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Chapter 1

Introduction

Lie algebras arise naturally in various areas of mathematics and physics. Examples are:
representation theory of Lie groups ([20]) and of algebraic groups ([30]) and the theory of
Lie point symmetries of a differential equation ([9], [39]). The topic of the present work
is the algorithmic treatment of finite dimensional Lie algebras. These Lie algebras live in
an obscure world where they are only known by their multiplication table, that is by a
faint shadow. Here we present algorithms for obtaining information about a Lie algebra.
These allow us to shed rays of light in this world that make a Lie algebra cast more
distinct shadows. In some cases, particularly when the Lie algebra is semisimple and of
characteristic 0, this enables us to recognise it. In other cases we have to content ourselves
with only partial information.

The work described here is implemented in a package called ELIAS (for Eindhoven Lle
Algebra System), that will be a part of GAP4.

In this chapter we will first introduce some basic mathematical concepts. Then in Section
1.2 we will deal with the first step of the process of the algorithmic identification of a
Lie algebra: representing it on a computer. In the next section we briefly discuss some
complexity issues. Finally in Section 1.4, we will present a survey of algorithms known in
the literature.

The chapters 2 to 6 each deal with a particular algorithmic problem. In Chapter 2, this
is the calculation of the nilradical. In Chapter 3 we describe how a Cartan subalgebra
can be found. This is used in Chapter 4, where algorithms for decomposing a semisimple
Lie algebra are given. In Chapter 5 the problem of determining the isomorphism type of
a semisimple Lie algebra is discussed. An effective version of Ado’s theorem is given in
Chapter 6. In Chapter 7, the system ELIAS is applied in two practical problems. Finally
in Appendix A there is a manual of ELIAS.

In the chapters 2 to 7 running times of calculations are presented. All computations were
performed on a SUN SPARC classic workstation.



2 Introduction

1.1 Notation, definitions, and basic theory

In this section we describe the basic theoretical tools that we use. For the proofs we refer
to the standard monographs ([29],[32]).

Definition 1.1 A Lie algebra is a vector space over a field F equipped with a bilinear map
{mulliplicalion)
[]:LxL—1L

satisfying

(L) jz,z}=0 forallz € L,

(L) [z v], 2} + [y, 2}, 2] + {2, 2], y] =0 for all z,y,z € L.

The second condition (L;) is called the Jacobi identity. By applying (L1) to the element
z + y we see that the first condition implies {z,y] = —[y,z]. If the characteristic of the
field is not 2, then this in turn implies {L,).

Example 1.2 Let L be a 3-dimensional vector space over (Y with basis {x,y, k} and Lie
product described by

[x)y} = h, [hax] =2z, {hay} = —2y.

By using bilinearity and anticommutativity this defines the Lie product for all elements of
L.

Example 1.3 Let L be the 3-dimensional subspace of M3((}) spanned by

01 00 10
(o) a=(10) =00 5)

For two elements A, B € L we set [A, B] = A-B— B- A (where the - stands for ordinary ma-
trix multiplication). It is seen that the space L is closed under this operation. Furthermore
the |-, -] defined in this way satisfies the two requirements for being a Lie multiplication.
1t follows that L is a Lie algebra. ~

Definition 1.4 Let L be a Lie algebra over F and V a vector space over F. A represen-
tation of L on V is e linear map

p: L — End(V)

such that p([z,y]) = plx)p(y) — p(y)p(z).
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Example 1.5 Let L be the Lie algebra of Example 1.2 and let A;, A;, Az be as in Example
1.3. Let p be the linear map from L into the space spanned by the A; given by

plz) = Ay, ply) = Ag, p(h) = As.

Then it is seen that p is a representation of L. Furthermore we have that the kernel of p
is 0, so that L is isomorphic to its image. Representations with this property are called

faithful.
Example 1.6 Let L be a Lie algebra. Define a map
ad : L — End(L)

by ad(z)(y) = [z, y]. The fact that this is a Lie algebra representation is equivalent to the
Jacobi identity. The map ad is called the adjoint representation.

To arepresentation p of L we associate a bilinear form f, defined by f,(z,y) = Tr{p{(z)p(y)).
In the case of the adjoint representation this form is called the Killing form and is denoted
by &.

Definition 1.7 Let L be a Lie algebra. A subspace K of L is called a subalgebra if
[z,9] € K forall z,y € K.

Definition 1.8 Let L be a Lie algebra. A subspace I of L is called an ideal if [v,y] € T
forallze L, yel.

Let L be a Lie algebra and let I be an ideal of L such that there is a subalgebra K of
L with the property that L = K @ [ (direct sum of vector spaces). Then L is called the
semidirect product of K and I. It is denoted by L = K x I. A special case is the situation
where K is also an ideal of L. Then L is called the direct sum of K and I. In this case we
write L = K ¢ I.

Definition 1.9 Let L be a Lie algebra. Then the subspace
Z(L)={z € L|[zy=0forallye L}
is called the centre of L.

As is easily seen, the centre of a Lie algebra L is an ideal in L. If L is equal to its centre,
then L is called Abelian or commutative.

Definition 1.10 Let L be e Lie algebra and K a subspace of L. Then
Z(Ky={z € L||z,y] =0 forallye K}

1s called the centraliser of K in L.



4 Introduction

If K is an ideal of L, then also Z;(K) will be an ideal of L. This follows from the Jacobi
identity.

Definition 1.11 Let K be a subspace of the Lie algebra L. Then
Ny(K)={z € L|[z,y]€ K forally € K}

is called the normaliser of K in L.

If K, and K, are subspaces of L, then [K;, K] will denote the subspace spanned by all
[z1, z2] for 1 € K; and z; € K.

Definition 1.12 Let L be a finite-dimensional Lie algebra. Set Ly = L and recursively
Lyy1 = [Lx, Lx]. Let s be the smallest integer such that Ly = Lsy1. The series

Li>L,>---DL,

ts called the derived series of L.

A Lie algebra is called solvable if the final term of its derived series is 0. If I and J are
solvable ideals of L, then it can be proved that I+ J is also a solvable ideal of L. It follows
that if L is a finite-dimensional Lie algebra, then it has a maximal solvable ideal. This

ideal is called the solvable radical of L. It is denoted by R(L).

Definition 1.13 Let L be a finite-dimensional Lie algebra. Set L' = L and L**' = [L, L¥].
Let t be the smallest integer such that L' = L**1. The series

I'>L2>...H [}
is called the lower central series of L.

A finite-dimensional Lie algebra L is called nilpotent if Lt = 0. If I and J are nilpotent
ideals of L, then it can be proved that so is I + J. It follows that a finite-dimensional
Lie algebra L has a largest nilpotent ideal. It is called the nilradical and it is denoted by
NR(L).

Definition 1.14 Let L be a finite-dimensional Lie algebra. Set Z; = Z(L) and define
Zry1 recursively by the relation Zyy1/Zy = Z(L/Zy). Let u be the smallest number such
that Z, = Zy4,. Then the series

21 C 2, C--Cly

is called the upper central series of L.

The final term of the upper central series of L is called the hypercentre of L. It is denoted
by Zo(L). It can be proved that L is nilpotent if and only if L = Z(L).
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Definition 1.15 Let L be a Lie algebra defined over a field of characteristic p > 0. Then
L is called restricted if the set ad L is closed under the operation of taking p-th powers.

Restricted Lie algebras admit a richer structure than Lie algebras that do not posess this
property. We refer to [32] and [50] for the details.

Definition 1.16 A Lie algebra L is called semisimple if R(L) = 0.

The next lemma gives a useful criterion for a Lie algebra to be semisimple.

Lemma 1.17 Let L be a Lie algebra with basis {z,,... ,z,} and let d be the determinant
of the matriz {k(z;,z;)). If d # 0, then L is semisimple. If L is defined over a field of
characteristic 0, then this in turn implies d # 0.

Definition 1.18 A Lie algebra L is called simple if dim L > 1 and it has ne ideals except
0 and L.

Let L be a simple Lie algebra. Then R(L) can only be 0 or L. Suppose R{L) = L. Then
L is solvable and hence [L, L] is an ideal of L not equal to L. It follows that [L, L] = 0 so
that L is Abelian. But then every subspace of L is an ideal contradicting the fact that L
is simple. The conclusion is that R{L) = 0 and L is semisimple.

Semisimple Lie algebras play an important role in the structure theory of non-semisimple
Lie algebras. This is due to the following theorem.

Theorem 1.19 {Levi) Let L be a Lie algebra over a field of characteristic 0. If L is not
solvable then there exists a (necessarily semisimple) subalgebra S of L such that L is the
semidirect product of S and R(L).

The semisimple subalgebra S of the theorem is called a Levi subalgebre or Lewvi factor of
L.
Now we define a class of subalgebras that is vital for the structure theory of semisimple

Lie algebras.

Definition 1.20 A subalgebra H of L is called a Cartan subalgebra if H is nilpotent and
Ny (H)=H.

If the size of the field over which L is defined is larger than its dimension, then L has a
Cartan subalgebra ([29], Theorem 15.3).

Example 1.21 Let [ be the Lie algebra of Example 1.2. Then the subalgebra spanned
by the element A is a Cartan subalgebra.
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Let L be a semisimple Lie algebra. Then it turns out to be a fruitful idea to analyse the
adjoint action of a Cartan subalgebra on L. The next two results constitute a first step in
that direction.

Lemma 1.22 (Fitting) Let A be a hinear transformation of a finite dimensional vector
space V. Then V decomposes as

V = Vo(A) @ Vi(4),
where Vo(A) = {v € V | A™v =0 for some m > 0} and Vi(A) =, A'V.

The decomposition in the lemmais called the Fitting decomposition of V with respect to A.
The spaces Vo{A) and Vi{A) are called, respectively, the Fitting null and one component
of V relative to A.

A similar decomposition exists with respect to a nilpotent Lie algebra of linear transfor-
mations. The next proposition is a transcription of Theorem 1.4 of [32].

Proposition 1.23 Let L be a nilpotent Lie algebra of linear transformations in a finite
dimensional vector space V. Then V decomposes as a direct sum of L-invariant subspaces

V =W(L) & W(l),

where Vo = [Vaep Vo(A) and Vi = 2, (L*)V (where L* is the associative subalgebra of
End{V) generated by ).

Let L be a semisimple Lie algebra over an algebraically closed field F' of characteristic
0. Let H be a Cartan subalgebra of I. Then via the adjoint representation H acts as
a nilpotent Lie algebra of linear transformations on L. Let I = Lo(H) ® L1(H) be the
Fitting decomposition of L with respect to H. Now we have Lo(H) = H (Proposition
111 of [32]). Furthermore Ly(H )} decomposes as a direct sum of simultaneous eigenspaces
relative to the action of H. This means that there are functionals «; : H — F such that

L=Ly® & Ls, &H (1.1

where Lo, = {z € L | {h,z] = oy(h)z for all h € H}. The decomposition (1.1} is called the
Cartan decomposition of L with respect to H.

It can be proved that the spaces L, are all 1-dimensional. They are called root spdces and
the «; are called roots. Let R be the set of all roots. Then R is a root system (see Chapter
3 of {29]) in the dual space H* of H. To a root system corresponds a Cartan matrix. Now
all Cartan matrices have been classified. It follows that there is also a classification of all
semisimple Lie algebras over algebraically closed fields of characteristic 0.

Example 1.24 Let L be the Lie algebra of Example 1.2. Then H = (h) is a Cartan
subalgebra of L. It is seen that ad b has all its eigenvalues in Q so that L already has a
Cartan decomposition over this field. This decomposition is

L=L2@L,3@H.
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There are two roots, @; = 2 and oy = —2 in the 1-dimensional space H*. Furthermore,
Ly ={z) and L_; = {y).

1.2 Presentations of Lie algebras

In this section we turn our attention to the problem of representing a Lie algebra on a
computer. We refer to [10] for a more elaborate discussion of this topic.

In Examples 1.2 and 1.3 we already encountered two ways of handling the problem. First
of all we can present the Lie algebra by a set of matrices that form a vector space basis
of the Lie algebra. If A and B are two elements of this space, then their Lie product is
defined as [A,B]=A-B - B- A

The second approach is used in Example 1.2, Now the Lie algebra is viewed as a (abstract)
vector space with basis {z;,...,2,}. The multiplication is described by a table of n*

structure constants cf; such that

i, %] = cxy for 1 <i,j <n.
7 t]
k=1

By bilinearity this defines the product for any two elements of L. In order that this be a
Lie bracket, the structure constants have to satisfy the following relations:

ko ko, ok
cp=c it =0,

k13
s .m s m s m _
E :C,‘k‘%‘@ + ity t €56 =0,
s=1

for 1 <1,5,k,m < n.

The third way to present a Lie algebra on a computer is by generators and relations. Let
A be a finite alphabet. Then L{A)} will denote the free Lie algebra on the alphabet A (see
[42]). Let R be a finite subset of L{A) generating an ideal I. Then L = (A | R) is the Lie
algebra with generators A and relations R. It is defined as the quotient L{A)/I.

Example 1.25 Set A = {z,y} and R = {{[z,y],2] — 2z,{[z, 9], y] + 2y}. Then it is seen
that the Lie algebra L = {A | R) is isomorphic to the Lie algebra of Example 1.2.

We can also represent subalgebras and ideals. In the first two cases this is done by specifying
a basis of the subalgebra or ideal. In the case of generators and relations we can give a
subset of L{A) that generates the subalgebra or ideal.

We consider the possible transitions between the various representations. If L is given by
matrices, then it is an easy task of linear algebra to calculate the structure constants and
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obtain a presentation by means of a table. It is also not difficult to go from a table to a
presentation by generators and relations. I {z,,... ,2,} is a basis of L, then the alphabet
A will consist of the symbols z,,...,z,. The set R will simply consist of all relations

T
[zi, 2]~ Zcfj-:ck forl1 €i<j<n.
kuzl

The other transitions are more difficult. It is only possible to obtain a multiplication table
from a presentation by generators and relations if the resulting quotient Lie algebra is
finite-dimensional. In that case there are Todd-Coxeter techniques that find a basis and
the multiplication table (see [35]). Also it is possible to use a kind of Grébner basis to
solve the problem. This direction was pursued in [21]. The remaining transition (from
multiplication table to matrix presentation) is considered in Chapter 6.

Concerning the input to our algorithms, we shall always assume that the Lie algebras are
given by a table of structure constants. The reason for this is that many algorithms have to
know the structure constants anyway (see e.g., Section 1.4). So it is better to input them
than to calculate them every time anew. Subalgebras and ideals will always be represented
by a basis (that is by a set of coefficient vectors) of the corresponding subspace of the
parent Lie algebra.

1.3 Complexity

Here we discuss some theoretical notions regarding the efficiency of algorithms. For a more
thorough treatment and an extensive bibliography regarding this subject we refer-to [49].
Polynomiality is a widely accepted theoretical model for efficiency. An algorithm is said to
run in polynomiel time if the number of basic steps taken by the algorithm (on any input)
is bounded above by a polynomial in the size of the input. The size of the input is the
length of the string needed to represent the input. So the size of a natural number is its
number of digits. In general the size of composite objects (vectors, polynomials etc.) is
the sum of the sizes of the components.

For the basic arithmetical operations (multiplying and adding numbers or elements of a
finite field) there are polynomial time algorithms. Also we can solve systems of linear
equations in polynomial time {Gaussian elimination).

We also consider randomisation. A randomised algorithm is an algorithm that uses random
choices at certain points (i.e., it can flip a coin and the outcome determines the path taken
in the rest of the algorithm). An important class of randomised algorithms are the so-
called Las Vegas algorithms that never output a wrong result. An algorithm for computing
a function f(z) is called Las Vegas if on input a it either computes f(a) correctly with
probability p > 0, or stops without producing output. It is also required that calls to a Las
Vegas algorithm produce independent results. Hence if a Las Vegas algorithm is repeated
then it always produces a correct answer. The expected number of repetitions is 1/p.
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An important problem is the one of factoring polynomials. For a detailed exposé we refer
to [36]. Let f be an element of F[X] of degree n. First we suppose that F = [, where
g = p* for some s > 0 and a prime p. A deterministic method for factoring f was given
by Berlekamp ([3]). However, the complexity of this method is a polynomial in p, s and n,
whereas the input length is O(nlog ¢) so that this is not a polynomial time algorithm. A
polynomial time Las Vegas method was proposed in {7]. Via Hensel lifting the factorisation
methods over finite fields can be used for polynomials over () as well. A polynomial time
solution to the problem of factoring polynomials over QQ was given in [37].

So for factoring polynomials, more than one algorithm is available. For this reason an
algorithm using an oracle to factor polynomials will be called an f-algorithm (following
[44]}. The cost of a call to the factoring oracle is the length of the input. The complexity
of such f-algorithms then depends on the complexity of the particular oracle used.

1.4 Earlier work

In this section we give a survey of the algorithms for determining the structure of a Lie
algebra that are known from the literature. We only describe those algorithms that will not
be discussed in one of the other chapters. The main references are [2] and [41]. Throughout
L will be a Lie algebra over the field F' with basis {z,...,z,} and structure constants

(cly).

1.4.1 Product spaces

Let K| be a subspace of L spanned by {y;,...,y:} and let K, be a subspace spanned by
{z1,...,2:}. Now the product space will be spanned by the elements [y;, z;]. So in order
to find a basis of [K), K3] we have to calculate a maximally linearly independent subset of
the set of all [y;, z;]. This is can be done by a Gaussian elimination procedure. Note that
this also gives an algorithm for calculating the derived series and the lower central series
of L.

1.4.2 The centre

Let

' n
€T = E ;T

=1

be an element of L. Then z is an element of Z(L) if and only if

Zcﬁ‘jaff =0 forall 1 <75,k <n.
=]
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So we have n? equations for the n unknowns e, ... ,@,, which can be solved by Gaussian
elimination. This also provides an algorithm for calculating the upper central series of L.

1.4.3 The centraliser

Let {y1,...,y,} be a basis of a subspace K of L, where

y= Z/\zjﬁ?j-
=1
Then z = 3, ey, lies in Zy(K) if and only if

SO Nk =0 for 1 <k<nand1<I<s

=1 =l

It follows that we have ns equations for the n unknown o,. .., ay.

1.4.4 The normaliser

Let K and yi,...,ys be the same as in the previous section. Then z = ¥, a;z; is an
element of Np(K) if and only if there are 8y, for 1 < I, m < s such that

[, 3] = Buwy + -+ Bisys fori=1,...,s.

This amounts to the following linear equations in the variables o; and fi,.:

YO M= AniBim for1<k<nand 1 <I1<s.

=1 ;=1 mzl

1.4.5 The solvable radical

Suppose L is defined over a field of characteristic 0. Then there is a simple algorithm for
finding R(L}. It relies on the following lemma:

Lemma 1.26 R(L) = {z € L | k(z,y) =0 for all y € |L, L]}.

This is Theorem IIL5 of [32]. If {y1,...,ys} is a basis of [L, L] then z = 3, e;a; is an
element of R(Z) if and only if

ZTr(ad&:g cady;)ai =0 for 1 <5 <s.

=1
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In the case where L is defined over a field of characteristic p > 0 the situation is much
more difficult. In [44], L. Rényai gives an algorithm for calculating the nilradical of a Lie
algebra over a field of characteristic p > 0 (see also Chapter 2). Now we define a series Ry
by

Ry =NR(L), Ri41/Re = NR{L/Ry).

Let u be the integer such that R, = R,y1. Then R, = NR(L).

1.4.6 The direct sum decomposition

A Lie algebra L may be the direct sum of two ideals I; and I;. In this section we consider
the problem of deciding whether such a decomposition exists and if so, to find the change
of basis that realises the decomposition. The following is a reformulation of Section 2 of
[41]. For the proofs that we omit we refer to that paper.

Suppose that L = I; @ I and I is contained in the centre of L. Then I; is called a central
component of L. First we give a method for finding such a central component if it exists.

Let J; be a complementary subspace in Z(L) to Z(L) N[L,L]. Then J; is an ideal of L.
Let J; be the complementary subspace in L to J; containing [L, L]. Then

(L, ] C (L, L] C Ja

so that J, is an ideal of L. Furthermore L = J, ® J; and J; is central and J; does not
contain a central component. The conclusion is that J; is a maximal central component.

Now we suppose that Z(L) C [L, L] and we try to decompose L as a direct sum of ideals.

By R, we will denote the associative matrix algebra M,(F) where n is the dimension of
L. An element E € R, is called an idempotent if E? = E. Two idempotents E; and F,
are called orthogonal if EyE; = 0. An idempotent is called primitive if it is not the sum of
two other idempotents. Furthermore, if £ is not equal to the zero or the identity matrix,
then E is called a nontrivial idempotent.

Proposition 1.27 The Lie algebra L is the direct sum of two ideals I and I if and only of
the centraliser Zg,(ad L) contains two nontrivial orthogonal idempotents Ey, E; such that
E, + E; is the identity on L and I, = E I fork=1,2.

If A is an associative algebra then its radical is defined as the set of all elements = such
that zy is nilpotent for all y € A. It is denoted by Rad(A). In characteristic 0 it is easy to
calculate the radical because in that case we have that the radical of an associative algebra
A is given by

Rad(A) = {z € A | Tr(zy) = 0 for all y € A},

(see [13]). In the sequel A will denote the centraliser Zg,(ad L) and @ = A/Rad(A).
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Theorem 1.28 Suppose that Z(L) C [L,L]. Then Q is Abelian.

By the following propositions it is sufficient to find idempotents in the factor algebra ¢.-
Proposition 1.29 Fvery direct summand of L corresponds ezactly to an idempotent of (J.

Lemma 1.30 Let ¢ be an idempotent in . Then we can construct an idempotent £ € A
such that E = e (mod Rad(A)).

Proof. (cf. Satz 1 of [51].) Let E; € A be such that By = e (mod Rad(A)). Then
E} = FEy (mod Rad(A)) so that Ny = EZ — E, € Rad(A) and consequently it is nilpotent.
Hence there is an integer ¢ such that NZ* = 0. Now recursively set

Eigi =Ei + N; - 2EN;,
Nipp = EinEi — B

By induction on i it follows that N; = 0 and F,., = F; modulo the module generated by
the elements

zi 2i+1 gi 2(-{-1
NZ NZY . ENE ENZY, ...

We conclude that N, = 0 and E E, = E, and the statement follows. O

Proposition 1.31 Letey,... e, be primitive orthogonal idempotents in . Then we can
construct primitive orthogonal idempotents E,,... ,Es in A such that

E; =¢; (mod Rad(A)) for1 <i<s.

Proof. {cf. Satz 1 of [51].) For brevity we set R = Rad(A). The proof is by induction
on s. The case where s = 1 is covered by Lemma 1.30. Suppose that s > 1 and that
we have constructed primitive orthogonal idempotents Ey,..., E,_; in A satisfying the
equivalences F; = e; (mod R) for 1 <{ < s—1. We describe how to construct E,. Set

E=E+ -+ FE,
and
e=¢, —~ Fe, —e,E + Fe,F.

Then Fe, = ¢,F = 0 (mod R) and hence ¢ = e, (mod R) and € = ¢ (mod R). Now let
E, be the idempotent in A provided by the procedure in the proof of Lemma 1.30 (where
we start with Fy = ¢). So E, = ¢, (mod R). Since E? = E we have that Ee = ¢E = 0,
and because F, is a polynomial in ¢ it follows that EE, = E,F = 0. By the induction



1.4 Earlier work 13

hypothesis we have E;F = EE; = E; for 1 <i < s~ 1. Hence E,E; = E,EE; = 0 and
similarly E;E, = 0. O

We assume here that L does not have a central component which means that Z(L) C [L, L].
Hence by Theorem 1.28, we have that the factor algebra @ = A/Rad(A) is commutative.
So we can use algorithms described in [16] to find a set of primitive orthogonal idempotents
in ). Using the procedure in the proof of Proposition 1.31 we lift these idempotents to A.
The direct summands of L are then obtained as in Proposition 1.27.

Remark. A practical evaluation of this algorithm is given in Section 4.4. It turns out that
the calculation of the centraliser Zg, (ad L) makes this procedure computationally difficult.

1.4.7 The Levi decomposition

Here we consider the problem of finding a Levi subalgebra of L. We follow [24]. In the
sequel R will denote the solvable radical of I and by R* we denote the ideal

R =[R,[R, -+ ,[R,R]---]] (m factors R).

By the following lemma we can reduce the problem of calculating a Levi subalgebra to the
case where the solvable radical is nilpotent.

Lemma 1.32 Let 5y be the inverse image in L of a Levi subalgebra of L/R*. Let S be a
Levi subalgebra of Sy, then S 1s a Levi subalgebra of L.

Proof. (cf. [32] Section I11.9) It is clear that S is a semisimple subalgebra of L. Further-
more R? is the solvable radical of 5;. Hence

L=R+5=R+R*'+S=R+S.

It follows that S is a subalgebra as required. O

Since the radical of S; {which is B?) and the radical of L/R® (which is Abelian) are
nilpotent, we can reduce to the case where the solvable radical is nilpotent (the calculation
of inverse images poses no problems). Now suppose that the solvable radical R of L is
nilpotent. Let

R=R' DR'>---DR"=0

be the lower central series of R.

Let {uy,... ,u,} be a maximal linearly independent set in the complement of B. Let ('yf;)
be the structure constants of the quotient L/R, i.e., [ 8;] = 3, ’yf‘j&k, where @; is the
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image of u; in L/R for 1 €7 < s. Then we have that:

[u;, 5] = Z'yfjuk mod R = R',
k=1

i.e., the u; span a Levi subalgebra modulo R'. We are looking for elements yy,... ,y; of L
that span a Levi subalgebra modulo R™, which is 0. To this end we construct a series y?
for 1 <¢<sandl <t <msuchthat {yf,...,y’} spans a Levi subalgebra modulo RY,
i.e.,

[y, v5l = z ;94 mod R,

k=1

For the initialisation we set y} = u; for 1 <i < 5. We now describe the iteration step. We
fix a vector space V; satisfying R' = R*™*' @ V,. We set yi™! = y! + v} where v! € V; for
1 €7 < s and require that

t+l t+l k41 i41
v s Y; Z Y39, mod R
=1

This is equivalent to

[yﬁ t]+[ nyj 17 j = 7 +Z7’Jvk yi?y] mod Rf+]
k=1

Since [vf,v!] € R and [y}, v!] = [u;,v{] mod R'*! we have that this is equivalent to

[u,, f] + ‘U”UJ] Z’y,]vk = Z’y”yk y”yj mod Rt+l

This is a system of equations for the vf. Since the equations are modulo R'*!, the left
hand side as well as the right hand side can be viewed as elements of V;. By Levi’s theorem
applied to the Lie algebra L/R™? this system has a solution. The conclusion is that after
m — 1 iteration steps we have found a Levi subalgebra of L.

Remark. The method described here runs in polynomial time. This fact is proved in [24].

1.4.8 Zeros of polynomials

We finish this chapter with some observations about zeros of polynomials that will be
useful later on.

For the proof of the following lemma we refer to [45].
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Lemma 1.38 Let f € Flzy,... ,2,)] be a polynomial of degree d. Let Q be a subset of F
of size N. Then the number of elements v = (vy,...,v,) of Q" such that f(v) =0 is at
most AN™L.

Corollary 1.34 Let f and Q be the same as in the preceding lemma. Let v be an element
from ¥ chosen randomly and uniformly. Then the probability that f(v) = 0 is at most
dIN.

Lemma 1.35 Let f € Flzy,...,z,) be a polynomial of degree d. Let Q be a subset of F'
of size at least d + 1. Suppose that we are given a vector v = (ay,... ,a,) € F™ such that
f(v) # 0. Then we can find a vector w = (£1,...,&) € O such that f(w) # 0 at the
ezpense of at most n(d + 1) tests whether f(u) is zere for veciorsu € (QU{ay,... ,an} ™.

Proof. We construct a sequence wg,wy,... ,w, of vectors such that f(w;) # 0 and
w; = (€, ... ,&, %y1,- .. , ). For the initialisation we set wp = v. In the following way we
obtain w; from w;_;. Consider the polynomial g;{z) = f(&,... ,&i—1,2, @41, .. ,&n). This
polynomial is not identically zero, because gi(c;) = f(vi—1) # 0. Since || > d > deg g;,
we have that { contains an element ¢; such that ¢;(€;) # 0. We can find such a ¢; by trying
at most d + 1 values. Since the procedure takes n steps the statement follows. 0
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Chapter 2

The nilradical

The nilradical of a Lie algebra L reveals some of the properties of L. If the nilradical is
0 then so is the solvable radical and hence L is semisimple. On the other hand, if the
solvable radical is not 0, then it contains the nilradical as an important invariant,

Throughout this chapter L will be a finite-dimensional Lie algebra of characteristic 0.
However, we will also comment on the situation in characteristic p > 0.

In Section 2.1 we describe three previously published algorithms. Then in Section 2.2 we
give a different algorithm. Finally in Section 2.3 the methods are put to some practical
tests.

2.1 Known algorithms

In the past decades a few algorithms for calculating the nilradical have been given. Here
we present a survey of these methods.

To the best of our knowledge, the first solution to the problem was described in [2]. It
consists of the following steps:

1. Calculate thé solvable radical R of the Lie algebra L.
2. Construct a series 0 = Hg C By € -+ C R, = R of ideals of R such that dim R; = «.

3. The nilradical is the set of all z € R such that [z, R C Riey for 1 < i < m.

The main disadvantage of this algorithm lies in the fact that in general it requires the
calculation of algebraic numbers that may not lie in the base field. (The series constructed
in step 2. may not exist over the base field.)

17
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In their paper [41], Rand, Winternitz, and Zassenhaus describe an algorithm that finds the
nilradical by approximating it from below by smaller nilpotent ideals. Therefore we call it
the upward method. Here we give a slightly simplified version of that algorithm. It relies
on a series of lemmas. For the proof of the first four of them we refer to [41].

Lemma 2.1 Let I be an ideal of L and let M be the ideal of L containing I and satisfying
NR(L/I) = M/I. Then NR(L) = NR(M).

Lemma 2.2 Set I = [[L,L],[L,L]]. Then
NR(L)/I = NR(L/I).

Lemma 2.3 We have
NR(L)/Z(L) = NR(L/Z(L)).

Lemma 2.4 Suppose [[L,L],[L,L]] =0 and Z(L) =0. Then
ZL([LvL]) = [LvL]
Lemma 2.5 Suppose [[L,L],[L,L]] =0 and Z(L) =0. Then [L,[L,L)] =[L,L].

Proof. Let yi,...,y; be a basis of a complement of [L, L] in L. Set V = [L, L] and let
U be the subspace of End(V) spanned by ady y; for 1 < i < s. Let v € V; then by the
Jacobi identity we have

adyiady;(v) = [yi, [y50]] = —[ys (v, 9] = v, [, 93]
[yja [yiav]]
ady; ad y:(v).

I

It follows that U is a commutative Lie algebra of linear transformations in V. Now let
V = W(U)® W (U) be the Fitting decomposition of V with respect to U (Proposition 1.23).
Suppose Vo(U) # 0, then by Theorem 3.3 in [29], p. 12, there is a nonzero v € V5(U) killed
by U. Since [L,L] is commutative it follows that v € Z(L). Hence Wo(U) = 0 and
V = Vi(U). We recall that U* is the associative algebra generated by U (inside End(V))
and that V;(U) = N2, (UM)'V. So U -V, = W, i.e, [L,[L,L]] = [L,L]. O

Now the algorithm reads as follows:

Input: a finite-dimensional Lie algebra L of characteristic 0.

Output: NR(L).

Step 1 Compute the solvable radical R = R(L). If R = 0 then return R, otherwise continue
with R in place of L.



2.1 Known algorithms 19

Step 2 Compute the ideal I = [[L, L], [L, L]]. If I # 0 then compute (by a recursive call)
the nilradical N of L/I and return the inverse image of N in L. Otherwise proceed
to Step 3. '

Step 3 Compute the hypercentre Z,(L) of L and proceed as in Step 2 where Zy(L) plays
the role of 1.

Step 4 Compute a basis of L of the form {z1,... ,z,,¥1,... ,y:} where [L, L] is spanned by
{z1y... , @} Set i:=1;

Step 5 Let A be the matrix of the adjoint action of y; on [L, L]. If tk(A} < s, then compute
the ideal J = A-[L, L]. Compute recursively the nilradical of L/J and let M be the
ideal of L containing J such that NR(L/J} = M/J. Compute (by a recursive call)
NR(M) and return this ideal.

Step 6 Let f be the minimum polynomial of A. If f is not squarefree then set ¢ =
f/gcd(f, f'). Compute the ideal I = g{A) - [L, L] and proceed as in Step 5. If
f is squarefree proceed to Step 7.

Step 7 If 1 < ¢ then set ¢ equal to 7 + 1 and go to Step 5. Otherwise, NR(L) = [L, L].
Comments:

Step 1 Since NR({R) = NR{L}, (see [6], Corollaire 7, p. 67) we may replace L by R.
Step 2 This step is justified by Lemma 2.2.
Step 3 This step is justified by Lemma 2.3.

Step 5 The rank of A is not 0 by Lemma 2.4 (the conditions of this lemma are fulfilled by
Steps 2 and 3). If it is less than s, then J = A -[L, L] will be an ideal of L properly
contained in [L, L]. Hence Lemma 2.5 (ensuring that L/J is not nilpotent, and hence
M # L) and Lemma 2.1 justify the recursive calls.

Step 6 For z,a,b € L we have

[z, (ad yi)™ ([a, 8])] = (ad 3:)™([2, [, B]])

which is proved by induction on m. From this it follows that 2{A)-[L, L] is an ideal
of L for every polynomial k. In particular g(A) - [L, L] is an ideal of L and it is
properly contained in [L, L] because g{A) is nilpotent.

Step 7 If ¢ = t then all elements y; act by a semisimple matrix on [L,L]. Furthermore
these matrices commute. So any nilpotent element of L is contained in the span of
Tiy-.. ,Ts It follows that NR(L) is contained in [L, L]. By Step 1 we have that L is
solvable so that NR(L} = [L, L].
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Remark. In [41], the following statement is used in place of Lemma 2.5.

Let L be a finite-dimensional Lie algebra with a solvable ideal A and an ideal B contained
in [A, A]. Then L is nilpotent if and only if L/B is nilpotent.

Unfortunately this statement is false. Take the following counterexample. Let L be an
n + 2 dimensional Lie algebra with basis {z1,... ,Zn42} and with commutation relations
[21,22] = Tpta, [T1,2:] = @; for 3 < ¢ < n+ 1 (the other brackets of basis elements are
0). Set A= L and let B be the ideal of L spanned by {z3,...,zn41}. Then B is properly
contained in [A, A] and L/B is nilpotent, but L is not. '

Finally, L. Rényai ([44]) proposed an algorithm that uses the radical of an associative
algebra. As was remarked in Section 1.4.6, the radical of a finite dimensional associative
algebra over a field of characteristic 0 is easily calculated. By the following theorem this
leads to an algorithm for determining the nilradical.

Theorem 2.6 Let L be a finite-dimensional Lie algebra and let (ad L)* be the associative
algebra generated by ad L inside End(L). Then an element z € L lies in NR(L) if and only
if ad z is contained in Rad((ad L)*).

For the proof we refer to [32], p. 36.

A major disadvantage of the last algorithm is the fact that the dimension of the associative
algebra (ad L)* may be substantially bigger than the dimension of L. In the next section
we will present an algorithm that does not suffer from this problem. The algorithm does
not require the calculation of algebraic numbers. It also does not use recursion.

2.2 The Downward Method

Here we describe an algorithm that approximates the nilradical from above by other ideals.
Therefore we call it the Downward Method. In the sequel there will appear many ideals. If
we speak of a map ad z, we always mean the map adpz: L — L.

Set Io = {zr € L | Tr(adz) = 0}. Now for k > 0 we define subspaces Iy of L in the following
way:
Ii={z €L |Tr(adys---adys-adz) = 0 for all y1,... ,yx € L}.

Then L D Io 2 I; O ---. The next theorem states some useful properties of this series of
subspaces.

Theorem 2.7 For the sequence Iy, L,... defined above we have the following:

1. Iy is an ideal of L for k > 0.
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2. NR(L) is contained in I fork > 0.
3. Ifn=diml then I,.o = NR(L).

Proof.

1. Choose z € I} and y € L. We have to prove that [z,y] € Ik.

First we derive a useful relation. For y,...,yx in L and 1 € ¢ < k we have that

Tr(ady; -adyjadyady,---adyrade) = (2.1)
Tr{ady;---adyradyadye; - -adyrad z)
This identity holds because the difference of these two traces equals

Tr(adyy - -ad yra(adyady, —adyradyladyyy - --adypad z) =
Tr(ady: - - - ad ye-1(adly, ye]) ad yr4n - - - 2d yx ad 2),

and the latter equals § as ¢ € I;. Now we have

Tr{ady; ---adyrad zady) Tr(adyady,---adyradz)

i

Tr(ady,adyady;---adyrad z)
... =Tr(adyy - ad yrad yad 2).

The first equality follows from Tr(AB) = Tr(BA). The other equalities follow from
(2.1). Subtracting the right hand side from the left hand side, we get

Tr(ady, - ad yradlz,y]) =0
forall yy,...,yx in L, ie, |z,y] € L.

2. Let (ad L)* be the subalgebra of the associative algebra M,(F') generated by ad L.
Let z be an element of NR(L}. Then by Theorem 2.6 it follows that ad z lies in
Rad{{ad LY*}. Hence, by definition of the radical of an associative algebra we have
that ad z - @ is nilpotent for all a in (ad L)*. So Tr(a-ad ) = Tr(ad z - a) = 0 for all
a € {ad L)*. The conclusion is that z lies in I for all k£ > 0.

3. Because NR(L) is contained in 7,.;, we only have to prove that [, is nilpotent.
By Engel’s theorem ({32], p. 36), [,z is nilpotent if and only if ad;,_, « is nilpotent
for all z € I,,_,.

Let = be an element of Iy (k > 1} and suppose that the eigenvalues of adz are
0,A1,... , An_q. From the fact that

Tr((adz)) =0 for [ =1,... ,k+1



22 The nilradical

it follows that

n-1
s;:Z)\i:O fori=1,...,k+1
=1

Let f be the polynomial [],(X — A;) and write
F=X""4+a, X" 4+ ta,.
Now we recall Newton’s identities (see [33], p. 287):

31+(11 =
Sp+a1s1+2a, = 0

Sp1F G18p-2+ -+ Gpoa81 + (n - l)an—l = 0.

Ik =n-2 thens; = 8 = ... = 5,1 = 0. From this it easily follows that all
A; must be § so that ady z is nilpotent. From this it follows that also ady,_, = is
nilpotent and we are done.

]

On the basis of Theorem 2.7 we can formulate an algorithm. Theorem 2.7, implies that it
is correct and that it terminates after at most n — 2 steps.

Algorithm NilRadical
Input: A Lie algebra L of characteristic 0.
Qutput: NR(L).
Step1 k:=0; I := Iy;
Step 2 if 1 is nilpotent then return 7; fi;
Step 3 k:=k+1; I:=I; go to Step 2;

We consider the calculation of a basis of I, First it is easily seen that a basis of Iy can be
computed by solving a system of linear equations. Let ¥ > 1 and let z € Iy_;. Then we
have the following

. Tr(adyy - -adyiadyisr ---adyradz) =
Tr(ady; - adyiy; ady, ---adyrad 2) + Tr(ad y1 - - - ad{ys, yi41] - -ad yrad z) =
Tr{ady;---adyiyr ady; - -adyrad z).
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Hence, by linearity of the trace, we have that
={z € Iy_1 | Tr(adz;, - --adz; adz) =0for 1 <43 <ip <o+ <4 < n},

where {z1,... ,2,} is a basis of L. Let {z,...,2,} be a basis of I,_y. If € Iy, then
z = Y Ajz;. If = is also an element of Iy, then for every k-tuple (z,,...,z;) where
3y <ty € +-» < iy, we must have that Tr{ad z;, ---ad z;, ad 2) = 0. This last condition
amounts to the following linear equation in the variables ),

Z Tr(ad 2y, - --ad z;, ad 2;)A; = 0.

It follows that a basis of I can be computed by solving a system of linear equations.

In the equation system for [, the number of “words” ad z;, - - ad z;, that have to be taken
into consideration is bounded by (dim L)?, because the dimension of (ad L)* is bounded
by that number. So the number of steps taken by the algorithm is polynomial in the input
size. Concerning the sizes of the intermediate results and of the output we use the following
formula:

L={z e L|Tr(adz; ---adz;,adz) =0 for 0 <m < k},

where z4,...,2, is a basis of L. For every basis element z;, the entries of the matrix
ad z; are elements from the multiplication table. So in each step we have to solve a
homogeneous system of linear equations where the entries of the matrix of the equation
system are polynomials in the constants from the multiplication table. Hence the sizes of
the intermediate results and of the output are polynomial in the input size.

We would like to stress that in most cases the nilradical will be equal to I with k €< n—2.
First we may suppose that the Lie algebra L is solvable, because NR(L) is equal to the
nilradical of the solvable radical of L and this solvable radical is easily calculated (see
Section 1.4.5). Now, if L is a solvable Lie algebra over an algebraically closed field, then
by Lie’s theorem (see [32], p. 50) there exists a basis of L such that the matrices of ad =
for all z € L are in upper triangular form. If such a basis already exists over the rational
numbers, then by the next propesition, we have that the nilradical of L will be equal to
L.

Proposition 2.8 Let L be a solvable Lie algebra over the field Q of rational numbers.
Suppose that L “splits” over Q i.c., there is a basis ofL such that the matrices of ad z for
all z € L are in upper triangular form Then NR(L) =

Proof. If z is an element of I;, then Tr((ad z)?) = 0. But this number is the sum of the
squares of the eigenvalues of ad z. So it can only be 0 if all eigenvalues of ad z are 0 The
conclusion is that 7; is a nilpotent ideal. I
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However, there are Lie algebras for which this does not hold, as the next example shows.

Example 2.9 Set { = €*™/7 and let L be the Lie algebra with basis {zq,...,z,} and
commutation relations

[zo, 2] = (e for 1<i<g
Ziz] =0 for 1 <i,j<gq.

Then it is easily seen that NR(L) = {z,... ,2,), but 2o € Ix for 0 < k < ¢ — 1. {Note
that dim L = ¢ + 1.) '

The next proposition expresses the fact that this is more or less the only exaraple where
we have to calculate the [y up to k =n — 2.

Proposition 2.10 Let L be a finite-dimensional solvable Lie algebra over an algebraically
closed field of characteristic 0. Suppose dimL = n + 1 and NR(L) = I,_y but NR{L) #
L.z. Then we have that dim NR{L) = n and there is an element y of the complernent such
that the characteristic polynomial of the restriction of ad y to NR(L) is X™ — 1. Moreover,
if 6 does not divide n, then this determines L upto isomorphism.

Proof. Let z be a nonzero element of the complement of NR(L) such that z € J; for
0 <k < n-—2 Let A be the restriction of adz to NR(L}. Suppose dimNR(Z) = m and
let Ay,..., A, be the eigenvalues of A. Then since ad z maps L into NR{L} (see [32], p.
51, Theorem 13), we have that, except for some extra occurrences of 0, these are also the
eigenvalues of ad . Hence

3;=Z)\£=0 forl=1,...,n—1.

i=1

Hf=X"+a X"+ + a,, is the characteristic polynomial of A4, then by Newton’s
identities we have that ay = a,... = a,.1 = 0. Suppose that n —1 > m, then }; =... =
Am = 0. From this it follows that ad z is nilpotent and =z € NR{L) ([32], p. 45, Corollary
2). But this is a contradiction and hence m + 1 > n, so that the only possibility for m is
m = n (as L is not nilpotent). Now it is also clear that a,, is the only nonzero coefficient

of f. Hence if we set
1
y=3/-—=
Am

then the characteristic polynomial of ad y restricted to NR(L) will be X™ — 1.

Now the eigenvalues of ady on NR(L) are (' for 0 < i < n — 1, where { = ¢?*/". Hence
there is a basis {z1,...,z,} of NR{L) such that z; is an eigenvector of ady with the
eigenvalue ("1, ie., [y,2:] = (*"'z;. By the Jacobi identity we have that [z;,z;] is an
eigenvector of ady with eigenvalue (=1 4 (7=, But if n is not divisible by 6, then a sum
of two roots of unity is not a root of unity so that [z, ;] = 0. It follows that L is the Lie
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algebra of Example 2.9. [

The conclusion is that the case where we have to calculate the ideals I, up to @ = dim . —2
is quite exceptional.

Remark. If L is defined over a field of characteristic p > 0, then the proof of Theorem 2.7
only fails because the use of Newton’s identities may not lead to the desired conclusion.
However, if p > dim [, then this problem does not occur. So the algorithm also works in
that case.

To the best of our knowledge the only algorithm that also works over all finite fields was
described in [44]. There the author describes a polynomial time method to find the radical
of an associative algebra over E, (see also [11]). By Theorem 2.6 this also leads to an
algorithm for calculating the nilradical.

2.3 Evaluation

Here we compare the algorithm described in Section 2.2 with the other methods mentioned
in Section 2.1. We did not implement the method described in [2], because it requires the
computation of algebraic numbers. An example of a Lie algebra where this is necessary is
provided by the Lie algebra L, below. Hence we are left with three algorithms:

1. The Downward Method described in Section 2.2.
2. The Upward Method described in Section 2.1.

3. The method proposed in [44] that calculates the radical of (ad L)*. We call it the
Hadical Method.

We used two examples of solvable Lie algebras to put the algorithms to a practical test. If
n > 2 is an integer, then K, is the subalgebra of the full matrix algebra M,(Q) generated
by all upper triangular matrices. It is a solvable Lie algebra of dimension (n + 1)n/2.
The second example L, is an n + 1 dimensional Lie algebra with basis {zq,...,2,} and
commutation relations

[-7:073:1} = In
[zo,zl = zima fori>1
[ziz;] =0 fori,7 > 0.

Notice that this Lie algebra is isomorphic (over an extension of (J) to the Lie algebra in
Example 2.9.
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We let the methods calculate the nilradicals of K, and L, for some values of n. The results
are displayed in Tables 2.1 and 2.2, respectively. The values in the last two columns are
part of the output of the Downward Method and the Radical Method respectively.

n | Downward | Upward | Radical | dim K, | & | dim(ad K,,)*
4 1 11 6 101 25
5 4 21 38 15 1 55
6 10 36 233 2111 105
7 24 63 1334 28 11 182

Table 2.1: Computation times (in seconds) of the calculation of the nilradicals of K, (the 6th
colamn contains the number k such that Iy = NR(L)).

n | Downward | Upward | Radical | dim L, | & | dim{(ad L,)*
13 17 13 11 14 12 26
14 21 17 13 15113 28
15 21 18 16 16 | 14 30
16 35 20 19 17115 32

Table 2.2: Computation times (in seconds) of the calculation of the nilradicals of L, (the 6th
column contains the number k such that Iy = NR(L)).

From this we see that the Radical Method becormes very slow if the dimension of (ad L)*
gets big. Furthermore, the order of the Upward Method appears to be less than the
order of the Downward Method, although we have no bounds on the running time of the
first method. On the Lie algebras L, the Downward Method will not have a very good
performance because it is the “worst case” Lie algebra for this method (see Proposition
2.10}, whereas the Upward Method is particularly well suited for this Lie algebra. Also the
Radical Method has a good performance in this case, mainly because the dimension of the
associative algebra is not growing rapidly.
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Chapter 3

Cartan subalgebras

Cartan subalgebras are the talebearers of the semisimple Lie algebras in characteristic
0; the adjoint action of a Cartan subalgebra reveals the isomorphism type of such a Lie
algebra. This will be exploited in Chapters 4 and 5 where algorithms for calculating the
structure of semisimple Lie algebras will be given. '

In Section 3.1 we briefly describe two previously published algorithms. In Sections 3.2, 3.3,
and 3.4 a third algorithm is described. It finds a locally regular element in the space ad L.
The eigenspace corresponding to the eigenvalue 0 of such element is a Cartan subalgebra.
The algorithm needs a subroutine that finds a non-nilpotent element in a Lie algebra.
This is described in Section 3.3. A slightly different algorithm for calculating a Cartan
_subalgebra is given for the case where the Lie algebra is of characteristic p > 0 and regtricted
(Section 3.4). Finally in Section 3.5 we give a practical evaluation of the algorithms.

3.1 Known algorithms

In [2] an algorithm for the construction of a Cartan subalgebra in a Lie algebra L of
characteristic 0 is described. It uses a reduction based on the following lemma.

Lemma 3.1 Let I be an ideal of I and let K be a subalgebra of L containing I such that
K/I is a Cartan subalgebra of L/I. Let H be a Cartan subalgebra of K. Then H is a
Cartan subalgebra of L.

For the proof we refer to {1], Lemma 4.

Now let R be the solvable radical of L. Then the algorithm first finds a Cartan subalgebra
of the semisimple Lie algebra L/R. Let K be a subalgebra of L containing R such that
K/ R is a Cartan subalgebra of L/R. Then K is solvable and the procedure finds a Cartan
subalgebra in K. By Lemma 3.1 this is also a Cartan subalgebra of L. It follows that the

27
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task of finding a Cartan subalgebra in an arbitrary Lie algebra is reduced to the cases where
L is semisimple or solvable. In the semisimple case a maximal torus is constructed, starting
with the semisimple part of a non-nilpotent element. Subsequently more semisimple parts
of elements of the centraliser of this torus are added. In the solvable case the Lie algebra
is divided by well-chosen ideals, again using Lemma 3.1,

In {52], H. Zassenhaus described an algorithm for finding a Cartan subalgebra in a Lie
algebra of characteristic zero. It is based on the following lemma. For the proof we refer
to [50], Theorem 4.4.4.8.

Lemma 3.2 Let L be an n-dimensional Lie algebra and assume that L is restricted ¢f L
is of characteristic p. Let N be a nilpotent subalgebra of L. Set

Lo{N)y={ze L|(ady)"z =0 for ally € N}.

Then Lo(N) is a subalgebra of L and every Cartan subalgebra of Lo(N) is also a Cartan
subalgebra of L.

The strategy of the algorithm consists of trying to find a nilpotent subalgebra K of L such
that Lo{K) is a proper subalgebra of L. When such a subalgebra is found, recursion is
applied to find a Cartan subalgebra H of Lo(K) and by Lemma 3.2, H is also a Cartan
subalgebra of L. The algorithm starts with an arbitrary nilpotent subalgebra K. If Lo{K)
happens to be equal to L, then two strategies for replacing K are possible. First of all,
if the centraliser of K in L is bigger than K we can add an element of the complement
to K in the centraliser and produce a bigger nilpotent subalgebra. We can do the same
with the normaliser. However in this case, in order to get a nilpotent subalgebra, we must
make sure that the element z of the complement acts nilpotently on K. If this happens
not to be the case then x is a non-nilpotent element and hence the nilpotent subalgebra
K spanned by z will have the property that Lo{K) # L.

3.2 Locally regular elements

Throughout this section V will be an n-dimensional vector space over the field F.

Definition 3.3 Let M be o linear subspace of End(V). Let A € M and let Vo(A) be the
Fitting null component of V relative to A (see Lemma 1.22). Then A € M is called locally
regular in M if every B € M that stabilises Vo(A) acts nilpotently on Vu(A).

Our objectiveis to give an algorithm for finding a locally regular element in a given subspace
M of End(V). The algorithm starts with an element A € M. If this element is not locally
regular, then an element B € M is constructed such that Vo(B) is properly contained in
Vo(A). We first derive a useful statement about the dimension of V4(B).
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Let M C End(V} be given by a basis {4;,...,A,} and let z;,... ,z, be s indeterminates.
Consider a generic element A = 214, + - - - + 2,4, which livesin End(V @r F(zy,... ,z,)).
Let f(T') € F(zy,...,x,)[T] be the characteristic polynomial of A. Then

.f(T) = det‘(T’In - A) =T" +f1?m'l +oee 4 fn—lT + fn)

where f; € Flzy,... ,2,] and deg f; = 1 if f; # 0. Furthermore, the characteristic polyno-
mial of an element B = $14; + -+ + 3sA; is obtained by substituting z; = 3 in f.

Lemma 3.4 Let B= AL+ + B A, be an element from M. Then the following are

equivalent:

1. dimVo(B) = d,
2 faed(Bry--- 1 Bs) # 0 and fi{By,... ., 8:,) =0 forn—d<j<n,
3. d = n — rank(B").

Proof. Since V,(B) is the generalised eigenspace of B corresponding to the eigenvalue 0,
we have that the dimension of this space is equal to the multiplicity of 0 as a root of the
characteristic polynomial of B. Hence 1. and 2. are equivalent. The equivalence of 1. and
3. follows from V3(B) = {v eV | B*v =0}. O

The next proposition allows us to control the coeflicients of the elements Y o; A, that we
construct.

Proposition 3.5 Let Q be a subset of F of size n+ 1. If F is of characteristic 0 then
we take d = {1,2,... ,n+ 1}. Let M be a subspace of End(V) with basis {A,,... , A}
Let A = oAy + -+ + aAs be an element of M. Then we can find an element B =
BrAs + -+ B, A, € M such that dimVy(B) € dimVp(A) and B € Q for 1 <1 < 5 in
deterministic polynomial time.

Proof. Let d be the dimension of V3(A). Then by Lemma 3.4 we have that f, s(c1,...,a,)
is nonzero. Also, by the same lemma, we must look for elements 3,... , 3, in { such that
fa-a(Bry--. . Bs) # 0. By Lemma 1.35 this can be done at the expense of at most s{n—d+1)
tests whether fr_4{u) = 0 on vectors u € (U {e,... ,a,})°. By Lemma 3.4 this can
be done by inspecting the rank of B™ (where B = 1A + --- + 5,A4;). Hence these tests
can be performed in time polynomial in the sizes of the matrices A; and the numbers ;. T

In the sequel we let M be a linear subspace of End(V) with basis {A;,... ,A,}. HAe M,
then Nar(Va(A)) will denote the set of all elements of M that stabilise (A} (in linear
matrix action). We also fix a subset {} of F of size n-+1. If F is of characteristic zero, then
we take = {1,2,... ,n-+1}. The key to the algorithm will be the following proposition.
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Proposition 3.6 Let A be an element of M. Suppose B € Np(Vo(A)) does not act
nilpotently on Vo{A). Then there is an element cg from Q such that Vo(A + co( B — A)) is
properly contained in V5{A).

Proof. (c.f., the proof of Lemma 15.2 A in [20].) Set W = V3(A) and D, = A+ ¢(B — A)
for c € F. As A,B € Ny(Vo(A)), we have that for all ¢ € ¥ the map D, leaves W
invariant. Hence D, induces a transformation of V/W. It follows that the characteristic
polynomial of D, is the product of the characteristic polynomials of D, on W and on V/W.
Let d = dim W and let fir be the characteristic polynomial of I'; on W and similarly for
fv;w. Then

fw(Tye) =T+ fi(e)T" ' + -+ + fulo)

and
(T, e) =T + g1 ()T + - + gn_alc),

where the f; and g¢; are polynomials in ¢ of degree less than or equal to 4.

By construction all eigenvectors of A belonging to the eigenvalue 0 lie in W. Hence
n—-2(0) # 0 so that g..q is not the zero polynomial. Furthermore, because B does not act
nilpotently on W, there is an f; such that f;(1) # 0. In particular this f; is not the zero
polynomial. The degree of fig,_q4 is less than or equal to n, hence there is a ¢ € £} such
that fi{co)gn-d(co) # 0. From g,.q4{co) # 0 it follows that Vo(A + ¢o(B — A)) is contained
in W. And fi(eo) # 0 implies that V(A + (B — A)) is properly contained in W. {1

Remark. We can find an appropriate ¢ € {1 by “trial and error”: after at most n + 1
computations of the dimension of a space of the form Vo(A + (B — A}) we are done.

Now we are ready to formulate the algorithm for finding a locally regular element. We need
an auxiliary procedure NonNilpotentElement(M, A) which returns an element B € M that
does not act nilpotently on V;(A). If no such element exists (in particular when Vp(A) = 0)
then it will return the zero element of M. Here we assume that such a procedure exists.
In the next section we will construct such a procedure in the case where M = ad [, for a
Lie algebra L.

Algorithm LocailyRegularElement
Input: A basis {A),...,A,} of a subspace M of End(V).
Output: A locally regular element A = 3 a;A; of M such that o; € £

Stepl A=0;
Step 2 B :== NonNilpotentElement(M, A);
Step 3 if B = 0 then return A; fi;

Step 4 Select an element ¢y € 2 such that V(A + co( B — A)) is properly contained in V5(A4);
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Step 5 A:= A+ (B — A);

Step 6 Replace A by an element B = Y, a;A4; such that o; € (! and dim V3(B) < dim %(A)
Return to Step 2;

The computability of Steps 4 and 6 is ensured by the Propositions 3.6 and 3.5, respectively.
Since the dimension of V5(A) decreases every round of the iteration, the procedure will
finish. Furthermore, it is clear that upon termination A will be a locally regular etement.

We now consider the complexity of the algorithm. The body of the loop will be executed
at most n = dimV times. Step 4 requires the calculation of the Fitting null component
of at most n + 1 linear transformations. Furthermore, Step 6 needs a polynomial number
of operations by Proposition 3.5. Also in this step the size of the coefficients is kept
under control. So the polynomiality of the method depends on the auxiliary procedure
NonNilpotentElement. If this procedure runs in polynomial time, then the algorithm
LocallyRegularElement will also run in polynomial time.

Proposition 3.7 Suppose that M belongs to a class of subspaces of EndV for which the
routine NonNilpotentElement runs in polynomial time. Then we can find a locally regular
element of M in polynomial time.

There is also a very efficient randomised algorithm available. It is of Las Vegas type
provided that we have an efficient method for testing whether a given element is locally
regular. It is based on the following proposition.

Proposition 3.8 Let A be a subset of F of size at least nfe for some e > 0. Let ay,... ,a;
be elements chosen randomly and uniformly from A. Then the probability that the elemem‘
A=Ay + -+ a,A, is locally regular is at least 1 — .

Proof. From Lemma 3.4 it follows that A is locally regular if and only if g{en,... ,as) #0
where g is a polynomial of degree at most n. By Corollary 1.34 we have that the probability
that g{aq,... ,a;) = 0 is at most n/|A] <nf(nfe) =e O

3.3 Finding a non-nilpotent element in a Lie algebra

Throughout this section L will be a finite-dimensional Lie algebra over the field F. Here
we realise the procedure NonNilpotentElement(M, A) where M = ad L. By the following
lemma this task is reduced to the task of finding non-nilpotent elements in Lie algebras.

Lemma 3.9 Set M =adl and let A€ M. Set K = Ly(A). Then K is a subalgebra of L
and Ni,(K) = K. We have that B € Ny (K) does not act nilpotently on K if and only if
there is an element z € K such that adg z 23 not a nilpotent map and B = ad z.
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Proof. The first two statements are Lemma 15.1 and Lemma 15.2B from {29]. Since
Np(K) = K we have that Ny(K) = ady(K). So if B is an element from Ny (K) not
acting nilpotently on K, then B = adg « for some & € K such that adg « is not nilpotent.
a

By Engel’s theorem ([32], p. 36) there exist elements z in L such that ad z is not nilpotent
if and only if L is not a nilpotent Lie algebra. Now we consider the problem of finding
such an element.

If L is defined over a field of characteristic 8, then there is a particularly simple method
available.

Proposition 3.10 Let I be e non-nilpotent Lie algebra over o field of characteristic 0
with basis {x1,... ,2,}, then the set

{z1,...,za}Uf{zi+z; |1 <i<j<n}
contains a non-nilpotent element.

Proof. If L is solvable but not nilpotent then by Corollary 2 on p. 45 of [32], we have
that the nilradical of I is the set of all nilpotent elements of L. Hence there must be a
basis element x; such that z; is not nilpotent. On the other hand, if L is not solvable,
then Theorem 5 on p. 73 of [32] implies that the Killing form of L is not identically
zero. It follows that there exist basis elements z; and z; for 1 < i < j < n such that
Tr{ad z; - ad ;) # 0. From

Tr((ad 2; + ad 2;)%) ~ Tr{(ad 2;)*) — Tr({ad z;)*) =
= Tr(ad z; - ad z;) + Tr(ad z; - ad 2;) = 2 Tr(ad z; - ad z;) # 0

we infer that the elements z;, z; and #; 4+ «; cannot be all nilpotent. O

If L is of characteristic p > 0, then we have to follow another course.

Proposition 3.11 Suppose K is a proper subalgebra of L of dimension m such that K
acts nilpotently on L. Suppose that z is an element of Np(K)}\ K. Then either ad 2 is
not nilpotent or K together with x generate a subalgebra of I of dimension m + 1, acting
nilpotently on L.

Proof. Let K denote the subalgebra generated by K and . The fact that K is of dimen-
~sion m + 1 is trivial. Suppose that ad z is nilpotent and set U = ady({z} U K). Then U is
closed under the bracket operation because ¢ € Ny (K}. Furthermore all elements of U are
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nilpotent maps. Now by Theorem 1 on p. 33 of [32] the associative algebra A generated
by U is nilpotent. The conclusion is that ad;, K C A is also nilpotent. [J

If we start with K = 0 and repeatedly apply Proposition 3.11 then we either find a non-
nilpotent element, or after n steps we have that K = L whence L is nilpotent. An element
z € Ny {K)\ K can be found by calculating Np{K). Alternatively, we can construct a
sequence of elements in the following way. First we fix a basis of K. Let z be an element of
L not lying in K. If for some basis element y of K we have that [z,y] ¢ K, then replace z
by [z,y]. Since K acts nilpotently on L we need no more than dim L — 1 such replacement
operations to obtain an element lying in Np(K)\ K.

Now the procedure NonNilpotentElement can be implemented using the method for find-
ing a non-nilpotent element. It clearly yields a polynomial time method if F' is of charac-
teristic 0, or if F is a finite field. In the other cases (i.e., when F is an infinite field of prime
characteristic) we do not have a bound on the size of the element produced by Proposition
3.1L

It is also possible to use a randomised Las Vegas type method that finds its justification
in the following proposition. The proof is similar to the proof of Proposition 3.8; therefore
we do not formulate it.

Proposition 3.12 Let L be a non-nilpotent Lie algebra with basis zy,... ,z,. Let A be a
subset of F' of size at least nje. Let ¢y, ... , e, be elements chosen randomly and uniformly
from A. Then the probability that eyzy + - - - + apz, is not nilpotent is at least 1 — €.

Remark. In [2] also an algorithm is described for finding a non-nilpotent element in a Lie
algebra of characteristic zero. It is quite complicated so we do not reproduce it here.

3.4 Cartan subalgebras

Let L be a Lie algebra over the field F, where F is of characteristic zero, or a finite field.
By the results of the preceding sections we can find a locally regular element in the space
M = ad L in polynomial time. By the next proposition this also yields a polynomial time
algorithm for finding a Cartan subalgebra in L.

Proposition 3.13 Let L be a finite-dimensional Lie algebra. Let A € ad L and set H =
Lo{A). Then H is a Cartan subalgebra of L if and only if A is locally regular in ad L.

Proof. Suppose that A is locally regular. By Lemma 15.1 and Lemma 15.2B of [29] we
know that H is a subalgebra of L and Ny(H) = H. Let = be an element of H. Then
ady, z € N,z (H) and hence ady 2 acts nilpotently on H. By Engel’s theorem ({32], p.
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36}, it now follows that H is nilpotent and hence it is a Cartan subalgebra. For the other
direction let ¢ € L be such that adp z stabilises H. Then = € Ny (H) = H so that ady =z
acts nilpotently on H. The conclusion is that A is locally regular in ad L. (1

The algorithm for finding a locally regular element is only guaranteed to work if the field
of definition is of size at least dim L + 1. However, for restricted Lie algebras over finite
fields there a slightly different approach is possible.

Algorithm RestrictedCartan
Input: A restricted Lie algebra L.
Output: A basis of a Cartan subalgebra of L.

Step 1 A := 0

Step 2 a := NonNilpotentElement{Lo(A),0);

Step 3 if a = 0 (i.e., Lo{A) is nilpotent) then return Ly(A); fi;

Step 4 A:= AU {a}; Go to Step 2;

Clearly every step is computable. Furthermore, the quantity dim Lo{A} decreases at every
iteration, so that the algorithm finishes after at most n rounds. The correctness of the
algorithm follows from Lemma 3.2. If L is nilpotent, then L is its own Cartan subalgebra.
Otherwise, L contains a non-nilpotent element a. The subalgebra K = Lg({a}) is properly
contained in L. By Lemma 3.2 every Cartan subalgebra of K will be a Cartan subalgebra
of L. Furthermore, the Lie algebra & will be restricted (see the proof of Corollary 4.4.4.9
of [50]). The conclusion is that we may continue with K in place of L.

By the results of Section 3.3 we can find non-nilpotent elements in Lie algebras over
finite fields in polynomial time. Hence the algorithm RestrictedCartan is polynomial for
restricted Lie algebras over finite fields.

Remark. By Lemma 3.2, it also follows that the algorithm RestrictedCartan will work
for Lie algebras of characteristic zero. In that case however, we do not have satisfactory
bounds on the sizes of the elements of the set A.

3.5 Evaluation

If L is a Lie algebra of characteristic 0, then we have the following algorithms for finding
a Cartan subalgebra:
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LRE The algorithm that calculates a locally regular element in ad L.

NSA The algorithm that recursively finds a Cartan subalgebra in Lo(K) where K is a
nilpotent subalgebra of L (see Section 3.1).

SeSo The method that reduces the task of finding a Cartan subalgebra of L to the cases
where L 18 either semisimple or solvable (see Section 3.1).

We tried these methods on the Lie algebras s(,(Q) for n = 4,5,6,7,8. The structure
constants of these Lie algebras were taken relative to the standard basis of s(,((Q). By
e we denote the n x n matrix with a 1 on position (%, j) and zeros elsewhere. Then the

standard basis of sl,(Q) is given by

{eil1<ij<nandisjlU{ef—ef |l <i<n}.
The results are shown in Table 3.1 and graphically in Figure 3.1

I I I T 1 I U

2+ LRm
e
0 I 1 l i 1 i H
96 28 3 32 34 36 38 4 42

—— log(dim)

Figure 3.1: Running times (in seconds} of the methods LRE, NSA, and SeSo on the input
5l,(Q) for n = 4,5,6,7,8.

There are also two deterministic methods for restricted Lie algebras over a field F such
that |F| > dim L, namely LRE, and RestrictedCartan. We also tried these methods on
sl,(Fs25). The results are collected in Table 3.2.

If L is defined over a big field (e.g., of size at least 2dim L}, then Propositions 3.8 and
3.13 give a straightforward randomised method to find a Cartan subalgebra in L. We also
tested these methods. The results are displayed in Table 3.3.

On Figure 3.1 and Table 3.1, 3.2 and 3.3 we make the following comments:
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n | dimsl, | LRE | NSA | SeSo
4 15 2 19 55
5 24 4 108 | 124
6 35 14 | 494 | 252
7 48 42 | 1835 | 480
8 63 119 | 6330 | 1030

Table 3.1: Running times (in seconds) of the methods LRE, NSA, and SeSo on the input

si,(Q.

n | Restricted Cartan | LRE
4 2 2

5 7 8

6 32 34
7 128 136

Table 3.2: Running times (in seconds) of the LRE method and RestrictedCartan on the
input 5@;(&25)0

¢ Of the three deterministic methods in characteristic zero, the LRE method is by
far the fastest. The SeSo method suffers from the fact that it has to compute the
Jordan decomposition of a matrix. For the NSA method the path towards a suitable
nilpotent subalgebra is fairly long.

s The scale of Figure 3.1 is logarithmic so that the points should lie on a straight line
with slope equal to the order of the method. It turns out that LRE has an order
of approximately 2.86, NSA an order of 4.06 and SeSo an order of 2.05. Since the
order of the SeSo method is smaller than the order of the LRE method, the first
method will eventually be faster. However, the numbers in Table 3.1 indicate that
the dimension of the Lie algebra for which this happens will be so high that this is
of miner practical value.

Random (5[n(E25 ))

n | LRE (s[,(Q) | Random (sL,(Q))) | Res. Cart. (sl,(F:s))

4 2 ' : 25 2 0.3
5 4 985 7 1
6 14 16676 32

Table 3.3: Running times {in seconds)

for s0,(Q) and sl (Es2s).

of the deterministic and the randomised methods
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e It is seen that the algorithm RestrictedCartan is somewhat faster then the LRE
method. Also the first algorithm can be applied more generally. So for restricted Lie
algebras this method is to be preferred.

¢ The randomised method for sl,(Q) explodes. This is caused by the following: in
sl,(Q)) the algorithm for the computation of a non-nilpotent element will return a
basis element or the sum of two basis elements, whereas a random element will be a
sum of all basis elements, most of them with nonzero coefficient. In the computation
of the Fitting null component, the first case will lead to a set of sparse equations,
whereas in the second case we will have a nonsparse set of equations, for which the
Gaussian elimination is much more difficult.

e The randomised method for sl,(Is) has a very good performance. This can be
explained by the fact that in this case the Gaussian elimination is fast even for non
sparse equations (there is no coefficient growth as in the characteristic zero case).
Furthermore, usually after one or two steps a locally regular element is found.

Remark. We have used the LRE method without the replacement step (Step 6 of the
algorithm LocallyRegularElement), because this step slows things down considerably.
Furthermore, it is more of theoretical than of practical value (in practice after two or three
steps a Cartan subalgebra is found).

3.6 Acknowledgement
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Chapter 4

The decomposition of a semisimple
Lie algebra

Let L be a semisimple Lie algebra over a field F' of characteristic 0. Then L is a direct
sum of simple ideals (see [32], p. T1). In this chapter we present methods to obtain this
direct sum decomposition. The Cartan decomposition of L relative to a Cartan subalgebra
gives the key to understanding its structure. Here we use a somewhat weaker instrument,
called the generalised Cartan decomposition. In Section 4.1 it is shown how to obtain the
direct sum decomposition from a generalised Cartan decomposition. Then in Section 4.2
algorithms are given for obtaining a generalised Cartan decomposition.

4.1 The generalised Cartan decomposition

First we transcribe two results from [32] on nilpotent Lie algebras of linear transformations.
We recall that V5(A) is the Fitting null component of the vector space V relative to the
linear transformation A (see Lemma 1.22).

Lemma 4.1 Let A, B be linear transformations in a finste-dimensional vector space sat-

isfying
(4,[4,...,[A,B]...]]=0 {n factors A)

for some n. Let p be a polynomial, then Vo{p(A)})} is invariant under B.

Proof. See [32], p. 40. O

Theorem 4.2 Let N be a nilpotent Lie algebra of linear transformations acting on a finite-
dimensional vector space V. Then there is a decomposition

V=‘/l@®v;

39
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where each V; is invariant under N and the restriction of every element A € N to V; has
a minimum polynomial that is a prime power (1 <1 <s).

Proof. (cf. [32] p. 41) If every element of N has a minimum polynomial that is a prime
power, then we set t = 1 and V; = V. Otherwise, let A be an element of N such that its
minimum polynomial f4 factors as fa = f*!--- f{** where the f; are distinct irreducible

polynomials. Then
V = Vo(i(4) & ® Vol fu(A).

The minimum polynomial of the restriction of A to V,(fi(A)) is f/. Furthermore, by
Lemma 4.2 we have that each Vo(fi(A)) is invariant under N, so that we can proceed by
induction on the dimension. O

Now we turn our attention to semisimple Lie algebras. Let L be a semisimple Lie algebra
over a field of characteristic 0 with Cartan subalgebra H. Then via the adjoint represen-
tation H acts as a nilpotent Lie algebra of linear transformations on the vector space L.
Hence, by Theorem 4.2, L decomposes as

L=Lo®Li® - &L,

where each L; is stable under ad H and the minimum polynomial of the restriction of ad A
to L; is a prime power for all h € H. Now, because ad % is a semisimple transformation (see
Corollary 15.3 of [29]), we have that this minimum polynomial is irreducible. Furthermore,
Ly is the space corresponding to the polynomial X, i.e.,

Ly={z € L|(adh)"z = 0for all h € H and some m > 0}.

Also, by Proposition 1 of Chapter ITI of [32], the space Lg is equal to H. These consider-
ations lead to the following definition.

Definition 4.3 Let L be a semisimple Lie algebra with Cartan subalgebra H. A generalised
Cartan decomposition of L with respect to H is a decomposition

L=Lio--&L,oH

such that L; is stable under ad H and the restriction of adh to L; has an irreducible
minimum polynomial for h € H and 1 <17 < s.

Remark. Let L be a semisimple Lie algebra with Cartan subalgebra H. If the minimum
polynomials of the elements of H split into linear factors over the ground field, then the
spaces L; in the generalised Cartan decomposition will be the common eigenspaces of the
Cartan subalgebra. It follows that in this case the generalised Cartan decomposition coin-
cides with the Cartan decomposition as described in Section 1.1.

The next theorem states that the generalised Cartan decomposition of L with respect to a
Cartan subalgebra is compatible with the direct sum decomposition of L.
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Theorem 4.4 Let L be a semisimple Lie algebra with Cartan subalgebra H and let
L=Lig --®l.eH

be a generalised Cartan decomposition of L with respect to H. Suppose that L decomposes
as a direct sum of ideals, L = I, & I. Then every L; is contained in either I or I.

Proof. By Proposition 1.27 there are two orthogonal idempotents E,, F; commuting with
ad L such that E) + F; is the identity on L and I; = E;L for [ = 1,2. Hence

Let g € H, then {(ad h)"E1g = Ey(adh)™¢ = 0 for all h € H so Eig € H (because
Lo(H) = H). Therefore we have that E\H C H and similarly E,H C H. Set H; = EiH
for I = 1,2, then it follows that H decomposes as H = H; & H, and H, is a Cartan
subalgebra of I; for [ = 1,2. By the definition of generalised Cartan decomposition, there
is an element h € H; U H; such that the restriction of ad k to L; is nonsingular. (Otherwise
the minimum polynomial of the restriction of every element of a basis of H to L; would be
X. This implies that [H, L;] = 0 and by definition of Cartan subalgebra we have L, C H,
a contradiction.)

First suppose that A € H;. Then alsc A € I) so that ad A(L) C I; and in particular
ad A(L;) C I,. Now the fact that ad & is nonsingular on L; implies that L, = [h, L;] C I
In the same way h € H; implies that L; is contained in /. I

This theorem implies that the following algorithm is correct.

Algorithm Decompose
Input: A semisimple Lie algebra L.
Qutput: A list of the direct summands of L.

Step 1 Compute a generalised Cartan decomposition L =L, &--- S L, & H.
Step 2 For 1 €7 < s determine a basis of the ideal of L generated by L.

Step 3 Delete multiple instances from the list.

In Step 1 an oracle is called that computes a generalised Cartan decomposition of a semisim-
ple Lie algebra. In the next section we will describe some methods to find such a decom-
position.

The algorithm is clearly polynomial, except maybe for Step 1, where the oracle is called.
The complexity of this oracle will be discussed in the next section.
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4.2 Calculating a generalised Cartan decomposition

4.2.1 Splitting elements

Throughout this section L will be a semisimple Lie algebra over a field F' of characteristic
0 with Cartan subalgebra H.

Definition 4.5 An element h € H is called a splitting element if the minimal polynomial
of ad h has degree dim L — dim H + 1.

Let ® be the root system of L and set ®* = @ U {0}.

Lemma 4.6 Let L = @, 4. Lo be a Cartan decomposition of L. Then h € H is a splitting
element if and only if all numbers a(h) are different for o € ®*.

Proof. Let A be a maximal subset of ®* such that for no pair o, 8 € A we have a(h) =
B(h). Then the minimum polynomial of ad A is

ITx —a(h)).
€A

This polynomial is of degree dim L —dim H + 1 if and only if A = @*. O

Proposition 4.7 Let hy € H be a splitting element. Let
L=Ly®dL® - &L, (4.1)

be the decomposition of L such that the restriction of ad hg to L; has an irreducible minimum
polynomial (1 <1 < s). The subspace corresponding to the polynomial X is Ly. Then
H = Ly and the decomposition (4.1) is a generalised Cartan decomposition.

Proof. Lemma 4.6 implies that dim Ly = dim H, and hence Lo = H. Suppose that there
is an h € H such that the restriction of ad & to L; has a reducible minimum polynomial.
Then L; = V; @ V, and ad ko has the same minimum polynomial on V; as on V. So ad hg
has an eigenvalue of multiplicity at least 2. But this contradicts Lemma 4.6. O

Proposition 4.8 Splitting elements erist in H.

Proof. Let {hy,...,h;} be a basis of H and let A = 3 ¢;h; be an element of H. Let «, 8
be two elements of ®*. Then the eigenvalue of % on L, is Y €;c(h;). Consider the function

!

Oy M) =) (ki) — B(hs)) A

=1
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Then the set of zeros of f, g corresponds to the elements of H that have the same eigenvalue
on L, as on Lg. But this set is a hyperplane in H. So we must choose an element ho € H
lying outside a finite set of hyperplanes. Since F' is infinite, there are such elements. [J

We define two abbreviations: N = (dim L — dim H}/2 (i.e., the number of positive roots},
m= N(N +1)/2.

Proposition 4.9 Let 0 < ¢ < 1 and let © be a subset of F of size at least mje. Let
€1,... & be elements chosen uniformly and independently from Q0. Then the probability
that h = 3" ¢;h; is a sphitting element is at least 1 — e.

Proof. Let {o1,... ,an} be the set of positive roots. Set o = 0 in H*. Set
1

fi(mr, @) = Y (aihe) — aj(h))es,

k=1

and set

Glzr,... 1) = H iz, . 20).

0<i<j<N

Then Y ¢h; is not a splitting element if and only if G(e,...,q) = 0. Now since
deg G = m, Corollary 1.34 implies that the probability that G{e;,...,¢) = 0 is less
than m/|Y <e O

Proposition 4.9 gives a powerful randomised (Las Vegas type) algorithm for finding a
splitting element in H. We also consider deterministic algorithms for finding a splitting
element. Let G be the polynomial in the proof of Proposition 4.9. Substitute y*~! for z; in
G. This yields a polynomial in Fly] of degree at most m{dim H — 1). Hence by trying at
most m(dim H — 1) + 1 values for y, we obtain a number £ such that G(1,¢,... ,£-1) #0.
A disadvantage of this algorithm is the fact that the numbers y*~! may be big even if y
is small. However, if we have found a vector ¢ = (¢, ..., ¢) such that G(e) # 0 then we
can apply Lemma 1.35. Let {2 be a subset of F' of size at least m + 1. Then we can find
a vector £ = (£1,...,&) € ¥ such that G(£) # 0 at the expense of at most I(m + 1) tests
whether G(v) = 0 for vectors v € (QU {&,... ,&})". ‘

There is a second deterministic method relying on a second characterisation of splitting
elements, expressed in the following lemma. Here (1,ad H) is the associative subalgebra
of End(L) generated by 1 and ad H. It is of dimension dim L — dim H + 1.

Lemma 4.10 An element h € H is q splitting element if and only if 1 and ad b generate
(1,ad H).

Proof. The dimension of the subalgebra of {1,ad H) generated by 1 and ad & is equal to
the degree of the minimum polynomial of ad h. This degree equals dim [ — dim H + 1 if
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and only if 4 is a splitting element. O

The following algorithm is analogous to the method of finding primitive elements in field
extensions.

Algorithm PrimitiveSplittingElement
Input: A semisimple Lie algebra L with Cartan subalgebra H with basis Aq,... , k.
Output: A splitting element k € H.

h:= hy;

k.=2;

while £ <[ do
c:= a constant such that (1,ad(h + chi)) contains ad & and ad ki
h:=h+ ch
ki=k+1;

od,;

Due to the following lemma, we can find an appropriate constant ¢ in the first step of the
loop.

Lemma 4.11 Let hy, h, be elements of H. Then there exists a ¢ € {0,... ,m} such that
(1,ad(hy + ch2)) = (1,ad hy,ad hy).

Proof. The dimensions of the associative algebras do not change if we tensor with the
algebraic closure of F'| hence we may suppose that the ground field is algebraically closed.
Let

L=0L& &L

be the decomposition of L such that ad h; and ad k, have irreducible minimum polynomials
on L; for 1 <7 < t. So the restrictions of ad k; and ad h, to L; are scalar multiplications
(1 <4 £ t). It follows that (1,ad hy,adhy) = A; & --- @ A, where A; = (1) for
1 <1 < ¢. Hence the dimension of (1,ad &, ad hy) is t. We have to prove that there is a
¢ € {0,...,m} such that the dimension of (1,ad(hy + chy)) is also ¢. This is equivalent to
the decomposition of L relative to ad(hq +chz) also having t components. Let {a,... ,an}
be the set of positive roots and set g = 0 in H*. For 0 < 7 < j < N we consider the
function

9i(z) = ai(h + zh2) — (k1 + zhy) = ai(h1) — (k1) + 2(ei(h2) — a;(ha)).

We have that g;;(z) = 0 if and only if Ly, and L,, are both subspaces of Ly for some
k e {1,...,t}. Also we have that g;;(co) # 0 if and only if ad(hy + cohs) separates L,
and L,; (i.e., the eigenvalues of ad(h + coh2) on Lo, and L,; differ). Now let G(z) be
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the product of all g;;(z) that are not identically zero. If G{cy) # 0, then the decompo-
sition of L relative to ad{h; + cohz) has also ¢ components. Since deg G < m, there is a
¢ € {0,... ,m} satisfying this requirement. {J

The deterministic methods for finding a splitting element are clearly polynomial. In order
to find the Cartan decomposition we need to factor one polynomial so that the resulting
algorithms are polynomial time f-algorithms.

Remark. If L is defined over a field of characteristic p # 2,3, then most statements in
this chapter hold for L, provided that the Killing form of L is nondegenerate. In this case
L behaves like a semisimple Lie algebra of characteristic 0 (see [48]). The only difference is
that splitting elements need not exist if the size of the ground field is small. By the proof
of Proposition 4.9 it is seen that if |F| > m, then splitting elements exist in H. In that
case the algorithm PrimitiveSplittingElement also works. The randomised method is
only guaranteed to work if |F| » m.

Remark. If h € H is a splitting element, then Lo(ad k) = H, so that every element of
ad H acts trivially on Lo(ad h}. It follows that ad A is a locally regular element in the space
ad H (see Definition 3.3). The converse is not true however. See Example 4.14 below.
There ad h; is a locally regular element in ad H, but A; is not a splitting element.

4.2.2 Decomposable elements

Here we show a method for calculating a generalised Cartan decomposition of a Lie algebra
L defined over a small finite field.

Definition 4.12 Let V be a subspace of L stable under ad H. Let Ty be the associative
algebra generated by 1 and ad h|V for h € H. Let x € Ty and let [ be the minimum
polynomial of x. Then z is called decomposable (on V) if f is reducible. And & is called
good (with respect to V') if f is irreducible and deg f = dim Ty.

Algorithm GeneralisedCartanOverSmallFields

input: A Lie algebra L with nondegenerate Killing form, defined over a field F with ¢
elements.

QOutput: A generalised Cartan decomposition of L.

H := CartanSubalgebra(l};
dec = {[i(H}}; k=1,
while k < #dec do
V := the k-th element of dec;
Ty := the associative algebra generated by 1 and ady H;
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7 := a random element from Tvy;
f := the minimum polynomial of z;
{fiy---, fs} := the factorisation of f;
if f is irreducible then
if deg(f) = dim Ty then k :=k + 1; fi;
else
Vii=W(fi(z)); (1 <i<s)
dec:=decU {V,... ,V;};
erase V from dec;

fi;
od:

?

Proof. First we prove the correctness of the algorithm. At termination we have that for
every element V of the set dec there exists an zy € Ty such that zy is good with respect
to V. Then zy generates Ty and zy has an irreducible minimum polynomial. This implies
that Ty is a field and every element of Ty has an irreducible minimum polynomial. Hence
the minimum polynomial of ad 2|V is irreducible for every h € H. The conclusion is that
the elements of dec form a generalised Cartan decomposition.

To prove termination we must show that the random element = chosen in the algorithm is
either decomposable or good with sufficiently high probability. Let V be a subspace of L
that is stable under H. Let Ty be the associative algebra generated by ad h|y for h € H.
We have that Ty is a semisimple commutative associative algebra (see [47], Theorem II.1.2)
so that Ty splits into a direct sum '

Iv=Fo &F

where the F; are finite extensions of the ground field F'. This follows from Wedderburn’s
structure theorem (see [40]).

If s =1 then Ty = F,m. We estimate the probability that z is good. First of all, if m =1
then all elements of Ty are good. Now suppose that m > 1. Let E be the subset of Ty
consisting of all elements z of Ty that do not lie in a proper subfield of Ty. Now to every
irreducible polynomial f over [, corresponds a subset of m elements of E (namely the set of
the roots of f; see [38], Theorem 2.14). Also the sets corresponding to different irreducible
polynomials do not intersect. Let N,(m) be the number of irreducible polynomials over
F,. Write m = ab where b is the largest proper divisor of m. Then

Bl = mN,(m) = 3 u(d)g™"

dlm
2 "~ —q
b
¢’ -1
= ¢q"~¢q
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(See [38], Theorem 3.25). An element z € Ty is good if and only if z € E. And the
probability that a randomly chosen element z € Ty lies in E is
b
|E| L 1-1g 1

b

q.__l 1
__.2:: qm-q—-—* =] - 1__—__2_
qm ( q..l )/q qa—l q 1 qc-l(q__l) 2

Now let s > 1. We now estimate the probability that z is decomposable. First we have
that # = 2y + --- + z, where z; € F; are randomly and independently chosen elements.
The minimurm polynomial of z is the least common maultiple of the minimum polynomials
of the z;. So if z is not decomposable then all z; have the same minimum polynomial.
It follows that the subfields of the F; generated by the z; are all isomorphic. Let this
subfield be F,m. We may suppose that all F; are equal to [F,=; otherwise the probability
that z; € Em 1s less. Now we assume that we have chosen an element z, € F;, with an
irreducible minimum polynomial f of degree m. Because there are exactly m elements in
F, with minimum polynomial equal to f, we have that the probability that a randomly
chosen element z; € F, also has minimum polynomial f is equal to

m

<
qm

I | =t

It follows that the probability that = is decomposable is > 1/2. The conclusion is that
the probability that a randomly chosen element is either good or decomposable is > 1/2.
Hence we expect to find such an element in at most two steps. [J

Corollary 4.18 Let L be a Lie algebra over a finite field with a nondegenerate Killing
form. Then there is a Las Vegas f-algorithm for calculating a generalised Cartan decompo-
sition of L.

Remark. The algorithm described in this section also works over big fields; then the
random element from T will be a splitting element with high probability.

Remark. The method given in this section provides a simplicity test for Lie algebras that
have a nondegenerate Killing form. But if L is a semisimple Lie algebra of characteristic
p, then L may have a degenerate Killing form {(examples are the Lie algebras of type W,
S, H, K, see {19]). In this case the algorithm above may fail because the associative al-
gebra generated by ad H may not be a torus. However, a convenient way of solving this
problem is provided by the Meataxe algorithm (see {28}). Let A be the associative algebra
generated by ad .. Then L is a finite dimensional module for A and a proper submodule
will correspond to an ideal of L. So L is simple if and only if L is irreducible as A-module.
Now the MeatAxe package of GAP provides a method for testing irreducibility. It has the
disadvantage that the dimension of A is substantially bigger than the dimension of L. For
instance if L is simple of dimension n, then the dimension of A is n? (see the proof of
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Theorem X.3 in [32]). However, for Lie algebras of small dimension the MeatAxe provides
an efficient simplicity test. We tested the simplicity of the Lie algebra As ¢ B, & G, defined
over [ using the MeatAxe. It needed 27 seconds to decide that the module was not irre-
ducible. Since in this case the Killing form is not degenerate, we also tried the algorithm
described in this section; it needed 803 seconds to calculate the direct sum decomposition.

4.3 Examples

Example 4.14 Let L be a 6 dimensional Lie algebra with basis

{h1,3:1, Y15 &271"27 yﬁ}'

The structure constants of L are specified in Table 4.1.

[h»l,:s]] = 23}1 [hz, zl] = 221
thi, 1] = =241 [hayn] = -2
[hl,.’L‘z] = 22‘,‘2 [hz,l‘g] = —2%‘2
[hl » 92] = -2y [h*% y2] = 2y,
lenw] = dhi+ ik [22,02] = Fu— Sha.

Table 4.1: Nonzero products of the basis elements of a 6 dimensional Lie algebra.

Brackets of pairs of basis elements that are not present are assumed to be 0. The determi-
nant of the matrix of the Killing form is 2!, hence L is semisimple. As is easily verified,
H = {hq, by} is a Cartan subalgebra.

First we take the ground field to be equal to (1 Then the minimum polynomial of ad(%; +
2hs) 18 X{X + 6)(X ~ 6)(X + 2)(X — 2) so that hy + 2h; is a splitting element. The
decomposition of L relative to ad{hy + 2h3) is

L= {21} @ (z2) @ (y1) D (y2) ® (M1, o). (4.2)

Now the ideal generated by z, is spanned by {zy,y;,{hs + h2)/2}. Similarly, the ideal
generated by z, is spanned by {za,v2, (A1 — h2)/2}. Tt follows that we have found the
decomposition of L into simple ideals.

The structure constants of L can also be viewed as elements of 5. So now we take If; as the
ground field. Then the Killing form is nondegenerate so that we can apply the algorithm
described in Section 4.2.2. The Fitting-one component L1{H) is spanned by {1, y1, 22, y2}
The minimum polynomial of ad{h; +2h;) is X (X — 1){X —2) (denoting the elements of [F;
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by {0,1,2}). So h; + 2h; is a decomposable element and the corresponding decomposition
of Li(H) is
Li(H) = (1) ® (11, %2) D (y2)-

Now we turn our attention to the space V = (y1, z3) (the other two spaces are 1-dimensional
and hence irreducible). The minimum polynomial of the restriction of ad(f; + k3) to V is
X(X —2) so that hy + h; is a decomposable element. We again find the generalised Cartan
decomposition (4.2).

‘ Example 4.15 Let L be a Lie algebra with basis {z;,... ,zs} and multiplication table as
shown in Table 4.2.

Z1 Ty T3 T4 Ts Te
Z] 0 0 2:174 —2313 —-2:176 2:175
T2 0 0 2:173 2:174 —2:175 —2:176
z3 —2:174 —2:173 0 0 T2 Z]
T4 2z3 —2z4 0 0 T )
Ts 2:176 2:175 —T2 —I 0 0
Tg | =25 2t -1, o 0 0

Table 4.2: Multiplication table of a 6 dimensional Lie algebra.

The determinant of the matrix of the Killing form is —2% so that L is semisimple. A
Cartan subalgebra of L is spanned by {z,z2}. The minimum polynomial of ad(z; + z2)
is X(X? —4X +8)(z%+4X +8). Hence z, + z; is a splitting element. The corresponding

generalised Cartan decomposition is
L=1L3s® Lse® L1,2,

where L, ; is the subspace spanned by {z;,z;}. From the multiplication table it follows
that the ideals generated by L34 and Lsg are both equal to L. Hence, by Theorem 4.4 we
have that L is a simple Lie algebra.

4.4 Evaluation

In Section 1.4.6 a more general method for decomposing a Lie algebra as a direct sum of
ideals is described. Here we compare this general method with the special methods for
semisimple Lie algebras that we propose. The general method has of course the advantage
of being more general. However, a disadvantage of this method is the fact that it com-
putes the centraliser of ad L in the matrix algebra Maim (F'). Since the dimension of this
centraliser can be significantly bigger than the dimension of L, this may be a difficult task.

So now we have the following methods:
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s {General method) The algorithm described in Section 1.4.6.
s (Random) The method that uses the randomised method to find a splitting element.

- (Subs.) The method that substitutes y**! for z; in the polynomial G in order to find
a splitting element. '

¢ (Prim. elt.) The algorithm that finds a “primitive element” in the associative algebra
generated by 1 and ad H.

¢ (Dec. elt.}) The algorithm given in Section 4.2.2 that uses decomposable elements.

We have tested these methods on some direct sums of sl;, sl3 and sl4 over the field ) We
took the standard Chevalley basis to produce the structure constants of L. The results
are shown in Table 4.3. The randomised method used a set of 2m elements, from which
it selected the coeflicients of a splitting element. From this table we see that the running
times of the general method increase rapidly if the dimension increases. This is caused by
the computation of the centraliser of ad I in My, 1,(F). The primitive element method
has the disadvantage that it has to calculate the dimension of an associative algebra many
times. It is seen that the randomised method is the fastest.

Lie algebra | dimension | General method | Random | Subs. | Prim. elt. | Dec. elt.
sly ®sly 6 12 13 13 13 18
sly @ sly 11 35 24 39 31 33
sly @ sly 16 127 38 64 113 71
sly @ sly 18 205 48 69 150 109

Table 4.3: Running times {in seconds) of the algorithms for decomposing a semisimple Lie
algebra.

4.5 Acknowledgements

The deterministic algorithms for finding a splitting element saw the light in conversations
with G. Ivanyos. The algorithm PrimitiveSplittingElement is a variant of the algorithm
for finding a splitting element in a maximal torus, given in [31], Section 5.5.



Chapter 5

The type of a semisimple Lie algebra

The human mind has proved to be able to solve the problem of the identity of simple Lie
algebras. Let L be a simple Lie algebra over an algebraically closed field F of characteristic
0. Then L is known: it is isomorphic either to an element of one of the “great” classes of
simple Lie algebras (A;, By, Ci, D;) or to one of the exceptional Lie algebras { Es, E7, Es,
F4, Gz).

The semisimple Lie algebras are direct sums of simple ones. Hence also the semisimple Lie
algebras are classified. If a given Lie algebra L is isomorphic to e.g. Az + Ds + G2, then
we call Az + D5 + G the type of L.

In Section 5.1 we give a method for obtaining the type of a semisimple Lie algebra with
structure constants in ) Thereby we solve the isomorphism problem for semisimple Lie
algebras over QD having structure constants in ) In Section 5.2 we give a different method
for solving this problem. Finally in Section 5.3 examples are given and the two methods
are evaluated.

5.1 Identifying a semisimple Lie algebra

For a semisimple Lie algebra we would like to be able to obtain its type. In general
however, to calculate the root system and the corresponding Cartan matrix, we need
arbitrary number fields. We have an example illustrating this.

Example 5.1 Let L be the 6-dimensional Lie algebra of Example 4.15. Then, as shown
in Example 4.15, L is simple. However, over {J there is only one 6-dimensional semisimple
Lie algebra, namely A; + A;. In this case, to obtain a splitting of the Cartan subalgebra,
we need the field (/—1), a field of degree two.

51
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Let H be a Cartan subalgebra of L with splitting element & {see Section 4.2.1). Then the
degree of the field extension needed to split the action of ad ki can be very large (if the
minimum polynomial of ad & is irreducible and of degree d, then “generically” the degree
of the field extension needed is d!). The idea we pursue here is to avoid working over
large number fields by reducing the Lie algebra modulo a prime number p. (Note that
if we multiply all basis elements by a scalar A, then the structure constants relative to
this new basis are also multiplied by A, so that we can get all structure constants to be
integers.) The algebraic extensions of [, are much easier to handle. If p does not divide
the determinant of the matrix of the Killing form, then the reduced Lie algebra fits into a
similar classification (see [48]). The only thing we have to prove is that both Lie algebras
produce equivalent Cartan matrices. ‘

We start with a semisimple Lie algebra K defined over () with a basis chosen in such a
way that the structure constants relative to this basis lie in Z. We may assume that this
basis contains a basis {A1,...,m} of a Cartan subalgebra. Let f; be the characteristic
polynomial of adk; for 1 < i < I. Write f; = X™g; where g:(0) # 0. If p > 7T is a
prime number not dividing the determinant of the matrix of the Killing form of K and not
dividing the numbers ¢;{0) for 1 < i <[, then p is called pleasant. In the sequel we use a
fixed pleasant prime number p.

Let F be the smallest number field containing all eigenvalues of the ad h; for I < ¢ <l and
let OF be the ring of algebraic integers of F. There exists a prime ideal P of OF such that
PN Z=(p) (see [34], p. 9). Let

O£={§Jxeop,y€0‘“’\?}

be the localisation of OF at P. Let M, be the unique maximal ideal of OF. It follows that
there is an m > 0 such that O /M, = Em, the finite field of p™ elements.

Now let L be a Lie algebra over OF with the same multiplication table as K. Set
Lp - L ®o; Em .

Let ¢ : OF — E,m be the projection map. In the obvious way ¢ carries over to a map from
Lto L. Let {z,,... ,z,} beabasisof L and set Z; =2, @1 € L, for 1 <i¢ < n. Then

¢(}: ww;) = Z #(a:)i,

where {Z1,...,%x} is a basis of L,. Let & be the Killing form of L and let &, be the
Killing form of L,. The structure constants of L, are the images under ¢ of the structure
constants of I, and hence they lie in the prime field [F,. From this it follows that

rp(P(x), oy)) = ¢(k(z,y)) for z,y € L.
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Because p is pleasant, we have that &, is nondegenerate.

Since the structure constants of L are the same as those of K, also the basis of L corre-
sponding to these structure constants contains a basis of a Cartan subalgebra H. Let H,
be the image under ¢ of H. Furthermore H* will be the dual space of H (defined over OF)
and H} will be the dual of H,. The map ¢ induces a map

$: H" — H.

For A : H — OF an element of H* we set d(A)(#(R)) = #(A(R)). The image of X is denoted
by M.

Since OF contains all eigenvalues of ad h; for 1 < i < I, the roots exist over Og. Let
R C H* be the set of roots and denote the image of R under ¢ in H; by R. Then the
elements of R are the roots of L,.

Lemma 5.2 The subalgebra H, of L, is a Cartan subalgebra of L,,.

Proof. Let « be a root of L. The fact that p is pleasant implies that the multiplicity of 0
as a root of f; is the same as the multiplicity of 0 as a root of f; and hence & is nonzero. So
if z5 is a nonzero element of the root space of L, belonging to &, then there is an index ¢
such that [h;, z5] = &(h:)z5 is nonzero. Hence if [k, z] € H, for an Z € L, and all h € H,,
then z € H,, i.e., the normaliser of H, in L, is H, itself. The fact that H, is nilpotent is
a consequence of the nilpotency of H. O

Lemma 5.3 The restriction of k, to H, is nondegenerate.

Proof. Let k be an element of H and A its image in H,. Let L = H & L, (H) be the Fitting
decomposition of L relative to H (see Proposition 1.23). Then from [32], p. 108, it is seen
that k(h,z) = 0 for all z € Ly(H). Hence also ,(h,z) = 0. Because «, is nondegenerate
there must be a g € H such that &,(k, §) is nonzero. O

It is well known that we can identify H and H* because the Killing form is nondegenerate.
Let A be an element of H*. Then the corresponding element §()) of H is required to satisfy
&(0(X),h) = A(h) for all h € H. If {hy,... ,ly} is a basis of H and 8()) = a1hy +- - - + ashy,

then we have the system of equations
ay /\(h])

(s(hishs)) | 2 | = : : (5.1)
aj /\(h])

By Lemma 5.3 the determinant of the matrix of this system is an integer not divisible by
p. Hence by Cramer’s rule there exists a unique solution over O%. Also by Lemma 5.3 we
have that in the case of L, there is a similar map 6,.
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Lemma 5.4 We have the following identity:
$ob=20,0¢.
Proof. Choose A € H* and suppose that Op(qz(/\)) = bihy + -+ + bhy, where b; € Eom.

Then because ¢(A)(k;) = ¢(A(h:)) we have that the system of equations for the b; is just
the image under ¢ of the system of equations (5.1). Hence b; = ¢(a;) and we are done. O

Using the map 8, a bilinear form ( , ) is defined on H* by

(A, 1) = &(6(), 6(r))-
In the same way there is a bilinear form (, ), on H;.

Lemma 5.5 For \,u € H* we have ¢((A, 1)) = (X, &)p-

Proof. The proof is by straightforward calculation:

(A p) = (<(8(X),6(

Il
=
u

Il
=
b
A~~~

O

Let o and 8 be two roots; then we set

2(a,B)
8.8 ~ P
For the modular case we have a similar formula
2(&,,@);, /= A
(IB’ B)p - (aa IB>P

We remark that since p > 5, Theorem 5.6 of [47] implies that (3, 8), is nonzero.

We call a set of roots {a1,...,q} a fundamental system if for any root o one of the

following holds:

1. ¢ is a member of a sequence of the form ay,, o, + oy, @ + oy, + s - ..

2. —a is a member of such a sequence.
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We note that every root system has a fundamental system (see [29], [48]). If {ev, ... , e} is
a fundamental system, then C' = (e, ;) (respectively C = (@i, @&;), in the modular case)
is the corresponding Cartan matrix.

Proposition 5.6 Let C be a Cartan matriz of R, then ¢$(C) is a Cartan matriz of R.

Proof. Let {ey,...,q} be a fundamental system of roots in H*. Then it is immediate
that {&,... ,&} is a fundamental system of roots in H. Hence Lemma 5.5 implies that

(@;,&5)p = é((“ﬁ aj))‘
(|

Corollary 5.7 From a Cartan matriz of R we can recover a Cartan matriz of R.

Proof. The numbers (a;, ;) are known to be 2, 0, -1, -2 or -3 ([32], p. 121). Because
p > 7, we can recover those numbers from their images in I,. Now Proposition 5.6 finishes
the proof. O

The above results lead to the following algorithm:

Algorithm Type
Input: A semisimple Lie algebra L over (@
Output: The type of L.

Step 1 Calculate a Cartan subalgebra H of L (Chapter 3).

Step 2 Extend a basis of H to a basis of L and multiply by an integer in order to ensure
that all structure constants relative to this basis are integers.

Step 3 Select a pleasant prime p.

Step 4 Let S be the table of structure constants obtained from the table of structure con-
stants of L by reducing every constant modulo p. Let L, be the Lie algebra with
structure constants table S, defined over F,» where m is large enough to ensure that
the characteristic polynomials of ad A; for A; in a basis of H, split into linear factors.

Step 5 Decompose L, into a direct sum of simple ideals (Chapter 4).

Step 6 For each component of L,, determine a fundamental system inside the root system.
Calculate the Cartan matrices which determine the type of L..
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Remark. The integer m in Step 4 will be the least common multiple of the degrees of
the irreducible factors of the minimum polynomials of ad h;, where h; runs over a basis of
H,. Also, if L, has a splitting element, then m will be the least common multiple of the
degrees of the irreducible factors of the minimum polynomial of a splitting element. We
have no proof that this number is polynomial in the dimension of L, so that we do not
know the complexity of this algorithm.

Remark. The number —3 will occur in the Cartan matrix only if there is a simple factor
isomorphic to (3. So if the semisimple Lie algebra I has no ideals of type G,, then we can
take p > 5. On the other hand, if a simple ideal I of L is of type (7;, then we can recognise
it by inspection of the dimension and the rank. The conclusion is that we can always take
P29

Remark. The only cases where we need to calculate the root system of a simple compo-
nent K of L is where K is isomorphic to B;, Ci or Eg. The Lie algebras B; and C; have
the same dimension and rank and the dimension and rank of Fg are equal to those of By
and Cgs. The other simple Lie algebras reveal their type by their dimension and rank.

Remark. For the numbers {a, 3} appearing in the Cartan matrix there is a well-known
formula. Let s and ¢ be the largest non-negative integers such that

a_sﬂaa_(s_l)ﬂw" 7a+(t_1)/3’a+t/9

are all roots. Then (e, B) = s — ¢ ([29], p. 45, see Theorem 5.6 of [47] for the modular
case). This gives an easy and fast algorithm to calculate these numbers.

5.2 Isomorphism of semisimple Lie algebras

Here we present an algorithmic method to decide whether two semisimple Lie algebras are
isomorphic. Let L be a semisimple Lie algebra of dimension n with Cartan subalgebra H.
Suppose {h1,...,H} is a basis of H. Let z4,... ,2; be indeterminates and set h = 3 z;h;
which is an element of L ® F{z1,...,2:). Let =

fMY =T+ pi(z1,-- ,2)T* o+ pol,. .0, 30)

be the characteristic polynomial of ad &. Then we call f the characteristic polynomial of
the action of H on L.

Theorem 5.8 Let L; and Ly be semisimple Lie algebras over an algebraically closed field
F of characteristic 0. Let Hy and H, be Cartan subalgebras of L, and Lj, respectively.
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Suppose dim Hy = dimHy =1 and dim Ly = dim Ly =n. Let
fl(T) = Tn +p1(.’L‘1, . ,x;)T""l 4 e +p0(3:1,. .. ,.’Et)

and
LT =T"+qly, ., y)T" "+ + g0, ,0)

be the characteristic polynomials of the action of Hy {on L,) and H, (on L;), respectively.
Then Ly and L, are isomorphic if and only if there is a transformation

g1 = an + apz; + - +ayy
(5.2)

Y= endytaptt o+ e
such that det(a;;) # 0 and pi(z1,... ,2) = ¢(§1,... , ;1) for 1 i < L

Proof. Write L, = V|, @ H, and L, = V, @ H; (direct sums of vector spaces), where the
subspaces V; and V; are the sums of the root spaces of L) and L., respectively. Suppose
that L; and L, are isomorphic. Because all Cartan subalgebras are conjugate (Theorem
1X.3 of [32]), we may assume that an isomorphism Ly — L, maps Hy to H,. Let ay,... ,a.
be the roots of L; and let {A;,...,k} be a basis of H;. Then

T

AT =TT - as(b)zy — -+~ — cs(hi)z2).

i=1

A base change of V; does not affect the characteristic polynomial of the action of H;. Hence
we consider the effect of a base change in H; on the polynomial fi. Suppose {hy,...,h}
is a second basis of Hy, where h; = 3 az;hi. Then

! t
T - ai(hi)z:~ -~ i(b)zy = T~ ai(z aphi)zy — o — az(Z aphi)Ti
231 k=1
i !
= T —eodh) Z ayzy — - — o(hy) Z Qg
k=1 k=1
= T —eoih)jh - — (b))

The conclusion is that a base change of H, corresponds exactly to a change of variables in
the polynomials p;. So Ly & L; implies that there is a transformation of the form (5.2).

Now suppose that there is a transformation of the form (5.2). Let {k1,..., %} be a basis
of H,. We define a linear map ¢ : H; — H; by
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We extend this map to the dual spaces by ¢{a)(¢(h)) = a(h) for « € H; and h € Hy. We
claim that if & is a root of Ly, then #{c) is a root of L. To see this, note that a root g of
L, corresponds to a factor

T = B(h)yr — - = Blha)wi
in f;. Now choose f such that by the transformation (5.2) this factor is mapped to

T - a(by)zy — < — alh)zy.

Then we calculate

i

{
T - 8() Y. avges = -~ Alh) Y e
J=1

=1

T — B(ha)ir — - — Blh)

i i

= T—(3 apph))zs — - = () euBhy))a.

=1 F=1
It follows that l ,
ofh;) = Z a;iP(k;) = !3(2 ajih;) = B((k:)).

So on a basis of H; the functions ¢(a) and § have the same values, forcing ¢(a) = . The
conclusion is that L; and L; have isomorphic root systems and hence L; & L, (see [29],
Theorem 14.2). O

The algorithm resulting from this is the following:

Algorithm: IsIsomorphic
Input: Two semisimple Lie algebras L, and L,.
Qutput: The boolean L; = L.

Step 1 If dim L; 3 dim L, then return false. Otherwise set n = dim L.

Step 1 Calculate Cartan subalgebras Hy and H, of Ly and L, (Chapter 3). If dim H, #
dim H, then return false. Otherwise set [ = dim H,.

Step 2 Calculate the polynomials p; and ¢; (for 0 <7< n—1}.

Step 3 Introduce the variables aj; for 1 < j,k < I and substitute §; = > a5z in‘ the p;.
Require that the resulting polynomials are equal to the ¢;. This yields a system of
polynomial equations in the variables a;.

Step 4 Now by a Grobner basis computation we can check whether there is a solution to the
system of equations we obtained in the preceding step.
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5.3 Examples

Example 5.9 Let L) be the Lie algebra of Example 4.14. Then the matrix of the restric-
tion of | ad hy + {3 ad h, to the space spanned by {z1,y1,22,42} is

20 +2G 0 0 0
0 -26-2 0 0
0 0 20 — 26, 0
0 0 0 =20 +20G

It follows that the characteristic polynomial of the action of Hy on L, is

A(T) = THT =20 — 26)(T + 26+ 2G)(T = 26+ 26G)(T + 26 — 26)
= TO4 (=8¢} —8(HT*+ (16¢} — 32¢2 (3 + 16¢3)T.

Let L; be the Lie algebra of Example 4.15. Then the matrix of the restriction of £ ad z; +
£y ad x3 to the span of {zs, x4, 25,26} is

2 =26 0 0
2 2%, 0 0
0 0 ~2 26
0 0 24 -2%

Hence the characteristic polynomial of the action of the Cartan subalgebra H; of L, is

FAT) = THT? - 46T + 48 +4E2)(T* + 46T + 48 + 4¢)
= T+ (86 —86)T* + (16¢] +3267¢3 + 16£3)T*

It is easily seen that the transformation ; = £y, (; = £; transports f; to fz. The conclusion
is that Ly and L, are isomorphic.

Now we try to calculate the type of L,. The characteristic polynomials of ad z; and ad z;
split over I, Over this field L; splits as a direct sum of two ideals I; and I, where

Il = (.735 + 2:53, Is + 2$4,$1 + 33.12),

and

Iy = ($3 + 3z4, 25 + 326,21 + 23;2).
(The elements of [§ are denoted by {0,1,2,3,4}.) Using the multiplication table of Ex-
ample 4.15, we can calculate the multiplication tables of I and I,. Then these ideals turn

out to be isomorphic to sl;. The Lie algebra L splits over any field. Also this Lie algebra
is 1somorphic to a direct sum of two copies of sl;. The details are left to the reader.

In order to test the algorithm Type, we first construct semisimple Lie algebras over Q
that do not split over Q (i.e., they are simple over Q). Let L be an absolutely simple Lie
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algebra (i.e., L does not split over any algebraic extension of (), with basis {z;,... ,z.}
and structure constants (cfy) Let f € Q[z] be an irreducible monic polynomial of degree
d and let « be a root of f. Then L(f) will be the Lie algebra over (Q with basis

2 2 de1 d-1
Tigero yTay OBy e s s QT T ye v s Ty y & Liye.e & T

The multiplication of L{f) is specified by

[eFz;, olz;] = Z ok,
ma=1
Over an algebraic extension of Q this Lie algebra will split as a direct sum of d ideals, all
of the same type as L. However, L(f) is simple over ) We calculated the type of L(f)
for various polynomials f and two simple Lie algebras [ = A; and L = B,. The results
are displayed in Table 5.1.

f splitting field | dim 4,(f) | Type (A:1(f)) | dim By(f) | Type (H2(f))
2—z+1 [Hs2 9 23 30 339
43z +1 Es 12 38 40 616
z5 — 4z 42 E. 15 66 50 1388
2% +4r 41 E 18 94 60 2391
48z +1 [E:- 21 140 70 3874
4+ 5z4+1 Fs 24 194 80 5549

Table 5.1: Running times (in seconds) of the algorithm Type, with A;(f) (fourth column) and
Bo(f) (sixth column) as input. The second column displays the field that was used to split the
Cartan subalgebra.

We consider the system of polynomial equations that arises in Step 3 of the algorithm
IsIsomorpic. The number of variables is {dim H)?. Hence the number of variables in-
creases rapidly if dim H increases. When testing the isomorphism of 50, @ sl; @ sl; and
Ai(z® — z + 1), we got 49 polynomial equations in 9 variables. And already the Grébner
basis computation became problematic. Also the calculation of the characteristic polyno-
mial of the action of a Cartan subalgebra is problematic. Maple used 92.6 seconds for this
computation in the case of 4;{z® — 4z + 2) and it was not able to do the computation
in the higher dimensional cases. The conclusion is that this isomorphism test is not well
suited for practical problems.

5.4 Ackhowledgements

Theorem 5.8 finds its origin in an idea by H. Kraft (personal communication). The method
of constructing nonsplit semisimple Lie algebras (described at the end of the last section)
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Chapter 6

Constructive Ado

In this chapter we consider the problem of constructing a faithful matrix representation of
a Lie algebra given by a table of structure constants. According to Ado’s theorem this is
always possible. However, the standard proofs of this theorem (see [6], [32]) do not provide
effective constructions.

Throughout we suppose that L is a finite-dimensional Lie algebra of characteristic 0. A
first idea is to look at the adjoint representation of L. The kernel of ad is the centre
Z(L) of L. So for Lie algebras with a trivial centre the problem is solved by the adjoint
representation. The rest of this chapter will be concerned with Lie algebras that have a
nontrivial centre,

The method that we describe here follows roughly the lines of the proof of Ado’s theorem
given in [8]. In this proof a tower (with certain properties) of Lie algebra extensions (where
every term is an ideal in the next one) is constructed with final term L. An algorithm
for computing such a tower is given in Section 6.1. A representation of the first element
of the tower is easily constructed. Then this representation is successively extended to
representations of the higher terms of the tower and finally to L itself. Sections 6.2 and 6.3
focus on a single extension step. In Section 6.2 the vector space underlying the extension
is described. We take a significantly smaller space than is done in the proof in [6]. Then in
Section 6.3 it is proved that it is sufficient to work with this smaller space. An algorithm
for calculating the extension is given. In Section 6.4 an algorithm for the construction of a
faithful finite-dimensional representation of L is given and Ado’s theorem is obtained as a
corollary. Also an upper bound on the degree of the resulting representation is given in the
case where L is nilpotent. Finally, in Section 6.5 some practical examples are discussed.

63
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6.1 Calculating a series of extensions

Here we describe how a series of subalgebras Ky € Ky € -+ C K., = L can be constructed
such that Ky, = K; x H;, where H; is a subalgebra of K;y;. The following algorithm
calculates such a series.

Algorithm ExtensionSeries
Input: A Lie algebra L over a field of characteristic 0.
Qutput: Series Ky, K,,.., ,K, = L and H;,... , H._; such that

1. K is commutative,
2. K§+1 == K,‘ ] H,',
3. [H;,K,‘] C NR(K,’) for1<i<r~1,

4. dimH; =1fori<i<r-1.

R :=SolvableRadical({L);
K; := the final term of the derived series of R;
1= 1;
while K; # R do
I := the unique term of the derived series of R such that [I,1] C K|,
but I is not contained in K;
y == an element from I\ Kj;
Kipq = K; 2 {y);
H;:=(y);
=1y
od;
ro=i41;
K, := L; H._; := LeviSubalgebra(L);

Proof. First we consider the computability of all the steps. Algorithms for the computa-
tion of the solvable radical, of the derived series and of a Levi subalgebra are described in
Chapter 1. So it is easily seen that the algorithm terminates.

Now we prove that the output satisfies the properties listed above. In the first part of the
algorithm a series of subalgebras

OCKiCKy,c---CK...=R

is constructed such that K;y; = K; % {y). From the choice of y; it is seen that K; is indeed
an ideal in Kiy;. For 1 <4 < r —1 we let H; be the 1-dimensional subalgebra spanned by
y;. At the end we let H,_; be a Levi subalgebra and we set K, = L.
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The first two properties of the output are immediate. We have that [L,R] C NR(L)
(Theorem 11.13 of [32]) and K; € Rfor 1 < ¢ < r — 1. Hence [H;,K;] C NR(L) N
K; ¢ NR(K;). The last inclusion follows from the fact that adg, z is nilpotent for all
¢ € NR(L)N K;.

Finally from the construction above it is seen that dimH; =1for 1 <i<r—1. [J

6.2 The extension space

Here we consider the situation where L = K x H. Starting with a finite-dimensional
representation p : K — gl(V) of K we try to find a finite dimensional representation o of
L. Under some conditions we succeed in doing this.

First we describe the space on which L is to be represented. By U{K) we will denote the
universal enveloping algebra of K. If {z1,...,z;} is a basis of K, then by the Poincaré-
Birkhoff-Witt (PBW) theorem ([32], Theorem 5.3) a basis of U(K) (called PBW-basis) is

ke

formed by the standard monomials z7* - - - x,".

The representation space of L will be a finite-dimensional subspace of the dual space U(K')*.
First we describe how L acts on U(K)*. Let f be an element of U(K)* and let z € K and
y € H. Then for ¢ € U(K) we set

(z-f)a) = flaz)
(y-f)le) = —flya—ay).

Note that for ¢ € U{K) we have that ya — ay (which is an element of U(L)) also lies in
U(K). By some simple calculations it can be shown that this is indeed a Lie algebra action

(l6], §7.2).

We extend the representation p of K to a representation of the universal enveloping algebra

U(K), by .
1 t

p(af - aft) = p(ar) -

. p(xg)k'.

Consider the map '
&:VxV* —s UKY)

defined by @(v,w*}(a) = w*(p{a)v). An element §(v,w*) is called a coefficient of the
representation p. By C, we denote the image of 8 in U{K)*. For the proof of the following
lemma we refer to [6], §7.1. ‘

Lemma 6.1 C, is ¢ K-submodule in U{K)*.

Let S, C U(K)* be the L-submodule of U{K)* generated by C,. Let o : L — gl(5,) be the

corresponding representation. In [6] the direct sum of n copies of o is taken as extension
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of p, where n = dim V. Then it is proved that this representation contains a copy of p.
This is not guaranteed to hold for . However, by a slight abuse of language we will call
o the extension of p to L.

The next proposition states some conditions under which S, is finite-dimensional. .

Proposition 6.2 Let L = K x H be such that [H,K] C NR(K) and let p: K — g{(V)
be a finite-dimensional representation of K such that p(z) is nilpotent for all z € NR(K).
Let o : L — gl(S,) be the extension of p to L. Then we have that S, is finite-dimensional
and o{z} is nilpotent for all z € NR(L).

Proof. The proof of these facts can be found in the proof of Theorem 1 of [6] §7.2. O

6.3 Extending a representation

Here we show how a faithful finite-dimensional representation of a Lie algebra L can be
constructed using the extension described in the previous section.

Throughout this section L = K x H and p: & — gl(V) is a finite-dimensional represen-
tation of K. Furthermore, ¢ : L ~+ gl{8,) will be the extension of p to L.

The key to the algorithm will be the following proposition.

Proposition 6.3 Suppose that p is a faithful representation of K. Then o is faithful on
K. Furthermore, if H is I-dimensional, then o is a faithful representation of L or there is
an element § € K such that y — § € Z(L), where y is an element spanning H.

Proof. Let = be a nonzero element of K. Then p(z) # 0 and hence there are v € V and

w* € V* such that
0 # w*(p(z)v) = o(2) - 6(v, w")(1).
Hence o(z) # 0 for all z € K so that o is faithful on K.

Suppose that H = (y). Suppose further that o is not faithful on L. This means that there
is a nontrivial relation

No(y) - o(§) =0,
where § € K. Because o is faithful on K, we may assume that A = 1. It follows that
o(y) = o(g). Then for all z € K we have

o([7,z]) = [o(§), o(2)] = [o(y), 0(2)] = o

ly,
Since o is faithful on K, this implies that [§, z] = [y, z]. Also o([y, ¥~ §]) = 0 and because
ly,y — 7] € K we have that it is 0. The conclusion is that y — § € Z(L). O

z]).
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Now we continue with some observations about the space S,. In the sequel {y1,...,¥s}
will be a basis of H, and {v1,...,v,} will be a basis of V. By e; we denote the n x n
matrix with a 1 on position (7, ) and zeros elsewhere.

Lemma 6.4 Suppose that p(z)vy = 0 for all elements + € K. Then there is a basis
{w1,... ,wn} of S, such that o(z)w, =0 forallz € L.

Proof. We work with the customary dual basis {v{,...,v.} of V* (i.e., v}{v;) = &;).
Set w; = O(vy,v7). Let a be a monomial in U(K). We calculate wy(e) = 8(vy,v])(e) =
vi{p(a)v); it is 0 if « # 1 and 1 if @ = 1. It follows that w; takes the value 1-on the
element 1 of U(K) and 0 on all other monomials. In particular w; is nonzero. Now we
extend w; to a basis wy,... ,wn of S,. If z is an element of K then o{z)wi(a) = wi(az).
The support of az does not contain a constant term, hence wy(az) = 0. Now let z € H.
Then o(z)wi{a) = —wi{za — az). Since the support of za — az also does not contain a
constant term, we have that wy(za — az) = 0. It follows that o(z)wy =0forallz e L. O

Lemma 6.5 The space S, is spanned by the elements
yit - yb - 0(vi,v])
where b, >0 (1 < g<s)and1<4,5 <n.

Proof. Let {z;,...,z;:} be a basis of K. Then by the PBW theorem S, is spanned by all
elements of the form

& k I 4
y11 PN ys‘ . xll AP xtt . 6('{}{,1);}.

But since C, is a U{K)-module (Lemma 6.1), we have that such an element is a linear
combination of elements of the form '

n' ey 8o, of).

O

Let a be an element of U(K). By Orby(a) we denote the orbit of ¢ under the action of
the elements of H, i.e., '

Orby(a) = (Wi - -y* . a|ky,... b, > 0),
where y; - ¢ = y;0 — ay;.

Lemma 6.6 Let f € S,. If a is an element of U(K) such that p(Orby(a)) = 0, then
fla) =
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Proof. Set g = yf ... yk - 0(v;,v7). Then

gla) = £v}(p(y¥ -y - a)vi) = 0.

Now Lemma 6.5 implies that f is a linear combination of elements of this form (note that
since H is a subalgebra we have that a monomial y% - .- yfl is a linear combination of
monomials of the form y7* -- -y ). It follows that fa) = 0. O

Remark. Let a be an element of U(K') of degree d. Let W be the span of all monomials
in U(K) of degree < d. Then Orbg(a) C W. The conclusion is that Orby(a) is finite
dimensional. By viewing it as a subspace of W, we can calculate a basis of Orbg(a). -

Now we formulate an algorithm for extending the representation p to L. There are two cases
to be considered; the general case and the case where H = (y) and there is a § € K such
that y—§ € Z(L). In the second case we can easily construct a faithful representation of L.
Then by Proposition 6.3 we always obtain a faithful representation of L in the case where
H is 1-dimensional. For greater clarity we formulate the algorithm using a subroutine that
treats the general case. We first state the subroutine.

We consider the problem of representing a function in U(K)™ by a vector. In the algorithm
this is done by taking a finite set of monomials (called V;) and giving the values of the
function on that set. This enables us to represent every element of S, by a vector of finite
length so that we can use linear algebra to calculate a basis and the coefficients of an
element with respect t6 that basis.

Algorithm GeneralExtension
Input: L =K x H and p: K — gl(V).
Output: The extension o : L — gl(5,).

Step 1 Calculate a set of standard monomials {m,,... ,m,} that form a basis of a comple-
ment to kerp in U(K).

Step 2 Calculate a basis of C,.

Step 3 d := maxdegm;

Step 4 Vy:={a € U(K) | ais a monomial of degree < d such that p(Orbg(a)) # 0};
Step 5 Calculate a basis of S, (relative to V;), and let the first basis element be 6(vy, v}).

Step 6 Calculate the action of the elements of a basis of L on S,. If this yields a representa-
tion of L, then return that representation. Otherwise set d = d + 1; and go to Step
4.
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The algorithm 1s straightforward. It calculates a basis of S, and the matrices of the
corresponding representation. Most of the steps are concerned with finding an appropriate
set V4 of monomials relative to which we can represent all elements of S,. First we consider
the space C,. We have that

8(vi, v})(a) = vi(p(a)vi),

so that we can describe a function in C, by giving its values on the monomials m; con-
structed in Step 1. Now we let V; be a subset of the set of all monomials of degree < d. So
initially we set d equal to the maximum degree of a monomial m;, ensuring that all these
elements will be contained in V;. By Lemma 6.6 we may discard all monomials @ such that
p{Orbg(a)) = 0. Using Lemma 6.5 we calculate a basis of 5, representing each function
on the set V;. Then we calculate the matrices of the action of the elements of a basis of
L. If this yields a representation of [, then we are done. Otherwise we apparently did not
calculate all of S, in the preceding step. This means that there are functions in S, that
cannot be described by giving their values on only the monomials in V;. So in this case
we set d := d + 1 and go through the process again. Since S, is finite dimensional, the
procedure will terminate.

Now we state the routine that also treats the special case.

Algorithm ExtendRepresentation
Input: L = K x H and p: K — gl(V) such that p(z) - vy =0 for z € K.
Qutput: An extension o : L — gl{W).

if H = (y) and there is a § € K such that

y—9€Z(L)
then
ni=dimV;

U(?f - §) = e?::}t-l;
for z in a basis of K do
o(z) == the n + 1 x n + 1 matrix of which the n x n submatrix
in the top left corner is p(z) and the other positions are 0;
od;
else o := GeneralExtension(L, p);

fi;

Proof. First we remark that finding a § such that y — § € Z(L) amounts to solving a
system of linear equations.

We have to prove that the map o constructed in the first part of the algorithm is a rep-
resentation of L. Since p(z) v = 0 for all z € K, we have that the first column of the
matrix p{z) is zero. Hence a(y — §) commutes with p(z) for z € K. O
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6.4 An effective version of Ado’s theorem

Using the routines ExtensionSeries and ExtendRepresentation, we formulate an algo-
rithm for calculating a finite-dimensional faithful representation of an arbitrary Lie algebra
of characteristic 0.

Algorithm Representation
input: A Lie algebra L.
Qutput: A finite-dimensional faithful representation o of L.

[Ky,...,K,,Hy,..., H;] :=ExtensionSeries(L);
pi(z:) = effiy
{Where {zy,... ,25} is a basis of K;)
1= 2;
while : <r -1 do
p: :=ExtendRepresentation(p;.,K;};
t:=1+1;
od;
if H,_; # 0 then
pr :=ExtendRepresentation(p,.1,L);
o := DirectSum(p,,ad);
else
0= proy;

fi;

Proof. It is a trivial fact that the algorithm terminates. We prove that it outputs a
faithful representation of L.

The algorithm starts with a representation of the commutative subalgebra K;. We re-
mark that p(z) is nilpotent for all z € NR(K;) = K;. Then we successively construct
representations p; of K;. By Lemma 6.4 an invariant of the process is that p;{z)}v; = 0
for z € K;. Hence we have the correct input for the subroutine ExtendRepresentation.
Also by Proposition 6.2 and property 3 of the output of ExtensionSeries we have that
pi is always nilpotent on the nilradical of K; so that S, will be finite-dimensional. By
Proposition 6.3 and property 4 of the output of ExtensionSeries we have that each time
ExtendRepresentation will return a faithful representation.

The last step is the extension to the Lie algebra R x5, where R is the solvable radical of L
and S is a Levi subalgebra. This time after having called ExtendRepresentation there is
no guarantee that the resulting representation will be faithful. However it will be faithful
on It and consequently on the centre of L. Then we take the direct sum with the adjoint
representation obtaining a representation that is faithful on the centre as well as on the
rest of L. O
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Corollary 6.7 (Ado’s theorem) Let L be a finite-dimensional Lie algebra over a field
of characteristic zero. Then L has ¢ faithful finite-dimensional representation. Moreover,
a representation can be constructed such that the elements of the nilradical of L are repre-
sented by nilpotent matrices.

Proof. Set o = Representation(L). First we suppose that L is solvable. Then by Propo-
sition 6.2 we have that o(z) is nilpotent for all z € NR{L). If L is not solvable, then o is
the direct sum of the adjoint representation and a representation p, that was constructed
by several extension steps. Now for z € NR(L) we have that ad(z) is nilpotent. Also p(z)
is nilpotent; so the conclusion is that o(x) is nilpotent. {1

Now we consider bounding the degree (i.e., the dimension of the representation space) of
the representation produced. In general we are not able to do this; however if [ is nilpotent
then we can provide a bound. For this we introduce a weight function w on U{L), following
{8]. So let L be a nilpotent Lie algebra of nilpotency class ¢. This means that the lower
central series of L is

L=L'>L*>--.DL*> L =0.

Then for z € L we let w(z) be the number k such that z € LF but =z ¢ L¥*. We
extend w to U(L) by setting w(ab) = w(a) + w(b) and w(a + b) = min(w(ae), w(d)) if
a+ b # 0. Furthermore we set w(1) = 0 and w(0) = o00. Let Ky C K, C - C K, =1L
be the series constructed in the algorithm ExtensionSeries. Then Ky = K; x (y;) and
K; = {(zy,... ,%5). Let p, be a representation of K; given by p(zi) = e;ﬂr Then by
successively extending p, we obtain representations p; of K;.

Proposition 6.8 Suppose that pi{a) = 0 for every element a € U(K;) such that w(a) >
¢+ 1. Then pip(b) = 0 for all b € U(Kiyy) such that w(b) > ¢+ 1. Furthermore f(b) =0
for all f € S, and b € U(K;) such that w(b) > ¢+ 1.

Proof. For the first statement let b € U(K;4;) be a monomial such that w(b) > ¢+ 1.
According to the construction of p;y, there are two cases to be considered.

First we consider the case where thereis a §; € K; such that y;, —§; € Z(K,4;). This means
that piy: is constructed in the first part of ExtendRepresentation. After replacing y; by
y; — §: we may suppose that § = 0. Then pip1(yi)pin{e) = pisi{a)pia(y:) = 0 for all
a € U(K)\ {1}. Now if b contains a y;, then piy(b) = 0. Otherwise b is also an element
of U(K;) and again from the construction of p;yy it is seen that piyq(b) = 0.

Now we consider the case where p;y; is constructed by GeneralExtension. Let a be
an element of U(K;), then we claim that w(y;e — ay;) =2 w(e) + w(y;). First we have
w(ay;) = w(yia) = wla) + wly:). So if y;a — ay; # 0, then the claim follows from the fact
that the weight of a sum is the least of the weights of its terms. On the other hand, if
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yia — ay; = 0 then its weight is co. Let f = y! - 6{v,,v?) be an element of S,,, where [ > 0.
Then for & € U(K:) we calculate

(b- ) = 0l (pilyi - (b~ 1))vy).
Here y; ¢ = yig —gy; and 2 - g = gz for « € K, and ¢ € U(K;). Now from our claim above
it follows that w(y! - (b- ¥)) > w(b). (Note that y! - (5- ) lies in U(K;) whereas b lies in
U(Kit1).) Hence pi{y!-(b-¥)) = 0 so that - f = 0. Now by Lemma 6.5 we have that
pir1(b) = 0.
For the second statement let & € U(K;) be an element such that w(b) > ¢+ 1 and let

f =yl 0(vp,v?) be an element of S,,. Then f(b) = +v}(pi(y! - b)v,), which is 0 because
w(y!-B) > wb) > e+ 1. O

Corollary 6.9 Let L be a nilpotent Lie algebra of dimension n and nilpotency class ¢. Set
o = Representation(L).

Then the degree of o is bounded from above by (™).

Proof. Since o = p, we have that the representation space of o is 5, _,. The representa-
tion p; of K satisfies the requirement of Proposition 6.8. The conclusion is that f(b} =0
for f € S,,, b € U(K;) such that w(b) > ¢+1 and i = 1,...,r — 1. It follows that the
degree of ¢ is bounded from above by the number of monomials in U{ L) of degree at most
¢, which is equal to (*}¢). O

Remark. Since the maximal nilpotency class of a Lie algebra of dimensionnis ¢ =n —1,
we have that the bound of Corollary 6.9 in general is exponential in n. However, for Lie
algebras of constant nilpotency class, the bound is polynomial in n.

Remark. If the field over which L is defined is of characteristic p > 0, then L might not
have a Levi decomposition. However, if L has a Levi decomposition, then the algorithm
will yield a representation for L also in this case.

6.5 Examples, and practical experience

Let ¢ € U(L) be a monomial. Then f, will denote the element of U/(L)* that takes the
value 1 on @ and 0 on all other monomials.

Example 6.10 Let L = K x {y}, where K is a commutative subalgebra spanned by
{z1,... ,z;}. We suppose that L is not commutative and try to find a representation of
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n | dim L, | nilpotency class | Degree | Runtime (s)
3 3 2 3 4

4 6 3 7 26

5 10 4 16 350

6 15 ] 35 3311

Table 6.1: Degrees of the representation of the Lie algebra L, found by the algorithm
Representation. The last column displays the runtime of the process in seconds.

L. We start with a representation p of K given by p(z;) = €{%},. Then one extension step

will yield a representation of L. First we calculate C,. For ¢ > 1 we have
0(vi, v;)(a) = vi(pa)vi) = 81 fr,_y (a) + 8i 3 fi(a).

So a basis of C,, is given by
{flafrw“- afx:}-

We suppose that [y, z:] = 3. ¢;7; and we calculate the action of y on

t

v ful@) = ~fulya = ay) = 3 —aifur(a).

k=1

1t follows that C, is already a module for L. The values of the representation o : L — gl{(C,)
141

are given by o(z:) = e}}, and o(y) = —(ady)".

Example 6.11 Let L = gl,(F), the Lie algebra of all n x n matrices. The Levi decom-
position of this Lie algebra is L = (z) x K, where K & s[,(F) and (z) = Z(L). Then we
start with a representation p of the 1-dimensional Lie algebra (), given by p(z) = e} ,.
Now C, = {fi, fz}. Since K commutes with {z} we have that C, is a trivial module for
L. Hence in this case we need to take the direct sum with the adjoint representation of L,
obtaining a representation of degree n? + 2.

Example 6.12 We implemented the algorithm inside ELIAS. We tried the method on
the Lie algebras L, of strictly upper triangular matrices of order n, for n = 3,4,5,6. The
degrees of the resulting representations are shown in Table 6.1. 1t is seen that the resulting
degree is much less than the bound provided by Corollary 6.9. However the algorithm
seems to have an exponential behaviour. So for nilpotent Lie algebras of small dimension
the algorithm works fine, but when the dimension and the nilpotency class increase, the
algorithm may become slow.
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Chapter 7

Practice

In this chapter we demonstrate how the system ELIAS can be used in two examples. In
the first example (Section 7.1) we show how isomorphism of Lie algebras can be tested.
Then in Section 7.2 the system is used to obtain information about centralisers of nilpotent
elements in Fs.

7.1 Isomorphism testing

Let L; and L, be two n-dimensional Lie algebras. We consider the problem of deciding
whether L; and L, are isomorphic. A method for deciding this can be applied to the theory
of Lie point symmetries. Here it can be used to identify the symmetry Lie algebra of a
differential equation as a member of existing lists of isomorphism classes of Lie algebras.
Also the problem is relevant for the construction of those lists. Several partially overlapping
lists are known (see e.g., (4], [43], [46]). For the unification of those lists, the use of a
computer seems indispensable.

A first approach to the problem is to calculate as many structural invariants of the Lie
algebras as possible. A structural invariant is a function '

[+ {Lie algebras} — {objects},

such that L; = L, implies f(I,) = f(L;). Examples of structural invariants are the
centre, the derived and lower central series, the nilradical, etc. Algorithms for determining
structural invariants have been given in the preceding chapters. By calculating these for
Ly and L, we might be able to demonstrate that they are not isomorphic. In some cases,
for example when L, and L, are semisimple Lie algebras over a field of characteristic 0
(Chapter 5), we can always decide the isomorphism of L; and L, this way.

There is also a direct method for testing isomorphism. This method was described in [22].
Let {z1,...,z.} be a basis of L, and let {yy,... ,yn} be a basis of L. Let (cf;) and (v})

75
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be the structure constants of L; and L, respectively. If ¢ : Ly — L, is an isomorphism
given by ¢(z:) = 7 aiy;, then

{ (z:), ()] Z a:kaﬂ Yk, i) = Z Vit @ik @Y

k=1 kim=1

and

n

B([xi, 7;]) E Cz)¢(xk § : Cﬁsakmym

km=1

This amounts to the following equations in the variables a;;:

Z TR1 Gk @il Z CijQkm = 0, (7.1)

k=1

for1 <¢<j<nand 1 <m <n. Also the determinant of the matrix (a;;) may not be 0.
So in [22] the set of equations (7.1} together with det(a;;) — d = 0 is solved by a Gribner
basis calculation.

The advantages of this last method are clear: first of all it always gives the correct an-
swer and secondly it is possible to construct the isomorphism matrix explicitly. The main
disadvantage however is that the Grébner basis computation tends to become very time
consuming. Compared to this the calculation of structural invariants is very fast. So the
idea presents itself to combine the two approaches. First we calculate as many structural
invariants of the Lie algebras as possible. If this leads to a decision regarding their iso-
morphism then we are happy. If not, then we do a Grobner basis computation, using the
structural invariants that we computed to reduce the number of equations and the number
of variables in {7.1), whenever possible. We illustrate this idea with an example.

Example 7.1 Let L, and L; be 4-dimensional Lie algebras over a field of characteristic
0, and let their Lie multiplication be given by

[22, @3] = 71, [€2, T4] = 3, [£3,24] = —23
{3}'2, yS} = Y1, {yg,y‘;} = —ys, {313, y4] = ys.

(This is Example 2 of [22]). First we have that Z(L) = (z1) and Z(L;) = (1) so that
#(z1) = anyr. Secondly NR(Ly) = {2, T2,73) and NR(L;) = (y1,y2,¥s). Hence

Hz2) = anyr + e + a2y
#(z3) anyr + aszyz + as3ys

i

Also a Cartan subalgebra of L, is spanned by z;,z4 and a Cartan subalgebra of L, is
spanned by y1,¥s. Sinee all Cartan subalgebras are conjugate under the automorphism
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group of L; we may assume that ¢(z4) = aq1y1 + a4ays. This leads to the following system
of equations:

{022033 — ag3d32 — 411, d21, A23¢44 — A22, G22044 + A23,

a31, 333044 + G32, A32044 — 433, d— 011(4122033 - a23a32)a44}

So we have 8 equations in 10 variables, which is much better than the set of 22 equations
in 17 variables given in [22]. Also it is seen that we can easily factorise the determinant.
This allows us to replace one polynomial of high degree by some polynomials of smaller
degree.

Now we describe in generality the approach that we are using. We assume that the Lie
algebras have rational structure constants, but are defined over the algebraic closure Q.
Then there exists an isomorphism if and only if 1 is not an element of the Grobner basis
we calculate.

For a Lie algebra L we distinguish two types of structural invariants. First we have those
that help us to reduce the number of variables and equations. The centre Z(L) is an
example of such an invariant. These are called reduction invariants. An example of a
non-reduction invariant is the dimension of the associative algebra (ad L)*. For a nilpotent
Lie algebra L of nilpotency class ¢ we consider the following reduction invariants:

¢ the derived series, L=L, DLy D+ D Ly =0,
¢ the lower central series, L=L' D L?>--- D Lt =0, -
e the upper central series, Z(L) =2, C Z, C---C Z. = L.
As non-reduction invariants we consider dim(ad L)* and dim H%(L, F). (The second can

be calculated by solving a system of linear equations, we do not go into this here.) These
invariants are also applied to the members of the above series.

If L is solvable, then we consider the following reduction invariants:

¢ the nilradical and its series,
e the derived, lower central and upper central series,

e a Cartan subalgebra.

Remark. The Lie algebra L does not have a unique Cartan subalgebra. However, since
we have assumed that the field is algebraically closed, all Cartan subalgebras are conjugate
under the automorphism group of L (Theorem IX.3 of [32]). Hence we may assume that
an isomorphism of the Lie algebras L; and L, maps a given Cartan subalgebra of L; onto
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a given Cartan subalgebra of Lo.
The non-reduction invariants are the same as in the nilpotent case.

If L is not solvable and not nilpotent and defined over a field of characteristic 0, then we
calculate a Levi decomposition L = § @ R where S is a semisimple subalgebra and R the
solvable radical. We calculate all invariants of the solvable Lie algebra R that are listed
above. A Cartan subalgebra of S is a reduction invariant and if it splits, then so are the
root spaces. Furthermore, the type of S is a non-reduction invariant.

Since nilpotent Lie algebras have the fewest reduction invariants, testing isomorphism of
those algebras will be the most difficult. As an example we try to identify elements of the
lists [4] and [43] as members of the list [46]. In this last paper the Lie algebras are listed
by the sequence of dimensions of the elements of the upper central series. From each of the
first two papers we choose a Lie algebra with upper central series dimensions 2,5,7. From
[4] this is the Lie algebra with name nj; and from [43] we choose gr,106. First ns is quickly
seen not to be isomorphic to 2, 5, TA because the dimensions of the associative algebras
generated by the adjoint representation differ. Regarding the isomorphism of nj; and 2,
5, TB, the structural invariants do not bring a decision. So we have to force a decision
“in extra time” using the Grobner basis method. We wrote a GAP program that writes
the equations in a format accepted by Macaulay?2 (see [26]) to a file called eqs. Then in
Macaulay2 we do the following:

il = load "eqs"

~-loaded eqs
12 = timing d1*d2+d3#d4+d5 % I

2
02 = dl d2 d4 45
-~ 49 .36 seconds

02 : Time

i3

timing d1~ 0 % I

03 = 1
-~ 0.07 seconds

03 : Time

Here I is the ideal defined in the file eqs. The determinant of the matrix (a;;) (contain-
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ing the variables we could not get rid of by using structural invariants} has factorisation
d1%d2*d3%d4*d5. We determine whether this determinant is in the ideal I. The conclusion
is that it is not in this ideal. Also 1 is not in I. It follows that the set of equations has a
solution with a nonzero deterninant. So the Lie algebras are isomorphic.

In the case of g7106 the structural invariants suffice to decide that this Lie algebra is not
isomorphic to 2, 5, 7TA to 2, 5, TH. Then g7,106 turned out to be isomorphic to 2, 5, 7L
Macaulay2 used 90.63 seconds for the Grdbner basis computation.

In the following examples we let Ly be a Lie algebra from the table given in [46]. Then L, is
constructed from Ly by a change of basis. If {z,... ,z7} is a basis of Ly, then {y1,...,y7}
is a basis of L, where y; = z;+ 24y fori =1,...,6 and y; = 7+ z;. Now since L; and L,
are isomorphic we are sure to end up in the “extra time” of the Grobner basis calculation.
In Table 7.1 the timings of some Grébner basis calculations are listed.

name time (s)
2,5, 7TA 47
2,4,5 TA 9
2,3,5 TA 1455
2,3,4,5 TA 74
2,3,4,5 7C 1090
1,2,3,4,5 7B | 126379
Table 7.1: Timings of the Grébner basis calculation relative to two isomorphic forms of some

Lie algebras.

From this table it remains unclear whether the duration of the Grobner basis computation
is related to the structure of the Lie algebra. In some cases it is very fast, in other cases
very slow or even infeasible.

In general the Grébner basis procedure turns out to be a method of brute force, not
elegant enough to make Lie algebras reveal their identity. However, on many occasions the
somewhat more shy procedure of computing structural invariants succeeds in seducing the
Lie algebras to concede that they are not isomorphic, or eventually to comply with the
Grébner basis method.

7.2 Calculations in Fg

7.2.1 Preliminaries

Here we briefly describe some concepts related to orbits of nilpotent elements in simple
Lie algebras. The proofs that we omit can be found in [8], Chapter 5. In the sequel L will
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be a simple Lie algebra over an algebraically closed field of characteristic 0 with algebraic
group G. Then G acts on L via the adjoint representation

Ad: G —s GL(L)

{see [30]). We consider orbits of nilpotent elements of L under the action of G. Let ¢ be
a nilpotent element of L, then by the Jacobson-Morozov theorem ([32], Theorem I11.17)
there are elements f, A of L such that

]:8,f]=h, [hae]=285 [h7f]:_2f7
i.e., e can be embedded in a subalgebra isomorphic to sl,.

Proposition 7.2 Let 3,6, be nilpotent elements of L and let K, = (e, f1, 1) and K3 =
{2, f2, ha) be two subalgebras isomorphic to sly,. Then the following are equivalent:

1. ey and e, lie in the same G-orbit,
2. Ky and K, lie in the same (G-orbit,

3. ky and hy lie in the same G-orbit.

Let e be a nilpotent element contained in the subalgebra K = (e, f, k) isomorphic to sl.
Then via the adjoint representation K acts on L. By Corollary 7.2 of [29], we have that L

splits as a direct sum
L=@ L
i€
where L{(i) = {z € L | [h,z] = iz}. Now let H be a Cartan subalgebra of L containing k.
Let
L=Ha L.
aEP

be the Cartan decomposition of L with respect to H. Then we define a function n : & — Z
by n(e) = a(h).

Proposition 7.8 (Dynkin) There is o fundamental system A of the root system ® such
that n(a) € {0,1,2} for all a € A.

Now we can define the weighted Dynkin diagram D(e) of e. Let A = {a1,...,q} be
the fundamental system of roots provided by Proposition 7.3. Then D(e) will be the
Dynkin diagram of A where each node ¢ is labelled by the number 7{¢;). By the following
proposition the weighted Dynkin diagram of e identifies its nilpotent orbit. '

Proposition 7.4 If e;, ey are nilpotent. elements of L then they lie in the same G-orbit if
and only if D(e,) = D(ey).
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7.2.2 Centralisers of nilpotent elements in Ejg

Now let L be a Lie algebra of exceptional type. Then the possible weighted Dynkin
diagrams of nilpotent elements have been determined by Dynkin ([15], see also [8]). Here
we concentrate on the particular case where L is of type Fs.

Let A = {a1,... ,as} be a fundamental system of roots. Let D be a weighted Dynkin dia-
gram with weights n{a,),... ,n{as). We describe how an element & of a Cartan subalgebra
H can be found with the property that o;{h) = n{e;) for 1 £ ¢ < 8. The Cartan subal-
gebra H has a basis consisting of elements ko, with the property that a;(hs;) = {ai, o)
(see [29]). It follows that we can find an appropriate k € H by applying the inverse of the
Cartan matrix of A to the vector (n{cy),... ,n{as)).

We decompose L with respect to the element h found above as a direct sum of eigenspaces
L{i). We now want an element e € L{2) that is a member of the nilpotent class corre-
sponding to D. Representatives for every class of nilpotent elements in L are known (see
8], [15], [27]). These elements all have a name and a diagram. The diagram is defined as
follows. For every root a we fix a nonzero root vector z,. Then L(2) = (z, | (k) = 2).
Now let © = zp, + -+ + x5, be an element of L(2). The diagram corresponding to the
element = has m nodes, labelled by 1,... ,m. If (£, 5;) = —1 then node 7 is connected
to node j by a single bond. If (3;,3;) = 1 then 7 is connected to j by a dotted line. The
remaining case is (8, §;) = 0; here we do not draw a bond. In Table 7.2 there is a list
of the nilpotent classes in Fg. For each class we have listed the diagram and the name
of a representative of the class. We remark that in most cases more than one diagram is
possible (see [17]).

Finally we look for an element e € L(2) that has the diagram corresponding to the nilpotent
class of D. This can be done by a trial and error method, or by a small procedure trying
all possibilities.

For every class of nilpotent elements we followed the procedure described above. The
result is displayed in Table 7.2. The labels of the diagrams in Table 7.2 correspond to
basis elements of the basis of Eg used in GAP. We get the nilpotent element corresponding
to a diagram by summing the basis elements of Es corresponding to the labels in the
diagram (see the example below). Also in Table 7.2 there is some information about the
centralisers of the nilpotent elements. The Levi decompositions can be found in [17]; there
some mistakes that appeared in an earlier paper ([18]} were corrected. Here we also give
the decomposition of the radical as a direct sum of irreducible representations of the Levi
factor.

Example 7.5 Here we demonstrate how the data contained in Table 7.2 can be calculated
in GAP. In this example we take the element with name Ds.

In GAP we first issue the command that constructs Es. Then we get the nilpotent element
by summing the basis elements of L corresponding to the labels in the appropriate diagram
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of Table 7.2. We calculate the centraliser CL of the subalgebra generated by that element.
Then a Levi decomposition of CL is computed. The first element of this decomposition is
the semisimple part of CL. We determine the type of this part.

gap> L:=SimpleLieAlgebra("E",8,Rationals);

<Lie algebra of dimension 248 over Rationals>
gap> b:= BasisVectors{ Basis( L ) );;

gap> K:= Subalgebra( L, [ b[1]+b[7]+b[8]+b[44]+b[61] ] );
<Lie algebra over Rationals, with 1 generators>
gap> CL:= LieCentralizer( L, K );

<Lie algebra of dimension 48 over Rationals>
gap> 1l:= LeviDecomposition( CL );

[ <Lie algebra of dimension 21 over Rationals>,
<Lie algebra of dimension 27 over Rationals> ]
gap> SemiSimpleType( 11[1] );

IIB3||

Now the solvable radical offers a representation of the semisimple part S of CL. By the
representation theory of semisimple Lie algebras this solvable radical decomposes as a
direct sum of irreducible modules and each module is determined by its highest weight
(see [29]). Before we determine the weights of S on CL, we describe the basis of a Cartan
subalgebra relative to which we describe these weights. Let ay,...,a be a fundamental
system of roots of S (in the order given in [29]). Let z,; be a root vector belonging to
a; and similarly for y_o,. Then h; = [z4,,y_o,] forms a basis of a Cartan subalgebra
H. we multiply these elements by a scalar in order to ensure that [h;,z,,] = 2z, and
[hisY-o;] = —2y_o;. Now the weights are taken relative to this basis.

In the example we first calculate the root system of S and look at the Cartan matrix. This
matrix tells us how we have to reorder the roots.

gap> rr:= RootSystem( 11[1] );;
gap> Print( rr.cartanmat );
[[2,-2,-11,[-1,2,01,[-1,0,211

From this it follows that a3, a;, a3 is the correct order of the fundamental roots. Now we
take basis vectors of the root spaces corresponding to these roots and store them in the
variable x.

gap> V:= IT.Tootvecs;; I:= rr.roots;;
gap> x:= [ v[3], v[1], v[2] ];
[ v.125, v.124, v.32+(-1)*v.123 ]

(The vectors corresponding to the fundamental roots come first in the list rr.rootvecs.)
The positive roots are listed first in the list rr.roots and then the negative ones. Now,
to find the root vectors corresponding to the negative roots —ca; we first determine where
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the negative roots start in the list of roots (then we also know where the corresponding
vectors are in the list of vectors).

gap> Position( r, -r[1] );

10

gap> y:= [ v[12], v[10], v[11] 1;
[ v.5, v.4, v.3+(-1)*»v 152 ]

Now a basis of a Cartan subalgebra is given by x[iil*y[ii]. We calculate this basis and
if necessary multiply an element by a scalar.

gap> bH:= List( [1,2,3], ii -> x[ii]#y[ii] );;
gap> List( [1,2,3], ii -> bH[iil*x[ii] );

[ (-2)%v.125, (-2)#v.124, (2)#%v.32+(-2)*v.123 ]
gap> bH[1]:=~bH[1];; bH[2]:=-bH[2];;

gap> List( [1,2,3], ii -> bH[iil*y[iil );

[ (-2)xv.5, (~2)%v.4, (-2)%v.3+(2)#*v.152 ]

We wrote a simple program for calculating the weights. It takes the basis vectors we just
calculated and uses the fact that the matrices of the action of these elements on the solvable
radical are already in diagonal form.

gap> Weights{ bH, 11[2] };

{[-1,0,01]1]
[[-190’1]:[-130?1]]
[[-1,1, -1, [~1,1,-111
[[-1,1,01]1

(Lo, ~-t,1]1,[0,~-1,11]]1
[lo,~-1,21]1
[[o,o,-1],{0,0,-1]]
[[o0,0,01,[0,0,01,[0,0,01,[0,0,013,[0,0,011
[[o,0,21,[0,0,17]]
[fo,1,-211

[[o, 1, -11,[0,1,~-111
(L1,-1,01]1]

[{1,-1,1], 01, -1,1]]1
[[1,0,-11,[1,0,-111
[[1,0,01]1]

The weight [ 1, 0, 0 ] occurs, Using the function Demazure in LiE (see [12]) we see
that the irreducible module of B; with this highest weight has dimension 7. We subtract
the corresponding weights from the list above and continue. At the end we find that as an
S-module the solvable radical decomposes as

R;oo@Rgm@Rgm@Ro

where R, denotes the irreducible module with highest weight A and dimension m.
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Table 7.2: Nilpotent elements and their centralisers in

Es.

The labels in the diagrams correspond to basis elements of
Eg {where the basis of the GAP-implementation is used). §
is the semisimple part of the centraliser and R is its solvable
radical; in the fourth column the dimension of R is given
or its decomposition as an S-module. Here R}, means the
irreducible module of dimension m and highest weight A; thus
R? is the trivial module. The order of the 1oots as given in
[29] is used to calculate the weights.

Diagram Name S R
&
120 Ay Er Rggaoam R‘f
o o .
97 "120 94, Be RQgo001 R%gmmo Rtl)
°74 °104°118 34, Fi+A;  ROGOURI0010 poooot po
g 119 As B R}Q0000 30000019 20
© (] o [+]
69 "91 "106°114 44, ¢y RL000 R9100 0010 o
2Ré0000R§%000R28100
47 112097 Ap+ Ay A +R?g01°2R2°°°13R‘1’
BT °101°79 °102 Ag + 24, By + A, Rgg13R§?°2R?2“R(§004Rg°92]22
B 97 14 As Bs 1?%3001[{}?00021{?
o O,
337°96 °80 °00 °99 Ap+ 34, Go + Ay R%ggRgélelR%OoR‘f
. .
T °112°37 °96 24, 96, Réng%oooRgong
] | RYRI RIS RS
397781 7303 T4 2Ay+ A1 Go+Ar  +RJOP2R$2RY
. ' R1Q01 ROOL1 p1000
22782781 780 As+A; Bs+ A +2RPIO2RPOISRY
68 97
15 D, 2Ré0002Rg0102Rg0016R(1)

Dfl(al)

continued on next page
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continued from previous page

Diagram Name ) R
7 & 6l
o7 Dy Fy RY%12R?
80 T T80 81 MUrt2A B RERBRNRURCRYRY

012 p002 2101 011
Ry’ R3¥R{g 2R,

I8 °79 °58 °82 . As 424, By A, +3Rng%002Rgm3R‘f
83 34

RéllQRi102R;012}2211
1‘4' 172 °69 Dy(ay)+ A1 341 +4RI%4RSIC4RITRY

<
JTTE69 753 T2 As+ Ay B,  3RISRJ3RY
'
§ 3969 14 As Aq 9 RL000 0100 200109 £00014 R0
3T65 65 5T 14 °67 As+As+ A 24, RIRSRERI2RIORI RPRY
34 .8 70 69
a D+ Ay Cs  2RI™RIICRISISRY

63 74

I;Im 57778

Dyfay) + A2 Az RERJRIGRY RS

°22 °57°58 762 °61 A+ Ay Ay 6RI°6RSUGR)
T BT °54 °A5 6T 58 243 B, RILRO32RI°3RS 2RY
b1 8 75

139‘ I31 Ds{a;) As  3RIPC2RYOIRVTRY
°36 A BT 754 %45 °59 As+24; A 3R214RLI6RY

continued on next page
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Diagram Name S R
°6 755 4T 769 *77 758 A+ Az 24, RIZRIPRYRIS2RVIRERY
72 BT 2362 As Gz + A1 RIQ2RIPIRILIRY
49 8 71 48
v 37 Ds(ay) + Ay 24, RM2RL2RMIRIRLOIRY

FTCME W 52 TS5 4 A4 A+ A A RS2RIRIZRI2RIZRIZRY
2 36 71 40 59 '

-

4 Dy + Ay A»  REPRPRY3RI°3RI4R]
7T ST AT H 6L 43 As+ Ay G2 ARVBRY
7 8 61 44
1 Ds Bs RIOO2RI14RY
327739742 751 AT 5743 Ag+ As Ay RI2RI3RS3RI2RL2RD
3638 3T 30 50 61 As + Ay 241 RPRI2RIP2R}MRI2RI4RY

44 22 48 38 49

9 739 Ds(ay) + Az A1 RISRMRISRMARY
34 43 23

2 39 Ds(as) 94, 2R}5RYGRII0R?
TTO3T A3 U8 49 °42 °48 As + 24 A1 R34RIBRIOR?

2041 374338 39 42 As + As A, 9RINRY

continued on next page
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continued from previous page

Diagram Name S R
91 8 49 24 18

°38 Ds + 4, 24,  RE'RPIRIORIARIOSRY
°FTT0 30 AT 044 I8 T48 °4l As + As + A 0 £0
§ TSI s Ag 241 RYPIR]RYIRGIRY
34 8 35 23

;?' 48 De(ay) 24;  2RLM4RI4RIISRY
23 35 42 24 33 °32 As+ A A RIZRBRMRIIR
28 8 41 31 2

iy De(as) + A Ay 8RILTRY
127 34 44

578 Eo(ay) Ay 3RM2R?

5 922 32 31 26 35

46 Ds + 4z 0o 33
34 8 35 1 17

48 Ds B, RI93RO5RY

197 7 26 44

8 Ee G,  2RI4R?
32 22 24 26

0_41- 23 D';(ag) 0 32
028Ul 37 27 "I U383 Ay A RIRBRMRD
16 26 35 30 32

;5 8 Es(al)-{-Alv 0 30

continued on next page
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Diagram Name S R
28 8 4L 127 96
32 De+ Ay A 6RU3RS
4 925 31 15 ‘
J B
5 22 32 1 27
341' I34 Di(a1) 0 26
J6 26 7 27 30 32
8 ¢ Es+ A Ay R3ZRIARLSRY
17_24 14 8
B 27 Er(az) Ay 5RIRY
BT T I8 As 0 2
18 22 19 1 17 13
I28 Dy Ay R35RI6RY
4 25 14 24 26 23 27
8 Es + Az 0 22
171 19 14 8
6 18 Er{ay) A, 4RMR?
Ao 21 17 1 19 22
026- 18 DS(GI) 0 20
4 9 18 14 8 17
719 E'((al)-{-fll 0 18
7.1 19 86 7 8
18 E A 3RI4RS
4 13 17 1 18 14 8
18 Ds 0 16
continued on next page
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continued from previous page
Diagram Name 5 R
8 7 6 12 § 10 o

“25 E;+ Ay 0 1<
8§ 14 5 11 1

O‘ 20 E’g(ag) 0 12
g 7 6 5 .11 1

[ 1

1072 Es{ay) 0 10
8 7 6 5 4 3 1

2 Es 9 8

Let f be an element of the dual space L*. Then we set
‘ L'={zeL|f(z,y])=0forallye L}

The indez of L is defined as the number (L) = infez» dim Lf. For a semisimple Lie

algebra it is known that its index is equal to its rank (see [1<]). So the index of Ej is
8. It was a conjecture communicated to the author by A. Elashvili that the index of a
centraliser of a nilpotent element in Ej is also equal to 8. Here we are concerned with the
calculation of these indices. Let K be a subalgebra of L with basis {z;,... ;z.} and let
{z3,..., 2.} be the corresponding basis of K*. Let f = 3. Tiz? be an element of K* and
let = Y, oyz; be an element of K then z € K7 if and only if

i(icﬂi”k)m =0 forj=1,...,n

i=1 k=1

(where the cf; are the structure constants of K). It follows that the dimension of K7 is
minimal if a.nd only if the rank of the matrix A = (3, C‘}Tk)1<1 j<n is maximal. The rank
of A is not maximal if and only if some polynomials (determinants of certain minors of
A) in the T, vanish. The conclusion is that if we choose some random substitution for
the T, then with high probability the rank of A will be maximal. So we have an efﬁc;ent
probabilistic algorithm for testing whether the index of a centraliser is 8.

Algorithm Index
Input: A centraliser K of a nilpotent element in Es.
Output: true if the index of K is 8.

Step 1 Choose a random vector (Aq,...,A,) € F™
Step 2 Calculate the rank r of the matrix A where the A, are substituted for the 7.
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Step 3 If n — r = 8 then return true else return to Step 1.

Remark. If the index of a centraliser is bigger than 8, then the algorithm Index will loop
forever. However, if the index is equal to 8, then the algorithm will output the correct
answer after a few steps.

Now we show an example of the calculation of the index of a centraliser.

gap> K:=Subalgebra( L, [ b[39]+b{73]1+b(74]+b(81]+b[93] ] );;
gap> CL:= LieCentralizer( L, K );

<Lie algebra of dimension 86 over Rationals>

gap> Index( CL );;

8

gap> Runtime()-t;

2272516

The procedure prints the estimate of the index in each round of the iteration. When the
estimate is equal to 8 the algorithm stops. It is seen that after one step we are done. We
remark that most of the time is spent on calculating a table of structure constants of CL.

We did the same computations for every element of the list of Table 7.2. All centralisers
turned out to have index 8.

Corollary 7.6 Let L be the simple Lie algebra of type Eg. Let € be a representative of a
nilpotent class in L. Then the centraliser Zi(e) has indez 8.



91

Appendix A
Manual of ELIAS

Here we give a brief description of the functions that constitute the ELIAS package inside
GAP4,

A first concern is how to represent a Lie algebra on a computer (see Section 1.2). In
ELIAS it is possible to present Lie algebras in two ways. First there is the possibility
of constructing a Lie algebra by a table of structure constants (see A.3, A.4 and A.5).
Secondly, a Lie algebra can be given by some matrices that generate the Lie algebra as
a subalgebra of the full matrix algebra (see A.6). Also we can make direct sums of Lie
algebras (see A.8).

Section A.7 describes a function that constructs the simple Lie algebras.

The Sections A.10, A.11, A.12, A.13, A.14, A.15, A.16 and A.17 describe the construction
of several distinguished subalgebras and ideals.

The next sections describe the construction of series of ideals (see A.18, A.19 and A.20).

The next sections describe functions related to decompositions of a Lie algebra into a direct
sum of subspaces (see A.21, A.22).

The next section describes several property tests for Lie algebras (see A.23).

The next section describes a function that calculates the type of a semisimple Lie algebra
of characteristic 0 (see A.24).

The next section (A.25) describes the construction of the associative algebra generated by
the adjoint matrices of the elements of the Lie algebra.

The next section {A.26) describes the construction of the matrix of the Killing form.

The last sections describe functions related to elements of the Lie algebra (see A.27 and
A.28).

A.3 About Structure Constants

Here we consider representing a Lie algebra by a table of structure constants. Table A.3
is the multplication table of sl; (see also Example 1.2).

In ELIAS such a table is represented using lists. The obvious way to do this is to construct
a “three-dimensional” list T such that T[i][j][k] equals ¢f;. But it often happens that
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] Iy Iy T3
Zy 0 T3 —231
Ty | —Z3 0 2xq
I3 2&1 —21?3 0

Table A.3: Multplication table of sl;

many of these constants are 0. Therefore a more complicated structure is used in order
to be able to forget the zeros. A multplication table of an n-dimensional Lie algebra is
an n X n array T such that T[i] [j] describes the product of the i-th and the j-th basis
element. This product is encoded in the following way. The entry T[i][j] is a list of
two elements. The first of these is a list of indices k such that cf; is nonzero. The second
list contains the corresponding constants cfj. For example, if T is the table displayed in
Table A.3, then T{11[3] equals the list [ [ 1 1, [ -2 1 ], meaning that the product
of first and third basis element of the Lie algebra equals -2 times the first basis element.
Furthermore TE3][3]isthelist [ [ 1, [ ] ] which means that the product of the third
basis element with itself is zero. Now suppose that S is the table of a Lie algebra with
basis {zy,... ,z,} and that 8[38] [Tl equals [ [ 2, 4, 6 1, [ 1/2, 2, 2/3 ] 1. Then
in the Lie algebra we have the relation

[$ x ] = *112 234 ey
3,47 2 2 3 6

Finally two numbers are added to the table. In the case where T is the table of a Lie algebra,
the first number is -1, expressing the fact that the multplication is anticommutative. The

second element that is added is the zero-element of the field over which the Lie algebra is
defined.

A.4 TestJacobi

TestJacobi( T )

Before constructing a Lie algebra by means of a table of structure constants it is advisable
to check whether the resulting algebra satisfies the Jacobi identity. TestJacobi( T )
returns true if in the algebra defined by T the Jacobi identity is satisfied, false otherwise.
The table T in the next example is the same as the one in Table A.3.

gep> T:= L O LCI, 033, 0031,0171,0C013,0-2111,
tces), 0-111,001, 01313, 0C023,021131,
tfc+J1,0233,0023,0-213,0C03,0311,-1,01;
gap> TestJacobi( T );

true
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A.5 LieAlgebraByStructureConstants

LieAlgebraByStructureConstants( F, T )

This function returns the Lie algebra over the field F defined by the table of structure
constants T'.

gap> ;= [ [ LC1, 0711, 0031,0111,0011,[-2111,
(cfs31,0-111, 001,011, 0C021,02111,
tffv3,02113,0C02]1,0~-211,0C01,0111,-1,01;
gap> L:=LieAlgebraByStructureConstants( Rationals, T );

<Lie algebra of dimension 3 over Rationals>

A.6 AlgebraByGenerators

AlgebraByGenerators( F, mats )

In this section we describe the other way to present a Lie algebra, namely by matrices.
AlgebraByGenerators( F, mats ) returns the {matrix) Lie algebra over the field F' gen-
erated by the elements of the list (of matrices) mats. Here we use the Lie algebra spanned
by the matrices A;, A; and Aj as in Example 1.3.

gap> mats:= [ [ [0, 1], [0,011,[[o0,01, 01,011,
[ft,01,00,-1111;5;

gap> mats:=List( mats, x -> LieObject( x ) );;

gap> K:=AlgebraByGenerators( Rationals, mats );

<Lie algebra over Rationals, with 3 generators>

A.7 SimpleLieAlgebra

SimpleLieAlgebra( X, n, F )

This function constructs the simple Lie algebra of type Xn over the field F. The result
is a Lie algebra defined by a multplication table. Here X can be one of "a", "B", “C»,
up", “E", "F", “G", "W", "S", "H", and "K". For the types "A" to "G" n must be
an integer greater or equal to 1. The other types only exist over fields of characteristic
p > 0. In this case n must be a list of integers > 1. If X is "H" then this must be a list of
even length and it must have odd length if X is "K".

In a few cases the Lie algebra returned by this function is not simple. Examples are the
Lie algebras of type A, over a field of characteristic p > 0 where p divides n + 1, and the
Lie algebras of type K, where n is a list of length 1.
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gap> L:=SimpleLieAlgebra( "D", 7, Rationals );
<Lie algebra of dimension 91 over Rationals>
gap> L:=SimpleLieAlgebra( "F", 4, GF(7) );
<Lie algebra of dimension 52 over GF(7)>

gap> L:=SimpleLieAlgebra( "W", [1,1], GF(5) );
<Lie algebra of dimension 50 over GF(5)>

gap> L:=SimpleLieAlgebra( "s", [1,2], GF(5) );
<Lie algebra over GF(5), with 124 generators>
gap> L:=SimpleLieAlgebra( "H", [2,1], GF(5) );
<Lie algebra of dimension 123 over GF(5)>
gap> L:=SimpleLieAlgebra( "K", [1,1,1], GF(5) );
<Lie algebra of dimension 125 over GF(5)>

A.8 DirectSumOfAlgebras

DirectSumOfAlgebras( L1, L2 )

This function returns the direct sum of the (Lie) algebras L1 and L2. It is assumed that
either both Lie algebras are given by a table or they both are matrix Lie algebras.

gap> L1:=Simp1eLieA1gebra( "B", 2, Rationals );
<Lie algebra of dimension 10 over Rationals>
gap> L2:=Simp1eLieA1gebra( "C", 3, Rationals );
<Lie algebra of dimension 21 over Rationals>
gap> DirectSumOfAlgebras( L1, L2 );

<Lie algebra of dimension 31 over Rationals>
gap> mats:= [ [ [0, 1], [0,011, [[0,01,[1,01]1,
[L1,01,L0,-1111;;

gap> mats:=List( mats, x -> LieObject( x ) );;
gap> K:=AlgebraByGenerators( Rationals, mats );
<Lie algebra over Rationals, with 3 generators>
gap> DirectSumOfAlgebras( K, K );

<Lie algebra over Rationals, with 6 generators>

A.9 RootSystem

RootSystem( L )

For a semisimple Lie algebra L with a split Cartan subalgebra, this function computes the
root system. The output is a record with the following components:
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o roots This is the set of roots of 'L’ with respect to the Cartan subalgebra that is
output by CartanSubalgebra( L ). First the positive roots are listed according to
increasing height. The second half of the list consists of the negative roots.

® rootvecs The set of elements of L that are the root vectors corresponding to the
roots in roots (so the first vector corresponds to the first root and so on).

e fundroots A set of fundamental roots.

e cartanmat The Cartan matrix of the set of fundamental roots.

gap> L:=SimpleLieAlgebra{ "G", 2, Rationals );

<Lie algebra of dimension 14 over Rationals>

gap> R:=RootSystem( L };

rec(

roots := [ [1,~-1],[0,1], 1,01, [2, -t3,[3,-21,1[s3, -1,
{-1,1t1,00,-11,0[-1,0]1,[-2,11,[-3, 21, [-3,111,
rootvecs := [ v.8, v.13, v.9, v.1, v.4, v.11, v.5, v.14, v.10, v.3, v.2,

v.12 1,
fundroots := [ [ 1, -1 1, [0, 1113,
cartanmat := [ [ 2, -11, [ -3,211)

A.10 LieCentre

LieCentre( L )
This function returns the centre of L. For the algorithm we refer to Section 1.4.2.

gap> L:=SimpleLieAlgebra( "C", 3, Ratiomals );
<Lie algebra of dimension 21 over Ratiomals>
gap> LieCentre( L };

<Lie algebra of dimension 0 over Rationals>

Note that the definition of centre differs for associative algebras and Lie algebras. That
is the reason why this function is called LieCentre (the same applies for the functions
LieCentralizer and LieNormalizer). We illustrate this difference with an example.

gap> L:=SimpleLieAlgebra{ "W", [1,1], GF(2) );
<Lie algebra of dimension 8 over GF(2)>

gap> LieCentre( L );

<Lie algebra of dimension 0 over GF(2)>

gap> Centre( L J;

<Lie algebra of dimension 8 over GF(2)>
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A.11 LieCentralizer

LieCentralizer( L, K )

This function returns the centralizer of the subalgebra K in its parent Lie algebra L. The
algorithm was described in Section 1.4.3. :

gap> L:=SimpleLieAlgebra( "D", 7, Rationals );
<Lie algebra of dimension 91 over Rationals>
gap> b:=BasisVectors( Basis( L ) );;

gap> K:=Subalgebra( L, [ b[1], b[2], b[3] 1);
<Lie algebra over Rationals, with 3 generators>
gap> LieCentralizer( L, K };

<Lie algebra of dimension 49 over Rationals>

A.12 LieNormalizer

LieNormalizer( L, K )

LieNormalizer( L, K ) returns the normalizer of K in its parent algebra L. The algo-
rithm can be found in Section 1.4.4.

gap> L:=SimpleLieAlgebra( "D", 7, Rationals );
<Lie algebra of dimension 91 over Rationals>
gap> b:=BasisVectors( Basis( L ) );;

gap> K:=Subalgebra( L, [ b[1], b[2], b[3] 1);
<Lie algebra over Rationals, with 3 generators>
gap> LieNormalizer( L, K };

<Lie algebra of dimension 58 over Rationals>

A.13 DerivedSubalgebra

DerivedSubalgebra( L )
This function returns the product space of L with itself. See Section 1.4.1 for the algorithm.

gap> L:=SimpleLieAlgebra( "E", 8, Rationals };

<Lie algebra of dimension 248 over Rationals>

gap> b:=BasisVectors( Basis{ L ) );;

gap> K:=Subalgebra( L, [ b[1]+b[4]+b[8]1+b[13]+b[14]1+b[17]1+b[18]+b[1911);
<Lie algebra over Ratiomals, with 1 generators>

gap> CL:=LieCentralizer( L, K );
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<Lie algebra of dimension 16 over Raticnals>
gap> DerivedSubalgebra( CL );
<Lie algebra of dimemnsion 10 over Rationals>

A.14 SolvableRadical

SolvableRadical( L )

This function returns the solvable radical of L. The algorithm was described in Section
1.4.5.

gap> L:=Simp1eLieAlgebra( "E", 8, Rationals );;

gap> b:=BasisVectors( Basis( L ) );;

gap> K:=Subalgebra( L, [ b[1]+b[6]+b[7]+b[8]+b[17]+b[18]+b[19] 1);;
gap> CL:=LieCentralizer{ L, K );

<Lie algebra of dimension 16 over Rationals>

gap> SolvableRadical( CL );

<Lie algebra of dimension 13 over Ratiocnals>

A.15 NilRadical

This function calculates the nilradical of L. In the case of characteristic 0 it uses the
“downward” method described in Chapter 2. Otherwise the radical of the associative
algebra (ad L)* is calculated.

gap> L:=SimpleLieAlgebra( "E", 8, Rationals );;

gap> b:=BasisVectors( Basis( L ) J;;

gap> K:=Subalgebra(L, [ b[1]+b[6]+b[7]+b[8]+b[17]+b[18]+b[18] 1);;
gap> CL:=LieCentralizer(L,K);

<Lie algebra of dimension 16 over Rationals>

gap> NilRadical( CL );

<Lie algebra of dimension 13 over Rationals>

A.16 CartanSubalgebra

CartanSubalgebra( L )

CartanSubalgebra( L ) returns a Cartan subalgebra of L. The algorithm works for Lie
algebras I defined over a field F such that |F! > dim L and for restricted Lie algebras of
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characteristic p. This function uses the algorithms LRE and RestrictedCartan given in
Chapter 3.

gap> L:=SimpleLieAlgebra( "E", 8, Rationals );;

gap> b:=BasisVectors( Basis( L ) );;

gap> K:=Subalgebra( L, [ b[1]1+b[6]1+b[7]+b[8]1+b[17]+b[18]+b[18] 1);;
gap> CL:=LieCentralizer( L, K );

<Lie algebra of dimension 16 over Rationals>

gap> CartanSubalgebra( CL );

<Lie algebra of dimension 8 over Rationals>

A.17 FindSI2

FingS12( L, z )

If z is a nilpotent element of a Lie algebra L, then there may exist a subalgebra of L
that is isomorphic to sl; and contains z. By a theorem of Jacobson-Morozov, this is
certainly the case if L is semisimple. This function returns a three dimensional subalgebra
of L, isomorphic to sl; and containing =z, if it exists. It returns false if there is no such
subalgebra.

The proof of Morozov’s lemma ([32], p. 99) is already constructive. This function is a
straightforward implementation of that proof.

gap> L:=SimpleLieAlgebra( “G", 2, Rationals );
<Lie algebra of dimension 14 over Rationals>
gap> b:=BasisVectors( Basis( L ) );;

gap> FindS12( L, b[1] );

<Lie algebra of dimension 3 over Raticnals>

A.18 DerivedSeries

DerivedSeries( L )

This function returns a list of ideals of L that form its derived series. It is calculated by
repeatedly applying the algorithm for product spaces described in Section 1.4.1.

gap> L:=SimpleLieAlgebra{ “E", 8, Rationals );;

gap> b:=BasisVectors( Basis( L ) );;

gap> K:=Subalgebra(L, [ b[1]1+b[4]+b[8]+b[13]+b[14]+b[17]+b[18]+b[19]11);;
gap> CL:=sLieCentralizer( L, K );

<Lie algebra of dimension 16 over Rationals>

gap> DerivedSeries(CL);
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[ <Lie algebra of dimension 16 over Rationals>,
<Lie algebra of dimension 10 over Rationals>,
<Lie algebra of dimension 2 over Raticnals>,
<Lie algebra of dimension 0 over Rationals> ]

A.19 LowerCentralSeries

LowerCentralSeries( L )

This function calculates the lower central series of L. Again the method given in Section
1.4.1 is used.

gap> L:=SimpleLieAlgebra( "E", 8, Rationals );;
gap> b:=BasisVectors( Basis( L ) );;

gap> K:=Subalgebra( L, [ b[6]+b[7]+b[81+b[s1+b[10]1+b[11]1+b[12]+b[25] ] };;
gap> CL:=LieCentralizer( L, K };

<Lie algebra of dimension 14 over Rationals>
gap> LowerCentralSeries( CL );

[ <Lie algebra of dimension 14 over Rationals>,
<Lie algebra of dimemsion 7 over Rationals>,
<Lie algebra of dimension 5 over Rationals>,
<Lie algebra of dimension 3 over Rationals>,
<Lie algebra of dimension 2 over Rationals>,
<Lie algebra of dimension 0 over Rationals> ]

A.20 UpperCentralSeries

UpperCentralSeries( L )

This function calculates the upper central series of L. It repeatedly uses the algorithm for
the centre while keeping track of the pre-images of the ideals factored out. In ELIAS the
upper central series is presented in the reversed order (starting with the hypercenter).

gap> L:=SimpleLieAlgebra( "E", 8, Rationals );;

gap> b:=BasisVectors( Basis( L ) );;

gap> K:=Subalgebra( L, [ b[6]l+b[7]1+b[8]+b[9]+b[10]+b[11]+b[12]+b{26] ] );;
gap> CL:=LieCentralizer( L, K );

<Lie algebra of dimemsion 14 over Rationals>

gap> UpperCentralSeries( CL );

[ <Lie algebra of dimension 14 over Rationals>,

<Lie algebra of dimension 12 over Rationals>,

<Lie algebra of dimemsion 11 over Rationals>,
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<Lie algebra of dimension 8 over Rationals>,
<Lie algebra of dimension 6 over Rationals>,
<Lie algebra over Rationals, with O generators> ]

A.21 LeviDecomposition

LeviDecomposition( L )

The output of LeviDecomposition( L ) is a list of two elements. The first element is
the semisimple subalgebra and the second is the solvable radical of L. If L is solvable
then the first component is the zero subalgebra. We use a similar algorithm to the one
described in Section 1.4.7, but using the derived series instead of the lower central series.
The reason for this is that the calculation of the derived series in many cases is faster than
the computation of the lower central series. If L is a Lie algabra of characteristic p > D
then it need not have a Levi decomposition. However, if it has, then this function will find
one.

gap> L:=SimpleLieAlgebra( "E", 8, Rationals );;
gap> b:=BasisVectors( Basis( L ) );;

gap> K:=Subalgebra(L, [ b{8]1+b[39]1+b[691+b{74] 1);;
gap> CL:=LieCentralizer( L, K );

<Lie algebra of dimension 68 over Rationals>

gap> LeviDecomposition( CL );

[ <Lie algebra of dimension 24 over Rationals>,
<Lie algebra of dimension 44 over Rationals> ]

A.22 DirectSumDecomposition

DirectSumDecomposition{ L )

If L is a direct sum of two or more ideals, then this function returns a list of these ideals,
otherwise the output is a list consisting only of the element L. If L is semisimple, then
the algorithms given in Chapter 4 are used. If L is defined over a large field, then the
randomised method for finding a splitting element is chosen. Otherwise decomposable
elements are used. If L is not semisimple, then the general algorithm described in Section
1.4.6 is used.

gap> K:=SimpleLieAlgebra( "A", 1, Rationals );
<Lie algebra of dimension 3 over Rationals>
gap> L:=DirectSumOfAlgebras( K, K );

<Lie algebra of dimension 6 over Rationals>
gap> L:=DirectSumOfAlgebras( L, K );
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<Lie algebra of dimension 9 over Rationals>
gap> DirectSumDecomposition( L );

[ <Lie algebra of dimension 3 over Rationals>,
<Lie algebra of dimension 3 over Rationals>,
<Lie algebra of dimension 3 over Rationals> ]

A.23 Property Tests for Lie Algebras

e IsAbelianLieAlgebra( L )
returns true if the multiplication of two elements from L always returns zero, false
otherwise.

e IsSolvable( L )
returns true if L is solvable, false otherwise.

e IsNilpotent( L )
returns true if L is nilpotent, false otherwise.

e IsRestrictedLieAlgebra( L )
Suppose L is a Lie algebra over a field of characteristic p > 0. Then L is called
restricted if the Lie algebra ad L is closed under the p-th power map (that associates
to a matrix its p-th power). This function tests whether L is restricted. Lie algebras
of characteristic zero are never restricted. Furthermore, it is enough to test the
property for a basis of L (see Theorem 5.11 of [32]).

gap> IsAbelianLieAlgebra( SimpleLieAlgebra( "A", 2, Rationals ) );
false

gap> T:=EmptySCTable( 10, 0, "antisymmetric" );;

gap> L:=LieAlgebraByStructureConstants( Rationals, T );;
gap> IsAbelianLieAlgebra( L );

true

gap> K:=SimpleLieAlgebra( "pA", 2, Rationals );

<Lie algebra of dimension 8 over Rationals>

gap> IsSolvable( K );

false

gap> IsNilpotent( K );

false

gap> IsRestrictedLieAlgebra( K );

false

gap> M:=SimpleLieAlgebra( "W", [1], GF(5) );

<Lie algebra of dimension 5 over GF(5)>

gap> IsRestrictedLieAlgebra( M );
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true

gap> N:=SimpleLieAlgebra( "W", [2], GF(5) );
<Lie algebra of dimension 25 over GF(5)>
gap> IsRestrictedLieAlgebra( L );

false

A.24 SemiSimpleType

SemiSimpleType( L )

If Lis a Lie algebra with a nondegenerate Killing form, then SemiSimpleType( L ) returns
the type of L. It uses the method given in Chapter 5.

gap> L:=SimpleLieAlgebra( "E" , 8, Rationals );;

gap> b:=BasisVectors( Basis( L ) );;

gap> K:=Subalgebra( L, [ b[22]+b[23]+b[24]+b[61]+b[62] 1 );;
gap> CL:=LieCentralizer( L, K );

<Lie algebra of dimension 52 over Rationals>

gap> 1l:=LeviDecomposition( CL );

[ <Lie algebra of dimension 17 over Rationals>,

<Lie algebra of dimension 35 over Rationals> ]

gap> SemiSimpleType( 11[1] );

"Al G2"

A.25 AdjointAssociativeAlgebra

AdjointAssociativeAlgebra( L )

If L is a Lie algebra, then the matrices adz for z € L generate an associative algebra.
The dimension of this algebra is in general higher than the dimension of the Lie algebra
L. AdjointAssociativeAlgebra( L ) calculates a basis of this associative algebra and
returns the algebra.

gap> K:=SimpleLieAlgebra( "A", 1, Ratiomnals );
<Lie algebra of dimension 3 over Rationals>
gap> AdjointAssociativeAlgebra( K );

<algebra of dimension 9 over Rationals>
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A.26 KillingMatrix

KillingMatrix( B )

I {1,...,2,} is a basis of the Lie algebra L, then the matrix {(x(z;, z;)) is the matrix of
the Killing form with respect to the basis B of L.

gap> K:=SimpleLieAlgebra{ "A", 1, Rationals );
<Lie algebra of dimension 3 over Rationals>
gap> KillingMatrix( Basis( K ) );
[[o0,4,01,[4,0,01,[0,0,81]1

A.27 AdjointMatrix

AdjointMatrix({ B, z )
This function returns the matrix of ad z, with respect to the basis B of L.

gap> K:=SimpleLieAlgebra( "A", 1, Rationals );
<Lie algebra of dimension 3 over Rationals>
gap> b:=BasisVectors( Basis( K ) );;

gap> AdjointMatrix( Basis(K), b[1]l );
(lo,0,-2],[0,0,01,[0,1,01]1

A.28 NonNilpotentElement

NonNilpotentElement( L )

This function returns an element of L that is nof nilpotent, or false if no such element
exists. The method described in Section 3.3 is used.

gap> K:=SimpleLieAlgebra( "A", i, Rationals );
<Lie algebra of dimension 3 over Rationals>
gap> NonNilpotentElement( K );

v.3
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Samenvatting

In dit proefschrift worden algoritmen gegeven die opereren op eindig dimensionale Lie
algebras gegeven door een vermenigvuldigingstabel.

In hoofdstuk 1 wordt ter inleiding kort ingegaan op de structuurtheorie van Lie algebras.
Ook worden enkele algoritimen beschreven die niet aan de orde zullen komen in de latere
hoofdstukken.

In hoofdstuk 2 wordt een nieuw algoritme besproken voor de berekening van het nilradicaal.
Dit algoritme wordt vergeleken met enkele bekende algoritmen. '

Cartan deelalgebras spelen een centrale rol in de structuurtheorie van halfenkelvoudige Lie
algebras. In hoofdstuk 3 wordt ingegaan op de berekening van dergelijke deelalgebras. We
geven een algoritme voor het vinden van een niet nilpotent element in een Lie algebra.
Op basis hiervan wordt een algoritme voor de berekening van een Cartan deelalgebra
geformuleerd. Het algoritme wordt in een praktische situatie vergeleken met enkele andere
algoritmen.

Halfenkelvoudige Lie algebras splitsen als directe som van enkelvoudige Lie algebras. In
hoofdstuk 4 worden algoritmen beschreven voor het bepalen van een dergelijke directe
som decompositie. Het algoritme gegeven in het vorige hoofdstuk wordt gebruikt om een
Cartan deelalgebra te vinden. De actie van deze deelalgebra wordt dan gebruikt om de Lie
algebra te splijien. Aan het eind van het hoofdstuk worden de algoritmen met behulp van
een praktisch voorbeeld vergeleken.

In hoofdstuk 5 wordt een algoritme beschreven voor de bepaling van het type van een
halfenkelvoudige Lie algebra. Dit wordt gedaan door de Lie algebra te reduceren modulo
een geschikt gekozen priemgetal. Het isomorfieprobleem voor halfenkelvoudige Lie algebras
wordt met dit algoritme opgelost. We geven nog een oplossing van dit probleem. Deze
blijkt in de praktijk echter niet goed te werken (dit in tegenstelling tot het algoritme voor
de bepaling van het type).

In hoofdstuk 6 wordt ingegaan op het vinden van een eindig dimensionale representatie
van een Lie algebra gegeven door een vermenigvuldigingstabel. De stelling van Ado zegt
dat een dergelijke representatie bestaat, maar de bekende bewijzen bevatten geen effectieve
constructie. Voor een groot gedeelte bewijzen we de stelling van Ado opnieuw. Dit levert
wel een constructie die op een computer uitgevoerd kan worden.

De algoritmen beschreven in dit proefschrift zijn door de auteur geimplementeerd in het
computeralgebra systeem GAP4. Dit heeft geleid tot een pakket met de naam ELIAS
{(Eindhoven Lle Algebra System). In hoofdstuk 7 wordt aan de hand van twee praktische
problemen geillustreerd hoe dit pakket gebruikt kan worden. Het eerste probleem is de
bepaling van isomorfie van Lie algebras. Het tweede is de berekening van de index van
centralisatoren van nilpotente elementen in Ejs.

Tot slot is er een appendix met een beschrijving van ELIAS.



113

Curriculum Vitae

Willem de Graaf was born on August 21, 1969 in Gorinchem, The Netherlands. From
1988 to 1993 he studied mathematics and philosophy at the University of Groningen. He
graduated in 1992 in pure mathematics with prof. M. van der Put as supervisor. In 1993
he graduated in technical mechanics with prof. A. Veldman as supervisor. In that same
year he started his PhD research at the Technical University of Eindhoven.



Stellingen
behorende bij het proefschrift

Algorithms for Finite-Dimensional Lie Algebras

Willem A. de Graaf



1. Zij L een Lie algebra over een lichaam van karakteristiek 0. Laat z;,...,2,
een basis zijn van L zo dat z;,...,z, een basis is van het centrum van L
{5 € n). Definieer polynomen fi,..., f. in de variabele X als volgt:

(a) fi=X%?voor1<i<s,

(b) als s < ¢ <n dan is f; het minimumpolynoom van ad z;.

Zij I het ideaal van de universeel omhullende van L voortgebracht door de
elementen fi(21),..., fa(z,); dan geldt in veel gevallen dat LN T = 0. Een

algemeen bewijs hiervan zou tot een nieuw bewijs van de stelling van Ado
leiden.

2. Het bewijs van Corollarium 4.4.1.2 in [1] is fout (het corollarium zelf is
overigens correct, zie [2]).

[1] D. J. Winter. Abstract Lie Algebras. M.LT. Press, Cambridge, Mass.,
1972.

[2] D. W. Barnes. On Cartan Subalgebras of Lie Algebras. Math. Z.,
101:350-355, 1967.

3. Propositie 6 in [1] is fout; een tegenvoorbeeld is de Lie algebra met basis
{21, 91, h1, T2, y2, ha } en vermenigvuldigingstabel:

hi,z1] = w [ham] = w [onwm] = i+ ik
] = -z [The,m] = -z [z2,] = $hi— 3k
P,z =y [hy3] = -
[hi,92] = -2 [ho,32] = 2

{niet getoonde produkten van basis elementen worden 0 verondersteld).
De ruimte opgespannen door h; en Az is een Cartan deelalgebra. En een
decompositie als beschreven in [1] wordt gegeven door

(hla hz) & (;1:1, T2, Y1, yZ)'
Deze leidt echter niet tot een directe som decompositie van de Lie algebra.

[1}] W. A. de Graaf, Calculating the Structure of a Semisimple Lie Algebra,
J. of Pure and Applied Algebra, 1178&118:319-329, 1997.



. Bij een inleidende cursus over Lie algebras verdient het boek van Jacobson
([1]) aandacht; de formuleringen van de bewijzen in dit boek zijn uitzon-

derlijk helder.
[1] N. Jacobson, Lie Algebras. Dover, New York, 1979.

. De uitspraken van de complexiteitstheorie moet men niet in morele zin
opvatten; “polynomialiteit” impliceert niet altijd “praktisch bruikbaar” (of
goed) en “exponentieel” betekent niet “onbruikbaar” (of slecht).

. Als men een tekst die zich in het geheugen van een computer bevindt gron-
dig wil bestuderen, dan drukt men deze gewoonlijk af; hieruit kan men
concluderen dat een mens met een beschreven blad een veel intiemere re-
latie kan onderhouden dan met een beeldscherm.

. De Nederlanders hebben de spreuk “God zij met ons” op hun munten gezet;
er is geen betere illustratie van hun koopmansgeest.

. Als een elite spreekt van “moreel verval”, dan betekent dit veelal dat zij
haar gewoontes overgenomen ziet worden door “het volk”.

. Principes zijn veelal slechts een vrijbrief voor redeloosheid.





