

Minimal input support problem and algorithms to solve it

Citation for published version (APA):
Konieczny, P. A., & Jozwiak, L. (1995). Minimal input support problem and algorithms to solve it. (EUT report. E,
Fac. of Electrical Engineering; Vol. 95-E-289). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/2afa9bda-7d25-45be-8d1d-d767ce75c347

Minimal Input Support Problem
and Algorithms to Solve It

by
Pawel A. Konieczny
Lech J6iwiak

EUT Report 95-E-289
ISBN 90-6144-289-3
April 1995

Eindhoven University of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

ISSN 0167-9708

Faculty of Electrical Engineering

Eindhoven, The Netherlands

Coden: TEUEDE

Minimal Input Support Problem and
Algorithms to Solve It

by

Pawel A. Konieczny

Lech Joiwiak

EUT Report 95-E-289

ISBN 90-6144-289-3

Eindhoven

April 1995

CIP-DATA KONINKLIJKE BmLIOTHEEK, DEN HAAG

Konieczny, Pawel A.

Minimal input support problem and algorithms to solve it I
by Pawel A. Konieczny, Lech Jozwiak. - Eindhoven:
Eindhoven University of Technology, Faculty of Electrical
Engineering. - Fig., tab. - (EUT report, ISSN 0167-9708 ;
9S-E-289)
With ref.
ISBN 90-6144-289-3
NUGI8S3
Subject headings: information systems I logic design I
input support minimization .

... _'

.".;ii::'-. .".,,,- ~' •.•.

Minimal Input Support Problem and
Algorithms to Solve It

by Pawel A. Konieczny and Lech JOZwiak

Section of Digital Information Systems, Faculty of Electrical Engineering, Eindhoven

University of Technology, P. O. Box 513, 5600 MB Eindhoven,

The Netherlands

Abstract

Input support reduction is one of the most important aspects of the economical
representation of information in information processing systems. Solutions to this
problem can be directly applied in such areas as logic design (for minimizing the number
of input lines of a logic building block which implements a certain (sub-)function) or
information system design (for minimizing the number of attributes in decision tables). In
the case of logic synthesis, input support reduction is crucial, because the number of
input lines of a logic building block influences both the active area taken by the building
block and the routing area taken by interconnections.

In relation to logic synthesis, the problem received quite much attention [4, 5, 7, 8,
II, 12, 16,26, 27, 29, 30, 32]. However, the exact algorithms for input bit minimization
(all but not [II]), have too low efficiency for large instances of the problem and the
approximate solution proposed by Grinshpon [11] can be quite easily improved. The
main aim of the research reported here was to develop more efficient exact and
approximate algorithms. Another aim was to check the usefulness of various search
paradigms in solving problems of such a kind. We tried to formulate the support
reduction problem as general as possible (in order to use its solution method in various
areas), to analyze the problem, and to solve the problem using known local search, tabu
search and branch-and-bound paradigms, and proposed by us the quick scan and beam
search paradigms. In the report, the formal definition of the problem is presented, the
problem is proved to be NP-complete and the problem structure is studied.
Subsequently, the considered solution algorithms are presented and results obtained from
their implementations are described.

It turned out that the QuickScan algorithm has the best performance for large
instances of the problem, the exact algorithm is the best one for small instances (up to 20
input bits), and the local and tabu searches are not suitable. Furthermore, we decided to
improve the effectiveness of the approximate QuickScan by proposing a beam-search
algorithm, and efficiency of the exact algorithm by proposing a new branch-and-bound
algorithm.

Index Terms: information system design, logic design, heuristic algorithms,
combinational optimization, input support minimization

III

Contents

Introduction 1

Problem Formulation ... 5

Combinational Circuits ... 5

Sequential Machines ... 6

Partitions and Set Systems .. 8

General Formulation ofMISP ... 9

ILP Formulation and the Complexity of the Problem ... II

Problem Geometry .. 13

Algorithms .. 17

LRed 17

Espresso ... 18

QuickScan .. 19

Tabu Search ... 21

Preprocessing and Probing .. 23

Preliminary Results ... 24

Escaping from a Local Hypercube ... 28

Improved Algorithms 30

Results 33

QUickScan and Preprocessing ... 35

LRed 36

Espresso 37

Tabu Searches and Local Search...................................... 38

Additional Tests for QUickScan and LRed 42

Conclusions and Recommendations ... 45

LRed 46

Espresso ... 47

IV

QuickScan47

Tabu Search48

Preprocessing and Probing48

Proposal of new exact and approximate algorithms48

Future Works .. 50

References ... 51

v

Acknowlcllgmcnt: The Authors are indebted to Prof IL M.PJ. Stevens for making it

possible to perform this work.

VI

'- -%'::..:

Introduction

Modem microelectronics technology gives opportunities to build digital circuits of huge

complexity and provides a wide diversity of logic blocks. A rapidly growing interest in

programmable devices has also been observed, as a result of their very attractive

characteristic features, such as high speed (comparing to software solutions), low cost

(comparing to hard-wired ASIC solutions), high reliability and fast customization

without the need for involvement of the manufacturer.

However, programmable devices impose limitations on various circuit parameters due to

input, output, functionality, memory, communication and speed constraints. On the other

hand, traditional logic design methods are not suitable for very complex circuits or

implementations with constrained building blocks for the following main reasons: they

are only devoted to some very special cases of possible implementation structures, they

often fail to find global optima for large designs, they do not consider hard constraints,

they often do not consider correctness aspects in an appropriate way, and they often

leave unconsidered some important factors that sufficiently influence the actual design

objectives.

Logic synthesis is typically performed without any relation to the target implementation

structure. Traditional logic design methods use only a limited set (minimum functionally

complete set) of Boolean operators (e.g. AND-OR-NOT) and not the full set of

operators implemented by a certain library of hardware building blocks. To implement

the minimized expression, a transformation step called technology mapping must be

performed in order to transform the expression into a network of actual hardware

building blocks. If the repertoire of logic blocks offered by a certain technology library

differs substantially from the set of Boolean operators used during synthesis, the work

completed during synthesis is almost futile, because the real synthesis must be performed

during the technology mapping.

The bad practice of target-independent logic synthesis follows from the lack of

appropriate modeling tools and synthesis methods for digital circuit structures.

Traditional logic modeling tools model circuits in terms of functionally complete systems

composed of a minimal number of some special structural elements (e.g.

AND+OR+NOT, NAND, NOR, MUX, or AND+EXOR) instead of modeling them in

terms of all structural elements at the designer's disposal or, just generally, in terms of all

possible sub-circuits. For example, the commonly used Boolean algebra enables us to

express all possible functions but fails to model their implementation structures. Boolean

algebra makes it possible to decompose functions exclusively into networks consisting of

AND, OR, and NOT sub-functions, or into the equivalent NAND or NOR networks,

while in general they can be decomposed into sub-functions of any kind. Similarly, binary

decision diagrams enable us to express the Boolean functions exclusively in the form of

two-input multiplexer networks.

Although logic designers have been building circuits for many years, they have realized

that advances in microelectronics technology are outstripping their abilities to make use

of the created opportunities. It has become extremely important to develop a new

generation of methods which will effectively and efficiently deal with design complexity

and the characteristic features of modern building blocks, enabling modeling and

synthesis of all reasonable circuit structures and providing "correctness by construction,"

easy correctness verification, and intelligent search algorithms for the effective and

efficient exploration of the huge space of correct circuit structures.

In order to solve the problem, a structural decomposition approach may be used. It

consists of transforming a system into the structure of two or more cooperating sub

systems in such a way that the original system's behavior is retained and certain

constraints and objectives are satisfied.

The theoretical work in this field was started by Ashenhurst (I] and Curtis [6] for

combinational circuits and by Hartmanis [13, 14, 15] for sequential circuits in the early

1960s. However, they over-simplified the actual problems. Since then, the

decompositional approach has been further developed by many researchers, but only few

of them [18, 19,20,2228,31] noticed the importance of the decomposition of inputs in

addition to decomposition of other circuit parameters (sequential machine internal states,

outputs, interconnections, memory, and/or functionality).

A recent development of a general full-decomposition theory of digital circuits by

J6zwiak [25] has rendered the task of finding the minimal number of inputs to a

component block a crucial one for an effective and efficient application of the theory.

Since an algorithm for input support reduction can be invoked a lot of times during one

run of a decomposition algorithm, both the quality of the results and the run-time of the

reduction algorithm are extremely important. Although the work reported in this report

was performed in the context of research aiming at development of methods for effective

and efficient application of the general full-decomposition theory [25], the importance of

input support reduction is not limited to this field.

Input support reduction is one of the most important aspects of the economical

representation of information in information processing systems. Solutions to this

problem can be directly applied in such areas as logic design (for minimizing the number

of input lines ofa logic building block (e.g. PLA, look-up table, gate), which implements

a certain (sub-)function or (sub-)machine) or information system design (for minimizing

2

the number of attributes in decision tables}. In the case of logic synthesis, input support

reduction is not less important than, for instance, term reduction performed by traditional

two-level logic synthesis (see Example in Section General Formulation of MISP). The

number of input lines of a logic building block influences both the active area taken by

the building block and the routing area taken by interconnections between the primary

inputs of a whole circuit or outputs of the other building blocks and inputs of the

building block. For large circuits, especially when generated by CAD-tools of different

sorts, the gain from the input minimization can be very high.

In relation to logic synthesis, the problem of input support reduction received quite much

attention [4, 5, 7, 8, 11, 12, 16, 26, 27, 29, 30, 32]. However, the exact algorithms (all

but not [II]) have to low efficiency for large instances of the problem and the

approximate solution proposed by Grinshpon [11] can be quite easily improved.

Furthermore, all the algorithms solve the problem in its specific statement related to

combinational logic. In order to use its solutions in various areas, it is important to

formulate and solve it as generally as possible.

The main aim of the research reported here was to formulate the support reduction

problem as general as possible, to analyze the problem and to develop more efficient

exact and approximate algorithms. Another aim was to check the usefulness of various

search paradigms in solving problems of such a kind. We tried to attack the problem

using known local search, tabu search, and branch-and-bound paradigms and proposed

by us the quick scan and beam search paradigms. It turned out that the QUickScan

algorithm has the best performance for large instances of the problem. Although it

cannot guarantee a strictly optimal solution, the experimental results show that it is able

to efficiently find an optimal solution or a solution which is very close to optimal. The

local search and tabu search approaches are not suitable for such kind of problems.

Furthermore, we decided to improve the effectiveness of the approximate QuickScan by

proposing a beam-search algorithm, and the efficiency of the exact algorithm by

proposing a new branch-and-bound algorithm.

In Chapter Problem Formulatioll, the theoretical aspects of the input support

minimization problem are presented After the problem definition, the NP-completeness

is proved and the problem geometry is studied. Chapter Algorithms presents the

considered solution algorithms. The proposed heuristic algorithms are based on the

analysis of the problem geometry and preliminary results of a simple Tabu Search

algorithm. The next chapter, Results, presents the results obtained form the test runs of

all the algorithms introduced in the previous chapter. The results are compared and the

detailed conclusions are drawn. In the last chapter, some conclusions and

recommendations are presented.

3

4

'';

->ii.:;:-'.-, __ it*'i"';~~'-""'"-

Problem Formulation

The input minimization problem is the problem of finding the minimal input support, i.e.

the minimal set of input bits that still preserves the functionality of a circuit. Informally it

can be defined as follows: given a set of input symbols encoded in values of input

variables (bits) and a partition on this set (or, in general, a set of conditions which pairs

of symbols must be distinguished), find the minimal subset of coding variables (bits) that

still allows to distinguish the given pairs of symbols.

Below, the formal definition of the minimal input support problem (MISP) will be given,

based on different types oflogical circuits and functional requirements.

Combinational Circuits

Definition 1. A fully specified combinational circuit can be defined as a set of Boolean

functions Yj, Yj: B" -)0 B,) = I, "', m, where n - number of input bits, m - number of

output bits, B = {O, I} ([17]).

However, from the functional point of view values of certain functions Yj in certain

points of the domain can be unimportant, that is, can be ° or I without changing the

useful functionality of the circuit. On the other hand, specifYing such points is of great

importance for circuit optimization algorithms, which can then freely choose what

Boolean value will be produced by the optimized circuit. For this reason the domain of

values of functions Y, is defined as a set D, D = {O, I, -I, where "-" means "don't care".

Then the design of a combinational circuit can be specified by defining functions Y,.

Yj: B" -)0 D. A tabular definition of functions y" called a PLA form or a tnlth table,

defines a set of combinational circuits equivalent from the functional point of view.

Further, values of some input bits can have no influence on the value of a certain

function. To reduce the size of the combinational circuit definition, don't-care values are

used for inputs as well. If in PLA table a certain input pattern contains don't-cares, this

means that the output value specified for this pattern is defined for all points obtained by

all possible combinations of zeros and ones in the place of don't-cares. The next

reduction of the size of a circuit definition comes up from omitting some points (rows),

for which a default value is assumed (zero, one, or don't care).

Definition 2, PLA specification can be defined as m sets r;, r; c f)"H,) ~ I, ''', m such

that

5

v V Yi(X)= I~,
IE~ xEB":xc(t" ... ,I")

for j = I, ... , m .

and

v Yix)="dejaull value" for j = I, m
X E B"\{x' E B"I :3 x'c(t" ... ,t")}

lET)

where c is a relation in the set D" such that:

r l . V l/'cl"C>_V (t:=t;)V(/;="-")J
t. t ED" I-I, n

Definition 3. The PLA specification is said to be inconsistent if there are such two

points l' and 1" in ~ for a certain j, that for a certain x E B" those points define different

values ofthe output function Y,(x). More formally, the PLA specification is inconsistent if

and only if

:3 :3 [xc(t:, ... ,I~)/\XC(t;, ... ,t:)J\I~+, ;01:+,1
t',tOeTj XED"

From here, only the consistent PLAs will be considered.

For the above definition of PLA, MISP can be defined as follows:

Definition 4. MISP. Given m sets ~, T, C D"+' , j = I , m, find a minimal input

support U, U c {I, ... ,n} such that

V [/~' ;0 1;+, => :3 1;;0 I:Jl
I',t ETj 1:1EU

for j = I, ... , m

where ;0 is a relation in the set D such that

v (x';O x") C> «x' = 0) A (x" = I) v (x' = I) A (x" = 0»
x',x"Ef)

Sequential Machines

Definition 5. A sequential (Mealy) machine M IS an algebraic system defined by:

M = (1, S, 0, 0, A) where:

I - a finite non-empty set of inputs,

S - a finite non-empty set of internal states,

o - a finite set of outputs,

5 - the next state function, 5: I x S ~ S

J... - the output function J...: I x S ~ 0

A sequential machine with encoded inputs and outputs is a machine M where I c B" and

o c Dm. Functions 5 and J... form a combinational circuit which can be specified in a

PLA-like format, KISS.

6

Definition 6. KISS: m sets 1'" 1', cD" x S x D, j

fa c D" x S x S such that

V V Aj(x,I_,) = I ... ,
lET,. X E B": x c (1" ... ,1,)

and

V A(x,s)="-"
X E B" \{x' E B"I 3 x' c(I" ... ,I")} 'ES

fET)

and

V V O(x,I~,,)=I ... ,
IE fax E B': x c(I" ... ,1,)

and

V o(x,S)="'"
X E B' \ {x' E B"I 3 x' c (I, , ... ,1")} 'ES

tET,

where "." is a special symbol in S representing any state.

I, ... , m. and the set T&

for j = I, ... , m

for j= I, ... ,m

This specification would be exactly in PLA format if S c B'. Usually however, the set S

contains symbolic states only and the assignment of bit codes to state symbols is done in

the very late stage of optimization as it reduces freedom for possible implementations of

the sequential machine.

The consistency of a sequential machine specification can be defined similarly as for a

combinational circuit (with taking into account the semantics of the "." state symbol)

and from this point only consistent sequential machines will be considered.

Definition 7. For the above definition of KISS, MISP can be defined as follows: given m
sets 1'" 1', cD" x S x D, j = I, ... , m. and the set T& fa cD' x S x S, find a minimal

input support U, U c {1, ... ,11+ I} such that

V [I;", '" I:', ~ :3 I; '" 17]
t',t-eT

j
i:ieU

for j = 1, ... , m, Ii

where the relation ""," between states is defined as the lexical inequality of symbols.

This problem can be easily converted to PLA notation simply by choosing an arbitrary

but unique coding of symbolic states. Note that when KISS is converted to PLA

notation, the notion of a minimal input support is more complicated: if one primary input

bit in the support has the cost of a unit, then all bits used to encode one symbolic input

(state) have also (and only) the cost of a unit It can complicate algorithms for solving

the problem, so the best way to deal with it is to define (and solve) a general MISP for

multi-value input variables and then to treat binary input variables (bits) as a special case

(see Definition 8).

7

Partitions and Set Systems

The two previous definitions of MISP cover the common cases where the importance of

input minimization is obvious. There are however some other situations where finding

the minimal input support is of great importance. During the sequential machine synthesis

(decomposition, state assignment), the relation of inequality of states ("0''' e SxS) can be

weakened to an equivalence relation by introducing abstraction classes or partitions 1t in

the set S. Then

V s' ~ s· ~ 1t[s') 0' 1t[s")

where 1t[s) is the block of the partition 1t containing s.

Such a synthesis problem for sequential machines with state partitions can still be easily

expressed by the KISS format and the related definition of MISP: the set of states is

replaced by the set of blocks and every occurrence of a state in the specification is

replaced by its block symbol.

In some stages of the synthesis, the algorithm can require even more relaxed relation. In

fact it can be any reflexive and symmetric relation on the set S. Such a relation is then

called an incompatibility relation (+) and is usually expressed in a form ofa list of pairs of

states that are distinguished (incompatible in terms of the "+" relation), or, equivalently, a

set system on states (a.k.a. a rough set or an r-set). However, the compatibility relation

defined as a complement of such an incompatibility relation (S x S \ "+") is not

necessarily an equivalence relation because it may be not transitive.

This problem also can be translated to PLA notation but a special coding of states is

necessary. Let K = 1"+"1 (the number of state demands). Let (SA ,S8)' be k-th state pair

from the list of incompatible state pairs according to the lexical order (k = I, ''', K).

Every state s ES is coded as s on K bits (s = (SI ," "SK» in such a way, that

1
0

s = 1
k "_,,

if (s, S8). for any S8

if (SA'S). for any SA

otherwise
fork= 1, ... ,K

Then every pair of states (SA ,S 8) E "+" is distinguishable by this coding, that is

r 1
i :l xes. I\xes8 J

XEBf(

and every pair of states (SA'S 8) 1£ "+" is indistinguishable by this coding, that is

The first conclusion follow!; immediately from the construction of coding, because

SA' + S8' and not "-" so x, cannot be equal to both of them at the same time.

8

The second conclusion is true because if SA. is not "-" then SBk is, and inversely. Then x

satisfYing the required condition can be defined as follows

ISAk

x k = SIlk

otherwise

if s is "_"
Bk

if s is "_" Ak

is not possible

Clearly, x C SA and x C SB .

General Formulation of MISP

Although MISP for sequential machines with state demands can be expressed in a PLA

form, the cost of it is the exponential growth of the problem size. While the problem
instance with state partitions can be encoded proportionally to 10gl1t1 bits, this instance

coded as a problem with a state set system requires the number of bits proportional to

11tI'Further, similarly as with an artificial coding of symbolic states, the bits used for

coding should not be a subject of reduction. For this reason we present the new, most

general definition of MISP, appropriate for all the cases presented above.

Definition 8. General MISP. Given a set T, T C zn (Z is the set of all possible values of

all multi-valued input variables plus the "don't-care" value: "-"), and an incompatibility

relation f, fc TxT, find a minimal input support U, U c {I, ... , n} such that

I 1
"~Tlt'+ I" => i:~U (t; -:t It /\ t; 7; "-"I\I;:,t "_II) J

(the ";e" relation above denotes strict lexical inequality).

Example. Consider the following switching function presented in Figure I. The minimal

realization according to the number of terms contains 5 terms and requires all 5 inputs

(see Figure 2). The PLA area calculated by the formula (2; + o)p is 55.

After input support minimization, we obtain the solution {XI, X3, X4, xs}, what means that

Xs = 1
'"".XIX~

x,x," , 00 01 . 11 10 x,x, 00 01 11 10

00 1 a 00 a 1

01 0 0 1 01 0

11 1 a 0 11 a 1

10 a 0 1 10 0
--

Figure 1 The example function f(X"X2,X3,X"XS)

9

x, = 0 x, = I
~XIX2

X,x~ 00 1)1 11 10
~XIX2

x,x';-" 00 01 11 10

00 =:D 0 C 00 r-----)
I--

0 cr:=
0 0 (ij

~, ...--"-
01 01 0

.~

(1) a a
'~ -'

11 0 (1) 11

10 0 0 (2) 10 0

Figure 2 The minimized function f(x"x"x3,x.,xs) = x, X 3 X , + x, x 3X4 x 5 + x ,X3X4 x 5 + X,X3 X

the input variable x, can be deleted. The simplified function is presented in Figure 3 (bold

values show how don't cases are assigned) and Figure 4 (as a function of four variables).

The minimization of the simplified function leads to 6 terms, what makes the PLA area

equal to 54.
Xs = 1

-", XIX;!

11 10 x,x,'.. 00 01 11 10

o
.'~ -,

0 (1 1) 0 0

- .-
00 0 0 (1 1)

f---.. ------ .
-' '. '.

o 1 0 0 (1 1) 01 0 0
.' -. .

1 (1 1) 0 0
"- .. '

1

f-...... f-- .. -·-.·C,CC f--._-

0 0 (1 11-) 11

0 a 0 (1 1) 10 0 0

Figure 3 The minimized function with the minimal input support f(x"x"x3,x.,xs) = x, X 3 x, X

In this case, the input support reduction causes that the circuit is implemented by non

minimal number of product terms, but it still gives the smaller PLA active area than for

the minimal term case. In addition to this, it allows for savings in routing area, as one

input line is removed. We can also observe the trade-off between the number of inputs to

the circuit and the minimal number of product terms (although both factors are

correlated in the same direction). In general, the more complex the circuit is, the greater

gain is expected by input support minimization. Of course, the gain depends heavily on

the precise form of the function.

10

00 01 11 10

o 0 C) 0 (:2) 0

o 1 0 C) 0

1 1 C) 0 C) 0

1 0 0 (0 0

Figure 4 The minimized function with the minimal support as a function of four variables
f(X"X3,X4,XS)

ILP Formulation and the Complexity of the Problem

The general MISP can also be expressed in terms of Integer Linear Programming (ILP).

The ILP formulation of MISP involves m binary variables.

Definition 9. The ILP formulation ofMISP.

Variables:

the input variable} is in the support

otherwise

=mm

subject to constraints

V Lx, ~I
I' ,tOE T: ,'+,. i{ t;;t.',"Al;;t. --"1\ (,";t.. _",

v Xj E B
j=l, m

The inequality constraints specifY, for each pair of input symbols required to be

distinguishable that at least one input variable that can distinguish the pair, must belong

to U.

To determine the complexity of the problem, MISP should be expressed as a decision

problem. Here, we restrict ourselves to the binary case; however, the proof for the multi

valued case is strictly analogous.

Definition 10. MISP as a decision problem. Given a set T, T ~ Dn, an incompatibility

relation +.+c Dn x Dn, a positive integer K, is there a support U ~ {l, ... ,n} of size K or

less, that is a set such that

11

r 1
'if It' +t" => :3 I;,' I;J

l'.t~ET i:iEU

To prove that MISP is NP-complete, the Hitting Set Problem will be polynomially

transformed to MISP.

Definition 11. Hitting Set Problem. Given a set V and a collection e of subsets of V,

e ~ 2v, a positive integer K, does V contain a hitting set for e of size K or less, that is, a

subset V' ~ V with Ivi :'> K, and

'if cnV' l' 0
eEl:

(V' contains at least one element for each subset in C)?

Hitting Set Problem is NP-complete [9] (it can be reduced to Node Cover Problem by

the requirement Icl = 2 for every c E C).

Theorem. MISP is NP-complete.

Proof MISP belongs to NP because checking if a certain U, lui:,> K is a valid support

can be done in polynomial time (exactly 0(11171')).

Let V, e ~ 2" bet any instance of the Hitting Set Problem. Assume any order in V, that

is, V=(v"v" ... ,vn }, II=IVI. For any ci Ee we construct the following two elements

liandJiET

11 {~ if Vi E C
J = if

,
Vi !,l c]

'if
{~ if v_ E C

iE{I, .. ~n}

Jt' ' 1 =
if Vi {l C,

then

T= U(t',ji}
HI.···ICIl

and

j={l,·jell

It is easy to see how the construction can be accomplished in polynomial time (note that

171 = 21Cf and 1+1 = lei). All that remains to be shown is that there is a hitting set for V

and e of size K or less if and only if there is a support U, lui:,> K, for T and f.

First, suppose that V ~ (\, ... ,n} is a support for T and f with lui:,> K. Because f

contains all (and only those) pairs {Ii ,r }, U must distinguish all those pairs, that is

'if :3 Ii l' j,'
j={I •.. ~\CI} i:ieU

but since Ii and J i contain different bits only for those i where v, ECi (the set ci is hit),

U must contain i s. t. Vi E C i .

Because it holds for every c,' the set V' = {Vi: i E V} is a hitting set for e and

IV'I=ISI:'> K. Conversely, if V' is a hitting set for e, IV'I:'> K, the set V is constructed as

12

U = {i: Vi E V'}, (lUI=IV'I).

Then for every pair {I j ,P} in +, there is such i E U that 1/ = I andj/ = 0 (so Ii * //),
simply by choosing such i that Vi (Vi EV') belongs to Cp 0

Problem Geometry

The solution space of MISP contains all subsets of the input set, that is 2" points. To

represent one input support it is conv\!nient to use its characteristic function expressed in

a form of a bit pattern. The meaning of each hit in the pattern is the same as the meaning

of the variables Xj in Definition 9. Then the natural notion of a neighborhood, necessary

to be defined for any heuristic search, comes up from a Hamming distance: a

neighborhood N (s) of a solution s is the set of all points s', for which the Hamming

distance to s is I. Further, because the quality of a solution is equal to the number of

zeros in its bit pattern, all solutions can be partitioned into 11 levels, according to their

quality. Figure 5 shows the solution space for several instances of the problem. Each

(1) (2) (3) (4)
1111

"' 11

1 1 10 ,

r V o 001"" 1 1 100

00

000

00000

Figure 5 The leveled search space of the problem instances with n = 1, 2, 3, 4, and 5

13

node represents one solution and each edge joins two nodes in the Hamming distance I,

defines thus valid moves of the search.

In general the number of solutions at a quality level k is equal to (~), so the general

search space (for large ,,) has the form shown in Figure 6. This picture shows exactly the

dimensions of the search space, but it is not accurate in expressing the search path since

(as it can be observed in Figure 5) two nearly placed points need not be neighbors and

the opposite.

number of solutions:: (~)

a

quality

Figure 6 Search space dimensions of MISP

On the other hand it can be observed that the search space is in fact ,,-dimensional

hypercube, and for a given vertex, all adjacent vertices form its neighborhood.

Furthermore, the feasible area is easier to imagine. If s is a local minimum then all points

containing at least the inputs contained in s are feasible. The set of such points forms

another hypercube of the dimension 1/- k, where k is the quality of .v, immersed in the

solution-space hypercube. The total feasible area is the union of all sub-hypercubes

induced by all local minima (Figure 7). In the sequel, this symbolic representation of the

search space will be used to present various aspects of algorithms tested.

14

the number of bits

n

o

full support quality

unfeasible supports

empty support

Figure 7 The solution space hypercube and a sub-hupercube of the feasible area

15

16

Xft,

Algorithms

As a reference, we used the algorithm for MISP proposed and implemented by T. Luba

and J. Rybnik [29, 30]. It is an implicit exhaustive search algorithm but it has reasonably

good performance for small and medium problem instances. For larger instances,

however, it is not satisfactory (see Results).

To find a better quality/performance ratio and to check the usefulness of various search

paradigms, a number of other techniques are developed and tested. These are: the

QuickScan algorithm, various Tabu Search algorithms, the Local Search algorithm, and

solving the problem by converting it to an equivalent two-level optimization problem and

using Espresso to solve the latter.

LRed

The algorithm used in the program LRed is an exhaustive search trying all possible

supports and selecting all minimal [29, 30]. First, it constructs a list (table) of all

incompatibilities between the output symbols and for each such pair it determines what

input bits can distinguish it. Then it exhaustively traverses an implicit binary decision tree

(see Figure 8) cutting off the branches that lead to an unfeasible solution and stopping

considering a branch when all incompatibilities are distinguished. In Figure 8 the order of

input selection to be considered is simple ascending for simplicity of presentation.

Actually, the algorithm is an implicit exhaustive search which uses some heuristics when

choosing what input to consider next: it chooses among all bits that can distinguish the

most restrictive pairs (i.e., the pairs that have the least number of distinguishing inputs), a

bit that can distinguish the largest number of pairs.

In other words the algorithm starts from the empty support and adds to it all possible

combinations of inputs until a support becomes feasible. In that way the program

generates all possible unredundant supports (all local minima) but it collects only the

minimal ones. The complexity of the algorithm is exponential.

17

BEGIN:
S := empty support
DP := list of symbols that must be distinguished

cut this branch and return
the current support if DP
is empty.

add x. to S
reduce DP by all pai rs
distinguished by XI

I try inputx\

Otherwise, add x, to S ... ~ \

ltryinPutx3~

• • • • • •

Figure 8 The algorithm of LRed program

Espresso

• • •

cut this branch if XI is relatively
essential (at least one pair in DP is
distinguished only by XI)

• • •

Espresso is the program for two-level Boolean function minimization [3]. If MISP is

formulated as a two-level minimization problem, it can be solved directly by Espresso.

This solution has such a potential advantage over the previous (LRed) that Espresso runs

in an approximated mode using some efficient heuristics and thus allowing for obtaining

(sub)optimal solutions even for large instances.

Let X, be a Boolean variable defined as follows:

{
I the input bit i is in the support

x -
I - 0 otherwi se

Then the constraints of MISP can be defined as a Boolean function F in the form of

"product of sums" (POS), in such a way that every sum corresponds to one pair of

symbols that are to be distinguished, and every variable in a sum corresponds to an input

that distinguishes that pair. Formally,

("
F = 1./)~ ... lYr Xi j

(compare with Definition 9).

18

Clearly, there is equivalence between prime implicants of F and unredundant supports

(local minima) of MISP (finding all such prime implicants is exactly what LRed does).

The global minima of MISP corresponds to the largest prime implicants of F

However, the primary goal of the Espresso optimization is to find an equivalent

representation of F containing the minimal number of product implicants rather than the

largest imp Ii cants. Therefore, the problem has to be reformulated before applicable for

two-level minimization. First, notice that as F is a positive function (all variables are

uncomplemented), so every prime implicant of F covers the positive vertex

(corresponding to the full support). Second, as F defines the constraints or the solution

space for MISP, the minterms of F represent all possible but not necessary supports. In

other words they define don't -care conditions. Hence the problem of minimal support is

to find a maximal product term that covers the minterm XIX2 ... Xn, may cover the other

minterms of F and does not cover any minterms from F . This can be considered as a

two-level optimization problem.

Espresso requires an input written in the PLA format, that is the list of product terms for

ON-set, OFF-set, and DC-set (two of them suffice). In our case the ON-set (the set of

minterms for which the function has the value I) consists of a single minterm being a

positive vertex. The OFF-set can be obtained from the POS specifications of F: applying

DeMorgan's laws, F in SOP can immediately be written by negating all variables,

changing sums to products and products to sums. PLA prepared in such a way can be

optimized by Espresso and the result contains one (sub-maximal) term representing a

solution.

The method described above is very general and is not bound to the Espresso program.

In fact any two-level logic optimizer could be used. We have chosen Espresso for its

good general performance.

QuickScan

This algorithm is intended to perform a quick traverse trough several local minima and it

was purposed mainly for fast recognition of the "depth" of a particular instance of the

problem. Nevertheless, it seems to be a quite useful method for finding reasonably good

solutions for very big cases, when other techniques cannot be applied.

Every input support is represented by a bit pattern. A bit in a position i of the pattern is a

Boolean variable stating if a certain input bit Xi is or is not included in the support. The

quality of the support is equal to the number of zeros in its bit pattern.

19

The scan is carried out in two modes: the down-mode, when the algorithm seeks a

leftmost (according to the lexicographic order) local optimum (it is the initial mode when

the search begins), and the up-mode, when the algorithm escapes from the local optimum

in the rightmost direction (see Figure 9). During the search in the up-mode, the algorithm

11111

Figure 9 The scan path of the QuickScan algorithm (gray nodes represent unfeasible
solutions, black arrows - the leftmost (down) scan, gray arrows - the rightmost (up) scan)

constantly tries to discover a new local minimum to enter, before it makes a next step up.

In order to prevent revisiting a previous local minimum, the algorithm considers only

those supports down, which are on the right from the previously visited support. The

best local minimum visited is stored and makes the result of the algorithm. The complete

pseudocode of the algorithm is given in Figure 10.

The search defined in this way is deterministic and cycle-free. Although the global

minimum is not guaranteed, the deeper a local minimum is, the more possible ways lead

to it. Therefore, the chance is little that the algorithm will skip a solution which is much

better than the best visited so far.

20

procedure QuickScan
{

current support ~ full support;
best support = none;
while (current support exists)
{

if (last move was down or first move)
{

next support = leftmost down feasible from current support;
if (next support exists)
{

current support = next support;

else
{ II local minimum

if (current support < best support)
best support = current support;

current support = rightmost up from current support;

else II last move was up
{

next support = leftmost down feasiblE' but t(. till':' right from previous support
if (next support exists)
{

cur Lent support'" next SUPPOl-t;

else
{

current support rightln(,st up froln (,lIl[<:'nl sllpport;

return best support;

Figure 10 Pseudocode of QuickScan

Tabu Search

The Tabu Search (TS) method can be viewed as an iterative technique which explores a

set of problem solutions, denoted by X, by repeatedly making moves from one solution s

to another solution s' located in the neighborhood N(s) of s, using flexible (adaptive)

memory. The moves are performed with the aim of efficiently reaching a solution that

qualifies as "good" (optimal or near-optimal) by the evaluation of some objective

functionJ(s) to be minimized [10].

The notion of using memory to guide the search can be formalized by saying that the

solution neighborhood depends on the time stream, hence on the iteration number k.

That is, instead of N(s), a neighborhood denoted N(s, k) may be referred to.

Using pseudocode, the general TS algorithm can be described as below:

(a) Choose an initial solution s in X,

s·:= s, and k:= 1

(b) While the stopping condition is not met do

k:=k+1

Generate V· k N (s, k)

21

Choose the best s' E V'

s':=s

if j(s') < j(s') then s':= s'

End while

TS is a variation of a simple descent method, which always seeks the better solution in

the sample of the neighborhood of the current solution. Such a descent approach will at

best lead to a local minimum of j where it will be trapped. Allowing to accept moves

from s to s' even if j(s'» j(s), circumvents the outcome but rises the danger that

cycling may occur. TS attempts to avoid the cycling by incorporating a memory structure

that forbids or penalizes certain moves that would return to a recently visited solution.

The simplest (and the most accurate) form of memory is embodied in a tabu list T that
records the ITI solutions most recently visited, yielding N(s,k) = N(s)- T. Such

memory will prevent cycles of length less than or equal ITI from occurring in the

trajectory. For many problems this type of memory is practically impossible to realize,

due to extreme space consuming, and many other memory models are developed to

make a better usage of the memory space, but they are also less precise in estimation of

visited solutions. The memory containing complete solutions has such an advantage over

the other models, that extending the tabu list will never deteriorate the solution quality

caused by forbidding too many not yet visited solutions.

In the case of MISP a solution has a form of a set of numbers limited practically to

hundreds. It can be coded effectively in tens of bytes. Hence it is possible to implement a

tabu list containing the solutions visited, with the size of thousands complete solutions.

The starting solution in MISP is the set containing all input bits, and the neighborhood

N(s) is defined as the set of all input supports containing one bit less or one bit more than

s. The quality functionJts) is the number of bits in the support s.

All elements except finding the neighborhood, are very easy to compute. Finding N(s) is

not so easy because not all from possible n neighbor solutions are feasible. For the part

of them the feasibility can be easily found out: if the current solution is feasible, then all

the solutions obtained by adding one bit to the current one are feasible; if the current

solution is not feasible, then all solutions obtained by removing one bit from the current

one are not feasible. However for the second part of solutions, the constraints of MISP

have to be checked, and the test of one neighbor solution can require up to nt' constraint

evaluations (note that the upper bound for the number of constraints grows exponentially

with n).

22

Preprocessing and Probing

Because of the exponential growth of the search space as a function of a number of

inputs, the preprocessing of the initial instance of the problem is important. The

preprocessing implemented and tested in this research involves finding essential inputs

and dominated inputs.

Definition 12. Given Tbe an instance ofMISP, an input i is essential ifand only if

:3 \;f ~(t; *- ti)
,',t"ET:,'t.," }:jES\{i}

In other words, there is at least one pair of input symbols to be distinguished that the

symbols can be distinguished by the input i only.

Definition 13. Given Tbe an instance ofMISP, an input i is dominated ifand only if

:3 \;f [t; *- t; => I; *- Ii]
j:jES\{i} " .I"e T: 1'1>/"

In other words, all symbols that must be distinguished and can be distinguished by a

dominated input, may be distinguished by another (single) input as well.

The preprocessing algorithm finds all essential and dominated inputs and fixes ("freezes")

them in the support in such a way that all essential inputs always belong to the support (a

search algorithm will not try to remove them from the support) and all dominated inputs

are removed form the support (and a search algorithm will never try to add them again).

Furthermore, the incompatibility relation is simplified by removing all conditions satisfied

by the essential inputs.

Of course, after finding and removing some dominated inputs, some other inputs can

become essential (they are called then secondary essential). The opposite is also true:

after some essential inputs are found and the incompatibility relation is reduced, some

other inputs may become dominated. So, the procedure of finding essential and

dominated inputs is repeated until no further bits are found.

Luba in his algorithm finds all essential inputs too, but does not try to detect dominated

bits. Instead of this, he introduces a concept of semi-essential inputs [18]. A semi

essential input is an input bit that can be removed from the support, but removing it leads

immediately to a local minimum. Thus all semi-essential bits must be contained in the

supports having more than one bit removed.

Stated formally, the property of a semi-essential input can be expressed as follows:

r 1
ii.=Y.=ti.lli ~ S => J~ij E S J

23

This is a special case of a probing technique called the identification of logical

implications. The general logical implications can be written as

iEI:yJi ~ S ~[;y:, j E S /\ .'1v, k ~ S]]

and

where C" D" E" and G, are subsets of { I, ... , I/}.

If the sets C, and D, are computed for each bit i during the probing phase as the sets of

semi-essential (secondary semi-essential etc.) inputs (C,) and "semi-dominated"

(secondary "semi-dominated") inputs (D,), the first type of the logical implication states

that if the input i is not contained in a given support then all bits from C, have to be

included in the support and all bits from D, may not be included in the support. This

information may speed up the search very much since (I) the search procedure need not

to consider the moves that involve deletion of bits in C" and (2) because it is always

worthwhile to delete dominated bits, deletion of the bit i should immediately be followed

by deletion of bits from D" making a sort of composed move. Then only such composed

moves should be considered by the search procedure.

The second type of the logical implication is not very useful for MISP since after the

preprocessing phase all sets E, and G, do not contain any non-fixed inputs.

Preliminary Results

A simple TS algorithm for MISP, as described above, was implemented in a program and

tested on several benchmarks. From those runs (not presented here), several important

conclusions could be drawn out and they were used to improve the first primitive

algorithm.

First, if the search reached the local minimum, it would usually not be possible to escape

from it by one or few moves accepting worse solutions. On the other hand, there are

many ways leading to the current local optimum. Although the search space for II = 5 is

somewhat too small, the essence of the problem can be explained using this instance (see

Figure II). Assume that the search algorithm has performed three moves: 1,2, and 3 and

found the local optimum 00101. To escape from the fathomed pit the algorithm executed

the moves 4 and 5. It was still not enough and the next improving move 6 leads back in

the direction of the just visited local minimum. In this example the move 7 leads out of

24

the local pit and allows to reach the global minimum, but in large instances it is not so

easy.
11111

00000

Figure 11 The difficulty of esxaping the local minimum (gray nodes represent unfeasible
solutions)

Figure 12 shows the same example but using the (pseudo) cube representation. It can be

seen there that the algorithm, after reaching a local optimum, tries to examine all

solutions in the local hypercube (that is, this part of the sub-hypercube which is not

included by any other sub-hypercube) before entering the sub-hypercube of another local

Figure 12 The same problem as in Figure 11 represented in a form of a cube diagram

25

optimum. This behavior makes the search very inefficient and it is very important to

improve it (the improvement possibilities are discussed later).

The next problem is related to the fact that the quality function is strongly bound with

the neighborhood definition. In fact all possible next solutions are always a unity better

or worse than the current one. This yields many ties in choosing the next move, what

was solved by fixed choosing the "left-most" point. Such an algorithm has the drawback

that if a previously visited solution is revisited (because it has already fallen out from the

tabu list), the whole search falls in a loop. The test runs showed that it happens very

often (mostly because, as it was already mentioned, the algorithm tries to visit all the

solutions in the local hypercube first so it is close to the old previously visited points) and

even extending the tabu list to thousands cannot help for all but the very limited

instances. The straightforward cure is to solve ties randomly and it was implemented in

this way in all the improved implementations of the search.

Finally. it has happened sometimes to trap the search in a dead point. An example of such

trap is depicted in Figure 13 and 14. After finding the local optimum in the third move.

the algorithm executes the moves 4 and 5. The sixth move however leads to the situation

when the neighborhood is empty.
11111

Figure 13 The danger of trapping the search

There are three possible solutions to this problem: The first is to allow the search to

violate the tabu attributes of some solutions and break out of the trap. Clearly the best

direction to break through is upward but the question is how many moves may violate

the tabu. The simplest answer is: until the neighborhood is not empty. In such a case the

search may still be involved in a trap but a larger one or it can trap again. The best

26

answer would be: as log as the local hypercube is not left but it recalls the first problem -

how to escape from a local hypercube.

Figure 14 The trap situation in the cube diagram

The next possible solution to the trap problem is to allow the search to traverse

temporally the unfeasible solutions. To prevent entering the unfeasibility region when not

necessary, the unfeasible solutions must have the quality less than zero. Additionally, the

quality function should drive the search fast to the nearest feasible region but since the

unfeasibility border is not known, the only heuristic is to press the search up as only then

we can be sure it will finally reach the feasible region. Hence the quality of the unfeasible

solutions is defined as a negation of the quality they would have if they were feasible.

The third solution to this problem pursues the idea how to speed up the breaking through

the tabu solutions or the unfeasible area. It may be observed that the next good point for

continuing the search cannot be found in one step so why not to jump several points in

order to find more free space. Only the jumps upward can be assured they will lead to a

feasible solution so they still keep the search in the same sub-hypercube. However the

more up the search is the greater chance that it enters the region partially overlapped by

another sub-hypercube, not yet fathomed. At extreme, jumping to the top (starting)

solution allows to enter any other local minimum, as the starting point is shared by all

sub-hypercubes. But then we have an algorithm that restarts the search from the

beginning after a local minimum is found, what is almost the simple steepest descent

method and the usefulness of the tabu list is questionable.

27

Escaping from a Local Hypercube

All the considerations above show, that the escaping from the local hypercube after

reaching a local minimum is at an absolute premium. It cannot be done in a deterministic

way since the size and the shape of the local cube is not known - choosing one direction

of escaping may require more moves up than another direction (see Figure 15).

Figure 15 Depending on the direction of the search, escaping from the local hypercube can
differ in the number of steps

We propose the following two methods for leaving the local hypercube. The first follows

the situation showed in Figure 15: after reaching the local minimum, an arbitrary

(random) direction of escape is chosen and no improvement move will be accepted if it

does not lead out of the current sub-hypercube. Expressing it in the tabu terms, all

operators of removing bits not included in the last visited local minimum are forbidden

until another remove takes place. This method has such a drawback that the randomly

chosen direction of the escape may cause that no neighbor sup-hypercube is found. This

situation is presented in Figure 16.

28

Figure 16 Choosing the wrong direction of escape can lead to the initial solution instead to
the next local minimum

Instead of rendering certain moves a temporary tabu, this method can be viewed as

adding (during the escape) all solutions at the same quality level from the sub-hypercube

to the tabu list. This "extended tabu rendering" is stopped when another local hypercube

is entered (Figure 17).

Figure 17 When leaving a local hypercube, all solutions in it at the same level of quality are
rendered tabu

This observation suggests the idea that instead keeping the tabu list in a form of all the

(last) previously visited solutions, the whole sub-hypercube should be rendered tabu,

when the local minimum is found. Of course, in such a case a tabu status of a solution

cannot be prohibition of visiting it but the entering should be penalized only.

29

Furthermore, to drive the search out of the tabu cube, such penalty should be diversified

to prevent revisiting the last local minimum before the sub-hypercube is left. Because the

direction to the next local optimum is not known, such penalty pressure can only drive

the search upward - the same situation as it was with the quality for unfeasible solutions.

It will overestimate the upp'~r parts of the solution space but it should be compensated by

the fact that the upper space belongs to several sub-hypercubes and would be penalized

several times when some more local minima were discovered.

Improved Algorithms

It is difficult to predict which one from the improvements proposed will be the best. The

intuitive order of accuracy is as used in the introducing the improvements in the previous

section since it reflects the considerations going deeper and deeper in the problem nature.

On the other hand all the methods suffer from some drawbacks and therefore all of them

are implemented in the program (Misp) and compared with several non-TS techniques.

Below, a concise review of the algorithms implemented is presented.

1. Violate the tabu area. The solution to the trap problem. The search can enter the

tabu area, which quality function is the negation of the ordinary quality function.

Parameters: the stop criterion, the tabu list length.

2. Violate the unfeasibility area. The solution to the trap problem. The search can

enter the unfeasibility area, which quality function is the negation of the ordinary

quality function. Parameters: the stop criterion, the tabu list length.

3. Restart from the beginning. After a local minimum is found, the next step jumps

back to the complete support. The actual tabu list is retained. Parameters: the stop

criterion, the tabu list length.

4. Tabu for all remove-bit moves involving one of the bits not included in the last

local minimum found. This tabu is imposed when a minimum is found, and retracted

when any non-tabu remove-bit move takes place (the search leaves the sub

hyperspace) or the search returned to the starting point. Parameters: the stop

criterion.

5. Tabu for sub-hypercu bes. This tabu is imposed on all solutions contained in the

sub-hypercube. The tabu solutions may be traversed but their quality is lowered by

the number of tabu sub·-hypercubes they belong to. The tabu status is not recalled

(unless a sub-hypercube falls out of the tabu list as the length of the list exceeds a

given value). Parameters: the stop criterion, the tabu list length.

30

The stop criterion can be a maximal number of steps without improvement, a maximal

number of steps executed, a solution of a given quality found, or given time elapsed. For

comparing the results of TS algorithms with others, the last two conditions were used for

testing (although all of them are implemented).

The algorithms used to compare the efficiency ofTS algorithms are:

1. The program LRed thanks to the courtesy of Prof. T. Luba from Warsaw University

of Technology. This program was specially developed for the input minimization of

binary and multi-value combinational circuits expressed in the PLA form. It

implements several formulas from logic synthesis theory and, based on this, it

performs an implicit exhaustive tree-search controlled by some heuristics for

choosing the branch to process. Hence, it finds always the set of all best solutions

and in the worst case requires the exponential time of execution. Parameters: none.

2. The exhaustive search. To perform an exhaustive search, it is not necessary to

check all possible solutions in the solution space, even not the feasible ones. Since the

local minima are always placed at the border between the feasible and unfeasible area,

it is enough to perform the search along that border and this is implemented in the

exhaustive algorithm. The only essential difference between this algorithm and LRed

is that this algorithm starts with the full support and tries to remove as many bits as

possible maintaining the feasibility of the support, and LRed begins with an empty

solution and tries to add as few bits as possible in order to achieve feasibility.

Parameters: none.

3. The simple local search. This algorithm is implemented mainly to compare with the

TS Algorithm 3. The only difference between them is that the local search does not

use the tabu list. Parameters: the stop criterion.

4. The QuickScan algorithm. This algorithm deterministically visits a number of local

optima and returns the best ones. It was implemented mainly to perform a quick

estimation of possible results for a given instance of the problem, but it may be a

reasonable alternative for instances that are too difficult for more sophisticated

algorithms. Parameters: none.

The last three algorithms are embedded in the program Mi.lfJ.

31

32

Results

This section presents the test results of the algorithms described in the previous section

on page 30 and next. Almost all test files were specially generated for these tests because

the standard benchmarks are already multiple-output minimized so the only valid input

support is that containing all inputs. Single-output support minimization is also quite

easy for these examples so that any reasonable algorithm performs well. It is thus almost

impossible to compare various algorithms when using examples from the standard

benchmark set. Our main aim is to apply the input minimization algorithms in the context

of circuit decomposition where they have to find a minimal support for usually small

subfunctions of a given large function occurring during automatic logic synthesis. So,

they are expected to work reasonably for difficult instances of the problem where many

input variables can be reduced. The generated instances of the problem give a good test

base for the time being. A more reliable set of benchmarks can be gathered during

operation of a CALD tool which uses the input minimization procedure. Now the

benchmarks artificially generated should suffice, although it is possible that they are too

uniform to discover all properties of the algorithms.

Two programs were written to generate the benchmarks. The first one (misp Jell)

creates a list of min terms for ON-set and OFF-set. The usual size of the minimal support

is 10 and the instances do not contain either essential or dominated inputs. It all makes

those benchmarks "difficult" (as the preprocessing does not reduce the problem size)

especially for those algorithms which start with the full support and try to delete as much

inputs as possible (actually, only LRed begins with the empty support and adds inputs to

it to find a feasible support). The second program (;jeny/a) generates randomly a set of

terms of different size (not necessarily minterms). However, it defines PLAs specitying

only ON-sets and DC-sets (PLA type Id), and all algorithms for MISP require ON-set

and OFF-set to be given (PLA type ir). The conversion between both formats of PLA

can be performed using Evpresso, and the programs tested are able to invoke Espresso

by themselves. But to avoid influence of this process that might have on execution time

of the programs tested, the test files were converted to ir format manually. Those

benchmarks are characterized by a large number of product terms and the fact that all

input bits are either essential or dominated (they have only one local minimum). In other

words they constitute "easy" examples, but imposing high requirements on memory

resources.

The algorithms were tested on three groups of benchmarks. The first group of

benchmarks (Table 1) was used to compare an overall performance of all algorithms. It is

33

composed of two sets of files: "difficult" (generated but misp J?en) and "easy" ones

(generated by gen yla). Table 1 describes the benchmarks specifYing the file name, the

number of inputs, the number of product terms, the number of inputs in the minimal

support, the number of minimal supports, and the number of essential and dominated

inputs. All PLAs in this group have only one output bit.

Table 1 Benchmarks I

23

29
two inputs are interchangeable so one is rendered dominated and second becomes essential

34

QuickScan and Preprocessing

Table 2 presents the results of testing the preprocessing algorithm and the QuickScan

algorithm. The preprocessing can only reduce the instance size, so in order to notice the

influence, a regular search has to be performed after that. For this purpose, the

QuickScan algorithm was selected as it is deterministic and consumes little computer

time. Table 2 gives for each test file from the Benchmark Set I the time used by pure

QuickScan, time consumed by QuickScan preceded by the preprocessing, the difference

(gain) between them, and additionally the quality of the best solution found.

Table 2 Results of QuickS can runs on PC 386/20 MHz

35

m) oul of memory

For the first group of benchmarks, the value of LI represents the pure cost of

preprocessing (worst case examples), as the preprocessing is not able to reduce the

instance sizes. It can be noticed that this cost is not very high and it is worthwhile to

spend this additional time on preprocessing as it may speed the search for some

examples.

The second group shows that the time used by preprocessing is essentially shorter than

for the search algorithm (notice that the search has to discover only one local minimum).

The last column in Table 2 reveals the accuracy of the QuickScall algorithm itself

Comparing it with the data in Table I, we can notice that QuickScall reached in all cases

the global optimum (in reasonable time).

LRed

The next table (Table 3) presents the results of LRed tests. Because this program

consumes enormous time for large instances from the "difficult" group, it was tested

additionally on a Silicon Graphics' supercomputer. The times measured in this way were

used to calculate the average performance ratio, which in tum was used to estimate the

computation time for other benchmarks, if the time consumed by LRed made it

impractical to perform tests on Pc.

Table 3 Times of LRed runs

36

memory fault but results still correct
Wi wrong results
m) out of memory
.) average performance ratio is 68.3

From this table, the exponential complexity of LRed can be noticed for benchmarks from

the first set. The results on the second set are not a surprise since LRed has a build-in

preprocessing. What can be noticed is that LRed is apparently more efficiently coded

than Misp. However, some run-time errors appeared during execution of LRed.

Another remark emerges from comparing Table 2 and Table 3: QuickScan is able to

perform fast search even for very difficult examples. This is investigated further in

Table 9.

Espresso

Table 4 presents the results of the minimization algorithm that uses Espresso (version

2.3) internally for finding the input support. It can immediately be noticed, that this

option is totally outperformed by the algorithms discussed so far, since it was not able to

compute solutions for all but very small cases. It often miserably fails because of an

internal error in Espresso program. Other tests (not presented here), performed on the

Benchmark Set III (Table 8), showed that even if the algorithm was able to finish

successfully, the solutions found were often not optimal. It is still possible, however, that

another two-level logic minimization program can give better results.

37

Table 4 Results of Espresso runs (misp -Iogmin) on PC 386/20 MHz

out of memory
'l espresso runtime error: abs_select_restricled: should not have best_var == -1

Tabu Searches and Local Search

The tests of the Tabu Searches and the Local Search on the Benchmark Set I in

comparison to QuickScan are presented in Table 5. The same time used by QUickScan

was given to each of the searches and the best solution found in this time makes the

38

quality measure. Only those files were used for which the execution time of QuickScan

was more than 10 seconds.

Table 5 Comparing QuickScan, Tabu Searches and Local Search (pC 386/20 MHz)

As it can be seen, the Tabu Searches were not able even to reach a local minimum in the

time they were given, what implies the corollary that this type of heuristic search is not

very suitable for MISP. This corollary is also supported by other results too (Table 7).

Table 6 compares the performance of LRed, the Tabu Searches and the Local Search.

The test files are the same as in Table 5, but the "easy" examples are removed. The

columns report the time necessary for the program to finish (T(LRed)) or time necessary

for a search to find the global optimum (Tabu Searches and Local Search). When a

search was not able to find the optimum in three hours, the quality of the best solution

and the number of the best solutions found is reported in parentheses.

Table 6 Comparing LRed, Tabu Searches and Local Search (PC 386/20 MHz)

time estimated by multiplying the execution time on SGi Challenge by performance ratio 68.3

39

Those results show that Tabu Searches can find the optimum much faster than LRed in

the cases where the number of global optima is large. For example for i40s09a.pia the

global optimum can be found in half an hour by a Tabu Search, while LRed will take

more than eight days to finish. It is still possible, however, that LRed would find the

optimum in comparable time if it incorporated a stop condition (maximal time of

execution or the best quality to find) instead of performing the exhaustive search to the

very end.

Because the Tabu Searches are nondeterministic and only one run per example was

performed, the results in Table 6 do not say much about relative performance of the

Tabu Searches. We can conclude only that the Tabu Search 3 and the Local Search are

much worse than other searches (they were not able to find a global optimum in any

case).

Table 7 presents the results of investigations over the relative performance of Tabu

Searches. The test runs were performed on a separate set of benchmarks; the parameters

of the files are provided directly in the table. For comparison, the table contains the

execution time of LRed for those examples. Tabu Searches and Local Search were run

three times on the same benchmark (column run). In the column labeled min, the first

number is the minimal support length, the second - number of minimal supports. For

columns labeled tl-15, Is, exh, the first number is the time necessary for finding one

minimal support (">" means that no minimal support was found in 120 min; in that case

the number in parentheses gives the length of the best support found), the number after

the slash represents the number of iterations executed.

Table 7. Time necessary for finding the minimal support. PLAs: output bits = I,
I-minterms = O-minterms = inputs.

30 611 >(8) >(7) >(8) >(8) >(7) >(7) >(8) 16:52
135:12 /2958 12146 111757 f3541 15624 /276391

2 >(7) 78:00 >(7) 105:0 87:20 >(7)
13522- 12066 /3019 14456 12662 15619

>(7) >(7) >(8) 113:5 >(7) >(8)
m:!5 12%2 13014 15352 13548 15607

40

11714 IIS69 11100 I3S88

.>(9) >(9) >(9) >(9) >(9) >(9)
11699 Ilsn 11099 /3626 11707 /967.

>(9) >(9) >(9) >(9) >(9) . >(9)
11118 lH04 13S87 /1707

From these results, several conclusions can be drawn out:

• PLAs with 10 and 20 inputs are too small to be representative. For those instances,

the simplest algorithm (exhaustive search) is the best.

• The number of global minima has a great influence on the effectiveness of the Tabu

Searches. The more global minima, the greater chance that the searches find one of

them what is in accordance with intuition (PLA with 40 inputs and 126 global minima

is easier than PLA with 30 inputs and only one global minimum).

• LRed is often faster than the Tabu Searches in finding the global minimum.

• The exponential run time of LRed can be observed (however those were very difficult

PLAs for LRed; it works much faster for the real PLAs where only few bits have to

be removed to reach the global minimum).

• LRed is worse for PLA with 40 inputs, but it finds all global minima. The version of

LRed finding only one solution is supposed to be much faster.

• t3 is much worse than the other Tabu Searches. It is comparable with the local

search. No influence of the tabu list can be observed, maybe it improves a little, but

the algorithm executes then fewer steps.

• Apart from this, all Tabu Searches are better than the local search.

• The measurements presented are not precise enough, to determine subtle differences

in efficiency among tl, t2, t4, and tS; it seems however, that these algorithms work

with comparable speed (the less precise algorithms make up for efficiency with the

greater number of steps executed in the same time). To estimate it, more runs for one

PLA are necessary (to reduce the influence of random) and the execution time should

not be so strictly limited. Of course it costs much time and the general efficiency level

is already noticeable.

41

• The apparent superiority of LRed over the exhaustive search incorporated in Misp

can be explained by the fact that in virtually all cases the minimal support was closer

to the empty support than to the full one, so LRed has substantially smaller search

space to traverse.

Additional Tests for QuickScan and LRed

The results presented abovl: reveal good performance/quality ratio for QuickScan. In

other words, this algorithm produces quite good solutions in very short time. To pursue

this property, several extra tests were performed. Table 8 describes the third set of

benchmarks used in this research.

Table 8 Benchmarks III

The results of those test runs are presented in Table 9. It can be noticed again that LRed

is the best algorithm for examples with less than 20 inputs. For larger examples however,

its use becomes impractical. QuickScan, on the other hand, is able to process even

extremely large examples in reasonable time. It does not find the best solution in all

cases, but the solution found is one or two bits worse than the optimal (values bolded in

Table 9). It can also be observed that QuickScan still finds the optimum for small

instances and the most difficult case for it was i50.pla, where is only one global

optimum.

42

Table 9 Comparing LRed and QuickScan

program finished successfully but the computer got stuck after that

0) time estimated by multiplying the execution time on SGi Challenge by performance ratio 68.3

43

44

Conclusions and Recommendations

The input support minimization is one of the most important aspects of the economical

representation of information in information processing systems. In particular, it is of

crucial importance for logic synthesis. However, the exact algorithms for solving the

problem [4, 5, 7, 8, 12, 16, 26, 27, 29, 30, 32] have too low efficiency for large

instances. Therefore, developing a more efficient exact algorithm as well as an effective

and efficient approximate algorithm was really important.

In order to use the algorithms in various areas, it was important to formulate and solve

the problem as generally as possible. It was also important to check the usefulness of

various search paradigms in solving problems of such a kind.

In this report, the formal definition of the problem is presented, the problem is proved to

be NP-complete, and the structure of the solution space is analyzed. Based on this

analysis, several heuristic algorithms (tabu searches, local search, and QuickScan search)

were developed, implemented, and tested on a set of benchmarks.

The test results for various algorithms were analyzed and mutually compared. They were

also compared with the results of the exact (implicit exhaustive) algorithm LRed and with

the results obtained by transforming the problem to the two-level optimization problem

and using Espresso to solve the latter.

The main conclusions resulted from those tests are the following:

• For small instances of the problem (up to 20 input bits), the exact algorithm

implemented in LRed is the best one. It guarantees the optimal solutions and it is

efficient enough. For larger instances, it is not efficient enough,

• For large instances, QuickScall is the best choice of the tested algorithms, because it

is able to compute an optimal or almost optimal solution in extremely short time.

• Tabu Searches are not very suitable for MISP due to difficulty in finding a feasible

neighborhood of a solution, what results in low quality of the search process.

• For the same reason, other algorithms based on an iterative traverse of the solution

space (e.g., Simulated Annealing) are supposed to be not suitable.

• Local Search is substantially worse than Tabu Searches

• One may use Tabu Search on very large instances (many input bits) with a short list

of incompatibilities (neighborhoods easy to compute), i.e. for large weakly specified

functions, if QuickScall gives insufficiently good solutions and there is plenty of time.

45

• In the case when more accurate heuristic search than QuickScan is required, the best

way seems to be the branch-and-bound strategy, driven by some heuristics based on

the problem structure (e:specially on sophisticated preprocessing and probing of each

node), and to stop computations at a given level of accuracy, if the computations are

going to explode expom:ntially

• Translating the problem to the two-level optimization problem and using Espresso to

solve the latter is not a good way; it results in inefficient computations which often

cannot find an optimal solution.

Detailed remarks about the particular algorithms tested are summarized in the sections

below.

LRed

The program seems to be quite well implemented and it is the best choice for small

instances of the problem. However, to make the program fully usable in a CAD tool,

several improvements have to be done:

• The discussion in Chapter Problem Formulation shows that very often MISP has a

form more relaxed than one equivalent to PLA. To make the full advantage of LRed,

the program should accept input specifYing a compatibility set system (a rough set)

on inputs.

• Since the program has exponential complexity, a stop condition would be very

useful. The possible stop conditions are described on Page 3 I, but the absolute

minimum is: (\) a given computation time elapsed, and (2) a given quality of a

solution reached.

• The algorithm embedded in the program requires ON-set and OFF-set of PLA to be

given, so the program calls internally Espresso to compute OFF-set for a given PLA.

But if the program is given a PLA with the OFF-set explicitly defined (type jr of

PLA), the call to Espresso is not necessary. However, LRed calls Espresso

unconditionally. It can be worked around by supplying a dummy shell script, named

"Espresso," that copies to the output the contents of the file given by the fourth

parameter (input file name), but it is better to implement in LRed a sort of detection

of PLA type or to supply an additional parameter which controls the call to Espresso

(as it is done in Misp).

• It would be very useful if the program reported the quality of the best support found

and the number of supports found. Now, it is worked around by a separate shell

script that reads the output of the program and calculates the both values.

46

• Very often the program failed at the very end of computation (after the results were

printed out) with the message "memory fault." It happened only in Unix systems,

which are more restrictive for memory errors. The cause of the error is probably a

corrupted dynamic data structure released at the end of computations or an error in

the releasing procedure. This error is not very serious if the program makes a

separate part of a CALD system, but as soon as it is embedded in a larger program,

the error will crash the whole system.

• For a few examples, when the memory was low (in DOS) the program produced

incorrect results instead of reporting the error and stopping the computations.

• For a class of very simple cases, the program crashes without any explanatory

message.

Espresso

This option is totally outperformed by the other algorithms. It runs slower, can process

smaller examples, requires more memory, gives worse solutions, the translated PLAs

have a huge number of product terms, and the Ejpresso program often crashes due to

internal errors (we have used Version 2.3, Release 01/31/88). Some of the problems are

caused by the method itself (a large number of product terms in converted PLAs), but

many of them result from the algorithms implemented in Espresso. Consequently,

another two-level minimizer may exhibit better performance. In our opinion, however, it

is not worthwhile to develop a specific two-level minimizer targeted to MISP; it is better

to concentrate on solving MISP directly. Besides, it seems that the group which created

Espresso has drawn similar conclusions, and developed more recently a branch-and

bound algorithm for Unate Row Cover Problem (which is very close to MISP) [33].

QuickScan

This algorithm has surprisingly good performance. It is very fast and gives quite good

solutions. Without doubts, it is the best choice of the tested algorithms in the situations

when time is at a premium and a solution is allowed to be near-optimal. It suffers,

however, from the impossibility of fine-tuning the search: even if more time is given, it

still produces the same "coarse" solutions. Further development of this algorithm should

parametrize the search so that if more time is given, the search tries to be more precise.

The guideline may be: first to define what potential global optima are skipped between

two local minima of the scan, and then to perform a sub-search on the reduced search

space.

47

Tabu Search

The results of the tests show that the Tabu Search approach is not so good as the

existing exact algorithm, e:{cept for the case where the minimal support is much smaller

than the original set of input bits and there are a lot of minimal solutions. The same result

is expected for other heuristic search algorithms based on an iterative traverse of the

solution space (e.g. Simulated Annealing). The reason why such heuristic searches do

not perform the task well enough is the search space structure. There is no simple way to

determine if a solution is feasible so there is also no simple way to create the proper

neighborhood of a certain solution. In fact the procedure creating a neighborhood is the

most time consuming in all the algorithms implemented. Additionally, there is a strong

correlation between move operators and the quality of a solution; any move operator

increases or decreases the solution quality by a unit. In this way, the whole search

problem is not "where to find the best solutions that are feasible" but "where to find the

feasible solutions that are good enough" and it seems that the heuristic searches of the

considered type are not so efficient in the latter case than in the former.

Preprocessing and Probing

The test results showed that the cost of preprocessing (in the terms of computation time)

is not high even for large examples. On the other hand, the gain in reduction of the

problem size can be enormous, especially for exact algorithms. For fast heuristics, as

QuickScan, this gain is less visible but still possible.

Proposal of new exact and approximate algorithms

Reasonable efficiency of the exact algorithm LRed for small and medium instances and

the extremely high efficiency of the approximate algorithm QuickScan, also for large

instances, motivated us to develop two new algorithms:

• an approximate beam search algorithm which will be more effective than

QuickScan for larger instances.

• an exact branch-and-bound algorithm which will be more efficient than LRed,

especially for larger instances,

Beam Search Algorithm

We convert the problem to the Column Cover Problem. The cover matrix has as many

columns as the number of input symbols, and each row corresponds (1-1) to a unique

incompatibility pair of symbols. The element m'J is equal to I if the input symbol) allows

48

for distinguishing the incompatibility pair related to the row i, otherwise it is equal to O.

The information contained in the cover matrix may be viewed twofold:

• which columns cover which rows

• which rows are covered by which columns

The algorithm uses both types of information. At each step for each partial solution it

performs the following operations:

• choose which column is to be included in the partial solution of the next step

• choose which column is not to be included in the partial solution of the next step

• choose a row to be covered by the partial solution of the next step

Because all rows have to be covered, the rows may only be selected; the columns may be

selected or rejected.

The meta-heuristics controlling the application of operators are as follows:

• maximize the probability of obtaining the optimal solution from the actual partial

solution, with regards to the available resources (beams)

• under the condition above, maximize the information for decision making in the next

steps of the algorithm

Here we discuss the details of the applied operators. The selection of a row is a

compound move, comprising selection of certain columns covering the considered row.

The Selection of columns is determined by the probability of the quality of the columns,

i.e. these columns are selected about which it cannot be stated with high probability, that

those columns are worse than the others. In each step only MAXBEAMS columns are

selected. For each selected column a new partial solution is created, having that column

accepted as a cover column. The selection of one column (another operator) is in

principle done in the same manner as above. The rejection of a column is done if it can be

stated with high probability that the column is worse than the others. The detailed

heuristics for application of the operators are as follows:

• accept those rows which have the least number of columns to be selected

• accept the subsets of columns which are small but much better than other subsets

• reject the subsets of columns which are small and much worse than other subsets

• penalize dominated or nearly-dominated columns

• prefer the columns which cover more rows and cover the rows that are more difficult

to cover. The importance of a column for covering a given row decreases nonlinearly

with the total number of column covering the considered row. The function

49

describing that importance can be modeled by a sort of hyperbolic function (equal to

o if all columns cover the row, equal to plus infinity if only one column covers the

row)

The first two heuristics should be combined together, the third is an alternative.

The quality of partial solutions may be calculated in the following manner:

• cumulative estimation of the quality of the decisions made so far plus the decisions

predicted to be made in the future

• direct calculation of the potential quality of a partial solution by means of a quick

search from the considered partial solution to a complete solution (QuickScall, best

first search, or another narrow search).

It is expected that the second way of calculating the quality will be faster and will give

more accurate results.

We have already developed, implemented, and tested similar beam search algorithms for

various decomposition [21, 23], state assignment [24], and test pattern generation [2]

problems. In all the cases the algorithms are very effective and efficient. Therefore, we

have omitted the implementation of the proposed algorithm as a part of the reported

research.

Branch-aod-Bound Algorithm

The paradigm of a branch-and-bound method is well known (see for example [33]). One

has only to define ways for upper and lower estimation of the quality of a given branch.

Here we propose QuickScall (or simple best-first search) as an estimation for the upper

bound. The lower bound may be calculated as follows: let Pi be a set of columns which

cover a given row i. The maximal number of mutually disjoint Pi makes the lower

estimation. When choosing branches to consider, the heuristics developed for the beam

search (described above) can be used.

Future Works

Future works should focus on implementing and testing the proposed exact branch-and

bound and approximate beam search algorithms. The best algorithms should be applied

inside various algorithms for decomposition of sequential machines and switching

functions.

50

References

[1] Ashenhurst R.L.

The Decomposition of Switching Functions.

In: Proceedings of an International Symposium on Theory of Switching (part 2),

April 2-5, 1957.

Cambridge, Mass.: Harvard University Press, 1959. P. 74-116.

(Annals of the Computation Laboratory of Harvard University, vol. 30).

[2] Bosch W.FA

Implementation of an OR-BDD Based TPG Algorithmfor Combinational

Circuits.

Section of Digital Information Systems, Faculty of Electrical Engineering,

Eindhoven University of Technology, The Netherlands, 1994.

M Sc. Graduation Report EB496.

[3] Brayton, R.K. and G.D. Hachtel, C.T. Mullen, A.L. Sangiovanni-Vincentelli.

Logic Minimization Algorithms for VLSI Synthesis.

Dordrecht: K1uwer, 1984.

[4] Brown F.M.

Boolean Reasoning.

Dordrecht: K1uwer, 1990.

[5] Chang S-C. and M. Marek-Sadowska.

BDD Representation of Incompletely Specified Functions.

In: International Workshop on Logic Synthesis, Granlibakken Conference Center,

Iahoe City, CA, USA, May 23-26, 1993. P. P6c-l - P6c-5.

[6] Curtis H.A.,

A New Approach to the Design of Switching Circuits.

Princeton: Van Nostrand, 1962.

[7] Dietmeyer D.L.

Logic Design of Digital Systems. Second Edition.

Boston: Allyn & Bacon, 1978.

51

[8] Fujita M. and Y. Matsunaga.

Multi-level Logic Minimization based on Minimal Support and its Application to

the Minimization of Look-up Table Type FPGAs.

In: IEEE International Conference on Computer-Aided Design, Santa Clara, CA,

USA, Nov. 11-14, 1992. Digest of Technical Papers.

Brussels: IEEE, 1991. P. 560-563.

[9] Garey, M.R. and D.S. Johnson.

Computers and Intractability. A Guide to the Theory of NP-Completeness.

New York: W.H. Freeman, 1979.

[10] Glover, F. and E. Taillard, D. de Werra.

A User's Guide to Tabu Search.

Annals of Operations Research, vol. 41 (1993), p. 3-28.

[11] Grinshpon M.S.

Selection Criterion for a Potentially Inessential Argument to Be Eliminatedform

an Incompletely-Specified Logical Function.

Automatic Control and Computer Sciences, vol. 9 (1975), no. 5, p. 16-18.

[12] Halatsis C. and N. Gaitanis.

Unredundant Normal Forms and Minimal Dependence Sets of a Boolean

Function.

IEEE Transactions on Computers, vol. C-27 (1978), no. 11, p. 1064-1068.

[13] Hartmanis J.

Symbolic Analysis of Q! Decomposition of Information Processing.

Information and Control, vol. 3 (1960), p. 154-178.

[14] Hartmanis J.

Loop-free Structure of Sequential Machines.

Information and Control, vol. 5 (1962), p. 25-43.

[15] Hartmanis J. and R.E. Steams.

Algebraic Structure 17leory of Sequential Machines.

Englewood Cliffs, N.J.: Prentice-Hall, 1966.

[16] Hight, S.L.

Minimal Input Solutions.

IEEE Transactions on Computers, vol. C-20 (1971), no. 8, p. 923-925.

[17] Hill, F.J. and G.R. Pett:rson.

Computer Aided Logical Design. 4th ed.

New York: Wiley, 1993.

52

[18] Jasinski, K. and T. Luba, J. Kalinowski.

Parallel Decomposition in Logic Synthesis.

In: Proceedings of the 15th European Solid State Circuits Conference, Vienna,

Sep.20-22, 1989.

Ed. by H. Gtiinbacker and G. Sandner.

Munchen: Oldenbourgh, 1989. P. 113-116.

[19] Jozwiak L.

The Bit Full-Decomposition of Sequential Machines.

Eindhoven: Faculty of Electrical Engineering, Eindhoven University of

Technology, The Netherlands, 1989.

EUT Report 89-E-223.

[20] Jozwiak L.

Simultaneous Decompositions of Sequential Machines.

Microprocessing and Microprogramming, vol. 30 (1990), p. 305-312.

[21] Jozwiak L. and J.e. Kolsteren.

An Efficient Method for the Seuqential General Decomposition of Sequential

Machines.

Microprocessing and Microprogramming, vol. 32 (1991), p. 657-664.

[22] Jozwiak L. and A. P. H. van Dijk.

A Method for General Simultaneous Full-Decomposition of Sequential Machines:

Algorithms and Implementation.

Eindhoven: Faculty of Electrical Engineering, Eindhoven University of

Technology, The Netherlands, 1992.

EUT-Report 92-E-267.

[23] Jozwiak L. and F. Volf.

An Efficient Method for Decomposition of Multiple Output Boolean Functions

and Assigned Sequential Machines.

In: EDAC - The European Conference on Design Automation, Brussels, March

16-19, 1992.

Brussels: IEEE, 1992. P. 114-122.

[24] Jozwiak L.

An Efficient Heuristic Method for State Assignment of Large Sequential

Machines.

Journal of Circuits, Systems, and Computers, vol. 2 (1992), no. I, p. 1-26.

53

[25] JOiwiak L.

General Decomposition and Its Use in Digital Circuit Synthesis.

Accepted in 1994 for publication in: VLSI DESIGN: An International Journal of

Custom-Chip Design, Simulation, and Testing.

[26] Kambayashi Y.

Logic Design of Programmable Logic Arrays.

IEEE Transactions on Computers, vol. C-28 (1979), no. 9, p. 609-617.

[27] Lin B. and A.R. Newton.

Exact Redundant State Registers Removal Based on Binary Decision Diagrams.

IFIP Transactions A (Computer Science and Technology) (1992), p. 277-286.

[28] Luba T. and J. Kalinowski, K. Jasinski, H. Krasniewski.

Combining Serial Decomposition with Topological Partitioning for Effective

Multi-level PLA Implementations.

In: Proceedings IFIP Working Conference on Logic and Architecture Synthesis,

Paris, May 30-June 1, 1990.

Paris: IFIP, 1990. P. 77-86.

[29] Luba, T. and J. Rybnik.

Algorithm of Elimination of Attributes and Arguments Based on Unate

Complement Concept.

Bulletin of the Polish Academy of Sciences, vol. 40 (1992), no. 3, p. 313-322.

[30] Luba T. and 1. Rybnik.

Rough Sets and Some Aspects of LOgiC SyntheSiS.

In: Intelligent Decision Support. Edited by Roman Slowinski.

Dordrecht: K1uwer, 1992.

[31] Luba T. and M. Markowski, B. Zbierzychowski.

Logic Decomposition for Programmable Gate A"ays.

In: Proceedings ofEuro-ASIC '92, Paris, June 1-5, 1992.

Brussels: IEEE, 1992. P. 19-24.

[32] Matsunaga Y. and M. Fujita.

Multi-Level Logic Optimization Using Binary Decision Diagrams.

In: IEEE International Conference on Computer-Aided Design, Santa Clara, CA,

USA, Nov. 5-9, 1989. Digest of Technical Papers.

Brussels: IEEE, 1989. P. 556-559.

54

[33] Rudell, R.

Logic Synthesis for VLSI Design.

Ph.D. dissertation, University of California, Berkeley, USA, April 1989.

Tech. Rep UCBIERL M89/49.

55

EindbovenUniversity of Technology Research Reoorts ISSN 0167-9708
Coden: TEUIDE

Faculty of Electricai Enaineerinq

(2631

12641

126al

(2661

12671

12681

12691

12701

12711

(2721

12731

12741

127al

Smolders, A. B.
RIGOROUS ANALYSIS OF THICK MICROSTRIP lIITEMNlS lIID. WIRE lIITEMHAS EMBEDDED IN A SUBSTRATE
EUT Report 92-E-26:i. 1992. ISBN 90-6144-263-1

Franks, L.W. and II.U.
THE ADAPTIVE RESONllNCE .uiO~
auditory evoked potential patterns.

U. van Gils
(Clustering-) behaviour in relation with braioBtaD

EUT Report 92-E-26'1. 1992. ISBN 90-6144-264-8

Wellen. J.S. and F. Karouta. M.F.C. Schell4nn. E. Snalbruqq~, L.M.F. Kaufnann
MANUF{CTURING AND CHARACTERIZlTIOII OF GAlS/ALmS MULTIPLE QUlNTUKWELL RIDGE WAVEGUIDE
USERS.
EUT Report 92-E-26a. 1992. ISBN 90-6144-26a-6

Clultaans. L.J.M.
USING GENETIC ALGORITHMS FOR SCHEDULIIG DATA FLOW GRAPHS.
EUT Report 92-E-266. 1992. ISBN 90-6144-266-4

J6zwiak, L. and A.P.H. van Dill
A METHOD FOR GENERAL SIMULTlIIEOUS FULL DECOMPOSITION OF SEQUENTIAL MACHINES:
AlgorIthms and implenentation.
EUT Report 92-E-267. 1992. ISBN 90-6144-267-2

~o •. H. van den and W. van Ette~. W.H.C. de Kro~. P. van ~nneko~. F. HuilsIens,
L. Niessen. F. de Leijer
AN OPTICAL ASK AND FSK PHASE DIVERSITY TRlIISMISSION SYSTEM.
EUT Report 92-E-268. 1992. ISBN 90-6144-268-0

~i~~~is~i~L~NA~~nS:~~IFICEREN EN ONTVERPEN VAN MICROELEKTRONICA IN PRODUKTEN lin Dutch).
EUT Report 93-£-269. 1993. ISBN 90-6144-269-9

Bloks. R.H.J.
PROGRIL: A language for tbe definition of protocol graanars.
EUT Report 93-E-270. 1993. ISBN 90-6144-270-2

BlOIS. R.H.J.
CODE GENERlTlOll FOR THE ATTRIBUTE EVALUATOR OF THE PROTOCOL ENGINE GRmAR PROCESSOR UNIT.
EUT Report 93-E-271. 1993. ISBN 90-6144-271-0

Yan. Keping and E.M. van Veldhuizen
FLUE GAS CLEANING BY PULSE CORONA STREAMER.
EUT RepDrt 93-E-272. 1993. ISBN 90-6144-272-9

SIIO.ldw. U.
FINITE SUCKED MICROSTRIP ARRAYS WITH THICK SUBSTRATES.
EUT Report 93-E-2:r3. 1993. ISBN 90-6144-273-7

Bollen, M.H.J. anll M.t van Houten
ON INSULAR POVER SYSTEMS: Drawing up an inventory 01 phenomena and research possibilities.
EUT Report 93-£-2'74. 1993. ISBN 90-6144-274-a

P.m~!, U.J. m
ELECTROMAGNETIC COMPATIBILITY: Part a, installation and mitlgatiDn guidelines. section 3.
cabling aDd wirlnq.
BUT Rlppr! 9H=m. 1m 1m IH!4H1H

Eindhoven Universitv .)[Technc,lOOY Research Re=rts ISSN 0167--9708
Coden: TEUEDE

Facul tv of Electrlcal Enaineerina

(2761

(2771

(2781

(2791

(2801

(281)

(282)

(283)

(284)

(2851

(2861

(287)

(288)

(289)

Bollen, "-".J.
LITERATURE SEARCH FOR RELIABILITY DATA OF COMPONENTS IN ELECTRIC DISTRIBUTION NETWORKS.
BUT Report 93-E-276. 1993. ISBN 90-6144-276-1

Weiland, Siep
A BEHAVIORAL APPROACH TO BALANCED REPRESENTATIONS OF DYNAMICAL SYSTEMS.
EUT Report 93-E-277. 1993. ISBN 90-6144-277-1

Gorsbkov, Yu.A. and V.I. Vladimirov
LINE REVERSAL GAS FLOW TEMPERATURE MEASUREMENTS: Evaluations of the optical arrangements tor
the instruaent.
EUT Report 93-E-278. 1993. 158M 90-6144-278-8

Creyghton. Y.L.M. and V.R. Rutgers, E.M. van Veldhuizen
IN-SITU INVESTIGATION OF PULSED'CORONA DISCHARGE.
EUT Report 93-E-279. 1993. ISBN 90-6144-279-6

kl. H.O. and R.P.P. Smeets
GAP-LENGTH DEPENDENT PHENOMENA OF HIGH-FREQUENCY VACUUM ARCS.
EUT Report 93-E-280. 1993. ISBN 90-6144-280-1

Di. Chennian and Jochen A.G. Jess
ON THE DEVELOPMENT OF A FAST AND ACCURATE BRIDGING FAULT SIMULATOR.
EUT Report 94-E-281. 1994. ISBN 90-6144-281-8

Falkus. H.M. and A.A.H. DaDen
MULTIVARIABLE H-INFINITY CONTROL DESIGN TooLBOI: User Banual.
EUT Report 94-E-282. 1994. IS8M 90-6144-282-6

Meng, X.Z. and J.G.J. Sloot
THERMAL BUCKLING BEHAVIOUR OF FUSE VIRES.
EUT Report 94-E-283. 1994. ISBN 90-6144-283-4

A. van and J.P.M. Voeten
expansion. Ilnilization, and verification tool for finite state

CCS descriptIons.
EUT Report 94-E-284. 1994. ISBN 90-6144-284-2

Roer. !h.G. van de
MODELIN6 OF DOUBLE BARRIER RESONANT TUNNELIN6 DIODES: D.C. and noise BOdel.
EUT Report 95-E-285. 1995. ISBN 90-6144-285-0

Dolaans. G.
ELECTROMAGNETIC FIELDS INSIDE A LARGE ROOM WITH PERFECTLY CONDUCTING WALLS.
EUT Report 95-E-286. 1995. ISBN 90-6144-286-9

Liao. Boshu and P. Massee
RELIABILITY ANALYSIS OF AUXILIARY ELECTRICAL SYSTEMS AND GENERATING UNITS.
EUT Report 95-£-287. 1995. ISBN 90-6144-287-7

Weiland, Siep and Anton A. Stoorvogel
OPTINAL HANKEL NORM IDENTIFICATION OF DYNAMICAL SYSTElIS.
BUT Report 95-E-288. 1995. ISBN 90-6144-288-5

Konieczny, Pawel A. and Lich J6ZWIak
MIMIMAt IM~Yf §Y~POftT ~ft@Dt8A AMD At96ftlfUM§ f6 §6LV~ If·
EUT Report 95-E-289. 1995. ISBN 90-6144-289-3

	Abstract
	Contents
	Introduction
	problem formulation
	Combinational circuits
	Sequential machines
	Partitions and set systems
	General Formulation of MISP
	ILP formulation and the complexity of the problem
	Problem geometry
	Algorithms
	LRed
	Espresso
	QuickScan
	Tabu search
	Preprocessing and probing
	Preliminary results
	Escaping from a local hypercube
	Improved algorithms
	Results
	QuickScan and preprocessing
	LRed
	Espresso
	Tabu searches and local search
	Additional tests for QuickScan and LRed
	Conclusions and recommendations
	LRed
	Espresso
	QuickSan
	Tabu Search
	Preprocessing and probing
	Proposal of new exact and approximate algorithms
	Future works
	References

