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ADAPTIVE DEFECT-CORRECTION METHODS FOR VISCOUS
INCOMPRESSIBLE FLOW PROBLEMS∗

V. J. ERVIN† , W. J. LAYTON‡ , AND J. M. MAUBACH‡
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Abstract. We consider a defect correction method (DCM) which has been used extensively
in applications where solutions have sharp transition regions, such as high Reynolds number fluid
flow problems. A reliable a posteriori error estimator is derived for a defect correction method.
The estimator is further studied for two examples: (a) the case of a linear-diffusion, nonlinear
convection-reaction equation, and (b) the nonlinear Navier–Stokes equations. Numerical experiments
are provided which illustrate the utility of the resulting adaptive defect correction method for high
Reynolds number, incompressible, viscous flow problems.
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1. Introduction. Defect-correction methods (DCMs) were originally viewed as
alternates to Richardson extrapolation for increasing the formal order of finite differ-
ence methods. Increasingly, however, the development of the abstract theory for these
procedures (see, e.g., [5], [6], [10], [18], [30], [22], [23], [34], [38]) as well as the compu-
tational practice of the methods (see, e.g., [17], [24], [25], [26], [27], [28]) have evolved
to using defect correction to solve much harder, nearly singular, nonlinear problems
through regularization and correction. This is somewhat surprising since solutions of
representative applications such as high Reynolds number fluid flow problems [25],
[26], [27], [28], [30], and convection-dominated, convection diffusion equations are
characterized by sharp layers and transition regions. Thus, in spite of lacking the
global smoothness required for the classical convergence analysis via asymptotic error
expansions, global “uniform in epsilon” convergence in the smooth region has indeed
been proven for defect correction methods in [5], [6], and [18] and experimentally
verified [17], [24], [25], [26], [27], [28], even for these challenging applications.

For such problems, grid refinement in sharp transition regions is necessary in
conjunction with the high accuracy attained in smooth regions by defect correction
techniques. Reliability of the resulting self-adaptive, defect-correction procedure is
then tied to the reliability of the a posteriori error estimator used for the defect-
correction discretization. We consider precisely this issue herein.

Section 2 provides an a posteriori error estimator for DCMs for solving the gen-
eral parameter dependent nonlinear problem F (u , ε) = 0. The estimators are of
the residual type for an abstract realization of the defect-correction discretization.
They are further developed and particularized for two representative applications:
linear diffusion coupled with nonlinear convection in section 3 and the incompressible
Navier–Stokes equations (the targeted application) in section 4. Section 5 gives some
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computational experiments with the resulting self-adaptive method.
To formulate the abstract problem, method, and results, let X and Y be Banach

spaces A ∈ L(X,Y ∗), G(·) ∈ C1(X,Y ∗), and ε ∈ Λ ⊂ R Fréchet differentiable. The
problem is now to solve

F (u, ε) := A(ε)u + G(u) = 0(1.1)

for u = u(ε). The abstract DCM is given as follows. Let Xh, Yh ⊂ X,Y (respectively)
be finite dimensional subspaces and Ah : Xh → Yh

∗ , Gh(·) ∈ C1(Xh, Yh
∗), be (finite

dimensional) approximations of A and G(·), respectively.
Let ε0 ≥ ε, Ah(ε0) be a “stabilized” or regularized approximation to Ah(ε), and let

J > 1 be given. The method studied computes u1, . . . , uJ ∈ Xh as follows: u1 ∈ Xh

satisfies

Fh(u1, ε0) := Ah(ε0)u1 + Gh(u1) = 0 ,(1.2)

whereupon successive corrections are given by, for j = 1, . . . , J ,

Ah(ε0)uj+1 + Gh(uj+1) = (Ah(ε0) −Ah(ε))uj .(1.3)

There are numerous attractive practical features of (1.2), (1.3) cited in the above
references. We take (1.2), (1.3) as the basic algorithm and work to find a computable
upper bound for ||u−uj+1||X . To realize (1.3), the iterand uj+1 is typically computed
with a Newton method and is the root of F̂ε0(u) = 0 with F̂ε0(u) := Ah(ε0)u+Gh(u)+
(Ah(ε)−Ah(ε0))uj . If the regularization is performed carefully, we often observe that
only one or two Newton steps suffice in order to solve (1.3) for uj+1, beginning with
uj , and that the resulting linearized systems are much cheaper to solve than are
unregularized linear systems.

It is useful to think of (1.2) as an abstract realization of a convection-diffusion
problem in which A(ε) ∼ εA. Suppose transition regions of the underlying physical
problems are of width ε1/α. Then a typical choice for Ah(ε0) involves increasing,
on each mesh cell, ε to ε + O (mesh cell diameterα) ≈ ε + O(hαlocal), e.g., ε + O(h)
for convection diffusion problems and ε + O(h2) for 2d incompressible, viscous flow
problems.

Herein we take an approach related to the local residual error estimators of [4],
[7], [8], [9], [16], [19], and [43], as adapted to nonlinear problems in, e.g., [43] and [34].
In contrast to most of the work on error estimators for parameterized nonlinear equa-
tions, in which the goal is to construct reliably and efficiently the solution manifold
as a function of the system parameter, the goal of defect–correction-type methods is
to solve a nearly singular, very large, nonlinear system (such as high Reynolds num-
ber fluid flow [26], [27], [28], [29], [30]) via regularization by local effective viscosity
adjustments followed by antidiffusion via correction.

2. Preliminaries. The basic assumption on (1.1) under which we proceed is that
u is a nonsingular solution of (1.1), i.e., DF (u, ε) = [A(ε) + DG(u)] ∈ Isom(X,Y ∗),
and that DG(·) is Lipschitz continuous in some ball about the solution u.
Theorem 2.1. Suppose that u is an isolated solution of (1.1) and that DG(u) is

Lipschitz continuous in some ball around u. Specifically, there is a R0 > 0 such that

γ := sup
w∈B(u;R0)

||DG(w) − DG(u)||L(X,Y ∗)

||w − u||X < ∞ .
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Suppose that uj ∈ B(u;R), where

R := min
{
R0, γ

−1||DF (u, ε)−1||−1
L(Y ∗,X)

}
.(2.1)

Set u0 = 0 and let uj , j = 1, . . . , J , be given by (1.2), (1.3). Let Rh ∈ L(Y, Yh) be a
restriction operator. Then ||u− uj+1||X is bounded as follows:

For j = 1, . . . , J − 1,

||u− uj+1||X ≤ 2||[A(ε) + DG(u)]−1||L(Y ∗,X)

{||(IY − Rh)∗ [A(ε)uj+1 + G(uj+1)]||Y ∗

+ ||Rh||L(Y,Yh) ||(A(ε) −Ah(ε))uj+1 + (G−Gh)(uj+1)||Y ∗
h

+ ||Rh||L(Y,Yh) ||(Ah(ε0) −Ah(ε)) (uj+1 − uj)||Y ∗
h

}
.(2.2)

Proof. For R given by (2.1), and w ∈ B(u,R) ⊂ X,

w − u = DF (u, ε)−1

{
F (w, ε) +

∫ 1

0

[DF (u, ε) − DF (u + t(w − u), ε)](w − u) dt

−F (u, ε)

}
.

Therefore (as F (u, ε) = 0),

||w − u||X ≤ ||DF (u, ε)−1||L(Y ∗,X)

{
||F (w, ε) − F (u, ε)||Y ∗

+

∫ 1

0

||DF (u, ε) − DF (u + t(w − u), ε)||L(X,Y ∗)||w − u||X dt

}
≤ ||DF (u, ε)−1||L(Y ∗,X) ||A(ε)w + G(w)||Y ∗

+
1

2
||DF (u, ε)−1||L(Y ∗,X) γ ||w − u||2X .

By assumption on R, ||DF (u, ε)−1||L(Y ∗,X) γ ||w−u||X ≤ ||DF (u, ε)−1||L(Y ∗,X)γ ·
R ≤ 1. Thus,

||w − u||X ≤ ||DF (u, ε)−1||L(Y ∗,X)||A(ε)w + G(w)||Y ∗ +
1

2
||w − u||X

and therefore,

||w − u||X ≤ 2||DF (u, ε)−1||L(Y ∗,X) ||A(ε)w + G(w)||Y ∗

≤ 2||DF (u, ε)−1||L(Y ∗,X) ||F (w, ε)||Y ∗ .

The next step is to let w := uj+1 and to use its determining equations (1.2), (1.3).
To this end, consider

||F (uj+1, ε)||Y ∗ = sup
φ∈Y

〈
A(ε)uj+1 + G(uj+1) , φ

〉
||φ||Y

= sup
φ∈Y

{〈
A(ε)uj+1 + G(uj+1) , φ − Rhφ

〉
− 〈(Ah(ε) −A(ε))uj+1 + (Gh −G)(uj+1) , Rhφ

〉
+
〈
(Ah(ε0) −Ah(ε))(uj+1 − uj) , Rhφ

〉}
/||φ||Y .
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As, Rh ∈ L(Y, Yh), it follows immediately that

||F (uj+1, ε)||Y ∗ ≤ ||(IY −Rh)∗ (A(ε)uj+1 + G(uj+1))||Y ∗

+ ||Rh||L(Y,Yh) ||(A(ε) −Ah(ε))uj+1 + (G−Gh)(uj+1)||Y ∗
h

+ ||Rh||L(Y,Yh) ||(Ah(ε0) −Ah(ε))(uj+1 − uj)||Y ∗
h
,

which completes the proof.
Remark 2.1. The terms A(ε) − Ah(ε) and G − Gh, represent consistency error

terms and will normally be of higher order. Thus the error estimator will normally
be dominated by the residual term ||(IY − Rh)∗ (A(ε)uj+1 + G(uj+1))||Y ∗ and the
update ||(Ah(ε0) − Ah(ε))(uj+1 − uj)||Y ∗

h
. One example in which consistency error

terms can be significant is when Gh includes terms arising from a subgridscale model
added to the basic discretization.

3. A posteriori error estimators for a linear diffusion–nonlinear con-

vection problem. Let Ω ⊂ R
2, X = Y :=

o

W
1,2

(Ω). Set ||u||X = ||∇u||L2(Ω) and
define F (u, ε) via the Riesz representation theorem as the element of X∗ satisfying

〈F (u, ε) , φ〉 :=

∫
Ω

[ε∇u · ∇φ + g(∇u, u)φ − fφ] dx .(3.1)

Then, u is a solution of F (u, ε) = 0 in X if and only if u is a weak solution of the
convection-diffusion-reaction equation:{ −ε�u + g(∇u, u) = f in Ω ⊂ R

2 ,
u = 0 on ∂Ω .

Let Xh = Yh ⊂ X be a conforming finite element space (assuming Ω is a polygonal
domain), for specificity, and suppose Xh contains C0 piecewise polynomials of degree
≤ k on an edge-to-edge triangulation of Πh(Ω) of Ω. The triangulation, Πh(Ω), is
assumed to have its “minimum angle” θmin(Πh(Ω)) bounded away from zero uniformly
in h; see, e.g., [45] for more details on these conditions.

The usual Galerkin finite element approximation of (3.1) is given by Fh(wh, ε) =
0 ∈ X∗

h where, for all wh, φh ∈ Xh,

〈Fh(wh, ε) , φh〉 = 〈F (wh, ε) , φh〉 .
The operators Ah , Gh(·) are defined analogously to F (·, ·) via the Riesz representation
theorem and the relations:

〈Ah(ε)wh , φh〉 =

∫
Ω

ε∇wh · ∇φh dx ,

〈Ah(ε0)wh , φh〉 =
∑

T∈Πh(Ω)

∫
T

(ε + diam(T ))∇wh · ∇φh dx ,

〈Gh(wh) , φh〉 =

∫
Ω

[g(∇wh, wh)φh − fφh] dx .

With these choices of Fh, Ah, and Gh, (1.2), (1.3) becomes the usual finite element,
defect-correction discretization of (3.1).
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Provided, e.g., g(s, t) satisfies a growth condition and
∫
Ω
g(∇w,w)w dx ≥ 0 for

w ∈ X, it can be shown that weak solutions of F (u, ε) = 0 (3.1) exist. If F (u, ε) is
monotone as a function of u, solutions are also unique. (In the linear case, g(∇w,w) =
b · ∇w + pw , and this holds if p − 1/2∇ · b ≥ 0.) We assume that, minimally, the
solution u we approximate is nonsingular in the sense that DuF (u, ε) is invertible.

We also suppose that the finite element space admits the existence of an interpola-
tion operator Rh of the Clément type. Specifically, Rh:X �→ Xh satisfies the following
elementwise error estimate (see [12]). For φ ∈ X there are Ci = Ci(θmin(Πh(Ω))),
i = 1, 2, 3, such that

||φ − Rhφ||W j−1,2(T ) ≤ C1h
2−j
T ||φ||W 1,2(N(T )) , j = 1, 2 ,

||φ − Rhφ||L2(T ) ≤ C2||φ||L2(N(T )) ,

||φ − Rhφ||L2(e) ≤ C3h
1/2
e ||φ||W 1,2(N(e)) ,


(3.2)

for all elements T ∈ Πh(Ω) and all edges e of the elements. Here N(T ) and N(e)
denote the union of all the elements touching T and e, respectively. Also he and hT
will denote, as usual, the diameters of an edge e and element T , respectively.

For the first term on the right-hand side of (2.2) we have, for φ ∈ Y , ||φ||Y = 1,

〈
(IY −Rh)∗ [A(ε)uj+1 + G(uj+1)] , φ

〉
=
〈
A(ε)uj+1 + G(uj+1) , φ − Rhφ

〉
=

∑
T∈Πh(Ω)

∫
T

ε∇uj+1 · ∇(φ − Rhφ) + [g(∇uj+1 , uj+1) − f ](φ − Rhφ) dx .

Integration by parts over each T ∈ Πh(Ω) and denoting the collection of interior
edges in Πh(Ω) by Eh(Ω), with the use of estimates like

∑
T

||rj+1||L2(T )||φ||W 1,2(N(T )) ≤ C

(∑
T

||rj+1||2L2(T )

)1/2

||φ||W 1,2(Ω) ,

yields

〈
(IY −Rh)∗ [A(ε)uj+1 + G(uj+1)] , φ

〉
=

∑
T∈Πh(Ω)

∫
T

(−ε�uj+1 + g(∇uj+1 , uj+1) − f) (φ − Rhφ) dx

+
∑

e∈Eh(Ω)

∫
e

ε(∇uj+1 · ne) (φ − Rhφ) de

≤ C1

∑
T∈Πh(Ω)

||rj+1||L2(T ) hT ||φ||W 1,2(N(T ))

+C2 ε
∑

e∈Eh(Ω)

||[∇uj+1 · ne]e||L2(e) h
1/2
e ||φ||W 1,2(N(e))

≤ C




∑
T∈Πh(Ω)

h2
T ||rj+1||2L2(T ) + ε2

∑
e∈Eh(Ω)

he ||[∇uj+1 · ne]e||2L2(e)




1/2

||φ||W 1,2(Ω) ,
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where rj+1 is the residual, defined per mesh element T by rj+1 := f − (−ε�uj+1 +
g(∇uj+1 , uj+1)), C = C(C1, C2, θmin(Πh(Ω))) is a computable constant, and [u]e
denotes the jump of u across edge e.

With the usual conforming finite element formulation specified in this example,
the second term in the right-hand side of (2.2) is identically zero. To see this, note
that for all φh ∈ Yh,

〈
F (uj+1, ε) , φh

〉
=
〈
Fh(uj+1, ε) , φh

〉
, so that

||(A(ε) −Ah(ε))uj+1 + (G −Gh)(uj+1)||Yh∗

= sup
φh∈Yh

〈
(A(ε) −Ah(ε))uj+1 + (G −Gh)(uj+1) , φh

〉
= sup

φh∈Yh

〈
F (uj+1, ε) − Fh(uj+1, ε) , φh

〉
= 0 .

As for the last term, let φh ∈ Yh, ||φh||Y = 1. Then,

〈
(Ah(ε0) −Ah(ε)) (uj+1 − uj) , φh

〉
=

∫
Ω

(ε0 − ε)∇(uj+1 − uj) · ∇φh dx

≤


 ∑
T∈Πh(Ω)

||(ε0 − ε)∇(uj+1 − uj)||2L2(T )




1/2

.

Combining these terms gives the following error estimate for the method (1.2), (1.3)
applied to the convection-diffusion-reaction problem:

||u − uj+1||W 1,2(Ω) ≤ C ||DF (u, ε)−1||L(Y ∗,X)




∑
T∈Πh(Ω)

h2
T ||rj+1||2L2(T )

+ ε2
∑

e∈Eh(Ω)

he ||[∇uj+1 · ne]e||2L2(e)

+
∑

T∈Πh(Ω)

|| (ε0 − ε)∇(uj+1 − uj) ||2L2(T )




1/2

.(3.3)

In order to ensure full reliability, it remains to estimate ||DF (u, ε)−1||L(Y ∗,X) . This
depends of course upon the precise nonlinearity g(∇u, u). In general, g(∇u, u) and
||DF (u, ε)−1||L(Y ∗,X) can be approximated by ||DF (uj+1, ε)−1||L(Y ∗

h
,Xh). (This in-

volves the solution of an eigenvalue problem.) In some cases this multiplier can be
bounded analytically. To illustrate this, let us assume that g(∇w,w) = f+b·∇w+pw,
where p−∇·b/2 ≥ p0 > 0. Under this assumption a solution φ to A(ε)φ + G(φ) = 0
exists for any f ∈ Y ∗. Straightforward manipulations immediately give

ε||∇φ||L2(Ω) ≤ C||f ||W 2,−1(Ω)

so that, in this case of a linear problem,

||DF (u, ε)−1||L(Y ∗,X) ≤ Cε−1 .

However, in the most interesting cases this common multiplier must be approxi-
mated (as noted above), or estimated in an ad hoc way via data-fitting.
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4. Application to the Navier–Stokes equations. Let d = 2, 3 be the dimen-

sion of a polygonal domain Ω. Define X = Y := ((
o

W
1,2

(Ω))d, L2
0(Ω)), where L2

0(Ω)
is the space of L2(Ω) functions with zero mean. The norm of ũ = (u, p) ∈ X is given
by

‖ũ‖X := [‖∇u‖2
L2(Ω) + ‖p‖2

L2(Ω)]
1/2 .

Define, via the Riesz representation theorem, F (ũ, ε) as that element of X∗ satisfying

〈F (ũ, ε), ṽ〉 =

∫
Ω

[ ε ∇u : ∇v + u · ∇u · v
+ q∇ · u − p∇ · v − f · v] dx for all ṽ ∈ X ,

where ε = Re−1 is the inverse of the Reynolds number, ũ = (u, p) ∈ X and ṽ =
(v, q) ∈ X.

The problem of solving F (ũ, ε) = 0 for ũ ∈ X is the equivalent to that of finding
the weak solution ũ = (u, p) ∈ X to the Navier–Stokes equations with ε = Re−1:

−Re−1�u + u · ∇u + ∇p = f in Ω, u = 0 on ∂Ω,
∇ · u = g in Ω ,

∫
Ω
p dx = 0 .

}
(4.1)

Given an edge to edge triangulation of Ω, Πh(Ω), whose minimum angle θmin

is bounded away from zero, velocity-pressure finite element spaces can then be con-
structed on Πh(Ω). We assume that each possesses an interpolation operator of the
Clément type satisfying (3.2). See [12] and [20] for examples.

Let (V h, Qh) denote those velocity-pressure finite element spaces which are as-
sumed additionally to satisfy the inf-sup (or Babuska–Brezzi) condition [20], [21].
Specifically, there is a β > 0, independent of h, such that

inf
0 �=q∈Qh

sup
0 �=v∈V h

∫
Ω
q∇ · v dx

‖∇v‖L2(Ω) ‖q‖L2(Ω)
≥ β > 0 .(4.2)

The usual Galerkin-finite element approximation to (4.1) is then given by Fh(ũh, ε)
= 0 where, for all w̃h, φ̃h ∈ Xh := (V h, Qh), Fh(·, ·) is defined by

〈Fh(w̃h, ε), φ̃h〉 := 〈F (w̃h, ε), φ̃h〉 .

Ah and Gh are defined analogously to section 3 by

〈Ah(ε)w̃h, φ̃h〉 :=
∑

T∈Πh(Ω)

∫
T

ε∇wh : ∇φh dx ,

〈Gh(w̃h), φ̃h〉 := 〈Fh(w̃h, ε) − Ah(ε)w̃h, φ̃h〉 ,

where w̃h = (wh, q) ∈ Xh , φ̃h := (φh, λ) ∈ Xh.
With these choices of Ah, ε, ε0(T ) := max{ε, hT } and Gh(·), (1.2), (1.3) reduces to

the usual finite element, nonlinear defect-correction discretization of the incompress-
ible Navier–Stokes equations (see, e.g., [20] and [21]). It is often highly advantageous
in the algorithm to perturb Gh(·) through local averaging or the use of “flux limiters”
(see [26], [27], [28]) or through the incorporation of an appropriate subgridscale model.
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For example, the incorporation of the model suggested in [31] (which is used herein)
is equivalent to defining Gh(·) as

〈Gh(w̃h), φ̃h〉 := 〈Fh(w̃h, ε) − Ah(ε)w̃h , φ̃h〉
+ 〈µ(h,Re) |∇wh|r∇wh , ∇φh〉 ,

where the scaling term µ(h,Re) and exponent r are discussed in [31]. This incorpora-
tion adds one additional term to the right-hand side of the error estimator but does
not otherwise appreciably alter the following analysis. Let φ̃ ∈ Y , ‖φ̃‖Y = 1 be given
and consider the first term on the right-hand side of (2.2):

〈(IY − R̃h)∗[A(ε)ũj+1 + G(ũj+1)] , φ̃〉 = 〈A(ε)ũj+1 + G(ũj+1) , φ̃ − R̃hφ̃〉
=

∑
T∈Πh(Ω)

∫
T

[ ε∇uj+1 : ∇(φ − RV
h φ) + uj+1 · ∇uj+1 · (φ − RV

h φ)

+ (q − RQ
h q)∇ · uj+1

−pj+1∇ · (φ − RV
h φ) − g · (q − RQ

h q) − f · (φ − RV
h φ) ] dx,

where φ̃ = (φ, q). Integration by parts over each T ∈ Πh(Ω) and denoting the collec-
tion of faces (3-D) or edges (2-D) of Πh(Ω) in the interior of Ω by Eh(Ω) give

〈(IY − R̃h)∗[A(ε)ũj+1 + G(ũj+1)] , φ̃〉
=

∑
T∈Πh(Ω)

∫
T

−rj+1 · (φ − RV
h φ) +

∫
T

(q − RQ
h q)(∇ · uj+1 − g) dx

+
∑

e∈Eh(Ω)

∫
e

ε [∇uj+1 · ne]e · (φ − RV
h φ) − [pj+1]e (φ − RV

h φ) · ne dσ ,

where rj+1 := f − (−Re−1�uj+1 + uj+1 · ∇uj+1 + ∇pj+1).

Using the Cauchy–Schwarz inequality on each element T and face (or edge) e and
the properties of R̃hφ̃ from (3.2) gives

〈(IY − R̃h)∗[A(ε)ũj+1 + G(ũj+1)] , φ̃〉 ≤

C


 ∑
T∈Πh(Ω)

h2
T ‖rj+1‖2

0,T + ||∇ · uj+1 − g‖2
0,T




1/2

+ C


 ∑
e∈Eh(Ω)

he ‖[Re−1∇uj+1 · ne − pj+1ne]e‖2
0,e




1/2

,

which is a bound on the first term on the right-hand side of (2.2).

If the usual Galerkin formulation is used (i.e., no “subgridscale” modelling, nu-
merical integration, or other variational crime) then, as in the previous example, the
second term on the right-hand side of (2.2) is identically zero. As for the last term
which involves Ah(ε0) − Ah(ε), let φ̃ ∈ Y satisfy ‖φ̃‖Y = 1. Then,
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〈(Ah(ε0) − Ah(ε) )(ũj+1 − ũj ) , φ̃〉 =

∫
Ω

(ε0 − ε)∇(uj+1 − uj) : ∇φdx

≤

 ∑
T∈Πh(Ω)

‖(ε0(T ) − ε)∇(uj+1 − uj)‖2
0,T




1/2

.

Combining these terms gives an error estimator:

‖u − uj+1‖1 + ‖p − pj+1‖

≤ C ‖DF (ũ, ε)−1‖L(Y ∗,X)




∑
T∈Πh(Ω)

h2
T ‖rj+1‖2

0,T + ||∇ · uj+1 − g‖2
0,T

+
∑

e∈Eh(Ω)

he ‖[Re−1∇uj+1 · ne − pj+1ne]e‖2
0,e

+
∑

T∈Πh(Ω)

‖(ε0(T ) − ε)∇(uj+1 − uj)‖2
0,T




1/2

.

Remark 4.1. If the aforementioned subgridscale model from [31] is used in the
residual calculation, then an extra term appears on the right-hand side. This term
takes the form 

 ∑
T∈Πh(Ω)

||µ(hT ,Re)|∇uj |p∇uj ||2L2(T )




1/2

.

It remains, of course, to evaluate ‖DF (ũ, ε)−1‖L(Y ∗,X). The Navier–Stokes equations

are not monotone so an a priori bound of this term for all possible solutions is not
possible. (Singular solutions do exist and correspond to physically interesting flow
situations.) Since ‖DF (ũ, ε)−1‖L(Y ∗,X) is a common multiplier of the right-hand

side of (4.3), it is not required for mesh redistribution, only for the computation of a
reliable upperbound in order to check if a final stopping criterion is satisfied. Unfortu-
nately, in general, this multiplier can only be estimated by, e.g., solving an eigenvalue
problem on a course mesh. This amounts to replacing ‖DF (ũ, ε)−1‖L(Y ∗,X) by

‖DF (ũj+1, ε)−1‖L(XH∗,XH), where H >> h.

5. Numerical results. We give an illustration of the effectiveness of using defect
correction methods, with a subgridscale (SGS) model, in an adaptive calculation. To
illustrate the method we solve an equilibrium, high Reynolds number flow problem
(4.9) via the DCM presented in section 1. In the tests presented herein, we use either
the k = 1 accurate minielement (Arnold, Brezzi, and Fortin [1]) or the second order
k = 2 accurate Taylor–Hood pair [40].

The nonlinear systems arising at each step of the method, denoted F (x) =
0, were linearized by a damped inexact Newton method [14], with stopping crite-
rion ||F (x)||2 < 10−8. The resulting nonsymmetric linearized systems were solved
with Sonneveld’s [37] conjugate gradient squared (CGS) (with a Vanka-like ILU(0)
preconditioner [42]). The generalized minimal residual method (GMRES) of Saad
and Schultz [36] or Axelsson’s generalized conjugate gradient least squares method
(GCGLS) [2], [3] can also be used. However, it is our experience that they can con-
sume more computational time because they explicitly orthogonalize search directions.
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The storage of more search directions further limits the number of degrees of freedom
which can be handled. The pressure was normalized by fixing its value at one point
of the domain.

The initial guess for calculations on each newly refined grid is the solution inter-
polated from the previous grid. Grid to grid interpolation is easy because the grid
refinement employed (see [32]) is hierarchical with conforming basis functions. Thus,
the hierarchical mesh levels automatically provide accurate initial guesses to the non-
linear solver. The few nonlinear iterations (Newton steps) required reflects both this
good initial guess and regularization of the system inherent in DCMs.

We have purposely used the most conservative options at each step because we
are testing the viability of the basic DCM, rather than the many possible efficiency
improvements. For example, the linear and nonlinear systems were solved to essen-
tially machine precision (rather than truncation error of the step in question). For
the same reason, on each new mesh, the DCM was restarted by solving an artificial
viscosity approximation followed by the corrections.

For every grid, first the artificial viscosity system (1.2) was solved, with ε0 =
ε + hα. Next, k (the polynomial degree of the velocity approximation) antidiffusive
defect corrections steps (1.3) follow. Thus one defect-correction iteration was used for
the minielement, and two iterations were used for the Taylor–Hood pair.

The stopping criterion used was ||r(l)||2 < 10−11, where r(l) is the lth updated
residual. In all examples, the nodes were numbered left to right and bottom to
top. As usual, the ILU(0) preconditioner performs best for lower degree polynomial
velocity approximations, when mesh refinement is limited and when nodal support
points are numbered regularly. In spite of this, we experienced no difficulties using
a simple ILU(0) preconditioner, because the linear systems we solved arose from a
regularized artificial viscosity approximation.

The coefficients of the discrete systems were computed with quadrature rules of
degree 2k. All quadrature rules employed use quadrature points strictly inside the
reference element. In the case of k = 1, for instance, we used rule “T2: 5-1” of degree
5 from Stroud [39, p. 314]. For higher polynomial degree k, quadrature formulas were
taken from Dunavant [15]. The jump integrals over the edges, were computed with a
standard Gauss–Legendre formula which is exact for all polynomials of degree 2k.

All numerical experiments used the same mesh refinement technique. The coarse
grids were of the Tucker–Whitney triangular type described by Todd [41]. The grid re-
finement algorithm of [32] and [33] was used to create the finer uniform and adaptively
locally refined meshes.

The local error indicators were based on the estimator (4.3). For an element T ,
we measured the local error indicators, including a possible SGS model,

Est2α(T ) = C2
1

[
h2
T ‖rj+1‖2

0,T + ||∇ · uj+1 − g‖2
0,T

]
+ C2

2

[∑
e∈T

he ‖[Re−1∇uj+1 · ne − pj+1ne]e‖2
0,e

]

+ C2
3

[‖(ε0(T ) − ε)∇(uj+1 − uj)‖2
0,T + ||µ(hT , Re)|∇uj |p∇uj ||20,T

]
.(5.1)

The local error indicators sum up to our global error estimate

Est2α(Ω) :=
∑

T∈Πh(Ω)

Est2α(T ).(5.2)
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Table 5.1
Estimated and actual energy norm error ratios for the DCM.

α Estα/Est1 Errα/Err1
1 1.00 1.00
3/2 1.81 1.02
2 4.07 1.91

Table 5.2
Estimated and actual error ratios for the DCM.

α Estα/Est1 Errα/Err1
1 1.00 1.00
3/2 1.06 0.90
2 1.41 1.20

The error indicator for T , Estα(T ), depends on the amount of artificial viscosity
ε0 − ε =: hα. Here we choose α > 0, a real number, and h = hT , the diameter of
triangle T . The usual choice for convection diffusion problems (see [5], [18], [24], and
[30]) is α = 1. Since these problems have O(ε) layers for 2d flow problems we first
tested this choice for the equilibrium Navier–Stokes equations. The optimal amount
of artificial diffusion hα = ε0 − ε for the DCM is explored for the Navier–Stokes
equations using an example of [29].

Test problem 5.1. On the domain [0, 1]2, we used for the exact solution (u, p)

u1 = sinπx sin 2πx, u2 = x2(1 − x) sinπy, p = (1 + y(y2 − 4)) cosπx.(5.3)

The right-hand side f = f(x, y,Re) was obtained by substituting (5.3) into the
Navier–Stokes equations. The velocity u satisfies the homogeneous Dirichlet boundary
condition and is smooth uniformly in the Reynolds number.

We take Re = 104, set C1 = C2 = C3 = 1, and compute Est2α(Ω) and the true
error for the discretization using a Taylor–Hood finite element approximation. Rather
than estimating the common multiplier ||DF−1(u, ε)||, we tabulated the ratios of the
estimated errors Estα(Ω)/Est1(Ω) and the true errors Errα(Ω)/Err1(Ω). The first
column of Table 5 shows the exponent α of our artificial viscosity parameter hα. The
second column shows the ratios Estα(Ω)/Est1(Ω) of the estimated errors, and the
last column the ratios of the true errors.

The standard choice α = 1 appears to be the best choice for globally smooth flow
problems without transition regions.

Results from additional experiments for more physically interesting flow problems,
without a known exact solution (hence only calculating the first column in the table),
also suggest that the optimal artificial viscosity parameter was O(h1). A similar trend
was observed if the minielement is used for the finite element discretization; see Table
5.2.

For Test Problem 5.1, the estimated error was an accurate estimate of the true
error for our choice of constants Cj . For example, with the minielement

Est21(Ω)/Err2
1(Ω) ≈ 0.51/0.50 ≈ 1.02.

Table 5.2 is a clear case when energy norm optimization yields a different optimal
value of α than optimizing the “eyeball” norm. For the latter case we obtained α = 2
in Test Problem 5.2. We do not have a rigorous explanation of this discrepancy.
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Fig. 5.1. The uniform grid upon which the artificial viscosity parameter α is tested in Fig-
ures 5.2–5.4.

Test problem 5.2. We solve the Navier–Stokes equations (4.1) with f = 0 and
g = 0 (adapted from Mohammadi and Pironneau [35]).

The domain Ω of this pipe cavity flow problem is shown in Figure 5.5. The
Reynolds number used was Reynolds number Re = (1.75 · 10−5)−1 (see [13], [11], and
[44]). The fluid flows in from the left with the standard parabolic profile u1(x, y) =
4y(1 − y), u2(x, y) = 4y(1 − y) along boundary {(x, y) : x = 0, y ∈ [0, 1]} and out
at the pipe’s right end (with the same profile). The Dirichlet boundary conditions
are homogeneous except for the pipe’s inflow and outflow boundaries. (The tests in
[11] use Neumann-type boundary conditions on the outflow boundary of the pipe; the
physical validity of either outflow boundary conditions can be argued.)

Three interesting physical structures are expected at a higher Reynolds number: A
large recirculating region in the cavity, a separation line near the cavity-pipe juncture,
and very small recirculating eddy where the flow leaves the cavity to re-enter the
pipe. The last two structures carry most of the vorticity of the flow field and the
region below the separating line carries most of the momentum of the flow field.
First we determine which order of artificial diffusion α gives the sharpest resolution
of the transition regions and physical structures. The minielement was used to test
resolution as a function of α together with the uniform grid in Figure 5.1 containing
approximately 20,000 triangles. The flow fields are shown in Figures 5.2–5.4. The
velocity vectors are rescaled to have the same length. Figure 5.2 indicates that a
large amount of O(h) artificial viscosity is undesirable. Indeed, the separation curve
in the flow field computed with α = 2, O(h2) artificial viscosity, presented in Figure
5.4, more closely resembles the separation curve calculated in [35]. For our tests with
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Fig. 5.2. The α = 1 flow field.

Fig. 5.3. The α = 3/2 flow field: a better approximation with O(h3/2) artificial viscosity plus
three corrections.
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Fig. 5.4. The α = 2 flow field: O(h2) artificial viscosity plus three corrections yield the best
resolution (uniform mesh).

adaptive refinement we will therefore use α = 2.
Next, Test Problem 5.2 was solved adaptively. Let N(T ) denote the number of

triangles in the grid being considered for refinement. For a grid refinement threshold
C > 0, a triangle T is refined if Est22(T ) > C2/N(T ). If Est22(T ) < C2/2N(T ), then
T was marked for derefinement. We set Cj = 1, j = 1, 2, 3, and used a refinement
threshold of C = 4/10. A Taylor–Hood finite element DCM discretization is used with
O(h2) artificial viscosity on an r-Laplacian (h2|h∇uj−1|) SGS model. The initial grid
is shown in Figure 5.5, and every second grid obtained by the adaptive refinement
procedure is shown in Figures 5.5–5.8.

Figure 5.8 shows the finest grid created by the adaptive refinement procedure. It
contains approximately the same number of triangles (20,000) as the uniform grid in
Figure 5.1. However, the adaptive refinement better resolves the regions of physical
activity due to the concentration of triangles in these areas. Along the boundaries
of the inflow and outflow pipe, refinement takes place because the residual term in
the error estimator includes u∇u, which is large due to changes in the velocity es-
pecially near the outflow boundary. Further refinement is centered around a shear
layer/separation curve which begins at the reentrant corner (1, 1) and ends at a certain
point along wall {(x, y):x = 7, y ∈ [1, 7]}. This line “separates” the fast flow through
the pipe from the slower cavity flow. The velocity vector plot related to Figure 5.8 is
shown in Figure 5.9. The plotting routine used sets all vectors to be of equal length
in order to make the recirculating flow in the cavity clearly visible. This flow is much
slower than the through flow and would hardly show up if vectors were scaled propor-
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Fig. 5.5. The initial grid for adaptive calculations.

Fig. 5.6. The second adaptively refined grid.
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Fig. 5.7. The fourth adaptively refined grid. Note the refinement in areas of large fluid stresses
and at the approximate outflow boundary.

Fig. 5.8. The sixth adaptively refined grid. Note the concentration of refinement in areas of
physical activity.
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Fig. 5.9. The flow field on the finest grid. All arrows are rescaled to be of equal size. A close-up
view of the flow field in the right-hand corner follows.

tional to their velocity. A magnification of the grid and related flow field is provided
in Figures 5.10 and 5.11. These figures show that the shear layer connects to the
boundary of the cavity at a point which is situated lower than in the case of the
uniform refinement. Furthermore, the adaptive refinement picks up a small vortex in
the outflow pipe. This recirculation region is an important physical structure.

The number of triangles N(T ) per grid G is shown in the third column of Table 5.
The related number of degrees of freedom for the velocity and pressure combined, M ,
is given in the second column. Finally, the maximum amount of iterations needed to
solve all nonlinear systems is given in the last column.

The subgridscale model used prevents nonphysical solutions caused by overcor-
recting in the DCM. For instance, in computed approximate solutions to this problem
without a SGS model we observed nonphysical eddies on the left-hand side which
increased in number and decreased in size as the mesh was refined.

Adaptive defect correction discretizations show great promise for approximating
flows of incompressible viscous fluids at higher Reynolds numbers. The method is es-
pecially attractive since it is easy to introduce a SGS model (or turbulence model) into
the calculation without significantly increasing the cost of resolving the nonlinearity
in the system.

The use of a posteriori error estimators and self-adaptive algorithms is especially
promising when a SGS model is used in the discretization. Specifically, when the error
is estimated with respect to solutions of the unperturbed Navier–Stokes equations, a
SGS model can be used with impunity (i.e., without worries as to “modelling errors”)
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Fig. 5.10. The shear layer down flow, grid magnification.

Fig. 5.11. The shear layer down flow, flow field magnification. Note: a recirculating eddy is
captured in this adaptive calculation (not in our uniform mesh simulation, nor in the k-ε simula-
tions).
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Table 5.3
Degrees of freedom and number of Newton iterations (α = 2).

G M N(T ) #Newton it.
0 1151 304 3
1 2393 646 4
2 5493 1512 4
3 17270 4831 5
4 43167 12180 4
5 116880 33150 2

to eliminate nonphysical eddies.

We highly recommend the pipe driven cavity (Test Problem 5.2) as a challeng-
ing test problem, similar in spirit to the driven cavity but perhaps more physically
reasonable.

Based on the success of the adaptive DCMs herein, two natural questions arise
for further study: (1) efficiency improvement of the method via, for instance, exact
solvers and the elimination of the artificial viscosity step from one grid to the next; (2)
analysis of the defect correction method applied at each time step in an evolutionary
problem.
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