number of output symbol y in the received control
part, satisfies

(1 =7)N - pgy(Ll —8) <y < (1 —4)N - pgy(1 +9) forally € Y,

where pzy = py| x (y|z). Otherwise, the control part is decoded to a rejection.
Hence, the reliability function of the scheme becomes

Ey1(R) = Ey (1 - T(—)i—Y—)) ;

where

Ep = max D (py1x Clz) | Py x(-12) -

z,T

Note that this reliability function is the same as that of Ooi’s scheme, as Ooi
used Yamamoto-Itoh’s scheme as the termination code.

Multiple repetition feedback coding schemes

Based on Horstein’s results, see the following paragraphs, Schalkwijk [58] de-
rived a class of simple and asymptotically optimal strategies for block coding
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on BSC’s with noiseless feedback, which are nowadays referred to as Mul-
tiple Repetition Feedback Coding (MRFC) schemes. Resembling Horstein’s
strategy, but having very low coding complexity, a recursive (nonblock) cod-
ing method of MRFC schemes for BSC’s was proposed in [66] by Schalkwijk
and Post. Since then, MRFC schemes have been extended to a large class of
DMC's, see [4] and [91].

Here we briefly explain MRFC schemes in the framework of the repeat to
correct error mechanism. In this framework, we assume that every message
consists of message chips to be transmitted to the receiver. Every message
chip corresponds to a channel input symbol. Suppose that the transmitter
sends symbol x over the DMC. Upon correct reception of the symbol, the
next symbol is transmitted. However, if = is erroneously received as y # z,
then z is retransmitted kg, times. In the decoder, a received subsequence
yzk=v ie. a y followed by kzy z’s, indicates the transmission error z — .
The error is subsequently corrected by replacing subsequence yz*sv with z
to retrieve the corresponding message chip. In order to prevent removing
message chips, the sequence of message chips must be constrained or precoded
such that the corresponding channel inputs do not constitute the so-called
forbidden subsequences yz*sv, z # y. In MRFC schemes there is no explicit
acknowledgement signal but the rejection signal, which does not occur so often,
is a few repetitions of the symbol in error. In fact, the acknowledgement signals
are hidden in the sequence of the message chips, where a correctly received
message chip, i.e. its corresponding channel input symbol, cannot be the
beginning of a forbidden subsequence. This is guaranteed by the precoding
and repetition rules.

Horstein’s scheme [29] is a sequential scheme to transmit a message
through a BSC with noiseless feedback. The message is composed of iid bits
with pw(0) = pw (1) = 0.5, which is called the message sequence. Let p be
the crossover probability of the BSC and ¢ = 1 — p. If a binary point is put
to the left of the message sequence of infinite length, the message may then
be represented by a point in the interval (0,1) and it is called the message
point in Horstein’s terminology. In the following, we want just to show how
Horstein’s scheme uses the repeat to correct error mechanism.

The encoding procedure is based on receiver’s distribution for the location
of the message point. In every iteration, the receiver distribution fg ~1), 1=
1,2,..., is modified according to the ith received bit. The next transmitted
bit depends on the location of the message point with respect to the median of
the last receiver distribution. The (7 — 1)St median, i.e. m;_1,7=1,2,...,isa
point on the interval (0,1), which divides receiver’s (i — 1)S* distribution into
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Figure 1.9: An illustration of how Horstein’s scheme determines a transmission
bit and how the next distribution of the receiver is determined according to
the received bit.

two equiprobable parts. Initially, the receiver has no priori knowledge about
the message sequence. Therefore, its initial distribution of the message point
is uniform over the interval (0,1) and consequently mo = 0.5, see fg in Fig.
1.9. In the ;th transmission, if @ lies under m;_1, 0 is transmitted; otherwise 1
is transmitted. In this way, from the receiver’s point of view, the probability
of transmitting 0 or 1 is always 0.5. Upon receiving 1 at the ith transmission,
ie. y; = 1, the probability that the message point lies in interval (mi—1,1)
can be written (from the receiver’s point of view) as

Pr{® € (mi_1,1)| YD =y y; = 1} (1.9)
Pr{@ € (mi_1,1),Y; = 1[Y0D =y}
Pr{Y; = Y& =y 1]
Pr{® € (m;_1,1)[Y0D = y(i-D}
Pr{O € (m;_1, )|y} . Pr{Y; = 1ly(=b,0 € (m;_1,1)}
Pr{Y; = 1Y) = y0=1) @ € (m;_y,1)}
+Pr{® € (0,m;_1)|yi=b} - Pr{Y; = 1|lyt1,0 € (0,m;i-1)}
0.5 xgq

0.5xg+05x%xp
= g (1.10)

On the other hand, when y; = 1, the upper part (above m;_1) of receiver
distribution fgﬁl) is multiplied by factor A to obtain fé, see Fig. 1.9. Then,
in the resulting distribution, the area above median m;_; indicates the proba-
bility that the message point lies in interval (m;_1,1), given y; = 1. This area
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should be equal to ¢ as seen in (1.10). Therefore, the multiplication factor A
comes from

1 1 .
| ss@ = [ @) A=

mi—1

q
= A= — = 2q.
[ & 0) do

In a similar way, we can obtain the multiplication factor 2p for the part of the
receiver distribution under m;_;, again assuming that y; = 1 has been received.
Likewise, upon reception of 0, the lower side of m;_; in receiver’s distribution
is multiplied by 2¢ and its upper side is multiplied by 2p, see Fig. 1.9. The
next transmission bit will be determined according to the position of 8 with
respect to m;, the median of the ith distribution, where fnl% f5(6) do = %

In the ith transmission, it appears that Horstein’s scheme sends (repeats)
the difference between message 6 and median m;_; (the latest estimation of
the massage at the receiver). However, one must notice that the complete
difference here is not sent through the channel as it is done in the schemes
using the repeat to resolve uncertainty mechanism. For example, in the center-
of-gravity or Ooi-Weldon schemes, the transmitted difference is sufficient to
completely specify the message if the corresponding difference is received cor-
rectly, while this is not the case for Horstein’s scheme. If we regard every
transmitted bit here as a message chip, however, this scheme fits better in
the category of the schemes using the repeat to correct error mechanism. The
very similar interpretation is also used for MRFC schemes!®. Note that the
real message 6 and encoding rules determine the sequence of the transmitted
message chips.

Whenever a transmission error occurs, the next median drifts away from
the message point 6, see the lower part of Fig. 1.10 for a schematical illustra-
tion. Therefore, the message chip in error is retransmitted a few times in order
to push the median back towards 6. In this way, Horstein’s scheme effectively
rejects the erroneous reception of a message chip. On the other hand, when a
message chip is received correctly, it can be seen that the median point moves
towards 0. The upper part of Fig. 1.10 shows the medium points in a few
such transmissions. For a correctly received message chip, the scheme has an

"*Interesting to know is that Schalkwijk [58] derived MRFC schemes for BSC’s by detailed
study of the median path of Horstein’s scheme. He noticed that for certain crossover proba-
bilities of the channel, the (k — l)st median after an error coincides the one before the error
(k > 2 is an integer number).
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implicit acknowledgement procedure by letting the median move towards the
message point without being rejected as in the previous case. The cost of such
implicit signalling is paid when the receiver distribution is multiplied by pair
(2p, 2q) instead of (0,2) (even for the correctly received message-chips). With
some inspection, it can be seen that multiplication factors (2p, 2q) are essential
in rejecting an erroneous message chip when it occurs.

J my
-+ Mit1
0 .. .
-+ TNi42
4 mi
z; =1 ziy1 =0 Tip2 =0 T3 =1
yi=1 Yit1 =0  yit2 =0
m; T Mt | 142
N e R T M43
O e
-+ mi—1
Iy = 1 Ti+1 = 0 Ti42 = 0 T;43 = 0 Ti+4 = 1
Yi = Yir1 =1 9i42=0  yip3=0

Figure 1.10: An example to illustrate the median points in a few correct
transmissions (above) and those when a transmission error occurs (below).

The first message bit is decoded at, let say, the nth transmission if the
area of receiver distribution exceeds (1 — P.) in one of the half intervals (0,
0.5) or (0.5, 1). Then, the first decoded bit, i.e. 1, is set to 0 or to 1,
respectively. The interval corresponding to probability P is discarded and
the area corresponding to probability (1 — Pe) is expanded to 1. Assuming
that the first bit was decoded to 0, the second message bit is determined as
soon as either area of the intervals (0, 0.25) or (0.25, 0.5) exceeds (1 — Fe),
and so on. Here n is the number of transmitted symbols influenced by a given
message bit, or according to Horstein, it is the constraint length of the scheme,
which is a random variable designated by N. Let P2 denote the probability
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of aw; =0— w; =1 error**, i =1,2,.... The error exponent is defined and
given as
. —log P? 1
EY = lim —2-¢ = D(0.5 = 0.5log — 1.
n= A —s (0.5 [ p) %8 1o (1.11)

where N = IE[N], see [29]. Due to symmetry, the error exponent of a 1 — 0
error can be written as E}I = E?I. This exponent holds when the transmission
rate is equal to channel capacity. Because, according to Horstein, every trans-
mitted bit is equally probable from the receiver’s point of view so the average
amount of conveyed information equals

R =plogbp—5 +qlog% = h(0.5) — h(p) = C.

Zigangirov and Burnashev used Horstein’s idea in [104, 101, 102, 103] and
in [10, 11], respectively, where they modified Horstein’s scheme and improved
some shortcomings of Horstein’s presentation.

1.7 Advantages of feedback communication

Nowadays, two separate one-way coding schemes are applied to many two-
way channels. However, in these duplex channels information usually flows
in one direction only and, therefore, there is a potential to employ a feed-
back communication scheme. In this section we summarize the advantages
of feedback coding schemes over feedback-free, i.e. one-way, coding schemes.
Knowing these advantages is essential for a communication engineer in order
to design an efficient communication system for which all available resources
are exploited and the best trade-offs are made among the possible alternatives.

Channel capacity

Shannon [69] proved that the capacity of a memoryless channel is not in-
creased by feedback. Alajaji [2] showed that this statement is also true for
discrete channels which add modulo-]X| an input-independent noise process
with memory. However, there are many channels with memory where capacity
is increased by feedback. For some simple channels with memory see [19]. For
an additive Gaussian channel with memory (first order autoregressive noise),
Butman [12] proposed a feedback scheme that yields a higher rate than the

"“Note that for message bit w;, Horstein assumed that no decoding errors are made during
interval of the IV transmissions.
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capacity of the feedback-free channel. Gaarder and Wolf [24] showed that
the capacity region of a memoryless MAC can be increased by feedback. Ex-
tending Schalkwijk’s scheme to a two-user AWGN MAC with feedback and
to broadcast channels with feedback, Ozarrow [50] showed that the capacity
regions of the channels with feedback are larger than those of the feedback-
free channels. Shannon in [69] showed that the zero-error capacity of some
memoryless channel can be increased by feedback.!'® Making use of feedback
for enlarging the channel capacity appears to be appealing when we notice
that, on the one hand, many communication channels have memory and, on
the other hand, the number of multiuser channels such as MAC’s is growing
in the era of data communication networks.

Coding complexity and error performance

There are methods to define the concept of system complexity, for example
see [52], [53] or Chapter 7 of [16], but we confine ourselves to a common sense
definition of the complexity. We can consider the complexity as the amount
of computation and memory needed in the coding process, i.e. encoding and
decoding. The reliability function is one of the best tools that gives an insight
into a tradeoff between the error performance and the complexity of different
methods, though comparison based on the value of the error exponent is not
fair for feedback schemes. The reliability functions of feedback schemes are
mostly derived from deterministic procedures, while their one-way counter-
parts are based on random coding arguments.

Feedback coding schemes require less complexity compared to feedback-
free coding schemes for the same error performance. This statement can be
illustrated by the following argument. Let E,(R) and Ny, denote the error
exponent and the block or constraint length of a feedback coding scheme and
Eow(R) and Ny, denote the corresponding parameters of a one-way coding
scheme. For a given error performance we have Efy(R)Nyy = Eow(R)Now-
Generally Ef(R) > E,u(R), therefore, Npy < N,y. The complexity of dif-
ferent coding schemes is related to the block or the constraint length of the
coding scheme. In fact, the complexity of feedback coding schemes is usually
linear with the block or constraint length. On the other hand, the complexity
of many one-way coding schemes is exponential on block or constraint length
(for example the well known the Viterbi decoder). Hence for an identical
constraint or block length, feedback scheme are, in general, much easier to
implement. We finish this section with a statement by Erik Meeuwissen [40],

15Capacity is the supremum of rates at which the decoding error probability goes to zero
(with increasing the block length) and zero-error capacity is the supremum of rates at which
the decoding error probability is equal to zero.
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which nicely captures the dual role of feedback in performance and complexity
aspects.

“The real problem in communication engineering is to find a tradeoff be-
tween performance and complexity. The attractiveness of freely available
feedback is that it can increase performance and decrease complexity at
the same time.”

1.8 Overview of the thesis

This dissertation is organized in eight chapters. Chapter 2 gives a summary
of MRFC schemes to which we will refer in the remainder of the dissertation.

To tackle the problem of noisy feedback channels, we present a feedback
strategy for AWGN channels in Chapter 3. Using MRFC schemes, a band-
width efficient modulation method is designed for AWGN channels where both
forward and feedback channels have the same signal to noise ratio. The result-
ing method gives about 5.5 dB improvement over uncoded transmissions. In
this method, the decoding complexity is considerably simplified as one com-
pares it with the complexity of the trellis coded modulation. Given the fact
that only one bit per dimension is fed back, the feedback channel can essen-
tially be considered errorless for channels with moderate signal to noise ratios.
The performance of the proposed method is supported by running simulations
and the results are compared to those of the existing methods.

In Chapter 4, it is shown how the error performance of block MRFC can
be improved by block retransmission strategies. For asymmetric DMC’s, one
of the presented strategies even yields a superior error performance compared
to that of the already existing MRFC schemes.

Chapters 5 and 6 deal with the modification of MRFC schemes to use them
in soft-output DMC’s. A soft-output DMC, for example, can be obtained by
quantizing the output of a binary-input AWGN channel. A class of compound
channels is used to define soft-output DMC’s. For this class of compound chan-
nels, it is shown that feedback and delayed side information at the transmitter
cannot increase the capacity of the channel. Then, the modification of MRFC
schemes is presented for a two-input four-output DMC. The new repetition
scheme yields rates very close to channel capacity by using a proper Markov
source as the precoder. Note that MRFC schemes consist of a precoding part
and a repetition part. For the repetition part, the block and recursive coding
methods of the new scheme are investigated in Chapter 6. This is followed
by describing a practical precoding scheme. The extension of the new scheme
to other channels, e.g. the Gilbert-Elliot channel and the block interference
channels, with channel side information at the receiver is briefly outlined.
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Finally in Chapter 7 we end the thesis by describing some useful applica-
tions for the obtained results, outlining some open problems and giving a few
suggestions for future research.



Chapter 2

Multiple repetition feedback
coding schemes

Multiple Repetition Feedback Coding (MRFC) schemes are a family of sim-
ple and efficient information feedback schemes for a large class of DMC’s. In
MRFC schemes, an erroneous reception is immediately corrected by repeat-
edly sending the correct input symbol. Therefore, the repeat to correct error
mechanism as explained in the first chapter is used in these schemes. Because
MRFC is the core of the presentation in the following chapters, this chapter
summarizes the important aspects of MRFC schemes which are relevant to
the dissertation.

2.1 History of MRFC

One of the many schemes that exploits a feedback channel is Horstein’s se-
quential coding scheme [29] for a BSC. Horstein’s scheme, briefly explained in
the first chapter, suffers from implementation complexity. As message trans-
mission proceeds, the required accuracy of the calculations for the receiver dis-
tribution and the median points increases. Another drawback of the scheme
is that it is not mathematically tractable. Some modifications to Horstein’s
scheme, see for example [104, 101, 102, 103, 10, 11], were made to enable rig-
orous analysis, often, however, at the expense of even greater complexity of
implementation. In 1971, Schalkwijk noticed that the (k + 1)t median co-
incides with the first one for certain channel crossover probabilities. In Figs.
2.1 and 2.2 the median paths of a few successions of transmissions are shown
in two different cases, 6 being the message point, fé and m; are the receiver

distribution and the corresponding median after receiving the ith bit, respec-
tively. Let p be the crossover probability of the BSC. In Fig. 2.1, it is assumed

37
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Figure 2.1: The median path for a few successive transmissions in Horstein’s
scheme with no transmission error.

that there is no transmission error. In this case, in order to m;—1 = M;4p—1
we must have

Mi—1 A mi4k—1
[ @ = [ 1570 2 0 o=
0 0

or
2p (2q)%D = 1. (2.1)

Let crossover probability pi = 1 — gx be the solution of equation (2.1) for
a given k > 3. In Fig. 2.2 an error occurs at the i1 transmission. Therefore,
the itP median jumps to m;, and not to m} as it should. The following (k —1)
transmissions bring the median back to the original place, as mentioned above,
and the kB signal puts the median to its correct value m;, the same place as
it would be if the error did not occur, i.e.

i e ; 1
/ 55700) 2000 = [ £5700) 20 () 24 a0 = 5.

Due to (2.1), the above equation follows from the fact that the receiver’s
distribution of the message point does not change in the interval below the
erroneous excursion, i.e. interval (0,m;_1) in Fig. 2.2. Therefore, even when
an error occurs, the position of the subsequent medians does not change once
the error is corrected. This is rigorously proven by Veugen [89]. Schalkwijk
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Figure 2.2: The median path for a few successive transmissions in Horstein’s
scheme with one transmission error.

considered the path of medians as an indicator of the true message point,
which jumps to an erroneous path when an error occurs and returns to the
correct path after £ correctly received bits. Schalkwijk also noticed that an
error-free median path does not allow transmitting subsequences 10%, i.e. 1
followed by k 0’s (see Fig. 2.1), and 01¥. When these subsequences occur
in the received sequence, they indicate a 0 — 1 error and a 1 — 0 error,
respectively. This observation of Schalkwijk led to the creation of a class of
simple and asymptotically optimal strategies for block coding on BSC’s with
noiseless feedback, which are nowadays referred to as MRFC schemes.

2.2 MRFC for BSC’s

Schalkwijk’s observation considerably simplified Horstein’s scheme and elim-
inated the computation of the receiver distribution and its median at every
transmission. The error correcting mechanism of MRFC schemes forces the
output symbol of the channel to equal the corresponding input symbol by
employing the repeat to correct error mechanism. Fig. 2.3 shows the block
diagram of the encoder of a MRFC scheme for the BSC. The encoder con-
sists of two parts: the precoder and the transmitter. When 0 is erroneously
received as 1, the transmitter repeats 0 k-times and when a 1 is erroneously
received as 0, the transmitter repeats 1 k-times. By observing subsequence
10% or 01 in the received sequence, the decoder detects a transmission error
and replaces the subsequence with 0 or 1, respectively. Of course, the input
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sequence to the transmitter should be constrained by the precoder in such a
way that 10¥ and 01% subsequences do not occur in v, see Fig. 2.3. Therefore,
the precoder maps message w into a sequence satisfying these constraints.

w v t r
im0 -

Figure 2.3: Block diagram of the encoder of the MRFC scheme for a BSC.

Definition 2.1 (Forbidden subsequence) Those subsequences which are
not allowed to occur at the output of the precoder are called forbidden subse-
quences.

Note that forbidden subsequences are error indicators in the received sequence.
In MRFC schemes for BSC’s, 10¥ and 01* are forbidden subsequences for rep-
etition parameter k. During transmission of the correcting bits of a precoded
bit in error, new errors may occur. Each new error again causes k repetitions.

Definition 2.2 (Correction subsequence) The correction subsequence of a
precoded symbol that is erroneously received is the total sequence of repetitions
needed to correct the error.

Example 2.1 Consider the following outcomes in a MRFC scheme for BSC’s
with k = 3.

v = ... 01 1
t = ... 011111111
r = ... 001101111

where v, t and r are the precoded, transmitted and received sequences, re-
spectively, as indicated in Fig. 2.3. The line in the sequence t indicates the
correction subsequence of a precoded bit in error and the lines in sequence r
indicate the forbidden subsequences in the received sequence. In the decod-
ing stage, the net effect of the inner forbidden subsequence in ris a1 which
constitutes one bit of the outer forbidden subsequence. O
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2.2.1 Precoding Rate

The precoder of MRFC schemes is a constrained channel whose capacity, or
the so-called precoding rate, was studied in Shannon’s original paper [67].
The precoder of the scheme mentioned in the previous subsection can be seen
as a Finite State Machine (FSM) with non-transient states Q5 Q3,..., ’8'1
and Q},Q?,...,Q% ! For example, see the FSM with k£ = 5 shown on the
left-hand side of Fig. 2.4, where a solid transition and a dashed transition
correspond to producing 1 and 0, respectively. The precoding rule implied
by the FSM can be expressed as follows. After every 0 or 1 there should not
be k ones or zeroes, respectively. Or due to symmetry, after every change in
the output bit of the precoder, there should not be k similar output bits, see
the FSM consisting of states Q',Q%,...,Q*"! in the right hand-side of Fig.
2.4 where a solid transition and a dashed transition correspond to producing
a precoded bit that is the same as the previous precoded bit and a precoded
bit that is different from the previous precoded bit, respectively. Due to the
restrictions mentioned above, a change is forced in state Q ~1) (or in states

Q™Y and Q).

Figure 2.4: Two FSM diagrams of the repetition scheme for a BSC with k = 5.

Two general procedures for calculating the precoding rate of such schemes
are presented in Appendix A. Nevertheless, to obtain an intuitive understand-
ing, we also explain here two other approaches. Remember from Horstein’s
scheme that the interval (0, 1) consists of M message subintervals such that
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each message point is located in the middle of the corresponding subinterval.
Let us assume that all bits are transmitted correctly over a BSC with the
channel crossover probability satisfying condition (2.1). The corresponding
median paths constitute a so-called zero-error tree, see [66]. In this case, the
distribution in the true message interval of the width % will be multiplied by a
factor of (2gx)* in L transmissions and the corresponding message probability
becomes
1 L L
—(2 ~1 = M =~ (2 .
77 (2ax) (2qk)
Here we assume that the subintervals are so small that the medians do not
fall in the true message subinterval. The precoding rate indicates how many
information bits are conveyed by a precoded symbol, i.e.

& log M

RO = lim
L—oo

= log(2g). (2:2)

According to this intuitive interpretation of the precoding rate [58, 91], a
precoder which itself is a constrained channel and independent from any BSC
is related to Horstein’s scheme, whose distribution is always correctly modified
by a factor pair (2gx, 2pg)-

Another way to calculate the precoding rate is to enumerate the number
of precoded sequences. Let M (L) denote the number of distinct precoded
sequences of length L. The corresponding recurrent equation can be written
as

M(L)=2M(L—-1)-M(L-k)  forL>k. (2.3)

To solve this recurrent equation, let us assume that M(L) = Kol in (2.3),
where K is independent of L. Then, we obtain the characteristic equation

of =201 — 1. (2.4)
Let oy be the largest real solution of (2.4), then

log M (L
RE = lim 28M(E)

=1 .
L—oo L 08 %k

Equation (2.4) can be written as (2 — a)al*~1 = 1 and comparing it with
(2.1), we have

ag = 2qg,

which shows that these two approaches give the same result. In the following
subsections, two coding methods of MRFC for BSC’s will be explained.
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2.2.2 Block coding

The block diagram of the block MRFC is shown in Fig. 2.5, where L precoded
bits are transmitted in NV transmissions. If e errors occur in these transmis-
sions, then N = L + ke. In block coding, when L precoded bits are to be
transmitted through a BSC, there is no guarantee of exactly e errors and,
therefore, a block length of N = L + ke bits.

w vl tN rN
. Channel error
—|Precoder Transmitter BSC remover
Inverse W
precoder

Figure 2.5: The block diagram of the block coding of MRFC for BSC'’s.

Block encoding

Schalkwijk [58] followed the precoded symbols by a tail to ensure that the
scheme is able to correct up to e errors in a block. In his version, a certain
sequence of length N — L, denoted by zILV_I_1 = 2L+1,--- ,2N, is appended to
the precoded sequence before transmission. This added sequence is called the
tail or the redundancy of the repetition part of the encoding. In MRFC for
the BSC, the tail can be constructed by alternating the last bit of v¥ until
length N is reached, i.e. zgﬂ =0r,v1,0L,... ,VL /0L, where 0 = 1 and 1 =0,
see Fig. 2.6.

10101010101010101

Figure 2.6: A code word of the MRFC scheme (before transmission).

During transmission, whenever a channel error occurs and, consequently,
the corresponding transmitted bit is repeated k times, the last k bits of the
tail are deleted. A tail of 7= N — L = k fN + 1 bits is sufficient to correct
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up to e = fN channel errors in a block, see [4] and [91] for the proofs. Here
f is called the correctable error fraction of the block (for convenience fN is
assumed to be an integer number). Therefore, the rate corresponding to the
transmitter unit in Fig. 2.5 can be written as
L 1
—=1-kf—-—
N ! N
and since every precoded bit asymptotically contains R’g information bits, the
asymptotic transmission rate can be written as

R(f) = R§(1 — k). (2.5)

For a BSC with p = 0.02, the transmission rate of MRFC scheme with k£ = 4
is depicted in Fig. 2.7 in terms of rate verses correctable error fraction f. The
rate performance lines in (2.5) are straight lines and tangent to the Hamming
bound, i.e. 1 —h(f)!, at f = px, where pj is the solution of (2.1) for a given
k. To show this, we can write

R(px) = RE(L—kpp) = (1—pe)RE — (k— 1)ppR§
(8
@ e log(2ax) — pi log(2a) 0 2 gx log(2qx) + pi log(2pk)
= 1~h’(pk)7

where in (o) and (3) relations (2.2) and (2.1) are used, respectively. At this
intersection point, the rate performance line of the corresponding scheme is
tangent to the Hamming bound because

1
d Dk 2kq{F~1 k
A, =log(PE) =log | 2% | = —klog(2qi) = —KkRE.
df( (f) r=ps g(qk) 3 2(24x) 0

Block decoding

The block decoding of the MRFC is carried out in two stages. The second
stage is the so-called inverse precoder, which exists in both block and recur-
sive MRFC schemes and maps the precoded sequence into the corresponding
message. The issue of the precoding will be addressed in Chapter 6.

In the first stage, channel errors are detected and corrected by locating and
appropriately replacing the forbidden subsequences. For doing so, the decoder
moves from the end towards the beginning of received block r N and looks

"Function h(f) = —flog f — (1 — f)log(L — f).
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Figure 2.7: The rate of MRFC scheme for BSC’s with k = 4.

for forbidden subsequences, e.g. subsequences 01 and 10* in the mentioned
MRFC scheme for BSC’s. As soon as a forbidden subsequence is found, the
last bit of the subsequence replaces the whole subsequence. For example,
7i...ri4x = 01% indicates that an error has occurred at the ith position,
therefore, 71 = 1 substitutes the subsequence. After the replacement, and
again moving from right to left, the decoder looks for the next forbidden
subsequence which starts at position 7' < 4. For this reason, this method is
also referred to as the right-to-left decoding.

Let sequence ¥ denote the first L bits of the resulting sequence when the
decoder finally reaches the beginning of the received block. A block decoding
error might occur when e > f N, i.e.

Py=Pr{VE£vE} < Pr{kE+1>T} = Pr{E > fN +1}, (2.6)

where random variable E denotes the number of occurred errors in a block.
If p is the crossover probability of the BSC, then F is a Bernoulli random
variable with the parameter p. An upper bound to the right hand side of (2.6)
can be obtained from the Chernoff bound

1
P,=Pr{E > fN +1} < 2~ PUIDN for p<f<o, k23, (27)

where D(-||-) is the divergence function or the Kullback Leibler distance defined
in Def. 1.8. The equality in (2.7) holds asymptotically (with some factor of
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the order N7 on the right-hand side) [25, pp. 130] and, therefore, we can
define the exponent

. —log, Pr{E > fN+1

=D(f I ), (2.8)

for p< f <L k>3 From (2.6), (2.7) and (2.8) we can write
k

P, <27 BN forp<f<—, k>3 (2.9)

1
Ea
We will frequently use the upper bound (2.9) to estimate F,. The exponent
E,(f) can be related to the transmission rate via (2.5) to obtain the reliability
function (corresponding to probability P,). This reliability function of the
MRFC scheme with repetition parameter k = 4 is depicted in Fig. 2.8 for a
BSC with p = 0.02.

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

R(f)

Figure 2.8: The E,(f) exponent of the MRFC scheme with k& = 4 used in a
BSC with p = 0.02, where p < f < 0.25.

Remark 2.1 Note that if p = pg, then R(pg) = 1 — h(px) = C(pk), ie. the
transmission rate (more precisely, the supremum of achievable rates, see also
Example 2.4) coincides with the capacity of the BSC. As we can see from Fig.
2.8, the E,(f) is very small at the rates close to R(p) (or at the rates close to
channel capacity when p = pg). O
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Figure 2.9: Left: a BSC with asymmetric input distribution; Right: the mul-
tiplication factors of the receiver distribution.

2.2.3 Recursive coding

The recursive (non-block or sequential) coding method of MRFC schemes
for BSC’s was proposed in [66] by Schalkwijk and Post. They considered
Horstein’s scheme for a BSC with the crossover probability p and assumed
that 0 is transmitted with probability a instead of 0.5, see Fig. 2.9. The
quantiles, the term which the authors used instead of the medians because
a # 0.5, in the (i + 1)S transmission are therefore computed according to

q;
50 dd=a, i=0,1,....
0

Such an input distribution induces the output distribution
(mo,m) = (p(1 — a) + qa, pa+q(1—a)). (2.10)

According to Horstein's scheme, the lower and upper parts of the quantile in
the receiver distribution must be multiplied by the pairs (5, &) or (£,1)
upon receiving 0 or 1, respectively, see also Fig. 2.9. The probabilities p and
a for which the quantiles coincide before and after reception of 10~1) and
10(=1) subsequences can be computed. In fact, the following conditions, see
(5) and (6) of [66], must hold

2 (i)wﬁl) _1, (2.11)

T \To
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2 (i)U_U —1. (2.12)

™ \T1

For a given pair of repetition parameters (k,!), solving equations (2.11) and
(2.12) gives p = p and my = 7y, which results in a regular quantile path
of 1-up (k — 1)-down and 1-down (I — 1)-up?. By using (2.10), one can also
obtain the corresponding a = ag;.

Recursive encoding

A MRFC scheme which corrects one 0 — 1 error by transmitting 0 k-times
and corrects a 1 — 0 error by transmitting 1 [-times performs similarly to
such a Horstein scheme used for a BSC with p = pg; and a = ag. The
block diagram of the recursive coding system is shown in Fig. 2.10. The
transmitter sends precoded bits continuously and every transmitted 0 or 1
which is received erroneously is repeated k or [ times, respectively. Since the
forbidden subsequences of the resulting repetition scheme are 10* and 01, the
corresponding precoder has an asymmetric FSM (imagine the one shown in
the left hand side of Fig. 2.4 but with (k — 1) states and (I — 1) states for
producing consecutive 0’s and 1’s, respectively).

Recursive decoding

Unlike the previous method, recursive MRFC schemes [66] use a left-to-right
decoding method. This means that the decoding is realized with a small delay.
A recursive decoder consists of an estimation unit, a channel-error removing
unit and an inverse-precoding unit, see Fig. 2.10. The inverse precoding is the
same for both block MRFC and recursive MRFC. In [91], Veugen addresses
different precoding and inverse-precoding procedures. Moreover, a specific
precoding method will be considered in this dissertation in Chapter 6. In the
following subsections only the estimator and the channel-error remover will be
explained.

Estimator with a fixed coding delay

In the recursive decoder with a fixed coding delay, every transmitted symbol is
estimated based on the following D received symbols, therefore, only a delay
of D transmissions is necessary to estimate every transmitted symbol. Let the
sequence t be the estimate of transmitted sequence t. To obtain symbol £;

2Sometimes this terminology will be used to refer to a MRFC scheme with forbidden
subsequences 10* and 01'.
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Figure 2.10: Block diagram of the recursive MRFC system.

from rl(-H_D), i =1,2,..., there are two kinds of estimators with a fixed coding

delay, namely
e right-to-left estimator [91], which proceeds from r;,p towards r;;
e left-to-right estimator [66], which proceeds from r; towards r;,p.

The right-to-left estimator will be explained in Subsection 2.3.2 and can be
used for all MRFC schemes. A left-to-right estimator is applicable only to the
schemes for binary input DMC’s. The main advantage of a left-to-right esti-
mator over the right-to-left estimator is its capability for the variable coding
delay estimation, as will be explained in the next subsection.

To obtain bit #; from rEHD), 1 =1,2,..., the left-to-right estimator uses a
state diagram with integer numbers as its states, see Fig. 2.11. Starting from
the O-state, the estimator walks to the right or to the left if the jth received
bit is 1 or 0, respectively, j = ¢...7 + D. All transitions towards the O-state
have unit length. All transitions from the O-state to the right and to the left
have the length of kK — 1 units and [ — 1 units, respectively. After D steps,
the estimate is 0 or 1 depending on whether the walk ends up in a negative
or a positive state, respectively. In case that the last state of the walk is the
0O-state, a fair coin is flipped.

In the channel-error removing unit a transmission error is detected when
the estimated bit differs from the corresponding received bit, i.e. when #; #
r;. The channel-error remover, see the following example, deletes from the
received sequence the erroneous bit and its following (k — 1) or (I — 1) bits for
every detected 0 — 1 error or 1 — 0 error, respectively.

Example 2.2 Let r and { denote the received sequence and the estimation
of the transmitted sequence, respectively, as indicated in Fig. 2.10. Assume
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P
D

-1

Figure 2.11: State diagram of the left-to-right estimator (k =4 and [ = 5).

k = 4 and ! = 3 and consider the following outcomes

r = ... 001011111100001
f = ... 011111111000001
v = 0 11 01 ...,

where ¥ represents the output sequence of the channel-error remover. The
lines in sequence r indicate those bits that are removed by the channel-error
remover. O

Let 7o be the average number of transmissions needed to send 0 over the
channel. We have 7o = 1+ kprg, or 79 = (1 —kp)~!. Similarly 1 = (1 - Ip)~L.
As long as 1 — kp > 0 and 1 —Ip > 0 all channel errors will eventually
be corrected. However, due to a limited decoding delay a decoding error is
caused by a wrong estimation®, i.e.

Pr,« = PT{TZ 75 ti},

where 7T} is the random variable denoting t;. In this case, a random walk
stops in the wrong region at the pth step. Therefore, an estimation error
probability can be upper bounded by the probability of the events for which
a random walk enters the O-state after D steps.? In [66], the asymptotic error
exponent for this estimation error is proved for a BSC with p = pg; to be

—log P,

Er = lim
F D—oo

= min{D(%"“ﬂ'l)a D(%”WO)}v

3Note that an estimation error can cause error propagation in the channel-error remover
and eventually in the inverse-precoder [91, pp. 120], i.e. a bit error causes an event error.

“More precisely, if P, is the probability of entering the O-state after D steps, aP, and
(1 — a)P, are the probabilities of wrong estimation depending on whether a 1 or a 0 was
decided at the end of the walk.
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where the divergence notation of the exponents is due to Veugen [91]. The
asymptotic error exponent also gives an upper bound to P, with a finite delay
[66, Theorem 4.2] at p = pg; and when % < mp = Mok < E;—I, i.e.

ket
p<—Ftl gmep .
R (2.13)

Note that

1 [o" 1 1 B 1
D(zllm) @ D) and D(;limo) € D(7lp),

where (o) and (8) follow from (2.11) and (2.12), respectively.

Estimator with a variable coding delay

Variable coding delay [66] is one of the nice features of the left-to-right decod-
ing method with a left-to-right estimator. A left-to-right estimator uses a state
diagram as described in the previous subsection. However, unlike in the fixed
coding delay where the estimation is made after D steps of the random walk,
in variable coding delay a decision about the transmitted bit is made as soon
as the random walk enters an absorbing state. For a 1-up (k —1)-down and 1-
down (/—1)-up scheme the absorbing states are {(r+1), (r+2),...,(r+k—1)},
at which the estimated bit is 1, and {—(s+1),—(s+2),... ,—(s+1—1)}, at
‘which the estimated bit is 0.

In the variable coding delay method, a random walk which reaches state
(r+1) is in error when in the case of the continuation of the walk, the O-state
would have been reached, see Fig. 2.12. We designate the probability of such
an error by Py (r+1). Note that a- Py (r+1) is the probability of the erroneous
paths entering the O-state after reaching a positive absorbing state (r + 1).

(r+1)

N
\

N Py(r+1)

\ .
Nzt
\
\
\

- N\
O-state S

Figure 2.12: An illustration of a random walk absorbed in a wrong state.
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Let P, denote the probability of reaching the 0-state from the state u > 0.
Since in the region of positive states, the path moves (k — 1) units upwards
with probability 7; and it moves one unit downwards with probability mg, the
recurrent equation for P, can be written as

P, =mPyik-1+m0Pu—1.

Assuming that P, = w", the characteristic equation of the recurrent equation
can be written as

w:ﬂlwk—l—vrg. (2.14)

Let wy denote the unique solution of equation (2.14) in the interval (0,1).
Therefore, P, = w§. Hence

Prr+1) =l 0<wy <1, (2.15)

The error exponent of this error can be written as

E?, _ fm = log(Py(r +1))

, 2.16
Py (r+1)—0 Dy ( )

where D; is the average number of steps needed to reach a positive absorption
state. In [66] it is shown that

lim — =d; = (k- 1)m — mo, (2.17)

r—00 D].

where d; represents the drift away from the O-state in the region of positive
states. From (2.15), (2.16) and (2.17) one can obtain

B = —dilogwo £ D(mlp),
where () is due to Veugen [91]. Similarly, for 1 — 0 error, one can obtain
Bl = (1~ Do — m) log - = Dimllp),
where 0 < @y < 1 is the root of the characteristic equation
w = 7T0wl + 7.

Example 2.3 If k& = [, then the transmission rate is equal to the channel
capacity of a BSC with p = pi, where py is the solution of (2.1) for a given k,
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and mp =1 = % The estimation error exponent of the fixed coding delay for
both 0 — 1 and 1 — 0 errors is equal to

Ep(C) = D(%H%) @ D(%Ilpk), k>3, (2.18)

where (a) follows from (2.1). The corresponding exponent of the variable
coding delay is equal to

Ey(C) = D(%Hpk), k> 3.

Note that Ey(C) > Ep(C) because I>ifork>3 O

2.3 MRFC for DMC’s

Since Schalkwijk’s work in 1971, MRFC schemes have been extended to be
applicable for a large class of DMC’s. Let X = {1,2,...,|X|} and ¥ =
{1,2,...,|Y|} be the input and output symbol sets of a DMC, respectively.
Becker [4] generalised MRFC for the three following classes of DMC’s with
|X| = |Y|. The DMC’s of the first group are called strict-sense symmetric
channels, where the channel transition probability py|x(y|z) = pay = p for
any y # . The DMC’s of the second group are called wide-sense symmetric
channels, where the channel transition probability ps, depends on the differ-
ence between z and y modulo |X|. DMC’s with no restriction on channel
transition probabilities belong to the third group. Becker showed that his
block MRFC schemes are asymptotically optimal for the first two classes of
DMC's.

Recently in [91], Veugen further extended MRFC schemes to be used for
DMC’s with |X| < |Y|. He divided the set ) into two subsets X and J) — X
and considered all outputs of subset ) — X’ as erasures, see Fig. 2.13. In [90],
Veugen also proved the optimality of MRFC for these DMC’s. We will mostly
describe the highlights of Veugen’s work in this section.

2.3.1 Block coding

A MRFC scheme for the defined DMC repeats the input symbol z € X which
is received as y € ) kgy-times. Obviously, a correct reception will not be
repeated, i.e. ki = 0forz € X. If y € Y — X, then kyy = 1 for each
xz € X because these outputs are erasure outputs known for both decoder
and transmitter. When an erasure output occurs, the transmitter repeats the
corresponding input symbol. On the other side, the decoder simply ignores
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Erasure outputs

()

Figure 2.13: A general DMC considered by Veugen in [91].

all erasure output symbols. Consequently, the forbidden subsequences of a
general MRFC scheme are yakev x y € AS.

In the block MRFC, precoded sequences of length L are transmitted in
blocks of N symbols by appending a tail of length N — L. There are four kinds
of tails discovered by Becker [4] (three kinds) and Veugen [91] (the fourth
one). After discarding the erasure outputs, a right-to-left (block) decoder
moves from the end towards the beginning of the resulting received block and
replaces forbidden subsequences yz®sv with z. When the decoder reaches the
beginning of the block, first L symbols of the resulting block constitutes vk,
see the block diagram of the system in Fig. 2.5.

Theorem 2.1 (Becker-Veugen) Let e;y, denote the total number of x — y
errors in a block of N transmissions and kg, denote the corresponding repeti-
tion parameter, (z,y) € (X,)). As long as

D keyeay <N -L

rzeX yey
all channel errors are corrected, provided that a proper tail has been appended,
oL _ L
i.e. VU =V,
Proof : See [91, 4]. Q.E.D.

Let the random variables Eqy, (z,y) € (X,)), denote the number of z — y
errors in a transmitted block. A block transmission error occurs with proba-
bility

pPY = Pr{Vl #£vlY < PY = Pr{> > kpyFsy > N - L}.
TEX yeY

5The decoder can consider also subsequence yz, z € X and y € Y — &, as a forbidden
subsequence, however, from precoder’s point of view such a constraint does not exist.
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Furthermore assume M (L) to be the number of precoded sequences of length
L. Veugen defines an achievable rate for block MRFC schemes as follows.

Definition 2.3 A rate R is achievable if, for each sufficiently large block
length N, it is possible to find M (L) precoded messages such that R < lc’iﬂ]\@
and PN — 0 with increasing N.

Note that if a rate is achievable in the Veugen sense, it is also achievable in
the Shannon sense, i.e. if P — 0 then P’ — 0 (as N — 00). The supremum
over all achievable rates is designated by R.

Example 2.4 A MRFC scheme with repetition parameter k& for a BSC with
crossover probability p can achieve R(f) = RE(1 — kf) as long as % < f <p,
because from (2.8) we have E,(f) = D(f|lp) > 0. Therefore, the supremum

rate R = R(p) and if p = pj, then R = R(py) =C. O

2.3.2 Recursive coding

The block diagram of a recursive MRFC system for the general class of DMC’s
is similar to the one shown in Fig. 2.10. A recursive encoder continuously
transmits a precoded sequence of unlimited length according to the repetition
rules. At the receiver side, only a right-to-left estimator can be used in MRFC
systems for nonbinary-input DMC’s. Proposed by Veugen in [91], a right-
to-left estimator applies the block decoding method to the received sequence
rEHD) to estimate the :tD transmitted symbol. That is to move from the end
to the beginning of this sequence and replace every yz*=v with z until reaching
the beginning of the sequence. The last, i.e. the leftmost, remaining symbol
after all replacements is the estimate #;. Since we are interested in the leftmost
symbol, the right-to-left estimator is simpler than the right-to-left decoder for
a block decoding method where one wants to decode all symbols of the block.

Basically, a counter and a symbol register are needed to implement a right-
to-left estimator. Let r’EHDI) denote the sequence obtained from (D) by

i
EHD). The following algorithm [91] describes
the right-to-left estimator applied on sequence r’EH’D ), where T and Cgr

represent the contents of the register and the counter, respectively.

Right-to-left estimator'

1 .
Set j := D', Cgr:=1and Tg :=rj, p.

2

removing all erasure symbols of r




56 Multiple repetition feedback coding schemes

Setj:zj—land

if réﬂ- = Tg then Cg := Cg + 1;

else Cr := Cg — (kgy — 1), where z = Tg and y = rgﬂ-.
A
If Cr < 1, then set Cr :=1 and Tg := riy;.
|
If 7 > 0, then go to the second step.

The content of the register is the estimation of ¢;, i.e. t; := Tg.

An event error occurs in recursive decoding when the estimator makes an
erroneous estimation, i.e.

P,.(i) = Pr{T; # t;},

where T} is the random variable denoting t;. Since it is assumed that 1 —
Zyey kzypzy > 0 for all z € X, all channel errors are eventually corrected.
However, using a fixed coding delay D may result in an estimation error.
Veugen [91] recognised two different types of estimation errors for a recursive
decoder with finite coding delay D.

1. P, is the probability that an erroneous reception cannot be corrected due
to insufficient delay. Let us that assume ¢; = z is erroneously received as
y. As there is insufficient delay to correct this error, the transmitter will
send z for the following D transmissions. Consider a Markov process
with states s = 0,1,..., which starts at state k;y and has transition
probabilities

Pr{s+kgy — 1|5} = pzy fory € ).

An z — y error is not corrected with probability P in D transmissions
if the mentioned random walk reaches the 0-state after D steps. Define

. —logPf
T=1 _
1 Dl—r>rc1>o D
Veugen in [91, pp. 62] showed that
T = —logy E Dy Kay ’y(kwy"l) , (2.19)

yeY
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where v > 0 is the solution of

> pay (kay — 1)y*= = 0. (2.20)
yeY

The exponent of P; is defined as

—log P
By = lim ——2=1 = min 7,
D—o0 D zeX

2. The other estimation error is caused by certain precoded sequences called
the flip sequences. A flip sequence corresponding to symbol z is defined
as

ylm(kzyl_l)ygx(k”fl) .. ynm(kwn_l) where y; # z, i=1,...,n.

A few transmission errors at the end of such a sequence drive the esti-
mator to a wrong conclusion, e.g. a single y — z error which follows
the mentioned sequence yields = as the estimated symbol. Let P§ be
the estimation error probability due to a flip sequence corresponding to
symbol z and P, = max,; Py. In [91, pp. 132] the asymptotic exponent
of P§ is given by

E5 = Ry + logy; — log pza,

where Ry is the number of information bits per precoded symbol and
Yz > 0 is the solution of Zy . pyyfykmy = pgz. Therefore, the error
exponent of P» can be expressed as

. —logP .
Bz = jim —p— =minh.
Define the error exponent of the estimator as
: _ log Pr (7')
E, = lim ———.
" Dl—r>noo D

Then E, < min{E;, Ex}. In [91, pp. 63] it is conjectured that E, = E; when
the corresponding repetition parameters are suitably chosen, see [91, Chapter
5] how to choose the repetition parameters. The following example confirms
the conjecture for a special case. In Chapter 4, it is shown that maxgzex EY is
the asymptotic error exponent for a retransmission strategy in a less restrictive
sense (see Rem. 4.5).
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Example 2.5 In recursive MRFC for BSC’s with the fixed coding delay, the
exponent of 0 — 1 error probability, which cannot be corrected at the pth
step, follows from (2.19) and (2.20) as

q=plk— 1§ 1
(k—1) = El :D(E” p)a
Ey = —log(pkyy )

which agrees with (2.18) for p = py. More precisely, according to this con-
jecture E; is the exponent of the estimation error if p is in the range where
k =< —logp >, where < a > is the closest integer to a € IR. O

2.3.3 Achieving channel capacity

In this subsection Veugen’s result [91] is briefly mentioned to indicate when
the R of a MRFC scheme (for a given set of repetition parameters) coincides
with the capacity of a DMC.

Theorem 2.2 (Veugen)

1. Let channel transition probabilities pzy (x € X, y € V), and repetition
numbers kzy (z € X , y €Y) be given.

2. Assume that kg =1 for (t € X,y €Y - X).
3. Let P* be |X| by |X| matriz with entries py, = Dy

4. Let my (y € Y) be the unique capacity achieving output distribution.

If the channel probabilities satisfy the equations

Pzy [ Dz (key—1)
g (——) =1  foreach (z€ X, y€c)) (2.21)
Ty \ T

and det P* # 0, then there exists a symbol precoding distribution q such that
the mazimal achievable rate of the corresponding MRFC scheme R(q) is equal
to the capacity of the discrete memoryless channel with channel transition
probabilities pgy (z € X, y € D).

Proof : See [91]. Q.E.D.

Conditions (2.21) are equivalent to (2.11) and (2.12) corresponding to a
regular median path in MRFC for BSC’s. In [91, pp. 68] Veugen says:
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Led by the idea of repetition feedback coding ...., the probability that

an z was transmitted, should not be altered by receiving rr ... TT4kyy =
k: .

yxev | ie.

Pr{tT =z|rg...rp_1,77 = l‘} =

2.22
Pr{trik,, = zlro...r7-1,77 ... rr4k,, = yzFev} (2.22)

Equation (2.22) should hold for each z € X and y € ) to obtain a
regular “median” path. In order to achieve channel capacity, the channel
output probabilities have to be equal to 7, (y € ), the unique capacity
achieving output distribution. Furthermore, the channel outputs have to
be independent. Since trtky, =T and rr.. Tk, = yxkoy implies that

kz
tr =\...tT+kwy = z, condition (2.22) reduces to %w- = ffy (f;:—;) ‘.
It turns out that this necessary condition to achieve capacity is also

sufficient.

Example 2.6 Consider a binary asymmetric channel where X = Y= {0,1}
and channel transition probabilities p;g = 1 — p1; and pg; = 1 — pgo (Where
Pzy = py|x (y|z) and z,y € {0,1}). Consider a pair of repetition parameters
(k,1) corresponding to forbidden subsequences 10* and 01'. A regular median
path will be obtained if

N

(k—1) oo (o1 \ Y
Po1 (@) =1 and =22 (—1£> =1 (2.23)

S To 7o T

If (mp, 71 = 1 —mp) is a capacity a,chiev‘ing‘ output distribution, it must satisfy
I(X=0Y)=1I(X=1Y) or

D(po1llm1) = D(p1ollmo). (2.24)

For a given pair of (k,[), the solution of the three equations in (2.23) and (2.24)
determines the binary asymmetric channel, i.e. p1g and pg; probabilities, for
which the capacity can be achieved by a 1-up (k—1)-down and 1-down (I —1)-
up repetition scheme. O
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Chapter 3

Feedback Coded Modulation

In this chapter, we consider the transmission of digital information over AWGN
channels. The AWGN channel is a model for various physical communication
channels, including wire lines and some radio and satellite channels. Using
MRFC schemes, we devise a simple coding method for AWGN channels with
high Signal to Noise Ratios (SNR’s). The feedback channel is assumed to be
an AWGN channel as well, therefore, the new method can operate with noisy
feedback channels. Since the resulting method is a combination of coding
and modulation, it is referred to as Feedback Coded Modulation (FCM) in
this dissertation. This terminology is analogous to that of the famous Trellis
Coded Modulation (TCM) method. TCM is also explained briefly in Section
3.2 to set a benchmark for evaluating the decoding complexity of the FCM.
Let us first describe the channel model.

3.1 Discrete input AWGN channels

An ideal waveform AWGN channel is a channel whose output signal y(t) can
be related to its input signal z(¢) by

y(t) = (t) + n(t),

where n(t) is a Gaussian random process with two-sided power spectral density
N(f) = &o. Orthogonal modulation techniques, see Refs. (96, 63, 74], convert
such a waveform channel into a (discrete-time) vector AWGN channel. A
D-dimensional vector AWGN channel is a channel with input and output
vectors xP = (z1,29,... ,zp) and yP = (y1,92,--. ,YD), respectively, where

Zd,yd € IR, d=1,...,D. These input and output vectors are related by

61
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y? =xP +nP, (3.1)

D = (n1,ng,... ,np) represents the noise vector. Let Xg, Yy and Ny

th

where n
denote the input, output and noise random variables of the
or subchannel of the vector channel, respectively, d =1,... ,D. For the men-
tioned channel Ny ~ N(0,02) , where IE[N?] = 0% = Lo and the covariance
matrix of the noise vector is given by

component

Ny
A=,

where I is the D x D identity matrix. The (information theoretic) capacity of
the d'P' subchannel is calculated from Def. 1.15 as

1 E,
Cy = I(XgYy) = =log(l + =2), 3.2
p fX:En[I;{z%SEd (X4;Ya) 5 og( N ) (3.2)

bits per dimension. This capacity is attained when the input to the dth
subchannel has a normal distribution, i.e. X4 ~ N(0, Eg). If the total energy
per transmitted signal, defined as 25:1 E[X3) = Zgzl E,, is constrained to
E, the water filling argument [16, pp. 252] shows that
| E

El-:...:ED:—Dﬁ, (3.3)
which is also evident from the symmetry of the subchannels. From (3.2), (3.3)
and the noise samples of subchannels being independent, the total capacity
per transmission or the capacity of the vector channel can be written as

D E
C=DCy= Bl log(1 + Dl—zﬁ) bits per transmission. (3.4)

Definition 3.1 (Signal to noise ratio (SNR)) For the vector channel, the
SNR is defined as the ratio of the average energy per transmitted signal to the
average energy of the D-dimensional noise, i.e.
Es Es Ed

=% — SNR,. (3.5)

SNR= =2 = —%
2 No No
Do* D% 3

Often, 10log,q SNR is considered and the resulting value is expressed in dB
unsts.
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Assuming that the bandwidth of the waveform channel is limited to W and
the input signal is subjected to power constraint P, we can also write

P
SNR = .
N, W
In general the input vector of a vector AWGN channel is a signal point from
D-dimensional Euclidean space IR”, ie. z; € R, d=1,... ,D. However, in a

discrete-input vector AWGN channel, the dth component of the input vector
can take one of the L-equiprobable values from

v 3 (L —1)y
= {i t5 s E )
where ~ is the minimum Euclidean distance between two signal points. The
set of input signal points of the dlscrete—lnput vector channel is called sig-
nal constellation and denoted by X = X P This signal constellation is a
D-dimensional cubic. In Fig. 3.1 the one and two dimensional signal constel-
lations are depicted, which are used in Pulse Amplitude Modulation (PAM)
and multilevel Quadrature Amplitude Modulation (QAM), respectively.

, &+ (L even),

JT L

Figure 3.1: Signal constellations of PAM and QAM (D =1 and D = 2).

Now the random variable X can uniformly take on a discrete value, there-
fore, the average signal energy per dimension can be written as

L2—1
E, X2 L}: 2 (3.6)
zeX!

The average energies of the transmitted signal and noise vector are E; = DEy
and Do? = DZe respectively. Note that SNR = SNR, for a D-dimensional
cubic constellatlon
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The described vector channel is a COMC whose inputs are from a finite
alphabet, i.e. it has discrete inputs and continuous outputs. In Appendix B a
procedure is outlined to numerically evaluate the capacity, or more precisely
the average mutual information, for such a channel achieved with an uniform
input distribution. Fig. 3.2 shows the capacity achieved with equiprobable
|X|-QAM (for |X| = 4,16,64 and 256) as a function of SNR. Moreover, as
a reference and the ultimate limit, the corresponding capacity of the vector
AWGN channel is plotted from (3.4), which is achieved by a Gaussian input
distribution. The points at which a signal error probability of 1078 is achieved
are shown in Fig. 3.2 as well.

In the low-SNR’s an equiprobable binary input alphabet is almost optimal
to achieve the channel capacity [26]. In the high-SNR’s, however, the capac-
ity of the equiprobable |X|-QAM constellation asymptotically approaches a
straight! line parallel to the capacity of the vector AWGN channel, see Fig.
3.2. The gap of %2 or 1.53 dB is due to using a uniform rather than a Gaussian
distribution over the input signal set [26]. Constellation shaping techniques
are used to gain the remaining 1.53 dB by producing a Gaussian-like distri-
bution for every sequence of a fixed number of QAM signals, see Subsection
3.6.1 for an explanation.

7
— Capacity of 2D-AWGN channel
6 ... 256 pf)mt const. ";/,, ———————— 5 7—5—(—1]-3-—
Lo 64 point const. ~»/%"Shaping gap
— — 16 point const.
C 4L _ _ 4 point const. e e — e ——
bits 20.9 dB
3k
di - T1gas ]
1 ! | 1
0 5 10 20 25 30

15
SNR (in dB)

Figure 3.2: The capacities of two dimensional 4, 16, 64 point constellations.

1% hen the SNR is expressed in dB.
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3.1.1 Union bound

Assume an uncoded (coded) sequence of 7 signals denoted by (x?):"~1 2 XD’
is transmitted through the vector AWGN channel, where D' = nD. Since the
received sequence is corrupted by an additive Gaussian signal n?’ = yP' —
xP' | maximum likelihood (ML) decoding is equivalent to minimum distance
decoding [26]. The probability for the uncoded (coded) sequence x?’ to be
decoded as an uncoded (coded) sequence z”’ is a function of d(z”',xP"), the
Euclidean distance between uncoded (coded) sequences x?' and zP'. More
precisely,

d(zP,xP")

PT{W:zDIIW:xD,}:Q( 5

)

where random variables W and W denote the transmitted and decoded D'-
dimensional sequences, respectively, and Q(-) represents the Gaussian error
integral of

1 o2
Qlz) = \/T—w/ e Hdy. (3.7)

The error probability of ML decoding is the probability that the received
vector sequence y2' is closer to any z”' in the constellation but other than to
xP" and can be upper bounded by

/ d(z?",xP")
P =xP1 < R |
r{error | W =x"} < Z Q( 55 )
ZDI¢XD’
The average probability of error over all uncoded (coded) sequences xP' is
upper bounded by the union bound

P <Y NQ(5H),
Y

where N, is the average number of uncoded (coded) sequences at distance ~y
from a sequence. The Gaussian error integral function Q(z) decays exponen-
tially with respect to z. Therefore, if N, does not increase too rapidly with -,
then the union bound is dominated by its initial terms corresponding to the
smallest y. The union bound estimate then becomes

P, ~ NfQ(-%d). (3.8)
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Here 7feq, the so-called free Euclidean distance, is the minimum Fuclidean
distance between uncoded (coded) sequences and N; indicates the average
number of nearest neighbour uncoded (coded) sequences at distance veq from
a given uncoded (coded) sequence. This approximation expresses the fact that
at high SNR’s the probability of error events associated with a distance larger
than 7.4 becomes negligible.

Example 3.1 In an uncoded constellation (the one defined in the previous
section)

2L —-2)+2  2(L-1)
L ==

Yied =Y and NfZD- . O (3.9)

In the following section the union bound estimate is used to depict the error
performance of an uncoded 2-dimensional signal constellation.

3.1.2 SNR normalization

Assume that a coding scheme delivers R; information bits per transmission
(per D-dimensions) at given SNR;. From Shannon’s famous formula (3.4), a
vector AWGN channel requires a SNR of SNRgy, in order to have a capacity
equal to R; bits, i.e. Ry = 2 log(1 + SNRgy) or

2R

SNRgp, =27 —1.

To normalize the operating SNR of any scheme, we divide SNR; by SNRgj,
ie.
SNR; SNR; SNR4

N = = = .
SNRx SNRg, o2t _ 1 22Ra—1’ (3.10)

where Ry = % is the rate per dimension of the given coding scheme. For

a capacity achieving scheme SNR, = 1 (0 dB). This kind of normalization
is called normalization with respect to the Shannon rate. In the high-SNR
channels, SNR,, > 1 is the fundamental figure of merit of uncoded and coded
modulation schemes, which specifies how far a given scheme operates from
the Shannon limit [26]. In Fig. 3.3 the probability of symbol error P; . for
uncoded equiprobable 4, 16, 64 point QAM’s are depicted as a function of
SNR,, from (3.8) using (3.9). At P, = 107%, an uncoded QAM operates
about 9 dB away from the Shannon limit, therefore, a coding gain of 9 dB can
potentially be attained.
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64 point constellation ——

16 point constellation ----
4 point constellation — —

-3 F
108;10 Ps,uc
4 b

-5 F

b N

SNR,,

Figure 3.3: The signal error probability for 2-dimensional constellations in
terms of SNR,,.

Remark 3.1 Note that the union bound and its approximation blow up at
cutoff rate Ry. For high-SNR channels, the cutoff rate corresponds to SNR,, =
2 (1.68 dB) [26]. O

3.2 Trellis coded modulation

In the past 20 years, a series of advances has occurred that now makes it
possible to state that the channel capacity of a band-limited Gaussian channel
with high SNR’s can be approached quite closely, not just in theory as Shannon
indicated, but also in practice. The most striking of these advances was the
invention of TCM by Ungerboeck [86]. In this section we are going to explain
TCM in order to set a benchmark relative to which we can judge the decoding
complexity of our new scheme.

In a conventional system, used before introducing TCM, the channel en-
coder and modulator were two separate units. The channel encoder added re-
dundant symbols to its input information symbols and the modulator mapped
the outputs of the channel encoder into signal points of a D-dimensional con-
stellation. Because the added redundancies in the channel coding unit ap-
peared as extra transmissions, this method was not an efficient way to trans-
mit data via a band-limited channel in which the number of transmissions per
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second 1s limited.

Example 3.2 Consider a binary encoder of rate R = - and a constellation of
16 signal points. In the channel encoder, 3 mformatmn bits are encoded into 4
coded bits which are used to choose a signal point from the constellation. Thus,
every transmitted signal represents 4 coded bits or 3 information bits. In the
following we show how using TCM makes it possible to transmit 4 information
bits per transmission and yet have a good error correcting capability. O

Unlike in conventional systems, in TCM channel encoding and signal map-
ping are combined in order to directly maximize the overall free distance
between coded signal sequences. Ungerboeck took an elegant approach to
compensate for the rate loss without transmitting fewer information bits per
transmission. Basically, two important techniques, namely: signal set expan-
sion and set partitioning led to a significant gain in TCM as compared to
uncoded modulation. In this section these two techniques are explained and
then the coding process of TCM is briefly outlined.

3.2.1 Signal set expansion

The first and the most essential new concept of TCM was to use the sig-
nal set expansion technique to provide the required redundancy for coding.
To make it possible, the number of signal points in the constellation is in-
creased. For example, the uncoded constellation of Example 3.2 contains 16
signal points where each signal can potentially transfer 4 bits. To transmit
also 4 information bits per signal in TCM, 4 information bits must enter the
encoder-modulator unit in every transmission interval. If the encoder adds
one redundant bit, then we need 24+! = 32 signal points in the constellation.
This means that the original signal constellation has to be enlarged. To keep
the average energy per transmitted signal constant, the extra points are uni-
formly placed among the original signal points?, see Fig. 3.4. In this way, the
minimum distance between two adjacent signal points is reduced from <y to
Yo = —'Y—Z in a 2-dimensional Euclidean space. In general one can show that
doubling the number of signal points in an D- dlmensmnal constellation de-
creases the minimum signal distance from v to yo = 27 > 7, provided that the
average signal energy is kept constant. So far, we have worsened the minimum

2From another point of view, having the extra points can be considered as the extension
of the boundaries of the original constellation towards outside without changing the mini-
mum distance between signal points. In this interpretation, the average transmitted energy
increases and this increase must be taken into account in computing the overall coding gain.
This gain normalization is not needed in our interpretation mentioned in the text above.
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distance of the (original) uncoded constellation. Subsequently, however, the
applied code increases the minimum distance (the free Euclidean distance)
between any two sequences of signal points from the enlarged constellation
relative to that of the uncoded constellation.

3.2.2 Set partitioning

The second technique used in TCM is mapping by set partitioning. The key
point in partitioning of a constellation is to find subsets of the constellation
that are similar and the signal points inside each partition are maximally
separated. Starting from the extended constellation, we partition it into two
subsets that are congruent and the points within each partition are maximally
separated. Then apply the same principle to each partition and continue. The
point at which the partitioning is stopped depends on the code that we are
using, which will be explained in the following subsection.

Example 3.3 Consider Example 3.2 in which the original 16 point signal con-
stellation is extended to the 32 point constellation. In Fig. 3.4, the 32 point
constellation is partitioned in the first stage into two congruent partitions de-
noted by By and B; with the minimum partition distance of y; = v/2yy = v,
where 7 and -y are the minimum signal distances in the original constellation
and in the extended constellation, respectively. Now we further partition By
and B; to obtain Cy,C1,Cs,C3. The inner partition distance now has in-
creased to 2 = 279 = v/2y. We go one step further to obtain eight partitions,
each containing four points. The corresponding subsets are denoted by Dy
through D7, for which the minimum signal distance is y3 = v/8yy = 2y. O

3.2.3 Coded modulation

In TCM a code is used to reliably transmit the sequence of partitions while
the signal points inside each partition are generally sent without encoding.
Basically, the sequence of partitions can be encoded using block or convo-
lutional (or Turbo) codes. Due to the existence of a simple and optimal soft
decision decoding algorithm for convolutional codes (the Viterbi algorithm), it
has been used mostly with convolutional codes. When used with convolutional
codes the resulting coded modulation is known as trellis coded modulation.
The trellis terminology is used because these schemes can be described by a
state transition (trellis) diagram like that of binary convolutional codes. To
be more precise, the term TCM is used when a general trellis code is used.
The block diagram for a TCM (the encoder-modulator unit) is shown in
Fig. 3.5. The frame of k; +k2 input message bits enters the encoder-modulator
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Figure 3.4: Signal set expansion and corresponding set partitioning.
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n1 bits Extended
Encoder constellation
k}l bits R kq .
T e . .
" g[?(’o o . x? = (31, 3)
() ‘ [
o 0o o
o
ks uncoded bits : o s

Figure 3.5: A block diagram of TCM, the encoder-modulator unit.

unit. Using an encoder of rate R = %, k1 bits of this frame are encoded into
ny bits which are used to choose one of 2™ partitions. After choosing the
partition, the remaining ko bits are used to choose one of the points in the
chosen partition. I.e. the extended constellation should be partitioned into
2™ partitions or subsets, where each partition contains 2*2 signal points. This
gives us a rule for determining how large a constellation is required and how
many steps must be taken in the partitioning of this constellation. Doubling
the size of the original constellation provides enough redundancy [86] where
the encoder has to add one redundant bit, i.e. ny = k; + 1.

Example 3.4 For the constellation of Example 3.3 there are eight partitions
Dy,...,Dr, see Fig. 3.4. Thus ny = 3, R = % and k1 = ky = 2. The
2k2 signal points in each subset are so far apart that there is no need to
encode them. For a given partition, 73 = v/8yy = 2y which already yields
10log;y2* = 6 dB improvement with respect to an uncoded system. Hence
for most applications, it is only necessary to encode the sequence of subsets
and decode them correctly at the receiver. O

The trellis diagram of TCM is similar to that of a convolutional code.
However, there are 2¥2 parallel paths connecting every two states of the trellis
in TCM. A bunch of parallel branches corresponds to a partition of the con-
stellation and each branch in the bunch corresponds to a signal point in the
partition. Fig. 3.6 shows a trellis with a few parallel paths, each designated
by the name of the corresponding partition, and two paths for the sequence of
partitions. The sequence of the partitions follows a path on the trellis accord-
ing to the values of the frames of k; input bits. The performance of TCM can
well be determined from the free Euclidean distance, vfeq, between any two
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Figure 3.6: Two schematic paths of partitions on the trellis of a TCM.

paths originating from a node and merging into another node of the trellis.
There are two types of paths which affect yfeq in TCM.

e The first kind is the parallel paths for which +, is the minimum Euclidean
distance between signal points in a partition. For example, in Fig. 3.4
we have v, = 13 = 2.

e The other kind of paths can be seen on the trellis of a TCM if we
consider every set of parallel paths as a single path represented by its
partition index. In fact, now we are talking about the Euclidean dis-
tance of a classic convolutional code. Let -y; denote the minimum Eu-
clidean distance between two paths of this kind. For example, in the
trellis of Fig. 3.6 the Euclidean distance between two indicated paths is
42 = d?(Dy, Dy) + d*(Do, D3) + d?(Dqg, Ds) + d*(Dq, Ds) + d*(Do, D1),
where d(D;, D;) indicates the smallest Euclidean distance between a sig-
nal point of partition D; and a signal point of partition Dj.

Finally, the free Euclidean distance is determined from

Yfed = min{')’pa 'Ys}'

This 7feq indicates the amount of improvement that we have achieved by
coding and set partitioning when the minimum signal distance is increased
from v in the uncoded constellation to yfeq with TCM (assuming that the
average signal energy does not change by the signal set expansion), see also
Subsection 3.5.3.

3.3 Feedback coded modulation

FCM is a coded modulation method for AWGN channels, which extends the
domain of MRFC to AWGN channels. The main motive behind this extension
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was to design a feedback coding scheme that is able to operate with a noisy
feedback channel. In fact, here we assume that both forward and feedback
channels are AWGN channels with the same SNR. Using the MRFC schemes
for BSC’s, FCM yields a simple solution to the problem of such a noisy feed-
back channel. This new scheme is similar to TCM in the sense that it uses
the signal set partitioning technique, where the signal points inside each par-
tition are transmitted without coding. On the other hand, FCM is similar to
conventional modulation methods in the sense that there is no constellation
expansion and adding redundancy is accomplished by executing more trans-
missions. However, the amount of redundancy (the rate loss) is very small
in FCM as we compare it with that of conventional modulation methods due
to set partitioning and operating the MRFC schemes at the highest possible
rate. In the following sections, this coded modulation method is introduced,
see also [78] and its decoding complexity is compared to that of the TCM.
Some related features of FCM are also outlined at the end of the chapter.
Let us consider the signal constellation X = X'" as defined in Subsec-
tion 3.1, where v is the minimum distance between signal points along each
dimension. Since the signal space is assumed to be orthogonal, v is also the
minimum distance of signal points in the D-dimensional Euclidean space. The
signal points in & (or signal coordinate points in X’) are equiprobable, i.e.
Pr{XP =xP} = L% and Pr{X; =z} =%, forall x? € X and z € X"

3.3.1 Encoder for FCM

We explain the encoding and decoding of FCM by using the 16 point 2-
dimensional constellation of Example 3.2. In Fig. 3.7 the schematic diagram
of the system is depicted where one MRFC scheme (for BSC’s) is used in each
dimension. The output bit of the first MRFC scheme, represented by a/b,
chooses every other row of the constellation and the output bit of the second
MRFC scheme, denoted by c/d, chooses every other column of the constella-
tion. Therefore, the two a/b and c/d bits determine one of the a — ¢, a — d,
b — c and b — d partitions, see Fig. 3.8. Here bits a/b and c/d are called the
partitioning bits. The remaining two uncoded bits choose one signal point
from the selected partition. As we see from Fig. 3.8 and Fig. 3.4, for the
same minimum distance in each partition, the number of the partitions of the
FCM is half of that of the corresponding TCM since here we do not double
the number of the constellation points. At the receiver, a simple hard decision
operation is done on each coordinate of the received signal to determine the
corresponding received partitioning bit, i.e. being a or b, and ¢ or d. The
received partitioning bits are fed back via a noiseless and delayless feedback
channel to the transmitter in order to be used in their corresponding encoders.
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Figure 3.7: The block diagram of the FCM with a 2-dimensional 16-point
constellation.

In the general case of D-dimensional signalling, the encoding is accom-
plished by using one MRFC per dimension. In a dimension, the MRFC scheme
yields the partitioning bit which specifies the corresponding coordinate to be
from one of the two congruent subsets B, = {—Z5H7 1)7 (=3 3) L (-DF 1}
or By = X' — B,. The chosen subsets for all coordmates determme the trans-
mitted partition. Then, the uncoded bits are used to pick up a D-dimensional
signal point from the chosen partition.

¥ 2y
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Figure 3.8: Set partitioning of a 16-point constellation in FCM (D = 2).

3.3.2 Decoder for FCM

The decoding process of FCM is explained in three parts: storing the received
data, estimating the transmitted partitions and extracting the information
bits.
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Receiver buffer

The coordinates of the received vector must be stored in separate buffers until
the code words of the corresponding MRFC schemes are decoded. For each
coordinate, a buffer of N or D, + 1 units is needed to store N or D, + 1
received points of the coordinate, depending on whether a block or a recursive
MRFC method is used, respectively. To store each coordinate of an input
signal point, g € &”, log(L) bits are needed. The corresponding output
coordinate yg = T4 + nq is a real number, however, it is not necessary to be
stored with a high precision. In fact, one bit per dimension is the cost of real
(soft) valued information at the output, which is introduced by the AWGN.
Therefore, log(L)+1 bits are enough to store each received coordinate point. In
the following we describe how an output coordinate point, e.g. corresponding
to partitioning bit a/b, can be stored. For other coordinates, the same rules

apply.

decision region for a *;+4| decision region for +

decision region for b ——| decision region for —

Figure 3.9: The decision regions for each dimension of the received signal.

1. One bit, denoted by a/b, records the partitioning bit of the received co-
ordinate point. As shown in the upper part of Fig. 3.9, bit a/b indicates
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that the received coordinate point is either in the decision region of the
B, signal coordinate points or in the decision region of the B} signal
coordinate points, respectively.

2. The amplitude of signal coordinate points is indicated by indez number
j=1,... ,%. In each dimension, two signal coordinate points with the
same index are from two different partitions. Note that the left most
signal coordinate point corresponds to partitioning bit a. As shown in
the middle part of Fig. 3.9, if signal coordinate point z4 € B,, then
signal coordinate point z/, = —z4 is in B;. We can imagine that when
the uncoded information chooses a specific amplitude (or index number)
in a dimension, the corresponding partitioning bit chooses the sign of
the index. The reason for this indexing method will be discussed in
Subsection 3.6.1.

3. One extra +/— bit per dimension is needed to record the position of
the received coordinate point in the upper or lower part of the decision
region of the corresponding a/b bit. In the lower part of Fig. 3.9 the
decision regions of +/— bit are indicated. As we see, the interval of
length -, centered at a signal coordinate point, is divided into two parts.
The half with higher absolute value is assigned + and the other part is
assigned —. The +/— bit will be used to modify the index of the received
coordinate when a transmission error is detected in the corresponding
partitioning bit, see Table 3.1.

The three points mentioned above indicate that we have to store
L ) . . .
log(-2—) +14+1=1log(L)+1 bits per signal per dimension,
which asserts our claim.

Estimation of the partitioning bit

To decode uncoded information bits, the receiver must estimate every trans-
mitted partition or, in other words, the receiver must estimate every trans-
mitted partitioning bit. The right-to-left or left-to-right estimators of the
recursive decoder directly estimate the transmitted partitioning bits. An up-
per bound to such estimation error at the certain crossover probabilities of
the partitioning bit is given in (2.13). Also the block decoder can yield the
estimate of the transmitted block of partitioning bits as shown in the following
theorem.
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Theorem 3.1 In a block MRFC scheme (see Fig. 2.5) where an appropriate
tail of N — L symbols is used, the receiver can ezactly determine t~, provided
that ¥F = vL.

Proof: The proof is straightforward. Knowing v¥ and accordingly the tail
ZL+41 ... 2N, the decoder knows the codeword that the transmitter intended to
send. Having also the received sequence r", the decoder is able to reconstruct
the pertaining transmission process and obtain the transmitted sequence tV
precisely. Q.E.D.

According to Theorem 2.1 a sufficient condition for ¥~ = v in the MRFC
for a BSC is that ke < N — L, where e represents the number of errors in a
block. Therefore, (2.9) is also an upper bound to this block estimation error
probability, which becomes exponentially tight for Pr{kE > N — L} as N
increases.

Extracting the information bits

After decoding the MRFC schemes, we have acquired the part of information
associated with the partitioning bits, i.e. the precoded sequences correspond-
ing to the partitioning bits can be obtained and then inverse-precoded, see
Figs. 2.5 and 2.10. Correctly estimated partitioning bits enable us to know
the transmitted partitions. In a given partition, we find the closest signal
point of the partition to the received point. In this way, information associ-
ated with uncoded bits are extracted using ML detection. Here we explain a
simple technique to obtain the closest signal point of the estimated partition
to the received point. Let 7 = 1,2,... denote the it received signal point.

e When no error is detected in the partitioning bits of the it received
signal point, i.e. t;g =1y, d=1,... , D, the corresponding stored index
numbers and partitioning bits determine the closest signal point of the
partition to the received point.

e When a transmission error is detected in a partitioning bit, i.e. #;q # riq,
in addition to changing the received partitioning bit to the correct bit,
the corresponding index number stored in the receiver buffer must be
modified according to Table 3.1. Such a modification gives the most
likely neighbour coordinate point in the correct partition.

Given a correctly estimated partition at the receiver, from Fig. 3.8 it is
clear that the minimum distance between signal points in a partition is twice
that in the original constellation. Therefore, for a same error performance, the
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[+/-bit[j=1]2<j<g-1]i=3 |

+ 2 j+1 L
: L
— 1 j—1 5 —

Table 3.1: Modification of the index number when the received partitioning
bit is in error.

minimum signal distance in the coded system can be taken half of that in the
uncoded system. Since the average signal energy is proportional to the square
of the minimum distance, FCM saves by a factor 4 in energy (or 6 dB). This
6 dB improvement also holds for a general D-dimensional cube constellation.

3.3.3 BSC of the partitioning bit

In every dimension one partitioning bit is used to differentiate between every
other signal coordinate point, i.e. between B, and B, = X " — By sets of signal
coordinate points. The partitioning bit is encoded using an MRFC scheme
for BSCs. The corresponding channel for the partitioning bit is a BSC with
crossover probability obtained from the union bound estimate (3.8) as

8
~N —- 3.11
p~ NpaQ(57) (3.11)
where Ny g = 2(£_T2)+—2 = 2% . Here p is the probability that a transmitted
signal coordinate point from B, is received in the decision regions of those in
By or vice versa. The argument of the @) function can be written in terms of
the SNR of the received vector. From (3.6) it follows that

72 3 3 Es
L O g
4 L2-1 L?-1D

and since 0? = %1, we have

v 3 Ey \/ 3 \/ 3
o —d ~ S NR;,=+/ ——SNR.
2 2-1% 7z 1o VB L2 -1

Example 3.5 In the lower part of Fig. 3.10 the average mutual information
corresponding to a 64 point 2-dimensional constellation (8 x 8) is depicted
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using the procedure of Appendix B. In the upper part of the figure, the BSC
capacity of the corresponding partitioning bit (in one dimension) is depicted
from 1—h(p) where h(p) = —plogp—(1—p)log(1—p) and p is given by (3.11).
From the union bound estimate (3.8) and (3.9), the signal error probability
for the uncoded constellation is 1076 at point A where SNR,4 = 27.2 dB. If
we want to have an improvement of 6 dB by our coding scheme as mentioned
before, then the coded system has to work at point B where SNRp = 27.2—6 =
21.2 dB. At this SNR, the BSC capacity of a partitioning bit is 0.914 bits. Since
every transmitted signal consists of two partitioning bits and four uncoded bits,
this signal can transfer fewer than 6 information bits at point B. Note that
an uncoded system transfers 6 information bits at point A. Therefore, the
normalization of the SNR with respect to the transmission rate is necessary
to fairly measure the SNR improvement by the mentioned coding scheme, see
also Example 3.6. O

Rate of the partitioning bit |

//zé’ A -
212 dB “

20 21 22 23 24 25 26 27
SNR

Figure 3.10: Maximum rate of a partitioning bit and that of the corresponding
constellation.

3.4 Error performance of FCM

In a FCM system there are three sources of error that affect the performance
of the coding process. The corresponding error probabilities are: the intra-
partition error probability designated by P, (the signal error probability within
a given partition), the inter-partition error probability designated by P,, (the
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decoding error probability of the MRFC schemes) and the feedback channel
error probability designated by Psy. In what follows, the parameters of the
scheme are chosen such that P, determines P, the total error probability of
FCM. Le. P, = P, + Py, + Psy = Py, when P, > Py, and P, > P,

3.4.1 Intra-partition error

This is the probability that, in a given partition, a transmitted signal point
is received in the decision region of another signal point. For example, con-
sider a FCM scheme with 64-point 2-dimensional signal constellation (8 x 8).
After decoding of the MRFC schemes in both dimensions, the transmitted
partition is known at the receiver. Given a correctly estimated partition, the
intra-partition error probability is the probability that the transmitted signal
point xZ is received outside decision region R, see Fig. 3.11. Note that the
estimating process of the partitioning bits and the index modification proce-
dure mentioned in Table 3.1 automatically determine the decision region of
every received signal point within the estimated partition.

| } I
| [} ]
LU S S,

R N R

Figure 3.11: The decision regions in a partition of a 64-point 2-dimensional
constellation.

The signal error probability in a partition of D-dimensional cubic constel-
lation X can well be approximated by the union bound estimate (3.8) as

2y
PS:P ~ Nf,pQ(%)? (312)

L_
where Ny, = D&%H—Q = 2D% is the average number of nearest neigh-

2
bours in each partition of X. This bound is tight in our range of interest. It
is useful to mention that the signal error probability here is the same as that
in the parallel branches of the trellis in Fig 3.6.
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As mentioned before, we are going to make the error performance of FCM
be dominated by P,, i.e. by Ps,. Therefore, we have to compare P, , with
Ps e, the signal error probability of the uncoded system. For the original
(uncoded) constellation one obtains

Ps,uc ~ Nf,ucQ(z_’YEL (313)

where Ny, = D2EZ2%2 — 9p Lol (3150 mentioned in Example 3.2).

Example 3.6 In the constellation of Example 3.5, each partition contains
16 signal points, thus, Ny, = 3 while Ny ,, = 3.5. The uncoded and coded
(FCM) signal error probabilities of the constellation are depicted in Fig. 3.12
from (3.13) and (3.12), respectively. In order to compare the results fairly, the
SNR’s are normalized according to criterion (3.10). For the uncoded scheme
R = 2Ry = 6 bits per transmission and for the coded scheme R = 2R; = 4+2z
bits per transmission, where z = Rf(1 — kp) and p is given by (3.11). The
signal error probability of FCM is normalized with respect to the transmission
rate for k = 4,5,6. The curves of Fig. 3.12 bend because of the SNR normal-
ization. With decreasing SNR, the rate of the MRFC scheme falls faster and
the bending effect becomes more evident as k& increases. O

3.4.2 Inter-partition error

We can speak about the intra-partition signal error probability in the previous
subsection as long as the partition of the transmitted signal is correctly esti-
mated at the receiver. In other words, the MRFC schemes of all coordinates
must also be decoded correctly in order to deliver the information associated
with both partitioning bits and uncoded bits.

The inter-partition error occurs if the partition of a transmitted signal is
erroneously estimated, i.e. at least one of the partitioning bits is estimated
erroneously in a block or sequence of transmissions (depending on whether
block or recursive MRFC is used in FCM, respectively). In this subsection,
the effect of the partition estimation error is taken into account for evaluating
the performance of FCM with block MRFC and with recursive MRFC.

Performance of FCM with block MRFC

Let N be the block length of MRFC schemes. In a dimension, designate the
block decoding error probability of the MRFC scheme by PbN . The block error
probability of MRFC schemes in D dimensions is upper bounded by
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FCM with k=4 ____
FCM with k=5 _ _
FCM with k=6

Figure 3.12: The symbol error probability for FCM.

Pr{Block inter-partition error} = PN <D.P).

The total block error probability of FCM can be written as

(
PN ~ P + PN + P}y < py + P, (3.14)

where in (@) the error probability of the noisy feedback channel is ignored
conform to the argument of Subsection 3.4.3. In (3.14) Pzﬁv is the block error
probability caused by the intra-partition signal error (in a correctly estimated
partition). It is

PY=1-(1- P )Y,
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where P, is given by (3.12). To make P;, (i.e. PpN) dominant in (3.14), let
PY > PX. Therefore, (3.14) can be written as

N . pN
PN ~ PV,

which means that the normalized error probability of FCM per transmitted
signal is determined by P,,. Normally, we are interested in points where
Psp =107 or P, = 1075, which explains the graphs of Fig. 3.12.

In order to decrease the block error probability of MRFC schemes, i.e. to
make PPN > PN one solution is to increase the tail length of the corresponding
blocks from kpN + 1 to kf N + 1. In this way, each block can certainly correct
up to fN errors, f > p. For example, assume that

®
PY >10 x D x 27¥PUIP) > 10 x D x BN > 10PY. (3.15)

In () the upper-bound of (2.9) is used for P} and p is obtained from (3.11).
Having condition (3.15) causes a drop in the transmission rate (due to increas-
ing the tail lengths), which must be taken into account in the SNR normal-
ization, see (3.16) in the following example.

Example 3.7 For the 64-point 2-dimensional constellation mentioned in Ex-
ample 3.5, if P, = 1075, then p = 0.011. The SNR,, loss due to increasing
the tail of both MRFC schemes is plotted in Fig. 3.13 according to the fol-
lowing procedure. First, for each block length N, the smallest error correction
fraction f that satisfies the left inequality of (3.15), i.e

1—(1-10"%" > 10 x 2 x 2~ ¥DP(fllo.011)

is computed. Then, the total SNR, loss due to increasing the tail lengths of
the two MRFC schemes is calculated from (3.10) as

24+2R’5(1—kf) -1
94-+2RE(1-kp) _ 17"

This SNR,, loss is plotted in Fig. 3.13 for k& = 6 in terms of N. Note that
k = 6 is the optimum repetition value at P; . = 1078 where p = 0.011, see also
Subsection 3.6.2. With increasing block length, the SNR loss is decreasing.
Note that increasing N does not affect the computational complexity of the
decoding, and only the length of the buffers increases. As indicated in Fig.
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3.13 for 0.2 dB loss, the length of the buffers should be 6650 according to
(3.15).

One may argue that (3.15) is not a good measure when N = 6650 because
then P ~ 107%. Let PN = 1077, for example by using a high-rate error-
correcting code for the uncoded bits in Fig. 3.7. Using the same computation
shows that N = 11,000 is enough for 0.2 dB loss. O

-0.05 +
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dB -0.15

loss 02
in  -0.25
SNR

-0.3
-0.35
-0.4
-0.45

05 ! L ! ! ! ! ! I
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N

T

. N=6650

Figure 3.13: The SNR loss due to increasing the tail length in FCM with block
MRFC.

Remark 3.2 The effective coding gain of the FCM with block MRFC for the
2-dimensional 64-point constellation is 5.32 dB, which can be computed from
Fig. 3.12 as 9.21 - 3.69 = 5.52 dB minus 0.2 dB tail increasing loss when
N = 6650. As seen from Fig. 3.13, the SNR,, loss due to increasing the tail
length could be significant for short block lengths. In Chapter 4 two block
retransmission strategy are presented for MRFC schemes that improve the
error performance of the block MRFC. In this way, it is possible to shorten
the gap between f and p, and reduce the SNRy, loss in (3.16). O

Performance of FCM with recursive MRFC

The recursive MRFC is described in Section 2.2.3. In the recursive decoding,
each transmitted partitioning bit is estimated based on only the D, following
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received partitioning bits (from the same coordinate). The length of the buffers
in this method, i.e. (D,+1), can be significantly smaller than that in the block
MRFC. However, a random walk of D, + 1 steps must be performed for every
partitioning bit using the state diagram of Fig. 2.11.

The total error probability (per transmitted symbol) of FCM with recursive
MRFC can be written as

r r (@) r (B)
P =~ sp + P+ Popp & Psp+ P = Py (3.17)

where in («) Ps g, the error probability of the noisy feedback channel (per
signal), is ignored conform to the argument of Subsection 3.4.3. The partition
estimation error probability, i.e. the inter-partition error probability of the
recursive method, is P, < DP, (i), where P,(i) is the estimation error prob-
ability of a partitioning bit at the i*1 transmission. An upper bound to the
probability of this event is given by (2.13), which can be rewritten as

Po(i) = Pr{Ti # tia} < % 27D Dl (3.18)

when p = pg = 0.017 (pg is the solution of (2.1) when k = 6). According to the
argument of Example 2.5, D(z||p) is the asymptotic exponent of P, (7) even
when p = 0.011. Therefore, in the following example we use the upper bound
of (3.18) to give a measure on the value of D,. For a rigorous statement, one
can consider the performance of the system at p = pg = 0.017 which is about
0.6 dB lower than the point at which P;, = 107% in Fig. 3.12 (or use k = 7
and consider the performance of the system at p = p; = 0.0082 which is about
0.4 dB higher than the point at which P, = 107% in Fig. 3.12).

Example 3.8 In Fig. 3.14, the upper bound of log,, P, (7) is plotted in terms
of buffer length D, from (3.18) for optimum repetition parameter k¥ = 6 at
p = 0.011. If we apply the rule of thumb P.(i) < 107!, then the MRFC
schemes are practically error free and one can make the approximation of (3)
in (3.17). The required buffer length for k = 6 at p = 0.011 when P, (i) < 1014
is 101. See also the simulation results at the end of Subsection 3.5.3. O

Remark 3.3 The effective coding gain of the FCM with recursive MRFC for
the 2-dimensional 64-point constellation is 5.52 dB, which can be computed
from Fig. 3.12 as 9.21 - 3.69 = 5.52 dB when D, = 101. The right-to-left or
left-to-right bit estimating methods can also be used in the block coding of
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Figure 3.14: The exponent of the (upper bound of the) estimation error prob-
ability in terms of delay length.

FCM to decrease the error probability of the estimated partitioning bits. In
this way, using large block lengths is more feasible where uncoded data can
only be decoded after a short delay. Nevertheless, the information associated
with the partitioning bits must be decoded when the whole block is received. O

3.4.3 Feedback channel error

So far we have practically considered the feedback channel to be noiseless,
ie P]{\g and P sy are ignored in (3.14) and (3.17), respectively. On the other
hand, the assumption is that the feedback channel is noisy, i.e. the SNR’s in
the forward channel and in the feedback channel are equal or

SNR; = SNR. (3.19)

Our approach is to make this noisy feedback channel perform like a noiseless
channel. This is done, perhaps being clear to the reader by now, by reducing
the amount of information in the backward direction relative to that of the
forward direction and spending the same signal energy of the forward direction
on this, the so-called, low rate feedback information.

For every forward transmission in FCM scheme, we need to feed back D
bits (one bit per dimension) over the noisy feedback channel. Therefore, in
the signal constellation of the feedback channel there are two signal points per
dimension or 2P signal points in D dimensions. If 77 is the distance between
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two signal coordinate points in the constellation of the feedback channel, then
condition (3.19) means that

2L%-1 2 221

SNR = SNR; = L 12 = ' I _ gNR,, , = SNR;,
g g
or
P
Yo =7 3

If the 6 dB improved coded system works at signal error probability 1076, then
for such minimum distance -y the signal error probability of the uncoded con-
stellation is about 1072, By choosing Yfv = 37, the symbol error probability
in the feedback channel will be in the order of 10~!%. This error probability
in the feedback link is so small that it practically enables us to consider the
feedback channel noiseless. Thus, the criterion for the assumption that the
feedback error probability per dimension P s < 10~ becomes

>3y S 12398 o L>6 (3.20)
In Fig. 3.15 the signal constellation of the feedback channel, the filled points,
is depicted relative to the signal constellation of the forward channel in the
case where criterion (3.20) holds with equality. Here, if P;,. is about 1072
then Ps r is about 1014,

Remark 3.4 In order to make the feedback channel virtually noiseless, a
SNRy;, that yields equality on the left side of (3.20) suffices. If the number of
signal points per dimension of the signal constellation of the forward channel is
larger than 6, then SNR f;, can be smaller than the SNR of the forward channel.
Note that criterion (3.20) is a rule of thumb and can be relaxed. For example,
in FCM with block MRFC, we can make the block error probability due to the
feedback channel error 10 times smaller than that due to the intra-partition
signal error. O

3.5 Decoding complexity, a comparison

Here the important justification for using the feedback information in the
coding process is to reduce the coding complexity, in general, and to reduce the
complexity of the decoder, in particular. Therefore, the decoding complexities
of TCM and FCM are roughly evaluated and compared in this section in terms
of the types of computations and the amount of memory needed in the decoder
of each method.
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Figure 3.15: Constellation of the feedback channel, with filled points, relative

to that of the forward channel (an illustration).

3.5.1 Decoding complexity of TCM

The decoding complexity of TCM can be considered for the general scheme
of Fig. 3.5. Here we do not insist on evaluating the complexity of the most
efficient decoding techniques of TCM. Our intention is to give an indication
of the types and the number of major processes and facilities needed in a
general decoder of TCM. For every received symbol, the following operations
are carried out in the decoder of a TCM system.

1. The most likely signal point in each partition is found in the subset

decoding. This is accomplished by finding the signal point in each parti-
tion that is closest in Euclidean distance to the received point. For each
partition, the Euclidean distances of the received point to all 2k2 signal
points of the partition have to be calculated and the smallest distance
and the corresponding signal point have to be found.

. After performing the first step, corresponding to each set of parallel

transitions in the trellis there exists only one point from the partition
(the most likely one) and one corresponding Euclidean distance. The
next decoding step is to use these Euclidean distances to find the path
on the trellis whose total Euclidean distance from the received sequence
is minimum. This step is done by applying the Viterbi algorithm. In
a 2V-state Viterbi decoder, the following operations and facilities are
needed. Note that in the trellis diagram 2! branches are entering each
state and the same number of branches are emerging from it.

i. The add-compare-select part finds the survival branch arriving at
each state and it also updates the metric of the corresponding state.
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In each state, we have to choose the incoming survivor branch,
therefore, 2°1 additions and 25 — 1 comparisons of real valued
numbers are necessary. The survivor metrics are stored for the
next signal.

ii. In the path-storage unit, the survivor branch of the previous step is
used to update the survivor path of each state. For each state, the
survivor path leading to that state is stored up to a certain depth.
Normally, in the Viterbi decoder the path records of all states have
a depth of 5 x (v + 1) branches. For each state we have to store k;
bits as the index of the survivor branch and k, bits as the index of
the closest signal point in the corresponding partition.

iii. The survivor path selection is performed by comparing the metrics
of the states and choosing the smallest one. The survivor path
of the chosen state is then traced back for a depth of 5 x (v + 1)
branches. In this way, the most likely symbol at 5 x (v + 1) signal
periods in the past is obtained.

In TCM, the total amount of memory needed to implement the decoder
and the type and the number of operations that have to be carried out for
every received signal at the decoder are summarized in Table 3.2. The real
valued numbers can be processed by quantizing the corresponding real values.
The precision of the quantization determines the complexity of the operations
and the required memory size. In order not to go in too much detail, we refer
to them as real values in Table 3.2.

3.5.2 Decoding complexity of FCM

Let us investigate the same requirements for the decoder of FCM. In the
following, subscripts b and r denote that the corresponding requirement applies
to FCM with block and recursive MRFC, respectively. The FCM with block
MRFC needs the following operations and facilities in the decoder.

1. D buffers of length IV are needed to store the received signal points. Since
log L 4+ 1 bits per dimension per signal are enough to store a received
coordinate point, the total required memory is DN (log L + 1) bits.

2p. For every received partitioning bit, a pattern search is needed to look for
the forbidden subsequences 10* and 01*. On average, there occur DNp
errors for partitioning bits in a block of N transmissions. For every error,
one forbidden subsequence replacement and one index modification are
needed (p is given by (3.11)). In total DN pattern searches and on
average D Np modifications must be performed in a block.
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The type and number The amount of
No. .
of operations needed memory
271 . 2%z distance 2™ distances
) calculations (real values) (real values)
oM. (2F2 — 1) 2™ . ks bits
comparisons (real values) signal point indexes
2V . 2F1 additions
. (real values) 2Y metrics of states
21 o (2%1 — 1) comparisons (real values)
(real values)
.. 2¥ surviving path 5(v + 1) - 2¥(k1 + k2) bits
2.1 updating (real values) records of surviving paths
2Y —1
2.iii || comparisons (real values)
5(v + 1) back-tracings

Table 3.2: The requirements needed in a typical decoder of the TCM.

Similarly, the following requirements are needed in the decoder of the FCM
system with recursive MRFC.

1,. As D buffers of length (D, + 1) are used, a memory of size D(D, +
1)(log L + 1) bits is needed.

2,. A random walk of (D, + 1) steps is performed for every received par-
titioning bit in the estimator. One forbidden subsequence replacement
and one index modification are needed on average per zl—) partitioning
bits.

Precoding and inverse precoding are needed in both block and recursive
methods. In [91, Section 7.2] an overview of precoding methods for MRFC
schemes are given. It appears that for the symmetric MRFC scheme that is
used in the FCM method, there are efficient methods that only require a few
operations per precoded bit. In the following, we mention only two methods
and the complexities of the corresponding inverse precoders without going into
implementation detail.

3;. For block MRFC with short block lengths, one may use an enumera-
tive scheme for precoding. The enumerative coding was introduced by
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Cover in [15]. However, Becker [15] independently developed a similar
method for the precoding of MRFC from Schalkwijk’s source coding al-
gorithm [59]. As mentioned in [91, pp. 101], an inverse precoder based
on the enumerative scheme has to store k£ L-bits numbers. Moreover,
one comparison and at most k£ L-bit additions are needed per precoded
bit. Therefore, this method turns to be rather complex when L is large.

3p,r- For block MRFC with large block lengths or recursive MRFC, an arith-
metic decoder and an arithmetic encoder can be used as the precoder
and inverse precoder, respectively. An arithmetic coding method with a
fixed rate for mapping messages into constrained sequences is mentioned
in [38, 83]. Here we consider the efficient and fast arithmetic coding algo-
rithm presented in [33], which also employs the FSM of the precoder (e.g.
see Fig. 2.4) and the corresponding state transition probabilities given
in Appendix A (see Chapter 6 for more detail). The resulting inverse
precoder needs (k — 1) registers to store the state transition probabilities
of the FSM, two registers per dimension to store the beginning point
and the length of the corresponding code interval and one register per
dimension to store the number of runs, see [33]. For every precoded bit,
the arithmetic encoder requires: one multiplication, at most two addi-
tions and (for our application) at most two scalings, i.e. shifting the
contents of two registers.

Note that the given requirements per precoded bit is an overestimation,
because the number of precoded bits is about 10 percents smaller than the
number of transmitted partitioning bits.

3.5.3 Comparison of decoding complexities

For a coding scheme the asymptotic coding gain can be determined from the
union bound. The amount of improvement in the minimum signal distance
Yfed @s defined in Subsection 3.2.3 determines the asymptotic coding gain.
This gain affects the argument of the @ function in (3.8). In Table 3.3, yfeq
and the asymptotic coding gain of different codes for TCM are presented from
[85]. The first column gives the number of states in the trellis code. The Ny
column indicates the (average) number of nearest neighbour signal sequences
with distance 74 that diverge at any state from a transmitted signal sequence
and merge with it after one or more transmissions.

Due to term Ny in (3.8), however, the coding gains of the codes mentioned
in Table 3.3 are not feasible. The effective coding gain of a modulation scheme
is measured by the reduction in required SNR, to achieve a certain target
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No. of | Asympt. | Asympt. G, Ny
2 2
states ZVL‘? 15? in dB
4]
4 4* 2% 3.01 4
8 ) 2.5 3.89 16
16 6 3 477 | 56
32 6 3 4.77 16
64 7 3.5 5.44 | 56
128 8 4* 6.02 | 344
256 8 4* 6.02 44

Table 3.3: The asymptotic coding gains of different codes for three level two-
dimensional TCM. The x indicates that yseq is determined by ~p.

signal error probability (e.g. 107%) relative to a baseline uncoded scheme [26],
see also Fig. 3.12 for an illustration. Fig. 6 from [26] gives the effective
coding gains of different codes designed for TCM, where the effect of nearest
neighbour signals are also taken into account. In [26], Forney and Ungerboeck
say:

“Tt is noteworthy that no one has improved on the performance com-
plexity tradeoff of the original 1D and 2D trellis codes of Ungerboeck
or the subsequent multidimensional codes of Wei. By this time it seems
safe to predict that no one will ever do so. There have, however, been
new trellis codes that feature other properties and have about the same
performance and complexity, ..., and there may still be room for further
improvements of this kind.”

Therefore, according to [26, Fig. 6] a 256-state or a 512-state trellis code
of Ungerboeck can be chosen as a comparison benchmark in the range of 5.3-
5.5 dB (effective) coding gain. Also FCM yields a coding gain in this range
depending on whether a block or a recursive MRFC scheme is used, see Rems.
3.2 and 3.3. In the following, we summarize the comparison results between
the decoding complexity of the TCM (with 256-state trellis code) and that of
FCM.

Comparison results

Assume a 2-dimensional signalling scheme for which the original constellation
contains 64 signal points. If we apply a three level TCM with a 256 state
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trellis code, then the parameters of Fig. 3.5 are k; = 2, n; = 3 and k, = 4.
From Table 3.2, where v = 8, the decoder needs

— a 8644 byte memory and a memory for 264 real values;

— for every signal: 128 Euclidean distance calculations, 1024 additions and
1143 comparisons of real values, 256 metric updating and a back tracing
of 45 branches.

Again we emphasize that these figures are not the requirements of an optimum
TCM decoder, however, we can say that they present a good estimation of
those major requirements. On the other hand, if the FCM scheme is applied
to the same constellation, for £ = 6, N = 6650 and (D, + 1) = 101 we need

+ a 6650 byte memory in the block decoding or a 101 byte memory in the
recursive decoding;

+ for every signal: 2 pattern searches in the block decoding or 2 random
walks in the recursive decoding as well as 2 forbidden subsequence re-
placement and 2 index modifications per 90 signals (same in both meth-
ods);

+ in the inverse precoder of both methods: a 22 byte memory, and for every
received signal 2 multiplications, at most 4 additions and 4 scalings.

From the above figures, the decoding simplicity of the FCM scheme (or
the decoding complexity of the TCM) is evident. Note that we could have
used a 512-state trellis code as the benchmark in the coding gain range of the
recursive FCM. For a 512-state trellis code, almost a factor of two appears in
the requirements of TCM’s decoder, mentioned above.

Simulation results

The FCM with recursive MRFC is simulated for two cases of PAM and QAM
signalling, where an 8-point and a 64-point constellations are considered, re-
spectively. The length of the buffers is chosen as D, = 75. During 10° trans-
missions of random data, the estimators of the partitioning bits did not yield
any error at the SNR where the signal error probability within partitions be-
came P;, = 107%. Compared to uncoded schemes, coding gains of 5.41 dB
and 5.49 dB were observed in the PAM and QAM cases, respectively.
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D’ 2 4 8 12 16 24 32 64 | ... 00
dB || 0.20 | 0.46 | 0.73 | 0.88 | 0.98 { 1.10 | 1.17 | 1.31 | ... | 1.53

Table 3.4: The maximum shaping gain for spherical constellation over cubic
constellation.

3.6 Some peripheral aspects of FCM

3.6.1 Signal shaping

The signal shaping problem is that of choosing the region R¢ that bounds
the D-dimensional signal constellation. Until now we have chosen R¢ to be
a D-dimensional cubic. In such a constellation the average signal energy 1s
not optimum. For example, consider the 2-dimensional constellation of Fig.
3.16. If instead of signal point A, we choose signal point B from the outside
of the square, then the average signal energy will be reduced. It is easy to
see that the optimum R is a circle. Similarly in D dimensions, the optimum
R will be a D-dimensional sphere. The shape of the enclosing region of
the constellation does not change the minimum distance of signal points and,
consequently, the error performance of the constellation remains practically
unchanged. It is important to be emphasized that if we use the signal shaping
techniques in FCM, the resulting improvement in SNR does not affect the
minimum distance between the signal points and, therefore, it does not affect
the transmission of the partitioning bits.

A
o

Figure 3.16: An illustration for signal shaping in a 2-dimensional constellation.

In D' dimensions, the amount of maximum gain that can be obtained by
choosing a sphere constellation over a cubic constellation, i.e. by the so-called
signal shaping, is presented in Table 3.4 from [13]. Note that the number of
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dimensions in the signal shaping, denoted by D’ here, is not necessarily the
same as D, the number of dimensions in the coded modulation. Signal shaping
codes or techniques are investigated in many papers, see [18, pp. 10] for an
overview. In this section we briefly mention a simple signal shaping method
which was first proposed in [97, 94] and later was studied in [18]. We illustrate
that this method can be adapted for using in FCM. Based on enumerative
source coding [59], this method keeps the total energy of D’ dimensions below
a certain limit, i.e.

D/
Z I-Z'd"2 < Bz,
d'=1

where zg € X' is the (d' )th coordinate of the shaped signal. In this way, only
the signal points which are at the inside of the D’-dimensional sphere of radius
V' Epmag are transmitted.

The index assignment of Fig. 3.9 is chosen for signal shaping purposes,
where the energy of the transmitted signal points depends on indexes and is
independent of the partitioning bits. Therefore, a signal shaping code which
operates on the indexes can be independent of the MRFC schemes and the
on-fly repetitions of partitioning bits, see Fig. 3.17. Finally, we present in
Table 3.5 one of the results of [18] to indicate how much SNR improvement
can be gained with this simple method.

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
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Figure 3.17: A block diagram of the FCM with signal shaping in the encoder.

D’ 4 8 16 32 64
dB || 0.218 | 0.465 | 0.709 | 0.901 | 1.039

Table 3.5: The shaping gains for the method reported in [18].
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3.6.2 Choice of the repetition parameter

In [91, Chapter 5] Veugen presents a rule to choose the repetition parame-
ters in MRFC for a given DMC so that the the maximum transmission rate
is obtained. For a BSC with crossover probability p, the optimum repetition
parameter is k = — < logp > where the < z > operation yields the closest
integer to real number z. This seems intuitively reasonable because a transmis-
sion error, which occurs with probability p, needs logzlj bits (or transmissions
in the case of a BSC) to be clarified for the decoder according to Def. 1.6, see
also [91]. One must notice that log 11—) bits are not enough to correct an error, a
precoding mechanism is further needed to distinguish between correct recep-
tions and erroneous ones, i.e. to produce an acknowledgement mechanism as
mentioned in the first chapter. Thus, a combination of precoding and repeti-
tions is the cost paid to correct any channel error. As p — 0, the optimum
k — oo and the precoding rate R’g — 1, therefore, the precoding redundancy
goes to zero and only the repetition cost is paid for correcting an error. This
explanation is in accordance with [91, Theorem 5.1].

For recursive MRFC, one must choose a scheme which gives maximum

transmission rate at p. A good approximation is the mentioned rule k = — <
logp >. For block MRFC, we saw that the correctable error fraction must
N—L

be increased from p to f = 57~ in order to have the desired error exponent
D(f|lp). Here the scheme which maximizes the transmission rate at f must
be chosen, i.e. k= — < log f >, according to the mentioned rule.

3.7 Conclusions

In this chapter FCM is introduced and analyzed. It is shown that in this way
we can gain about 5.5 dB improvement in the SNR. This effective coding gain
is in the range of the effective coding gain of the most complex TCM with
a 256 or 512 state trellis code. In FCM the decoding process is considerably
simplified compared to that of the TCM. The decoder of FCM mainly needs
D buffers of a limited length. In the recursive FCM, where only a few recently
received points are needed, the length of the buffers can even be shortened
considerably compared to the buffer length of block FCM. The amount of
processing per signal in the decoder of FCM is extremely smaller with respect
to that of TCM. More importantly, the feedback channel considered in FCM
is a noisy channel, which is virtually made errorless by the scheme. It is also
shown how to use signal shaping techniques in the FCM case. With a very
simple signal shaping code, an extra shaping gain of 1 dB can be obtained on
top of the 5.5 dB gain. See also Chapter 7 for some applications and practical
aspects of FCM.



Chapter 4

Retransmission strategies
with MRFC schemes

The transmitter in information feedback schemes can easily discover if a re-
ceived block is decoded correctly. In this chapter we show how the transmitter
of a MRFC system can use the resulting knowledge and apply retransmission
strategies. In Chapter 3, the error performance of FCM with block MRFC is
improved by increasing the tail length of the corresponding MRFC schemes.
However, increasing the tail length also decreases the transmission rate for
small block lengths, see Fig. 3.13. The retransmission strategies presented
here are another solution for improving the error performance of the block
MRFC schemes.

4.1 The basic idea

In a block retransmission strategy, the transmission of every block has two
modes: the message mode and the control mode. In the message mode, the
code word of a message is sent over the channel. Then the receiver sends back
the decoded message or the transmitter deduces it by observing the received
signal. In the control mode, the transmitter sends the acknowledgement or
the rejection signal depending on whether the decoder is correct or not, re-
spectively. The receiver decodes the control part and if the decoded result is
an acknowledgement, the receiver accepts the decoded message as correct. If
the control part is decoded as a rejection, the receiver discards the decoded
message and waits for a retransmission. In conclusion, the transmitter of a
block retransmission strategy must fulfil the following functions.

e Send (the code word of) a message in the message mode.

97
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e Detect whether or not the decoded message is the same as the transmit-
ted one.

e Send the acknowledgement or the rejection signals in the control mode,
accordingly.

A code word in this strategy consists of the message signal and the corre-
sponding control signal, see Fig. 4.1 for an illustration. Some schemes that
use this principle, e.g. [64, 99], are explained in more detail in Subsection
1.6.2. Two factors stimulate us to use retransmission strategies and MRFC
schemes together, namely: the existence of block and recursive MRFC meth-
ods with two different error performances at high transmission rates and the
fact that it is easy for the transmitter in MRFC systems to detect a correct
block decoding. In the following sections, two retransmission strategies with
MRFC are devised and evaluated, see also [79].

jth code word
—
;th message jth control
signal signal

Figure 4.1: Transmitted code words in a block retransmission strategy.

4.2 A two-block delay strategy for BSC’s

To begin with, let us consider the three requirements mentioned in the previous
section for the case of a retransmission strategy with MRFC for BSC’s. Fig.
4.2 shows the block diagram of the system.

4.2.1 Detection of block decoding error

To know whether a block is decoded correctly or not, the transmitter of a
MRFC system itself can decode the received block, which is known to the
transmitter using the feedback channel. However, the transmitter can also
use a very simple method to detect a correctly decodable block. First we
define the following.

Definition 4.1 (Block overflow) In block MRFC, denote the total number
of z — y errors in a block of N transmissions by egy, (7,y) € (X,Y). Let kgy
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Figure 4.2: The block diagram of the retransmission strategy for BSC'’s.

denote the repetition parameter of the z — y error and L be the length of pre-
coded sequences. A block overflow is defined as the event Y >y kayeny >
N -L.

In Fig. 4.2, t;v = (tj1,... ,tjn) and rév = (rj1,...,7mjn) denote the jth
transmitted block and the corresponding received block, respectively, j =
1,2,.... Let e; denote the number of channel errors during the transmission

of the 5t block, i.e.

N
ej = Y (1= 08(rjn,tin)),
n=1

where the Kronecker § function is defined as

0 if a#b
5(“’1’):{1 if aib.

In block MRFC for BSC’s, obviously, a block overflow occurs only if e; >
fN, where f is the correctable error fraction of the block such that N —
L =Fk fN 4+ 1. We say that the jth block is successfully transmitted if
the block does not overflow!. Note that a non-overflowing block is always
decoded correctly according to Theorem 2.1, however, an overflowing block is
not necessarily decoded erroneously. Nevertheless, considering the number of
errors in a block is a very good and simple measure to indicate a correct block
decoding (specially for large block lengths).

' This agrees with the definition of a rate being achievable in the Veugen sense, Def. 2.3.
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4.2.2 Message sequence and control signals

In MRFC scheme for BSC’s with repetition parameter k, precoded sequence
vl (see Fig. 2.5) does not contain any 01* and 10* subsequences. Sequence
vl = ;... v can be seen as a combination of message sequence @D =
uj ...ur—1 and control signal (bit) v;, where

Up = Up D Upt1 forn=1,...,(L-1).

The @ operator denotes modulo 2 addition, i.e. the eXclusive-OR operation.
The 1 or 0 symbols in ulL=1) correspond to a “change” or a “no-change” in
sequence vl. If 01F and 10* are forbidden subsequences of v¥, then sequence
u=1 does not contain subsequence 0*~1. In other words, sequences u and
v correspond to the FSM’s on the right and left side of Fig. 2.4, respectively.
Both constrained channels have the same capacity or precoding rate because
they only differ in one bit, which is asymptotically negligible. For convenience
let us define the following.

Definition 4.2 Consider the binary sequence b1 of length (N — 1) and
bit c. Define operation ¥(b(N=1 ¢) = a¥ of length N, where

a1 =c¢
{ ap, = ap_1Dby_1 forn=2,...,N. (4.1)

The precoded sequence of the jth transmitted block, i.e. v¥ as shown in

J
Fig. 4.2, can be written as

L—-1)

v;; = \Il(ug ,CS5),
where {ugL_l)}, i =1,2,..., is the sequence of messages to be transmitted

over the channel, see also Fig. 4.2, and cs; is the acknowledgement/rejection
control bit of the (j — 1)St block.

The transmitter in Fig. 4.2 appends to v]L_l the tail sequence zp4+1 ... 2N
of length N — L = k fN + 1 bits so that up to fN channel errors can be
corrected. Remember that the transmitter shortens the tail from the end
by k bits and carries out k (bit) repetitions whenever a transmission error
occurs. If the (5 — 1)St block, i.e. t;-v_l in Fig. 4.2, is transmitted successfully,

ie. ej_1 < fN, a new message will be transmitted in the jth transmission.

Otherwise, i.e. e;_1 > fN, the same message will be retransmitted in the jth
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transmission. Without loss of generality, we assume that cs; =0and cs; =1
convey to the receiver the acknowledgement signal and the rejection signal,
respectively, of the (j — 1)St received block.

Fig. 4.3 gives a schematic illustration of the transmitted blocks and the
concept of a code word in the resulting retransmission strategy. The control bit
decoding unit in Fig. 4.2 decodes the control symbol of a block and accepts or
discards the previously received block, accordingly. The control symbol must
be decoded with a very low error probability because, as will be seen later, the
error performance of the strategy depends on the decoding error probability
of the control symbols. Since a left-to-right decoder of MRFC schemes for
BSC has a large error exponent at rates close to channel capacity, an either
left-to-right estimator or right-to-left estimator can be used to estimate the
first bit of every transmitted block, i.e. to have fjl as an estimate of ¢j; = cs;.

€5(j+1)

\ jth transmission /
} —HO/I Mes*sage 1 ”9/1 —IL { c.

j+ code word

Figure 4.3: The concept of a code word in the 2-block delay strategy.

4.2.3 2-block delay strategy

Given that the control bits are estimated correctly, the erroneous (overflowing)
blocks can be corrected. As long as the transmitted blocks corresponding to
message ugL_l) overflow, i.e. e; > fN during transmission of t;-v , the same
message is repeated with initial bit Vi+1)1 = ¢Sj+1 = 1, see Fig. 4.4. As
soon as e; < fN for a j, then the next message u(_ll’_1 Y is transmitted with

v(j+1)1 = ¢Sj+1 = 0, which is schematically shown in Fig. 4.4 by moving to the
next row. Only the last block on each row will be decoded by the (right-to-left)

block decoding method in the channel-error removing unit of Fig. 4.2.

Decoding

In the decoder, one has to store the two latest received blocks. Let buffers B,
and By contain two latest received blocks r?¥ ; and r , respectively. Every
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N : L
ugfl—l) TR | (&tj (corresponding to v;)

Figure 4.4: An illustration of the transmitted blocks in the 2-block delay
strategy. The dashed blocks are discarded at the receiver.

arriving bit of block rj-v is written in buffer By and a left-to-right estimator
can simultaneously process the estimation of t;1. When r;y is received, the
estimation fjl is known. Based on fjl, the decoding of the strategy can be
summarized as follows (5 > 1).

1 .
— If £;; = 0, then shift By to the channel-error removing unit.
- If fjl =1, then discard Bj.

Shift B, to Bj.

As we can see, only one bit per received block is decoded by the left-to-
right decoding algorithm and those blocks which are given to the channel-error
removing unit are decoded by the right-to-left decoding method.

Encoding

In this strategy the decoding error can be caused by the erroneous estimation
of the first bit of a block, where an acknowledgement signal is estimated as a
rejection signal and vice versa. With a slight modification of the encoding in
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the block repeating unit, the estimation error of the acknowledgement signal
to the rejection signal can be corrected. To achieve this goal, the transmitter
itself must also estimate the first transmitted bit of every received block the
exact way that the receiver does. Thus, the transmitter becomes aware of the
outcome in which the first bit is estimated incorrectly by the estimator of the
receiver. There are two following cases.

e cs; =t = 0 is estimated as f 1 =1 (0 — 1 error). In spite of being
decodable v] , will be dlscarded by the decoder, see the upper part of

Fig. 4.5. Therefore, in the (j + 1)St block we have to retransmit u(L 1),
i.e. the message corresponding to v 1, with ¢s;41 =1 in order to undo
the error. In this way, we can correct the 0—>1 estlmatlon error of the
first bit at the cost of discarded blocks v ~; and v

Vi1 Vin
L-1) - —-—-—-o-_ - — -
e N [T |
P2 .
L—1) 20000000
uz( ):,i)_ _________ 7
L
A%
1 J
vE vl
T N CTT | f ‘‘‘‘‘‘‘‘‘‘‘ |
L-1 -
uz(-l-l) 1 i 0
VJL+1

Figure 4.5: The encoding procedure when an acknowledgement to rejection
error (above) and when a rejection to acknowledgement error (below) occur.

e cs; = t;; = 1 is estimated as ;1 = 0 (1 — 0 error). In this case the
(j — 1)St block will be considered as a decodable block and, therefore,
an erroneous block will be produced, see the lower part of Fig. 4.5. The
1 — 0 estimation error of the first bit cannot be corrected. In order to
prevent the jth block from being considered as another legitimate block,
the next block is produced with a new message and csj1; = 1. In this
way, every 1 — 0 estimation error results in only one erroneous block.

To initiate the encoding process, we have j = 1 and ¢s; = 0, 1 = 1. To
transmit the subsequent blocks, i.e. j > 1, the following steps are performed
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in the encoder.

1 .
- If t(j-—l)l = t(j—l)l and

* ej—1 > fN then cs;j:=1 and 1 := 1,

* €j—1 < fN then csj :=0and i:=1+ 1.

— An acknowledgement to rejection error?, i.e. t(j—1)1 = 0 but i(j-—l)l =
1, then ¢sj :=1 and (when i > 1) 1:=4 — L.

— A rejection to acknowledgement error’, i.e. t(j—1)1 = 1 but E(j—l)l =
0, then csj:=1and i:=1+ 1.

2 _
Obtain v]L = \I!(u(L 1),csj), append a proper tail and transmit the

(3
resulting sequence through the channel.

4.2.4 Error exponent

In this retransmission strategy, a block is erroneously given to the channel-
error remover, see Fig. 4.2, with probability Pr when the 1 — 0 estimation
error of the first bit occurs for the content of buffer Ba.

Given that by; = 1 (the first transmitted bit of the block stored in buffer
B3) is estimated to 0, Table 4.1 summarizes the probabilities of different events
according to whether by; (the first transmitted bit of the block stored in buffer
B;) is 0 or 1. Let P? and P} denote the estimation probabilities corresponding
to a 0 — 1 error and a 1 — 0 error, respectively, and P, denote the overflow
probability of each block. The asymptotic exponents of P? and P}, denoted
by E% and E} respectively, are given by (2.18) and that of F, denoted by
E,, is given by (2.8). Without loss of generality, let us assume that P} < PY.
Note that the equality holds in the cases that we are interested in, i.e. the
symmetric MRFC schemes for BSC’s with forbidden subsequences 01% and

10%. We can write

2See the upper part of Fig. 4.5.
3See the lower part of Fig. 4.5.
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b1 — b1 Overflowing By Probability
0—0 no 0 (b1 =1 is not possible)
Given 0—0 yes < Pr{overflowing By }
b21=1 0—1 - PT{b11:0—>1}
{ 1—1 no 0 (b1 =1 is not possible)
0 1—1 yes < Pr{overflowing By}
10 — P’r’{bll:l—-)O}

Table 4.1: The probabilities of possible events when by; = 1 is estimated to 0.

Py P} (Pr{By; = 0}(P, + P%) + Pr{By; = 1}(P, + PH)

P! P, + P} (Pr{By; = 0}P? + Pr{B;; = 1}P})

O

< PP, +PP°
(8) )
S 2Pr PO’

where (a) comes from the assumption that P! < P? and () holds because
B! < P, (according to the corresponding exponents). Since, obviously, Pg >
P!P,, we can say that

Pr = PP, (4.2)

where A = B means that limpy_,o % log A = limy 00 % log B. To express the
exponent, we need to define the constraint length of the strategy. According
to Horstein, the constraint length is the number of channel symbols needed
to decode an information bit from the moment of entering the transmitter
until the time of being decoded at the receiver. In other words, the constraint
length is the length of the receiver’s buffer needed to decode a message (and
the corresponding information bits), see also [37]. The decoder asymptotically
needs to have 2N channel symbols to decode a message, see also the following
subsection. Therefore, from (4.2) we have

—logPr  EL+E, - EF
= E,. 4,
Brez = lim —o75 2 = 5277 (4.3)

despite using the left-to-right decoding method only for a single bit.
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Remark 4.1 The exponents B} and E% hold when p, the channel crossover
probability of the BSC, satisfies (2.1), i.e. p = pg. Moreover, according to a
conjecture due to Veugen and mentioned in Section 2.3.2, EL = D(%Hp) as
long as the repetition parameters are chosen as k =< —logp >, where the
notation < a > means the closest integer to a. In the retransmission strategy
presented in the following section, this exponent rigorously holds even when

p# pg. O

Remark 4.2 The real error probability, i.e. Pr{UZ=1 s u(;=D} is upper
bounded by Pg. If the crossover probability of the BSC p = pg, where py
satisfies (2.1), then R = R(px) = C(pk), see Example 2.4. At p = py, E},
rigorously holds and the error exponent of any feedback block coding goes to
0as R — C (ie. as f — px), see [6, pp. 3]. Therefore, the right-hand side
of (4.3) is also the exponent of the real error probability when p = p; and

f—=p. O

4.2.5 Transmission rate

As shown in Fig. 4.4 and the upper part of Fig. 4.5, the average number of
transmissions to send a message correctly satisfies

I N(1+ PY)

NCEN“*'P(JNC_*—PB (NC+N) So C:m'

(4.4)
Notation = means that the equality holds when 1 — P}, 1 — P%and 1 - P,
approach one, i.e. for large N’s. The probability Pg of erroneous decoding
can be made arbitrarily small, as shown before. Therefore, N = N, for large
N. Also from (4.4) the total transmission rate as N — oo (and L — oo, since
L —1-kf)is
N
. logM(L) . logM(L) L &
= lim —=———== 1 == — =
i NIoe L N By(1 =k f) = R(]),

aslongasp<f§%.

4.3 M-block delay strategy for BSC’s

In order to have a larger error exponent than that of the mentioned strategy,
a strategy must be able to reject not only one previous block, but also any
number of the previous blocks that are received erroneously. Assume that there
are M buffers of length N at the receiver, which are denoted by By, ... ,Bwm,
see also Fig. 4.6. For the acknowledgement of the previous block, the current
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(jth) block is started with cs; = 0. The remainder bits are obtained from
ij = \Il(ul(L_l), 0), where ugLul) is a new message?. This is similar to the case
mentioned in Subsection 4.2. However, for the rejection of the previous block,
not only the current block is started with v;; = 1, but also vjp = 1 for n =
2,..., N. Therefore, the resulting rejection signal, denoted by vx]-, becomes a
rejection code word which does not contain any forbidden subsequence nor
any message information. Note that the rejection code word does not need
a tail, however, the code word is shortened by [ bits when a channel error
occurs, where [ is the number of repetitions needed to correct the 1 — 0 error.

B; B, Bwum
= *1 o —

c
(=2 here)

Figure 4.6: Receiver’s buffers and the corresponding counters in the M-block
delay strategy.

Decoding

Assume that pointer ¢, c=1,2,... , M, points to the first empty buffer of the
receiver, see Fig. 4.6. The currently received block rév is stored in B, whose
first bit is estimated by a fixed coding delay left-to-right (or right-to-left)
estimator. The decoding procedure can be summarized as follows.

If fjl = 1, then the stored block in the previous buffer is discarded, i.e.
if¢>1,thenc:=c—1.

If fjl = 0, then store the received block in buffer B, i.e.

— ifc< M, thenc:=c+1.
— if ¢ = M, then shift the content of buffer B; to the channel-error
removing unit. Set By, := B4 form=1,... (M —1).

*In general, here the transmitted messages can be considered as those precoded sequences
which start with 0, without any reference to a u-like sequence.
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Encoding

Let counter ¢; at the transmitter denote the number of rejection code words
to be sent in order to erase the erroneously accumulated blocks on the top of
receiver’s buffers, where 0 < ¢; < ¢ (see Fig. 4.6). The erroneous blocks are
due to either the wrong decoding of a rejection code word or an overflowing
block, for which fjl = 0. To initiate the encoding process, we have i = 1,
j=1,¢ =0and c=1. To transmit the subsequent blocks, i.e. j > 1, the
encoding procedure can be summarized as follows. Note that ¢ in the following
denotes the value of receiver’s counter at the beginning of each transmitted
block (before its modification at the receiver).

1 . . . -
When ¢; = 0, a new message is transmitted, i.e. vl = kI’(uEL 1), 0).

Y

- If fjl = 0, then
* ife; < fN, then ¢ : =1+ 1;
x if ej > fN, then ¢; :=¢; + 1.
— If £j; = 1, then® (when i > 1) i:=1di— 1.

2 D . .
When M > ¢; > 0, rejection message vivej is transmitted.

— Iffjlzl, then ¢; == ¢ — 1.

- Ift;; =0,
x if g < M — 1, then ¢ := ¢ + 1.
% ifc; =M —1, then® 4 := i+ 1.

In this way, the error occurs when buffer B; contains an erroneous block
(either an overflowing block or a rejection code word whose first bit is estimated
erroneously) and buffers By, m = 2,... , M, are the erroneous receptions of
the rejection code word. Therefore, considering the exponent of Pg, i.e. the
probability of the error, we can write

P, (Pl )(M_l) <Pp< (Po + Prlej) (Prlej)(M_l)

rej ’

SProvided that the (¢— 1)St message is not already passed on to the channel-error remover.

5Because the erroneous ;b message is passed on to the channel-error remover by now.
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where P, and Prlej denote the probabilities of a block overflow and the estima-

tion of vj; =1 — 0 (v;; being the first bit of v,{\gj), respectively. Let E, and
E}ej denote the asymptotic exponents of P, and Prle ;, respectively. Now the

constraint length of the coding is M - N [37] and, therefore, the asymptotic
exponent of Pr becomes

—log Pg Eo + (M - 1)E7}ej

E = li = .
retd = M0 N M (4.5)
By letting M — oo, we have
Eret,oo = Erl-ej- (46)

Note that as M increases the decoding delay and, consequently, the imple-
mentation complexity increase. When M — oo, the average number of trans-
missions for a message, Ny > N, can also be written as

N; = N+ P%(2N;) + Pr{ overflow | first bit 0 — 0}(Nyej + V)
< N+ PY2N) + Py(Nyej + Ny),
where P? denotes the estimation error probability of the first bit of a non-

rejection code word, which starts with a 0, and P? < P,. In the above in-
equality we used the approximate

Pr{overflow and first bit 0 — 0}
Pr{ first bit 0 — 0}

=P,

Pr{ overflow | first bit 0 — 0} =

P,

<
= 1-P0

in a received block containing a message, where = indicates that the equality
holds when 1 — P approaches one, i.e. for large N. Here Nyej is the average
transmission length of the rejection code word. Since

V y ~ N
Nyej = N + 2P}, Nyej, we have Npej = TP

rej
rej

Since limy_,0 Nt = N, the transmission rate is asymptotically equal to R(f)
as given by (2.5), as long as p < f < 1.

Remark 4.3 As M increases, the effect of E, in (4.5) diminishes. Similarly,
the effect of the exponent of the real error probability Pr{U’~1 £ u(E-1}
will disappear as M — oo. Therefore, (4.6) holds also for the exponent of
Pr{UC-D z y-D}, O
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Remark 4.4 The decoding error exponent of (4.6) holds even if the crossover
probability of the BSC does not satisfy (2.1). When a right-to-left (or left-
to-right) estimator is used for a rejection code word, the probability that its
first bit is erroneously received as 0 without being corrected by the end of
the estimation delay can be determined from Veugen’s approach mentioned
in Subsection 2.3.2. As also mentioned in Example 2.5, the exponent of such
probability, i.e. D(%|| p), is derived from (2.19) and (2.20). Since the rejection
code word is not a flip sequence, D(% || p) is the error exponent of the estimator.

To illustrate this, assume that the first bit of the rejection code word is
correctly received as 1. Remember that the transmitter always sends 1’s for the
rejection code word. Similar to the approach of Subsection 2.3.2, a Markov
process with states 0,1,2,... can be defined here. The process starts from
state k, moves (k — 1) steps upwards when a 1 is received (with probability
g = 1 —p) and one step downwards when a 0 is received (with probability
p). Now let us see the exponent of the probability of asymptotically entering
the O-state (and perhaps producing the wrong output 0)7. Using (2.19) and
(2.20), we can write this exponent as

p=q(k—1)7
B, = —log(gkys V)

4

1
E, = D(=| q).
(Il )

Since ¢ > p for p < 0.5, D(%ll q) > D(%]l p). So it is more likely that
the first bit of the rejection code word is received erroneously and cannot be
corrected by the end of the estimation delay than that it is correctly received
but asymptoticly driven to the wrong estimation. I.e. in the symmetric MRFC
schemes for BSC’s we have

1
Eretoo = E&ej = D(E“ D)
when f > pand R(f) >0. O

Remark 4.5 In the asymmetric 1-up (k — 1)-down and 1-down (I — 1)-up
schemes for the binary asymmetric channel of Example 2.6, we can also have
an argument similar to that of Rem. 4.4 and obtain

1
Eret,0 = Erlej = D(T“ P10),

"Note that if the process enters the O-state after a limited number of steps, then the error
exponent becomes the same as the one mentioned in the previous paragraph.
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which holds as long as D(%leo) < D(%H(l — p1o)) without requiring that pig
and pg; must satisfy (2.23) and (2.24). Note that we assume

D(7 1 p10) = max{D(3l| p0), D || pon)},

which is the reason to choose the all 1 code word instead of the all 0 code word
as v,féj. Note further that a recursive 1-up (k —1)-down and 1-down (I — 1)-up

MRFC scheme on this channel would have min{D (|| p1o), D(%]l po1)} as the
estimation error exponent®. O

4.4 Retransmission strategy for general DMC’s

The retransmission strategies can easily be generalized to be applicable in
non-binary input DMC’s. To reject or to acknowledge a received block, the
transmitter observes ey, the total number of z — y errors (y # z) in the block.
According to Def. 4.1 a block overflows if 2= aex Zyey ezykgy > N — L.

In the two-block delay strategy for strict-sense symmetric channels or wide-
sense symmetric channels, see the first paragraph of Section 2.3 for the def-
initions, two precoded sequences should correspond to every message, one
starting with z and the other starting with a symbol from X —{z}. To reject
or to acknowledge the previous block, the transmitter uses the first or the
second precoded sequence, respectively. In this way, the error exponent of
0.5E1 can be obtained using the conjecture mentioned in Subsection 2.3.2. In
such symmetric MRFC schemes, where the repetition parameter kg, depends
on modulo || difference between z and y, one may define a modulo |X| op-
eration similar to (4.1) in order to simplify the adaptation of the precoded
sequences to the control symbols.

For the M-block delay strategy, the error exponent Ef' = max, E¥ can be
attained (M — oo) because rejection code word v = (z/,2',... ,z') is not a
flip sequence (provided that for the DMC an argument similar to that of Rem.
4.5 can be established using relations (2.19) and (2.20)). As an insightful case,
consider the MRFC schemes for the strict-sense symmetric channels. In these
channels p;y = p for y # z and, therefore, (1—|X|) p = 1 —pg,. The repetition
parameters of the corresponding MRFC scheme are k;, = k for y # x. The
exponent of the probability that the first bit of the rejection code word is
received as y and cannot be corrected by the end of the estimation delay, is

Fretoo = BF = D(]| (1~ pus)).

8The proof of this statement at crossover probabilities p1o and po1 satisfying (2.23) and
(2.24) follows the one presented in [66] (or can directly be derived from (2.19) and (2.20)).
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Assume that the first bit of the rejection code word is correctly received as
z. The asymptotic probability that the control symbol is estimated as, let us
say, y can be determined by using a Markov process with states 0,1,2,....
The process starts from state k, moves (k — 1) steps upwards when a symbol
from X—{y} is received (with probability 1 — p) and one step downwards
when a y is received (with probability p). The exponent of the probability of
asymptotically entering the O-state (and perhaps producing the wrong output
y) is D(L|(L - p)). Since pgg > p, D(L] (1 - pos) < DI — p)) and,
therefore, D(%|| (1 — psz)) is the error exponent of the strategy.

4.5 Conclusions

There are two different coding methods for MRFC schemes, namely right-
to-left and left-to-right decoding methods. A brief comparison shows that in
the right-to-left decoder, one needs a kgy symbol pattern search per received
symbol while in the left-to-right decoder one needs a walk of D symbols per
received symbol, D >> kzy. On the other hand, the left-to-right decoder needs
a buffer for D symbols while the right-to-left decoder needs a buffer for N
symbols, D < N.

Using a two-block delay retransmission strategy and at the cost of an extra
buffer of size N (to store one previous block), the block error probability of the
strategy is significantly improved with respect to the block error probability
of MRFC schemes. Later, another strategy with unlimited delay is presented,
whose exponent of the block error probability is equal to or even larger than
that of the corresponding (block and) recursive MRFC, e.g. see Rem. 4.5.
Here we assume that there is no buffering problem at the transmitter, i.e.
there is no limitation on the number of stored data symbols at the transmitter.
This assumption can be justified in cases where, for example, data is stored in
large files. With some extra calculation, the effect of the sequential arriving
of data can be taken into consideration, see Kudryashov [37].



Chapter 5

MRFC for soft-output
DMC’s, basics

In this and the following chapters MRFC scheme are modified to be used on
the so-called soft-output DMC’s. Using a specific class of compound channels,
we set up a base for defining the soft-output DMC’s in the beginning of this
chapter. This setting up is also used to prove the feedback capacity of DMC’s
in a general sense in Section 5.2. In the remainder of the chapter, we explain
the basics of the mentioned modification of the MRFC schemes for using them
in the soft-output DMC’s. The detailed description of the coding methods of
the new scheme is presented in the following chapter.

5.1 A class of compound channels

Let us start with a finite collection {K7, K»,... , K} of DMC’s with the same
input and output alphabet set X. Denote the capacity of the channel K; by
Cs, s € S ={1,... ,h}. Consider a channel K which has h distinct possible
states s € S. During every block of N transmissions, channel K is in state
s € § where it behaves like DMC K. In [95] channel K is called a compound
channel which consists of component channels K1, K»,... , K};. Note that the
state of the compound channel K cannot be recognized from the output of the
channel because the output alphabets are the same for all component channels.

To study the general class of compound channels the interested reader is
referred to [95]. As a special case, we are only interested in a class of compound
channels, where the state of the channel is stochastically determined at every
transmission, see [95, pp. 43]. Let random variables X, Y and S denote the
input symbol, the output symbol and the state of channel K, respectively.
Denote the probability transition matrix of channel K; by P® = [pz,] With

113
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entries p3, = py|x,s(yl|z,s), t € X,y € YVand s € S. The index : = 1,2,...

will be used to denote the it} transmission. We assume that the states of
the channel are determined by chance according to distribution g, s € S,
independently of all previous states and of all previously transmitted and
received symbols and the current input of the channel. Le.

Pr{S; = s|X' = xt, YU = y(=D g1 — s(i_l)} = Pr{S; = s} = ¢s.

Such a compound channel was considered by Shannon in [71], where the infor-
mation regarding the channel state is called side information. Depending on
whether and when the transmitter and/or the receiver know the side informa-
tion, many cases can arise. Four of these cases are considered in [95, pp. 43],
which are also mentioned in the following subsections. Note that only two of
the cases mentioned here concern us in this chapter.

5.1.1 No side information at the transmitter and receiver

Designate the resulting channel by K; when neither the transmitter nor the
receiver know the channel state. Channel K; is a DMC having probability
transition matrix P = [pg,] with entries

h
DPzy = qup;y T,y € X. (51)
s=1

Let C; denote the capacity of DMC Kj. For this channel we will show in
Section 5.2 that the channel capacity is not increased if the encoder is pro-
vided with information regarding the previous outputs of the channel and the
previous states of the channel. Here the previous states of the channel are
referred to as delayed side information.

5.1.2 Side information only at the transmitter

Shannon in [71] considered an interesting case where only the transmitter
knows the state of the channel just before the corresponding symbol is sent.
In other words, the transmitter knows the state of the channel casually and
it is not aware of the future states. Designate the resulting channel by Ky
in this case. To transmit message w in a block of N transmissions, the nth

channel input of the block is determined according to encoding rule

Ty = fn(w,s") n=1,...,N.
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In the non-causal case, the transmitter anticipates the future states. In other
words, the transmitter knows beforehand the state sequence of the channel for
the whole block and the encoding rule is z, = f(w,s"), n=1,... ,N.

Here we only outline the capacity of the channel for the casual case from
[71]. Shannon showed that Cy, the capacity of channel Ky, is given by the
ordinary (without side information) capacity of a DMC, designated by K},
with the same output alphabet ) = X and an input alphabet X" consisting
of super letters x"* = (z1,z9,... ,z), where z, € X, s = 1,... ,h. The
transition probabilities p, for channel K} are given by

h
Pry = Pri{Y = y|X" = (21,22, ,2)} = ) asp},,-
s=1

The capacity of channel K} can be achieved if the encoder uses only |V
suitably chosen super inputs, as shown by Shannon for DMC’s with more in-
puts than outputs [70]. Let super input x** = (2%, z3,. .. , T} ) be one of these
chosen inputs. To transmit symbol x*” from channel K 7, the real transmitter
will put symbol z§ to the input of channel Ky if the corresponding state of
the channel is 5, s € S.

5.1.3 Side information only at the receiver

Assume that the channel side information for each letter is available only to
the receiver! and denote the resulting channel by K. Such side informa-
tion is sometimes referred to as soft decision information [39]. Channel K
can be considered as a DMC with input and output alphabet X and X x S,
respectively, and transition probabilities

Ply,s)z = P'I"{S = S}PT‘{Y = le = :Zj,S = 5} = qsp;y’ T,y € X,s € ,5'7
see [95, pp. 45]. Channel Ky will be referred to as a soft-output DMC. We
have

I(X;Y,S) = I(X;9)+I(X;Y]S)
@ 1x;v)9)

= quI(X;Y|S=S)

=1

W@

'Here we assume that every state of the channel is known to the receiver immediately after
receiving the corresponding symbol (to facilitate the concept of feedback for this channel).
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where (o) is due to the independence of X and S. Let us denote the capacity
of Ky by Cum. Then

h
Cm = maz;qul(X;Yw = s).
Y s=1

px(

which is the same as relation (4.6.11) in [95]. If we further assume that the
capacity achieving input distribution is the same for all component channels
Ki,... , Ky, then we can write

h h
Cm=qume%)§I(X;Y|S=s) :ZqSCS, (5.2)
= rex(

s=1

i.e. the capacity is the average of the individual capacities of the component
channels. Notice that channel Ky is a DMC, therefore, Cyy is also the capacity
of the channel with feedback.

5.1.4 Side information at both transmitter and receiver

The assumption in this case is that the transmitter knows the channel state
just before the corresponding symbol is sent or the transmitter knows the
channel states of a block just before the corresponding code word is sent. The
receiver might have this side information with a delay (since the decoding is
normally carried out with some delay). The capacity of the resulting channel
is given by (4.6.2) in [95] and can be written as

h
Cy = Z QSCs-
s=1

5.2 Delayed side information at the transmitter

In this section we assume that at every transmission, the transmitter knows
all previous states? of channel K;. Moreover, suppose that the transmitter
observes the outputs of the channel via a noiseless feedback channel (complete
feedback), see Fig. 5.1. For some channels the complete feedback can be seen
as a form of delayed side information at the transmitter. For example, in a
BSC with crossover probabilities p, two component BSC’s can be recognized
with crossover probabilities 1 and 0, which occur with probability p and 1 —p,

2Therefore, we use the term “delayed side information” to refer to such information.
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respectively. Knowing the previous state of the channel and the correspond-
ing input symbol, the transmitter can know the corresponding output of the
channel.

Let us define a (2V%, N) “feedback & delayed side information” code as
mappings

Ty = fn(y("_l),s("“l),w) n=1,...,N. (5.3)

The encoding rule fn(,,") is a function of message w € W = {1,... ,2V'F}
and of the previous received-symbols and channel states. The decoding func-
tion is defined as w = g(y"), where & € W. The decoding error probability
for the message w is equal to

Aw = Pr{W # w}, (5.4)

where we assume that w is uniformly distributed on W. The following theorem
addresses Crpg psr, the capacity of such a channel with feedback and delayed
side information.

w X(i+1) Xi
—| Encoder
S,

T

~

Y w
SCER

Channel K
Ki,...,K;

Figure 5.1: A system with complete feedback and delayed side information at
the transmitter.

Theorem 5.1 (Complete feedback and delayed side information at
the transmitter) Let C; denote the capacity of channel K; defined in Sub-
section 5.1.1. Then, the channel capacity does not increase if the information
about the previous channel outputs and the previous channel states is used in
the encoding process, i.e.

CrBapst = Ci. (5.5)

Proof : This proof closely follows a similar proof in [16]. Since a one-way
code is a special case of a “feedback & delayed side information” code (in such
a scheme, use neither the feedback information nor the side information), any
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rate which can be achieved without feedback and delayed side information can
also be achieved with this information, therefore,

Crpgpsr 2> Cr. (5.6)

Now let random variable W denote the message, which uniformly takes values
from W. Let random variables X and Y denote the input and output symbols
of channel K7, where the transmitter does not know the state of the channel
at the time of transmitting X and knowing Y does not give any side informa-
tion to the receiver. Therefore, the channel transition probability governing
random variables X and Y is given by (5.1). We can write

HW) =1log(2V'F) = HW|YY) + 1(W; YV). (5.7)
According to the Fano inequality {16, pp. 204]
HWI|YY) <1+ NRM\y, (5.8)

where Ay is defined in (5.4). On the other hand, I(W;Y") in (5.7) can be
bounded as

Iw; YY) = HYY)-HYYW)

= HYM =S H,|Y" YV w)

M=

N
< HYN) =S HE, Y" D, st w)

n=1

(a3) N N
< ) CHY) =Y H(YalXa)

n=1 n=1

N
WY (X V)

n=1
(as)
< NCj. (5.9)

Where (o) follows from the fact that entropy decreases by conditioning, i.e.

H(Y YD, W) > H(Y, Y"1, 801, W)
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and (az) holds because X, is a deterministic function of Y(=1) §(r-1) and
W (see (5.3)) and conditional on X, Y, is independent of W and the past
samples of ¥ and S. For inequality (a3) a bound of entropy is used, see [16].
In (a4) and (as) the definition of the average mutual information function and
the definition of the capacity of a DMC are used. Combining (5.7), (5.8) and
(5.9), we obtain

NR <1+ NRMwy + NCy.

Dividing both sides of this inequality by N and letting N — oo, we have

R<C. (5.10)

Thus, we cannot achieve any higher rates with complete feedback and delayed
side information at the transmitter than we can without it for the mentioned
class of channels. From (5.6) and (5.10) we conclude relation (5.5). Q.E.D.

5.3 BIQO channel

Consider a compound BSC having a set of component channels consisting of
a strong BSC and a weak BSC, where the corresponding states are designated
by s and w, respectively. The crossover probabilities of the strong and weak
component channels are denoted by p; and p,,, respectively, where p; < p,,.
The states of the channel are independently determined according to Pr{S; =
s} = ¢ and Pr{S; = w} = 1 — ¢. The corresponding channel with side
information at the receiver is a two-input four-output symmetric? DMC, here
referred to as Binary-Input Quaternary-Output (BIQO) channel. The
transition probabilities of the BIQO channel shown in Fig. 5.2 can be related
to those of the component BSC’s by

qg = ¢ (1-p,),

¢ = (1-9¢) (1-py),
P = (1-¢) py,
b = ©ps.

We have such a BIQO channel when, for example, the output of an AWGN
channel with antipodal signalling at the input is quantized at four levels. The
outputs of the BIQO channel can be characterized by their type and status.

3See [25, pp. 92] , for the definition of symmetric DMC’s
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Figure 5.2: A BIQO channel.

Definition 5.1 (Type and status bits) The type of an output symbol of a
BIQO channel indicates whether the output symbol of the corresponding com-
ponent BSC is 1 or 0. The status of an output symbol of a BIQO channel

indicates the state of the channel at that reception. Subscripts “s” and “w”
designate the strong and weak status of an output symbol, respectively.

The extension of the domain of MRFC to soft-output DMC’s will be illus-
trated by describing the corresponding scheme for the BIQO channel. For a
reference, consider the following example.

Example 5.1 Consider the BIQO channel of Fig. 5.2 with p = 0.0081, p =
0.0439, ¢’ = 0.1457 and q = 0.8023. The capacity of the channel from (5.2) is
Cgrgo = 0.7865 bits. For this channel, if only the type of the output symbols
is considered, i.e. completely ignoring the side information at the receiver,
then we have a BSC with crossover probability p + p’ = 0.052 and capacity
Cgsc = 0.7052 bits. On the other hand, if 1,, and 0, are considered as erasure
outputs as Veugen considers in [91], then we have a Binary Erasure Channel
(BEC)* with capacity Cpgc = 0.7450 bits. By using existing MRFC schemes,
only the capacities of the mentioned BSC and BEC can be approached while
there is still a substantial gap to the capacity of the BIQO channel. O

5.4 A new MRFC for BIQO channels

The objective here is to design a simple MRFC method that yields a larger
transmission rate than the rates of existing MRFC schemes for soft-output

4The BEC defined here is a binary-input ternary-output symmetric DMC, where p’ + ¢’
is the crossover probability of the erasure output and p is the crossover probability of the
erroneous output. Note that such a BEC differs from the channel shown in Fig. 1.4.
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DMC’s. In other words, approaching the channel capacity of soft-output
DMC’s by using a simple repetition strategy is the main concern here, see
also [76, 80]. To illustrate the basic idea behind the new technique, we de-
scribe the corresponding repetition scheme for the BIQO channel in this and
the following chapters. The resulting scheme can be generalized for the use
on other soft-output DMC’s. Contrary to the previous MRFC methods, here
it is necessary to precode adaptively according to the channel output. How-
ever, the main advantage of the MRFC schemes, i.e. their simple decoding
methods, is preserved in the new repetition schemes. The block and recursive
coding methods of the new scheme will be explained in the next chapter.

5.4.1 Introduction

In the encoding process of existing MRFC schemes, the precoding and trans-
mitting units are separate and independent. Nevertheless, we can imagine
that the precoder-transmitter in Fig. 2.3 is a single unit which walks through
the FSM, produces precoded bits according to message m and transmits them
over the BSC. As soon as a channel error is detected via the feedback channel,
the precoder-transmitter stalls the walk and immediately inserts k correction
bits in front of the list of bits yet to be transmitted. These inserted bits which
are called correction bits are identical to the erroneously transmitted bit. In a
way, we can say that an MRFC scheme forces channel outputs to be the same
as channel inputs, see also Section 2.2. Note that the correction subsequence
of a precoded bit might be more than & bits due to errors that may occur while
transmitting correction bits. Each such error causes k extra transmissions, see
also Def. 2.2.

We use the error correcting mechanism and the precoding rule of MRFC
schemes to design a similar repetition scheme for the BIQO channels. Let
ti € {0,1} be the i1 transmitted bit and ri € {05,04,1y,1s} denote the
corresponding received symbol. Symbol r; can be represented by type bit
z; € {0,1} and status bit y; € {w, s}. Sometimes we will use 0 and 1 notations
to indicate a status bit, where 0 = w and 1 = s. Since, for the BIQO channel,
the number of inputs is smaller than the number of outputs, we can only force
the type of the output symbol to be the same as the input bit. Therefore, the
following definitions are made.

Definition 5.2 A reception is correct if the type of the received symbol is the
same as the transmitted bit, i.e. if x; = t;. There is an erroneous reception
when x; # t;.

Remark 5.1 From Definition 5.2 it can be concluded that every correct or
erroneous reception has either a strong status or a weak status. O
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We can summarize the repetition rules (the error correcting mechanisms)
of the new scheme as follows.

e Every 0 of the transmitted sequence is allowed to be received as 05 or
0, and every 1 is allowed to be received as 1, or 1;, i.e. no repetition is
needed in these cases.

e If a weak error occurs (e.g. a 0 is received as 1,,) the input bit is repeated
k'-times and

e if a strong error occurs (e.g. a 0 is received as 1,), the input bit is
repeated k-times, k > k' > 2.

When &' = k or k' = 1 (k > 2), the resulting scheme is the MRFC scheme for
BSC’s or for BEC’s , respectively. Hereafter, we refer to the new repetition
schemes for soft output DMC’s as Soft Repetition Feedback Coding (SRFC)
schemes.

5.4.2 Encoding

As mentioned earlier, for SRFC schemes it is necessary to consider the pre-
coder and the transmitter as a single unit and precode adaptively according
to the channel output. This is due to the fact that the state sequence of the
channel that determines the lengths of forbidden subsequences is not known
beforehand. The encoder of the SRFC scheme for the BIQO channel is de-
picted in Fig. 5.3. The encoding process comprises the following steps.

m \'% t BI r
A 5
; | x

'
|
|
{

e o o e o — — —

Figure 5.3: Block diagram of the encoder of the SRFC scheme for the BIQO
channel.

El
Being in generic state @ of the FSM and based on message m, the

precoder produces the jth precoded bit v; with Pr{V; = 1|Q} = B,
independently of its previous output bits, see the left hand side of Fig.
5.4.
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Figure 5.4: Left: producing a precoded bit at a state in the FSM of the
SRFC scheme; Right: moving to the next state in the FSM after the correct
reception of the precoded bit.

The transmitter sends v; in the ;th transmission, i.e. t; = v;. If ¢; is
received correctly, set i =1 and go to E3. Otherwise, in case of a weak
or a strong error, the transmitter immediately sends the correction bits
by repeating ¢; for k' or k times, respectively. The repetition rules also
apply for every error within these correction bits. Let us say that the last
correction bit of v; is transmitted at the (z/ )th transmission. Therefore,
subsequence f(; ;1) ...ty is referred to as the correction subsequence of v,

and we can say that v; is received correctly by the (i’ )th transmission.

For every precoded bit v; there exists a corresponding status s; = yy,
where index 7' is determined in E2. Having v; and then knowing s;
determines the next state of the precoder in the FSM, see the right hand
side of Fig. 5.4. Since the channel states are drawn according to an iid
distribution in every transmission and according to E2 every precoded
bit is eventually received correctly, the probability that precoded bit v;
is received strongly, i.e. s; = s, is

q

0=Pr{Sj=s}=—2_

(5.11)

Hereafter, we refer to v; and s; as the jth precoded bit and its status,
respectively. Note that the message determines a precoded bit and the
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channel determines the corresponding status, see also the following ex-
ample.

Example 5.2 Let ¥’ = 3 and k = 6 and consider the following outcomes.

v = ... 1 0 ... 1 0
t = ...11110 ...111 1111 1110
X = ..01110 ...01101 111110
y = ...w — — k% ... 85— — W— — — — — % ¥ ..

where a dash represents a don't care status and a * (being s or w) represents
the corresponding status of a precoded bit. Underlines in t indicate the correc-
tion subsequences and those in x and y represent the forbidden subsequences.
a

Remark 5.2 Resulting from the error correcting mechanisms (the repetition
rules), leIi/, Owlli,, 1,0 and 0,1% are the forbidden subsequences of the
SRFC scheme for the BIQO channel. O

Remark 5.3 The precoding rules of the scheme can be expressed as follows.
If a precoded bit changes, then it should not be followed by k' or k similar
precoded bits depending on whether its received status is weak or strong,
respectively. In summary,

if (vj=1ands;=w) then wvji1,...,v4k # 0*';
if (v; =0ands; =w) then wvji1,...,v54k # 1%
if (vj=1and s;=s) then wvji1,...,054k # 0"
if (vj=0and sj=3s) then wvj41,...,v54k # 1%,

As a result, none of the precoded bits will be removed in the decoding stage
by the following precoded bits. O

Based on these constraints, let us draw up guidelines on the structure of the
FSM of the SRFC scheme (for the BIQO channel). Similar to the guidelines
mentioned in Rem. A.l, all precoded sequences v with status sequences s that
end up at given state ) must be restricted by the identical constraints from
producing the next precoded bit point of view. According to Rem. A1, the state
Q must identify (as an illustrative example, let us assume that v = ... ,01¢

ands=...,s, -1 w)

1. the last bit of the precoded sequence (1 here),
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2. the number of identical bits at the end of the precoded sequence (I here)
and

3. the previous precoded bit (non identical) to the last precoded bit (0
here).

Furthermore, for the case of SRFC scheme for the BIQO channel, the state
must also identify

4. the status bit of the last precoded bit (w here) and

5. the status bit of the previous precoded bit (non identical) to the last
precoded bit (s here).

The first and forth rules are essential when the next precoded bit changes with
respect to the last precoded bit. The second, third and fifth rules are essential
when the next precoded bit does not change.

The FSM of the SRFC scheme with ¥’ = 3 and & = 5 takes the form
indicated in Fig. 5.5. Due to the symmetry of the transmissions of 0’s and 1’s,
the FSM refers to precoded bit changes. The solid transition edges indicate
that the corresponding output bit of the precoder is the same as the previous
output bit. The dashed transitions indicate a change. Also indicated in Fig.
5.5 are the state transition probabilities, which reflect the Markovian nature
of the FSM (see Subsection 5.5.1). After having received the jth precoded
bit and knowing its status, moving to state Q%,, indicates that the last { + 1
bits of v and s are vj_;...v; = 01! or 10! (the ambiguity between these two
is resolved by knowing v1) and s;_;, Sj_i41, ..., Sj_1, 8§ = 8, —,... ,—,w.
Here — denotes a don’t care status in accordance with the rules mentioned,
i.e. when the current precoded bit is the same as the previous precoded bit,
the status of the previous precoded bit is not relevant. This fact is reflected by
the FSM having two parallel sets of states which are interconnected such that
the status of the last precoded bit at a given depth dictates the state column.
In terms of the transition probabilities of the Markov model of the FSM, we
have

Pr{Vipn = vlV; = v;, Vi1 = v;,8; = 55,521 = 551}

= Pr{Vit1 = v;|Vj = v;,Vj_1 = v;, 5 = 55}

5.5 Transmission rate

Due to the symmetry of the BIQO channel and the corresponding SRFC
scheme with respect to producing and transmitting of 0’s and 1’s, the av-
erage number of correcting transmissions needed to correct a channel error is
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—————

Figure 5.5: The FSM of the SRFC scheme for £’ = 3 and k = 5.

independent from the input of the channel. As a result, we can compute the
rate of the precoder and that of the repeater separately. Let us first investigate
the FSM of the precoder of the SRFC scheme.

5.5.1 Markov model

The FSM’s of the previous MRFC schemes do not depend on the outcome of
the symbol transmissions and mapping of messages into constrained sequences
can be done before starting the transmissions. However, for the SRFC scheme,
the FCM is dependent on parameter 6 defined in (5.11) or, in other words, on
channel outputs. In the following, we show that the Markov source represent-
ing the FSM of the SRFC scheme is an irreducible and unifilar Markov source
given the precoded (type) sequence v and the status sequence s. Momentarily
and only for this purpose, we assume that the Markov source produces a joint
symbol vs at every time unit.

Denote the states of the Markov source representing the FSM by Qy,
¥ =1,...,¥. Let random variable Z; denote the state of the Markov source
in which two independent bits of v; and s; (or the joint symbol of (vs);) are
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produced at the jth

Pri{(V8); = (vs);lZ; = Qu} = Pr{V; = v;|Z; = Qy} - Pr{S; = 5;|Z; = Qy}

where

instant, 7 = 1,2,..., according to joint distribution

PT’{VJ = 1|Zj = Qw} =1- PT‘{V] = OIZ]' = Qw} :pw
o _ 1 _J o ifsj=s
P?"{Sj—SJIZ]—Q¢}~PT{SJ—8]}—{ 1-0 ifs, —w.

Then the state of the Markov source is changed from Qy to Q. In fact,
the true source produces bit v; and nature, i.e. the channel, independently
produces bit s;. Thus, the state transition probability from state Qy to state
Qy, during which joint symbol (sv); is produced, becomes

Gyy = PriV; =v;|Z; = Qu} - Pr{S; = s;}. (5.12)

Remark 5.4 In accordance with the precoding rules, we can deduce that Doy
1s 0 or 1 for those states at which there is only one choice for the next precoded

bit (see states Q%;, Q%,, @%, and Q2,, in Fig. 5.5). From now on we assume
that states Qy, ¥ =1,... , ¥’ are those states at which there are two possible

choices for the next precoded bit, i.e. 0 <py <1for¢p=1,...,¥. O

The state set of this Markov source is irreducible, i.e. from each state in the
set, no state outside of the set can be reached and every state within the set
can be reached within one or more transitions. Moreover, the irreducible set
of states is ergodic because starting from any state, the numbers of transitions
required for the first return to the state have the greatest common divisor
one. For an ergodic set of states there is a limiting state distribution g7 =
(q1,--- ,qw) given by the solution to the equations

Q'q =q, (5.13)

where Q = [gyy] is the state transition matrix with entries given in (5.12),
see [25, pp. 65]. For any v and ¢’ we have

lim P’I‘{Zj = leZl = QU”} = qy-

j—o0
This limit is approached exponentially in j [25, pp. 66].

Remark 5.5 If a Markov source with an ergodic set of states is started in a
given state infinitely far in the past, then at a given instant j

P‘I"{Zj = Qw} - Q¢.
and the source is stationary and ergodic [25, pp. 66]. O
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According to Def. A.1, the Markov source of the SRFC scheme is a unifilar
Markov source because the current state Qy and current output (sv); uniquely
determine the next state Q. Therefore, the entropy rate of the Markov source
can be written as

@)™ guhlpy) + h(0) (5.14)

where h(p) = —plogp — (1 — p)log(1 — p), (a1) holds because Vy; and S, are
independent and (az) follows from Rem. 5.4. The entropy per precoded bit
v (associated with the true data) is Z:/Ij':l gyh(py) and the entropy per status
bit (associated with channel states) is h(6).

Remark 5.6 The Markov source representing the FSM of the precoder prac-
tically produces precoded sequence v with entropy rate E¢ 1 @ph(py). There-
fore, from now on we can forget the notion of the joint source symbol used
in Subsection 5.5.1. The significance of knowing both v and s sequences by
the decoder, see the following chapter, is that the inverse-precoder can pre-
cisely trace the state path of the Markov source and subsequently extract the
message embedded in sequence v. O

5.5.2 Transmission rate

Let L be the number of precoded blts ie. the length of sequence v, in a block
of N transmissions. For a given 0 = 7 +q,, let Rk K (¢,¢") denote the precoding
rate or, in other words, the asymptotic entropy per output bit of the precoder.
Therefore, there are approximately M = ng k! (g,9") L information bits in
sequence v of L precoded bits. Given state sequence s’ the precoding rate
R’g’kl(q, q') can be calculated from (5.14) as
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/ M
R§ *(g,q) = m - = Z ayph(py), (5.15)

where gy, 1 =1,... , ¥, are the solutions of (5.13).

Remark 5.7 For a given BIQO channel, i.e. given 6, the probabilities of
producing 1’s and 0’s in the states of the Markov source, i.e py, ¥ = 1,... , ¥’

can be chosen such that R’C k(q, ') be maximized. Let

)I}I
Attaa) - h 16
’ (q q) {0<p¢<g1$§1,..,,w/} wZ::lqw (P¢), (5 )

where gy, ¥ = 1,... , ¥, are the solutions of (5.13). This, in turn, will maxi-
mize the asymptotic transmission rate of the scheme, see (5.17). O

The total transmission rate of the new scheme is the product of the pre-
coding rate and the rate of the repetition part. As N — oo, the expected
numbers of weak and strong errors in the block approach p’ N and pN, respec-
tively. According to repetition rules, we have

L
N=L+Ek pN+kpN = —N—=1—k'p'—kp.

Therefore, the total asymptotic transmission rate, as L — oo and N — oo,
can be written as

R=RE*aq,q) (1K p' k). (5.17)

Example 5.3 If we apply the SRFC scheme on the BIQO channel of Example
5.1, the asymptotic transmission rate would be 0.7837 when ¥’ =2 and k = 7.
This rate is very close to the capacity of the BIQO channel (a difference
of 0.0028 bits per transmission) and far better than the rates which can be
achieved by the MRFC for BSC’s and BEC’s. The upper part of Table 5.1 gives
the transition probabilities and also the state probabilities of the corresponding
FSM obtalned from (5.13) and (5.16), where we obtain R2 "(q,q') = 0.916041
and (1 — k' p' — k p) = 0.8555. Using a ¥’ = 3 and k = 7 SRFC scheme
on the same channel yields the transmission rate of 0.7765. The lower part
of Table 5.1 gives the transition probabilities and also the state probabilities
of the corresponding FSM obtained from (5.13) and (5.16), where we have
RY"(q,q') = 0.956691 and (1 — k' p' — k p) = 0.8116.
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U PT{Q%S} Qg Pr{Q%w} Bi

1 || 0.397743 | 0.494482 || 0.072231 | 0.674635

2 || 0.207689 | 0.484411 || 0.037717 | 0.665930

3 || 0.106401 | 0.463968 || 0.019323 | 0.648881

4 1| 0.052391 | 0.421781 || 0.009514 | 0.605879

51 0.023580 | 0.321738 || 0.004282 0.5

6 || 0.008233 0 0.001495 0

i || Pr{Qus} Vi Pr{Quw} Gi
0.050272 0 0.009130 0

L PT{Q%S} Qg PT{Q%’W} Bi

1 || 0.391296 | 0.495485 || 0.071061 | 0.567776

2 || 0.198229 | 0.486407 || 0.035999 | 0.558741

3 || 0.098624 | 0.467720 || 0.017910 | 0.539398

4 || 0.047215 | 0.427867 || 0.008574 | 0.500226

5 || 0.020727 | 0.329708 || 0.003764 | 0.397614

6 || 0.007050 0 0.001280 0

i || Pri{Qus} Vi Pr{Quy} G

1 || 0.062046 | 0.396811 || 0.011268 | 0.330178

2 1| 0.021122 0 0.003836 0

Table 5.1: The state and transition probabilities of the Markov sources in
Example 5.3, when k = 7 and k' = 2 (above), k' = 3 (below). Note that the
parameters in these tables are indicated based on the notations of Fig. 5.5.

5.5.3 Achieving channel capacity

Veugen proved that for every traditional MRFC scheme with given repetition
parameters there is a DMC for which capacity can be achieved [90]. However,
the repetition rules of the SRFC scheme are such that the correction subse-
quences are produced regardless of the status of the correcting bits that are
received without error. Discarding the status of the properly received correc-
tion bits entails a small penalty in rate, but greatly simplifies the encoding
and decoding of SRFC schemes as seen in the following chapter.



Chapter 6

MRFC for soft-output
DMC’s, coding methods

In Chapter 5 the principles of the SRFC scheme for the BIQO channel were
presented. In this chapter two coding methods, namely block and recursive
methods, of the scheme are discussed in detail. Furthermore, in Section 6.3
we explain a precoding method which can be used for the precoding of all
MRFC schemes, including the SRFC scheme. At the end of the chapter, some
possible extensions of the SRFC scheme are outlined.

6.1 Block SRFC for the BIQO channel

The block diagram of the block SRFC system for the BIQO channel is shown
in Fig. 6.1. We assume that every block consists of L precoded bits denoted
by vl. If e,, weak errors and e, strong errors occur during the transmission
of a block, then n = L + ke, + ke, is the index of the transmission at which
vr, is transmitted correctly!. Actually n is a random number, but let us first
consider an ideal case where somehow the receiver knows n.

Similar to the block decoding of the MRFC scheme for the BSC, the block
decoding of the SRFC scheme is carried out in two stages. The second stage
is the inverse-precoding which is explained in Section 6.3. In the first stage,
channel errors are detected and corrected by locating and replacing forbidden
subsequences. To wit, the decoder moves from the end towards the begin-
ning of received block r™ (or equivalently x™ and y”) and looks for forbid-
den subsequences as defined in Rem. 5.2. As soon as a forbidden subse-
quence is found, the type and the status of its last symbol replace the sub-

!To see when a precoded bit is transmitted correctly, refer to rule E2 in Chapter 5.
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Figure 6.1: The block diagram of the block SRFC system for the BIQO chan-
nel.

sequence, compare rule E3 in Chapter 5. For example, z;,... ,Zi1x = 01%
and yi, .., Yirk = Sy ,—, *2, indicate that a strong 0 — 1, error has
occurred at the ith position, therefore, z;1x = 1 and y;;+, = * substitutes the
subsequences. After the replacements, while moving leftwards to the begin-
ning of the block, the decoder looks for the next forbidden subsequence which
starts at position i’ < i (the right-to-left decoding). Let ¥ and §” denote the
first L bits of the resulting sequences from x"V and y», respectively, when the
decoder finally reaches the beginning of the received block. Then, we have the
following.

Theorem 6.1 (Ideal block decoding) Assume L precoded bits are trans-
mitted over a BIQO channel by a SRFC scheme with repetition parameters
k > k' > 2. Let n be the index of the transmission corresponding to the Lth
precoded bit, if received correctly, or its last correction bit, otherwise. If all for-
bidden subsequences are replaced with their last correction symbols according
to the method mentioned above, then

L =+t and §" =s".

Proof : Let e, and e; denote the number of the weak and strong errors
that occurred during the transmission of the L precoded bits, respectively.
Thus, n = L + k'ey, + kes. Let j be the position of the right-most forbidden

2Notation — indicates a don’t care status bit and * € {w, s}.
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subsequence in r" (or in x" and y™). Without loss of generality, this forbidden
subsequence is assumed to be that of a strong error, i.e. Tjyeor yTja = aak
and y; =1, where a € {0,1}, 0 = 1 and I = 0. After removing the error and
its following k—1 correction symbols, we have the following received sequences

/

! / /
= ... 7$j—1’$j’xj+1"" s T = e ,Z'j_l,l'j+k,mj+k+1,... yLns
! / !/ /
y = YY) Yt Ut = oo Y1 Yitks Yjtkt1s - 5 Ynj

where n' = n — k. We can imagine an other ideal block SRFC scheme at work
with transmitted sequence

m / / ! !
t = ... ,tj_l,tj, tj‘|'1"" ,t,n/ = ... ,tj_]_,tj+k,tj+k+1,... ,tn

and received sequences x™ and y'™ during which there occurred e}, = e,, and
e, = es—1 weak and strong errors, respectively. We can see that there is no lost
information regarding the status sequence s’ (and, of course, the type sequence
vl) in the new scenario. Because, when Zj+k and y;j4 are the last correction
bit of a precoded bit, the replacement preserves the corresponding status bit
(as well as the type bit). And when z,, is a middle correction bit of an
erroneous precoded bit, then status bit y;- = Yj+k s irrelevant in retrieving the
status of the erroneous precoded bit. Note that the next forbidden subsequence
of the original scena}‘io, i.e. /the first one of the new scenario, starts from
position j' < j in x'™ and y’™ . If this procedure is continued until j = 1, all
channel errors will be removed from x™ and y” and only the precoded sequence
and the corresponding status sequence will be left, i.e. ¥L = vL and &% = s’.

Q.E.D.

6.1.1 Tail adding technique

In the block decoding method of MRFC schemes, only the length of the trans-
mitted block and the length of the precoded sequence, i.e. N and L in the
block diagram of Fig. 6.1, are known for both encoder and decoder. Thus,
one cannot assume that the receiver knows the transmission position of the
last bit of v¥ (or its last correction bit). To perform block SRFC with fixed
N and L, we use Schalkwijk’s tail adding technique mentioned in [58]. In
his version, a tail of length N — L, denoted by zr,1...zy, is appended to
the precoded sequence before transmission. A tail construction is explained
in Section 2.2.2 for the case of MRFC scheme for the BSC, where the last
precoded bit vy is alternated. Unlike the precoding of all previous MRFC
schemes, which is independent from the transmission procedure, the precod-
ing in SRFC is adaptively done to channel outputs. Therefore, the last bit of
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precoded sequence v in SRFC is not known beforehand and, consequently,
an adaptive tail appending technique must be used in the SRFC schemes.

In a block of N transmissions, the encoder should accumulate L precoded
bits as in the ideal case. Let us assume that vy (or its last correction bit) is
transmitted at the ntB transmission.

e If n > N, then a block decoding error occurs by definition.

e If n = N, we have the ideal block coding and the block can be correctly
decoded according to Theorem 6.1.

e If n < N, then encoder appends an alternating tail of length N — n,
starting with z,.1 = v, where 0=1and 1 = 0. For the transmission
of the tail, whenever a weak or a strong error occurs, the encoder unit
uses the same repetition principles and deletes k' or k bits from the end
of the tail, respectively.

In the decoder, after removing all forbidden subsequences from xV and

y™ by the right-to-left decoding method, the first L bits of the remainders
are denoted by ¥ and 8, respectively. When n < N, the following theorem
which is a modification of [91, Theorems 2.1 and 2.2] gives conditions according
to which ¥~ = vl and 8* = s.

Theorem 6.2 (Block decoding condition) Let e, and e; denote the total
number of weak and strong errors in a block of N transmissions in the block
SRFC scheme for the BIQO channel. As long as k'e,, +ke; < N —L and k >
k' > 2, all channel errors can be detected and corrected by the tail appending
method, i.e.

Proof : See Appendix C. Q.E.D.

The following example shows that the block decoding of the SRFC scheme
does not necessarily result in correct decoding for k' = 2 with conditions
mentioned in Theorem 6.2.

Example 6.1 Assume L =1, v, =1, e, =1, e, =0 and N = 4. Consider
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the following outcomes for a SRFC scheme with &' = 2 and k > 2.

v =1

z = 0 1
t =10 11
x =1 0 0 1
y = w — w —

After replacing the forbidden subsequence 9; = 0 # vy, even though inequality
k'ey + kes < N — L is satisfied. O

6.1.2 Channel-decoding error probability

An upper bound on P, = Pr{¥% # vl or §¥ # s’}, the channel-decoding?
error probability of the block SRFC (with tail appending technique) for the
BIQO channel, can be calculated using the Chernoff bound. In a block of N
transmissions with L precoded bits, the tail length is

T=N-L=7N,

where 7 is the tail fraction of the block*. The asymptotic transmission rate
can be written as

R(r) = R *(q,¢) (1 - 1),

where R’g,’k(q, q¢') is the precoding rate. Let random variables E,, and E,
denote the number of weak and strong errors, respectively, in a block. If the
number of the required correction transmissions exceeds the tail length, then
a block decoding error might occur according to Theorem 6.2, i.e.

PbSPo:PT{kIEw“‘kEsZT}a (6.1)

where P, denotes the block overflow probability in accordance with Def. 4.1.
We can obtain the asymptotic exponent of the right-hand side of (6.1) as
follows. Define

— d >T
B = lim log Pr{k'E, + kEs; > }

2
N—>oo N (6 )

#The channel-decoding error probability corresponds to the decoding error probability
for a block of L precoded bits, i.e. a block of NV transmissions. As shown in Section 5.5.1
there are asymptotically LR’Z;I’]C information bits in every transmitted block.

“For convenience, 7N is assumed to be an integer.
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Let random variable W denote the necessary number of retransmissions in the
block, i.e. W = k'E,, +kE;. An upper bound on Pr{W > T} can be obtained
from the Chernoff bound as

esW
esT ’

P, = Pr{W >T} = Pr{eV > T} < (6.3)
where s > 0 and the last inequality comes from the Chebyshev bound. The
function gy (s) = e*" is called the generating function of random variable W.
Random variable W can also be written as W = 25:1 W, where random
variable W,, represents the number of induced retransmissions by the nth
transmission, n = 1,...,N. Random variables Wi, Way,... ,Wy are N iid
random variables with Pr{W,, = k'} =p', Pr{W, = k} = p and Pr{W, =
0} =q¢ +¢,n=1,...,N. Therefore, the generating function can be written
as

N N
gw(s) =W = [[ e =[] 9a(s),
n=1 n=1

where
gn(s) — @SWn — (q+ql) +plesk’ +p GSk-

Using these notations, the right-hand side of (6.3) can be written as

N
gw(s)e™T = ] gn(s)e™N"
n=1
— ((q + ql)e—ST +ples(k’_'r) +p€s(k_T))N- (64:)

Let us define
F(s) = (q + ql)e—sr +p/es(k’—r) +pes(k—'r), (6.5)

which can be minimized at sg > 0, sg being the solution of d df (Ss) =0, i.e.

sg > 0 is the root of equation

p'(K —7)e* +plk — 7)™ = (g + ¢). (6.6)

From (6.2), (6.3), (6.4) and (6.5) we have

E,> lim ‘1°g(9W](j°)e_s°T) = —log(f(s0), 6.7)

N—-oo
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where s > 0 is the solution of (6.6).
Using the approach of [91, pp. 93], one can show that the Chernoff bound
is exponentially tight as N — co. We have

PriWw >T} > Pr{k'E,+kE, =T}
> Pr{E, =ey,Es=¢€,: ke, + kes = T}, (6.8)
where
N
PHEWZ%J%:%}:< )@V%ﬁ@+¢WL%*J
€w,€s

Assume €, = % and ¢; = &. From Stirlings formula, — 8L {Fu=ew,Fs=ea}
N s = N & ; N

can asymptotically be written as
€wlogey +esloges + (1 — ey — €5) log(l — €y — €5)
—ewlogp' —eslogp — (1 — ey — €) log(g + ¢)

1 — €y — €

6.9
q+dq (6.9)

= ewlog;—Tf—}-eslogfpi+(1—ew—es)log

Using Lagrange multipliers, (6.9) can be minimized under the condition that

Keyw+kes =T = Kew+kes =, (6.10)

where 7 = % This results in another condition

Cw\k €s\ k! 1- €w — €g (k—k')
e (A eC . 6.11

Relation (6.9) can further be manipulated as

€w q+¢ €& q+¢ q+q
= eplog 2113 log = -1
6wng’l—ew—es—i_esngl—ew—es Ogl—ew—eS
ew q+¢ & q+¢
= Jog—v 479 logs 94749
Cw ng’l—ew—es+€s ngl—ew—es
q+q q+4q
_1 ' 6.12
OgOQ+Q)+%q_{w_€s+%1_ew_% (6.12)

and then can be minimized by using conditions (6.10) and (6.11). For doing
so, let us first assume
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P pp—— (6.13)
and have
!
() =459 (6.14)

P l—ey—¢s
using (6.11). These equations change (6.12) to
— culog(e)® +eslog(e) —log ((a+¢) + 9/ ()Y +p(e™)")
= (k' €y +k €5)loge’ —log ((q +q)+7(e)F —l—p(esl)k>
= 7loge™ —log ((q +q)+p/ () + p(e“)’“)
= -—log ((q +q)e T 4 p/(e)F T +p(e“)(k”))
= —log(f(s)), (6.15)

where in (@) condition (6.10) is applied. Furthermore, (6.13) and (6.14) satisfy
equation (6.6) as

€s q+¢q

/
w089 L ph-n2 4T -

Ikl— 41
p'( T)p,l_ew_es

(K'ew + kes) — 7(ew + €5)
1—€y, —¢€

(g+q)=7(g+d).

In other words s; = sg. From this and (6.8), (6.15) we conclude that

— >
E - lim log Pr{W > T}

N N < —log(£(s0)), (6.16)

From (6.7) and (6.16), we have E, = —log(f(s0))-

Remark 6.1 Note that 27VEe is an upper bound on P, for any N, see (6.1),
(6.3), (6.4) and E, = —log(f(s0)). O

Example 6.2 Fig. 6.2 shows exponent E, versus the tail fraction of the block
SRFC scheme mentioned in Example 5.3, where repetition parameters &' = 3
and k = 7 are used. O
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0.25

k'p' + kp = 0.1884:

0.05

Figure 6.2: Exponent FE,.

6.2 Recursive SRFC for the BIQO channel

Using a left-to-right decoding method, it is possible to decode SRFC schemes
with repetition parameters k¥ > k' > 2. Therefore, SRFC schemes with k' =
2 are decodable only by the recursive decoding method. According to our
calculations, SRFC with k' = 2 gives the best transmission rate for a BIQO
channel obtained from quantizing the output of a binary-input AWGN channel.
These two facts increase the importance of the left-to-right decoding method.
The block diagram of a recursive SRFC system is shown in Fig. 6.3. The
decoder consists of three units: an estimator, a channel-error remover and an
inverse-precoder. We describe first two units in the following subsections. The
inverse-precoder (and the precoder) will be explained in Section 6.3.

6.2.1 Estimator

In this unit the decoder obtains an estimate of the transmitted sequence. Let
t be the estimate of t. To obtain 7;, the estimator uses the received sequence
r§Z+D) = r;...Ti+p and, therefore, a delay of only D transmissions is necessary
to estimate every transmitted bit. Two estimation techniques of the recursive
MRFC schemes, namely right-to-left and left-to-right estimation methods, are
modified in the following subsections in order to be applicable in the new

scheme.
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Figure 6.3: Block diagram of the recursive SRFC system.

Left-to-right estimator

Until now, Schalkwijk-Post’s left-to-right estimation method has only been
applicable in MRFC for binary symmetric and asymmetric channels. The
possibility for variable coding delay is the main advantage of the left-to-right
estimator over the right-to-left estimator. For binary-input recursive SRFC
schemes, a modification of Schalkwijk-Post’s left-to-right estimator is pre-
sented in this subsection. To estimate ¢; from received symbols r§1+D) (or
Ti+j and yitj, j = 0... D), the state diagram of Fig.6.4 is used. Starting from
the O-state, the random walk moves right or left according to z;4; and y;4;
at the jth step. Let z; denote the state of the estimator after the jth step
with initial state z_; = 0. The rules of the random walk can be formalized as
follows for step 7, 7 =0...D.

Left-to-right estimator'

If z;4; = 0, then

z‘—{ zj—1—1 for zj—1 >0
7 Zj—1— (k= Dyivj — (k" = 1)(1 — yit;) for zj—1 < 0.
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Figure 6.4: State diagram of the left-to-right estimator, ¥’ = 3 and k = 5.

If Tiyy = 1, then

P { zj—1+1 for 21 <0
J Zj—-1 + (k’ - l)yiH + (k’ - 1)(1 - yi+]‘) for Z5-1 Z 0.

In summary, at the jth step, 7 = 0...D, the estimator moves left or right
if z;;; is a zero or a one, respectively. All transitions towards the 0-state have
unit length. All transitions away from the 0-state have a length of &’ — 1 units,
if the corresponding received symbol is weak (y;4; = 0), and a size of k — 1
units, otherwise. At the end of the walk, the estimate #; is 0 or 1, according
to whether zp is negative or positive, respectively. In case that zp = 0,
Schalkwijk-Post’s estimator flips a fair coin. We here propose to choose #; to
be 0 or 1, according to whether the last transition to state zp = 0 is initiated
from a negative state or from a positive one, respectively. In this way, both
right-to-left and left-to-right estimators always yield the same result, see also
Theorem 6.3.

Let us briefly explain how the left-to-right estimation method operates
by considering the situations which are illustrated in Fig. 6.5. Note that
different sizes for the steps away from the O-state are due to the status bit of
the corresponding received symbols being weak or strong.

1. An error has occurred at the ith transmission, i.e. z; # t;. In this case
the transmitter tries to correct the error by repeating ¢;. For example,
consider path f! in Fig. 6.5, where without loss of generality we assume
that z; = 0. Thus, zp = —(k' — 1) or —(k — 1) depending on whether
y; = 0 or 1, respectively. According to the rules of the random walk,
the following &' — 1 (or k — 1) correction bits bring the walk to the 0-
state and the last correction bit gives an equivalent step into the correct
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Figure 6.5: Examples for the states of the random walk in different cases.

\

region, which was initially intended for t;, see the dashed line on path
f!. Note that every weak or strong error in the correction subsequence
of t; momentarily drifts the walk ¥’ — 1 or k — 1 steps away from the
O-state and, accordingly, all drifts are pulled back by the corresponding
correction bits, see path f? in Fig. 6.5.

. The it transmission is received correctly, i.e. z; = t;. For example,

assume that z; = ¢; = 1 and, therefore, 29 = k' — 1 or k — 1 depending
on whether y; = 0 or 1, respectively. Note that if ¢; is a precoded bit
(or the last correction bit of a precoded bit resulting from case 1), it is
not possible for any following precoded sequence to bring the random
walk to the negative region. Because, in the worst case, the following



6.2. Recursive SRFC for the BIQO channel 143

precoded sequence would be 0¥'~! (or 0¥~1) followed by any combination
of 1,0~ and 1,081 see path f3 in Fig. 6.5. If¢; isa correctly received
middle correction bit (other than the last one), then ;.1 = 1 and there
is no chance for the following precoded bits to bring the random walk
below zg = &' —1 (or zp = k — 1), where the previous statement certainly
holds.

Now let us assume that some errors occur during the transmission of the
following precoded (or repetition) bits.

2a. A 0 — 1 error during transmitting titj, J = 1...D, sends the

2b.

random walk &' —1 units or k—1 units, depending on corresponding
Yitj, away from the O-state and sets z; = z;_1 + (k' — 1) or zj_1 +
(k —1), see path f* in Fig. 6.5. Consequently, the following &' (or
k) correction bits bring the walk back to zj % = zj_; — 1 (exactly
to the same place that ¢;,; intended to, shown by a dashed line on
path f4). Note that paths like f% in Fig. 6.5 cannot occur as a
consequence of the precoding rule when z; = t;.

A 1 — 0 error occurs during transmitting tivj, J =1...D. When
zj—1 > 0, then z; = z;_; —1 > 0 and the following £’ (or &, ify;; =
1) transmissions of 1’s send the walk away from the O-state such
that, in the worst case, zj1 4 = zj_1 —1+k'(K'—1) > 21 + (k' —1),
when the right-hand side is the equivalent step if the error did not
occur (k' > 2). Most of the time, the path leads farther into the
correct region, see path f6 in Fig. 6.5. Note that this extra drift
will not affect the correct estimation of #; as the path remains in
the correct region. If the 1 — 0 error occurs when zj—1 = 0, we
have a similar case to that of path f! in Fig. 6.5 and that error also
will eventually be corrected for sufficiently large decoding delays,
see path f7 in Fig. 6.5.

Remark 6.2 One of the nice features of a left-to-right estimator is its capa-
bility for decoding with a variable coding delay [66]. In the case of fixed coding
delay, the estimate is determined after D steps of the random walk. However,
with variable coding delay, the estimate is made as soon as the random walk
enters one of the so-called absorbing states z; > r or z; < —s for the first time,
ie. for the smallest j > 0. The error exponent of the variable coding delay
estimation is larger than that of the fixed coding delay estimation in MRFC
schemes for binary symmetric and asymmetric channels [66]. For binary input
SRFC schemes, we also expect a variable coding delay estimator to perform
better than a fixed coding delay estimator. O
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Right-to-left estimator

This estimator uses the block decoding method of MRFC schemes to estimate
t;. Introduced in [91], the right-to-left estimator can be used for all MRFC
schemes (including our new SRFC scheme), with binary or nonbinary input al-
phabets. More specifically, the estimator moves from the end to the beginning
of sequence rEHD) and replaces all forbidden subsequences with their last cor-
rection symbol. At the end, the type of the left-most remaining symbol is the
estimate of t;. The fact that we are only interested in estimating transmitted
bit ¢; simplifies the right-to-left decoder for use as an estimator.

A right-to-left estimator needs one register and one counter to keep the
most recent symbol and its index, respectively, during the right to left scanning
of sequence rgH_D). The right-to-left estimating procedure of the SRFC scheme
for the BIQO channel can be formulated as follows, where Tg and Cr represent

the contents of the register and the counter, respectively.

Right-to-left estimator'
- a
Set j:= D, Cr:=1and Tg := z;1p.

Setj:zj—land

if 245 = T then Cg := Cg + 1;
else CR = CR — (k — 1)yz'+j — (k:l - 1)(1 - yi_,_j).

3 .
If Cg < 1 then set Cr:=1and Tg := Titj-

4
If 5 > 0 then go to Step 2; otherwise stop.

At the end, the content of the resister is the estimation of #;, i.e. £ = Thg.

In the SRFC schemes for BIQO channels, we can show that the mentioned
right-to-left and left-to-right estimators result in the same estimate. Let fé_t_’"
and f;"_t_l denote the estimates of ¢; by the left-to-right and right-to-left esti-
mators, respectively. Remember that these estimations are based on sequence
rEHD), ie. zi4; and y;qj, 7 = 0...D. Let Z, and Z, represent the set of
positive and negative states in the state diagram of the left-to-right estimator,
respectively (note that the O-state does not belong to either of them). Let
sequence g, where g, € {Z,,2,}, a =1,... , A, denote the sequence of the
regions that the random walk enters from the beginning to the end of the
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walk. Note that the random walk does not enter a new region if it reaches the
O-state in the current region.

Theorem 6.3 In the SRFC scheme for BIQO channels, both right-to-left and
left-to-right estimators always result in the same estimate. Ie. we have

fﬁ._t"‘ — E:_t_l = Tipjo for k>k >2and D > 1,

where jo € {0,1,...,D} is the index of the first step of the random walk of
the left-to-right estimator into region g4.

Proof : See Appendix C. Q.E.D.

A similar theorem is proven in [91] for the case of MRFC for BSC’s where
the random walk does not end up at the O-state. That proof is simple and,
with some small modifications, does also apply here. However, the presented
proof in Appendix C is more general and also gives an insight to the problem
of the left-to-right estimating for nonbinary signalling.

6.2.2 Channel-error remover

To explain the operation of the channel error remover, it is better to have
another look at the transmitter. The transmitter repeats an input bit which
is received erroneously k' or k times, depending on whether the error is weak
or strong, respectively. From the estimator, the channel-error remover obtains
estimate t of transmitted sequence t. By comparing t with the received se-
quence x, the channel error remover obtains the error locations, i.e. the i’s
where t; # ;. Moreover, the corresponding y;’s, i.e. the received status bits
at the error positions, determine whether the errors are weak or strong. Now
working from left to right in x and y, the channel-error remover removes weak
or strong errors and the following ¥ — 1 or £ — 1 correctly received correction
bits, respectively. In this way, the last correction bit and its status remain on
the position of the erroneously received precoded bit and its correction subse-
quence. Eventually, as long as no estimation error is made we obtain ¥ = v
and § =s.

6.2.3 Estimation error probability

An event error occurs in recursive decoding when the estimator makes an
erroneous estimation, i.e.

Pr(i) = Pr{Ti # ti}'



146 MRFC for soft-output DMC’s, coding methods

where T; is the random variable denoting ;. As mentioned in [91], we recog-
nize two different sorts of estimation errors for a fixed coding delay recursive
decoder by looking closely at the different outcomes of random walks.

1. An estimation error occurs when a random walk of an erroneous recep-
tion enters the correct region after D transmissions (paths f' and f?
illustrate this kind of error in Fig. 6.5. Let P; be the probability of this
kind of estimation error and let

. —logh
E, = lim ——.
! Dl—rgo D

Using the approach of [91, pp. 62], it can be shown that
By = —log(p' K v¥ " +p k),
where « is the solution of

g+q =p'(K —1)y* +p (k- 1)v"

2. The other estimation error is caused by certain precoded sequences called
flip sequences. The random walk of a flip sequence hugs the O-state, see
path f3 in Fig. 6.5. A few transmission errors at the end of rj7;41 ... 7itp
push the random walk to the wrong region.

_In [91, pp. 63], it is conjectured that E; is the error exponent for the
recursive decoding of MRFC schemes in the range where the corresponding
repetition parameters give the maximum transmission rate. We expect the
same conjecture to hold for the case of SRFC schemes.

Example 6.3 We simulated the recursive SRFC scheme with ¥’ = 2 and
k = 8 used on a BIQO channel which was obtained from quantizing the output
of an AWGN channel, see Section 6.4. At arbitrarily chosen point pys. = 0.05,
see the same section for the definition of pysc, no estimation error was observed
during 10° estimations for a randomly produced sequence v when D = 150.
O

Remark 6.3 Notice that if the M-block retransmission strategy of Chapter
4 is employed with this SRFC scheme, then it can be shown that Ej is the
error exponent of the resulting scheme as M — oo and K>3 0O
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6.3 Precoding and inverse-precoding

In the simplest case, we can assume that each state of a FSM represents a
source which produces a sequence of iid bits. Let a be the probability of
producing the same precoded bit as the previous one in the state @Q of the
Markov source modelling the FSM, e.g. see Fig. 5.4. Then the corresponding
source of state () produces sequence u(()) consisting of iid bits u;(Q), i =
L,2,..., with Pr{U;(Q) = 0} = a. During transmission, the precoder goes
through the FSM and at each state changes its output bit if the corresponding
source of the state produces 1. Knowing the initial state of the precoder and
obtaining ¥ = v and § = s, the inverse-precoder can trace the state sequence
of the precoder. Thus, the sequences of all sources can be extracted from v.

In a more practical case, the precoding problem can be seen as mapping an
arbitrary data string onto a string of allowed channel bits, i.e. a mapping of
message m onto precoded sequence v, according to status sequence s which is,
in turn, dictated by the BIQO channel during transmission. There are many
methods to perform this mapping for MRFC schemes, see [91, Chapter 7]. In
this dissertation we mention another method which is very interesting from the
SRFC point of view. This precoding method uses an arithmetic decoder and
an arithmetic encoder to precode and inverse precode, respectively. In this
method, precoding and transmission can be done simultaneously (adaptive
precoding). In fact, such a precoder operates pretty much similar to the
method mentioned in the previous paragraph. In the following subsections,
the idea of using arithmetic coding for precoding is explained.

6.3.1 Precoder

Assume that the message is a sequence of iid bits wiws ... with py (0) =
pw (1) = 0.5. If a binary point is put to the left of the message sequence of
infinite length, the message may then be represented by a point in the interval
[0,1) and it is called a message point and designated by m € [0,1). We
can say that the message point is uniformly distributed in the unit interval,
i.e. M ~UI0,1), where M is the random variable denoting message point m.
Using an arithmetic decoder, we can map the most-significant bits (see Sub-
section 6.3.2) of this message point onto L symbols, where a given FSM (or
corresponding Markov source model) governs the mapping procedure. With-
out loss of generality, we assume that the precoded symbols are binary and
the FSM is that of either the SRFC scheme or the MRFC scheme for BSC’s.

Assume that the Markov source of a precoder consists of states Qy, ¥ =
1,...,¥, at which the probability of producing 0 is py, respectively. Let
z1 € {Q1,...,Qu} denote the state of the Markov source, at which the ith
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precoded bit, i.e. v, is produced, I = 1,...,L, see also Fig. 6.6. Let oy =
Pr{V, =0}, where oy = py if y = Qy, v =1,... , L.

V1 (Y v
(s1) ~ (st (sz)
e 1 : !
e . IR
< “rTTTT ; < Qi1
Do : : b pL
D1 < (65) Di-1 <: o) q ——
-------- qr
1l Nl @ : o

Figure 6.6: An illustration of the precoding procedure.

To begin the precoding process, assume that the precoder starts from state
Qu, ¥ € {1,...,7}, ie. 21 = Qy. To produce the first precoded bit v1, m
is compared with a1 portion of interval [0,1). Depending on whether or not
m lies below aq, v1 = 0 or v; = 1, respectively. Since the message point m is
uniformly distributed in interval [0.1), the

P’I‘{Vl = 0|z1} =1- P’I’{V1 - 1‘21} = .

Knowing v, we have

M ~ U0, 1) if vy =0
M ~ U[Otl,l) if V1 = 1.

Let us assume m < ai, then vy = 0 and, therefore, M is uniformly dis-
tributed in interval [0, ;). Knowing v; (and s; in the case of SRFC schemes)
determines the second state of the FSM, i.e. 29, and corresponding ag. De-
pending on whether or not m lies below ay portion of interval [0,a1), v2 =0
or vy = 1, respectively, where Pr{Va = 0|z} = 1 — Pr{V2 = 1|z} = oa.
Continuing this procedure, the algorithm successively narrows the interval of
[90, g0 + Po) = [0,1) to [gi, 1 + p) when [ precoded bits of v! (and the corre-
sponding status sequence of s(=1) in the case of SRFC) are produced. We can
observe that

e the interval encompasses message point m, i.e. ¢ < m < q; + py,
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e the message point is uniformly distributed in interval [g;, ¢; + p;) condi-
tioned on v! and z; (and on s~1 in the case of SRFC) and

e the size of interval is equal to p; = Hé:1 Pr{V; = v|vlt-1), (s(l_l)), z1},
which is the probability of sequence v produced by the Markov source.

e g represents the accumulative probability of all precoded sequences of
length [ which are lexicographically smaller than v! given z; (and s(~1).

Since the Markov sources of the precoders are unifilar, the state sequence
of the Markov source is governed by the deterministic rule of the FCM, i.e.
2141 = g(z1,v) in the FSM of MRFC schemes for BSC’s (and 2141 = g(z1, vy, 87)
in the case of SRFC schemes). Having 2,1 and depending on whether or not m
lies below ayy1 portion of interval [g;, ;+p;), vi41 = 0 or vyq = 1, respectively.

6.3.2 Inverse-precoder

Conversely, after having L precoded bits, we can recompute the boundaries
of interval [qr,qr + pr). Every precoded bit v; , | = 1,..., L, can determine
which of [gi—1,q1-1 + o - p1—1) or [g1—1 + @ - pi-1,q1—1 + pi_1) intervals must
be taken as interval [g;, q; + p;). Due to the Markov source being unifilar, the
state sequence of the Markov source and the sequence of a are also known
to the inverse-precoder.

At the end, we can say that interval [qr,qr + pr), which represents all
message points q;, < m < qr, + pr, becomes known to the receiver. Since
pr, is a very small probability value, v¥ and therefore interval lqr,qr + p1)
uniquely represents the most-significant bits of messages q; < m < qr, + pr.
Let L’ be the number of these most-significant bits. We can then claim that
L' information bits are transmitted to the receiver (provided that ¥Z = vI

and §* = s’).

6.3.3 Arithmetic coder

The mentioned (Elias) procedure can be implemented by an arithmetic coder
which approximates ¢ and p; by ¢; and p;, respectively, [ = 1,... ,L. An
arithmetic coder uses finite-precision arithmetic where a fixed number of bits
are available to represent numbers during calculation. In this way, a linear
time encoding is created without any serious impact on precoding efficiency.
Two implementations of arithmetic coding can be found in [5, Chapter 5]
and [33]°. Some techniques involved in implementing the latter method as

®In (38, 83] variations of arithmetic coding are presented which allow a fixed rate (pre-)
coding for constrained channels. Generally, the resulting rates are not optimum.
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a precoder and inverse-precoder are outlined in the following. For a detailed
description of the arithmetic coding algorithm, the interested reader is referred
to Ref. [33].

Since p; is a very small number representing the width of the interval
corresponding to the probability of precoded sequence v!, it contains a lot of
leading 0’s. A normalization procedure is involved to limit the precision of
Pr, representing the least significant bits of p;, to w + 1 bits. Therefore,

P = 2—(dl+w+1)PR7

where d; represents the number of leading 0’s of p; such that 2% < Pr < ow+l),
To represent §;, however, a register of (d; +w + 1) bits is necessary in theory.
The binary expansion of ¢; can be shown as

b, ones

. . . * . . .
(.71).727"' 7.7((11—1)70;171"" ?1aJ(al+bl+1)7.7(al+bl+2)a'-- 7.7(al+bl+w+l))-

where a; + b; = d;. This is divided into four parts from right to left: w+1 bits
participate in the calculation of the new interval, the preceding run of b; 1’s,
the preceding 0 and (a; — 1) remainder bits. In the calculation of the lower
bound of the new interval, i.e. 41y, a carry of 1 might be created which
would propagate along the run of b; 1’s and increment j,, = 0 to 1, and there
no further carries can occur. Therefore, the (a; — 1) bits of ¢ are immune
from alteration and can be dispensed with after being used to select the first
(a; — 1) bits of the message point. As a result,

e a (w + 1) bit register and a counter are needed to hold the rightmost
part of §; and the length of preceding run of 1’s, respectively.

e These (a; — 1) dispensed bits take part neither in the precoding nor in
the inverse-precoding procedures. Therefore, considering the precoding
and inverse-precoding as a whole, we can symbolically say that these
(a; — 1) information bits are conveyed to the receiver side after having
produced [ precoded bits.

When the lower boundary gy, is obtained, the minimum number of conveyed
message bits is L' = a;, — 1. In this way, the termination problem of this
precoding method can be resolved. For the next block, the new message point
starts from the bit after the (L' )th message bit of the current message point,
see also Rem. 6.6.
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Remark 6.4 Note that an arithmetic decoder is used for precoding and an
arithmetic encoder is used for inverse-precoding. The arithmetic decoder pre-
sented in [33] does not need to calculate §; because it only keeps track of m—g;.
Used as a precoder, the arithmetic decoder must also calculate §; in order for
the transmitter to know the value of L', see also Rem. 6.6. O

Remark 6.5 A MRFC scheme using the arithmetic coder mentioned above
might not be able to efficiently transmit certain sequences of message bits. For
these message bit sequences, by, is a large number and, therefore, L' = a; — 1
is very small with respect to the size of the precoded block L. This problem
can be prevented when there is not any long run of 1’s or 0’s in the sequence
of a message point. To illustrate this, let us consider the message points which

have a large b;, I = 1,... , L. Such ill message points can be bounded as
b; ones
. . . % . .
(.717327 cee a](al—l)’oa Li,..., 1:.7(a1+bg+1)9 cee a](al-l-bl-%-w-f—l)) <m
b; ZEroes
e N—— .

< (jlan)"' aj(al——l)alaoa 0,... ,Oajéal+bl+1)"" ’J(ﬂl+bl+w+1))’

where b, is a large number. As a simple remedy to this problem, one can remove
all message points in the intervals of above form, i.e. where ¢, has more than
b, Tuns of 1’s. If a redundant 0 or 1 is inserted after b,, consecutive 1’s or 0’s,
respectively, in the sequence of the message point m, then another message
point m’ can be obtained without a run of more than b,, 1’s or 0’s.

Since by, can be a rather large number (about a few tens to 100), a simple
method known as regular grammar [58, 57, 91] can be used to map message
sequences of m into m’ and vice versa. For doing this, the state diagram of
Fig. 6.7 is used. Starting from an initial state, every change or no change
in the bit sequence corresponding to message point m determines a transition
along the dashed or solid edges, respectively. In state Q,,, a change is always
imposed, which is shown by a dotted edge in the state diagram of Fig. 6.7.

From another point of view, the state diagram of Fig. 6.7 can be seen as a
Markov source having state transition probabilities 0.5 for states Q1, ... , Qb,,_,-
Therefore, the corresponding arithmetic coding is to simply put an input bit
into the output in states Q1,... ,Qp,, _, and to insert or delete an appropriate
redundant bit in state @), at the transmitter or receiver, respectively. The
entropy rate of this Markov source can be calculated to give the rate of the
mentioned procedure for inserting a bit after every b,, consecutive 1’s or 0’s.
On the other hand, we can roughly argue that the probability of having by,
consecutive 1’s or 0’s in the message sequence is 2 - (%)bm, which makes the
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no-change

@ —@—

, change /

Figure 6.7: State digram used for inserting or deleting bits.

probability of inserting a redundant bit very small if b,, is chosen large enough.
Therefore, practically, we do not expect any rate loss when b,, is about a few
tens or 100. O

Remark 6.6 In the precoding method mentioned in this section, the length
of the sequence of message bits, i.e. L', is variable in the block coding. This
causes error propagation in the sequence of the message bits if a block is
decoded erroneously, i.e. if ¥¥ # v for such a block (in the case of SRFC
schemes if ¥Z # v or 8 # s”). To remedy this problem, a system designer
can consider one or a combination of the following measures.

e By employing a block retransmission strategy, see Chapter 4, the block
error probability can for practical purposes be eliminated.

e The transmitter also decodes every received block (known to the trans-
mitter via the feedback channel) and obtains the L' of the receiver. This
parameter is the same for both transmitter and receiver if ¥ = vl (in
the case of SRFC if ¥ = vl and 8¢ = sl). In case of a block error,
the transmitter starts to transmit the next message bit corresponding to
the L’ of the receiver. In this way, error propagation in the sequence of
massage bits can be limited. O

Remark 6.7 Precoding for the recursive MRFC or SRFC schemes can be per-
formed similarly, assuming that L is a quite large number, e.g. L = 108. Note
that all procedures involved in a recursive MRFC scheme, i.e. the redundant
bit insertion, arithmetic coding and channel error removing, are left-to-right
operations, in accordance with the definition of a recursive coding method. O

6.3.4 Simulation results

The precoding technique is implemented in the precoding of the MRFC scheme
for BSC’s with £ = 6. Using the maxentropic Markov source model of the
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FSM, see Appendix A, message bits are mapped onto precoded bits and the
original message bits are retrieved from the precoded bits. Fig. 6.8 shows the
simulation results of the precoding rate in terms of L, the size of the precoded
blocks. The precoding and inverse-precoding procedures are conducted 10°
to 107 times, depending on the value of L, and the average precoding rate is
calculated for a given L. As L increases, the precoding rate approaches the
entropy rate of the corresponding Markov source.

oo meoem 0007
0.97 |- ¢ :

Rgim 0.965 :
0.96 |

0.955

° 720 4970

0.95 : ] ' S
100 1000
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Figure 6.8: Simulation results of the precoding (MRFC scheme for BSC’s with
k =6).

At small block lengths, the inefficiency of the precoding method is partly
due to the overhead in the implemented arithmetic coding algorithm, where
the loss is proportional to the inverse block length. Another reason is that
the Markov source representing the FSM has not yet reached its asymptotic
state probabilities, [25, pp. 60]. Fig. 6.9 shows the simulation results of the
precoding rate for the SRFC scheme mentioned in Example 5.3 with repetition
parameters k' = 3, k = 7 and the Markov source parameters given in Table
5.1. Comparing the simulations results of Figs. 6.8 and 6.9 shows that the
rates of convergence to the asymptotic value are very similar in both cases.

The behaviour of Markov chains can be analyzed by using the theory of
types, see for example [17, 3]. Consider an irreducible Markov source with
stationary probabilities g;; on the edges e;;, i.e. Pr{ transition along e;;}
= gi;, where e;; represents the edge from state Q; to Q;, of a finite directed
graph ®. For L > 1 we can consider the empirical type

ez] Z d;5(0)
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Figure 6.9: Simulation results of the precoding (SRFC scheme with K =3k =
7).

where 6;;(1) is 1 if the Ith transition of the source is along edge e;; and it is
0 otherwise. Thus p’ is the empirical distribution of the first L transitions.
The true distribution of the Markov source in denoted by p’ where pL(e,-j) =
Pr{e;;} = g for all edges of graph ®. If the Markov chain is irreducible,
then pL will converge almost surely to the stationary distribution on the set
of edges, by the strong law of large numbers [3]. Likewise, the entropy rate of
the corresponding sequence will converge to the entropy rate of the Markov
source.

6.4 Examples and extensions

6.4.1 SRFC scheme for quantized AWGN channels

Assume z and —z are inputs to an AWGN channel with noise deviation o =

\/%1. If the output of the channel is quantized on three threshold levels of

—p, 0 and p, then we obtain a BIQO channel with output symbols 15, 1,,, 0y
and 0. For this channel Fig. 6.10 shows the transmission rate of the SRFC
scheme with k' = 3 and k = 10 as well as the capacity of the BIQO channel
and that of the BEC (as it is defined in Example 5.1) resulting from quantizing
the output of the AWGN channel in three and two levels, respectively.

Fig. 6.11 shows the same capacities together with the transmission rate
of the SRFC scheme with k' = 2 and k = 8. All these graphs are depicted
in terms of ppse, the cross-over probability of the BSC obtained from binary
quantization of the output of the AWGN channel, at different signal to noise



6.4. Examples and extensions 155
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Figure 6.10: The rate of SRFC scheme with &' = 3, k = 10, for a binary-input
quantized-output AWGN channel.

ratios X2 = (£)2. In these graphs, those values of threshold T = 2 that
maximize the corresponding capacity of the BEC or the BIQO channel are
considered at a given X, where the rates of the schemes are calculated by
maximizing (5.16) with respect to 7' and the transition probabilities of the
corresponding Markov sources. Shown in Fig. 6.10 and Fig. 6.11 are also
the simulation results which closely match the theory. According to these
calculations, SRFC schemes with &' = 2 give higher throughput for such BIQO
channels.

6.4.2 Extensions to binary-input five-output channels

From a symmetrical channel with an even number of outputs, the SRFC
scheme can easily be extended to a symmetrical channel with an odd num-
ber of outputs. For example, consider a 2-input 5-output channel which
can be obtained by adding an output e to the BIQO channel such that
Pr{Y = e|X =0} = Pr{Y = ¢|X = 1} = p,, where X and Y are ran-
dom variables denoting the input and output of the channel, respectively. In
terms of channel model described in Subsection 5.1.3, output e corresponds to
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Figure 6.11: The rate of SRFC scheme with &' = 2, k = 8, for a binary-input
quantized-output AWGN channel.

the third channel state in which a BSC with crossover probability 0.5 is chosen.
Since output e gives an equal amount of information about the transmitted bit
being 0 or 1 (when both inputs are equiprobable), output e is considered an
erasure output. Here we can use the SRFC scheme of the BIQO channel, only
the transmitter has to repeat every transmission which is received as e. In the
receiver, the decoder simply ignores all e receptions. Then, the asymptotic
transmission rate can be written as

R=R\*(q,¢)1—p.—K p —kp).

6.4.3 Extensions to some channels with memory

It is possible to apply the idea of adaptive precoding, involved in the SRFC
scheme, to block interference channels [39] or a class of finite state channels
[42, 27] with side information at the receiver. These channels model the fading
channels and the corresponding channel side information is often provided by
an automatic gain control device that informs the receiver which component
channel was active in the last transmissions [39].
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Block interference channels

Consider compound channel K consisting of two component BSC’s with cross
over probabilities p, and p,,, respectively, p; < p,. Let us assume that in
every block of m > 1 uses of channel K, random variable S determines the
state of the channel according to an iid distribution over {s,w}, i.e. Pr{S =
s} =1 — Pr{S = w} = ¢. Both sender and receiver know when these blocks
begin and end, i.e. block synchronization is assumed. Channel K is referred
to as a block interference channel in [39].

Furthermore, assume that side information is available to the receiver (after
every transmission). In every block of transmissions, channel K with side
information at the receiver can be viewed as a DMC with input alphabet
{0,1}™ and output alphabet {0,1}™ x {s,w} and capacity per channel use is
C = ¢Cs + (1 — ¢)Cy, where Cs and C,, are the capacities of the component
channels, see [39, (3.7)]. Therefore, C is also the capacity of the channel with
feedback in accordance with the results of [2].

Note that when m = 1, the resulting channel is a BIQO channel. Therefore,
the SRFC method can also be applied to the block interference channel with
side information at the receiver. The analysis of the transmission rate for this
channels with m > 1 is not as straightforward as it is for the BIQO channel,
nevertheless, it is expected that the SRFC schemes perform better for this
channel with m >> 1. This is due to the fact that the state of this channel
with m >> 1 does not change as fast as it does in the BIQO channel. Therefore,
there is not that much of information lost in the correction subsequences as
mentioned in Subsection 5.5.3 for the BIQO channel. If p; = p;, and p,, = py,
where py and py are the solutions of (2.1) for repetition parameters k and &',
respectively, then the channel capacity can be closely approached for channels
with sufficiently large m’s.

Gilbert-Elliot channel

Let us assume that the states of a BIQO channel are determined by a station-
ary binary Markov process, shown in Fig. 6.12, i.e.

P?"{Si = w]SZ-_l = 8} =1- P'I‘{Si = s|Si_1 = S} = Pw
and
PT‘{Sz' = S|Sz'_1 = w} =1- PT{SZ‘ = w|Sz~_1 = w} = Pgs,

then the resulting channel is a Gilbert-Elliot channel. The capacities of this
channel with and without the channel side information at the receiver® are

8We assume that every state of the channel is known to the receiver immediately after
receiving the corresponding output.
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given in [42], see also [9] for sequential coding for the Gilbert-Elliot channel.
The former is C = ©Cs+ (1 —¢)Cy, where Cs and C,, are the capacities of the
component channels. According to [2], C is also the capacity of the channel
with feedback.

Pw
‘e T ~e -
0. 0 @s 0. 0
1.2 5.1 1. 31

Figure 6.12: Gilbert-Elliot channel model.

If o5 = 1 — @y, then the resulting channel is a BIQO channel. For small
values of ¢, and @, the channel persists on staying in its current state and
it performs similar to a block interference channel with a large m. For the
Gilbert-Elliot channel with channel side information at the receiver, the adap-
tive coding method of SRFC can be applied and the channel capacity can
closely be approached when ¢ and ¢, are sufficiently small, similar to the
case for block interference channels with sufficiently large m’s.

6.5 Conclusions

In Chapters 5 and 6, MRFC schemes were extended to a class of soft-output
DMC’s which, for example, can be obtained from quantizing the output of a
continuous channel. Unlike in previous MRFC schemes, the precoding of the
new scheme is dependent of the channel output. However, the main advantage
of the MRFC scheme, i.e. their simple decoding methods, is preserved in
the new schemes. We explained block and recursive coding methods of the
new scheme for a BIQO channel, which are able to decode the corresponding
SRFC schemes with repetition parameters kK > k' > 2 and k > k' > 2,
respectively. Having low decoding complexity, the recursive decoding method
also seems more interesting than the block decoding method because it allows
schemes with ¥ = 2, which give maximum transmission rate for quantized
AWGN channels. A precoding method is also outlined which is able to precode
adaptively to the channel output as is required in the SRFC scheme.



Chapter 7

Applications, extensions and
conclusions

At the beginning of this chapter, we shall mention some general areas where
the results of information feedback coding can be applied. This is followed
by outlining a few applications of the methods developed in this dissertation.
Finally, some suggestions are made for the extension of the current results and
for future research.

7.1 Applications

It appears that the information feedback coding which considers the presence
of a delayless and error-free feedback channel is not realistically applicable to
most communication channels. Nevertheless, it has drawn the attention of
many researchers and information theorists. Initially, exploring such a topic is
interesting from the theoretical point of view. Berlekamp in the introduction of
his doctoral thesis [6] mentions that the study of (noiseless) feedback coding
provides an interesting comparison with normal one-way coding. Between
these two extremes, one might obtain bounds on the performance of coding
schemes with partial or noisy feedback.

Furthermore, some of the results on information feedback coding can be
applied to other scientific disciplines. For example, in [6] Berlekamp proposes
that his results can also be used in the area of statistical design of experiments,
a mathematical subject which is isomorphic to the theory of error correcting
codes. This discipline deals with equalizing the anomalous effects expected in
the results of a series of noisy experiments (often chemical, medical or psy-
chological experiments, see also [91, Chapter 8] and references therein). In
these cases, it is possible to modify the subsequent experiment according to

159
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the result of the previous experiments, i.e. to make use of the delayless and
noiseless feedback channel. Another discipline where the result of information
feedback coding can be applied is economic markets. In this view, prices in
the market contain some information. For example, consider a trade session
consisting of N auctions taking place at consecutive time intervals. At every
auction, the price of an asset is determined by the amount of the trading in
that auction and in the previous auctions. A market agent who is somehow
informed about the final price, can observe the price of the asset in the cur-
rent and previous intervals (collecting feedback information). Based on this
information, he can adjust the amount of the asset that he offers in the next
auction to maximize his overall profit. Ref. [46] explores the idea in detail,
see also [45] or its overview in [91, Chapter 8].

Finally, some technical applications are proposed for information feedback
schemes even with a noiseless feedback channel. Writing information into
memories with known defects, e.g. into read only memories, satellite commu-
nications and army scouts are some examples of these applications, see [91,
Chapter 8] for an overview. One can also think of some areas where future
technology might allow us to use information feedback schemes. For example,
in magnetic recording channels, the forward transmission is to write data onto
the magnetic device using a writing head. To recover the data, a reading head
is used, which can also serve as a noiseless feedback channel during writing
process. Currently, due to the practical limitations of the writing and reading
heads, it is impossible to write and immediately read the data. Improving
these devices might open the door for applying information feedback schemes
to this particular case. Nevertheless, having a delayed noiseless feedback chan-
nel may be feasible within current technology if the writing and the reading
heads are located far enough from each other (see Subsection 7.1.2 for more
detail on delayed feedback information).

In FCM, a feedback coding method introduced in Chapter 3 for AWGN
channels, it is not necessary for the feedback channel to be noiseless. There-
fore, one can think of many applications of the method, some of which are
mentioned in the following subsection.

7.1.1 Applications of FCM

As mentioned in Chapter 3, FCM is a bandwidth efficient modulation scheme
which can be used in band limited channels with high SNR’s. As an alternative
for TCM, FCM can be used in most communication channels where there exists
an idle feedback link. For example, FCM can be employed in the modems
which are used, for example, in telephone networks. Nowadays, all these
point to point connections are via two-way channels [43, pp. 74] (one in each
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direction), where data often flows in one direction only.

There is currently a growing demand to transfer high speed digital data
to households. Instead of installing optical fibers, the high speed data trans-
mission links over distances of up to 4000 meters in digital subscriber loops
and up to 100 meters in digital local area networks can be implemented on
the existing Unshielded Twisted Pair (UTP) copper cables [82]. The UTP
copper cables have been used to connect subscribers to central offices in the
telephone networks. However, these loops are capable of operating in a much
wider bandwidth and transferring a large amount of information. High bit-
rate Digital Subscriber Line (HDSL) and Asymmetric Digital Subscriber Line
(ADSL) technologies have been proposed for these high speed digital data
transmissions. The HDSL offers a solution for bidirectional transmissions and
ADSL architectures are designed to transmit video on demand signals via sub-
scriber loops. In ADSL, the backward channel is used for control commands
and, therefore, the capacity of the backward channel is less than that of the
forward channel.

Various baseband and passband modulation techniques are being consid-
ered for HDSL and ADSL systems. For example, this modulation can be
carried out by a single-tone modulation scheme such as QAM, where the
transmission power is concentrated in one frequency band. Alternatively, a
multi-tone modulation scheme, see also Subsection 7.2.4, can be used to opti-
mize the power spectrum over more than one (disjoint) frequency band. I.e.
the transmission channel is partitioned into a multitude of subchannels, each
with its own associated carrier [30]. In single-tone (or multi-tone) modulation,
every transmitted signal (or every transmitted signal from each subchannel)
is a signal point from a 2-dimensional constellation. And because a feedback
link is already available in the architecture of the HDSL and ADSL systems,
there is a great potential for using the FCM method. Remember that in this
way it is possible to gain about 5.5 dB in the SNR, i.e. to transmit about
four times as many messages per 2-dimensional signal, with a small amount
of coding effort.

7.1.2 Round trip delay

Round trip delay is an important issue to be considered in applying an infor-
mation feedback scheme to a feedback network. The round trip delay, denoted
by 24, is the time needed at the transmitter to send a signal, i.e. to send a
channel input, and receive the corresponding feedback signal. The propaga-
tion time of the signal over the forward and backward channels as well as the
processing time at the receiver, needed for demodulation and retransmission of
the channel output, account to t;5. For example, over a d meter subscriber line
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the wave propagation time is ¢, = %, v being the speed of wave in the twisted
copper cables. In general, it is difficult to calculate v precisely, however, we can
approximate it to the speed of light. Hence, there is approximately a round
trip delay of t4 & 2t, seconds for receiving the feedback signal (assuming that
the processing time at the receiver is negligible).

If the channel bandwidth is W, then time interval between two consecutive
transmissions T' is almost ﬁ If t4 < T, then the next channel input can be
determined according to the rules of the feedback coding scheme (assuming
that the processing time at the transmitter is negligible). If ¢ty > T, then
one can use the interleaving technique. For interleaving, N feedback coding
schemes are used in parallel, where N is the smallest integer number such
that ty < NT. More clearly, every N consecutive transmissions constitute a
time slot. The nth symbol of every time slot corresponds to the nth scheme,
n=1,...,N. Inthe j*® time slot, j = 1,2,..., the ;50 symbols of the
schemes are transmitted in the order of n = 1,... , N, and respectively af-
ter N transmissions, the transmitter receives the jth feedback symbol of the
ntB scheme. Therefore, the transmitter can accordingly determine the next
transmit symbol of each scheme in the (5 + 1)St time slot.

e Using the interleaving technique increases the storage size of the decoder
by a factor of N. However, the computational complexity of the decoder
per symbol remains intact. Note that the storage size is very small in
recursive MRFC systems, thus the amount of extra memory is still not
considerable.

e As mentioned before the duration of a symbol transmission, i.e. T, is
inversely proportional to the channel bandwidth W. Therefore, a way to
reduce N is to increase 7T, i.e. to decrease the channel bandwidth. On
the other hand, the bandwidth W in wideband channels is practically
divided into a few smaller bandwidths to exploit the SNR characteristic
of the channel at different frequencies. The resulting method, in which a
channel is divided into some parallel subchannels of smaller bandwidths,
is called multi-tone modulation, see also Subsection 7.2.4. Since the du-
ration of signals in each subchannel increases in this way, the transmitter
has more time for observing the feedback symbols.

The round trip delay is a design issue and very much depends on system
parameters. To illustrate the point, consider the following example.

Example 7.1 In a 4000 meter subscriber line, we can approximately have

% ~ 37500 signal transmissions per second per subchannel without having the
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round trip delay problem. For a higher signal transmission rate, the interleav-
ing technique can be used in conjunction with FCM. For a data transmission
rate of 1.5 mega bits per second and a constellation of 64 signal points, we need
to interleave 7 FCM schemes in the single-tone case. In a multi-tone modu-
lation method with more than 7 subchannels we do not need to interleave at
all. O

7.2 Further extensions

Some aspects of the methods presented in this dissertation can be extended
further. The following subsections provide an overview for such possible ex-
tensions, which can be pursued in future research.

7.2.1 Reducing the SNRy, in FCM

In FCM we assumed that the signal points within the constellation of the feed-
back channel are sufficiently apart to have a feedback symbol error probability
of at most 10™!%. Under the condition that SNRf;, < SNR, the mentioned er-
ror probability is maintained when the number of coordinate points in the
constellation of the forward channel is more than 5, see also Rem. 3.4. Now
the question is whether it is possible to relax this condition or, in other words,
to require lower SNR ;. To reduce SNR f;, the minimum distance ¢, must be
reduced which, in turn, increases the signal error probability in the feedback
channel. If this error probability is increased from 10714 to, for example, 10~2
(i.e. vy is decreased about 3 times), then SNRy, is reduced about 9.5 dB. A
signal error probability of 1072 in the feedback channel is not tolerable for the
FCM and, therefore, the feedback signals have to be encoded.

In [61], Schalkwijk proposed a coding strategy for Binary Duplex Channels
(BDC’s) which can be seen as the solution to the above problem when the
constellation of the forward channel has two signal points (the same as that
of the feedback channel). More precisely, a BDC is a combination of two
BSC’s with the same crossover probability p, one being the forward channel
and the other being the backward channel, see Fig. 7.1. A MRFC scheme
is used in the forward direction and every received bit (or every noise bit in
the forward channel) is estimated at the transmitter by using a code on the
feedback information.

Let us represent a binary sequence bbbz ... by a formal power series
b(a) = by + bea + b3a® + .... Both transmitted and received sequences are
passed through a convolutional scrambler with characteristic equation c(a)
to have x(a)c(a) and y(a)c(a), respectively. The scrambler with c(a) =
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Figure 7.1: Schalkwijk’s BDC.

c1+ca+...+cy10”, where ¢; € {0,1}, i =1,... (v +1), can be seen as a v
stage shift register. The input of the ;th register, 2 = 1,... ,v, and the output
of the »th register are added modulo 2if¢; = 1,7 =1,... , (v+1), respectively.
The transmitter adds (modulo 2) x(a)c(c) to the feedback sequence to have

w(a) = x(a)c(a) +z(a) + (x(a) + n(a)) ¢(a)
z(a) + n(a)c(a),

where a sequence is obtained independently of the transmitted sequence. From
w(a) one can obtain the estimate of oP~Vn(a) using a 2”-state rate-3 sys-
tematic convolutional decoder [61]. A coding delay of about Ny = 5(v + 1)
transmissions is necessary to estimate every noise signal in the forward direc-
tion. Therefore, an interleaving of N, independent MRFC schemes is needed
in this method.

We can also use the same idea in FCM and reduce the SNRyf,. As a
result, the complexity of the encoder increases due to the estimation proce-
dure, however, the decoding complexity increases slightly, mainly as a result
of increasing memory size. We can say that complexity is transfered to the
transmitter side by this method. Note that the round trip delay adds extra
delay on top of the estimation delay. In this way, there is a possibility for an
asymmetric dialog (two-way communication), where in the feedback direction
the rate of the true information, i.e. not the feedback information related to
the received symbols, is lower than that in the forward direction.

7.2.2 Phase shifting in FCM

A two-dimensional transmitted signal might be demodulated with a phase
offset . This would cause problems for the soft-decision decoder of the
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TCM scheme which operates on the signal sequence a; exp ¢ instead of Qs
t=1,2,..., where a; is a complex-valued number. The phase offset could be
caused, for example, by disturbances of the carrier phase of the received sig-
nal, which the phase-tracing scheme of the receiver cannot track instantly. In
TCM, rotational invariance codes are designed for a group of phase offsets that
leave the two-dimensional constellation invariant. For example, in multilevel
QAM the group consists of phase offsets of 0° , 90°, 180° and 270°. Rotational
invariance results when rotated sequences are also valid code sequences. This
yields transparency of the transmitted information under such phase offsets.
In FCM, the feedback information can be closely investigated at the trans-
mitter to detect any phase offset at the receiver. Thereafter, appropriate mea-
sures can be taken to adapt the following transmissions to the current phase of
the receiver (as long as the phase offset does not occur in the backward direc-
tion). For simultaneous phase offsets in both directions some other measures
must be devised (such as regularly transmitting some synchronization data).

7.2.3 Burst errors in FCM

In most practical channels with memory, errors tend to occur in bursts. In
block MRFC coding schemes, on the other hand, the positions of errors in a
block are irrelevant and the block is decoded correctly as long as the number of
errors remains below a certain threshold, see Theorem 2.1. Therefore, block
FCM is expected to operate well in channels with burst errors, where the
length of blocks are long enough to accommodate a few runs of errors and
correct them all.

7.2.4 Multi-band modulation

A general linear Gaussian channel is a waveform channel with input signal
z(t), a channel impulse response h(t) and additive Gaussian noise n(t). The
received signal is

y(t) = z(t) * h(t) + n(t),
where * denotes convolution. The frequency response of h(t) is denoted by

H(f) and the one-sided power spectral density (psd) of the noise is denoted
by N(f). The transmitted signal z(¢) is subjected to power constraint

/ P,(f)df <P, (7.1)
f>0
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where P,(f) is one-sided psd of z(¢). The optimum P,(f) maximizes the
mutual information between channel input and output subject to the power
constraint (7.1) and P(f) > 0. The water filling argument [25] shows that
the optimum input psd is

[H(f)?
0, otherwise,

K_N_(f)___ B;
P£(f)={ fe

where B = {f : P%(f) > 0} is called the capacity achieving band and K is
a constant chosen such that (7.1) is satisfied with equality, see Fig. 7.2. The
capacity of the channel is

C=/Blog<1+%z)(i)ii)df,

where z(t) is a Gaussian process with psd P2(f), see [26].

B

0 f

Figure 7.2: An illustration of the water filling approach.

One way of approaching the capacity of this channel can be deducted from
the water filling argument. The capacity achieving band B can be divided
into disjoint subbands of small enough width Af over which P2(f) is con-
stant. Each subchannel can be treated as an ideal AWGN channel [26] with
bandwidth Af, where the allocated transmit power to each subchannel cen-
tered at f is approximately P2(f)Af and the corresponding subband capacity
is

PR(HIHS)
N(f)

Multicarrier transmission methods can be used for the resulting channel.
Usually modulation and demodulation are carried out in the frequency domain

C(f) = Aflog(l+ )
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and the corresponding systems are referred to as Orthogonal Frequency Devi-
sion Multiplexing (OFDM) or discrete multi-tone systems. This is a form of
frequency devision multiplexing in which symbols are transmitted in individ-
ual subchannels using modulation methods such as QAM. Current application
of the method include digital audio broadcasting and ADSL. Another multi-
carrier transmission method uses Wavelet transform and the resulting method
became known as discrete Wavelet multi-tone modulation.

OFDM based systems can potentially be a place to apply the FCM scheme
and to obtain a coding gain of about 5.5 dB in each subchannel. Having
subchannels eases the round trip delay restriction where a delay of Aif can
be long enough to have the feedback information available just before the
next transmission. In xDSL (ADSL, HDSL ...) technologies, the subchannels
are usually high SNR channels and feedback information can constitute a
small part of the backward transmissions, which can allow a two-way flow of
information.

7.2.5 Low-rate feedback schemes for DMC’s

In information feedback coding, every received output symbol is fed back to the
transmitter via a noiseless (and maybe delayless) channel. In FCM, however,
only the partition to which the received symbol belongs is fed back to the
transmitter. The low-rate feedback term is used here to refer to such coding
methods where the amount of feedback information is lower than that in the
conventional information feedback schemes for the same forward channel.

The idea of low-rate feedback coding used in the FCM was first employed
in DMC'’s, see (75, 77] and for a more comprehensive coverage see [74]. Con-
sider a BSC where for each frame of f forward transmissions one is allowed to
complete a group of g (with g < f) noiseless feedback transmissions. Using
set partitioning in the frame of f bits, a forward code affects the rather simple
intra-partition decoding, while inter-partition decoding is accomplished by a
MRFC scheme. In FCM the signal points within partitions are transmitted
without coding, however, in these low-rate feedback coding schemes the sig-
nal points in partitions are encoded, i.e. intra-partition coding, by a simple
convolutional code.

In [75], a scheme with (f,g) = (2,1) is designed using a 2-state convolu-
tional code for intra-partition coding. The transmission rate of the resulting
scheme is well above 0.5. Similarly, in [75] schemes up to (f,g) = (9,1) are
designed where at most a 4-state convolutional code is used. As g decreases
relative to f, only a slight degradation in rate performance is observed. In
the forward direction, a total transmission rate of 0.44 bits per channel bit is
obtained by the scheme with (f, g) = (9,1). The error performance of all these
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schemes is comparable to that of a 64-state rate-0.5 convolutional code. The
decoding complexity of the resulting scheme, however, is much lower than that
of a one-way code with similar performance. The extensions of these methods
can be suitable for use in channels with low SNR’s, where low-rate one-way
codes are used.

7.3 Open problems

Some open problems, arisen or encountered in the course of this research, are
reviewed in this section to be considered for future research.

7.3.1 Low-rate noisy feedback coding

In information feedback, it is assumed that for every transmission in the for-
ward direction there is a noiseless (and delayless) transmission in the backward
direction to feed back the corresponding received symbol. As seen in Chapter
1, these schemes are generally simple and outperform one-way codes. For most
applications, however, having a noiseless feedback channel is not feasible.

In this dissertation we introduced a feedback scheme working with a noisy
feedback channel. The assumption here is that a (noisy) feedback channel
is at transmitter’s disposal. To deal with the noise in the feedback channel,
the rate of feedback information is reduced by feeding back only partial in-
formation regarding every received symbol. The low-rate noiseless feedback
information is transmitted at full rate over the noisy feedback channel, i.e.
some redundancy (or power) is added to the (low amount of) feedback infor-
mation and the result is transmitted over the feedback channel. This scheme
still reduces decoding complexity considerably with respect to that of one-way
coding schemes.

Another step forward in this direction would be to consider low-rate noisy
feedback schemes where not only the amount of feedback information is small
but also it is transmitted over a noisy feedback channel, i.e. where adding
redundancy or increasing transmission power is not allowed. Assume that
there is a single connection between two points, which can be used in either
direction by time sharing. For transmission in one direction, a transmission
block can be divided into two subblocks: a forward subblock and a backward
subblock. The object is to design feedback schemes that transmit information
in the forward subblock and then feed back the partial (low-rate) feedback
information in the backward subblock. Such a scheme can be an alternative
solution to be used in most cases where one-way codes are in use nowadays,
see also [60]. It would be an interesting topic for future research to design
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such low-rate noisy feedback schemes and/or to compare their performance
and complexity to those of one-way codes.

7.3.2 A capacity achieving SRFC scheme

In Subsection 5.5.3 we explained that a SRFC scheme cannot achieve the
capacity of a BIQO channel because the status information of correction sym-
bols is ignored and only the number of correction symbols, i.e. the type of the
received correction symbols, is taken into account.

Another interesting topic for future research is to investigate whether it
is possible for any MRFC based scheme to have a transmission rate that
coincides with the capacity on a soft-output DMC. We would like to draw
the attention of the interested reader to Veugen’s conditions that must hold
when the capacity of a DMC is achieved by a MRFC scheme. These necessary
and sufficient conditions are given by (2.21) and we rewrite them as follows.

Dzy (pzz> (key =1)
— | — =1, where z € X,y € ).
Ty \ Tg

Let us see whether these conditions can hold for a BIQO channel if a
hypothetical repetition scheme takes into account the status of the received
correction symbols. In this view, a strong error such as 0 — 1, is compensated?
by (k — i) strong zeroes and k; weak zeroes, where k! is an integer chosen
appropriately and « = 1,... , k. In this scenario, the conditions analogous to
(2.21) turn out to be

p [ g g _ - ,
%E<EI+ZI) (@‘) —1, Z——].,...,k and k121
2 .

A similar set of conditions can also be written for a weak error. To satisfy
these conditions the effect of a strong correction symbol must be the same as
those of k" weak correction symbols, i.e.

, k:ll
q _ 9 7
(2) -5 e
2

This assumption is impossible in practice, because there is no guarantee that
if a strong reception does not occur in a correction subsequence, then k" weak

!For example in MRFC schemes for BSC’s, a 0 — 1 error is compensated after receiving
subsequence 10%~Y | The last 0 corrects the error.
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receptions occur instead. Therefore, it seems impossible for such a repetition
scheme to take into account every chip of information embedded in the outputs
of a soft-output channel and at the same time to fulfil conditions analogous
to (2.21).

7.3.3 Capacity of the precoder

The FSM of SRFC is not a deterministic constrained channel in the sense that
Shannon introduced in [67]. I.e. it is not possible to enumerate the number
of constrained sequences before transmission because the status sequence is
not known beforehand. Therefore, the entropy rate of the Markov source
modelling the FSM is used to calculate the exponential growth rate of the
number of such constrained sequences.

In Appendix A, it is shown that the maximum entropy rate of the Markov
source modelling the FSM of MRFC schemes is equal to the capacity of the
corresponding constrained channel. Analogously, we maximized the entropy
rate of the Markov source modelling the FSM of the SRFC schemes given that
Pr{S; = s} = 0, see (5.11). It is interesting to show that this conditionally
maximum entropy rate is also the capacity of such constrained channels. An
approach would be to use the concept of the types for the Markov sources that
are not operating at the maximum entropy rate of the corresponding FSM,
see [3]. There are only a polynomial number of Markov types and therefore
of all the Markov type classes that satisfy the state constraints, at least one
of them has the same exponent as the total number of sequences that satisfy
the state constraints.

7.3.4 Extension to channels with ISI

A simple model of a channel with InterSymbol Interference (ISI) is shown
in Fig. 7.3. The state entered at any instant is the same as the input at
that instant. In state 0, the crossover probability of 0 to 1 is much less than
that of 1 to 0. This is the other way around in state 1. In other words,
the probability of an erroneous transmission in each state is higher if the
input bit is different from the previous input bit. Since in MRFC schemes
the transmitted correction bits are always the same, it seems promising to
investigate the performance of these schemes on ISI channels.

7.4 Concluding remarks

Feedback channels potentially exist in many communication systems. Using
feedback information can, at least, reduce the (de-) coding complexity. Assum-
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Figure 7.3: A simple model of a channel with ISI.

ing feedback channels to be noiseless is not realistic in most communication
systems with feedback and it has been a major obstacle on the way of using
feedback coding schemes.

In this research, a step is taken towards dealing with the noise in the feed-
back channel. As a result the FCM is devised for communication networks
where the forward and backward channels are characterized as bandlimited
AWGN channels with high SNR’s. Even though this class of channels cov-
ers many practical cases, the ideas involved in FCM can be applied to other
channel models as well. It is shown that a 5.5 dB improvement in the SNR is
feasible by FCM, which is in the range of the effective coding gain of the most
complex TCM with a 256 or 512 state trellis code. The decoding complex-
ity of the resulting scheme is considerably less than that of the conventional
TCM scheme. In this contribution it is also shown how to use signal shap-
ing techniques in the FCM case. With a very simple signal shaping code
an extra shaping gain of 1 dB can be obtained on top of the 5.5 dB coding
gain. Moreover, a simple precoding method is proposed for the precoding
of MRFC schemes by using an arithmetic coding algorithm. The precoding
rate of the method, investigated by running simulations, is very close to the
optimum value. MRFC schemes are the backbone of the designed methods.
Two block retransmission strategies are devised to improve the performance of
block MRFC. A MRFC scheme is also designed and evaluated for soft-output
DMC's.

Reducing the complexity is an important issue of concern in designing
versatile communication systems. Demand for such systems is growing in the
era of the information super highway, where in some areas such as multi-media
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applications the number of consumers is very large. Therefore, we believe that
feedback coding will become an important design option to be considered in
implementing such complex systems and it cannot simply be ignored by skeptic
traditionalists.



Appendix A

Precoding rate

In this appendix we outline two general approaches to calculate the capacity of
a constrained channel corresponding to the precoder of a MRFC scheme!. A
precoder can be seen as a state machine consisting of finite number of states or
as a Finite State Machine (FSM) for short. At each state, the FSM produces a
symbol (a number of symbols) from X according to the precoding rules. Given
repetition parameters kyy (z,y € X), yz*ov are forbidden subsequences of the
precoder, which determine the precoding rules. We adopt a FSM in which
every two states are connected by at most one single edge. In a transition
from one state to another, the FSM produces one symbol corresponding to
that transition, see the FSM on the left-hand side of Fig. 2.4.

Assume that the FSM consists of U states denoted by Q1,Qa,... , Qu.
The number of states depends on |X|, i.e. the size of the alphabet X, and the
values of repetition parameter k,,’s. At every state, the FSM can produce one
symbol from X as long as the produced symbol does not cause any constrained
or forbidden subsequence. For example, if reaching state Q by the FSM means
that the last symbols of the precoded sequence are ...yzz, then the precoder
can produce symbol = if kzy —1 > 2 and all z € X —{z} if k,, > 1. Each
produced symbol changes the state of the FSM to a different state, see Fig.
A.1. In summary, all constrained sequences that end up at given state Q must
be restricted by identical constraints from producing the next symbol point of
view.

Remark A.1 For a sequence ended up at state @, the state must identify

e the last symbol of the sequence,

'Note that maximizing the precoding rate does not necessarily maximizes the transmission
rate of the MRFC schemes for asymmetric channels, see [91, pp. 67]. In MRFC schemes
for strict-sense and wide-sense symmetric channels, however, maximizing the precoding rate
leads to maximizing the transmission rate.

173
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Figure A.1: The state structure of the FSM

e the number of identical symbols at the end of the sequence,
e the previous symbol (non identical) to the last symbol.

The first factor is essential when the next symbol of the sequence changes with
respect to the last symbol of the sequence, and next two factors are essential
when the next symbol of the sequence does not change.

For example, sequences ...z,yzz and ...z, yzz must end up in the same
state @, see Fig. A.l because as long as preventing the occurrence of a for-
bidden subsequence is concerned, producing the next symbol is independent
from z and 2’ for the sequences. Therefore, state () represents all sequences
which end up in yzz. This reflects the Markovian nature of the FSM of the
precoder. The FSM can be described by a ¥ x ¥ connection matrix D¢ = [dy;],
for which the entries are

p { 1 if there is a connection from state @; to state Q;,
i —

0 if there is no connection from state @; to state @,

fori,j=1,...,0.

Example A.1 Consider the FSM depicted on the left-hand side of Fig. 2.4,
where the states are indexed in the order of Q}, Q%, Q3, Q4, Q1, @2, Q3 and QF.
The connection matrix is
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01 001000
00101000
00011000
00001O0O0TU0
De = 1 0000100 -5
100000010
1 00000©O0T1
1 0000O0OTO0CO

For L outputs of such channel, one can have M (L) distinct constrained
output sequences. Shannon in [67] defined the capacity of such a noiseless
constrained channel as

C= lim 8ML)

L—o L ’ (Al)

or the net growth rate of the logarithm of the number of distinct constrained
sequences with the number of constrained symbols. From Def. 1.11, C can
be seen as the entropy per output letter of the constrained channel (with the
assumption that all sequences are equiprobable). To compute C, we outline
two procedures and show that their results are the same.

The first way to compute C is to enumerate the number of constrained
sequences of length L. Shannon in his original paper [67] used an enumeration
method for a more general case. Shannon’s method enumerates the number of
constrained sequences ending up in a state. Here we outline the enumeration
method presented in [31] where the number of constrained sequences starting
from a state is enumerated. Let M;(L) be the number of distinct constrained
sequences of length L, which are emerging from state Q;, i = 1...¥. Since
every edge emerging from state @; corresponds to one precoded symbol, we
have

A\
Mi(L) = dizM;(L - 1). (A.2)
j=1

Assuming a general solution M;(L) = a;AL, where a; is a constant independent
of L,i=1...¥. From (A.2) we have

N\
7j=1
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Writing the corresponding equations for ¢ = 1... ¥, the following set of equa-
tions is obtained.

Aa=Dea, (A.4)

where vector al

tained when

2

= (a1,as,...,ay)?. The nontrivial solution of (A.4) is ob-

det(D — AI) = 0, (A.5)

where I is the ¥ x ¥ identity matrix. Let Ao be the largest solution of (A.5) or
the largest eigenvalue of matrix D¢. The capacity can be written from (A.1)
and (A.2) as

M;(L log(a; My
C = lim M: lim leeg)\o.
L—oo L Lo

For the second approach, the FSM diagram can also be seen as a Markov
source which consists of states @1, @1, .. , Qu. Let random variable S; denote
the state of the Markov source at instant [ = 1,2,.... Moreover, assume that
gij represents the transition probability from state ¢ to state 7, i.e.

gij = Pr{S; = Q|81 = Qi, 82 = =2} = Pr{S, = Q;|S1-1 = Qi}.

The ¥ x ¥ matrix Q with entries g;; is called the state transition matriz. Let
g; be the steady (stationary) state probability of being in state Q;, j =1... 0.
The state distribution vector q” = (g1,42,- .. ,qy) is the solution of

Q7q=q.

For most practical Markov sources (including ours)? there is only one limiting
state distribution vector. In other words, the steady state distribution of
state probabilities converges to q regardless of initial distribution. During
every transition from one state to another, the Markov source produces an
output symbol, or in other words, a precoded symbol. For example, the solid
and dotted edges in Fig. 2.4 correspond to producing 1 and 0, respectively.
Therefore, the Markov source in state @; is like a memoryless source with
entropy

¥
H;=- Z gij 10g gij.-
i=1

2Upper-script T denotes the transpose of a matrix or a vector.
3The state set of these Markov sources is irreducible and ergodic, see {25, pp. 65].
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For a unifilar Markov source the entropy rate is obtained from

v v
Hy =) gHi=-> Y g qjlogg;. (A.6)
Let sequence s1sz... and sequence z1zy... be particular state and output

sequences of the Markov source, respectively. At instant [, the source which
is in state s;, produces output z;, [ =1,2,....

Definition A.1 (Unifilar Markov source) In a Markov source, if the cur-
rent state s; and the current output T, uniquely determines the next state s;1,
then the Markov source is unifilar.

Fig. A.2 schematically shows the selection mechanism of the next state of a
unifilar Markov source by deterministic function g(-,-). In other words, the
state sequence of a Markov source can be uniquely determined by the output
sequence of the source and its initial state. It is easy to see that the Markov
source corresponding to the precoder of a MRFC scheme is unifilar. The
second way to calculate the capacity of a constraint channel is by maximizing
the entropy rate of the Markov source corresponding to the FSM with respect
to state transition probabilities. A Markov source with a set of transition
probabilities that maximizes its entropy rate is called mazentropic [31].

Si+1 S] Z
——> pX[S(mllsl) —
g(z1,51) | =

Figure A.2: Determination of the next state in a unifilar Markov source.

Theorem A.1 Given the connection matriz D, of the FSM of MRFC schemes
and its largest eigenvalue Ao, the mazimum entropy rate of the corresponding
unifilar Markov source satisfies

max Hyr = log Ay = C.

qij

Proof : The proof of [31] is presented here with slight changes.
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1.

There isn’t any set of state transition probabilities, or stochastic matrix
Q, for which Hys > logAo. Because then C' = logA¢ cannot be the
capacity of the channel.

. Now we look for a set of state transition probabilities which yields Hp =

log Ao and, therefore, maximizes the entropy rate due to point 1. Using

Ao in (A.3), we can write the ith characteristic equation as

Z dija; _
Aoaz

We claim that choosing g;; = S22 for ,j = 1... ¥ yields Hy = log Ao.
Note that the resulting state transition matrix is stochastic because the
components of the eigenvector a are positive, see [88, pp. 30], and hence
¢i;'s are nonnegative and Z}p:l gij = 1. From (A.6), the entropy rate
can be written as

v L4
> aH: = —Z%Zqz] log gij
Z:]. z 1 :

v v

@ _ Z Z ¢iqi;(log aj — log a; — log o)
i=1 j=1
v v v v
= =) qigjloga; + > qigijloga;
j=11:=1 =1 j=1
v ¥
+ log Ao Z Z i9i;
i=1 j=1

v v
= —qulogaj + }:qilogai +log Ao
j=1 =1
= logho

Note that in () term d;; is not written because d;; is either 0 or 1. When
dij = 0, the corresponding ¢;; = 0 which disappears in the definition of
the entropy by the convention that 0log0 = 0.

Q.E.D.



Appendix B

Rate of discrete-input AWGN
channels

In a vector AWGN channel, when the transmitted vector xP = (z1,29,...,

xp) can be any signal point in the D-dimensional Euclidean space IRP, then
capacity is achieved with independent and normally distributed input coor-
dinates having mean value 0 and variance o2 = %, ie. Xg ~ N(O, %-) for
d=1,...,D, where E is the average transmitted energy per signal. Now we
are interested in finding the capacity (more precisely, average mutual informa-
tion) of AWGN channels in which Xj is a discrete random variable that can
independently take one of the L equiprobable values from

3 L-1
X'={:i::2y—,j:—7,...,:1:(—2)1}

5 (L even),

where 7 is the minimum Euclidean distance between two signal coordinate
points. Therefore, the set of input symbols (signal constellation) of the vector
channel is X = &/ D, e.g. see Fig. 3.1. Extension of the well-known formula
for the capacity of a DMC, (1.3) and (1.5), to the case of a continuous-valued
output channel [86] yields

0 = mix S px2) [ Furnly P gl DO
= max ) px(xj / yix (7 Ix;) log(—% ;
e - S px (D) Frx (v P xP)
(B.1)
where px(ij ), 3 = 1,...,]|X|, denotes the a-priori probability distribution

associated with input symbol x and
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D
Frix(yP1xP) @ 1 fvix Wal=;a)
d=1

a2
(a2) 1 edezl_(yd jd)

(\/27r%)D ’

= Py(y? —xP)=Py@P), (B.2)

in which (aq) follows from the fact that the D parallel subchannels are inde-
pendent. Since random variable Yy = X4 + Ng and Ny ~ N (0, %‘l), for the

dth coordinate we have

N,
fyix (dalzia) = N(zjds 70),

which explains (a). In vector representation, Y2 = XD 4+ NP | therefore

Fyix(yP1x7) = N(x7, A),

where A = %I is the covariance matrix of the AWGN vector and I is the
D x D identity matrix. With the further assumption that the signal points at
the input of the modulator are equiprobable, i.e.

1 .
pX(XD):T'—‘, j:17,|X|,

the maximization over the a-priori probability distribution of signal points can
be dropped. Therefore, equation (B.1) can be written in the form
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| x| DD
1 Frx (7 1x;7)

¢ = o> Fyx(PIxP) log( 5 dy”
m].:l/ Y L ST e (P )

1 ] DD
_ 10g|;c|+m; / Fyx (yP xP) log(

Frix(yP[x?) D
|X D )d
>oh—1 fyix (YPIxP)

|X] D D
(@) 1 D D Py(y” - X5 ) D
= log|X|+ — /PN(y = x;’) log( )dy
%] ?:: ! St Pr(yP — xP)
%] b
1 Py(n”) D
~ log|X|+ — /PN(nD)log( dn
R YL Pun? +xP - xP)
®) 1 & e il
= log|X| — — Py(nP)1 - No D
og |X| |X|j§/ N (n )og(;e )dn
1 |X| IXI |ND+ij—x]?{2—|ND’2
- log|X|—leog(Ze_ No ). (B.3)
j=1 k=1

In (@) we used the notation of (B.2) and in (8) we have integration replaced
by expectation over the normally distributed vector of

N” =YP —xP ~ N(0P, A).

Using a Gaussian random number generator, C’ can be evaluated from
(B.3) by the following procedure. For each signal vector of ij produce ngy

times normally distributed vector n”, such that its dt® coordinate Ny ~
N(0, %), d=1...D. For each produced vector n? calculate

%] nDyxP xP |22
log(Ze No ).
k=1

Then take the average of these amounts, by adding them up and dividing by
Niry, in order to use in (B.3) for the jth term.
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Appendix C

Proofs to Theorems 6.2 and
6.3

C.1 Proof to Theorem 6.2

The proof of Theorem 6.2 closely follows those of [91, Theorems 2.1 and 2.2]
for previously existing MRFC schemes. To show that uncompleted correction
subsequences in the tail part do not cause error propagation to the precoded
data part, we first assume that the length of the precoded sequence is 1.

Lemma C.1 Let L = 1. If k'ey, + kes < N and k > k' > 2, then we have
01 = v1 and 81 = s1 when using the tail appending method of the SRFC scheme
for the BIQO channel.

Proof : Let a denote the complement of bit a € {0,1}, where 0 = 1 and
1 =0. Let et = ey + €, be the total number of channel errors in the block
of N transmissions. If e;,; = 0 then no error has occurred and, consequently,
there is no forbidden subsequence in r?. Therefore, 91 = v; and §; = s;.

Now assume that ey > 0 errors have occurred (e, weak errors and e,
strong errors). We use the following argument on the number of forbidden
subsequences in the received block.

1. There are no forbidden subsequences in the received block. In this case,
there must not be more than &' — 1 and k£ — 1 correct receptions after
every weak and strong error, respectively. Then the first bit is received
correctly. If not, an error has to occur at the first transmission and the
maximum resulting block length equals Nyqp = €y + (K — 1)ey, + 5 +
(k—1)es = k'ey, + kes. This value of Ny, violates the assumption that
K'ey +kes < N. Hence, the first bit is received correctly and since there

183
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Removed symbols
. j—1 i g+l 42 K -—-1]j+K ...
. tjml a a a... a tj—Hc’
(Ty)j—1 | Gw a- a— a_ a
tii1 |a a a. a a
(@y)j—1 | Gw G-  a_ a— a
. tj-—l a a a . a a .
c(Ty)j-1 | Gw  a- a_ ... a_ a .

Table C.1: Ilustrations of the transmitted and received sequences before re-
moving the right-most forbidden subsequence, considered in the different steps
of the proof of Lemma C.1. Note that (z,); designates r;.

is no forbidden subsequence in the received block, 91 = 1 = v; and
§1 = Y1 = S1.

2. There are some (at least one) forbidden subsequences in the received
block. Let j be the position of the first bit of the right-most forbidden
subsequence. “Right-most forbidden subsequence” means the closest one
to the end of the block.

— The right-most forbidden subsequence is that of a weak error. Then
Tj.o o Tjpk! = Ezak/ and Yjr Yj+1 - Yj+k' -1, Yj+k' = W, —...—,%,
where @ € {0,1}, * and — € {w,s}. By replacing the forbidden
subsequence with its last symbol in r”, i.e. by replacing the corre-
sponding bits in x"V and y?', we obtain sequences

IN'" 1 / — ;o
X —xl...xj_l,:rj,a:jﬂ,...:vN,—ml...xj_l,a,xj+k/+1...x1v

IN' / oo r_
Yo =YY Y Yn T YL Y=L N Yrk 41 - - YN

where N' = N — k'. There are the following possibilities.

* ¢; # t;. Then a weak error has occurred at the jth transmis-
sion and the other k' symbols are the correct receptions of the
correcting bits, see the top section of Table C.1. Therefore, the
mentioned replacement reduces the number of weak errors by
one, i.e. €}, = e, — 1 and €} = e;. The necessary condition still

holds for the new x'V and y’Nl, ie.

kel +kel=FKe,—k +kes<N—Fk =N"
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* z; =t; = a. Here two cases are possible.

© Zjt1 = tjy1 = a which means that all transmissions from
the (5 + 2)nd to the (5 + &' )th are received erroneously,
see the middle section of Table C.1. Because if ¢;tj1; =
Z;Tjy1 = aa then due to tail condition tj1p # tj41 =
a = zjio. Therefore, in order to correct the error at the
(j + 2)nd position, ;43 = ¢;42 = @ which is erroneously
received as a. This situation continues until the (5 + &’ )th
transmission. The mentioned replacement removes errors
from the (j +2)24 to the (j + &' — 1)5t transmission (k' -2
errors) and reduces the number of weak and strong errors
to e}, and €, respectively. As we can see, in the worst case
where all these k' — 2 errors are weak errors, the necessary
condition still holds, i.e.

max(k'e), + kel) = K'(ew — (K —2)) + ke,
= key+kes— k'K —2)
N -k —2)
N-K=N, (C.1)

IN A

as long as
KK —-2) >k or K > 3.

¢ Tji11 # tjy1 = @ which means that all transmissions from
the (5 + 1)5t to the (j + &)1 are received erroneously, see
the bottom section of Table C.1. Because tj1p = tj11 = @
in order to correct the error at the (j + 1)St transmission,
but z;12 = a, and this situation continues until the (5 +
K )th transmission. The mentioned replacement removes
errors from the (5 + 1)t to the (j + &’ — 1)St transmission
(k' — 1 errors) and reduces the number of weak and strong
errors to e}, and e}, respectively. In the worst case where
all these k' — 1 errors are weak errors and when k' > 2, the
necessary condition still holds, i.e.

max(k'el, + kel) = k'(ey — (K’ — 1)) + ke,
= Kew+kes— KK —1)
< N-FK =N
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— The right most forbidden subsequence is that of a strong error.
Here the argument is the same as that in the case of the forbidden
subsequence of a weak error. In the worst case, a requirement
similar to inequality (C.1) also holds because

E>K >2 = K'(k—2)>k.

3. After removing the right most forbidden subsequence, the resulting r’N/,
ie. x'V and y' N’, can still be seen as the outcomes of a SRFC scheme.
This is obvious in the case of z; # t;. In z; = t; case, we have t; = t; =
@ = tj4k, SO both transmission scenarios (corresponding to after and

before the replacement) behave similarly up to the jth transmission.

Since azg =z, =aand y;- = yj+k', We can imagine that an @ — a error
(weak or strong, depending on y;x) has occurred at the jth position of

block r'™'. This error is the same as the one occurred at the (j + &’ )th
position of r"V, resulting in ¢4 = ... =ty = @ (otherwise there would

be a forbidden subsequence on the right side of the jth position of r).

Similarly to tfﬂrk, and the corresponding rj]\ik,, t’;-w and r'évl represent
a SRFC scenario, in which the transmitter has unsuccessfully tried to
correct the @ — a error from the (5 + 1)St to the (N’ )th transmission,

ie. t; =...=ty =aandrj,... yTht = Gy Tjpki1s+ -+ »TN-

Finally, if step 2 is repeated for all forbidden subsequences, then we will
eventually arrive in step 1 which proves the Lemma C.1. Q.E.D.

Proof of Theorem 6.2 : Let e, and e, denote the number of weak
and strong errors during the transmission of precoded sequence vl and let e; 4
and e; s denote the number of weak and strong errors during the transmission
of the tail sequence. Hence, ey, = €y + €1 and es = €y s + €. Denote n =
L+Fk ey +keys. So the transmission of the last bit of precoded sequence vl
(or its last correction bit) is ended at the nth transmission, therefore, the nth
transmission is a correct transmission, i.e. z, = t, = vy. Moreover, the first
bit of the tail is zn41 = tnr1 = 0r. Since we have K'egy +keys < N —n = N,
the first transmitted bit of the tail, i.e. t,4+1 = 2n+1, will correctly be decoded
by block decoding method according to Lemma 1. Similarly, ¢, = vr will be
decoded correctly by this method since kez o +ket s < N—n < N”"+1. The fact
that both 2, Zny1 and yn,ynt1 are decoded correctly to vy, v and sr,Sp+1
(the status bit corresponding to the first bit of the tail) by the tail appending
method, guarantees that no error propagation will occur from the tail part to
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the precoded data part, due to p0351ble unfinished correction subsequences in
the tail part. To illustrate this, let ' denote the result of the right-to-left
decoder when it has reached the nth symbol in block r"V. Then in

! 1] / ! / _ — /
. ,mn_z,xn_l,mn,xn+1,xn+2,.. L= ,:En_g,wn_],’UL,’UL,ETH_z,...

the ¥y, cannot be a part of any forbidden subsequence when the right-to-left
decoder moves on position j < n. Therefore, the first L bits of x" and y¥
(the precoded data part) will be decoded correctly by the algorithm. Q.E.D.

C.2 Proof to Theorem 6.3

The proofs of the theorem and the corresponding lemmas comprise the follow-
ing steps.

e Determining £. *~" based on the random walk of sequence rz(-”D).

e Performing the right-to-left estimation on r(H'D). After every replace-

ment of the right-most forbidden subsequence the estimate of the ran-
dom walk of the resulting sequence is checked to be the same! as fé“t“’".

e Determining tA;“t‘l when all forbidden subsequences in rZ(HD) are re-
placed.

Lemma C.2 In the left-to-right estimator, if the random walk of sequence
rEHD) starts from region g1 € {Z,,2,} and never enters the other region,

then we have

=" =2 fork>K >2anmdD>1.

Proof : Without loss of generality assume that z; = 1 and, therefore,
91 = Zp. Since the random walk does not enter the region of negative states,
fé_t‘T = z; = 1, see the upper part of Fig. C.1. For the result of the right-to-
left estimator consider the following cases.

1. Assume that there are no forbidden subsequences in r( +D), Then,
t’l“ —t— l_ x —_ tl —t— 7‘

!Then, at the end it will be enough to show that the results of both estxmators are the
same for the sequence obtained from removing all forbidden subsequences of r( by the
right-to-left estimator.
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Figure C.1: Some paths illustrating the states of the random walk in the proof
of Lemma 1 (dashed paths are the resulting random walks after removing a
forbidden subsequence).

Remark C.1 Note that if there isn’t any forbidden subsequence in rEHD) and

z; = 1, then the corresponding random walk, starting from state z > 0, does
not go below state z according to the rules of the random walk. Similarly, if
z; = 0, then the corresponding random walk, starting from state z < 0, does
not go above state z.

2. Assume that there are some forbidden subsequences in rz(-“LD). Let v'”
denote the sequence obtained from replacing the right-most forbidden

subsequence of rEHD) with its last symbol. We have to show that the

results of the left-to-right estimator are the same when it is applied

to sequences rl(.H'D) and r' D', respectively. Without loss of generality,
assume that the right-most forbidden subsequence is that of a strong
error, then D' = D—k. In other words, we have to show that the random
walk of the resulting sequence r’ D" does not enter region g = 2y,

Let z; and z; denote the states of the random walks after the jth step cor-

EHD) and r'”’ | respectively. Let Titjy - - Tidtjotk
be the right-most forbidden subsequence of p{ )
j=1,...,(j,—1). If the right-most forbidden subsequence is 1 ;0% then

Zj,—1 = Zj,—1+k, see left-lower part of Fig. C.1. In this case z; = Zjtks

responding to sequences r
. r
. Obviously, z; = z;,
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J = Jjry-.., D', and the position of the end point of the random walk will
not change by the replacement.

Assume that the right-most forbidden subsequence is 0,1% . In this case,

(

zj, -1 > 0, otherwise the random walk of riHD) had entered a negative
state, see right-lower part of Fig. C.1. The sequence Tigjotk---TitD 18
without any forbidden subsequence, therefore, 2j 2 Zj4k-1, ] = (Jr +
k),...,D, according to Rem. C.1. Therefore, after the replacement (i.e.
deleting states between zj, _; and zj, ), the random walk will not go
below 2 _; = z;,—1 > 0 and, consequently, none of Z,j=1,...,D,
will be in the region of negative states. Finally, the result of the left-to-
right estimator does not change after removing the right-most forbidden
subsequence.

If we repeat step 2 for all forbidden subsequences, we will arrive in step 1
which proves the lemma. Q.E.D.

Lemma C.3 In the left-to-right estimator, if the random walk of sequence

rl(HD) starts from region g1 € {Z,, Z,} and enters the other region at the jgh

step of the walk, without returning back to region g1, then we have

fi_t_r = f{‘t_l = Titjo for k >k >2 and D > 1.

Proof : Without loss of generality assume that z; = 1. Since the random
walk does not return to the region of positive states, tAé_t_r = Zitj, = 0, see
Fig. C.2. If the right-to-left decoding is applied to sequence Titjo -+ - TitDs
then we obtain 7/ -7;, p» which does not have any forbidden subsequences

irdo -
and D' < D. According to Lemma 1, 2}, ; = 21, = 0.
The path of the left-to-right estimator for P = TiwoTitjo—1, T;—H'o . r;+D,

(i+D)

is the same as that of r, in region g; = Z,, it enters region g, = Z, at the

jgh step and does not return back to region Z, (because sequence r} o+ Tia D
does not have any forbidden subsequence, see Rem. C.1).

Firstly, we claim that there is at least one forbidden subsequence in r’
starting at position j < jp, otherwise, the random walk corresponding to r’
would not enter the region of negative states.

Secondly, the right-most forbidden subsequence in r’ D" is either 1_0¥ or
1_0*. Otherwise, for example, the random walk of 0_1* , which is located
above the O-state, would end up in a state at least k'(k’ — 1). Since there

DI
D/
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Figure C.2: A path for the random walk in the proof of Lemma C.3.

is no further forbidden subsequence in r’ D" at the right-hand side of the last
1_ of the 0_1¥ the random walk should not come below state &'(k' — 1),
in accordance with Rem. C.1. This is a contradiction and, therefore, the
right-most forbidden subsequence in r’ D' is either 1_0F or 1_0F .

Let 2’ and 2" denote the states of the random walk before 1_ and the last
0_ of the right-most forbidden sequence 1_0% (or 1_0%). Since #/,2" € Z,
or are zero, we have 2z’ = 2z”. The random walk of p/(D'=k) (or r”(D,—k))
obtained from replacing the right-most 1_ 0% (or 1_0%) in 'Y

with its last
correction symbol, has a walk similar to that of r’ D except it enters into the
region of negative states at its (jo — &' )th step (or (jo — k)th step) because
7 = z. If we continue in this way, all symbols before the 7"1 tio - TiaDs
sequence will disappear and the right-to-left decoding results in T +o - T D
Finally, the right-to-left estimate will be z} +jo = Titjo according to Lemma
C.2. Note that if the left-to-right estimation method is applied to any sequence
resulting from a forbidden subsequence replacement mentioned here, then the

left-to-right estimate is always the same as tl b= — = Tiyjo = 0. Q.E.D.

Proof of Theorem 6.3 : Let g1...g9a be the sequence of regions in

(i+D) enters, see Fig. C.3 for an illustration.
th

which the random walk of r;

According to the definition of jo, region g4 is entered at the jg*' step, therefore,

tl t—r
i = Titjo:
First the right-to-left estimator removes the forbidden subsequences in the

last region of sequence r(HD). The random walk of the resulting sequence,
' , still enters region g4 with z;4j,, according to Lemma 1. Then, accordmg

to Lemma 2, the right-to-left estimator contmues to remove all symbols of r'?
lying in region ga-1 and yields sequence "~ . This sequence consists of two
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parts: sequence r”; representing those symbols of rZ(H'D), whose random walk

is located in regions g; ... g4_2 and sequence '’ representing those symbols of
rZ(HD), whose random walk is located in region g4 and from which all forbidden
subsequences are replaced by the right-to-left estimator.

The type bit of the received symbol at which region g(A—2) is entered is
T(itjy) = T(itjo)s See Fig C.3, because g4_2 = g4 which also implies that both
regions have the same rules (see Fig. 6.4) for the random walk. Therefore,
not only sequence r”’; is concatenated with sequence r”, but also its random
walk can be seen as the continuation of that of r”; in region g4_, (i.e. without
entering region ga—2). Now we can assume that the sequence of regions of the
path of sequence r"? " is g1;--,9(a—2)- This implies that the random walk of

D" . .
r'"" gives the estimate of z;y;, = z;4;,.

Repeating the same argument for r” D”, either g; will be removed or ¢g; =
g4 at the end of the right-to-left estimation procedure. In either case, fg_t“l =

Titio- Q.ED.

Remark C.2 Using this proof, we can also illustrate the bottle neck of a
left-to-right algorithm for nonbinary input MRFC schemes. Let us assume
that, similarly to that in the binary input schemes, the left-to-right algorithm
for nonbinary input schemes uses different walking rules in |X| regions, where
& is the input alphabet of the channel. In such a nonbinary input case,
when g4 # g(a_2), it is not possible to say that the path of symbols in g4
is a continuation of that in region g(a—2)- After removing the symbols in
region g4—1 by the right-to-left estimator, it is very much possible that the
corresponding symbols of sequence r”y drive the path out of region 9(A—2) and
alter(the)estimate of the left-to-right estimator for """ with respect to that
i+D)

for r, )

Figure C.3: An illustrative random walk for the proof of Theorem 6.3.
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Samenvatting

In communicatiesystemen is er vaak sprake van een tweewegkanaal. Er is
dan naast de verbinding van de zender naar de ontvanger, het voorwaartse
kanaal, ook een verbinding van de ontvanger naar de zender, het feedback-
kanaal. Een telefoonverbinding is een voorbeeld van zo'n tweewegkanaal. Als
de ene kant spreekt, luistert de andere kant, en het feedback-kanaal blijft onge-
bruikt. Feedback-strategieén gebruiken dit onbenutte feedback-kanaal tijdens
hun coderingsproces. Daardoor kunnen deze strategieén, in vergelijking met
strategieén die geen gebruik maken van dit feedback-kanaal, over het algemeen
met een lagere complexiteit van de decoder over het voorwaartse kanaal com-
municeren, of met een hogere betrouwbaarheid, of met een hogere capaciteit,
of met een combinatie van deze voordelen. Wij beschouwen hier informatie
feedback-strategieén waarbij de zender elk ontvangen symbool, zonder vertrag-
ing, via een ruisvrij feedback-kanaal ziet. Dit geeft de zender de mogelijkheid
elke opgetreden fout te corrigeren. ‘Multiple Repetition Feedback Coding’
(MRFC) strategieén vormen een klasse van eenvoudige en efficiénte informatie
feedback-strategieén voor discrete geheugenloze kanalen. Deze strategieén vor-
men de kern van de twee onderzoeksrichtingen beschreven in deze dissertatie.
In het eerste deel worden deze strategieén toegepast op kanalen waarbij het
feedback-kanaal niet ruisvrij is, en in het tweede deel worden deze strategieén,
voor de situatie met een ruisvrij feedback-kanaal, verbeterd, en toegepast op
de klasse van discrete geheugenloze ‘soft-output’-kanalen.

Een belangrijke tekortkoming van bestaande informatie feedback-strategieén
is dat ze aannemen dat het feedback-kanaal ruisvrij is. In de praktijk is
dit echter niet altijd een realistische aanname. Voor deze situatie hebben
wij in het eerste deel van deze dissertatie feedback-strategieén ontworpen
voor een ruisvrij feedback-kanaal met een lagere transmissiesnelheid. Door-
dat hier het aantal transmissies op het feedback-kanaal kleiner is dan op
het voorwaartse kanaal, is het mogelijk de feedback-informatie te beschermen
tegen de ruis op het kanaal. In het bijzonder is er een bandbreedte-beperkte
modulatie-methode ontworpen met behulp van MRFC strategieén voor ad-
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ditieve witte Gaussische ruiskanalen waarbij zowel het voorwaartse kanaal
als het feedback-kanaal dezelfde signaal-ruisverhouding hebben. De hieruit
voortkomende methode geeft een verbetering van 5,5 dB ten opzichte van onge-
codeerde transmissies. In deze methode is de complexiteit van de decoder, in
vergelijking met de complexiteit van de decoder van ‘trellis coded modulation’,
aanzienlijk verlaagd. Omdat we één bit per dimensie over het feedback-kanaal
moeten versturen, kan het feedback-kanaal in principe als foutvrij beschouwd
worden voor kanalen met gematigde signaal-ruisverhoudingen. De theoretisch
berekende verbetering van deze methode wordt ondersteund door de resultaten
van simulaties.

In het tweede deel van dit proefschrift, worden de MRFC strategieén
verbeterd en uitgebreid voor de klasse van ‘soft-output’-kanalen. Er zijn
twee typen MRFC strategieén: bloksgewijze MRFC strategieén en recursieve
MRFC strategieén. Ten eerste zijn er twee nieuwe bloksgewijze MRFC her-
transmissie strategieén ontworpen met betere prestaties dan bestaande bloks-
gewijze MRFC strategieén. Eén van deze bloksgewijze MRFC strategieén
geeft op asymmetrische discrete geheugenloze kanalen zelfs betere prestaties
dan bestaande bloksgewijze en recursieve MRFC strategieén. Ten tweede
zijn de MRFC strategieén aangepast voor ‘soft-output’-kanalen. Een discreet
geheugenloos ‘soft-output’-kanaal kan bijvoorbeeld verkregen worden door het
quantiseren van de outputs van een continu kanaal met discrete inputs. Deze
‘soft-output’~-kanalen worden gedefinieerd met behulp van een specifieke klasse
van ‘compound’-kanalen. Voor deze klasse van ‘compound’-kanalen is bewezen
dat het gebruik van feedback of vertraagde ‘side-information’ de capaciteit
van het kanaal niet kan verhogen. Deze aanpassing van de MRFC strate-
gieén wordt verduidelijkt aan de hand van een discreet geheugenloos kanaal
met twee inputs en vier outputs. De nieuwe strategie resulteert in een trans-
missiesnelheid die heel dicht bij de kanaalcapaciteit ligt, mits een geschikte
Markov bron als precoder wordt gebruikt. Een MRFC strategie bestaat uit een
repetitie-deel en een precoder-deel. Tot dusver is hier alleen het repetitie-deel
beschreven, maar de aangepaste MRFC strategie voor ‘soft-output’-kanalen
kan geen gebruik maken van bestaande precoders. Daarom is er, tenslotte,
een precoder ontworpen en geévalueerd die ook voor deze aangepaste MRFC
strategie gebruikt kan worden.
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1. In the era of the information super high-way, the applications of versa-
tile and advanced communication systems are rapidly expanding. The
advantages of feedback coding schemes over one-way coding schemes, in
particular their lower decoding complexity, will make the feedback cod-
ing schemes an important design option for implementing such complex
systems. This thesis, Chapter 7.

2. Regarding his information feedback coding method, James Ooi in [1,
pp.25] says that:

“This framework shows the problem of channel coding with feed-
back to be strongly related to the problem of source coding.”

In the precoding stage of the MRFC schemes we again see a relation
between channel coding with feedback and source coding.

[1]3.M. Ooi. A framework for low-complexity communication over channels
with feedback. PhD thesis, Massachusetts Institute of Technology, 1997.

3. In most practical channels with memory, errors tend to occur in bursts.
On the other hand, the length of the block in MRFC schemes can eas-
ily be made large enough to accommodate a few runs of burst errors.
Therefore, FCM with block MRFC can operate better in channels with
burst errors than TCM. This thesis, Chapter 7.

4. In MRFC for a BSC with crossover probability p, the rule of &k = — <
logp >! is proposed in [1] for choosing the repetition parameter in order
to maximize the transmission rate. This seems intuitively a reasonable
choice because a transmission error, which occurs with probability p,
needs log% bits (or transmissions) to be commuted to the decoder [1].

One must note that the precoding of input data is also needed to differ-
entiate between correct receptions and erroneous ones, i.e. to produce
an acknowledgement /rejection mechanism. Thus, a combination of pre-
coding redundancy and repetitions is the cost paid to correct the channel
errors in MRFC. This thesis, Chapters 1 and 3.

[1] T. Veugen. Multiple repetition coding for ch Is with feedback. PhD
thesis, Eindhoven University of Technology, 1997.

5. In [1], the choice of the repetition parameters in a MRFC scheme is based
on maximizing the transmission rate. Another criterion to choose the

!Qperator < z > gives the closest integer to real number z.



10.

11

repetition parameters in a block MRFC scheme could be to maximize
the transmission rate for a given correctable error fraction of the block.
These two approaches, suitable for the asymptotic and non-asymptotic
cases, respectively, may lead to different outcomes.

[1] T. Veugen. Multiple repetition coding for ch Is with feedback. PhD
thesis, Eindhoven University of Technology, 1997.

. Free media is a necessity in a democratic society. Nevertheless, the public

should still approach the news with a critical attitude to avoid hearing
only the loudest voice.

. What amazes me most is the extent of the similarities among people of

different cultural, ethnic and geographical backgrounds.

. One way to get to know other cultures is to travel into other countries,

not just to other countries.

. “A perfume is all about the delicacy of its fragrance, not about the brand

name of its producer.”
A rough translation of a quotation from Saadi, Iranian poet, 13th century AD.
If Saadi wanted to say this today, he would probably use “and” instead
of “not”!
“Spend time with wine by a stream,

And let sorrows away stream.
My life, like a rose, is but few days;

Youthful and joyous live this dream.”

Hafiz, Iranian poet, 14th century AD. Translated by Shahriar Shahriari,
http://www.zbnet.com/hafiz/rubaiyat/.

»

. what is intuitive is a purely subjective matter on which opinions
may easily differ widely.”

Jacob Wolfowitz, Coding Theorems of Information Theory, pp. 14, Springer-
Verlag, 1978.
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