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Chapter 1 

An evaluation of current 
interactive instruction systems 

Abstract 
An overview is given of the requirements to be met by an interactive instruc
tion system. These vary /rom the basic requirements of any software system, 
like robustness and speed of response, to the requirements of any dialogue 
system, like transpareney and learnability, to more specific requirements like 
a mixed locus of control and adaptation to the learner. Current approaches to 
the design of interactive instruction systems, namely computer-assisted 
instruction, intelligent tutoring systems, microworlds, and interactive learn
ing environments, are evaluated in terms of these requirements. Among other 
things, it turns out that ( 1) striving for adaptivity tends to be at the expense of 
the more basic requirements, that (2) generativity tends to be poor, and that 
( 3) a mixed locus of control is lacking. 
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1.1 Why do we need interactive instruction systems? 

Learners prefer tailor-made instruction which is adapted to their interests and 
capabilities, and which allows them to learn at their own pace, whenever and 
wherever they want to. As far as the effectiveness of learning is concemed, 
one-to-one tutoring seems to be better than classroom teaching. In Bioom 
(1984), it is reported that in various experiments the average performance of 
learners under tutoring turned out to be about two standard deviations above 
the average of the control class. Unfortunately, however, it is often too costly 
to provide every learner with a good human tutor. Moreover, there is 
currently a tendency for classrooms to become larger and for the variability 
within classrooms to grow. 1 

These considerations have led to attempts to construct interactive 
instruction systems (IIS's) that can tutor as well as humans. Ina classroom 
environment, IIS's could be used to give poor learners extra, and specialized 
attention. Another possibility is to use IIS 's for the average and good learners, 
providing the teacher with more time for the truly problematic cases. Leam
ers could also use such a system at home. 

Another reason to build an IIS is the fact that for some skills it would be 
too dangerous, difficult, or expensive to teach them in real life. Tuis applies, 
for instance, to the skills of pilots, astronauts, and controllers of chemica} and 
nuclear plants. The IIS can then be used to simulate the training domain. 

Over the last decades, many researchers have tried to construct interac
tive instruction systems (see, e.g., Wenger (1987) and the NATO series on 
Educational Technology). In genera!, their goal bas been more humble than to 
make a real tutor (even though they sometimes called their system a tutoring 
system 
nevertheless); instead they typically intended their system to assist in class
room instruction. However, despite all the money and eff orts expended, edu
cation inside and outside schools bas hardly been affected (Bouwhuis, van 
Hoe, & Bouma, 1996). 

In this chapter, we will analyse this problem, by identifying weaknesses 
in current approaches to the development of IIS's. First, the requirements to 
be met by an IJS are described. Next, some current approaches to the design 
of such systems are discussed and evaluated in terms of these requirements. 
Finally, some conclusions and recornmendations are off ered. 

1. In the Netherlands, this is a natural consequence of government programs like 
"Weer samen naar school" (Back to school together) which are intended to stimulate 
integration. 
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1.2 Requirements of an interactive instruction system 

What requirements should an interactive instruction system meet? As argued 
in Bouwhuis & Bont (1993), an interactive instruction system is a special 
kind of dialogue system. In turn, a dialogue system is a special kind of soft
ware system. The most important requirements of any software system are 
therefore discussed first, followed by the additional requirements of a 
dialogue system, and finally the requirements specific for an interactive 
instruction system. As it is hard to determine when a software system 
becomes a dialogue system or a dialogue system becomes an instruction 
system, there is possible disagreement about whether a certain requirement 
should be mentioned in one category or the other. However, this is not very 
important, because we are interested in all the relevant requirements of an 
interactive instruction system. 

1.2.1 What requirements should any software system meet? 

In Somerville (1985), the following requirements are mentioned for a soft
ware system: 

1. Robustness. Unexpected behaviour of the user should not lead to a 
total collapse of the system. Tuis is even more important in an IIS, because a 
student will not (and should not) have as much knowledge about the learning 
system as, for instance, a professional user of a software system. Hang-ups 
and bugs will therefore have a fairly negative effect on the student's attitude. 

2. Maintainability and Generativity. In general, a software platform 
should be sufficiently ftexible and maintainable to tolerate modifications and 
extensions at no great expense as regards programming. Preferably, the sys
tem or parts of the system are easily reusable in other systems.This is one of 
the reasons for the emergence of Object Oriented Prograrnming (Meyer, 
1988). The architecture should be as simple as possible. In an IIS, maintaina
bility implies, for instance, that the course can easily be extended and modi
fied. Generativity implies that the modules of an existing IIS can be reused 
when designing a system for another learning domain, or another group of 
students. This reduces the cost and time needed for the design of a new sys
tem. 

3. Economy. To ensure speed of response, it is desirable fora system to 
operate in real time. However, the application should use as few resources 
(like memory) as possible. There should be a good trade-off between per
formance and use of resources. 

In an instruction situation, these requirements are often even more imperative 
than usual. 
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1.2.2 What are the additional requirements of a dialogue system? 

A dialogue systern is an interactive software system, where interactive means 
that both the system and the user perf orm actions that are meaningfu1 in 
combination, i.e., they can be interpreted as serving one or more common 
goals. The main difference as compared with an ordinary software system is, 
therefore, the interleaving of the actions of the system and the user which is 
actually part of the functionality, with each action of the one being in some 
way a response to the action of the other. Tuis leads to the following addi
tional requirements: 

1. Transparency of dialogue. According to Bouwhuis & Bunt (1993), 
users should know at any point in time where they are in the dialogue, how 
they got there, where they carne from, how they can go back, where they can 
go from there, how to correct an error and what result wi11 ensue frorn an 
action.In addition the nurnber of choice points should be lirnited. 

2. Speed of response. A delay in response may reduce the perceived 
interactivity considerably. However, a delay that is intolerable in one condi
tion may not be noticeable in another (Taylor, 1988a). As mentioned by Tay
lor, delays of a few tens or hundreds of msec in echoing characters may badly 
disrupt the work of a typist, hut similar delays in response to a completed 
command are accepted as normal. Students are not as motivated to use a com
puter as users who have no alternatives. A student will not sit still white a 
system muddles for minutes trying to figure out what the student is doing 
(Anderson, Boyle, Corbett, & Lewis, 1990). A way to avoid undesirable 
waiting time is to mimic human conversation. Humans try to avoid silent 
periods as far as possible and frequently intersperse these periods with vapid 
remarks like "uh"(Beun, 1989). 

3. Efficiency of communication. There should be a good trade-off 
between the speed and accuracy of comrnunication. A possible way to 
increase the efficiency is by using layered protocols (Taylor, 1988a, 1988b). 
In the process of human-machine communication many layers ·of abstraction 
can be distinguished (similar to Tanenbaum (1988) for machine-machine 
communication). For instance, at a high level of abstraction a sentence is 
communicated, at a lower level of abstraction the words the sentence contains 
are communicated, at a very low level pixels of the screen are put on in order 
to form letters. To make communication successful, the levels of abstraction 
in the communication of both partners should be the same. An important 
property of a layered protocol is that feedback is provided at different levels 
of abstraction. Tuis enables the speaker to verify at an early stage of cornmu
nication whether bis or her intentions are being accurately perceived. Of 
course, the contents of the feedback should depend on (the history ot) the 
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user's actions. Fora more detailed explanation of layered protocols see Tay
lor (1988a,1988b) and Engel & Haakma (1993). 

Another possibility to increase efficiency is the use of layered expecta
tions (Engel & Haakma, 1993). In a dialogue, a recipient can generate expec
tations about what will follow. Such expectations reduce the number of 
possible decodings of the last part of the message. In human conversations, it 
often occurs that the listener is so quick that the reaction to a message takes 
place even before the speaker has finished the sentence. 

4. Cognitive validity. In many systems the designers are trying to model 
users in terms of their beliefs and knowledge (e.g., Kobsa & Wahlster, 1989). 
It is assumed that such models can be used to anticipate or explain the reac
tions of the user and thereby make communication more efficient. However, a 
system that uses an invalid cognitive model bas a high probability of taking 
incorrect decisions, which are incomprehensible for the user. This affects 
both the robustness and the transparency of the system. Therefore, it is impor
tant that the models used are cognitively valid. Moreover, in order for a dia
logue system to be effective, the assumptions on which it is based regarding 
the way people internet in genera!, or, in the case of an IIS, the way students 
learn, should be cognitively valid as well. 

5. Leamability. When highly motivated, a user may learn to work with a 
terrible interface, just as children learn in no time to use the interface of a 
game. However, users are sometimes hesitant to learn something new, espe
cially something totally unfamiliar to them. Because dialogue systems, and in 
particular IIS's, are not only intended for computer experts, it is important for 
ordinary people to overcome their reluctance to the new technology. Even 
when a system is intended for children, the teachers and parents still decide 
whether or not to adopt it. One way to make a system more acceptable is to 
make its interface so transparent, that it is easy to learn. As argued by Nielsen 
(1993), learnability is a very important prerequisite for usability. 

6. Evaluation research: user-centred approach. At all stages, the design 
process should be based on continuous user testing with the prototype. Tuis is 
what Norman & Draper (1986) call the user-centred design. Nevertheless, it 
remains necessary to evaluate the system in actual and prolonged use. This is 
especially true for IIS's, because progress is usually so slow that sufficiently 
reliable data concerning educational success only become available after a 
considerable time. In particular, one should be aware of the Hawthorne effect 
(Mayo, 1933): the phenomenon that non-experimental variables rather than 
the intended variables determine the experimental results. Por instance, in the 
evaluation of an IIS, motivation and attention are not the experimental varia
bles, hut they can influence the effectiveness of learning enormously. Accord
ing to Bouwhuis (1992), the mere fact that the instruction program differs so 
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much from conventional forms of instruction causes motivation and attention 
to increase in the initial stage. 

Snow & Swanson (1992) describe two ways to evaluate an IIS. It can be 
judged either by how well it approximates the effects of expert tutoring and 
small-group teaching directly, or by how well it complements human class
room teaching to attain such effects. Moreover, as mentioned in Clancey & 
Soloway (1990), systems need to be evaluated by applying them in different 
domains to determine the generality of the methods. 

1.2.3 What requirements are specific for an interactive instruction 
system? 

What distinguishes an IIS from amore genera! dialogue system? The goal of 
an IIS is to promote learning, preferably just as well as a human tutor does. 
Learning can be defined as a change of the learner's behaviour in reaction toa 
certain situation (Gagné, 1985). In this case, a situation should be viewed as a 
combination of events external to the learner (as perceived by the learner) and 
the internal state of the learner (e.g., memory, previously learned capabili
ties). 

Teaching can then be defined as generating events external to the learner 
in order to promote learning. However, as, according to the definition of 
learning, the effect of events depends on the internal state of the leamer, it is 
logical that these events should be adapted to the characteristics of the indi
vidual leamer, such as motivation, knowledge, and skills. Moreover, the kind 
of events needed may also depend on the kind of learning involved. 

Different kinds of learning can be distinguished, depending on the kind 
of capabilities leamed. Gagné (1985) distinguishes between procedural 
knowledge ("knowing how", for instance, knowing how to multiply two 
numbers), declarative knowledge ("knowing that", for instance, knowing that 
the capital of France is Paris), cognitive strategies, motor skills, and attitudes. 
IIS's are mostly intended for the teaching of procedural and declarative 
knowledge. Within these categories, it possible to make new distinctions. For 
instance, Gagné distinguishes within procedural knowledge between rules, 
concepts, discriminations (like the difference between the sounds of /e:/ and I 
i:/), higher-order rules (as in problem solving), and procedures. Associations, 
as mental links between two events, can be seen as the building blocks of 
these higher order capabilities.We will not discuss all these kinds of learning 
in detail here (see Gagné, 1985), hut association learning and concept learn
ing will be discussed more deeply in Chapter 3 and 5, respectively. For the 
moment, we are more concemed with the properties of learning in general, 
which result in the following additional requirements for an IIS: 
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1. Adaptivity with respect to teaching order. Different kinds of learning 
are often interdependent, which means that certain capabilities are prerequi
site to the learning of other capabîlities (Gagné, 1985). For instance, learning 
the names of two persons bas as a prerequisite the capability of discriminat
ing between the two persons. This kind of interdependence shows that an 
important task of a teacher is to determine the order in which capabilities are 
taught. 

According to Wood, Wood, & Middleton (1978), a student should con
tinually be confronted with tasks of controlled complexity: confronting the 
student with exercises that lie beyond the student's current level of compe
tence, but not so far beyond that he or she is unable to master the problem 
presented. This approach implies that the student never succeeds too easily 
nor fails too often, which is good for motivation. Moreover, they demon
strated that this teaching strategy is more effective than other strategies. 

Apart from the fact that each task must be at the adequate cognitive level 
for the student -neither too simple nor too difficult- the task sequence as a 
whole must be coherent: successive tasks should deal with the same or related 
concept sets (McArthur, Statx, Hotta, Peter, & Burdorf, 1988). In addition, to 
enhance motivation, the concepts to be taught should be adjusted to the inter
ests and needs of the student. 

2. Adaptivity with respect to repetition. Repetition is needed for skill 
training and to prevent forgetting that may be due to the interference between 
different capabilities. For instance, in stimulus-response learning, interfer
ence may be caused by a similarity between stimuli or responses. The issue of 
repetition will be discussed in more detail in Chapter 3, 4, and 5, for associa
tion learning and concept learning, respectively. As learning depends on the 
individual learner, the amount of repetition and the decision as to what to 
repeat at what time also have to be adapted to the student. 

3. Adaptivity with respect to feedback. The preceding discussîon about 
the efficiency of communication mentioned the importance of feedback at 
different levels of the communication. In an US, feedback plays a very impor
tant role, because it can be expected that misunderstandings and errors fre
quently occur. Moreover, according to Gagné (1985), in all the types of 
learning mentioned above, confirmation (a terminating event that provides 
satisfaction, also called praise or reinforcement) is crucial and should be pro
vided contingent on the required behaviour. Therefore, adaptivity of feedback 
is dealt with here in more detail as a requirement of an IIS. 

There are many studies concerned with the timing of feedback. Some of 
those report that feedback should be provided immediately after the student's 
response (Sullivan, Schutz & Baker, 1971; Kulik & Kulik, 1988). Others 
argue that feedback should be delayed, i.e" presented some time after the 
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learning event (More, 1969; Sassenrath & Yonge, 1968, 1969). According to 
Anderson et al. (1990), more experienced students can find immediate feed
back annoying. So, the ability of the student should probably inftuence the 
timing and nature of feedback. 

The correct answer to a question can be provided after one response 
(single-try feedback), or after several responses (multiple-try feedback). Clar
iana (1993) compared the effectiveness of these two kinds of feedback. He 
found that single-try feedback was more effective for low prior-knowledge 
students, while for high prior-knowledge students multiple-try feedback was 
more effective. 

There are also studies that investigate the effectiveness of different 
amounts of information in the feedback. A distinction can be made between 
knowledge of response feedback (like "right", "wrong"), knowledge of cor
rect response feedback (like "the right answer is.""), and more elaborate 
forms off eedback. A lot of research suggests that the amount of feedback 
should depend upon the prior knowledge or ability of the student (see, e.g., 
Tobias, 1973; 1976; McGowen & Clark, 1985; Spaai, 1994). There is also 
evidence that there is a correspondence between the confidence a student had 
in bis response and the correctness of that response, on the one hand, and the 
amount of feedback a student wants, on the other hand (Kulhavy & Stock, 
1989). 

All of this suggests that the amount and timing of feedback should be 
adapted to the individual student. In the educational literature, feedback is 
mostly viewed as a way to correct errors during instruction (Anderson, 
Kulhavy, & Andre, 1972), but feedback is also an important factor for moti
vation. Adaptation of the degree of enthusiasm and disappointment can be 
important for keeping a student motivated. If responses are repeatedly cor
rect, feedback may be suspended altogether, using the absence of explicit 
feedback as a default option for positive feedback (Bouwhuis & Bunt, 1993). 

4. Adaptivity with respect to presentation. At each moment in the train
ing session, the most appropriate representation of a task has to be presented 
to the student. In multimedia systems in general, a selection has to be made of 
the available media, like audio, print, pictures, animations, stills, and video. 
From ten different media selection models discussed in Reiser & Gagné 
(1982), seven have student characteristics as a prominent factor. Tuis there
fore means that the way a task is presented should also be adapted to the stu
dent. Factors frequently considered in media selection models are reading 
ability and age (e.g., Briggs & Wager, 1981). In Dale (1969), a "Cone of 
Experience" is presented that lists 12 categories of media and experiences in 
a hierarchical fashion. The media range from manipulation of real objects 
(direct, purposeful experiences), through increasingly simulated experiences, 
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to the use of symbols (reading). Briggs & Wager (1981) suggest as rule of 
thumb, when using Dale's cone, that one should go as low on the scale as 
necessary to ensure learning by the student, but as high on the scale as possi
ble for efficient learning. 

5. Adaptivity with respect to explanation. Verbal instruction should be 
given to state the performance to be expected when learning is complete, to 
provide guidance, to explain. The issue of instruction will be discussed in 
more detail in Chapter 7. 

According to Cawsey (1993), explanations should not be totally deter
mined beforehand. She argues that for complex explanations, interactions 
with the user should take place as the explanation progresses and should 
influence how that explanation continues. This is, of course, closely related to 
the notion of layered protocols, as discussed above as a means to increase the 
efficiency of communication. 

As described in Entwistle (1981), Pask (1976) bas argued for the exist
ence of distinct styles of learning (i.e., the different strategies students may 
have for learning something). In experiments, he found that a mismatch 
between the learning style of a student and the teaching style (i.e., the way an 
explanation is given) results in bad student performance. Experimental find
ings from Kyllonen, Lohman, and Snow (1984) on the effects of aptitude and 
instruction on the performance of subjects in a spatial visualization task also 
suggest an interaction of aptitude and the most eff ective way to instruct. So, 
the explanation of the material should also be adapted to the learning style of 
a particular student. 

6. Mixed locus of control. When discussing dialogue systems, we have 
defined interaction as a situation in which both the system and the user per
form actions, where the action of the one is a kind of response to the actions 
of the other. This does not, however, necessarily imply that both interaction 
partners play an equal role. One partner may be more in control of the inter
action than the other one. For instance, in a school situation, the teacher is 
generally more in control than the student. Two aspects seem to be important 
when trying to define what control means. 

In the first place, the decision as regards turn tak:ing is crucial: in order 
to be in control, an interaction partner has to be able to decide for himself 
when to act. An interaction partner who can only act when the other one 
explicitly gives the opportunity to act does not have control. 

In the second place, the decision of the action is important: in order to be 
in control, an interaction partner has to be able to decide for himself what 
action to perf orm. When the set of actions of the system and user can be inter
preted as together serving one or more goals, the partner who determines 
these goals can be said to have more control. 
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Of course, it need not necessarily be the case that only one of the two 
partners is in control. In most natural dialogues this is certainly not the case. 
There is usually a mixed locus of control: during the interaction both partners 
can decide upon turn taking, and both can determine, under some constraints, 
what kind of action to perform. According to Gentner (1992), a mixed locus 
of control is almost essential for keeping p a student motivated. 

In the interaction between two human partners, there is not an explicit 
decision about the locus of control. Instead, the locus of control follows quite 
naturally from the interaction of the partners. A mixed locus of control can be 
created dynamically on the basis of the instruction model of Wood, Wood, 
and Middleton (1978). In this model, instruction is considered as a layered 
model of intervention varying between the "general verbal encouragement" 
level and the "demonstration" level, whereby each layer represents a different 
level of control from the side of the teacher. The behaviour of the teacher 
should then be contingent on the performance of the student: the most appro
priate. intervention is chosen according to the success of the student. This 
strategy demands that when the student starts to fail the IIS takes over control 
immediately, to the point where the student finds himself successful, after 
which the IIS attempts to progressively relinquish control to the student. 

Indirect evidence for the eff ectiveness of this strategy bas been found by 
Swanson (as reported in Snow & Swanson, 1992). Swanson found that total 
student control (as in discovery learning) was good for the most able stu
dents, but was particularly ineffective with low-ability students, who bene
fited most from contingent tutoring. Total teacher control (as in lectures) 
produced intermediate results. Experiments in Ellerman (1991) show that 
children are unable to monitor their own learning completely. 

1.2.4 Summary of requirements 

The requirements discussed above can be summarized as follows. The first 
three are general requirements that should be met by any software system, the 
next six are additional requirements of a dialogue system, and the last two are 
requirements specific for an IIS. 

l . Robustness 

2. Maintainability and Generativity 

3. Economy 

4. Transparency of dialogue 

5. Speed of response 
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6. Efficiency of communication 

7. Cognitive validity 

8. Learnability of the interface 

9. User-centred evaluation research 

10. Adaptivity with respect to teaching order, repetition, feedback, 
presentation, and explanation 

11. Mixed locus of control. 

11 

As f ar as the relative importance of the different requirements is concerned, it 
is my opinion that the more general the requirement, the more important it is. 
So, the requirements of a software system are more important than the addi
tional requirements of a dialogue system, and in their turn they are more 
important than the additional requirements of an IIS. Por instance, adaptivity 
is pointless in a system which has frequent breakdowns. 

1.3 How well do current approaches meet these 
requirements? 

In this section, current approaches to the design of IIS's are evaluated in 
terms of the requirements discussed above. Pour types of learning systems 
are distinguished. There is, however, no clear boundary between the different 
categories; depending on the criterion used, some systems could be classified 
as belonging to different categories. The evaluation in terms of the require
ments does not necessarily hold for all systems belonging to a certain cate
gory; the probable consequences of the use of a certain approach are 
described. Por instance, if it is stated that the robustness of a certain category 
of systems is good because they are simple systems, that does not mean that 
every system of that kind is robust. 

1.3.1 Computer Assisted Instruction 

A Computer Assisted Instruction (CAI) system can be compared with a 
sophisticated learning-book. Lessons prepared by a human expert are 
encoded in prestored instructional units, often called frames. These frames 
contain small portions of the curriculum material and are successively 
displayed on the screen for presentation and for questioning. Their sequence 
is determined by fixed branching decisions based on a predefined set of possi-



12 Chapter 1 

ble answers expected from the student. Most CAI systems are drill-and-prac
tice systems, in whicb a student bas to answer questions on a specific topic 
until a certain criterion bas been reacbed. Only simple information about the 
student is registered in what could be called a student model, as overall meas
ures of performance and how far the student has progressed in the curricu
lum. An example of CAI is the drill-and-practice system for elementary 
mathematics developed at Stanford (Suppes & Momingstar, 1972). 

How well do CAI systems meet the requirements mentioned in the pre
vious section? 

1. Robustness. CAI systems have a simple architecture, use simple rules, 
and do not make assumptions about the student's evolving knowledge. There
fore, their robustness tends to be very good. 

2. Maintainability and Generativity. Because they are very simpte sys
tems, CAI systems can be easily maintained. Generativity is good as the 
branching mechanisms and multiple choice exercises, which are commonly 
used, can be reused for various kinds of dornains. A problem of the branching 
mechanism, however, is that the addition of new material may be not straight
forward, because all possible paths through the course material have to be 
determined beforehand. 

3. Economy. CAI systems do not use complex computations and, except 
for the course material, require only a limited amount of storage space. So, 
their economy tends to be very good. 

4. Transparency of dialogue. The number of ways to proceed through 
the course material is often rather limited, making these systems very deter
ministic and predictable. Transparency can therefore be readily attained. 

5. Speed of response. CAI systems tend to react very fast, because not 
many computations are needed, and those which are required are very simple. 

6. Efficiency of communication. The structure of the communication 
between a CAI system and its users is typically very simple. Consequently, 
efficiency of communication is hardly an issue. 

7. Cognitive validity. Drill-and-practice systems are based on the work 
of the behaviourist Skinner (see, e.g., Skinner, 1960). Por Skinner, the goal of 
learning was for students to exhibit appropriate behaviours; it is not important 
what students think as long as they behave correctly. He views teaching as the 
process of conditioning students to respond correctly to a given stimulus. 
This theory of learning does not take account of such factors as motivation, 
intention, and understanding. 

8. Learnability of the interface. As CAI systems are relatively simple 
systems, their user interface tends to be simple and easy to leam. 
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9. User-centred evaluation research. User-centred evaluation research is 
lacking in most CAI systems, though the Reading Board (Ellerman, 1991) 
has been developed by using it. 

10. Adaptivity. The Adaptivity of CAI systems is limited to the amount 
of branching and is therefore very limited. 

11. Mixed locus of control. The locus of controI is fixed: the system 
completely controls the interaction, which is not very motivating. 

1.3.2 Intelligent Tutoring Systems 

An Intelligent Tutoring System (ITS) contains explicit representations of the 
knowledge to be taught ( domain expert) and of the way this knowledge has to 
be transferred to the students (tutoring expert). lts student model is much 
more fine-grained than that of a CAI system: it is intended to represent the 
knowledge the student bas acquired at any phase of the learning process. The 
student is modelled in terms of the domain expert: the system records what 
knowledge of the expert the student bas already acquired. 

The student model should be executable, in that it simulates the cogni
tive processes by which the student solves the task. To enable the replication 
of errors made by the student, the incorrect or so-called 'buggy' -rules that the 
student uses (from a predefined set) are also stored. Exhaustive testing is used 
to diagnose which combination of buggy-rules reproduces the incorrect 
answers of the student. Examples of ITS's are Anderson's LISP, geometry, 
and algebra tutors (Anderson, Boyle, Corbett, and Lewis, 1990). An over
view ofITS's can be found in Wenger (1987). 

Evaluation in terms of the requirements: 
1. Robustness. As mentioned in Bouwhuis et al. (1996), ITS's are not 

quite robust. In the first place, ITS's try to interpret the student's errors in 
terms of a predefined set of bugs, and it has been observed that unexpected 
errors occur frequently with which the systems cannot cope. In an empirical 
study of elementary algebra errors, Payne & Squibb (1990) found many 
infrequent errors and few frequent ones, and a high degree of inconsistency 
between students: different errors had different explanatory power in differ
ent student groups. Tuis illustrates that it is hard to make a sufficiently com
plete library of buggy rules. 

Secondly, as instruction is based on the assumed state of the student's 
knowledge and not on the student's behaviour itself, problems can arise 
because the student's performance is misinterpreted within the expert module. 
There are various reasons why it is very difficult to diagnose student errors. 
First, students make errors in an inconsistent way (Payne & Squibb, 1990; 
Sleeman, Kelly, Martinak, Ward, & Moore, 1989). Second, there are errors 
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which are not readily described as buggy-rules (Payne & Squibb, 1990). 
Third, a single error can sometimes be explained by alternative ( combina
tions of) buggy-rules (Payne & Squibb, 1990). Fourth, it is often difficult to 
identify whether an error is the result of applying incorrect knowledge -the 
subject bas made a mistake- or whether the student bas intended to perform 
the appropriate action, but failed to do so - the subject "slipped" (Norman, 
1981). 

2. Maintainability and Generativity. ITS tend to be complex systems, 
which makes them hard to maintain. As far as generativity is concerned: it is 
not easy to change the domain of an ITS, as the tedious work of determining 
a library of buggy-rules has to start all over again for each new domain. On 
the other hand, the tutoring expert could be reusable. 

3. Economy. ITS's need a lot of complex computations (forthe diagnosis 
of errors) and a large amount of storage space (for the library of buggy rules 
and the student model), making economy rather poor. 

4. Transparency of dialogue. The actions of the ITS are determined on 
the basis of the assumed state of the student's knowledge. So, when the stu
dent's performance is misinterpreted within the expert module, the decisions 
of the ITS are no langer transparent to the student. 

5. Speed of response. Exhaustive diagnosis cannot be used in complex 
domains, because it would make response delay unacceptable (Pijls, 
Daelemans, & Kempen, 1987). It is infeasible to keep the search time within 
acceptable limits in a more complex domain, except by making considerable 
sacrifices with respect to the robustness of the system. 

6. Efficiency of communication. The use of the student model is sup
posed to make the communication more efficient. Por example, the student 
model can allow the system to make use of knowledge previously acquired 
by the student when explaining new topics. But, of course, the efficiency 
depends on the correctness of the model. 

7. Cognitive validity. ITS designers claim that the student model allows 
feedback that can correct any misconception, and helps to determine what to 
teach next and how to teach it (VanLehn, 1988). Error-specific remediation is 
assumed to be superior to reteaching. Putnam (1987) found, however, that 
detailed diagnosis was not an important goal of teachers as they tutored stu
dents. Teachers generally do not adopt the role of a diagnostician, even when 
in a tutorial situation. Studies reported in Sleeman et al. (1989) show that 
both model-based remediation and reteaching were effective in remedying 
errors, hut there was no discernible difference between them. There are vari
ous possible reasons for this (see also Bouwhuis et al., 1996). 

In the first place, student modelling is not based on explicit knowledge 
of the learning process; the history of the student's performance is rarely 
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taken into account. Hence, the student's learning process is only monitored 
indirectly. 
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Secondly, it is not clear that the representation of the expert module cor
responds to the cognitive representation of the student. There is indeed 
empirical evidence that expert knowledge structures do not provide the most 
useful models for teaching (Roschelle, 1990). In many ITS's, a rule-based 
representation formalism is used (e.g., Anderson et al., 1990). There is, how
ever, increasing evidence against the idea that production rules form the units 
of knowledge (e.g" Gluck & Bower, 1988a; 1988b). 

8. Learnability of the inteiface. Depends on the application. 
9. User-centred evaluation research. Lacking; most systems built so far 

have been laboratory experiments which have not been evaluated in actual 
practice (Wenger, 1987). 

10. Adaptivity. Even though the main goal ofITS designers is to make 
adaptive systems, the adaptivity they provide is limited. In most ITS's (e.g., 
Anderson et al., 1990), the student model is used only to determine what 
feedback to give a student when he or she has made a mistake. In a review by 
Ohlsson ( 1986) of a wide variety of intelligent tutors, it is noted that few use 
their expertise to influence the global structure of lessons. McArthur et al. 
(1988) have made an attempt to use student modelling to adapt task sequenc
ing to the individual student. However, most ITS's are certainly not adaptive 
with respect to, for instance, task sequencing, presentation, and locus of con
trol. 

11. Mixed locus of control. The locus of control is fixed: the system 
completely controls the interaction, which is supposedly not very motivating 
for the students and, consequently, reduces the effectiveness of learning. 

The problems caused by the use of a fixed library of buggy-rules are 
addressed by the makers of a system called PIXIE (Sleeman et al., 1989; 
Wenger, 1987). PIXIE does not exclusively use a predefined set of buggy
rules, or mal-rules as they are called there, hut generates new mal-rules if 
necessary. When a step cannot be accounted for by the current model of rules 
and mal-rules, the student's step is posited as a new mal-rule in a form of 
data-driven diagnosis. Such an approach makes the system more robust and 
saves the time and space otherwise needed to make a large library of mal
rules. To become truly useful, however, mal-rules of amore genera} kind 
have to be generated, which can account for an entire class of errors. But in 

· principle, a given mistake can be explained by any number of mal-rules, 
some of which will be completely implausible. Preventing the generation of 
implausible mal-rules is basically an unsolved problem. 
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1.3.3 Microworlds 

Microworlds are exploratory simulation environments in which a student can 
learn by acting on the virtual environment. Current topics of microworlds 
include Euclidian mathematics (geometry Turtles, see Papert, 1980), Newto
nian physics (physics Turtles, see Papert, 1980), chemica! titration, and kine
matics (DiSessa, 1995). Students are supposed to acquire knowledge by 
experimenting with the simulation and drawing conclusions from the results. 
They can set parameters initially and see what happens (e.g., in a chemica} 
titration microworld) or even adjust parameters continuously (e.g., in a flight 
simulator). This constructive learning should lead to a more qualitative 
understanding of the domain and should correct persistent misunderstand
ings. Moreover, it should help students to learn how to develop and debug 
their own theories, which is, as suggested by Papert ( 1980), more important 
than teaching them theories we consider correct. 

Evaluation in terms of the requirements: 
1. Robustness. Microworlds use no assumptions about the student's 

knowledge. So, the robustness of these systems tends to be good, though this 
depends of course on the complexity of the simulations. 

2. Maintainability and generativity. Microworlds are very domain
dependent systems. It may be easy to modify a simulation a Jittle, hut it is 
often hard to reuse components for other domains. Moreover, for some 
do mains (like physics, complex machines) it is a lot easier to construct micro
worlds than for other domains (like language). 

3. Economy. The economy depends on the complexity of the simula
tions, but, as there is no overhead of student modelling, it tends to be good. 

4. Transparency of dialogue. The interaction between a microworld and 
its user tends to have an extremely simpte structure ('user acts, system 
reacts'). Consequently, transparency is automatically guaranteed. 

Speed of response. The speed of response depends very much on the 
complexity of the simulation. When the simulation does not require very 
complex computations, it may be good. However in more complex domains 
the speed of response may become unacceptable. 

6. Efficiency of communication. The structure of the communication 
between a microworld and its users is always very simple. Consequently, effi
ciency of communication is hardly an issue. 

7. Cognitive validity. It is assumed that learning by discovery will lead 
toa durable and deep understánding by the students (e.g., Wittrock, 1966). As 
stated in Bouwhuis et al. (1996), there is, however, no reliable and systematic 
evidence for this; the incidental nature of the discovery seems to lead to frag-



An evaluation of current interactive instruction systems 17 

mentary knowledge at most, and not toa generalizable body of knowledge. 
Moreover, as described in VanJooJingen (1993), there is extensive evidence 
that students are often unable to approach a simulation in a scientific way: 
they do not formulate an adequate hypothesis, are unable to design experi
ments suitable for testing the hypothesis, or to interpret the results correctly. 
They often use trial and error rather than insight. Furthermore, Klahr and 
Dunbar (1988) show that students seek evidence that will confirm their 
hypothesis rather than disconfirm it, and that they tend to maintain the 
hypothesis even when confronted with evidence that it is incorrect. Finally, as 
already mentioned above (in the discussion of the requirement of an adaptive 
locus of control in Section 1.2.3), there is evidence that learning by discovery 
is ineffective with low-ability students. 

8. Learnability of the interface. The learnability depends on how com
plex the simulation gets. The interface of a flight simulator can be difficult to 
leam, while the geometry Turtles can be handled even by small children 
(Papert, 1980). 

9. User-centred evaluation research. Except perhaps for the military 
applications, evaluations are mostly lacking. 

10. Adaptivity. There is no adaptivity, except that the parameters set by 
the student determine the course of the simulation. 

11. Mixed locus of control. Though the student is mostly in control, 
many microworld systems have a certain degree of autonomy. For instance, 
in a flight simulator the student can initiate a range of actions, but also bas to 
respond to actions initiated by the system (Gentner, 1992). 

1.3.4 Interactive Learning Environments 

Interactive learning environments (ILE's) provide a number of tools to 
support the learning process. They are independent of the domain to be 
learned and aim at collaborative and constructive learning. Often, they are 
network systems like, for example, MediaText (see Soloway, 1991). With 
MediaText, students can write a document (e.g., about physics) and incorpo
rate video clips, sound clips, graphics and animations into it. They can share 
theîr documents with each other and get remarks on them by using e-mail. 
Other examples of ILE' s are CSILE (Bereiter & Scardamalia, 1992) and 
LOGO (Papert, 1980). 

Evaluation in terms of the requirements: 
1. Robustness. ILE's tend to be quite robust, as no assumptions about the 

student's knowledge are made and no domain knowledge is used. 
2. Maintainability and Generativity. ILE's are domain-îndependent, so 

they can be used indiscrimînately for all kinds of domains. 
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3. Economy. There are no student and tutoring models and no complex 
calculations are needed, so that the economy tends to be very good. 

4. Transparency of dialogue. The dialogue between an ILE and its user 
is restricted to domain-independent issues, so that transparency of the dia
logue is easy to attain. 

5. Speed of response. ILE's are mere tools, which require no complex 
computations. However, the speed of response also depends on the technical 
limitations implied by working on a network. 

6. Efficiency of communication. The structure of the communication 
between an ILE and its user tends to be very simple. Efficiency of communi
cation is therefore easy to attain. 

7. Cognitive validity. lt is assumed that collaboration between students 
increases learning efficiency. There is renewed interest in collaborative learn
ing with studies that show positive effects (Bielaczyc, Pirolli, & Brown, 
1994). However, Elshout (1992) concludes from a review of 22 experiments 
that address the question of whether collaborative learning is more effective 
than individual learning that there is no evidence for that. As mentioned in 
Bouwhuis et al. (1996), there are indeed studies that show notable improve
ments for poor leamers when using an ILE, but in those studies, the ILE tends 
to be used with an active supervising teacher. So, it could well be that an ILE 
keeps the more able students busy, providing the teacher with an opportunity 
to give the poor leamers extra support. 

8. Learnability of the inteiface. Tends to be good, especially due to their 
similarity to tools people are already familiar with. For example, teachers and 
parents can use MediaText almost immediately, because of its similarity to a 
word processor (Soloway, 1991). 

9. U ser-centred evaluation research. Evaluations are mostly performed 
afterwards and are not an integral part of the design process. 

10. Adaptivity. There is no adaptivity, except that the ILE can be used 
for whatever the student wants to do. 

11. Mixed locus of control. The locus of control is fixed: the student is 
totally in control. However, though it may be very suited for high-ability stu
dents, complete control of the interaction by the students does not lead to 
effectiveleaming for all students, as bas already been arguedabove (when 
discussing the requirement of an adaptive locus of control). 

1.4 Conclusions and recommendations 

In Table l a summary is presented of the evaluation of various approaches to 
the design of IIS's as discussed in the previous section. As can be seen, each 
approach has a number of positive features: 
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CAI systems score very well with respect to basic requirements such as 
robustness, economy, maintainability, generativity, transparency, and speed 
of response. The main reason for this is that they have a very simpte architec
ture and do not involve complex computations. However, they lack adaptivity 
and do not lead to long-term motivation. 

The design ofITS's is aimed at obtaining adaptivity. ITS designers try to 
do this by modelling the student in terms of the expert. Though this may 
result in a certain degree of adaptivity, it also tends to lead to poor robustness, 
economy, generativity, transparency, and speed of response. So, all basic 
requirements are violated. Moreover, the amount of adaptivity achieved is 
often limited: there is some adaptation of the content of feedback, but hardly 
any with respect to, for instance, the locus of control, presentation, and task 
sequencing. 

Microworlds have a simple architecture, but nevertheless provide an 
appealing environment for the student, as they offer a considerable amount of 
variation. 

A positive feature of ILE's is the very good learnability of the interface, 
which results from the use of a familiar metaphor, like a word processor. 
However, the goal with ILE's is not very ambitious, as they are only intended 
as tools. 

Table 1: Summary of the evaluation of approaches to llS design in terms of the 
requirements (+=tends to be go0<l, ++=tends to be very good, -=tends to be bad, 
--=tends to be very bad, ?=depends). 

Requirement CAI ITS Microworld ILE 

Robustness ++ + ++ 

Maintainability & generativity + + 

Economy ++ + ++ 

Transparency of dialogue + + + 

Speed of response ++ ? ? 

Efficiency of communication + ? + + 

Cognitive validity 

Learnability of interface + ? ? ++ 

User-centred evaluation research 

Adaptivity + 

Mixed locus of control + 



20 Chapter 1 

The main shortcomings of the earlier approaches seem to be a lack of: 

• Adaptivity. Only ITS's offer some adaptivity, but at the expense of more 
general requirements 

• Generativity. Only CAI systems and ILE's are reusable in different 
domains. A common problem for ITS's and microworlds is that the design 
process is very much domain-specific. As a consequence, for each new 
domain, the design of such a system must start all over again. 

• Mixed locus of control. Interactive instruction systems of the type of CAI 
and ITS allow the user almost no control. Supposedly such systems are not 
very motivative and are therefore not quite effective. On the other hand, in 
ILE's the control is almost entirely in the hands of the student. As argued 
above, complete student control does not result in optimal learning for every 
student either. Only microworlds sometimes provide sometimes a limited 
form of a mixed locus of control. However, monitoring of the student's learn
ing process is mostly lacking. 

• User-centred design. For all the approaches reviewed, there are almost 
never evaluations at an early stage in the design which can be used to 
improve the design. Only very rarely are complete systems tested in a real
life, non-experimental setting. 

Our approach, which is the topic of the remainder of this dissertation, 
will be specifically aimed at addressing these requirements. 

Our realization of adaptivity, which will be discussed in Chapter 2, is 
based on a situated theory of cognition. No complex student modelling is 
used, hut the student's learning process is monitored in amore direct way, 
using the learner's (history of) behaviours instead of a model inferred from 
these. We will attempt to demonstrate that this method bas several advantages 
as compared with the conventional approach taken in ITS's. Moreover, we 
will show how adaptivity can be attained not only for feedback, but also for 
the other aspects of teaching discussed above, like instruction and task 
sequencing. 

Generativity is addressed by using an architecture which contains sev
eral generic modules the behaviour of which is derived from general instruc
tion principles. To make it probable that the basic requirements are met, as in 
CAI systems, our architecture of an US will be simple, in addition to which 
the IIS will not in vol ve complex computations. 

A mixed locus of control will be obtained as a natural consequence of 
the interaction between an adaptive US and the student. 
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In the next chapter, the role of experiments in the design process will be 
briefty discussed and this will be illustrated in subsequent chapters. 
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Chapter 2 

Design and architecture of 
an agent-based 
interactive instruction system 

Abstract 
The degree of interactivity and adaptivity determines the effectivity of an 
interactive instruction system to a great extent. The problem addressed in this 
chapter is how a highly interactive and adaptive instruction system can be 
realized in such a way that /or each new instruction domain only limited 
effort is needed to achieve the same amount of interactivity and adaptivity. An 
architecture and design process based on situated agents is specified and 
applied to the domain of interactive instruction. The interactive instruction 
system consists of a 'society' of agents, in which each agent has a particular 
competence, i.e., navigation, instruction, feedback, practice, or presentation. 
The agents operate in parallel and their perception of the external environ
ment (e.g., user actions) and their own actions are closely interlinked. The 
interaction dynamics between the agents and between the agents and their 
environment leads to the emergent adaptive functionality of the system. A 
model of agent communication and a model of agent learning is proposed 
and also applied to the particular case of interactive instruction systems. The 
importance of empirical evaluations in the design process is emphasized. 
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2.1 General architecture of an IlS 

An interactive instruction system that bas been developed to meet the criteria 
of adaptivity, generativity, and mixed locus of control is the APPEAL (A 
Pleasant Personal Environment for Adaptive Learning) system. lts architec
ture bas been based on the following observations. 

On a macro level, the problems associated with an interactive instruc
tion system are similar to the genera! problems associated with the navigation 
of a user through a large database. On the one hand, there is the database with 
course material, on the other hand, the student. When the student navigates 
independently, this may cause a high cognitive load and this complete control 
may not be good for all students. Therefore, the student could benefit from 
assistance in navigating, especially if this assistance is tailored to bis or her 
needs. This does not only mean that there is an "assistant" which can answer 
questions and obeys the student's orders (like 'give mea more difficult exer
cise'). In accordance with the principle of a mixed locus of control, this assist
ant should also be able to take over control whenever necessary, reducing the 
student's cognitive load while guarding the effectiveness of the student's 
learning. Such an assistant can be called a "teacher" or "coach". 

In order to optimize the generativity, an attempt is made to assure that 
this teacher is domain-independent as far as possible. The teacher is divided 
into a domain-independent and a domain-dependent component. The 
domain-independent part is called the Teaching Expert (TE), and is responsi
ble for the adaptive dialogue with the student. It uses genera! principles con
cerning dialogues and human learning (see, e.g., Beun, Baker, & Reiner, 
1995). The domain-dependent part is called the Domain Expert (DE), and 
generates exercises and examples on the basis of information provided by 
TE. It can also analyse the student's answers. These components collaborate 
in a master-slave configuration with TE as master and DE as slave. The 
degree of adaptivity and the locus of control are therefore determined by TE. 
The role of DE is rather to provide variety within a given context created by 
TE. For instance, a microworld or simulation would be generated by DE, 
where TE provides parameter settings for determining the kind of simulation, 
the level of difficulty, the method of visualization, etc. 

In order to be adaptive, TE needs meta-information about the course 
material. For instance, it needs to have a representation of the goals that can 
be achieved by doing a certain exercise and of the prerequisites to be met 
before a student may start the exercise, or needs to know the number of the 
layers of abstraction with which certain information can be presented to the 
student. This kind of information is stored in the Information Database. 
While the Information Database contains information about, e.g., the struc-
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ture of the course material, the Do main Model contains the contents or assets. 
For the student the Domain Model and the Information Database together 
constitute the course material. 

In order to be adaptive, TE must also store information about the stu
dent. For that purpose, there is a Student History. TE can use the Student His
tory to register loggings of the student's performance and his or her 
interaction with the system. For instance, TE can store data in the Student 
History conceming which exercises the student has studied, the student's per
formance on those exercises, how often the student has asked for help, etc. 
This information can be used in the current or later sessions to adapt to the 
student. 

The architecture of the Appeal system is shown in Figure 1. An extra 
module called the Interface Manager provides the multimedia interface 
between system and student. In the current prototypes of the Appeal system, 
the domains are respectively "Dutch for English speaking persons" and 
"Square Dancing". In this dissertation, we will only be concemed with the 
architecture, design, and evaluation of TE. 

Student 

Information 
Database 

Teaching Expert 

Figure 1: Architecture of the Appeal system. 

Student 
History ---
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2.2 TE is a Highly Autonomous Agent 

In the present section, it will be argued that TE is a special case of a much 
1 

more general notion, viz. that of a highly autonomous agent. So-called 
'agents' are now being studied in various disciplines such as robotics, artifi
cial intelligence, and human-computer interaction. There exists a large diver
sity of views on agents both within and between these disciplines. This makes 
it hard to identify what is meant by an agent (e.g" Riecken, 1994). Neverthe
less, we propose here a definition of agents and a framework in which agent 
research can be situated. 

Shoham's (1993) conception of an agent is taken as the starting point of 
our definition. Shoham (1993) defines an agent as an entity that functions 
continuously and autonomously in an environment in which other processes 
take place and other agents exist. According to this definition, a first property 
is that agents react continuously to input from the environment. 

A second property is that agents are autonomous: they have their own 
resources and are able to make some choices themselves about what to do 
(i.e., without depending on the user or an extemal control program). The 
degree of an agent's autonomy is a dimension along which agent research can 
be situated. In the minimal sense, autonomy means that the agent can make 
choices which are imposed on it by the environment, like for instance a mail 
agent which chooses which e-mail it will present to the user (Maes, 1994). At 
the other end, autonomy implies that an observer can ascribe multiple goals 
to the agent and that an observer can believe that the agent is acting in its own 
interests (Brooks, 1991). For instance, an agent with lirnited autonomy can be 
sent to buy a specific VCR, and can choose for itself the salesman that off ers 
the best combination of price and service. An agent with more autonomy can 
be sent to buy a VCR, and will decide for itself which one is the most appro
priate device (as regards price and functionality) for its user. A highly auton
omous agent can decide for itself to propose, given the circumstances of one 
of its users (the user, for instance, bas a certain income and children of a cer
tain age) to buy a particular VCR. This agent could have an interest in it, in 
the sense that it is programmed or kept 'alive' by somebody selling consumer 
equipment. So, agents vary from the butler-type of agents with limited auton
omy to the salesman-type of agents with extensive autonomy. The Jatter kind 
of agents are what Tokoro (1994) calls spontaneous agents. 

Other properties of agents which are not mentioned by Shoham are corn
petence, intelligence, and believability. An agent has the competence to per
form a certain task (Maes, 1993). An agent has a certain degree of 
intelligence, i.e., the ability to adapt its behaviour to the environment (McFar
land and Bösser, 1993). Note that an agent can be intelligent either because it 
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bas an extensive and varied repertoire of fixed behaviour, or because it can 
learn new behaviours. An agent is believable to the extent that it suggests 
human or animal behaviour (Bates, 1994) and inspires confidence in the user 
that the agent can perform its task in an acceptable way (Maes, 1994). 

To obtain a good interactive instruction system, TE should have all the 
properties of a highly autonomous agent. In the interaction with an instruc
tion system, the student gives input continuously (for instance by pushing an 
example button, or performing an exercise at a particular rate). A lack of 
action on the part of a student is also a form of input. TE should react to all 
this input in a timely fashion. TE should be autonomous in the sense that it 
makes its own decisions with respect to what to present to the student at a 
given moment. It should be able to cope with a student without the continu
ous need fora human teacher. To the observer (this may be the student), it 
should look as if TE really wants the student to learn. Tuis requires a high 
level of autonomy, and in that respect TE can very well be compared with a 
salesman. Note that high autonomy of both partners does not exclude a mixed 
locus of control. Furthermore, TE should have the competence to select exer
cises, give instruction, provide feedback, etc. As pointed out above, TE 
should be able to adapt its behaviour as regards all kinds of aspects (e.g" 
feedback, instruction, navigation, presentation) to the capabilities and inter
ests of the student. So, according to our definition it can be called intelligent. 
Students should believe that TE supports their learning process. 

Until recently, the dominant approach in agent design has been a plan
ning approach in which intemal representations and planning were empha
sized. However, more and more researchers concemed with the design of 
highly autonomous agents are adherents of a so-called situated approach 
(Greeno, Chi, Clancey, and Elman, 1993). In the next section, the main ideas 
underlying the situated approach will be discussed, and their impact on the 
domain of interactive instruction will be analysed. 

2.3 Situated Approach 

The situated approach is a reaction against the dominant approach in cogni
tive science, i.e., the information processing approach (Greeno et al., 1993). 
The main hypothesis of the situated approach is that the beha viour of humans 
cannot be detached from the environment they live in. Hence, when model
ling human processes proper attention should be given to the relation between 
a human being and his or her environment. It is important to study not only 
the mind, as in the information processing approach, or to study almost solely 
the environment as in behaviourism, but to study the interaction between both 
of these. 
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2.3.1 Emergent behaviour 

A situated agent's most important resource in determining what to do next is 
its immediate situation. The organization of activity is seen as emerging from 
the interaction hetween an agent and its environment (Chapman, 1991). The 
complexity of activity does not arise principally from the complexity of the 
agent or the world, hut from the complexity of their interaction. For instance, 
Simon (1968) notes that the complexity of the behaviour of an ant is more a 
reftection of the complexity of its environment than of its own intemal 
complexity. To give another example, the complexity of the activity of the 
artificial agent Pengi, which plays an arcade video game, is the result of the 
interaction of simple opportunistic strategies with a complex world (Agre & 
Chapman, 1987). 

On another level, the idea is also that it is possible to construct a system 
which shows high-level, complex behaviour, which is not explicitly defined, 
but emerges from the interaction of a collective of low-level, explicitly 
defined behaviours. There is currently a lot of interest in this kind of emer
gent behaviour (e.g., Forrest, 1991; Steels, 1991). 

2.3.2 The world as its own representation 

Stucky (1992) argues that agents do not only depend on their environment in 
a variety of ways, hut that they actively use aspects of the environment to 
calculate and support actions in ways that suggest that they are not represent
ing all relevant aspects of the situation. This view is supported by the findings 
of Kirsh and Maglio (1994) on cognitive processes in playing Tetris (Tetris is 
a real-time, interactive video game). They have shown that the use by expert 
players of many physical rotations that are apparently useless makes the task 
less cognitively demanding for the player and enables faster playing. So, 
instead of working on a representation of the world (in the case of Tetris, for 
instance, using mental rotations), it can be more cost-effective to work on the 
real world (for instance, using physical rotations). Kirsh & Maglio (1994) call 
these kinds of actions that are not used to implement a plan or a reaction, but 
to change the world in order to simplify the prohlem-solving task, epistemic 
actions. 

Chapman (1989) explains why it is easy for bis artificial agent Block
head to solve the fruitcake problem (the fruitcake problem is to stack a set of 
labelled blocks so that they spell the word fruitcake) by stressing that Block
head often uses vision instead of intemal representations. Blockhead only 
represents information that is directly relevant for its task. Representing 
everything would lead to an explosion of storage space and calculation time. 
Chapman (1989) argues that in concrete activity, representation mostly just 
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gets in the way. This is also the conclusion of Brooks (1991) after building a 
series of autonomous mobile robots. He argues for using the world as its own 
representation, both because it can be more efficient and because it can be a 
lot more effective in the dynamic, unpredictable environments in which he 
wants to use his robots. 

As the interaction between an agent and its environment is important, 
and the world should be used as its own representation, this implies that per
ception becomes very important (Chapman, 1991). In perceptual control the
ory (Powers,1973) it is even argued that perceptions are the only reality a 
human being can know, and that the purpose of all actions is to control the 
state of the perceived environment (to bring it nearer to a goal state, or in the 
case of epistemic actions to improve the amount of information perceived). 
Behaviour is regarded as being based on feedback relationships between 
organism and environment. 

2.3.3 Impact on the domain of interactive instruction 

On a macro level, the seemingly complex teaching dialogue can emerge from 
the interaction between a relatively simpte IIS and a student. Teaching may 
seem complex because students are time variant and unpredictable, and not 
necessarily because the teacher/interactive instruction system is complex in 
itself. On a micro level, it may be possible to construct TE as the simultane
ous operation of a collective of simple instruction principles. 

Using the world as its own representation means for TE that trying to 
represent its environment, in this case the student, may not be a good 
approach. In fact, trying to represent what a student knows (both correctly 
and incorrectly) is done in the Intelligent Tutoring Systems approach, and it 
has been argued in the previous section that this leads to an explosion of stor
age space and calculation time, and causes problems with robustness, without 
leading to a sufficient degree of adaptivity. lt may be more efficient (requiring 
less computing power and storage space) and more effective (supporting the 
student's learning process better) to use direct perception instead. It is, for 
instance, possible to observe whether the student answers correctly or not. 
The IIS might also use epistemic actions to get more information than it can 
perceive at a given moment. For instance, when an error bas been made it 
might ask the student whether he or she made a slip or really does not under
stand. 

Based on these considerations, we have chosen to construct TE as a 
highly autonomous agent using a situated approach. This has implications for 
both the architecture and design of TE. The architectural and design princi
ples are not restricted to the domain of IIS's. Therefore, in the next two sec
tions, architecture and design will be discussed in a general way. Toy 
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examples will be used, such as obstacle avoidance in a robot, to illustrate the 
design process. A separate section will deal with the application of the princi
ples to the case of TE. 

2.4 Consequences of the Situated Approach for the 
Architecture of an Agent 

2.4.1 Decomposition of the architecture of an agent 

Architectures of agents are often decomposed into functional modules, such 
as perception, modelling, planning, and plan execution. In the area of interac
tive instruction systems, the so-called intelligent tutoring systems (Wenger, 
1987) also have this kind of architecture, as can be seen in Figure 2. 

user 
input 

Pedagogical 
knowledge 

Figure 2: Architecture of an /TS. 

system 
response 

These functional modules are developed 1arge1y independently of each 
other, often by specialists in the distinct areas. Completeness is aimed at in 
the design of all modules. The main advantage of this kind of decomposition 
is that in the ideal case it leads to modules that can be used in all kinds of 
applications. Por instance, a vision system which is as good as human vision 
can be used in all kinds of robots with tasks varying from cleaning buildings, 
tutoring, to perf orming medical operations, etc. 

There are, however, also many disadvantages to such an approach. 
Firstly, the system can only function when all modules are available. Tuis 
implies that it is only possible to test the system at a late stage of the design 
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process when all the modules have been completed. It also implies poor 
robustness: the system will be unable to function when one of the modules 
breaks down. Secondly, it is very difficult to make the modules complete. The 
aim of completeness can result in the fact that the distinct modules will never 
be put together. Moreover, there is the risk that when the modules are put 
together, the interfaces do not match. Last but not least, because information 
is processed sequentially in the many layers, there is no close coupling 
between perception and action, and the architecture is therefore not suitable 
for unpredictable and dynamic environments. 

Ina very different approach, Brooks (1986) decomposes an architecture 
into task-achieving modules, also called layers of competencies, as in the 
case of robots wandering around, avoiding objects, and exploring. Layers are 
not designed in parallel, but one at the time. Every layer extends the existing 
ones and, consequently, uses the skills present in the lower layers to compose 
higher level skills. The architecture is hierarchical in the sense that higher 
levels subsume the behaviours of lower levels. Such an architecture is called 
a subsumption architecture. In this case, the main aim of designers is to have 
a working (though elementary) system as soon as possible, which can be 
improved and extended iteratively. So, the agent functions as soon as the first 
layer has been constructed, and the addition of every layer results in a work
ing system with more functionality. In every layer, a close coupling between 
perception and action is possible. Some form of perception is already present 
in the lowest layer. 

Tuis approach has several advantages. Firstly, the system can be tested 
quite early in the design, in fact every time a new layer has been completed. 
Secondly, this architecture makes the system more robust: when a higher 
level breaks down, the system keeps on working, although with a lower func
tionality. Thirdly, layers can be reused in all kind of applications. Por 
instance, an object-avoidance layer can be used in all kind of robots. Lastly, 
because of the close coupling between perception and action, this kind of 
architecture is suitable for unpredictable and dynamic environments. 

There are also some disadvantages, however. Firstly, the system will 
break down completely when the lowest level breaks down. Secondly, one of 
the major advantages of a decomposition of an architecture is lacking: the 
time gained by the parallel development of components by different persons. 
In this architecture the different components, i.e., layers of competence, are 
developed sequentially. Thirdly, in Brooks' subsurnption architecture, the 
higher they are in the hierarchy, the more the layers of competence diverge 
from the principle of direct action on perception: layers such as reasoning and 
planning are mentioned. So, instead of adding new competencies based on 
more elaborate perception, new competencies are added as elaborations of 
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the old ones, thereby making the distance between perception and action 
greater. Tuis implies the same disadvantage as the functional architectures 
have, namely the <langer that when the number of layers grows, the architec
ture becomes less suitable for unpredictable and dynamic environments. 

We propose an architecture that includes all the advantages of Brooks' 
subsumption architecture, but without the disadvantages. As we see it, the 
main contribution of Brooks' architecture is its incremental nature: the aim to 
have a working system at each step of the design, where each component has 
a closed loop between perception and action. We adopt this in our architec
ture. We do not, however, adopt the hierarchical nature of Brooks' decompo
sition. The competencies added in a new layer should preferably not rely on 
the competencies already available, but operate in parallel. This has the 
advantage that the system becomes more robust: the high dependency on the 
lowest layer disappears. Another advantage is that this makes the architecture 
more suitable for unpredictable and dynamic environments. 

In addition, we extend Brooks' architecture with the division of a com
plex agent into simpler interacting agents (Minsky, 1986). Tuis makes it pos
sible to work in parallel with various persons on different components of the 
system, viz. the different agents. Bach agent represents a functionality of the 
system. The main differences as compared with the traditional functional 
decomposition are that now each agent has its own perception-action loop. 

2.4.2 Communication between the agents 

The main motivation bebind the decomposition of an agent into sub-agents is 
that each agent can be made by a different designer. A designer is supposed to 
know everything about the agent he or she is designing, but may have a mini
mal knowledge about the other agents. The less knowledge a designer needs 
about the other agents, the less communication and agreements between the 
designers are needed, and hence the larger the advantages of decomposition 
can be, as regards both the time gain and the extensibility and updatebility of 
the system. 

So, on the one hand we would like the designer to have minimal knowl
edge about the other agents, but on the other hand the agents still have to be 
designed such that their cooperation results in the desired behaviour of the 
complex agent. The latter is often seen as a reason to have explicit communi
cation or interfaces between the agents, which requires a lot of agreements 
between the designers. However, there are many simpler ways to design 
agents in such a way that they can cooperate. We will describe eight ways, or 
levels, in which agents can influence each others behaviour in an increasing 
order of effort needed by the designer (see Figure 3). For each subsequent 
level the additional effort will be discussed. 
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1. The easiest way in which agents can influence each other's behaviour 
is by simply being in the same environment. By its actions, an agent causes 
changes in its environment. These changes may affect the behaviour of other 
agents which operate in the same environment. This is especially true in a sit
uated approach, where the emphasis lies on a close coupling between percep
tion and action. No effort at all is required from the designer for this 
primitive, but very natura!, form of communication. The designer does not 
even have to know that there are other agents. Imagine a system in which 
agents search and retrieve information for users on the Internet. The cost for 
an agent to obtain certain information may depend on the demand for it by 
other agents. The time it takes the agent to retrieve information may depend 
on the load of the processor, which depends on other agents using it. So, the 
agent is influenced by other agents without any need for it or its designer to 
be aware of the existence of the other agents. 

Request other agent to perform task 

Observation of other agents 

Use of social rules 

Use of environment to exchange information 

Use of existence of other agents 

Existence in the same environment 

Figure 3: A layered model of different types of agent communication. 

2. The existence of other agents may also be employed in the design. To 
do this requires, however, the designer bas to know that there are other 
agents, and what the task of these other agents is. Suppose that the designer 
knows that there are transportation agents whose task is to deliver informa
tion left at certain places, say in mailboxes, to the user. Theo the task of the 
information agent can be simplified to collecting information and leaving it in 
a mailbox, because the transportation agents will deliver it to the user. This 
makes the information agent more efficient in its task, and still guarantees 
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that the information reaches the user. It does not, however, require any inter
nal representation of the existence of other agents inside an agent. 

3. An agent can be designed to use the environment to exchange infor
mation with other agents. Tuis requires agreements amongst the designers 
conceming the semantics of representation of information, and agreements 
that certain information will be given by the agents. For instance, in the case 
of information agents, the agents can leave notes to tell other ones in what 
direction certain information can be found. They can leave "footprints" while 
walking through the network, thus giving each other a way to predict the load 
of certain parts of the network. In software agents, this can, for example, be 
implemented by means of global variables. In order to minimize the agree
ments needed among the designers, the information provided must be kept as 
simple as possible, for instance using Booleans or simple counters instead of 
complex data types. Instead of having agreements regarding the semantics, it 
could also be possible to let the agent learn the semantics. This requires how
ever that the designer provides the agent with a way to leam, which may 
require more eff ort than communication with the other designers and also 
takes the agent more time before becoming effective. 

4. The designers can also agree on "social rules'', which tell an agent 
what to do or what not to do when it perceives certain information left by 
another agent. For instance, the designers in the example could agree that an 
agent is forbidden to enter a certain part of the network when it notices by the 
"footprints" that more than, say, five other agents are in that part. An example 
of a social rule in software agents is the use of a semaphore, in the technica! 
computer science sense (Dijkstra, 1968), to ensure that certain actions of an 
agent cannot be interrupted by another agent. 

5. The other agents are part of the environment of an agent and are a 
probable cause of changes in that environment. So, an agent could observe 
the actions of other agents in its neighbourhood in order to get a better pre
diction of future changes in its environment and thus anticipate them. Tuis, 
however, requires the possibility for the agent to perceive the action of 
another agent even before it causes a change in the environment, or to recog
nize in some way what the other agent intends to do. Chapman (1991) argues 
that intention recognition is fairly easy in most concrete domains for the same 
reason that concrete action is easy: the situation not only tells an agent what 
to do, it also tells the agent what other agents are up to. However, this kind of 
intention recognition only works when agents have similar skills and person
alities, or when the observing agent has a knowledge of the skills and person
ality of the observed agent. Apart from these difficulties, the designer should 
also have a knowledge of the relationship between a certain action of another 
agent and a subsequent change in the environment, or should equip the agent 
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with the means to learn this relationship. In the example of the information 
agents, an agent could observe that a lot of agents intend to obtain a certain 
piece of information, and that therefore the cost of obtaining that information 
will probably increase. 

6. Besides cooperating in the ways mentioned above, agents can also do 
this more explicitly. They can request other agents to peifonn a certain task. 
As we see it, these kinds of requests should have a close connection to a 
desired change of the environment. Por this form of cooperation, it is not nec
essary for the agent to know (or for the designer of the agent to know) the 
skills of the other agents. The agent can request another agent to perf orm a 
certain task or action, and can see whether the desired effect occurs. If it does 
not, then the question can be put to another agent, or the agent could do it 
itself. This, however, requires a representation of actions or tasks common to 
all agents (designers) and the agents must also have an insight into their own 
capabilities. In the example, an agent could ask to search for information 
about a certain topic and leave it at a certain place. 

7. It is also possible for agents to answer requests, and that there is a 
form of negotiation. lt is, however, not necessary to program negotiation 
explicitly into the agents. The negotiation process can emerge from simple 
rules such as "when an agent asks me to do something which I am able to do, 
and offers me a lower reward than 1 want for this job, I will answer that I can 
do it for more". This, however, requires an agent to have an insight into its 
own interests. In the example of the information agent, a negotiation could 
take place about the exchange of information or the exchange of favours 
regarding the obtaining of information for another agent. 

8. Finally, a very elaborate form of communication is using the skills of 
another agent. The agents can be designed in such a way that they can per
ceive which skills another agent bas. This is also suggested by Steels (1994). 
This can make observation and negotiation a lot easier and more effective, 
but it requires a common representation of the capabilities of an agent which 
is visible to all (designers ot) agents. Another way to use the skills of an agent 
is for a designer to copy parts of the implementation of that agent inside bis 
or her own agent, or for the agent to do this at run time, thereby benefiting in 
a very efficient way from the experiences/learning of a seemingly effective 
agent. Por instance, an information agent could copy strategies for informa
tion retrieval from another agent which seems to be very good at this. 
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2.5 Consequences of the Situated Approach for the 
Design of an Agent 

2.5.1 ldentification of the agents 

As described in the previous section, a complex agent can be decomposed 
into a collection of simpler agents. In the same way, such a simpler agent can 
be decomposed into a collection of even simpler agents, etc. Therefore, the 
first important step in the design of an agent-based system (apart from decid
ing what kind of agents one will use) is to determine when to stop decompos
ing an agent into simpler agents (this can be called the level of granularity) 
and to identify what the agents will be. It is not necessary for all the agents to 
be the same. On the contrary, heterogeneity, i.e., the existence of different 
skills and personalities for the different agents, is frequently present in 
biological systems. 

Two main rules, or heuristics, can be given to identify what the agents 
are. In the first place, agents should be manageable units of thought for the 
designer. Tuis means that each agent should have a functionality such that the 
designer is confident that a first version of it can be designed without having 
to worry about too many problems in parallel. When the re are different func
tionalities related to the task of an agent which require independent investi
gation, an agent should be associated with each of these functionalities. 

The second rule can best be used during the design process. When differ
ent behavioural patterns can be used by an agent, the agent should be divided 
into sub-agents, where each sub-agent uses another behavioural pattem. The 
main advantages of this are that evolution-like learning can take place, and 
that experiments can be done to determine which behavioural pattem is the 
best in a certain situation. Another advantage is that the pattems can be devel
oped independently. 

2.5.2 Design of an individual agent 

As we have already argued when describing our architecture, agents have to 
be designed in a bottom-up fashion, beginning with very simple behaviours 
which define a minimal functionality. Each agent is responsible for certain 
tasks, and the main challenge for the designer of an agent is to propose those 
behaviours of the agent which accomplish these tasks. Por the five lowest 
levels of communication described above, it is not necessary to build a repre
sentation of the task in the agent's implementation: the task can mainly exist 
in the head of the designer or an observer of the agent. 
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In a situated approach, a behaviour cannot be decoupled from the envi
ronment, so a behaviour is not the same as an action. Basically, each behav
iour consists of two parts: an action of the agent and a situation in which this 
action is taken. We will use the notation s-->a to denote a behaviour in which 
action a is taken in situation s. The task of the designer is to establish a set 
of behaviours of this kind. Hence, the first step in the design is to determine 
one such behaviour. This means that both the action and the situation in 
which the action should be taken must be determined. There are two possible 
approaches. The first is to start by determining the most obvious action the 
agent should take at some point in view of its task, and then to determine a 
situation in which that action should obviously be taken. The second 
approach is the reverse of this: first determine the most obvious situation in 
which the agent, in view of its task, should do something, and then determine 
what action would be the most appropriate in that situation. Our experience is 
that in most cases a combination of these approaches must be adopted, using 
bath knowledge about what simple actions related to the task the agent can 
take, and knowledge about what the agent can perceive of its situation related 
to its task with a simple form of perception. 

A description of the agent's situation consists mostly of apart concemed 
with perception from its environment and a part concemed with intemal state. 
Note that intemal state can be interpreted by an observer as the agent having 
memory or even desires. A description of a possible action of the agent con
sists mostly of apart concemed with actions which directly affect its environ
ment, which we will call motor actions, and a part concerned with changes in 
its intemal state. Of course, it is also possible that there are behaviours of the 
agent which do not use sensory input directly or do not result directly in 
motor actions. These behaviours are part of an internal process. However, the 
situated approach advocates a minimum use of these kinds of behaviours. 

Initially, for the first behaviour, only sensory input will be considered 
for the description of a situation, and only motor actions as possible actions in 
that situation. Tuis results in a behaviour p --> a , where p denotes a certain 
sensory input and a a certain motor action. For instance, in the case of a 
robot that bas to avoid obstacles, the first behaviour could be 
"obstacle in front' --> "turn away'. The action "turn away' can be implemented as 
the motor action "increase speed of one of the motorS'. The situation "obstacle in 

fronr is more difficult to implement. Tuis relates to the fact that it is some
times not easy to perceive whether a certain situation holds, and that the agent 
has to perform further actions to improve its perception. These are the epis
temic actions mentioned above. For instance, when the robot emits infrared 
(IR), it can sense by an IR sensor whether there is an obstacle nearby. In that 
case there would be a behaviour "alwayS' -·> "emit /Fr, and "obstacle in fronr can 
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be implemented as "front IR sensor receives signa/ exceeding certain strengtff'. In 
the fol1owing, we will not go into implementation details, hut will describe 
behaviour at the more abstract level. 

2.5.3 Diff erentiation of an agent's behaviour 

Determining the first behaviour may not be straightforward. In the first place, 
a problem may arise when trying to determine what action the agent should 
take in a given situation. More than one action may seem appropriate. It may 
be possible to generalize these actions into one description that fits all of 
them. This is what we have done in case of the robot avoiding obstacles: we 
did not worry about the difference between "turn left" and "turn right", hut 
generalized it into "turn away". However, in order to make the behaviour 
effective, randomly choosing between appropriate actions during run time or 
a priori may not be the best idea. For instance, randornly choosing between 
"turn left" and "turn right" during run time could drive the robot towards the 
obstacle instead of enabling it to avoid it. Por each possibly appropriate 
action it should be determined in which situation that is a special case of the 
original situation it can be best used. 

A second and related problem may arise when trying to determine in 
which situation the agent should take a certain action. More than one situa
tion may seem appropriate. It is possible to generalize these situations into 
one description that fits all of them. However, by analogy with the previous 
case, we prefer to determine for each of the situations the most appropriate 
action that can be used which is a special case of the original action. 

Specifying a special case of a situation actually comes down to specify
ing a situation in greater detail. This can be done in two ways. The first is to 
describe the sensory input in more detail, either by using more of the infor
mation provided by the sensors involved, or by using information from other 
sensors as well. For instance, in the case of obstacle avoidance, we could get 
the following two behaviours: 

("obstacle in front' & "left side of robot is nearer to obstacle than right side') 

--> "turn righf, 

(" obstac/e in front' & "right side of robot is nearer to obstacle than left side') 

--> "turn Jeff'. 

To determine the second conjunctions, a front-left and a front-right IR sensor 
could be used. This also illustrates that it is not necessary to determine the 
kind of sensory input to be used entirely before the design process. The kind 
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of sensory input needed will automatically become clearer during the design 
process. 

The second way to specify a situation in more detail is to use the internal 
state (or memory) of the agent. Tuis can be done when the history of the 
interaction makes a crucial difference between two situations which are iden
tical from a perception viewpoint. Por instance, in obstacle avoidance it may 
be important that the robot is not too unstable, which means that once it bas 
decided to turn left or right it will stay with that decision for some time. Inter
nal state variables could be used to represent whether the agent bas decided to 
turn left or to turn right, say decided-tum-left and 
decided-turn-right. We could then get the following set ofbehaviours: 

} 

(" obstacle in front' & "left side of robot is nearer to obstacle than right sidè' 

& no(decided-turn-leff)) --> {"turn right', decided-turn-right}, 

("obstacle in front' & "left side of robot is not nearer to obstacle than right sidè' 

& no(decided-turn-righf'J) --> {"turn left', decided-turn-left}, 

("obstacle in front' & decided-turn-left) --> { "turn /eff' }, 

("obstacle in front' & decided-turn-righ~ --> {"turn right'} 

The action part of the behaviours now also includes changes in the internal 
state of the agent. Of course the internal state variables do not have to be 
Boolean as in the example, but can assume all kinds of values. So, a possible 
action of an agent could be to modify the value of one of its internal state var
iables. As mentioned above, not every behaviour necessarily includes a motor 
action. There may be situations in which only the internal state of the agent 
changes without leading directly to a motor action. 

To be able to make full use of a history of interaction, an agent should 
not only have an internal state, but also a sense of time. It is then possible that 
an action may be caused by the fact that the agent is in a situation fora certain 
amount of time. The time passed can also be used to cause a change of inter
nal state. In the case of the obstacle avoidance, we can use this to include, for 
instance, the behaviours 

decided-tum-right\ 2 sec --> { no(decided-tum-righf'J }, 

decided-turn-left\ 2 sec --> { no(decided-turn-leff) }, 

where s \ t denotes that the agent is in situation s for time t. This enables 
the robot to make new decisions every two seconds, based on its perception 
of its position with respect to the obstacle. 
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We will call the process explained above the differentiation process. 
Briefly, the differentiation process starts with one behaviour. In the process, 
distinctions are made within the situation part and/or action part of this 
behaviour, which leads to a set of behaviours. Typically, such a set of behav
iours resulting from a differentiation process looks like this: 

{ (p & pO & zO) \ t --> { aO, cO } , 

(p&p1&z1) \t-->{a1,c1}, 

(p & pO & z1) \ t --> { a2, c2 } 
}, 

where p, pO, p1 denote sensory input, zo, z1 denote intemal state, t denotes an 
amount of time, aO, a 1, a2 denote motor actions, and co, c 1, c2 denote changes 
in intemal state. The differentiation process may not only be necessary to get 
behaviour which is in some way effective. It is also an important way to 
improve the adaptivity of the agent. 

2.5.4 Behavioural engineering 

When a minimal functionality bas been implemented, it can be evaluated by 
carrying out experiments, the outcome of which determines the update and 
inclusion of behaviours in the architecture. We call this design process based 
on iteratively adding behaviours and testing these behaviours by running 
experiments 'behavioural engineering'. The outcome of such experiments 
can also be used to update or construct models of human or animal behaviour, 
which in their turn can be used to find new behaviours. 

The differentiation process does not only take place initially, hut can be 
done during the whole design phase. So, a first way to use the outcome of the 
experiments or tests can be in the differentiation process: as a basis of knowl
edge about what special situations should be distinguished within the situa
tion part of a behaviour, and what simple variations of the action part could 
be used for these special situations. 

The outcome of the experiments and tests could be that the current 
behaviours of the agent do not completely produce the desired effect. The 
coupling between situation and actîon can mostly be done in such a way that 
each behaviour contributes obviously (perhaps after a differentiation process, 
or fine tuning) to approaching a desired situation for the agent. But there is no 
guarantee that the desired situation will be reached closely enough. Possibly 
more than one action should be taken in a certain situation. For instance, in 
the example of obstacle avoidance it may occur that the robot in fact tries to 
turn away from the obstacle but still collides with it. This may be doe to the 
high speed of the robot. In that case braking when perceiving an obstacle 
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might help. It can also happen that certain situations, different from those 
anticipated in the current behaviour set, might occur in which it is obvious to 
the designer that the agent should perform an action, which may be different 
from the actions in the current behaviour set. So, a second way to use the out
come of the experiments or tests is for the designer to include a new behav
iour, which does not necessarily (in contrast to behaviours originated by a 
differentiation process) have anything in common with the existing behav
iours. 

2.5.5 How can an agent learn? 

Two types of behaviour can be distinguished in an agent: pre-programmed 
behaviours and learned behaviours. The majority of the agent systems 
described in the literature behave in an adaptive manner because they have 
been explicitly programrned in that way. In the case of learned behaviours, an 
agent simulates learning processes by improving existing behaviour or 
acquiring new behaviour. 

There are three main reasons for building learning agents. On the one 
hand, from a cognitive science point of view, a theory of learning is a neces
sary component of any theory of activity. Until recently, the predominant 
view was that one should first study the performance or behaviour continuum 
before the problem of learning could be tackled. As a consequence, the issue 
of learning bas long been neglected. The impetus of recent developments in 
artificial life, situated agent research, cognitive psychology, and robotics bas 
resulted in a renewed interest in learning. lt might be argued that the reverse 
view is getting more support, i.e., the study of learning is needed before any 
other behavioural phenomena can be studied, because the best approach to 
understanding these phenomena may be to study how they develop with 
experience (Chapman, 1991). A theory of learning is also an engineering 
problem. There are several demonstrations of agents engaged in a complex 
activity based on a limited number of rules. However, as these systems get 
larger, it becomes impossible to program them entirely by hand. The need for 
learning is also a natural consequence of the situated view. If one argues that 
agents are mostly embedded in dynamic, not entirely predictable environ
ments, then it is necessary for an agent to Jearn about its environment in order 
to act in a robust way. 

How then do agents learn or evolve? Several learning processes have 
been proposed. Many of the models proposed take animal and/or human 
learning theories as a framework. We do not propose a specific theory of 
agent learning, hut introduce a layered model of different types of learning 
(cf., Figure 4), in which current models of agent learning can be situated. The 
layered structure of the model implies that each subsequent layer subsumes 
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the previous one and that higher layers are computationally more demanding 
than the lower ones. 

1. The most basic form of learning is what we have called memory rep
resentation and processing. This is probably a controversial point of view. 
Many researchers in the field (e.g., Brooks, 1991) argue against the use of 
(memory) representations. However in view of the generally accepted 
hypothesis that animals (humans) are useful models for the development of 
robotic or synthetic agents, there is substantial evidence that learning organ
isms change as a result of their experience, and those changes are representa
tions (Roitblat, 1994). That does not imply, however, that these 
representations are symbolic in nature. Hence, the basic principle of the lay
ered model is that if experience acquired at one time is to affect the behaviour 
of the agent at another, then the agent must have some means of representing 
that experience. In its simplest form this means that the agent can represent 
and process facts about the world. 

Teaching 

lmitation 

Projection 

GeneraUzation 

Specialization 

Refinement 

Memory representation and processing 

Figure 4: A layered model of different types of agent learning. 

2. The second layer consists of the refinement mechanism. The idea of 
the refinement learning mechanism is that the agent attempts to leam how it 
can optimize the reward it receives for taking actions in certain situations. 
Hence the task of the refinement mechanism is to evaluate the agent's behav
iours, improving them where possible, and favouring the better ones in appli
cation. Examples of refinement mechanisms are reinforcement learning 
(Maes, 1995; Kaelbling, 1995) and the Bucket brigade algorithm (Holland, 
1975). 
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3. The third learning layer proposed is specialization. The idea of spe
cialization is that the agent improves its behaviour by learning new condi
tions. A behaviour bas a condition list, which are characteristics of the 
environment that have a certain value. If the behaviour of an agent is not reli
able, i.e., the (positive or negative) feedback is not consistent, then one or 
more additional conditions are added to the behaviour in order to make it 
more reliable (Maes & Brooks, 1990). Examples of specialization are the 
learning algorithm of Maes and Brooks (1990) and classifier systems (Hol
land, 1986). 

4. Generalization is the counterpart of specialization, since it enables a 
(new) behaviour to be applied in more situations than before. Several gener
alization mechanisms have been proposed, in which sometimes a distinction 
is made between exemplar-based or primary generalization and abstraction
based or secondary generalization (Vandierendonck, 1995). Fora comprehen
sive taxonomy of generalization, see Dietterich and Michalski (1983). The 
essence of generalization is that an agent improves the application scope of 
its behaviour by means of (1) the simple deletion of part of an existing behav
iours condition list, (2) inducing a new behaviour on the basis of the intersec
tion of the condition list of two or more similar behaviours, and (3) producing 
a new rule that contains variables in its condition list which are a generaliza
tion of two or more examples. Several models of generalization learning 
exist, and these models usually include a simulation of the specialization 
mechanism. Examples are the already mentioned classifier systems (Holland, 
1986), neural networks (McClelland & Rumelhart, 1986), genetic algorithms 
(Goldberg, 1989), exemplar-based learning (Kruschke, 1992) and memory
based learning (Stanfill & Waltz, 1986). 

5. What all the learning processes so far described have in common is 
that learning is driven by feedback from the real world. Another, computa
tionally more advanced, possibility is that the agent is able to project likely 
outcomes of events, and evaluate (i.e., refinement, specialization, and gener
alization) its behaviour on the basis of feedback from this projected world. 
Projection is the registration of what would happen in altemative possible 
future circumstances. Several means of projection are possible. The most 
complex one, which bas been identified by some authors as incompatible 
with neurally plausible hardware (Chapman, 1991), is simulation. In this 
case, an agent builds a model of the current situation and applies rules that 
transform it according to its projected behaviours. Another possibility is visu
alization. For example, in Chapman's (1991) system Sonja, visualization pro
jection is accomplished by running visual routines which register what would 
happen in alternative possible future situations, e.g., this-monster-will-hurt
me-if-1-don 't-do-something-about-it. 
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6. So far we have considered learning at the level of one agent. There 
are, however, important learning mechanisms in which more than one agent 
is involved. The first one is imitation: an agent can learn by obserV-ing another 
agent perf orming the task. For real robots, this requires perceptual abilities 
that are not yet available (Kaelbling, 1995). In the case of software or syn
thetic agents, it is possible for an agent to "observe" the behaviour of another 
agent and to imitate this behaviour by copying the code, as has been 
described in the section on the communication between agents. 

7. The upper learning layer in our model is teaching. The idea of teach
ing is that an agent can learn new behaviours or improve existing behaviour 
on the basis of the instructions of another agent. Imitation can be part of the 
teaching process. An example of teaching in the case of real robots is to have 
a human agent supply appropriate motor commands to a robot through a joy
stick or steering wheel (Pomerleau, 1993). In the case ofsoftware agents, 
Lieberman (1995) developed a technique called "programming by example" 
for teaching agents new behaviours by demonstrating actions on concrete 
examples. A similar procedure is possible between two software agents and 
again relies very much on the communication procedures described in the 
communication section. 

Several comments must be added to this model of agent learning: 

• The selection of the number and the type of learning layer is based on the 
same heuristic as in the communication model: learning is based as far as 
possible on the lower, computationally less expensive levels before turning to 
the higher levels. This also implies that learning is not limited to one mecha
nism, but involves several layers at the same time; 

• Most of the learning mechanisms in the layered model rely on existing 
behaviour (e.g., specialization and generalization), which implies that 
tabula rasa learning techniques have in themselves a limited problem-solving 
range (see also Kaelbling, 1995); 

• Learning is conceived as an incremental process as far as possible , i.e., 
learning is embodied in each action of the agent ( e.g" reinforcement learn
ing); 

• Learning is a distributed process, i.e" in the case of our multi-agent archi
tecture each agent refines and acquires behaviours according to its field of 
competence; 

• Learning in a multi-agent architecture introduces redundancy in a double 
manner. First, different agents can acquire the same behaviour(s) which 
makes the system more robust, i.e., when an agent fails the system will not 
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break down completely. Secondly, the system can consist of several agents 
for a particular competence. In these cases, learning mechanisms will sort out 
which agent acts in the most competent manner in the long run. 

2.6 An example of the general approach: the architec
ture and design of TE 

2.6.1 Architecture I ldentification 

Inspired by the literature on aspects of teaching that have to be adapted to the 
individual student (see Section 1.2.3), the following five functionalities of 1E 
have been identified: 

• Navigation 
1E navigates through the course material, determining at any given time 
which topic to discuss. The rate of presentation and the order in which the 
material is taught depend on the performance and interests of the student. 

• Practice 
Within a given subject, those exercises and examples are given that corre
spond to the performance of the student. 

• Explanation 
In the case of low performance or absence of responses, the student is 
instructed and assisted with the task. The amount of explanation needed 
depends on the student. 

• Feedback 
Feedback on performance in a task is adapted to the student. A distinction is 
made between errors and slips, and the degree of enthusiasm or disappoint
ment varies to keep the student motivated. 

• Presentation 
The way in which material is presented is adapted to the student's perform
ance. For instance in mathematics, depending on the level of the student, 
additions are presented using formulas, pictures, or even real objects. 

An agent bas been associated with each of these functionalities, and we 
designed first-versions of these agents. This does not, however, imply that our 
system will always consist of these five agents. During the design of some of 
the agents, it tumed out that their skills could be extended in all kinds of dif
ferent directions; that there are indeed sub-functionalities which require sepa
rate research. It has, for instance, been suggested that requests of the student 
for the dictionary should be handled by a sub-agent of the Explanation Agent. 
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So, the agents will possibly have to be divided into more restricted sub-agents 
before extending their current skills. It might also be possible to develop dif
ferent variants of agents for the same functionality, and exploit evolution
like learning to determine which agent will be used (survives) fora particular 
(group of) student( s). 

In order to minimize the effort required from the designers to add new 
agents, from the course makers to choose between different agents which 
implement different teaching methodologies, and from the students to choose 
which functionality of the system, i.e., which agents or behaviours of the 
agents they want, the following measures have been taken: 

• The agents have been designed to operate in parallel and quite independ
ently of each other. 

• There is no control component within TE: the functionality of TE emerges 
from the interaction between the agents and the student. 

• Each agent bas its own memory, in which it mainly stores interaction 
sequences with the student. There is redundancy in the memories of the dif
ferent agents. 

• There is also no control component within an agent: the functionality of 
each agent emerges from the interaction of behaviours or learning rules inside 
the agent. 

In fact, we have a demonstration in which it is possible to remove or add 
an agent at run-time, to choose between different learning principles, to 
remove or add learning principles, and to change parameters of the learning 
principles (for instance the patience of the Explanation Agent). 

2.6.2 Design of the lndividual Agents 

In the design of the individual agents, we have used the available knowledge 
about the human learning process. We will not describe the complete design 
of each of the agents, but will give some examples to illustrate the genera) 
design process explained above. More details on the agents can be found in 
the successive chapters of this dissertation. 

The Feedback Agent. 
The main task of the Feedback Agent is to give feedback adapted to the 
student. An obvious situation in which the agent bas to act, is when the 
student bas finished an exercise. So, the situation part of the first behaviour 
will be "student has finished exercise". A general description of the action the 
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agent should take in that situation is "givefeedback". However, two possible 
actions which fit this description immediately come to mind, namely "give 
positivefeedback" and "give negativefeedbacl<'. Thinking of the situations in 
which each of these actions should be preferred leads to the following behav
iours: 

("student finished exercisè' & "exercise done correctlj') 
--> { "give positive feedbacl<' }, 

("student finished exercisè' & "exercise done incorrectly') 
--> { "give negative feedbacl<' }. 

In order to keep the student motivated, feedback depends on the stu
dent' s results on the previous exercise. Therefore, an internal state variable 
last-exercise-done-incorrectly is introduced. A differentiation on the first behav
iour using this internal state leads to the following set of behaviours: 

("student finished exercisè' & "exercise done correctlY' 
& /ast-exercise-done-incorrectly) 
--> { "give strong positive feedbacl<', no (last-exercise-done-incorrectly) } , 

("student finished exercise' & "exercise done correctlY' 
& no (Jast-exercise-done-incorrectly)) --> { "give weak positive feedbacl<' }, 

("student finished exercise' & "exercise done incorrectlj') 
--> { "give negative feedbacl<', last-exercise-done-incorrectly}. 

The Feedback Agent also tries to make a distinction between real errors 
and slips, i.e., errors that occur when someone perf orms an action uninten
tionally (Norman, 1981). In case it suspects a slip, for instance when the stu
dent makes a mistake in an exercise which bas been answered correctly 
before, the student gets a second opportunity to do the exercise. For further 
details on the Feedback Agent see Chapter 7. 

The Explanation Agent. 
The Explanation Agent should give an explanation adapted to the student 
whenever the student needs it. It is an important agent in the system as it not 
only determines the adaptivity, hut also the interactivity level of the system. 
The behaviour of the Explanation Agent is determined by the rule "If the 
student succeeds, when next intervening offer less help. If the student fails, 
when next intervening take over more control." (Wood et al., 1978). Further-
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more, the Explanation Agent is based on a layered model of intervention 
varying between the "general verbal encouragement" level and the "demon
stration" level, whereby each layer represents a different level of control on 
the part of the agent. Tuis implies that the behaviour of the Explanation 
Agent is contingent on the performance of the student ( cf" situatedness prin
ciple); the most appropriate intervention is chosen on the basis of the 
student's success. 

Currently our Explanation Agent uses a quite simple form of layered 
intervention, with only two levels. lt includes the following behaviours, 
among others: 

("student has not done anythin{/' & student-supposed-to-exercise) \ 25 sec 

··> { "remind student that he or she should do somethin{/', have-reminded-student } , 

("student has not done anythin{/' & student-supposed-to-exercise 

& have-reminded·studenf) \ 15 sec--> { "give student a hinf} 

Tuis illustrates the use of a combination of internal state variables and timing 
in the diff erentiation of situations. For more detail on the Explanation Agent 
see Chapter 7. 

The Navigation Agent. 
The Navigation Agent navigates through the course material in response to 
the performance and interests of the student. lts main behaviour is based on 
the notion of controlled complexity as described in Wood et al. (1978). The 
student should be confronted with problems that lie beyond bis current level 
of competence but not so f ar beyond that he or she is unable to master the 
problem being presented. Problems should be neither too easy nor too diffi
cult. 

After a large differentiation process starting from the behaviour 
"student has finished exercisè' ··> "navigate in course materiaf, which bas led to 
around 16 behaviours, another situation was identified in which the agent 
obviously should do something, namely when the student wants to do some
thing different. Tuis led to the inclusion of another behaviour and a new start 
of the differentiation process. 

To determine which new topic or exercise to address, or to which to 
return, information from the Instruction Database and the agent's memory is 
used. In the Instruction Database information can be found about which top
ics or kinds of exercise are considered beforehand to be the most difficult. 
The agent's memory provides information about which topics and exercises a 
student bas already encountered and his or her performance on them. For 
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more details on the design and evaluation of the Navigation Agent see 
Chapter6. 

The Practice Agent. 
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The Navigation Agent determines which topic and kind of exercise will be 
addressed. In most cases, however, the topic to be taught consists of a number 
of items, the relative difficulty level of which is not necessarily known 
beforehand. For instance, when the topic is to study a set of words, there 
could be an item for each word. The Practice Agent decides at any given time 
which item will be presented in an exercise or example. For further details on 
the design and evaluation of the Practice Agent see Chapter 3,4, and 5. 

An essential factor for the behaviour of TE is that a tutorial dialogue 
with a mixed, varying locus of control emerges from the cooperation between 
the Practice Agent (i.e., controlled complexity) and Explanation Agent (i.e., 
contingency rule and layered intervention model). As long as the student can
not master the problerns he or she is confronted with, TE is more or less in 
control. Once the student succeeds in solving the problem, he or she takes 
over more control. The layered intervention model of the Explanation Agent 
also encompasses different types of IIS's. The 'genera! encouragement' level 
corresponds to Microworld systems which are user-controlled systems, 
whereas the 'demonstration' level corresponds to classical ITS's in which 
control is in the (virtual) hands of the system. 

The Presentation Agent. 
The Presentation Agent tries to choose the optimal presentation form for the 
student at each moment in the instruction session . It is based on a layered 
model, whereby each layer represents a different level of abstraction. The 
genera! rule determining the behaviour of the Presentation Agent is that infor
mation is presented at the abstract level (e.g., formulas when teaching addi
tion). However, when a student is having difficulty with a particular exercise 
or is asking for a further explanation, the Presentation Agent can decide to 
focus in on the problem in another, more concrete representation format (e.g., 
using pictures or video films). For more details on the Presentation Agent see 
Chapter7. 

2.6.3 Communication between the Agents 

In TE, the agents mainly communicate by causing changes in the environ
ment, i.e., the student and the position in the course material. They have 
deliberately been given complementary tasks. For instance, the Feedback 
Agent would not encounter many situations in which to give feedback if there 
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were not a Practice Agent presenting exercises to the student. However, the 
designer only needs to know the task that the agent is supposed to do. 

It proved to be rather difficult to give the agents the ability to perceive 
certain events directly. Hence, the agents exchange some information via the 
environment. For instance, some agents (e.g" the Explanation Agent) need to 
be able to perceive when an exercise is presented to the student. Therefore, 
the Practice Agent notifies all agents when it presents an exercise. An extra 
agent, called the Postman, bas been added to broadcast incoming messages 
from the domain-specific components of the application (i.e" Domain Expert 
and Interface Manager) to all other agents. The addition of this agent is nec
essary since it is the only one able to perceive and translate these messages to 
the other agents of TE. This required agreements from the designers about 
what kind of information to provide, and the semantics of it. For instance, 
when a results sign is given, all the agents know that the student bas finished 
an exercise and that the results of this exercise are available in a global varia
ble. 

In the design of the agents, some social rules have been imposed to pre
vent certain situations. For instance, the following kinds of behaviours exist 
in the agents: 

"student finished exercise' ··> {"present exercise'} 

"student finished exercisè' --> { "give feedbacf( } 

"student finished exercisè' --> { "navigate in course material' }. 

To avoid the reaction of one agent -e.g., the presentation of a new exercise by 
the Practice Agent- being disturbed by the reaction of another agent, e.g., 
giving feedback by the Feedback Agent, semaphores are used. The social rule 
in this case is that an agent may only cause changes in the environment in 
reaction to an event, e.g" the "student finished exercise' event, when it owns the 
semaphore belonging to this event. This can be done with the following kinds 
of behaviours: 

("evenf & semaphore-event & preconditions) --> { no(semaphore-event), "reactiorf }, 

"reaction finished' -> { semaphore-event }, 

where preconditions denotes the use of intemal state: the agent does not 
always have to react to an event; this may depend on its internal state. To use 
this construction for a certain event, designers have to agree to associate a 
semaphore with the event and to respect the social rule regarding sema
phores. However, the designers do not have to know what other agents exist, 
or how the agents will react to that event. 
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The use of a semaphore does not guarantee that, for instance, feedback 
will be given before the presentation of a new exercise. For that purpose the 
notion of time is used: each behaviour ("evenr & semaphore & ... ) --> ... bas 
been changed into ("event' & semaphore & ... ) \ time--> ... In this way, the order 
in which the agents can react to an event is determined by their relative speed, 
or more specifically the time annotation given to their behaviours conceming 
that event. So, by giving the Practice Agent a higher time annotation than the 
Feedback Agent, the latter may act first. If the Feedback Agent does not want 
to react, or even does not exist, time will expire and another agent will auto
matically be allowed to react. Currently, these time annotations are deter
mined by the designers, but it may well be that the agents will leam these 
annotations themselves in future applications. For instance, an initial learning 
phase could be employed in which the user indicates whether a certain 
sequence of the agents' actions is acceptable or not. 

To conclude, in our current application the agents are completely una
ware of each other's existence. Tuis bas the advantage of enabling us to 
develop the agents quite independently, and remove, change, and add agents 
without much difficulty. The only information the designer of a new agent 
needs is the agreements on the semantics, the social rule regarding the sema
phore, and a list of time annotations. 

2.6.4 How the Agents learn 

In TE, each agent is equipped with a rudimentary memory-based learning 
process. The agent stores interaction sequences in its memory, and the agent's 
behaviour is tuned on the basis of the statistics of these episodic memory 
traces. For instance, among other things, the Navigation Agent keeps track of 
the correct and incorrect responses of the user. When the number of incorrect 
responses is quite high, the Navigation Agent can decide to present easier 
exercises. 

2.6.5 lmplementation 

The implementation of the agents bas been done in the RTA programming 
language. RTA is a concurrent and declarative programming language for 
developing agent-based systems. The language was developed at Philips 
Research Laboratories, U.K. (Wavish & Graham, 1994). The pseudo-code 
used in this chapter is very similar to the RTA code. 
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2.7 Conclusions 

We have described an interactive instruction system in which a domain-inde
pendent tutor emerges from the interaction of a set of simple agents. Each 
agent consists of a set of behaviours that are based on knowledge and experi
mental research on human learning and human-computer interaction. The 
design process can be characterized by the combination of a differentiation 
method and behavioural engineering. One of the main characteristics of the 
behavioural engineering approach is that results of empirica! research are 
incorporated in the design process. 

It is argued that the architecture and design methodology described in 
this chapter is not restricted to interactive instruction systems. Therefore, the 
approach was first introduced on a more general level, and then illustrated 
with an interactive instruction system. The use of our agent-based architec
ture and design process for other kinds of adaptive user-interfaces or intelli
gent consumer products is worth investigating. 

Throughout this chapter, the role of empirical evaluations in the design 
process of an interactive instruction system bas been emphasized. In our view 
these evaluations are realized at two levels. First, the effectiveness and effi
ciency of parts of the IIS are experimentally tested and modelled according to 
the behavioural engineering approach. The behavioural engineering approach 
was briefly introduced in this chapter. For more detailed information see the 
next chapters. Secondly, much interactive instruction research focuses on a 
specific issue such as adaptive instruction and neglects the importance of the 
user-interface environment as a significant determinant of the user's learning 
performance. So, user-interface evaluations should be included in the evalua
tion of an IIS as a whole. 

Future research should explore the use of genetic programming in the 
design process. Two major problems of machine learning such as genetic pro
gramming are (1) that they do not scale well to large problems, and (2) it is 
difficult to apply them on-line to model the incremental learning process of 
an agent. We therefore propose to decompose large problems into smaller 
subproblems and apply genetic programming techniques to those subprob
lems as an aid for the designer in finding the necessary behaviours of the 
agent he or she is developing. 
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Chapter 3 

The Practice Agent: 
Theory 

Abstract 
Given a set of items that a student has to learn, the main task of the Practice 
Agent is to determine which item to present at any given time. In the case of 
paired associates learning the items are pairs, for instance word pairs. The 
question of how models of human learning processes, particularly models of 
paired associates learning, can be used in the design of an item sequencing 
strategy for the Practice Agent will be discussed. This is an illustration of 
how a model of one agent can be used to design the adaptive behaviour of 
another agent interacting with it. A new item sequencing strategy wilt be 
proposed which is based on functional properties of the models and which 
uses direct observation. In this "Situated" strategy, items have a higher like
lihood of being presented when they have been answered incorrectly the 
previous time they were presented. The strategy has one parameter, namely 
the degree to which items are presented more frequently. The models are also 
used to explore the influence of this parameter and to predict the strategy's 
ejfectiveness compared to other strategies. lt is predicted that using the Situ
ated strategy will be very advantageous. 
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3.1 The task of the Practice Agent: item sequencing 

As discussed in Chapter 2, given a set of items which the student has to learn 
the main task of the Practice Agent is to deterrnine at any time which item to 
present to the student in order to optimize the learning process. For instance, 
when the student bas to learn clock times in Dutch, as is the case in one proto
type of the Appeal system, the Practice Agent has to deterrnine whether to 
present a "full hour'', a "half hour'', etc. When the student bas to Iearn the 
translation of a set of words, the Practice Agent bas to determine the next 
word to present to the student each time. This task of determining the next 
item to be presented to the student each time is called item sequencing. 

An item does not have to be characterized by only one dimension. For 
instance, the Practice Agent may have to determine the multiple parameters 
of a simulation. We will return to this issue in Chapter 5 on concept learning. 
Another complication may be that the items in the set are not independent of 
each other: the learning of one item may be prerequisite to the learning of 
another item. Dealing with these kinds of issues will be the task of the Navi
gation Agent, as described in Chapter 6. For the moment, we will restrict our
selves to the case in which there is no inherent structure in the item set, and 
the item set has a lirnited size. 

As the Practice Agent is meant to be domain-independent, it cannot use 
knowledge about the individual items in the process of item sequencing, 
unless this kind of knowledge can be coded by a course designer in a domain
independent way. Suppose a course designer believes that the length of the 
translation is an important factor in determining the difficulty of learning the 
translation of a certain word. When the Practice Agent does not even know 
that the items to be learned are word pairs, the only way these preconceptions 
of the course designer can be made useful to the Practice Agent is by allow
ing the course designer to assign relative levels of difficulty to the items cor
responding to his or her beliefs. Another way could be to let certain abstract 
classes of items be distinguishable to the Practice Agent, like paired associ
ates and concepts, and provide the Practice Agent with some knowledge 
about these kinds of abstract classes. For instance, the agent could know that 
confusability is an issue in the case of paired associates, and that therefore 
measures on assumed confusability may be provided by the course designer. 
So, it is possible, in principle, to make some domain expertise accessible to 
the domain independent agent. However, this is not easy for either the course 
designer or the designer of the Practice Agent. 

For course designers, it is preferable that the Practice Agent should not 
need all kinds of prior information on the items, such as their relative diffi
culty, but should be able to discover for itself which items cause the individ-
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ual student most difficulty. Por instance, domain experts would argue that 
most native English speaking students would have more trouble when learn
ing Dutch clock times with half hours than with full hours, because the Dutch 
"half 5" is equivalent to "half past four" in English instead of the expected 
"half past five". On the other hand, for German students this kind of unequal 
difficulty is not expected. Now, the main idea is that this kind of domain 
knowledge does not have to be coded (and hence need not be invented by 
every course maker in all kinds of domains ), hut that the Practice Agent 
should discover for itself when it has to present a certain item, say "half 
hours", more frequently. 

Tuis approach deviates considerably from the intelligent tutoring sys
tems approach: where ITS designers try to achieve adaptivity by incorporat
ing highly detailed domain knowledge (for instance in the form of buggy 
rules), we try to achieve it by incorporating strategies that are domain-inde
pendent as f ar as possible. We expect that this will considerably reduce the 
time and cost of designing a course, and that it is at least as effective in pro
ducing adaptive behaviour. 

3.2 Use of cognitive models 

One of the main aims of cognitive science bas been to construct and evaluate 
models of human behaviour controlled by human cognitive processes. 
Current studies tend to focus on modelling the behaviour of one individual 
agent in an environment that is experimentally controlled and hence inde
pendent of that agent. However, from a situated cognition point of view, the 
operation of the Practice Agent cannot be decoupled from its interaction with 
and adaptation to the student. We believe that the modelling of interaction 
should build on the insights gained so far. The main issue then is how a model 
of an individual agent's behaviour (e.g., a model of the learning processes of 
a student) can be used to explain, design, and predict the (adaptive) behaviour 
of a second agent (e.g., a teacher) interacting with it. 

There are numerous models of learning which more or less fulfil the role 
of the student interacting with the Practice Agent, predicting the answer pat
tern of a student. The question now is how models of this kind can be used to 
design item sequencing behaviour in the Practice Agent which is effective in 
several kinds of learning tasks and does not require much effort from the 
course designer. 

3.2.1 Models of learning processes relevant for item sequencing 

There are various models of learning processes, including models of paired 
associates learning (e.g., Bower, 1961) and concept learning (e.g., Kruschke, 
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1992; Pearce, 1994). It is beyond the scope of this chapter to discuss all of 
them in detail. We will briefly describe a few of these to give the reader some 
idea of what kinds of models there are, and how these can be used to design 
an item sequencing strategy. 

Markov models 
Markov models are simpte models which are mostly used in cognitive 
psychology to model the learning of paired associates. A Markov learning 
model can be characterized by a set of knowledge states, a transition matrix 
which indicates the probability of a transition from one knowledge state into 
another, and a response function which maps knowledge states onto probabil
ities of responses. The most important property of a Markov model is that the 
knowledge state in which a student is at a certain time t+ 1 only depends on 
the knowledge state at time t. 

To model the learning of a set of items, the same kind of Markov model 
can be used for each individual item, with the student's knowledge state 
depending on the item. To model individual differences between students, 
different parameter values can be used in the models.To model different item 
difficulties, different parameter values can also be used. This is illustrated 
below. 

The All-or-None model of Bower (1961) is a very simpte Markov model 
with two states, say G (guessing) and M (mastered) (see Figure 5). An item 
can be either completely mastered, in which case the student will always give 
the correct response, or it can be completely unknown, in which case the stu
dent can only guess the correct response, say with likelihood g. Once an item 
is mastered, it will always be known, so there is no forgetting. An item has a 
certain likelihood, say a, to be learned each time it is presented. 

~l 
1-a~ 

P (Correct response 1 in state M) = 1 
P (Correct response 1 in state G) = g (guessing probability) 

Figure 5: Transition matrix, corresponding diagram, and response function for the 
All-or-none model. 

To model differences between students, a different value of a can be used for 
each student: the higher the a, the faster the student learns. To model differ
ences between item difficulties, a different value of a can be used for each 
item: the higher the a, the easier the item. To model differences in the interac-
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tion between students and items, different values of a can be used for each 
combination of student and item: the higher the a, the easier the item is for 
that particular student. 
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Markov models can be made more sophisticated by adding more states 
and associating a parameter with each state transition, or by making the 
response function more complex. 

The assumption that learning may be partial, in the sense that stages 
may be distinguished in the learning process, would result in the incorpora
tion of more states in the model: one for each stage. An extreme version of 
this is the Linear model (Atkinson, Bower, & Crothers, 1965) which can be 
viewed as a Markov model with an infinite number of states, and is shown in 
Figure 6. In this model, the probability of a state transition is 1. The assump
tion underlying this model is that each presentation of an item reduces the 
error probability by a constant factor, say a. 

P {Correct response 1 in state 80)= g {guessing probability) 
P (Correct response 1 in state Sn) = 1-a"(1-g) 

Figure 6: Diagram and responsefunctionfor the Linear model. 

A distinction bas often be made between two stages in the learning proc
ess, though the interpretation of the meaning of these stages is onder discus
sion. A possible interpretation could be a first stage of storage of the 
stimulus-response pair in the memory and a second stage of learning to 
retrieve the response (Humphreys & Greeno, 1970). Another interpretation 
could be a difference between short-term and long-term memory. 

To give an impression of how rapidly these kinds of models become 
complex, let us suppose we would like to incorporate forgetting in a simpte 
model. A first idea would be to incorporate a state transition in the All-or
None model from M to G, and associate a parameter with it. This parameter 
would determine the rate of forgetting: the higher the parameter, the more 
easily an item is forgotten. However, two problems arise. The first problem is 
that it seems more natura! that an item is forgotten when it is not presented to 
the student than when it is presented. This can be incorporated by having two 
state transition matrices: one for when the item is presented, and one for 
when another item is presented. Even this may be too simpte: it could be 
argued that a separate transition matrix is needed for the presentation of every 
possible other item, because the rate of forgetting an item may depend on the 
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interference between that item and the item presented, and this interf erence 
may in its turn depend on the similarity between the two items. 

The second problem is that with such a model a student will never 
remember an item in the long run unless it is presented over and over again. 
This leads to the idea of incorporating an intermediate state in the model, 
such that forgetting takes place only from the intermediate state and not from 
the 'mastered' state. This introduces two extra parameters in the model: one 
for the extra state transition and one for the response probability in the inter
mediate state.The resulting model is shown in Figure 7. Though this model is 
probably still an oversimplification of the human learning process, it is 
already rather complicated, especially it is realized that every parameter men
tioned may depend on the student-item combination. 

On presentation of the item: 

M1+1 lt+1 Gt+1 

~t[~ 10~ ~i 
G1 a~ a (1- ~) 1 a 

On presentation of another item: 

Mt+1 lt+1 Gt+1 
M1 

1, r~ 1 ~" ~ 
G1 l~ 0 J 

1-a 

P (Correct response 1 in state M) = 1 
P(Correct response 1 in state 1) = h, h>g 
P{Correct response 1 in state G) = g (guessing probability) 

GPl 

Figure 7: Transition ma.trices and corresponding diagrams fora two-stage learning 
model with forgetting. The top matrix defines the state transitions fora certain item 
when that item is presented to the student. The bottom ma.trix defines the state 
transitionsfor that item when another item is presented to the student. 

One advantage of using of Markov models is that they are mathemati
cally well understood. However, they are black box models in the sense that 
item characteristics can only be taken into account indirectly: through param
eter values. Interactions in the learning of different items are difficult to 
incorporate into these models. 
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Connectionist models 
Connectionist models such as ALCOVE (Kruschke, 1992) and Configural 
Cue (Pearce, 1994) have become very popular, especially for concept learn
ing. A connectionist model consists of a set of interconnected processing 
units (see Figure 8). Each unit can be in a number of possible states; this is 
often expressed by saying that the unit can have a certain activation. Typi
cally there is an input layer of units that receive input directly from the envi
ronment. The stimulus is encoded on these units. There is an output layer of 
units that produce output to the environment. The activations of these units 
usually represent the response probabilities. There may be one or more 
bidden lay ers of units that neither receive direct input from nor produce direct 
output to the environment. These layers can represent abstractions which are 
useful in producing a correct output pattern. For instance, when the input 
units encode the letters of a word, the bidden units may encode different 
lengths of words. 

Weights are associated with the connections. These are used as weight
ing factors in determining how the activation of a certain unit inftuences the 
activation of a unit connected to it. The activation ah of a unit h is determined 
by the formula 

ah= L,aiwih 
i 

where ai represents the activation of unit i and wih represents the weight 
associated with the connection between the units i and h. 

Input 

Input units 

Weights 

Hidden units 

Weigths 

Output units 

Output 

Figure 8: Schematic representation of a /eed-forward network with one hidden layer 

The activation of a unit may represent a feature of an object (where the 
object may be a stimulus, response or abstract notion depending on the layer) 
or the object itself. For in stance, in a concept learning task, each exemplar 
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can be represented by a separate input unit, which gets a high activation when 
the exemplar is presented, while all other input units are not activated. It is 
also possible to represent an exemplar by the values it bas on certain dimen
sions, and to associate an input unit with each dimension. 

A connectionist model generally leams by receiving external feedback 
on the response pattern produced. This feedback is used to update the weights 
on the connections, using a certain learning rule. 

Tuis is just a very brief, simplified, and incomplete description of con
nectionist models. For more detailed and complete accounts see Quinlan 
(1991) and Schalkoff (1992). Some connectionist models for concept learn
ing will be discussed in greater detail in Chapter 5. 

An advantage of using connectionist models is that they can give more 
insight into the learning process, for instance as regards the interaction in 
learning a set of items. However, item characteristics have to be defined 
beforehand, and mathematically they are more complex than, for example, 
Markov models. 

More complex models 
Over time learning models have tended to become more and more compli
cated, which means that the number of parameters increases. These parame
ters are introduced to account for many kinds of cognitive phenomena. For 
instance, in the distributed associate TO DAM model of Murdock (1992) 
parameters are used to represent types of material (the recognition memory 
differs for such items as pictures or text), forgetting, ease of encoding the 
stimulus, ease of encoding the response, attention to the stimulus, attention to 
the response, attention to the pair, habîtuation to the stimulus, habituation to 
the response, habituation to the pair, similarity in stimuli, and similarity in 
responses. 

Likewise, in a more comprehensive theory like SAM (Raaijmakers & 
Shiffrin, 1981) the number of parameters is so large that the implementation 
of, say, a paired associates learning model based on this theory, and espe
cially the choice of reasonable parameter values, becomes a rather difficult 
tas k. 

3.2.2 Ways to use a Model of a Student's Learning Process 
in the Design of the Practice Agent's Behaviour 

In this section, we discuss four ways in which a model of a student's learning 
process can be used to design the item sequencing behaviour of the Practice 
Agent However, this discussion can be generalized to the question of how 
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a model of an agent can be used to design the (adaptive) behaviour of another 
agent interacting with it. For that purpose, it suffices to see the student as an 
agent, the model of the student's learning process as a model of the agent's 
behaviour, the choice of an item as the choice of an action, the presentation of 
an item as the performance of an action, and the Practice Agent as an agent 
that bas to interact with the first agent. 

A first distinction is made between the use of an executable model by 
the Practice Agent to simulate the student's learning process, and the mere 
use of functional properties of such a model. A second distinction is whether 
or not observation is regarded as an input to the process of deciding which 
item to present next. 

Use of a Model by the Practice Agent to Simulate the Student 
The Practice agent can use an executable model of the student's learning 
process to obtain predictions about the internal state and possible actions of 
the student. In this case, all memory of the Practice Agent on the interaction 
with the student is indirect and intrinsic to·the model. 

A. Without on-line observation 
The first way to use a model can be seen in Figure 9 . 

.-----------. prediction 

Model of student's 
learning process 

item presented 

Choice of next item 

Figure 9: Model of the Practice Agent, interacting with the student 

The Practice Agent uses a model of the student' s learning process to pre
dict the likelihood that the student does not know the correct response to a 
certain item. These probabilities (perhaps amongst other factors) constitute 
the input for the process of selecting the next item. The Practice Agent may, 
for instance, select the item with the highest likelihood that the student does 
not know its response yet. The item selected is, in its turn, input to the learn
ing model. Differences in the behaviour of the Practice Agent for different 
students can be explained by different values for the parameters of the model 
of the student's learning process. These parameters are determined in an ini
tia! phase. 
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Consider for example the All-or-None model ofBower (1961) discussed 
above. This model implies that the likelihood that the student does not know 
the response toa certain item equals (1-a)n, where n denotes the number of 
times that item and its response have been presented to the student. Parameter 
a can be estimated in an initia! stage as the percentage of correct answers the 
second time the items are presented. 

There are several problems associated with this approach: 
1. If the model is incorrect, then the information on which the choice for 

the next item is based is incorrect, and the choice may turn out to be inappro
priate. For instance, as discussed above, the All-or-None model is probably 
too simple: not all items will be equally difficult (so, there should be an aper 
item), people tend to forget, there may be differences between short-term and 
long-term memory. The use of a paired associate learning model based on a 
more comprehensive theory like SAM (Raaijmakers & Shiffrin, 1981) would 
result in more parameters. The more parameters the model bas and the more 
complex it is, the more the subsequent problems arise. 

2. It is difficult to determine parameters, and it is very likely that errors 
occur in this estimation process. Reasons for errors are that it is possible that 
different combinations of parameter values explain the observed behaviour of 
the student, and that it may be difficult to distinguish between slips and real 
errors, and between lucky guesses and àctual knowledge. 

3. lt takes a lot of computing power and time both to run the simulation 
of a model (calculate the probabilities) and to determine the parameters. This 
makes it difficult to evaluate the possible use of a model by an agent with a 
computer simulation of the agent. Besides, it is questionable whether human 
agents would use these kinds of complex computations (even unconsciously). 

B. With on-line observation 
The second way is similar to the first, hut now the reaction of the student is 
also taken into account and used as input for the model of the student's learn
ing process. This can be seen in Figure 10. 

probabilities 

Model of student's Choice of next item 
learning process 

item presented & Student's response ? 
response student 

Figure 10: Model of the Practice Agent, interacting with the student 
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So, the Practice Agent can use the correctness of the student's answers to 
update the model of the student's learning process. 
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For instance, in the case of the All-or-None model the probability that 
the student does not know the correct response to a certain item now becomes 
zero if the student has answered correctly the last time the item was pre
sented, 1-a if the student has answered incorrectly, and 1 if the item has 
not been presented before. In connectionist models the correctness of an 
answer could be used to update the weights of the connections. 

From a situated point of view, this approach is better than the previous 
one, in that it takes observation into account as well. However, the problems 
associated with this approach are still somewhat similar to that of the previ
ous approach: 

1. The possible incorrectness of the model remains a problem.The 
observation is only used indirectly through the model. 

2. The difficulty of determining parameters now exists not only initially, 
hut also during run time. An advantage is that observation can be used contin
uously to adjust the parameters, which could reduce the errors. 

3. The difficulty of computing power and time consumption remains. An 
advantage is that calculations can become simpler because of the perception 
input (like in the All-or-None model as explained above). On the other hand, 
parameters will now be adjusted during run time, which will involve a large 
number of calculations. 

Tuis approach is the one mostly used in Intelligent Tutoring Systems 
(Wenger, 1987), and the problems it causes with respect to robustness and 
efficiency have been discussed in Chapter 1. 

Use of the functional properties of a Model 
The main difference between this approach and the previous one is that the 
model is not used to simulate the student's learning process, hut only 
provides some properties of this learning process which are relevant for the 
item sequencing. Hence, the model does not have to be executable. 

A. Without on-line observation 
The first way in which the relevant properties of the student's learning proc
ess can be used instead of the simulation of a model can be seen in Figure 11. 

In the case of the All-or-None model, it can be shown that without 
observation the optimal approach is to use a Random Recycling strategy, in 
which an item is only presented again when all the other items have already 
been presented. Tuis strategy is used in most laboratory experiments (Kint
sch, 1977). Random Recycling is also optimal when the Linear learning 
model (Atkinson, Bower and Crothers, 1965) holds. So, by concentrating on 
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the properties relevant for the interaction, a strategy may be found that is 
optimal for various models, which diminishes the risk of using an incorrect 
model. However, the problem of using incorrect properties of course remains. 
Because the model does not have to be executed, it may not be necessary to 
determine its parameters. The computation power and time needed are 
reduced because a simulation is not used. A major drawback of this approach 
is, however, that no adaptation at all can occur. 

relevant 
properties 
of the student's 
learning process 

Choice of next item 

item presented 

Figure 11: Model of the Practice Agent, interacting with the student 

B. With on-line perception 
Tuis is the only approach which can be combined with the situated point of 
view that perception should be the most important resource in determining 
what to do next. Perception is used as an important input for the process of 
determining the next item, and the properties are also treated as a resource. 
We will call this approach the situated method. 

relevant ----------11o1 
Choice of next item 

properties 
of the student's 
learning process 

Student's response ? 

Figure 12: Model of the Practice Agent, interacting with the student 

In the case of the All-or-None model, a relevant property is that an item 
that bas been responded to correctly will always be responded to correctly. 
So, a simple strategy for the Practice Agent could be to present only items 
that have not been responded to correctly before. Perception can be used to 
see whether the student answers correctly, and a simple memory of items 
responded to correctly would suffice. 
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3.3 An item sequencing strategy based on the situated 
method 
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We have designed an item sequencing strategy based on perception and 
simple hypotheses about how a student learns that can be derived from the 
existing learning models. The first hypothesis is that the likelihood that a 
student responds incorrectly to an item is greater when he has responded to it 
incorrectly the last time it was presented than when he has responded to it 
correctly. So, behaviour in the past predicts behaviour in the future. Tuis 
hypothesis holds if the All-or-None model is correct, but also if the Linear 
model or the connectionist models for concept learning like Alcove and 
Configural cue hold good. For instance, in the All-or-None model the likeli
hood of responding incorrectly to an item equals 1-a when that item has been 
responded to incorrectly the last time it was presented, hut is smaller when 
the item bas been responded to correctly, because it may already have been in 
state M. 

We use two sets to represent the items to be taught, a 'good' set and a 
'bad' set. The good set contains the items correctly responded to the last time 
they were presented. The bad set contains those responded to incorrectly. Ini
tially all the items to be taught are in the bad set. The first hypothesis implies 
that the likelihood that a student does not know the correct response to an 
item is greater when that item is in the bad set than when it is in the good set. 
So, an item in the bad set should be presented to the student more often, say k 

times as often (with k> 1), as an item in the good set. 
When k is very large, an item responded to correctly (i.e., in the good 

set) is only presented to the student again when the bad set is empty (i.e., all 
other items have been responded to correctly the last time they were pre
sented). If the All-or-None model held good, i.e., a student would never for
get the response to an item that he bas responded to correctly once, tbis would 
be a very good strategy. 

The second hypothesis is tbat a student tends to forget: the likelihood 
that a student will respond to an item incorrectly is greater than zero even 
when he responded correctly the last time it was presented. The value chosen 
for k was therefore not too large, namely k=lO, based on an extra assump
tion that we would like the probability of an item from the bad set being pre
sented to be at least 50%, even when the number of items in the bad set is 
only 5% of the total number of items. The implications of different choices of 
the value of k will be discussed be low assuming of the correctness of various 
learning models. 

There are a number of possible extensions to this strategy. In the first 
place, it seems very probable that the likelihood of a student responding 
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incorrectly to an item is greater the first time the item is presented than it will 
be a second time. This can be incorporated by using three sets instead of two, 
where the extra set represents the items not yet presented to the student and a 
high probability is given to the presentation of an item from this set. 

In the second place, it seems preferable to restrict the cognitive load of 
the student, in the sense that the student does not have to study too many 
items at the same time. Tuis can be achieved by not putting all the items in 
the bad set initially, but adding new items to the bad set whenever the number 
of items in the bad set falls below a certain minimum. 

In the third place, different sets can be used to represent different num
bers of subsequent correct responses to an item. In that way, it is possible to 
present an item that bas been responded to correctly, say, twice with a higher 
probability than an item that has been responded to correctly, say, five times. 

Though each of these extensions is interesting and may improve the 
effectiveness of the strategy to a large extent, we have chosen to concentrate 
on the sirnplest version. Tuis reduces the number of parameters to only one, 
and gives an opportunity to get a feeling for the different issues involved in 
the learning of paired associates and concepts. We would like to have empiri
ca! evidence for every adjustment we make to this sirnple strategy, and a feel
ing for which adjustments are most necessary. 

3.4 How to define the effectiveness of a strategy 
The effectiveness of a task sequencing strategy is often measured as the aver
age number of correct responses to a test after a certain amount of practice 
trials. There are, however, several disadvantages to this approach. 

In the first place, it is hard to determine after how many practice trials 
the test should take place. When the number of practice trials is too large, a 
difference in strategy effectiveness may disappear because eventually all the 
students learn the correct responses, regardless of the strategy used. On the 
other hand, if the number of practice trials is too small, the effect of the strat
egies on the last phase of the learning process is neglected. So, it seems pref
erable to measure the number of practice trials needed to learn the set, instead 
of measuring the number of correct responses after an arbitrary number of 
practice trials. However, this is hard to do in an experimentally controlled 
way. 

In the second place, even when assurning that the test takes place at the 
right moment in time, there is still the problem that the only aspect measured 
is which strategy produces the best asymptotic behaviour, i.e" with which 
strategy are the most difficult items learned first. Another aspect which it 
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seems reasonable to measure is the time required to learn most items of the 
set. Of course, this poses the problem of what criterion to use for defining 
"most". 
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In the third place, the effectiveness of a strategy may depend on the 
phase in the learning process. It may well be that one strategy is more effec
tive when the student still does not know any of the items, while another 
strategy is more eff ective after a certain number of items have been learned. 
These kinds of effects cannot be observed with this approach. 

Together, these three problems suggest that it is preferable to measure 
learning curves instead of just one test score. These curves can be obtained by 
altemating practice and test phases, and will give an insight into the complete 
learning process, instead of concentrating on just one particular phase. 

Finally, a disadvantage of the approach is the use of averages over stu
dents. The effectiveness of a strategy may depend on the type of students. It 
may well be that one strategy is more effective for high-ability students, 
while another strategy is more effective for low-ability students. In an experi
ment involving a learning task, the variance between students is often large. 
So, instead of using an average learning curve it may be preferable to take the 
whole collection of learning curves into consideration in order to get an 
impression of what is really going on. 

This implies that we do not have to define the effectiveness of a strategy 
in detail, hut that we can use different definitions concurrently and obtain a 
more accurate insight into the effect of different strategies. 

3.5 Predictions of the models 

Models of the learning process can also be used to obtain predictions of the 
relative effect of different strategies, or the effect of different values of 
parameters in the strategy. In a way, the use of models for predictions also 
gives an indication of whether the relevant properties of the model are 
captured in the strategy: if they are, the model should predict a benefit of 
using the strategy. 

3.5.1 How to obtain predictions of learning curves 

There are two ways in which predictions can be obtained. The first is to 
calculate the estimated learning curves of a model, given parameter values 
for the model and a certain item sequencing strategy. In principle, this can be 
done with all Markov models, and particularly with the simplest models like 
the All-or-None model. Of course, the more complex the model becomes, the 
more difficult the mathematics involved. The same applies to the item 
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sequencing strategy used. For instance, it is easier to calculate predictions 
with Random Recycling than with the Situated strategy, because Random 
Recycling does not use the response of the model as an input for the decision 
as to which item to present next. 

The second way does not involve mathematics and is shown in Figure 
13. The model is simply used as a substitute fora real subject in an experi
ment. For that purpose, the model bas to be executable. A response generator 
is used to transform response probabilities generated by the model into 
responses. Our response generator produces the various responses with the 
same probabilities as those given by the model. Another method could be 
always to give the response with the highest probability. 

Model of student's 
learning process 

item presented 

probabilities 

Choice of next item 

Response generator 

response 

Figure 13: Schematic representation of a way in which predictions of a model can be 
obtained. 

We have decided to use the second way, even when a mathematical cal
culation could be made. Tuis enables us to use the same approach for all 
models (including the connectionist models) and all strategies. Moreover, in 
this way exactly the same condition is used for the model as for the real sub
jects, including all possible problems with random number generators. For 
every parameter setting of the model, the average is taken over 100 runs. The 
variation of the parameter values bas been chosen such that the corresponding 
learning curves represent the spectrum of likely student performance. For that 
purpose, more simulations were done than will be reported. 

The predictions will be given for a task in which 30 items have to be 
leamed. There is no intemal structure in the item set. Examples of these kinds 
of tasks will be given in the experiments below. An elementary mathematica} 
analysis shows that the number of items in the set bas no influence on the 
effectivity of both the Random Recycling strategy and the Situated strategy 
as long as the models do not use this kind of information either. 

For the reasons described in Section 3.4, we have opted for an iteration 
of test and practice phases. The same procedure will be used in the experi
ments. Feedback regarding the correctness of the answer is only given in the 
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practice phases, i.e" it is only in these phases that the model can learn. On the 
other hand, forgetting can take place in both practice and test phases. For the 
Situated strategy only the responses of the student (in this case the model) in 
the practice phases are used. For the predictions, the same number of test and 
practice phases were used as will be used in the experiments, namely eight 
test phases and, hence, seven practice phases. This number was determined 
on the basis of a pilot study. 

3.5.2 Predictions about the effect of the strategy's parameter 

As mentioned in Section 3.3, the value of the parameter k of the Situated 
strategy was chosen equal to 10. We stated as arguments for this choice that k 
should be large in order to profit from the information regarding past behav-

iour of the student, but not too large to be able to handle forgetting. The exact 
value of k was chosen on the basis of a seemingly arbitrary assumption 
about a preferred probability with which items from the bad set should still be 
presented to the student when almost all items have been learned. 

In order to gain more insight into the effect various values of k would 
have, simulations of several models have been performed with different val
ues of the parameter. There are many rnodels of learning processes, as bas 
been discussed in Section 3.2.1. In this section, we will restrict ourselves to 
only three of them. 

First, the All-or-None model has been used, because it is well-known, 
relatively simple, and captures the idea that past behaviour predicts future 
behaviour in a simpte, though perhaps trivial, way. Second, the Linear model 
bas been used, because the Random Recycling strategy is based on this model 
and is optimal according to this model. Therefore, it is interesting to see what 
this model predicts as regards the effectivity of the Situated strategy. Third, a 
two-stage learning model with forgetting (as discussed in Section 3.2.1, see 
Figure 7) bas been used in order to investigate the effect that forgetting has on 
the optimal value of the parameter. 

Predictions of the All-or-None model about the strategy's parameter 
The All-or-None model (see Figure 5) has two parameters: the guessing 
probability g in the initial guessing state, and the transition probability a 
from the guessing state to the mastered state. In the case of a recall task like 
that in Experiment 1 of Chapter 4, the likelihood of a correct guess rnay be 
neglected. So, we assume that g equals 0: the student always answers incor
rectly when in the guessing state. The value of parameter a was varied from 
0.1to0.5. 
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Figure 14: Predictions of the All-or-None nwdel /or the Situated strategy for k equal 
to 1, 2, 5, JO, 100, and 1000. Each line in the graphs represents the average over 100 
runs of the model with parameter a (from bottom to top) 0.1, 0.2, 0.3, 0.4, and 0.5, 
respectively. The test phases are given on the x-axis, and the number of correct 
responses on the y-axis. 

The results of the simulations of students by the All-or-None model for 
several values of parameter k of the strategy can be seen in Figure 14. As 
expected, the All-or-None model predicts that the strategy will be more effec
tive as the value of k becomes larger. The difference in the effectivity of 
parameter values 1, 2, and 10 is quite obvious. Ho wever, the difference 
between parameter values of 10, 100, and 1000 is not that large. The differ
ence in effect seems to be located mostly at the end of the learning curves: an 
increase in parameter value makes the curves more like straight lines. This is 
logical, because the lower the parameter's value the sooner items which have 
been answered correctly are like1y to be presented to the student again. In the 
All-or-None model, items will never be forgotten, so the presentation of a 
correctly answered item only obstructs the learning process. 
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With a parameter value of 10, the curves already approximate straight 
lines till the last few items have to be learned. Therefore, according to this 
model a choice of 10 as the value for the parameter seems reasonable, even 
though higher values of k have to be preferred. 

Predictions of the Linear model about the strategys parameter 
The Linear model (see Figure 6) bas two parameters: a guessing probability 
g in the initia! state, and a probability a with which the error probability is 

reduced each time an item is presented. As in the case of the All-or-None 
model we assume that g equals 0. The value of parameter a has been 
varied from 0.6 to 0.9. 

The results of the simulations of students by the Linear model for three 
values of parameter k can be seen in Figure 15. 
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Figure 15: Predictions of the Linear model /or the Situated strategy /or k equal to 1, 
JO, and 1000. Each line in the graphs represents the average over 100 runs of the 
model with parameter a (/rom top to bottom) 0.6, 0. 7, 0.8, and 0.9, respectively. The 
test phases are given on the x-axis, and the number of correct responses on the y-axis. 

The value of k seems to have no inftuence on the effectivity of the strategy. 
This is not surprising. In this model, all items are assumed to be equally diffi
cult and the error probability is exactly determined by the number of times 
the item bas been presented. Therefore, the optimal item selection strategy is 
to present all items equally often, which is exactly what Random Recycling 
does. Tuis is approximated with a parameter value of 1, though not as 
perfectly as with Random Recycling, because there will always be a probabil
ity that some items are presented more often than others. Increasing the value 
of k implies that items that have been answered incorrectly will have a 
higher probability of being presented again. However, these items are also 
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likely to have a higher error probability, and hence, are likely to have been 
presented less often in the past. So, even with higher values of theparameter 
k, the strategy still approximates one in which all items are presented equally 
often. 

Hence, the value of the parameter k is not important according to this 
model. However, this is likely to change when not all items are assumed to be 
equally difficult. Our hypothesis would then be that a higher value of the 
parameter results in the more difficu]t items being presented more frequently, 
thereby increasing the learning effectivity. We have therefore used the Linear 
model for a set of items of varying difficulties. We have assumed that param
eter ex of the model (representing the decrease in error probability) is the 
multiplication of a parameter ~ which represents a student's learning capa
bility (the higher the value of ~ the slower the student learns) and a parame
ter X which represents an item's difficulty (the higher the value of X the 
more difficult the item). Parameter ~ has been varied between 0.06 and 0.09. 
Parameter X bas been kept at 1 for 10 of the 30 items, and at 10 for the other 
20 items. Hence, one third of the items are 10 times as easy to learn as the 
other items. With these values of the parameters, the same range of values of 
ex is reached for two thirds of the items as in the simulations with equally dif
ficult items. 

The results of the simulations are shown in Figure 16. 
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Figure 16: Predictions of the Linear model in the case of varying item difficulties for 
the Situated strategy for k equal tol, 10, and 1000. Each line in the graphs 
represents the average over 100 runs of the model with parameter~ (/rom top to 
bottom) 0.6, 0.7, 0.8, and 0.9, respectively. The test phases are given on the x-axis, 
and the number of correct responses on the y-axis. 
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Though the graphs are still quite similar, there is an inftuence of k's value. 
The curves in the case of k= l 0 end higher than when k= 1. The low er the 
curves -i.e, the weaker the student- the clearer the effect becomes. There is, 
however, no noticable difference between values of 10 and 1000. Tuis 
suggests that if the items are not equally difficult a somewhat higher value of 
k should be preferred, like 10, hut that there is no reason to use a very high 

value. 

Predictions of a two-stage model about the strategy's parameter 
The predictions discussed so far have only resulted in arguments for the use 
of a high value of the parameter k. However, we have restricted the value of 
k to 10, because we wanted to take forgetting into account. When k is very 
high, a correctly answered item is only presented again when all items have 
been answered correctly. There are several drawbacks to this approach. 

In the first place, an item may be forgotten. In itself this is not a very 
strong argument for restricting the value of k, because the item will be pre
sented automatically again when all items have been answered correctly. 
However, the argument becomes stronger when the items are not equally dif
ficult. When an easy item is forgotten, it may be more effective to present that 
item again than it would be to present a very difficult item. 

In the second place, an item may be answered correctly, and hence 
become part of the good set, without really being mastered by the student. 
Tuis may happen because the student always bas a certain guessing probabil
ity of choosing the correct answer (for instance, when choosing between two 
categories), or just because learning is partial: there are states in which the 
likelihood of a correct answer is smaller than one hut larger than zero. The 
same argument also applies in this case: the value of k should be restricted, 
especially when all items are not equally difficult. 

In order to gain more insight into this and present some clear evidence 
that the value of k should not become very large, simulations were per
formed with a model incorporating both aspects of forgetting and guessing. 
Tuis is the two-stage learning model as shown in Figure 7. 

Tuis model bas five parameters. As before, we have chosen the initial 
guessing probability g equal to zero. We have assumed that parameter a of 
the model (representing the transition probability from the initial to the inter
mediate state) is the multiplication of a parameter Ö which represents a stu
dent's capability for learning in the first phase (the higher the value of ö, the 
faster the student learns) and a parameter e which represents an item's diffi
culty (the higher the value of e, the easier the item). Parameter ö has been 
kept at 0.1. Parameter E has been kept at 10 for 10 of the 30 items and at 1 
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for the other 20 items. Hence, as before in the simulation by the Linear 
model, one third of the items are 10 times as easy to learn as the other items. 

Parameter ~ (representing the transition probability from the intermedi
ate to the mastered state) bas been varied between 0.3 and 0.9. 

The forgetting parameter y (representing the transition probabilityfrom 
the intermediate state to the initial state if another item is presented) bas been 
fixed at 0.3. This choice bas been inspired by the fact that forgetting should 
take place and that, hence, the parameter should not be to close to zero, but 
that on the other hand forgetting should not prevent the student from learning 
and that, hence, the parameter should not be too large. 

Intermediate state parameter h (representing the probability of a correct 
response in the intermediate state) bas been fixed on 0.9. In this way, taking 
into account the relatively high forgetting probability y, the intermediate 
state can be interpreted as short term memory. 

The results of the simulations are shown in Figure 17. 
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Figure 17: Predictions of a two-stage learning model in the case of varying item 
difficulties for the Situated strategy for k equal to 5, 10, and 100. Each line in the 
graphs represents the average over 100 runs of the model with parameter ~ (from 
bottom to top) 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. The test phases are 
given on the x-axis, and the number of correct responses on the y-axis. 
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Two effects can be observed. In the first place, for the higher values of ~. i.e" 
for the faster students, effectivity is increased by an increase in the value of 
the strategy's parameter. In the second place, for the lower values of ~. i.e" 
for the weaker students, effectivity is decreased by an increase in the value of 
the parameter. 

An explanation for these results is that fora high value of ~ the proba
bility that an item is added to the good set, though the student bas not yet 
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mastered it, is relatively low: an item answered correctly because it is in the 
intermediate state has a high likelihood of passing on to the mastered state by 
exactly that presentation on which it is correctly answered. 

The conclusion from these results is that the value of the parameter 
should be restricted, especially if we are interested in the effectivity of the 
strategy for the weaker students. The choice of k equal to 10 seems reason
able. 

3.5.3 Predictions about the relative effect of the strategy 

We have chosen to contrast our strategy with two existing item sequencing 
strategies, namely Random Recycling (Kintsch, 1977) and the so-called Vari
able Interval Performance (VIP) queuing (Alessi & Trollip, 1985; DeKlerk & 
VanBussel, 1990). As discussed above, in Random Recycling an item is only 
presented again when all other items have been presented. 

In VIP queuing, all the items to be learned are ordered in a queue. Each 
time, the first item from the queue is presented to the student and removed 
from the queue. When the student answers correctly, the item is placed at the 
end of the queue. When the student answers incorrectly, the item is inserted at 
various places in the queue. In that way, it will presented again earlier than 
items that have been answered correctly. The decision as to how often and 
where to insert an incorrectly answered item in the queue is rather arbitrary, 
but can have a major impact on the performance of the strategy. We have 
decided to use the same settings as in the study of De Klerk and Van Bussel 
(1990). Hence, an incorrectly answered item is inserted at three places in the 
queue, namely at the third, tenth, and last position. 

Obviously, there are more item sequencing strategies than these two (for 
amore complete overview see Ellerman, 1991). Random Recycling was 
chosen because it can serve as a kind of baseline: it is a very simp Ie strategy 
which is used in most laboratory experiments and also quite often used in 
educational software. VIP queuing was chosen because it bas been designed 
as a relatively simple strategy that adapts to the student's performance. 

Predictions have been obtained regarding the effect of the Situated strat
egy relative to the other strategies. The same kind of models as in the last sec
tion were used. In all the simulations, the Situated strategy was applied with 
parameter k=lO. 

Predictions of the All-or-None model about the relative effect of the 
strategy 
The same settings were used as in the previous section. The results of the 
simulations of students by the All-or-None model are shown in Figure 18. 
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According to the model, there is a clear advantage of using the Situated strat
egy compared to the other strategies: all the learning curves are higher in the 
case of the Situated strategy. Returning to the issue of the parameter setting 
for the Situated strategy (as discussed in the previous section), the Situated 
strategy already outperforms Random Recycling with a parameter value of 2. 

Random Recycling VIP queuing Situated 
30 

25 

20 
ts 
~ 15 
0 
() 

"*' 10 

5 

0 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 

Test number 

Figure 18: Predictions of the All-or-None model/or Random Recycling, VIP 
queuing, and Situated, respectively. Each line in the graphs represents the average 
over 100 runs of the model with parameter ex (!rom bottom to top) 0.1, 0.2, 0.3, 0.4, 
and 0.5, respectively. The test phases are given on the x-axis, and the number of 
correct responses on the y-axis. 
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According to this model, VIP queuing is more effective than Random 
Recycling for very good students: the increase in the two highest learning 
curves for VIP queuing lasts Jonger than for Random Recycling and therefore 
the curves end higher. However, VIP queuing performs rather poorly for 
weak students: the two lowest learning curves for VIP queuing end lower 
than those for Random Recycling and the lowest learning curve especially 
hardly increases at all in the end. A possible explanation for this is a kind of 
blockage effect. Weak students are likely to answer an item incorrectly a 
couple of times before answering correctly. Each time an item is answered 
incorrectly it will appear twice at the beginning of the queue (in third and 
tenth position). So, it is possible that by the time the item is answered cor
rectly a lot of appearances of that item are still in the front part of the queue, 
thereby blocking the learning of still unrnastered items. These extra presenta
tions of the item do not make any sense in the All-or-None model, becau:se 
the item will never be forgotten once it bas been answered correctly. 

lt seems likely that the blockage effect becomes even worse when not all 
items are equally difficult: more difficult items may black the learning of eas-
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ier items. lt also seems likely that the advantage of using the Situated strategy 
becomes even larger when not all items are equally difficult: then there is a 
clear reason why some items have to be presented more frequently.The 
advantage of the Situated strategy in the case of equally difficult items is 
merely due to the probabilistic nature of learning in the All-or-None model. 

To check the correctness of these hypotheses, simulations were done 
with a set of items of varying difficulties. We have assumed that parameter 
a of the model (representing the transition probability from the initia} to the 

mastered state) is the multiplication of a parameter P which represents a stu
dent' s learning capability (the higher the value of ~. the faster the student 
learns) and a parameter y which represents an item's difficulty (the higher 
the value of y, the easier the item). Parameter ~ has been varied between 
0.01 and 0.1. Parameter y has been kept at 10 for 10 of the 30 items, and at 1 
for the other 20 items. Hence, as before, one third of the items are 10 times as 
easy to learn as the other items. 

The results of the simulations are shown in Figure 19. 
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Figure 19: Predictions of the All-or-None model in the case of varying item 
difficulties for Random Recycling, VIP queuing, and Situated, respectively. Each line 
in the graphs represents the ave rage over 100 runs of the model with parameter ~ 
(from bottom to top)from 0.01 to O.I. The test phases are given on the x-axis, and the 
number of correct responses on the y-axis. 

Two observations can be made. In the first place, our hypothesis regarding the 
blocking effect seems correct. All the learning curves in the case of VIP 
queuing are very low, approximately as low as, or even lower than, the lowest 
learning curve in Figure 18. This is not the case with the other strategies. 

In the second place, the Situated strategy is more eff ective than Random 
Recycling, especially for the higher learning curves. However, the effect is 

" 



86 Chapter 3 

not as great as we might have expected. A possible reason for this can be seen 
in the graphs. It can be observed that Random Recycling scores better in the 
beginning, at the second test phase. The learning curves start steeper. This 
can be explained by the fact that in Random Recycling all items, including all 
easy items, are presented to the student in the first practice phase. Hence, the 
student bas an early opportunity to learn these easy items. On the other hand, 
in the Situated strategy it is possible that some of the easy items have not yet 
been presented in the first practice phase. 

From these results, it can be concluded that Random Recycling should 
be used initially, so that all items are presented once, before using the Situ
ated strategy. However, we have decided not to do this yet, as the models are 
not necessarily correct, but to look first at the results of experiments with real 
users. The results of the experiments (see next chapter) indeed contradicted 
this prediction. 

Predictions of the Linear model about the relative effect of the strategy 
The same settings have been used as in the previous section, with a set of 
equally difficult items. The results of the simulations of students by the 
Linear model are shown in Figure 20. 
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Figure 20: Predictions of the Linear model for Random Recycling, VIP queuing, and 
Situated, respectively. Each line in the graphs represents the average over 100 runs 
of the model with parameter a (from top to bottom) 0.6, 0.7, 0.8, and 0.9, 
respectively. The test phases are given on the x-axis, and the number of correct 
responses on the y-axis. 

As mentioned above, Random Recycling is the optima! strategy when 
the Linear model is correct. Indeed, the simulations show an advantage of 
using Random Recycling. However, the results for the Situated strategy 
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approximate the results of Random Recycling: the difference is rather small. 
VIP queuing perforrns worse than Situated, even for the best students. The 
blocking effect still seems to be present. 

Predictions of a two-stage learning model about the relative effect of 
the strategy 
The same settings have been used as in the previous section. The results of 
the simulations of students by the two-stage learning model are shown in 
Figure 21. 
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Figure 21: Predictions of a two-stage learning model in the case of varying item 
dif.ficulties for Random Recycling, VIP queuing, and Situated, respectively. Each line 
in the graphs represents the average over 100 runs of the model with parameter P 
(jrom bottom to top) 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. The test phases 
are given on the x-axis, and the number of correct responses on the y-axis. 

Three observations can be made regarding these results. In the first place, the 
results for VIP queuing are again very bad, probably due to the blocking 
effect. In the second place, the learning curves for Random Recycling again 
start steeper than those of Situated: it seems preferable to use Random Recy
cling initially. In the third place, the Situated strategy is clearly more effective 
for the faster students. However, for the weakest students Random Recycling 
is more effective. An explanation is that the Situated strategy can only be 
effective when the student has learned a certain number of items: only the 
fact that those items can be presented less frequently produces a positive 
effect. 
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3.6 Conclusions 

A question addressed in this chapter is how models of an individual agent, 
say a student, can be used to design the adaptive behaviour of another agent, 
say the teacher, interacting with it. It bas been argued that instead of using an 
executable model to simulate the student, only the functional aspects of the 
model should be used, in combination with direct observation. 

According to this approach, a 'Situated' item sequencing strategy bas 
been designed. In this strategy, items have a higher likelihood of being pre
sented when they were answered incorrectly at their previous presentation 
than when they were answered correctly. The strategy has one parameter, 
namely the degree to which items are presented more frequently, say k. 

Executable models of the human learning process have been used to 
obtain predictions regarding the effect of different values of k, and regarding 
the relative effect of the Situated strategy compared to other item sequencing 
strategies, namely Random Recycling (Kintsch, 1977) and VIP queuing 
(Alessi and Trollip, 1985). It has been argued that the effectiveness of a strat
egy should be determined on the basis of learning curves rather than asymp
totic performance, and that the learning curves of individual students should 
be considered rather than averages over students. In the next chapter, the 
validity of the models will be tested by comparing their predictions with 
experimental data. 

As far as the effect of the value of k is concerned, both the All-or-None 
model (Bower, 1961) and the Linear model (Atkinson, Bower, & Crothers, 
1965) predicted that the value of k should be as large as possible. However, 
the difference in the learning curves of parameter values of ten and larger was 
very limited. On the other hand, a two-stage learning model, which incorpo.: 
rated forgetting and guessing, predicted that a higher value of k would have a 
negative effect on the learning curves of the low performers. Therefore, the 
value of k should be restricted. Based on these observations, we have opted 
fora value of k=lO, and this value will be used in the experiments in the next 
chapter. 

As far as the relative effect of the Situated strategy is concerned, the All
or-None model predicted that the Situated strategy js much more effective 
than the other two. VIP queuing was predicted to outperform Random Recy
cling for the very high performers, but to be much worse for the lower per
formers. In the case of items of varying difficulty, the Situated strategy was 
predicted to be more effective than Random Recycling, hut with a rather lim
ited difference. This was due to a relatively steep initial rise in the learning 
curves of Random Recycling, which suggests that it may be better to use 
Random Recycling at the very beginning of the learning process followed by 
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the Situated strategy. The same effect was predicted by the two-stage learning 
model. Tuis model also predicted that the Situated strategy would be better 
than Random Recycling for the high performers, but worse for the low per
formers. The Linear model, on which Random Recycling is based, predicted 
an advantage of using Random Recycling, hut the difference with the Situ
ated strategy was predicted to be very timited. 

In the next two chapters, the effectivity of the Situated item sequencing 
strategy will be evaluated experimentally in both a paired associate learning 
task (see Chapter 4) and a concept learning task (see Chapter 5). The validity 
of the models will also be tested. 
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Chapter 4 

The Practice Agent 
in a paired associates learning task 

Abstract 
In both recall and recognition tasks, it has been empirically tested whether 
the models' predictions about a positive effect of using the Situated item 
sequencing strategy we re valid. The results of these experiments have impli
cations both for the behaviour of the Practice Agent and the models. In a 
recall task, the Situated strategy reduced the variance between subjects, 
improving the results of the poor performers. This was due to faster learning 
of the more difjicult items, as they were presented more frequently, without 
obstructing the learning of the easier items. The models turned out to be 
invalid, in the sense that they predicted a too sharp initia[ rise of the learning 
curves, and largely underestimated the effect of VIP queuing which suggests 
that they lack a mechanism simulating the limited cognitive load a student 
can handle. Successive experiments, in both a recognition and a recall task, 
showed that the Situated strategy already had an advantage with only a 
limited opportunity to adapt to the student. However, later experiments failed 
to show that using the Situated strategy had any effect. This was probably due 
toa too high performance on the part of the subjects. Besides, a change of the 
strategy seems necessary in order to prevent incorrect transfers to the good 
set as a consequence of short-term memory. 
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4.1 Experiment 1: Paired associates learning in recall 

Our hypothesis is that the use of the Situated strategy is superior, and the 
predictions of the models in the previous chapter have provided some support 
for this. In this section we provide some experimental data to support this 
claim. Some researchers from the field of situated cognition have argued that 
the traditional, well-controlled laboratory experiments are not valid, because 
the interaction with a complex changing environment is purposely removed 
(Lave, 1988). We believe, however, that it is possible to use well-controlled 
experiments to provide experimental support for the situated approach. In this 
section, we will give an example: we will show that the Situated item 
sequencing strategy gives better results than Random Recycling because of 
its adaptivity. 

4.1.1 Method 

Design and Procedure 
Comparisons were made between groups of subjects learning Japanese trans
lations of Dutch words in different experimental conditions. In each condi
tion, the subjects were presented with alternate test and practice phases. In 
both phases, Dutch words were presented on the computer screen (see Figure 
22) with the request to type as accurately and quickly as possible the transla
tion into Japanese (words written as pronounced). Answers and response 
times were recorded. In test phases, all 30 words were presented to the 
subjects in a random order. No feedback was given with respect to the 
correctness of the translation. In practice phases, feedback was given with 
respect to the correctness of the translation, and the correct translation was 
presented on the screen for 2 seconds. Depending on the condition assigned 
to the subject, in the practice phases Random Recycling, VIP queuing, or 
Situated was used to determine the sequence of 30 words presented to the 
subjects. So, depending on the condition, it could occur that in a practice 
phase the same word was presented more than once, and other words not at 
all.The experiment ended after eight test phases. 

Subjects 
Twenty-seven subjects with university or higher vocational training partici
pated voluntarily in the experiment.The average age was 23. No subject had 
any prior experience with Japanese. Subjects were randomly assigned to one 
of the three experimental conditions. 
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Figure 22: Screen layout of the recall Experiment 1, 2b, and 3b. 

Equipment 
The material was presented in black and white on the screen of a Sun Spare 
station. The subjects used an ordinary keyboard to type in the responses, use 
of the mouse was not needed. No use was made of audio. All instructions and 
feedback were given in a text format on the screen. 

Materials 
Word pairs were selected from the first lessons of a beginners' course in Japa
nese. The word pairs are shown in Table 2. 

Table 2: Word pairs used in Experiment 1. English translations are given in 
parentheses. 

bank ben chi (bench) koud samui (cold) 
raam mado (window) omdat kara (because) 
avond yoru (evening) hand te (hand) 
acht hachi (eight) kleur iro (colour) 
deze kore (this) zee umi (sea) 
huis ie (house) geur nioi (scent) 
neus ha na (nose) groot okii (large) 
werk baito (work) regen ame (rain) 
film eiga (movie) boom ki (tree) 
goed ii (good) maan tsuki (moon) 
rood aka (red) moed gattsu (courage) 
daar soko (there) bier na ma (beer} 
hoed boshi (hat) boek hon (book) 
riem beruto (belt) ander ho ka (other) 
vijf 90 (five) zoon musuko (son) 

No effort was made to construct a set of equally difficult word pairs. On the 
contrary, on the basis of the above predictions we had reasons to prefer a set 
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of items of varying difficulty. However, we did not construct such a set in an 
artificial manner: if the items vary in difficulty this is a natural result of the 
words present in the first lessons of a course. 

The number of letters in the stimuli varied between three and five. The 
number of letters in the response words varied between two and six. Twenty 
of the forty words were nouns, three were adjectives, and seven were of 
another kind of word. 

4.1.2 Results: genera( 

The results of the experiment are shown in Figure 23. Average results are 
shown in Figure 24. A MANOVA was performed on logit-transformed 
proportions of correct responses, with the test phase as a within-subjects 
repeated measures factor and the experimental condition (strategy used in the 
practice phases) as a between-subjects factor. The results of the analysis are 
summarized in Table 3. 
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Figure 23: Results of Experiment 1 for Random Recycling, VIP queuing, and 
Situated, respectively. Each line in the graphs represents a subject. The test phases 
are given on the x-axis and the number of correct responses on the y-axis. 
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There was a main effect of test phase [F(7,15)=33.2, p < .001], hut no 
main effect of strategy. There was neither a significant effect for Random 
Recycling versus Situated or VIP queuing nor for Situated versus VIP queu
mg. 

A significant interaction was found between test phase and strategy 
[F(l4,30)=2.5, p < .05]. In particular, a significant interaction was found 
between test phase and Random Recycling versus Situated or VIP queuing 
[F(7,15)=5.72, p < .01]. However, the interaction between test phase and Sit-
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uated versus VIP queuing was not significant. Testing the effect of strategy 
(and the contrasts) per test phase revealed that it was only significant in the 
second test phase. 

Table 3: Results of the MANOVA on the data of Experiment 1. 

Source Num DF Den OF F 
Between subjects 

Strategy 2 1 2.60 
Random Recycling vs. {Situated, VIP queuing} 1 1 2.97 
Situated vs. VIP queuing 1 1 2.24 

Within subjects 

Test 7 15 33.20 

95 

Test x Strategy 14 30 2.50 * 
Test x Random Recycling vs. {Situated, VIP queuing} 7 15 5.72 ** 
Test x Situated vs. VIP queuing 7 15 0.68 

p< .05, **p< .01, ***p < .001 

4.1.3 Discussion: general 

The significant main effect of the test phase merely indicates that subjects 
leam, which is quite obvious from the increasing learning curves in Figure 
23. The absence of a significant effect of strategy, more particularly, of a 
significant effect for the contrasts between the Situated strategy and the other 
strategies prohibits claims regarding the relative effect of the Situated strat
egy. The average curves per strategy (see the left-hand graph in Figure 24) 
seem to indicate, however, that on average the performance in the Situated 
condition was better than that in the other conditions, especially than that in 
the case of Random Recycling. They also seem to indicate an advantage of 
using VIP queuing as compared to Random Recycling. 

The significant interaction between strategy and test phase indicates a 
different effect of strategy for the different test phases. Strikingly, the effect 
of strategy and, more particularly, of Random Recycling versus Situated and 
VIP queuing was only significant for the second test phase. So, both the use 
of VIP queuing and of the Situated strategy led to better performance in the 
second test phase than the use of Random Recycling. For VIP queuing, this 
effect may be explained by the fact that subjects are confronted with the same 
few words very often till they answer them correctly. In that way, the subjects 
are likely to leam some words in the first practice phase. For the Situated 
strategy, it is striking because during the first practice phase the strategy has 
hardly any memory as regards the past performance of the subjects, namely 
only the memory with respect to the items that have already been presented in 
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that first practice phase. So, the only adaptation that can occur is that items 
which have been answered incorrectly (and the first time all items are likely 
to be answered incorrectly) have a probability of being presented again in the 
same practice phase (at the expense of other items that have not yet been pre
sented), while this is impossible in the case of Random Recycling. So, when 
there are many items that can be leamed by being presented at least twice, 
this may produce an initial advantage of the use of the Situated strategy over 
the use of Random Recycling. 

In conclusion, the analysis of the results of the experiment does not 
show the clear advantage of the Situated strategy as predicted by the models. 
Nevertheless, Figure 23 seems to indicate an advantage of using the Situated 
strategy: the variance between subjects is reduced, indicating adaptation in 
the sense that in the Situated condition there is less difference between high 
and low performers. Therefore, a post-hoc analysis was performed in which 
subjects were divided into high and low performers. 

4.1.4 Results: high performers versus low performers 

For the post-hoc analysis the subjects were divided into two groups per 
strategy: a group for the high performers and a group for the low performers. 
The median performance level per strategy was used as a criterion: if the 
number of correct responses of a subject in most test phases was above or 
equal to the median of that test phase, the subject was assigned to the group 
of high performers. On the basis of this criterion, in all strategies five subjects 
were assigned to the group of high performers and four to the group of low 
performers. The average learning curves per group and per strategy are 
shown in Figure 24. 

For each group, a MANOVA was performed on logit-transformed pro
portions of correct responses, with the test phase as a within-subjects factor 
and the experimental condition (strategy used in the practice phases) as a 
between-subjects factor. The results of this analysis are summarized in Table 
4 and 5. Because of insufficient error degrees of freedom, only the between
subjects effects are available in group 2. 

For the high performers, there was a significant main effect of test phase 
[F(7,3)=26.4, p < .01] and strategy [F(2,1)=4.6, p < .05]. The contrast 
between Random Recycling and Situated or VIP queuing was significant 
[F(l,1)=5.18, p < .05], as well as the contrast between Situated and VIP 
queuing [F(l,1)=6.38, p < .05]. There was no significant interaction effect 
between test phase and strategy. 
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Figure 24: Ave rages of the results of Experiment 1 for all subjects, the high 
performers, and the low performers, respectively. The lines in the graphs show the 
ave rage of Random Recycling (- . . ), VIP queuing (-), and Situated ( -). The test 
phases are given on the x-axis and the number of correct responses on the y-axis. 

Table 4: Results of the analysis for the high performers 

Source Num DF Den DF F 
Between subjects 

Strategy 
Random Recycling vs. {Situated, VIP queuing} 
Situated vs. VIP queuing 

Within subjects 

2 
1 
1 

Test 7 
Test x Strategy 14 
Test x Random Recycling vs. {Situated, VIP queuing} 7 
Test x Situated vs. VIP queuing 7 

*p <.05, **p <.01, ***p <.001 

Table 5: Results of the analysis for the low performers 

3 
6 
3 
3 

4.60 * 
5.18 * 
6.38 * 

26.40 ** 
1.08 
0.71 
1.47 

Source Num DF Den DF F 
Between subjects 

Strategy 
Random Recycling vs. {Situated, VIP queuing} 
Situated vs. VIP queuing 

* p <.05, ** p <.01, *** p <.001 

2 
1 
1 

13.36 ** 
25.51 

0.03 
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For the low performers, there is a significant main effect of strategy 
[F(2,1)=13.36, p < .01] and a significant effect of the contrast between Ran
dom Recycling and Situated or VIP queuing [F(l,1)=25.51, p < .01]. How
ever, the effect for Situated versus VIP queuing was not significant. 

4.1.5 Discussion: high performers versus low performers 

For the high performers, the significant effects of the contrasts between 
Random Recycling and Situated or VIP queuing and between Situated and 
VIP queuing indicate, in combination with the middle graph in Figure 24, that 
there is a positive effect of using the Situated strategy and VIP queuing 
compared to Random Recycling, and of using VIP queuing compared to the 
Situated strategy. However, this effect is relatively small (see Figure 24). 
Striking, again, is the advantage in the second test phase of the average learn
ing curves of both the Situated strategy and VIP queuing compared to the 
average learning curve of Random Recycling. Tuis is the opposite of the 
predictions of the models. 

For the low performers, the significant effect of the contrast between 
Random Recycling and Situated or VIP queuing indicates, in combination 
with the right-hand graph in Figure 24, that there is a positive effect of using 
both the Situated strategy and VIP queuing compared to Random Recycling. 
As can be seen in Figure 24, this effect is quite large. The effect of Situated 
versus VIP queuing is not significant, but with only four subjects per condi
tion, the power of the test was of course very small. As can be seen in Figure 
24, there is certainly a trend in favour of the Situated strategy for the low per
formers: though the average learning curve of VIP queuing is steeper ini
tially, the average learning curve of Situated is much steeper after the third 
test phase. 

4.1.6 Results: word level 

To obtain more insight into the difficulty distribution of the words, for each 
combination of strategy and stimulus word the number of subjects that 
answered that word correctly was calculated for each test phase. An impres
sion of the results is given in Figure 25. 

To test the relationship between the difficulty of a word pair, on the one 
hand, and the number of letters in the response word and the kind of word, on 
the other hand, an analysis was perf ormed on the Random Recycling results. 
Unlike the. other strategies, in the case of Random Recycling each word pair 
was presented to the student equally often, and the results of the subjects in 
the case of Random Recycling therefore give a clear indication of the relative 
difficulty of the word pairs. As regards the kind of word, a distinction was 
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made between nouns and other words. The curves dependent on the number 
of letters of the response word and the kind of word are shown in Figure 26. 

Random Recycling VIP queuing Situated 
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Figure 25: Results of Experiment 1 on word level /or Random Recycling, VIP 
queuing, and Situated respectively. Each line in the graphs represents a word. The 
test phases are given on the x-axis and the number of subjects who responded 
correctly on presentation of the word is shown on the y-axis. 
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Figure 26: Random Recycling results of Experiment 1 on word level with average 
curves for the length of the response word and the kind of word, respectively. Each 
line in the left-hand graph represents the average over response words of length 2, 3, 
4, 5, and 6, respectively. The lines in the right-hand graph represent the average over 
nouns ( solid line) and other kinds of words ( dashed line), respectively. The test 
phases are given on the x-axis and the number of subjects who responded correctly 
on presentation of the word is shown on the y-axis. 
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For Random Recycling, a MANOVA was performed on the numbers of 
subjects who responded correctly to the word, with the test phase as a within
subjects 1 factor and the number of letters in the response word and the kind 
of word as between-subjects factors. Two contrasts were performed, namely 
between a word Jength of two and a word length of three, four, or five letters, 
and between a word length of three and a word length of four or five letters. 
The results of this analysis are summarized in Table 6. 

Table 6: Results of the analysis on word level for Random Recycling 

Source Num DF Den DF F 
Between subjects 

Length 4 1 5.14 ** 

2 vs. {3,4,5} 
3 vs. {4,5} 
Kind 

1 1 15.72 ••• 
1 1 0.43 
1 1 1.77 

Length x Kind 3 1 1.41 

Within subjects 

Test 7 15 68.01 ••• 
Test x Length 28 56 i.75 • 
Test x 2 vs. {3,4,5} 7 15 5.63 •• 
Test x 3 VS. {4,5} 7 15 2.42 
Test x Kind 7 15 0.88 
Test x Length x Kind 21 44 2.09 * 

*p <.05, **p <.01, ***p <.001 

There are significant main effects of test phase [F(7,15)=68.0l, 
p < .001] and of the length of the response word [F(4,1)=5.14, p < .01]. The 
contrast between a word length of two and a word length of three, four, or 
five letters showed a significant effect. The contrast between a word length of 
three and a word length of four or five letters was not significant. 

A significant interaction was found between test phase and the length of 
the response word [F(28,56)=1.75, p < .05] and, more particularly, between 
test phase and a word length of two versus a word length of three, four, or five 
letters. 

4.1.7 Discussion: word level 

Figure 25 gives some insight into the functioning of the different strategies. 
The graph for Random Recycling clearly shows that not all word pairs are 

1 . In this case the subjects are word pairs. 



The Practice Agent in a paired associates learning task 101 

equally difficult to learn. Some word pairs are relatively easy to learn, for 
instance, the highest learning curves are for the words "go" (five), "ii" 
(good), and "benchi" (bench). Other word pairs are relatively hard to learn, 
for instance, the lowest learning curves are for the words "tsuki" (moon), 
"hoka" (other), and "yoru" (evening). 

The graph for VIP queuing shows that the large differences between 
word pairs disappear _due to this strategy. Compared to Random Recycling, it 
takes the subjects longer to learn the easy word pairs, and less time to learn 
the more difficult word pairs. An explanation may be that VIP queuing 
reduces the number of word pairs a subject is learning concurrently and that, 
hence, it may occur that an easy word is only presented to a subject after a 
number of hard word pairs have been leamed. So, VIP queuing may obstruct 
fast learning of the easy word pairs. On the other hand, once a difficult word 
bas been presented to the subject, it is repeated till the subject bas leamed it. 
Thus, VIP queuing benefits the learning of the difficult word pairs. 

The graph for the Situated strategy is a mixture of the graphs for the 
other two strategies. As in the case of Random Recycling, some word pairs 
are learned relatively fast. Exactly as in the case of Random Recycling, the 
highest learning curves in the case of the Situated strategy are for the words 
"go" (five), "benchi" (bench), and "ii" (good). On the other hand, with one 
exception, namely the word "hoka" (other), all the difficult word pairs are 
learned faster than in the case of Random Recycling, as in the case of VIP 
queuing. So, the Situated strategy benefits the learning of the difficult word 
pairs without obstructing the learning of the easy word pairs. However, some
times the learning of a very difficult word pair, as in the case of "hoka", is 
sacrificed for the learning of the easier word pairs. Tuis seems a reasonable 
use of resources, however. 

As far as the analysis of word-pair characteristics is concerned, the sig
nificant main effect of test phase merely indicates that the word pairs are 
leamed.The significant main effect of the number of letters in the response 
word, in combination with Figure 26, indicates that word pairs (in our set) 
with a response of only two letters are easier to learn than word pairs with a 
response of greater length. However, as can be seen in Figure 26, a rule of 
thumb like: the more letters in the response, the more difficult the word pair 
does not hold good. For instance, the word pairs with a response of six letters 
tend to be easier to learn than those with four letters. The kind of word also 
does not give an indication of the relative difficulty. Tuis suggests that more 
complex factors are involved, such as the abstractness of the word, the resern
blance of the response to words in other languages, the ease of constructing 
mernorizing aids. In conclusion, this supports our choice of letting the agent 
focus on the student's responses in order to discover which word pairs are 
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more difficult, rather than letting it use formal properties of the individual 
word pairs. 

4.1.8 Fit of the models 

The fits of only two models are presented, namely the All-or-None model and 
the Linear model, both on the assumption of equally difficult items. For both 
models, only one parameter had to be estimated. The model fittings of the 
other models are omitted, because the added values were marginal having the 
predictions (see Section 3.5.3). In the discussion of the fits (Section 4.1.9), 
these predictions will also be compared with the experimental data. 

The fits were obtained by using the same procedure as in the case of the 
predictions, as discussed in Section 3.5.1 and shown in Figure 13. However, 
in case of the fits, the parameters of the rnodels were varied while calculating 
which parameter setting produced the best fit. 

Instead of fitting the model to the average of the subjects in a certain 
experimental condition, we opted to fit all subjects individually. In that way, 
the model also has to explain the variance between the subjects. 

Though we could have fitted all the subjects with one parameter setting, 
we opted to use one parameter setting for each individual subject. This 
enabled the model to explain individual diff erences between subjects on the 
basis of different parameter settings. 

We used a least squares measure, in which the fitting process minimizes 
the sum over test phases of the squares of the difference between the number 
of correct responses of a subject and the number of correct responses of the 
model. We will denote this minimal sum with lsq (least square). 

Fit of the All-or-None model 
The All-or-None model was fitted on the data of Experiment 1 by varying the 
value of parameter ex. The mean and standard deviations of the lsq were 
m=41.27, sd=33.14 for Random Recycling, m=12.52, sd=6.81 for VIP queu
ing, and m=19.39, sd=12.26 for the Situated strategy. Figure 27 shows the 
distribution of the values of a needed for the fits for the various strategies. 
The learning curves corresponding to these parameter values are shown in 
Figure 28. 

Pearson correlation coefficients were determined between the experi
mental data and the fit per strategy, and between the data and the fit per strat
egy per test phase. These coefficients are shown in Table 7. 
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Figure 27: Distribution over the subjects of the estimated parameter of the All-or
None model and the Linear model, respectively, for (/rom left to right) Random 
Recycling (white), VIP queuing (gray), and Situated (black), respectively. The 
subjects are given on the x-axis and the value of the parameter is shown on the y
axis. 
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Figure 28: Results of the fit of the All-or-None model on the data of Experiment I for 
Random Recycling, VIP queuing, and Situated, respectively. Each solid line in the 
graphs represents afitted subject, each dashed line represents a real subject. The test 
phases are given on the x-axis and the number of correct responses on the y-axis. 
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Table 7: Pearson correlation coefficients between the fit of the All-or-None model 
and the data of Experiment 1. 

Source Testphase 

Total T2 T3 T4 T5 T6 T7 T8 

Random Recycling .977 .689 .981 .973 .962 .983 .990 .988 

VIP queuing .990 .904 .952 .994 .999 .982 .975 .976 

Situated .982 .842 .936 .974 .961 .947 .807 .870 

Fit of the Linear model 
The Linear model was fitted on the data of Experiment 1 by varying the value 
of parameter a. The mean and standard deviations of the lsq were m= 179 .21, 
sd=44.48 for Random Recycling, m=8.89, sd=4.82 for VIP queuing, and 
m=97.67, sd=60.01 for the Situated strategy. The distribution over the 
subjects of the value of a for which the best fit was obtained is shown in 
Figure 27. The learning curves corresponding to these parameter values are 
shown in Figure 29. Pearson correlation coefficients were determined 
between the experimental data and the fit per strategy, and between the data 
and the fit per strategy per test phase. These coefficients are shown in Table 8. 
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Figure 29: Results of the fit of the Linear model on the data of Experiment 1 /or 
Random Recycling, VIP queuing, and Situated, respectively. Each solid line in the 
graphs represents afitted subject, each dashed line represents a real subject. The test 
phases are given on the x-axis and the number of correct responses on the y-axis. 
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Table 8: Pearson correlation coejjicients between the fit of the Linear model and the 
data of Experiment 1. 

Source Testphase 

Total T2 T3 T4- T5 T6 T7 TB 

Random Recycling .932 .640 .968 .984 .975 .979 .967 .967 

VIP queuing .990 .924 .954 .984 .994 .989 .982 .966 

Situated .823 .452 .437 .586 .455 .331 -.045 -.165 

4.1.9 Discussion: fit of the models 

For the All-or-None model, both the correlation coefficients (see Table 7) and 
the near-coincidence of the learning curves of the model and those of the real 
subjects (see Figure 28) indicate that the model fits the data very well. On1y 
the beginning of the curves, particularly in the second test phase, is fitted rela
tively poorly, especially in the case of Random Recycling ( correlation coeffi
cient of .689). The learning curves of the real subjects start less steeply than 
those of the model. 

However, even if the relatively bad fit of the beginning of the curves is 
neglected, the good fit does not imply that the model is correct. As can be 
seen in Figure 27, there is definitely an effect of strategy on the a distribu
tion. According to this fit, the subjects in the VIP-queuing condition were rel
atively good (high a values) and those in the Situated condition were 
relatively bad (low a values). Tuis is not very likely, given the random 
assignment of subjects to conditions. 

The All-or-None model predicted (see Section 3.5.3) that the Situated 
strategy would have a great advantage over the other two strategies as regards 
its effect on the subjects' performance. It also predicted that VIP queuing 
would produce better results than Random Recycling for the very high per
formers among the students, hut very poor results for the lower performers. 
Both predictions tumed out to be incorrect. 

The All-or-None model with varying difficulty levels predicted (see 
Section 3.5.3) even worse performance of VIP queuing due toa blockage 
effect. This is not reftected in the experimental data. It also predicated a better 
performance of Random Recycling in the second test phase. The experimen
tal data indicate the opposite effect. The same incorrect predictions were 
given by the two-stage learning model (see Section 3.5.3). 

For the Linear model, both the correlation coefficients (see Table 8) and 
the obvious difference between the learning curves of the model and those of 
the real subjects for both Random Recycling and the Situated strategy (see 
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Figure 29) indicate that the model fits the data rather poorly. The data of the 
Situated strategy, especially, are fitted very poorly. With this model, the sec
ond test phase of Random Recycling also shows an relatively poor fit, with a 
much steeper increase for the model than for the real subjects. Moreover, the 
a distribution is unequal for the different strategies (see Figure 27). 

The Linear model predicted (see Section 3.5.3) a small advantage of the 
use of Random Recycling over the use of the Situated strategy, and an advan
tage of both over the use of VIP queuing. These predictions also tumed out to 
be incorrect. 

In conclusion, all the models discussed have shortcomings of various 
kinds. Two of them are very striking, and may pro vide a direction for possible 
improvements. In the first place, all the models discussed produce steeper 
starts of the learning curves than the real subjects. This points in the direction 
of neural networks, which, like the real subjects, have a tendency to start 
slowly. It may also indicate partial learning. 

In the second place, all the models largely underestimate the effect of 
VIP queuing. Tuis suggests that they lack a mechanism which explains the 
positive features of VIP queuing. Such a feature may be that the cognitive 
load of the student is reduced by not presenting all the items at once, hut only 
presenting an item when most of the items previously presented have been 
learned. Tuis points in the direction of including in the models a limit to the 
maximum number of items a student can leam at the same time. If this lim
ited capacity is true, then the Situated strategy may be improved by adding an 
extra set of items, which represents the non-presented items, and presenting 
one of these items only whenever the number of items in the bad set is below 
a certain limit. 

4.2 Experiments 2a (recognition) and 2b (recall) 

Two more experiments in the domain of paired associates learning were 
performed as a sequel to Experiment 1. For both experiments, a within
subjects design was used, and the comparison of strategies was restricted to 
Random Recycling and the Situated strategy, because we expected that this 
would give us enough insight into the learning process. For both experiments, 
both a recognition and a recall variant were designed in order to explore 
possible diff erences between these two kinds of paired associates learning as 
regards the effectivity of the strategies. 

First, an experiment will be presented in which the memory of the Situ
ated strategy was cleared after each test phase: the strategy had to start all 
over again after every test phase with all the items in the bad set. The goal of 
this experiment was to investigate whether the steep rise of the learning 
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curves in the second test phase in the case of the Situated strategy compared 
to Random Recycling (see above) would continue during the whole learning 
session when the strategy worked in all practice phases under the same condi
tion as in the first practice phase (namely with no initial assumptions of the 
student's know-ledge). Next (Section 4.3), an experiment will be presented in 
which the memory was not cleared, so the same Situated strategy was used as 
in Experiment 1. 

4.2.1 Method 

Design and Procedure. 
In both experiments, 2a and 2b, the subjects had to learn Japanese translations 
of Dutch words (Japanese words written as pronounced). In recognition 
Experiment 2a, Dutch words were presented on the screen together with the 
translations of all the words (see Figure 30) with the request to select as accu
rately and quickly as possible the translation into Japanese (words written as 
pronounced). To prevent the subjects from learning positions on the screen 
rather than translations, at each presentation of a Dutch word, the translations 
were randomly assigned a position. This has the disadvantage that the 
subjects have to search the whole screen in order to find a correct translation. 

In recall Experiment 2b, Dutch words were presented on the screen (see 
Figure 22) with the request to type as accurately and quickly as possible the 
translation into Japanese (words written as pronounced). 

In both experiments, the subjects were presented with alternative test 
and practice phases. In test phases, all 30 Dutch words were presented to the 
subjects in a random order. No feedback was given with respect to the cor
rectness of the translation. In practice phases, feedback was given with 
respect to the correctness of the translation, and the correct translation was 
displayed on the screen for 2 seconds. Answers and response times were 
recorded. 

Trials stopped when a subject had translated all the words correctly in 
two subsequent test phases, or when eight test phases had passed in the recog
nition variant, and ten test phases had passed in the recall variant. This maxi
mum number of test phases was determined by running pilots such that a 
subject would need no more than approximately one hour to complete the 
experiment. 

In both experiments, a within-subject design was used: each subject 
leamed two sets of Japanese words, one with Random Recycling, the other 
with the Situated item sequencing strategy in the practice phases. The two 
sessions were taken one week apart. To control for possible session and set 
effects, the subjects were divided into four groups: one group that started 
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with Random Recycling and Word set 1, followed by the Situated strategy 
and Word set 2, a second group that started with Random Recycling and 
Word set 2, followed by the Situated strategy and Word set 1, a third group 
that started with the Situated strategy and Word set 1, followed by Random 
Recycling and Word set 2, and a fourth group that started with the Situated 
strategy and Word set 2, followed by Random Recycling and Word set 1. So, 
there was an experimental between-subject variable "condition" with four 
levels, dependent on the strategy and word set used in the first session. 

Geef de vertaling 

boon1 

Figure 30: Screen layout of the recall Experiment 2a and 3a. 

Subjects 
In both Experiment 2a and Experiment 2b, twenty-four subjects of the higher 
classes (4 and 5) of a local high school participated voluntarily, with an aver
age age of 16. Subjects were paid for their participation. All subjects had no 
prior experience with Japanese. Subjects were randomly assigned to one of 
the four experimental conditions. 

Equipment 
The material was presented in black and white on a PC. In the recall Experi
ment 2b the subjects used an ordinary keyboard to type in the responses; use 
of the mouse was not needed. In the recognition Experiment 2A subjects used 
a mouse to select the translation. No use was made of audio. All instructions 
and feedback were displayed on the computer screen. 
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Materials 
Because of the within-subject design, two sets of word pairs were needed 
with approximately the same level of difficulty. The sets used in these experi-
ments are shown in Tab Ie 9. As in the previous experiment, all word pairs 
were selected from the first lessons of a beginners' course in Japanese. 

Table 9: The two sets of word pairs used in Experiment 2a and 2b. The English 
translations are given in parentheses. 

Set 1 set2 
raam mado (window) omdat kara {because) 
avond yoru (evening) water mizu (water) 
acht hachi (eight) kamer heya (room) 
kaart ka do (card) spin kumo (spider) 
maan tsuki (moon) geur nioi (scent) 
neus hana (nose) zwaar omoi (heavy) 
groot okii (large) regen ame (rain) 
film eiga (movie) snel hayai (fast) 
hand te (hand) drie san (three) 
duur takai (expensive) moed gattsu (courage) 
vier yon (tour) bier na ma (beer) 
zus ane (sister) twee ni (two) 
laat osoi (late) lente haru (spring) 
vrouw on na (woman) doos hako (box) 
plus tasu (plus) hier koko (here) 
die are (that) werk baito (work) 
ding mono (thing) huis ie (house) 
kind ko (child) goed ii (good) 
geld kane (money) rood aka (red) 
zee umi (sea) hoed boshi (hat) 
daar soko (there) voet ashi (toot) 
zoon musuko (son) deur doa (door) 
boter bata (butter) klok tokei (clock) 
stoel isu (chair) berg yama (mountain) 
meer motto (more) tand ha (tooth) 
kleur iro (colour) voor mae (before) 
peen ninjin (carrot) bank benchi (bench) 
boom ki (tree) boek hon (book) 
bord sara (plate) ander ho ka (other) 
vijf go (five) land kuni (land) 

To obtain sets of approximately equal difficulty, the sets were constructed 
according to the following criteria. 

1. The distribution of the length of the Japanese translations was the 
same for bath sets. The results of Experiment 1 on word level suggest that 
this is an important issue. 
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2. Similar kinds of words were used in both sets, both as regards gram
matica} category (for instance noun or adjective) and as regards frequency of 
occurrence in Dutch. The latter was checked with the aid of the word fre
quency lists of Uit den Boogaart (1975). 

3. The number of word pairs which may be highly confusable, because 
the translations are alike, was the same for both sets. For instance, boom=ki, 
kind=ko in Set 1, and goed=ii, huis=ie in Set 2. 

4. Interdependence between the sets, in the sense that the learning of 
words from one set bas an obvious influence on the learning of a word from 
the other set was prevented (as far as possible). For instance, learning the 
words ki (tree) and iro (colour) might have had an inftuence on the learning of 
kiiro (yellow). 

A pilot study was carried out to get an indication of whether both sets 
were indeed of approximately equal difficulty. Six subjects took part in the 
pilot study. Each subject performed the recall experiment as described above, 
only now Random Recycling was used in both sessions. Half of the subjects 
started with Set 1, the other half with Set 2. The results of this pilot study are 
shown in Figure 31. 

Set Session 
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Figure 31: Results of the pilotstudy. Each line in the graphs represents the learning 
curve of a subject in a certain session with a certain set of word pairs. So, the re are 
two lines per subject. In the left-hand graph, the solid lines represent the learning 
curves of the subjects when using the word pairs of Set 1 and the dashed lines the 
learning curves of the subjects when using the word pairs of Set 2. ln the right-hand 
g raph, the solid lines re present the learning curves of the subjects during the first 
session and the dashed lines the learning curves of the subjects during the second. 
The test phases are given on the x-axis and the number of correct responses on the y
axis. 
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The graphs give no indication of an effect of set on the performance of the 
subjects, which has been confirmed by statistical analysis. There is, however, 
a statistically significant effect of session [F(l,4)==9.99, p < .05]. Based on 
this pilot study, we have assumed both sets to be sufficiently equivalent, and 
the sets were consequently used in the experiments. 

4.2.2 Results 

The results of the experiments are shown in Figure 32 and 33. A MANOVA 
was performed on logit-transformed proportions of correct responses, with 
the test phase and the strategy used in the practice phases as within-subjects 
factors, and the experimental condition (determined by the strategy and word 
set used in the first session) as a between-subjects factor. The results of this 
analysis are summarized in Table 10 and 11. 

Random Recycling Situated Average 
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Figure 32: Results of Experiment 2A (recognition)for Random Recycling, Situated, 
and the ave rage of both strategies, respectively. Each line in the two left-hand g raphs 
represents a subject, the two lines in the right-hand graph represent the average of 
Random Recycling ( dashed line) and the ave rage of Situated ( solid line) respectively. 
The test phases are given on the x-axis and the number of correct responses on the y
axis. 

For recognition Experiment 2A, there are significant main effects of test 
phase [F(7,14)==109.98, p < .001] and strategy [F(l,20)=8.58, p < .05]. A sig
nificant interaction was found between test phase and strategy [F(7,14)==3.3, p 
< .05]. Testing the effect of strategy per test phase revealed that strategy was 
significant [p < .05] in all test phases except the first two. 
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Table 10: Results of the MANOVA on the data of Experiment 2a (recognition) 

Source Num DF Den DF F 

Condition 
Set 1 vs. Set 2 
Session 1 vs. Session 2 

Test 
Strategy 
Strategy x Condition 
Strategy x Set 1 vs. Set 2 

Between subjects 

3 
2 
2 

Within subjects 

7 
1 
3 

Strategy x Session 1 vs. Session 2 
Test x Condition 

2 
2 

21 
14 
14 

Test x Set 1 vs. Set 2 
Test x Session 1 vs. Session 2 
Strategy x Test 
Strategy x Test x Condition 
Strategy x Test x Set 1 vs. Set 2 
Strategy x Test x Session 1 vs. Session 2 

"p <.05, "" p <.01, *** p <.001 

25 

20 
"g 
l:: 15 
0 

(.) 
:Il: 10 

5 

Random Recycling Situated 

7 
21 
14 
14 

14 
20 
20 
20 
20 
41 
28 
28 
14 
41 
28 
28 

0.08 
0.01 
0.10 

109.98 
8.58 • 
2.24 
0.56 
2.92 
1.36 
1.48 
1.09 
3.30 • 
2~87 ** 
2.16 • 
2.33 • 

Average 
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Figure 33: Results of Experiment 2B (recall)for Random Recycling, Situated, and 
the ave rage of both strategies, respectively. Each line in the two left-hand graphs 
represents a subject, the two lines in the right-hand graph represent the average of 
Random Recycling ( dashed line) and the ave rage of Situated ( solid line) respectively. 
The test phases are given on the x-axis and the number of correct responses on the y
axis. 
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For recall Experiment 2B, there are significant main eff ects of test phase 
[F(9,12)=332, p < .001], strategy [F(l,20)=14.41, p < .01], and condition 
[F(3,1)=3.89, p < .05], and also (with pairwise comparison) of experimental 
session [F(2,1)=5.72, p < .05]. 

Table Il: Results of the MANOVA on the data of Experiment 2b (recall) 

Source Num DF Den OF F 

Condition 
Set 1 vs. Set 2 
Session 1 vs. Session 2 

Test 
Strategy 
Strategy x Condition 
Strategy x Set 1 vs. Set 2 

Between subjects 

3 
2 
2 

Within subjects 

9 
1 
3 

Strategy x Session 1 vs. Session 2 
Test x Condition 

2 
2 

27 
18 
18 

Test x Set 1 vs. Set 2 
Test x Session 1 vs. Session 2 
Strategy x Test 
Strategy x Test x Condition 
Strategy x Test x Set 1 vs. Set 2 
Strategy x Test x Session 1 vs. Session 2 

*p<.05, **p<.01, *"*p<.001 

9 
27 
18 
18 

12 
20 
20 
20 
20 
36 
24 
24 
12 
36 
24 
24 

3.89 • 
0.67 
5.72 • 

332.00 .... 
14.41 
4.30 * 
1.31 
5.23 • 
1.87 • 
0.98 
2.84 ** 
5.88 
2.29 * 
3.17 
1.67 

Significant interactions were found between strategy and test phase 
[F(9,12)=5.88, p < .01], between condition and test phase [F(27,36)=1.87, 
p < .05], and, more particularly, between session and test phase 
[F(18,24)=2.84, p < .01]. Testing the effect of strategy and session per test 
phase revealed that strategy was significant [p < .05] in all test phases except 
the first, fourth, and last two, and that session was significant [p < .05] in all 
test phases except the first two. 

Another significant interaction was found between strategy and condi
tion [F(3,20)=4.3, p < .05] and, more particularly, between strategy and ses
sion [F(2,20)=5.23, p < .05]. Testing the effect of condition per level of 
strategy (see Table 12) revealed that the effects of condition and, more partic
ularly, session were only significant for the Situated strategy [F(2, 1 )=8.41, 
p < .Ol].The average learning curves per strategy per session are shown in 
Figure 34. 

Testing the effect of strategy per level of condition (see Table 13) 
revealed that it was only significant for one of the four conditions, namely the 
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condition in which Random Recycling and Word set 2 were used in the first 
session (followed by Situated and Word set l in the second session). The 
average learning curves per strategy per condition are shown in the left-hand 
graph in Figure 34 

Table 12: Results of the MANOVA on the data of Experiment 2b (recall) per strategy 

Source Num DF Den DF F 
Random Recycling: Between subjects 

Condition 
Set 1 vs. Set 2 
Session 1 vs. Session 2 

Condition 
Set 1 vs. Set 2 
Session 1 vs. Session 2 

*p <.05, **p <.01, ***p <.001 

3 1 
2 1 
2 1 

Situated: Between subjects 

3 
2 
2 

1.00 
0.39 
1.45 

5.99 
1.10 
8.41 

** 

** 

Persession Per strategy per session Per strategy per condition 
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Figure 34: Results of Experiment 2B (recall) regarding session effects. The lines in 
the left-hand graph represent the average over subjects of the first session ( thin line) 
and the second session (hold line), respectively. The lines in the middle graph 
re present the ave rage of Random Recycling in the first session ( dashed line) and 
second session (dashed hold line), and Situated in the first session (solid line) and 
second session (solid hold line), respectively. The lines in the right-hand graph 
represent the average of Random Recycling (thin) and Situated (hold) per condition. 
The test phases are given on the x-axis and the number of correct responses on the y
axis. 
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Table 13: Results of the MANOVA on the data of Experiment 2b (recall) per 
condition 

Condition 

Random Recycling 1 - Situated 2 
Situated 1 - Random Recycling 2 
Random Recycling 2 - Situated 1 
Situated 2 - Random Recycling 1 

*p <.05, ** p <.01, ***p <.001 

4.2.3 Discussion 

Source 
Strategy 
Strategy 
Strategy 
Strategy 

NumDF Den DF F 

5 
5 
5 
5 

5.43 
2.34 

28.24 ** 
0.04 

115 

In both the recognition and recall study, the significant main effect of test 
phase merely indicates that subjects leam, which is quite obvious from the 
increasing learning curves of Figure 32 and 33. 

The effect of the between-subjects variable condition is only significant 
for the recall study, and the contrasts showed that this effect was due to a ses
sion effect. The lack of an effect of word set indicates that both word sets are 
of approximately equal difficulty, as intended. By Analogy with the findings 
of the pilot study as discussed above, we would expect subjects to perform 
better in the second session than in the first. On average this is the case, as 
reftected in the left-hand graph in Figure 34. The session effect, and the lack 
of it in the case of the recognition study, may be explained by subjects learn
ing the typical structure, in the sense of frequent letter combinations, of Japa
nese words. This improves the learning of the response words in the case of 
recall, hut has no impact on the learning of the associations between stimuli 
and response words. 

Focusing, in the recall study, on the effect of condition per strategy 
revealed that the session effect was only significant for the Situated strategy, 
and, as can be seen in the middle graph of Figure 34, the trend in the case of 
Random Recycling was even reverse: subjects tended to perform worse in the 
second session. A possible explanation may be that subjects who had the Sit
uated strategy during the first session may have been demotivated when con
fronted with Random Recycling during the second session, either because 
they understood it is a control condition, or because they interpreted the lack 
of adaptation (which they got used to during the first session with the Situated 
strategy) as a consequence of their own poor performance. 

The significant main effect of strategy, in both the recognition and recall 
study, demonstrates that using the Situated strategy had an advantageous 
effect on the subjects' performance. The average learning curves of the Situ
ated strategy clearly lie above the average learning curves of Random Recy-
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ding (see Figure 32 and 33). The difference between the curves is not very 
great, but we had not expected a large difference, as the memory of the Situ
ated strategy is cleared after every test phase in this experiment. The effect 
found confirms our hypothesis that a difference can be found even with such 
a small amount of time for the Situated strategy to work. We expect that this 
effect will increase once the strategy is given more time to adapt to the stu
dent by no langer clearing its memory. 

Focusing, in the recall study, on the effect of strategy per condition 
revealed that the effect of strategy was significant for only one of the four 
conditions: namely the condition in which Random Recycling and Word set 2 
were used in the first session (followed by Situated and Word set 1 in the sec
ond session). Nevertheless, for three of the four conditions the average learn
ing curve of the Situated strategy clearly lies above the average learning 
curve of Random Recycling (see the right-hand graph in Figure 34). So, there 
is certainly a trend in favour of the Situated strategy. With only six subjects 
per condition, the power of the test was, of course, relatively small. 

In conclusion, there is a small positive effect of using the Situated strat
egy both in the recognition and the recall study, even though the memory of 
the Situated strategy was cleared regularly (after each test phase), so that the 
Situated strategy did not have much time to adapt to the subjects. In the fol
lowing experiments, we test the hypothesis that this effect will increase when 
the memory of the Situated strategy is no longer cleared. 

4.3 Experiments 3a (recognition) and 3b (recall) 

4.3.1 Method 

Design and Procedure. 
The same design and procedure were used as in Experiment 2a and 2b, except 
that now the memory of the Situated strategy was no langer cleared after each 
test phase. Therefore, the same vers ion of the Situated strategy was used as in 
Experiment 1. 

Subjects 
In both Experiment 3a and 3b twenty-four subjects with university or higher 
vocational training participated voluntarily. The average age was 24. No 
subject had any prior experience of Japanese. Subjects were randomly 
assigned to one of the four experimental conditions. 
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Equipment 
The same equipment was used as in Experiment 2a and 2b. 

Materials 
The same sets of word pairs were used as in Experiment 2a and 2b, as shown 
in Table 9. 

4.3.2 Results: general 

The results of the experiments are shown in Figure 35 and 37. A MANOVA 
was performed on logit-transformed proportions of correct responses, with 
the test phase and the strategy used in the practice phases as within-subjects 
factors, and the experimental condition ( determined by the strategy and word 
set used in the first session) as a between-subjects factor. The results of this 
analysis are summarized in Table 14 and 17. One subject was excluded from 
the analysis of Experiment 3A because he did not complete the experiment. 
This subject had the condition in which Random Recycling and Word set 1 
were used in the first session. 
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Figure 35: Results of Experiment JA (recognition) for Random Recycling, Situated, 
and the average of both strategies, respectively. Each line in the two left-hand graphs 
represents a subject, the two lines in the right-hand graph represent the average of 
Random Recycling ( dashed line) and the ave rage of Situated ( solid line), 
respectively. The test phases are given on the x-axis and the number of correct 
responses on the y-axis. 

Por recognition Experiment 3A, there are significant main effects of test 
phase [F(7,13)=56.19, p < .001) and (with pairwise comparison) session 
[F(2,1)=8.73, p < .05). Significant interactions were found between strategy 
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and condition [F(3,19)=5.56, p < .01], and, more particularly, between strat
egy and session [F(2, 19)=8.2, p < .01]. Testing the effect of condition per 
level of strategy (see Table 15) revealed that the effects of condition, and, 
more particularly, session were only significant for the Situated strategy 
[F(2,1)=12.12,p < .001].The average learning curves per strategy per session 
are shown in Figure 36. 

Tahle 14: Results of the MANOVA on the data of Experiment 3a (recognition) 

Source Num OF Den DF F 

Condition 
Set 1 vs. Set 2 
Session 1 vs. Session 2 

Between subjects 

3 
2 
2 

Test 
· Strategy 
Strategy x Condition 
Strategy x Set 1 vs. Set 2 

Within subjects 

Strategy x Session 1 vs. Session 2 
Test x Condition 
Test x Set 1 vs. Set 2 
Test x Session 1 vs. Session 2 
Strategy x Test 
Strategy x Test x Condition 
Strategy x Test x Set 1 vs. Set 2 
Strategy x Test x Session 1 vs. Session 2 

* p <.OS, ** p <.01, *** p <.001 

7 
1 
3 
2 
2 

21 
14 
14 
7 

21 
14 
14 

1 
1 
1 

13 
19 
19 
19 
19 
38 
26 
26 
13 
38 
28 
26 

2.54 
0.14 
3.73 * 

56.19 **" 
0.35 
5.56 ** 
0.87 
8.20 ** 
0.87 
0.68 
0.86 
0.29 
1.15 
1.04 
1.25 

Table 15: Results of the MANOVA on the data of Experiment 3A per strategy 

Source Num OF Den OF F 

Random Recycling: Between subjects 

Condition 3 1 0.40 
Set 1 vs. Set 2 2 1 0.29 
Session 1 vs. Session 2 2 1 0.48 

Condition 
Set 1 vs. Set 2 
Session 1 vs. Session 2 

Situated: Between subjects 

3 
2 
2 

*p<.05, **p<.01, ***p<.001 

1 
1 
1 

8.09 
0.20 

12.12 *** 
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Figure 36: Results of Experiment 3A (recognition) regarding session ejfects. The 
lines in the left-hand graph represent the average over suhjects of the first session 
(thin line) and the second session (hold line), respectively. The lines in the middle 
graph represent the ave rage of Random Recycling in the first session ( dashed line) 
and second session ( dashed hold line), and Situated in the first session ( solid line) 
and second session (solid hold line), respectively. The lines in the right-hand graph 
represent the average of Random Recycling (thin) and Situated (hold) per condition. 
The test phases are given on the x-axis and the numher of correct responses on the y
axis. 

Testing per level of condition (see Table 16) revealed that the effect of 
strategy was only significant for one of the four conditions, namely the condi
tion in which Random Recycling and Word set 1 were used in the first session 
(followed by Situated and Word set 2 in the second session). The average 
learning curves per strategy per condition are shown in the left-hand graph of 
Figure 36. 

Tabk 16: Results of the MANOVA on the data of Experiment 3A per condition 

Condition Source Num DF Den DF F 
Random Recycling 1 - Situated 2 Strategy 1 4 33.40 
Situated 1 - Random Recycling 2 Strategy 1 4 2.23 
Random Recycling 2 - Situated 1 Strategy 1 4 1.82 
Situated 2 - Random Recycling 1 Strategy 1 4 5.05 

* p <.05, ** p <.01, *** p <.001 

For recall Experiment 3B, there are significant main effects of test phase 
[F(9,12)=137.59, p < .001] and strategy [F(l,20)=4.51, p < .05]. All other 
effects are not significant. 
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Figure 37: Results of Experiment 38 (recall)for Random Recycling, Situated, and 
the average of both strategies, respectively. Each line in the two left-hand graphs 
represents a subject, the two lines in the right-hand graph represent the average of 
Random Recycling ( dashed line) and the average of Situated ( solid line), 
respectively. The test phases are given on the x-axis and the number of correct 
responses on the y-axis. 

Table 17: Results of the MANOVA on the data of Experiment 3b (recall) 

Source Num OF Den OF F 

Condition 
Set 1 vs. Set 2 
Session 1 vs. Session 2 

Test 
Strategy 
Strategy x Condition 
Strategy x Set 1 vs. Set 2 

Between subjects 

3 
2 
2 

Within subjects 

9 
1 
3 

Strategy x Session 1 vs. Session 2 
Test x Condition 

2 
2 

27 
18 
18 

Test x Set 1 vs. Set 2 
Test x Session 1 vs. Session 2 
Strategy x Test 
Strategy x Test x Condition 
Strategy x Test x Set 1 vs. Set 2 
Strategy x Test x Session 1 vs. Session 2 

* p <.05, ** p <.01, *** p <.001 

9 
27 
18 
18 

12 
20 
20 
20 
20 
36 
24 
24 
12 
36 
24 
24 

1.73 
2.52 
0.87 

137.59 *** 
4.51 * 
2.90 
3.42 
1.33 
1.65 
1.78 
1.91 
1.31 
1.65 
1.83 
1.54 
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4.3.3 Discussion: general 

There is only a significant session effect for the recognition study. As in 
Experiment 2, the lack of an effect of word set indicates that both word sets 
are approximately equally difficult, as intended. In this experiment again, the 
subjects perf ormed better on average in the second session than in the first 
(see left-hand graph of Figure 36). However, our explanation after Experi
ment 2 of both the session effect in the case of recall and the absence of a 
session effect in the case of recognition -namely, the subjects having leamed 
the typical structure, in the sense of frequent letter combinations, of Japanese 
words in the first session- tums out to be incorrect. After all, in this case there 
is an effect in the case of recognition (and even none in the case of recall). An 
alternative explanation may be that the session effect is due to a change in the 
motivation of the subjects over the two sessions, and can thus, in principal, 
occur in both the recall and the recognition variant. 

Focusing on the effect of session per strategy in the recognition study 
revealed that the session effect was only significant for the Situated strategy, 
and, as can be seen in the middle graph of Figure 36, the trend in the case of 
Random Recycling was even the reverse: subjects tended to perf orm worse in 
the second session. This is exactly what we found in the case of the recall var
iant of Experiment 2 and, therefore, supports the same explanation. This 
explanation is that subjects who had the Situated strategy during the first ses
sion may be demotivated when confronted with Random Recycling during 
the second session, either because they understand it is a control condition, or 
because they interpret the lack of adaptation (which they got used to during 
the first session with the Situated strategy) as a consequence of their own bad 
performance. The positive session effect for the Situated strategy may then be 
explained by an extra motivation of subjects who had Random Recycling in 
the previous session, because of a difference in the strategy which was expe
rienced as positive. 

In the recognition study, the absence of a significant main effect of strat
egy and the near coincidence of the average learning curves per strategy (see 
the right-hand graph in Figure 35) suggests that using the Situated strategy 
had no advantageous effect on the subjects' performance. In the recall study, 
it is even worse: there is a significant main effect of strategy, but this indi
cates (see the right-hand graph in Figure 37) an advantage, though very lim
ited, of using Random Recycling. This is not at all what we expected, 
especially as Experiment 2 indicated, for both recognition and recall, a signif
icant advantage of using the Situated strategy even when the memory of the 
Situated strategy was restricted. 
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There are several reasons why the use of Situated strategy may not have 
resulted in the substantial expected advantageous effect on the subjects' per
formance. 

1. Too slow transfers to the good set. Adaptation toa student's perform
ance takes time. The system can only discover that a student has learned the 
translation of a certain word when that word has been presented again and 
answered correctly. This implies that when a student learns very fast, the 
Random Recycling strategy may result in slightly better performance, 
because in this strategy every word is presented at least once in every practice 
phase. A comparison of the Random Recycling graphs of Experiment 2 and 3 
(see the left-hand graphs in Figure 32, 33, 35, and 37) shows that the subjects 
in Experiment 3 perf ormed much better than the subjects in Experiment 2, in 
exactly the same experimental condition. A possible explanation is that the 
subjects in Experiment 2 were high school students, while the subjects in 
Experiment 3 had a higher education. So, a possible explanation of the lack of 
effect of the Situated strategy in this experiment is that the subjects per
formed too well, not giving the Situated strategy the time it needed to adapt. 

2. Incorrect transfers to the good set. There are two main causes for 
transferring an item to the good set when the student does not really know the 
correct translation. 

In the first place, in the recognition task, there is a guessing probability: 
the student may press the right answer button though he or she does not know 
the correct answer. Initially this guessing probability equals 1130, and it 
becomes higher the more correct translations the student knows. This guess
ing probability implies that it is possible that words will become members of 
the good set though the student has never known their correct translation. 
Especially initially, when the number of elements in the bad set is relatively 
high, it will take quite a long time before such a word is presented again and 
the mistake can be remediated. In Experiment 2, in which the memory of the 
Situated strategy was cleared after each test phase, this effect could not occur. 
The effect is especially large and problematic when the students leam very 
fast, which is, as has already been argued, the case for the subjects in this 
experiment. Of course, this effect cannot occur in the recall variant, hence it 
does not explain the disadvantage of the Situated strategy in this variant of 
the experiment. 

In the second place, the student may also translate a word correctly, 
because the transJation is still in the short-term memory. When a word is pre
sented only a short time after it bas been presented before, the student may 
answer correctly because of the very recent exposure to the correct transla
tion, though the translation is not remembered in the Jonger run. We will ana-
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lyse the data of the experiment in order to find out whether this occurs 
frequently. 
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4. Incorrect transfers to the bad set. The student may accidentally press 
the wrong button, though he or she knows the correct translation. It is not 
expected that this will happen very often. Nevertheless, in combination with 
the first point, it would be more problematic for fast learning subjects. 

5. Incorrect stays in the good set. Students may forget The Situated 
strategy deals with forgetting by having parameter k not too large. It could, 
however, be that forgetting is more frequent than expected. However, the 
learning curves of the subjects indicate otherwise. 

In order to discover which of these reasons (or combination of reasons) 
are the case, some further analysis was carried out on the data, especially with 
respect to incorrect transfers to the good set and the role of short-term mem
ory in this. For the sake of simplicity, we have restricted ourselves to the rec
ognition variant of the experiment. 

4.3.4 Results: short term memory 

First, an analysis was carried out to determine how frequently incorrect trans
fers to the good set occur. The percentage of items belonging to the good set 
hut answered incorrectly was determined per subject, per test phase (see the 
left-hand graph in Figure 38). In the right-hand graph in Figure 38 the aver
age number of items belonging to the good set are shown per test phase, 
divided into those incorrectly answered (black) and those correctly answered 
(white). A regression analysis was performed per test phase on the number of 
incorrect responses on items from the good set as a function of the total 
nurnber of items frorn the good set. The results of this analysis are sumrna
rized in Table 18. 

Table 18: Results of the regression analysis on the good set data of Experiment 
Ja. The value of the parameter indicates the percentage of items from the good set 
that were answered incorrectly. 

Source Parameter (%) NumDF DenDF F 

Test2 32 1 56.81 *** 
Test 3 21 1 22.69 *** 
Test4 17 1 26.94 *** 
Test5 14 1 20.00 *** 
Test6 9 1 13.07 ** 
Test7 6 1 7.18 * 
Test 8 5 1 5.70 * 

* p <.05, ** p <.01, *** p <.001 
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Figure 38: Results of Experiment 3A (recognition) regarding performance on the 
good set. Each line in the left-hand graph represents a subject and the average over 
subjects is shown in the right-hand graph. The test phases are given on the x-axis, on 
the y-axis of the left-hand graph the percentage of items of the good set that have 
been answered incorrectly, on the y-axis of the right-hand graph the number of items 
of the good set that were answered incorrectly (black) or correctly (white). 

Next, a distinction was made between items that were transferred to the 
good set within three trials after the last presentation of the correct answer, 
and the other items of the good set. We will call the first items the stm-items, 
representing short-term memory, and the other items the ltm-items, represent
ing long-term memory. This nomenclature has been chosen because we 
expect that a correct answer on stm-items has a high probability of being 
caused by the presence of the answer in the short-term memory, as it has 
recently been presented. The numbers of stm-items and ltm-items answered 
correctly and incorrectly were determined per subject, per test phase. The 
average results are shown in Figure 39. 

A MANOVA was performed on the logit-transformed proportions of 
items answered incorrectly, with the test phase and the kind of items (stm ver
sus ltm) as within-subjects factors. The results of this analysis are summa
rized in Table 19. There are significant main effects of test phase 
[F(?,16)=12.18, p < .001] and kind of item (stro orltm) [F(l,22)=15.74, 
p < .001]. A significant interaction was found between test phase and kind of 
item [F(7,16)=3.63, p < .05]. 
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Figure 39: Results of Experiment 3A (recognition) regarding the correlation between 
short-term memory and performance on the good set. In both graphs the average 
over subjects is shown. The test phases are given on the x-axis, on the y-axis of the 
left graph the number of items of the good set that we re answered correctly, on the y
axis of the right graph the number of items of the good set that we re answered 
incorrectly. The stm-items are represented in black and the ltm-items in white. 

Table 19: Results of the MANOVA on the good set data of Experiment 3A. 

Source 

Test 
Kind of item (stm or ltm) 
Test x Kind of item 

* p <.05, ** p <.01, *** p <.001 

Num OF Den OF 

Within subjects 

7 16 
1 22 
7 16 

F 

12.18 *** 
15.74 .". 
3.63 • 

A regression analysis was performed to determine the ratio between the 
percentage of Itm-items that were answered incorrectly and the percentage of 
stm-items that were answered incorrectly. The results of this analysis are 
summarized in Table 20. The ratio found varies between .49 for the second 
test phase and .3 for the sixth test phase. 
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Table 20: Results of the regression a.nalysis on the good set data of Experiment 3a. 
The value of the parameter represents the ratio of the percentage of ltm-items that 
were answered incorrectly and the percentage of stm-items that were answered 
incorrectly. 

Source Parameter 

Test2 
Test3 
Test4 
Test 5 
Test6 
Test 7 
Test 8 

0.49 
0.33 
0.46 
0.41 
0.30 
0.33 
0.38 

* p <.05, ** p <.01, *** p <.001 

NumDF 

1 
1 
1 
1 
1 
1 
1 

Den OF 

4.3.5 Discussion: short-term memory 

F 

16.80 
43.92 *** 
49.23 *** 

101.62 ••• 
33.16 *** 
36.04 ••• 
63.41 ••• 

Figure 38 clearly indicates that items from the good set are frequently 
answered incorrectly. The results of the regression analysis confirm this: for 
all test phases, at least five percent of the items of the good set were answered 
incorrectly, with high percentages of 32, 21, 17, and 14 on the second to the 
fifth test phase. Apparently, incorrect transfers to the good set occur 
frequently. The left-hand graph in Figure 38 indicates that they occur more 
frequently for some subjects. 

Figure 39 supports our hypothesis that there is a connection between 
incorrect transfers to the good set and short term memory. A very high pro
portion of the stm-items were answered incorrectly. The significant main 
effect on the MANOVA of the kind of item confirms that this proportion is 
significantly higher than that of the ltm-items. The regression analysis gives 
an indication of how much higher this proportion is compared to that of the 
ltm-items: the ltm-items only show at most half, but mostly even only one 
third, as many incorrect answers as the stm-items. 

This leads to the conclusion that the Situated strategy should be changed 
by adding the restriction that an item may only be presented again when it bas 
not been presented very recently, e.g. within the space of three trials. 

4.4 Conclusions 

The models' predictions of a positive effect of using the Situated item 
sequencing strategy have been empirically tested in both recall and recogni
tion tasks to establish whether they were valid. In the first experiment, in a 
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recall task, the Situated strategy reduced the variance between subjects, 
improving the results of the poor performers. This was due to faster learning 
of the more difficult items, as they were presented more frequently, without 
obstructing the learning of the easier items. In complete contrast to the 
predictions of the models, the Situated strategy produced a steeper initia] rise 
of the learning curves than Random Recycling. 

A comparison of the fits and predictions of the models with the experi
mental data showed two major shortcomings of the models. In the first place, 
all the models discussed produced steeper starts of the learning curves than 
the real subjects. In the second place, all the models largely underestimated 
the effect of VIP queuing, which suggests that the models Jack a mechanism 
simulating the limited cognitive laad a student can handle. 

As far as the models are concerned, these shortcomings point in the 
direction of using neural networks, which, like the real subjects, have a ten
dency to start slowly, and of including in the models a limit to the maximum 
number of items they can leam at the same time. 

As far as the Situated item sequencing strategy is concerned, this idea of 
a limited capacity argues in favour of adding an extra set of items, which rep
resents the non-presented items, and to presenting one of these items only 
whenever the number of items in the bad set is below a certain limit. 

Successive experiments, in both a recognition and a recall task, showed 
that the Situated strategy already had an advantage when its memory was 
cleared after each test phase, hence with only a limited opportunity to adapt 
to the student. However, in the last experiments, when the memory of the 
strategy was no langer cleared, the learning curves of the Situated strategy 
and Random Recycling almost coincided. A likely explanation is that the 
subjects in those experiments performed too well, not giving the Situated 
strategy time to adapt. 

Another reason why the Situated strategy did not perform as well as 
expected might be that items were incorrectly transferred to the good set. An 
extra analysis revealed that incorrect transfers occurred regularly, especially 
of items that were answered correctly when the correct answer had been pre
sented only a few trials before and could therefore still be in the short-term 
memory. This led to the conclusion that the Situated strategy should be 
changed by adding the restriction that an item may only be presented again 
when it bas not been presented very recently, e.g. within the space of three 
trials. 

An analysis of the occurrence of session effects in the experiments gave 
the impression that the choice of item sequencing strategy seemed to have an 
impact on the motivation of the subjects: subjects who had experience with 
the Situated strategy seemed demotivated when confronted successively with 
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Random Recycling, while subjects who had experience with Random Recy
cling seemed to be additionally motivated when confronted successively with 
the Situated strategy. So, the use of the Situated strategy may have a motivat
ing effect on the students. 
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Chapter 5 

The Practice Agent 
in a concept learning task 

Abstract 
In paired associates learning, a subject has to team and remember the 
response to each individual stimulus. In concept learning, a response has to 
be leamed /or a group of stimuli, often such that the response can be general
ized to stimuli the student has not seen before. The subjects leam an underly
ing classi.fication rule or a property that holds /or the group as a whole. This 
dif.ference with paired associated learning may have implications /or the 
effectiveness of the item sequencing strategy of the Practice Agent as 
discussed in Chapter 3. lt wil!, however; be shown how the item sequencing 
strategy can be effectively used in a concept learning task. 
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5.1 Concept learning 

There are more kinds of learning than paired associates learning. One of them 
is concept learning. The learning of concepts is very important, because it is a 
way to reduce information and to generalize on the basis of it. In this chapter, 
we explore whether the sequencing strategy as discussed in the previous two 
chapters can also be used to support this kind of learning. 

5.1.1 Concep~ 

There are two main views in psychology about what concepts are. According 
to the first view, concepts are based on formal categories that are definable in 
terms of properties common to all members of a category and are both neces
sary and sufficient for category membership (Katz & Postal, 1964). Accord
ing to the second view, concepts are based on "fuzzy" categories that are 
better characterized by family resemblance than by sets of necessary and 
sufficient properties (Rosch & Mervis, 1975). In the latter case, individual 
exemplars may vary in the number of characteristic properties they possess 
and, hence, some exemplars may be more typical of a concept than others. 

A principle common to both views is that exemplars within a category 
are more similar to one another than to exemplars from alternative categories. 
Similarity is viewed as an organizing principle by which concepts are formed 
and generalizations are made. There are basically two approaches to similar
ity. 

In the first approach, a geometrie model is used in which stimuli are rep
resented as points in a multi-dimensional space such that dissimilarities 
between stimuli correspond to metric distances between the respective points. 
According to Shepard (1987), the best approximation for this psychological 
space is a Euclidian distance metric for unitary stimuli, such as colours differ
ing in brightness and saturation, and a city-block metric for analysable stim
uli, such as shapes differing in size and orientation. There are two 
assumptions underlying the geometrie model: that stimuli can be represented 
as combinations of values on different dimensions, and that dissimilarity 
behaves like a metric distance function. Both assumptions have been ques
tioned by Tversky (1977). 

In the second approach, similarity between stimuli is assessed as a com
parison of features rather than as the computation of a metric distance 
between points. Similarity between two stimuli is a combination of an 
increasing function of the common features and a decreasing function of the 
distinctive features. An example of this approach is the contrast model of 
Tversky (1977). 
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In most concept learning models, the categorization of a stimulus 
depends on the similarity of that stimulus to the representation (e.g., exem
plars) of the different categories (Medin & Schaffer, 1978; Nosofsky, 1986; 
Gluck & Bower, 1988b; Kruschke, 1992; Pearce, 1994). However, there are 
also some theoretica! and experimental arguments against similarity as a 
basis for categorization (Nosofsky, 1992; Goldstone, 1994). 

Firstly, similarity is viewed as a vague and meaningless concept. Stimuli 
may possess infinitely many features and, even in a controlled experimental 
situation, subjects may use other dimensions for the categorization than the 
intended ones. Also, similarity, and more particularly the relative importance 
of features, often depends on context. 

Secondly, similarity is viewed as being situated on the level of percep
tion, while categorization depends more on foreknowledge, culture, goals, 
and other higher level factors (Gelman & Markman, 1986; Vandierendonck, 
1993). 

Thirdly, categorization is viewed as being based on information regard
ing the whole category, such as within-category variation, rather than on the 
features of the individual items. 

5.1.2 Learning strategies 

A distinction is often made between two learning strategies of subjects in a 
concept learning task: an analytica! strategy and a non-analytical strategy 
(Medio & Smith, 1981). Using the analytica! strategy, subjects categorize on 
the basis of rules according to the occurrence in the stimulus of relevant 
features. Using the non-analytical strategy, subjects categorize on the basis of 
the appearance of the stimulus as a whole, using merely the global similarity 
between the stimulus and the earlier stimuli. It seems possible to inftuence the 
choice of learning strategy with the instructions given to the subjects (Elio & 
Anderson, 1984; Roberts & MacLeod, 1995). 

The usual way to test the kind of learning strategy used by the subjects 
is as follows. First, the subjects are presented with a training phase in which, 
depending on the instructions, they are supposed to train in applying the rule 
or to discover the category structure. Next, a transfer phase is presented in 
which both trained and new stimuli are presented for classification (Elio & 
Anderson, 1984; Regehr & Brooks, 1993; Livingston & Andrews, 1995). The 
new stimuli, also called transfer stimuli, can be divided into two kinds: (1) 
good transfers that appear similar to some of the training stimuli and also 
belong to the same category as those stimuli, and (2) bad transfers that also 
appear similar to some of the training stimuli but according to the rule belong 
to another category. Subjects using an analytic strategy are expected to per
form equally well and equally fast on the good and on the bad transfers. Sub-
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jects using a non-analytic strategy are expected to perform worse and slower 
on the bad transfers than on the good transfers.Tuis has been confirmed by 
the study of Regehr and Brooks (1993). 

Elio and Anderson ( 1984) found an interaction effect of learning strat
egy and the moment of exposure to total category variation. Subjects using a 
non-analytic strategy performed better when they were progressively exposed 
to the category variation. Subjects using an analytic strategy performed better 
when they were immediately exposed to the total category variation. 

For the analytic learning strategy, Livingston and Andrews (1995) found 
that the salience of features was important for response selection, and that the 
subjects changed incorrect hypotheses gradually by paying attention to other 
features. 

5.1.3 Relevance of item sequencing 

In concept learning, the subjects learn an underlying classification rule or a 
tendency that holds for the set as a whole. This change of focus from individ
ual items to a set of items may lead to the question of how relevant item 
sequencing is in the case of concept learning. 

For several reasons the frequency of presentation of individual items is 
still important for learning a concept. In the first place, increasing the fre
quency of an item increases the accuracy of classification of both the item 
itself and similar items belonging to the same category, hut decreases the 
accuracy of classification of similar items belonging to another category 
(Nosofsky, 1988; Nosofsky & Kruschke, 1992). lt has been suggested that 
frequency also inftuences similarity, in the sense that increasing the fre
quency of an item may increase the perceptual differentiation in the region of 
that item (Nosofsky, 1986). 

In the second place, increasing the frequency of an item increases the 
typicality of that item and of similar items belonging to the same category, 
but decreases the typicality of similar items belonging to another category 
(Nosofsky, 1988). So, the frequency distribution over the items may influence 
the formation of hypotheses regarding the classification rules. 

In the third place, the frequency of presentation influences the order in 
which items are presented and thereby the exposure to category variation. As 
already mentioned above, this bas an effect on learning (Elio & Anderson, 
1984). 

These three consequences of frequency imply that increasing the fre
quency of presentation of an item not only bas an effect on the learning of 
that item, but also on the learning of other items. Tuis is in contrast to the 
case of paired associates learning, and may have a major impact on the effect 
of the Situated item sequencing strategy. 
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5.2 Models of concept learning 

There are mainly three types of models of concept learning: rule models, 
prototype models and exemplar models. According to rule models, subjects 
construct abstract classification rules and classify items on the basis of these 
rules (e.g., Ashby & Gott, 1988; Vandierendonck, 1995). According to proto
type models, subjects store an abstract summary representation of a category 
in their memory and make classifications on the basis of the sirnilarity of 
items to the abstracted prototype (e.g" Posner & Keele, 1968). By contrast, 
according to exemplar models, subjects store the individual exemplars of a 
category in their memory and make classification decisions on the basis of the 
similarity of items to these exemplars (e.g., Medin & Schaffer, 1978; 
Kruschke, 1992). Currently, there is a tendency towards the use of exemplar 
models, as the empirical evidence for these models grows (see, e.g, Nosofsky, 
Kruschke, & McKinley, 1992). Two specific versions of these models are 
discussed below. 

5.2.1 Alcove 

ALCOVE (attention learning covering map) (Kruschke, 1992) is a feed
forward connectionist model that combines the exemplar-based representa
tional assumptions of Nosofsky's (1986) generalized context model and the 
error-driven learning assumptions of Gluck and Bower's (1988a,1988b) 
network models. There is considerable empirica! support for this model 
(Nosofsky, Kruschke, & McKinley, 1992; Kruschke, 1992, 1993; Friedman, 
Massaro, Kitzis, & Cohen, 1995). 

Description of the model 
The model consists of three layers. 

The input units represent the stimulus, with each input unit encoding a 
psychological dimension. An attention strength is associated with each input 
unit that reflects the relevance of that dirnension for the categorization task. 
These attention strengths are learned during the training of the network. Each 
input unit is connected to all bidden units. 

The bidden units correspond to positions in the multidimensional stimu
lus space. The simple version of ALCOVE we have used in the simulations 
uses a bidden node for each training exemplar. Each bidden unit is connected 
to all output units. A bidden unit is activated according to the similarity of the 
stimulus to the exemplar corresponding to that bidden unit. The sirnilarity 
function is based on Shepard (1987) and in its simplest form it implies an 
activation of the bidden unit according to the equation: 
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where ah represents the activation of the bidden unit, the ai 's represent the 
activations of the input units, ai the corresponding attention strength of the 
input units, and hi the value of the exemplar corresponding to the bidden unit 
on dimension i. Positive constant c is a parameter of the model called the 
specificity of the unit. Tuis parameter can be interpreted as indicating the 
overall cognitive discriminability or memorability of the corresponding 
exemplar: the larger the specificity the more rapidly similarity decreases. We 
have used the same specificity parameter for all bidden units. 

The output units encode the degree to which the altemative response 
categories are activated. Weights are associated with the connections between 
bidden units and output units. The activation of an output unit is the sum of 
the activation of all the bidden units, modulated by the weights between the 
output unit and the bidden units. The weights are adjusted during training by 
an error-driven learning rule. 

Category activations are mapped onto response probabilities by a Luce 
(1963) choice mie: 

P (kr) = exp (qiak) 1,Lexp (qiam) 
m 

where P(kr) denotes the probability of classifying a stimulus in category k, ak 

represents the activation of the output unit associated with category k, the 
am 's represent the activations of the output units, and parameter <!> is a 
response mapping constant. 

During training, the attentîon strengths and weights are changed by a 
small amount such that the error decreases. Two parameters, or learning rates, 
are involved: Áa for the attentîon strengths and Àw for the weights. The larger 
the learning rate, the faster the attention strengths or weights change. Exact 
formulas are given in Kruschke (1992). 

Because the activation of the bidden units is based on a notion of simî
larity, presentation of a certain stimulus will not only lead to adjusting the 
weights of the connections of the corresponding bidden unit, hut also to 
adjusting the weights of the connections of bidden units that correspond to 
similar exemplars. 

Important property of the model 
The attention strengths, which decrease for irrelevant dimensions and 
increase for relevant dimensions, explain why subjects perform better in 
concept learning tasks in which only one dimension is relevant for categori-
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zation than when more dimensions are relevant (Nosofsky & Kruschke, 
1992). 

5.2.2 Configural Cue 

Description of the model 
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Pearce's version of a configural cue model (Pearce, 1987, 1994) is a connec
tionist model with three layers: an input layer, a bidden layer called the 
configural layer, and an output layer. 

The input units represent the stimulus, with each input unit encoding a 
psychological dimension. The activation of an input unit is either zero or 
11.../n, where n represents the number of input units active for that stimulus. 
Bach input unit is connected to' all configural units. 

The configural units correspond to training exemplars. Weights are asso
ciated with the connections between input units and configural units. Initially 
all the weights are zero. On the first presentation of a stimulus, the weights 
associated with the connections between the active input units and the config
ural unit corresponding to the stimulus are permanently set to 11.../n, where n 
represents the number of active input units. 

The activation of a configural unit is the sum of the activation of all the 
input units, weighted by the weights between the configural unit and the input 
units. Tuis implies that the activation of the configural unit corresponding to 
the presented stimulus equals one. lt also implies that when a stimulus y is 
presented to the network the activation ax of the configural unit corresponding 
toa stimulus x meets the equation: 

1 1 
ax = nxy In In 

·lx.Jny 

where nx and ny represent the number of input units active in the encoding of 
stimulus x and stimulus y, respectively, and nxy represents the number of input 
nodes both active in the encoding of stimulus x and y. So, the activation of a 
configural unit depends on the similarity between the exemplar correspond
ing to that unit and the stimulus presented. 

The output units encode the degree to which the altemative response 
categories are activated. Weights are associated with the connections between 
configural units and output units. The activation of an output unit is the sum 
of the activation of all the configural units, modulated by the weights between 
the output unit and the configural units. 

For the fits of the Configural Cue model on the data of the experiment 
below we have used the same choice rule as in the case of ALCOVE (see 
above) to map category activations onto response probabilities. In this proc
ess, one parameter is used, namely a response mapping constant <j>. 
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Error-driven feedback is used to adjust the weights between the maxi
mally activated configural unit and the output units. An important difference 
between this model and ALCOVE is that in the latter the weights for all con
figural units are adjusted, and not only the weights for the highest activated 
configural unit. Two parameters or learning rates are involved in the adjust
ment of the weights: a parameter a. that reftects the conditionability of the 
configural units and a parameter rJ that reflects properties of the output units. 
The larger the learning rates, the faster the weights change. Exact formulas 
are given in Pearce (1994). According to Pearce (1994), the value of a. is usu
ally one. So, there is only one free parameter in the model: learning rate ~. 

5.3 Development of the stimulus material 

Stimulus material has been developed to meet the requirements of ( 1) readily 
discriminable and describable feature dimensions, (2) discrete and easily 
describable values on the dimensions, and (3) equally distributed values on 
the dimensions across the stimulus set (Regehr & Brooks, 1993). 

Artificial but still familiar stimuli have been chosen in the form of 
houses (see Figure 40). 

D D D 

Figure 40: Examples of stimuli used in Experiment 1 

The houses were constructed on the basis of six dimensions that can each 
have two values. The two values of the dimensions are coded by 0 and 1, so 
the stimulus is coded by a binary string of length six. The following dimen
sions were used: colour of the roof (0 = white, 1 = dark grey), colour of the 
facade (0 =white, 1 =grey), numberofwindows (0 = two, 1 =one), presence 
of a chimney (0 =no, 1 = yes), colour of the door (0 = white, 1 = black), and 
shape of the roof (0 = pyramidal, 1 = flat). 

For the experiment in which the effectiveness of the Situated strategy in 
a concept learning task will be evaluated, we wanted approximately 30 stim
uli for training, because that number had been used in the experiments on 
paired associates learning. Approximately 10 extra stimuli were needed for 
testing the transfer effect of the training. For that reason, six dimensions were 



The Practice Agent in a concept learning task 137 

needed: on the basis of six dimensions 64 houses can be constructed. Of these 
64 houses, 40 houses have been selected based on a category structure as 
explained in Section 5.1. The initia} selection is shown in Table 21. 

Table 21: Stimuli used in studies 1and2, and category structure used in Experiment 
1. Stimuli are encoded by their value on the dimensions, with a=colour of the roof, 
b=colour of the facade, c=number of windows, d=presence of a chimney, e=colour 
of the door, and f=shape of the roof. Good transfer stimuli are indicated with G, bad 
transfer stimuli with B. 

Category A Category B 
a b c d e f a b c d e f a b c d e f a b c d e 
0 0 0 1 1 1 0 0 0 1 0 0 G 0 0 1 1 1 1 0 0 1 1 0 0 
0 0 0 1 0 0 0 0 0 1 1 B 0 0 1 1 1 0 0 0 1 0 1 1 
0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 B 0 0 1 0 1 0 G 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 

1 1 1 1 0 1 1 B 1 1 0 1 1 1 0 0 1 1 
1 1 0 0 1 0 G 1 1 0 1 0 0 0 1 0 G 
1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 B 

1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 

1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 
1 0 1 1 0 1 1 0 1 0 0 1 G 1 0 1 1 0 0 1 0 1 o o 0 G 

5.3.1 Exploratory study 1: Perception of stimulus dimensions 

The aim of this study was to discover if the analytic dimensions that we think 
are apparent in the stimuli are also the ones used by the subjects. 

Method 
Procedure. A similar procedure to that of Regehr and Brooks (1993, 

Experiment la) was used. Each of the 40 stimuli was placed on a separate 10 
x 10 cm file card. The cards were laid in front of a subject in a random 
arrangement and the subject was told the following1: 

The 40 houses in front of you can be divided into two groups. If you 
were told that you had to figure out how the houses divide into the two 
categories, what would you do? What would you test as potential rea
sons for dividing the houses? Please name anything you can think of. 

Subjects' responses were recorded. While responding, subjects were repeat
edly prompted to name any additional methods they could think of for divid
ing the houses. The study took approximately ten minutes per subject. From 

1. A Dutch version of these instruction was used. 
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the recordings, the number of dimensions mentioned by the subjects were 
counted. 

Subjects. Eight subjects with university or higher vocational training 
participated voluntarily in the study. The average age was 23. 

Materials. The 40 houses from Table 21 were used as stimuli. The width 
of the houses was 58mm, the height 45mm for houses with a fiat roof and 
57mm for houses with a pyramidal roof. 

Results 
Of the eight subjects, four identified all six dimensions of variation from the 
analytic structure. Two subjects failed to identify the colour of the roof as a 
potential dimension, two subjects failed to identify the shape of the roof, and 
one failed to identify the colour of the door. Five of the eight subject 
mentioned colour as a first dimension, two subjects mentioned the shape of 
the roof first, and one subject mentioned the presence of a chimney first. 

Discussion 
On the basis of these results, we can conclude that all dimensions are readily 
discriminable and describable. A possible explanation for the fact that colour 
of the roof was not mentioned by two subjects is that the colour of the roof 
changed independently of the colour of the facade in only a small number of 
the houses, namely 20%: all the other houses were either completely white or 
completely dark. The large proportion of subjects that started with colour as a 
dimension indicates that this is a salient feature. We will use these observa
tions in determining the category structures and in the attention strengths in 
the simulations with ALCOVE. 

5.3.2 Exploratory study 2: Salience of stimulus dimensions 

The aim of this study was to discover which of the analytic dimensions is the 
most salient in the sense that it is the most obvious one subjects would use to 
classify houses. A spontaneous classification task was used, because in such a 
task subjects tend to focus on a single analytic dimension when forming cate
gories (Medin, Wattenmaker, & Hampson, 1987; Regehr & Brooks, 1993, 
1995). 

Method 
Procedure. A similar procedure to that of Regehr and Brooks (1993, 

Experiment lb) and Medin et al. (1987) was used. Subjects received the 40 
stimuli on file cards in a random order. They were asked to lay out the stim
uli, look them over carefully, and place the houses into two categories in any 
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way that seemed appropriate. No restriction was placed on the number of 
houses in each category. Following the categorizations, subjects were asked 
to describe the criteria by which they classified the stimuli. Next, they were 
asked why they had used these criteria. The study took approximately fifteen 
minutes per subject. 

Subjects. Eight subjects with university or higher vocational training 
participated voluntarily in the study. The average age was 23. No subject had 
any prior experience with the stimuli. 

Materials. The same stimuli were used as in exploratory study l, namely 
the 40 houses from Table 21. 

Results 
Seven of the eight subjects reported using a single analytic dimension to clas
sify the houses into the two categories. Six of these subjects divided the 
houses on the basis of the shape of the roof; the remaining subject used the 
presence of the chimney. All the subjects who made the categorization on the 
basis of one dimension reported as reason for using that dimension that it was 
the most salient, or presented the largest difference between the houses. One 
subject reported that colour also had been considered as a basis for categori
zation. 

One subject used three dimensions for the categorization: the colour of 
the roof, colour of the facade, and colour of the door. Tuis subject reported 
that an intuitive rule based on the amount of colour in the house as a whole 
bas been used. 

Discussion 
On the basis of these results, we can conclude that the shape of the roof is a 
very salient dimension, as it is used by almost all subjects. Therefore, a clas
sification rule based on only that dimension would probably be relatively 
easy to learn. This kind of information will be used in determining the cate
gory structures. 

The use of three dimensions by one subject can be interpreted as the use 
of a single overall colour dimension. Tuis îllustrates that it is still possible 
that subjects will use dimensions in the categorization that do not correspond 
to the analytical dimensions. Tuis cannot, however, be prevented. 

5.3.3 Conclusions 

From these studies, we conclude that the analytic dimensions are readily 
discriminable, with the colour of the facade and shape of the roof as the most 
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salient dimensions. As there are no profound reasons to change the stimulus 
set, the same set will be used in the concept learning task. 

5.4 A quest for gradually increasing learning curves 

For the concept learning task, the set of stimuli had to be divided into two 
equally large sets, called category A and B. It was decided to use a classifica
tion rule that assigns houses unambiguously to one of the two categories. A 
possible categorization is shown in Table 21, with the stimuli of category A 
on the left, and the stimuli of category B on the right. 

The kind of classification rules considered were disjunctions of conjunc
tions. Tuis means that in order to beloog to a certain category a stimulus 
should meet one of the requirements of that category, the requirement being 
that the stimulus should have a several features, i.e., certain values on certain 
dimensions. Por instance, for the category structure as shown in Table 21, a 
house belongs to category A whenever it has 

a white roof, a white facade, and two windows (stimuli starting with 000), 
or a gray roof, a gray facade, and one window (stimuli starting with 111), 
or a gray roof, a white facade, one window, and a pyramidal roof (stimuli starting with 
101 and ending with 1 ). 

In the remainder of this chapter, this kind of classification rule will be 
denoted by A = OOOxxx + lllxxx + lOlxxl. So, in the case of the category 
structure of Table 21, category Bis given by the classification rule: 
B = OOlxxx + llOxxx + lOlxxO. 

The problem addressed in this section is which classification rules 
should be used when comparing item sequencing strategies, as has already 
been done in the previous chapter for paired-associates learning. The classifi
cation rules should be neither too easy nor too difficult: when subjects learn 
very fast, the Situated strategy has no time to adapt; when subjects hardly 
learn at all, the Situated strategy has nothing to adapt to. In both cases, no 
effect of strategy is to be expected. So, the main goal of the pilot studies is to 
construct classification rules that result in gradually increasing learning 
curves. 

Though both Random Recycling and Situated will be used as item 
sequencing strategies in the pilot studies, there is no intent to compare both 
strategies already. Therefore, no statistics will be presented, but the focus will 
be merely on the learning curves. In addition, the transfer test will be used 
merely to test the complete experimental procedure, and the results of this 
test will not be discussed. 
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5.4.1 Pilot study 1: Classification rules of three disjunctions 

Method 
Design and Procedure. Comparisons were made between groups of sub

jects learning a categorization of houses in different experimental conditions. 
In each condition, the subjects were presented with altemate test and practice 
phases. In both phases, houses were presented on the screen (see Figure 41) 
with the request to select the correct response category as accurately and 
quickly as possible. In the instructions no indication was given with respect 
to the existence of an underlying rule: the only kind of instruction given was 
that there were two sets of houses and that the subjects had to learn to catego
rize the houses. 

Wat is dit voor een huis? 

Figure 41: Screen layout of the concept learning experiments. The text reads: "What 
kind of house is this? ". 

Subjects selected a response category by pressing on the keyboard the z
key for category A and the /-key for category B. On the screen (see Figure 
41) two buttons were displayed for the categories corresponding to the left
right orientation of the keyboard keys used. Answers and response times 
were recorded. In test phases, all 30 houses were presented to the subjects in a 
random order. No feedback was given with respect to the correctness of the 
response. The first test phase enabled the subject to get acquainted with the 
kind of stimuli used in the experiment. 
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In practice phases, depending on the condition assigned to the subject, 
Random recycling or Situated was used to determine the sequence of 30 
houses presented to the subjects. So, depending on the condition, it could 
occur that in a practice phase the same house was presented more than once, 
and other houses not at all. Feedback was given with respect to the correct
ness of the response, and the correct response was displayed on the screen for 
3 seconds. 

The experiment ended with a transfer test after sixteen test phases or a 
score of 100% correct on two subsequent test phases. The maximal number 
of test phases was determined in a pilot study in such a way that the experi
ment took no more than an hour. The transfer test was similar to a regular test 
phase, except that in addition to the 30 houses practised, 10 transfer houses, 
with which the subject had no experience were presented as well. 

As good transfers, stimuli were chosen that differed from some other 
stimuli of the same category on only one dimension which was irrelevant for 
the classification. As bad transfers, stimuli were chosen that differed from 
some other stimuli of the other category on only one dimension which was 
relevant for the classification. For instance, in the category structure of Table 
21, stimulus 000100 of category Ais a good transfer, as it differs on only one 
dimension from stimulus 000101 which also belongs to category A. Stimulus 
000011 of category Ais a bad transfer as it differs on only one dimension 
from stimulus 001011 of category B. 

Subjects. Twelve university students participated voluntarily in the pilot 
study. The average age was 21. Subjects were randomly assigned to one of 
the two experimental conditions. Five subjects were assigned to the Situated 
condition, seven to Random Recycling. 1 

Materials. The same stimuli were used as in the exploratory studies, 
namely the 40 houses from Table 21. The same category structure as in Table 
21 was used. So, A = OOOxxx + lllxxx + lOlxxl, and 
B = OOlxxx + llOxxx + lOlxxO. The houses indicated in the table with a Gor 
B were not used in the ordinary test or practice phases, hut as the additional 
houses for the transfer test. 

Results and Discussion 
The results of the pilotstudy are shown in Figure 42. A substantial number of 
the subjects remained at a guessing score of around 50% correct during most 
of the experimental session. Some learning took place only after test 8, but, 

1. The unequa1 distribution over the conditions is due to the fact that two potential 
subjects failed to turn up. 



The Practice Agent in a concept learning task 143 

with the exception of three subjects, this learning was rather limited. All three 
subjects who did eventually reach scores of above 90% correct were in the 
Situated condition. The fact that the relatively large increase in scores of 
these subjects only occurred at a moment when the Random Recycling 
subjects also showed some, though limited, learning supports the view that an 
advantage of the Situated strategy can only occur when some learning takes 
place. 

We concluded that the task is too difficult. A probable cause is that the 
classification rules are too difficult. As subjects learn conjunctions faster than 
disjunctions (Holland, Holyoak, Nisbett & Thagard, 1987), it may well be 
that the three disjunctions used in the classification rules were mainly respon
sible for the difficulty. Therefore, the complexity of the classification rules 
was reduced by eliminating one of the three disjunctions of each rule. 
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Figure 42: Results of Pilotstudy 1. Each line in the left-hand graph represents a 
subject, and each line in the right-hand graph represents the average over subjects in 
the Random Recycling condition ( dashed line) and the Situated condition ( solid line), 
respectively. The test phases are given on the x-axis and the number of correct 
responses on the y-axis. 

5.4.2 Pilot study 2: Effect of category simplification 

Method 
Design and Procedure. The same design and procedure were used as in 

Pilotstudy 1, except that in this case the number of stimuli used in test and 
practice phases was restricted to 24, and the number of stimuli in the transfer 
test was restricted to 32. 
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Subjects. Twelve university students participated voluntarily in this pilot 
study. The average age was 21. Subjects were randomly assigned to one of 
the two experimental conditions. 

Materials. The category structure as used in Pilot study 1 was simplified 
by removing the last disjunctions from the classification rules. 
So, A = OOOxxx + 1 llxxx, and B = OOlxxx + 1 lOxxx. The houses indicated in 
Table 21 with a G or B were not used in the ordinary test or practice phases 
but as the additional houses for the transfer test. 

Results and Discussion. 
The results of the pilotstudy are shown in Figure 43. Only two subjects of 
each condition reached a score of over 90% correct. Half the subjects 
remained on guessing level. So, contrary to expectations, the simplification of 
the classification rules did not lead to a large improvement in the average 
scores. The only apparent effects of the simplification were an acceleration of 
the moment at which a rise occurred in the learning curves of the few subjects 
that did learn, and an increase in the steepness of the rise. The latter can be 
explained by the fact that understanding one additional disjunction of a clas
sification rule leads to a larger additional percentage of correct classifications 
in case of rul es consisting of two disjunctions than in case of rules of three 
disjunctions. 

Pilot study 2 Average 

20 

- 16 

ê 
0 12 
0 
:lt:: 

4 

0 ........... ----------~---------.-1 1 2 4 6 8 10 12 14 16 1 2 4 6 8 10 12 14 16 

Test phase 

Figure 43: Results of Pilotstudy 2. Each line in the left-hand graph represents a 
subject, and each line in the right-hand graph represents the average over subjects in 
the Random Recycling condition ( dashed line) and the Situated condition ( solid line), 
respectively. The test phases are given on the x-axis and the number of correct 
responses on the y-axis. 
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We conclude that the difficulty of the task is not due to the structure of 
the classification rules. A possible explanation for most subjects staying at a 
guessing level is that the discovery of a correct disjunction of the classifica
tion rules depends on the subject's attention to the colour of the roof and 
facade, combined with the number of windows. When subjects direct their 
attention to these dimensions right from the start, they are likely to discover 
the correct disjunctions very quickly. On the other hand, when subjects direct 
their attention to irrelevant dimensions like the presence of a chimney, they 
are unlikely to find the correct disjunctions, especially as subjects tend to 
maintain their hypothesis even when confronted with evidence that it is incor
rect (Klahr & Dunbar, 1988; Livingston & Andrews, 1995). 

This reformulates the problem of obtaining increasing learning curves to 
the problem of ensuring that most subjects direct their attention to the rele
vant dimensions of the stimuli and neglect the irrelevant ones in an early 
phase of the experiment. 

Livingston and Andrews (1995) showed that individual differences in 
the sequence of encounters with a set of category exemplars can generale 
individual differences in hypotheses about category structure, as reflected in 
both performance measures and feature salience assignments.Thus, the initial 
sequence in which stimuli are presented is very important for category learn
ing. So far, in the pilot studies, this initial sequence was random in the first 
test phase, and almost random (though determined by the strategy) in the first 
practice phase. So, each subject got another initial sequence. This may 
explain the variation between subjects. Hence, we decided to make the exper
imental conditions more homogeneous by using the same order of presenta
tion for all subjects in the first test and practice phase. It is expected that this 
will reduce the variance between subjects. 

By choosing a good initial sequence, it may be possible to direct the 
attention of all subjects to the relevant features. Elio and Anderson (1984) 
found an effect of the moment of exposure to total category variation on the 
performance of the subjects. We decided to divide the stimuli into two groups 
of equal size, one of which bas a lower category variation than the whole 
stimulus set. The first group contained only stimuli with a chimney (top row 
of Pigure 44) and the other group contained mostly stimuli without a chimney 
(bottom row of Figure 44). A random order was determined for the stimuli in 
both groups (this is the order of the stimuli in both rows of Figure 44), and the 
stimuli of the first group were presented before the stimuli of the second 
group. We expected that this order of presentation would implicitly clarify the 
irrelevance of the chimney and would also lead to a higher probability in the 
first practice phase of discovering which other dimensions are irrelevant 
(because of the diminished category variation within the groups). 
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5.4.3 Pilot study 3: Effect of a fixed initial sequence 

Method 
Design and Procedure. The same design and procedure were used as in 

Pilot study 2, except that in this case the order in which stimuli were pre
sented during the first test and practice phase was determined beforehand and 
was the same for all subjects. This order is shown in Figure 44. 

Subjects. Five university students participated voluntarily in the pilot 
study. The average age was 22. Subjects were randomly assigned to one of 
the two experimental conditions: two to Random Recycling and three to Situ
ated. 

Materials. The same category structure was used as in Pilot study 2. 
So, A = OOOxxx + 111 xxx, and B = 001 xxx + l lOxxx. The houses indicated in 
Table 21 with a G or B were not used in the ordinary test or practice phases, 
but as the additional houses for the transfer test; 

A B B A B A A B B A B A 

A A B A B B A B A B A B 

Figure 44: The order in which the stimuli were presented during the first test and 
practice phase of Pilotstudy 3 (from left to right, from top to bottom). The letters 
below the houses indicate the category to which they belang. 

Results and Discussion 
The results of the pilotstudy are shown in Figure 45. All subjects reached a 
score of 100% correct, three subjects even reached that score as early as the 
fifth test phase. Though the number of subjects was very limited, this indi
cates a positive effect on the performance of the chosen fixed initia! 
sequence. However, this effect seemed too large: a consequence of the fast 
learning is that the Situated strategy does not get much time to adapt to the 
subjects. 

To reduce the fast learning to some extent, the fixed sequence in the first 
test and practice phase was altered in such a way that more category variation 
was presented to the subjects in the first group of stimuli. For that purpose, 
two stimuli without a chimney from the second group replaced two stimuli of 
the first group. These stimuli were chosen such that they differed on only one 
dimension from a stimulus that remained in the first group. Again the order 
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within the groups was detennined randomly. The resulting order is shown in 
Figure 46. The main experiment was performed with these settings. 
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Figure 45: Results of Pilotstudy 3. Each line in the left-hand graph represents a 
subject, and each line in the right-hand graph represents the average over subjects in 
the Random Recycling condition ( dashed line) and the Situated condition ( solid line), 
respectively. The test phases are given on the x-axis and the number of correct 
responses on the y-axis. 

5.5 Experiment 1 

5.5.1 Method 

Design and Procedure 
The same design and procedure were used as in Pilot study 3. Again, the 
order in which stimuli were presented during the first test and practice phase 
was determined beforehand and was the same for all subjects. Tuis order 
differed from the order used in Pilot study 3, and is shown in Figure 46. 

Subjects 

Twenty-seven university students, with an average age of 22, participated 
voluntarily in the experiment. None of them had any prior experience with 
the stimuli and this kind of task. Subjects were randomly assigned to one of 
the two experimental conditions: 14 to Random Recycling and 13 to Situated. 

Equipment 
The experiment was run on PC's (486, 14 inch screen) under Windows in a 
network configuration. In the experiment room, 14 PC's were located, at a 
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distance of at least one meter from each other. The subjects used an ordinary 
keyboard to respond, use of the mouse was not needed. No audio was used. 
All instructions and feedback were given in the form of text on the screen. 

Materials 
The same category structure was used as in Pilot study 2 and 3. So, 
A = OOOxxx + 111 xxx, and B = 001 xxx + 11 Oxxx. The houses indicated in 
Table 21 with a Gor B were not used in the ordinary test or practice phases 
but as the additional houses for the transfer test. 

A B B A A B A B A B B A 

B A B A B A A A B B A B 

Figure 46: The order in which the stimuli we re presented during the first test and 
practice phase of Experiment 1 (/rom left to right, /rom top to bottom). The letters 
below the houses indicate the category to which they belong. 

5.5.2 Results: general 

The results of the experiment are shown in Figure 47. 
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Figure 47: Results of Experiment 1. Each line in the two left-hand graphs represents 
a subject, and each line in the right-hand graph represents the average over subjects 
in the Random Recycling condition ( dashed line) and the Situated condition ( solid 
line), respectively. The test phases are given on the x-axis and the number of correct 
responses on the y-axis. 
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The results of three subjects, two in the Situated condition and one in 
Random Recycling, were not included in the analysis. Two subjects were 
excluded because they had not participated seriously in the experiment as 
their response times were extremely low (sometimes even zero). One subject 
was excluded because he had not completed the experiment. 

A MANOVA was performed on logit-transformed proportions of correct 
responses, with the test phase as a within-subjects repeated measures factor 
and the experimental condition (strategy used in the practice phases) as a 
between-subjects factor. When a subject was presented with the transfer test 
due to a score of 100% on two sequentia! test phases, a score of 100% correct 
was assigned to the skipped test phases. The results of the analysis are sum
marized in Table 22. 

Tahle 22: Results of the MANOVA on the data of Experiment 1. 

Source Num OF Den DF F 

Strategy 1 

Test 15 
Test x Strategy 15 

Between subjects 

1 1.11 

Within subjects 

8 2.59 
8 0.92 

* p <.05, ** p <.01, *** p <.001 

The eff ects of test phase and strategy were not significant. The interac
tion between test phase and strategy was also not significant. 

5.5.3 Discussion: general 

As can be seen in Figure 4 7, a substantial number of the subjects in both 
conditions remained at a guessing level for most or even the total range of test 
phases. This explains why there are no significant effects, not even of test 
phase. We decided to perform a post-hoc analysis to determine whether there 
is an effect of strategy for the high performers. 

5.5.4 Results: high performers versus low performers 

A post-hoc analysis was performed in which subjects were divided into two 
groups per strategy: one group for the high performers and a second group for 
the low performers. The median per strategy was used as a criterion: if the 
number of correct responses of a subject in most test phases was above or 
equal to the median of that test phase, the subject was assigned to the group 
of high performers. On the basis of this criterion, in both strategies five 
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subjects were assigned to the high performers, and in Random Recycling 
eight subjects were assigned to the low performers and in Situated six.The 
learning curves and average learning curves per group and per strategy are 
shown in Figure 48. 
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Figure 48: Results of Experiment 1 for low and high performers, respectively. Each 
line in the two left-hand graphs represents a subject, and each line in the right-hand 
graph represents the ave rage over subjects for the low performers of Random 
Recycling ( dashed line) and Situated ( solid line), and the high performers of Random 
Recycling (hold dashed line) and Situated (hold solid line), respectively. The test 
phases are given on the x-axis and the number of correct responses on the y-axis. 

For each group, a MANOVA was performed on logit-transformed pro
portions of correct responses, with the test phase as a within-subjects factor 
and the experimental condition (strategy used in the practice phases) as a 
between-subjects factor. Because of insufficient error degrees of freedom, in 
both groups only the between-subjects effects are available. In both groups 
the effect of strategy was not significant. 

5.5.5 Discussion: high performers versus low performers 

From Figure 48, it can already be induced that there is no difference for the 
low performers of the strategy used. Tuis is not surprising as the Situated 
strategy can only have an effect once a student bas learned something. So, for 
subjects who remain at change level no effect can be expected. 

Figure 48 seems to indicate an advantage of using the Situated strategy 
for the high performers, as the rise in the learning curves of the subjects in the 
Situated condition tends to occur earlier. Tuis is also reflected in the average 
learning curves. However, due to the small number of high performing sub-
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jects and the variance between subjects this effect is not significant and may 
well be due to coincidence. 

In general, the kind of learning curves obtained indicate that the circum
stances under which the Situated strategy was tested were not ideal, as a lot of 
subjects remained on guessing level, which gives the strategy nothing to 
adapt to, while the other subjects showed very steep rises in the learning 
curves, which gives the strategy no time to adapt. More gradually increasing 
learning curves are needed. 

5.5.6 Fit of the models 

The concept learning models were fitted to the data in the same way as 
models were fitted to the data in the case of paired associates learning, as 
described in Section 4.1.8. Each model functioned as an artificial subject, 
getting the same experimental procedure as the real subjects. For each combi
nation of parameter values, the average x2 was calculated over a hundred runs 
of the model and those parameter values were determined for which this aver
age x2 was minimal. 

In contrast to the case of paired associates learning, the models were not 
fitted to each individual subject, hut to the average learning curves of the two 
groups of high performers and low performers in both experimental condi
tions. This decision was based on the variation of the individual learning 
curves, which makes it rather senseless to fit to individual learning curves, 
and the large variance between subjects due to the difference between the 
high and low performers, which makes it rather senseless to fit to the average 
learning curves over all subjects in an experimental condition. 

Fit of ALCOVE 
ALCOVE was fitted to the data of Experiment 1 by using six input units (one 
for each stimulus dimension), 24 bidden units (one for each training exem
plar), and two output units (one for each category). It was assumed that the 
physical dimensions of the stimuli had corresponding psychological dimen
sions. 

We used the same value of the specificity parameter for all hidden units, 
and this value was chosen as 6.5, in correspondence with the value used by 
Kruschke (1992). We tried various other values for this parameter, but it 
hardly aff ected the learning curves. The attention strengths and association 
weights were initialized at 1. The response mapping constant was set at $=2. 

As f..w, the learning rate for the weights, had the largest effect on the 
learning curves, the value of this parameter was determined in most detail. 
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The value of Àa, the learning rate for the attentional strengths, had less impact 
on the learning curves and was therefore determined more coarsely. 

The minimal x2, the level of significance, and the parameter values for 
which this best fit was obtained for each group are shown in Table 23. The 
learning curves corresponding to these parameter values are shown in Figure 
49. 

Table 23: Results of the fit of Alcove on the data of Experiment 1. 

Data of the fit Parameter values 

Random Recycling: high performers y.074 A.8=.4 

Situated: high performers 

Random Recycling: low performers 

Situated: low performers 

<X1=1 <X:2=1 <X3=1.33 
a4=1.15 0:5=1.15 as=1.16 

A.w=.143 A.a=O 

A.w=.007 À8 =1 

<X1=1.01 <X2=1.01 0:3=1.53 
<X.4=1.5 <X5=1.5 0:5=1.51 

A.w=.02 À8=.2 

a1=1 0:2=1 as=1.29 
a4=1.21 as=1.26 as=1.21 

* p <.05, ** p <.01, *** p <.001, **** p <.0001 ; 15 degrees of freedom 

Minx2 

3.8** 

3.0*** 

0.9**** 

2.1 **** 

A second fit of Alcove was done with varying initial values of the atten
tion strengths. In this way, we tried to capture the initial relative salience of 
the different dimensions, as discovered in the exploratory studies described in 
Section 5.3. The attentional strengths a.1, a.2, and~. associated with the 
input units for the colour of the facade, colour of the roof, and shape of the 
roof, respectively, were initialized at 0.1. The other attentional strengths, a.3, 

a.4, and a.5, were initialized at 0.033. Given the classification rules used in the 
experiment, it was expected that Alcove would increase the relative atten
tional strength of the number of windows, and decrease the relative atten
tional strength of the shape of the roof. The results of these fits are shown in 
Table 24 and Figure 49. 
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Table 24: Results of the fit of Alcove with dijfering as on the data of Experiment 1. 

Data of the fit Parameter values 

Random Recycling: high performers Î\.w=.04 "-a=.9 

Situated: high performers 

Random Recycling: low performers 

CI1=1.52 CI2=1.52 0:3=3.66 
<X4=1.97 <X5=1.76 C15=1.79 

Î\.w=.039 A.a=.1 

CI1=.51 CI~.51 C13=.9 
a4=.29 a5=.39 aa=.47 

Î\.w=.018 Àa=O 

CI1=.1 CI2=.1 C13=.033 
<X4=.033 ~=.033 0:5=.1 

Minx2 

4.4** 

3.8*** 

1.2**** 

Situated: low performers Î\.w=.012 "-a=.5 1. 7**** 

a 1=22.02 a2=22.02 1l::3=44.87 
a4=42.22 a5=43.13 a6=34.26 

* p <.05, ** p <.01, *** p <.001, **** p <.0001; 15 degrees of freedom 

The resulting values of the attention strengths are also shown in Table 
23 and 24. The values of a 1 and a 2 are always equal, as they are initially the 
same and the values of the corresponding dimensions, namely the colour of 
the facade and colour of the roof, always change together in the stimuli used 
in this experiment. 

In two cases, namely the high performers of Situated in Table 23 and the 
low performers of Random Recycling in Table 24, the learning rate of the 
attention strengths, À.8 , equalled zero, so the values of the attention strengths 
did not change during learning. For the second case, this is not strange as sub
jects hardly leam, but for the first case it is surprising if changes in attention 
strengths are viewed as the way to change hypotheses. 

As expected, the value of a 3, corresponding to the number of windows 
(very relevant for the classification), is relatively high compared to the other 
attentional strengths for the high performers. This is especially true for the 
version of Alcove with varying initial attention strengths (see Table 24): it is 
approximately twice as large as the other ones. This is particularly nice as its 
value was initially one third of that of a 1, az, and <l(J. 

As expected, the values of the attention strengths a4, a5, and a.6, which 
correspond to the irrelevant dimensions, are relatively similar. The only 
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exception is formed by the high performers of Situated from Table 24: their 
a6 is relatively large. Nevertheless, considering that the value of a6 was ini
tially three times as large as that of the other two, this difference has certainly 
diminished in the course of learning. 

Fit of Alcove Fit of Alcove with differing a's 
24 

.~:":::::.•". 
"~" 

20 

~ 16 
.... 
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1 2 4 6 8 10 12 14 16 1 2 4 6 8 10 12 14 16 
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Figure 49: Fits of Alcove with equal and varying initia[ values of the attention 
strengths on the data of Experiment 1. Each line in the graphs represents the average 
over subjects for the low and high performers of Random Recycling and Situated 
( dashed lines ), respectively, and the fits of Alcove with equal and varying initial 
values of the attention strengths on these average learning curves (solid lines). The 
test phases are given on the x-axis and the number of correct responses on the y-axis. 

Fit of the Configural Cue Model 
The Configural Cue model was applied to the data of Experiment 1 by using 
six input units (one for each stimulus dimension), 24 bidden units (one for 
each training exemplar), and two output units (one for each category). It was 
assumed that the physical dimensions of the stimuli had corresponding 
psychological dimensions. 

We used a fixed value of parameter a, which refl.ects the conditionability 
of the configural units, and this value was chosen as 1 corresponding to the 
value used by Pearce (1994). The association weights were initialized at 0. 
The response mapping constant was set at <1>=2. 

The minimal x2• the level of significance, and the parameter values for 
which this best fit was obtained for each group are shown in Table 25. The 
learning curves corresponding to these parameter values are shown in Figure 
50. 
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Table 25: Results of the fit of Configural cue on the data of Experiment 1. 

Data of the fit Parameter values Minx2 

Random Recycling: high performers ~=.09 4.0** 

Situated: high performers ~=.197 2.2**** 

Random Recycling: low performers Jl=.007 1.0**** 

Situated: low performers ~.021 1.8**** 

* p <.05, *"p <.01, ***p <.001, ****p <.0001; 15 degrees of freedom 
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Figure 50: Fit of Configural Cue on the data of Experiment 1. Each line in the graph 
represents the average over subjects /or the low and high performers of Random 
Recycling and Situated (dashed lines), respectively, and the fit of Configural Cue on 
these average learning curves (solid lines). The test phases are given on the x-axis 
and the number of correct responses on the y-axis. 

5.5. 7 Discussion: fit of the models 

As shown in Table 23, 24, and 25, both models fit the data of Experiment 1 
very well. The extra parameters in the case of Alcove, particularly the atten
tion strengths which are learned during run time, do not, however, result in a 
better fit of Alcove on the data than Configural Cue. Nor does the use of vary
ing initial attention strengths, which are supposed to reflect differences in the 
initial salie nee of the dimensions, result in a better fit compared to the use of 
equal initial attention strengths. 

For both models, the difference between low and high performers is 
reflected in different values for the learning rates. For Alcove, the learning 
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rate of the association weights rather than that of the attention strengths 
seems to be important in explaining the variance between the groups of sub
jects. This also indicates that the use of attention strengths is not as powerful 
as expected. Nevertheless, the effect of salience on learning clearly indicates 
a need for something like attention strengths, as will become even clearer in 
the experiments discussed below. 

As shown in Figure 49 and 50, the learning curves produced by both 
models differ in one major aspect from those produced by the high perform
ance subjects. In the first place, the learning curves of the models tend to rise 
very early in the learning process, hut with a slope that decreases quite fast. 
The curves of the real subjects rise some test phases later, hut with a steeper 
and more constant slope. 

Another defect of the models is that the parameter values found for both 
strategies differ. For both Alcove with equal initial attention strengths, and 
for Configural Cue, much higher parameter values were found for the Situ
ated strategy than for Random Recycling: Àw and ~ were found at least twice 
as large for Situated. Tuis suggests that the models would predict a negative 
effect of using the Situated strategy, which is certainly not reflected in the 
experimental results. 

Strikingly, this does not hold for Alcove with varying initial attention 
strengths: approximately the same values of Àw were found for both strate
gies for the high performers, and the value of Àw was even somewhat smaller 
for Situated in the case of the low performers. A possible explanation may be 
that the variation in initial attention strengths makes some exemplars (houses) 
more difficult to learn than others, while equal initial attention strengths 
makes all houses equally difficult. Unequal difficulties are needed for the Sit
uated strategy to have an effect, and in the case of equal difficulties the Ran
dom Recycling strategy should be preferred. Tuis result of obtaining 
approximately equal values of Àw for both strategies indicates that it may be 
preferable to use Alcove with initial attention strengths reflecting the initia} 
salience of the dimensions, and that the possibility to do this makes Alcove 
preferable to Configural Cue. 

Nevertheless, the parameter values found with that variant of Alcove 
still differ over the strategies. Further analyses revealed that in this variant of 
Alcove the value of Àa had a very great effect on the learning curves obtained: 
with the same parameter settings as found for Situated for the high perf orm
ers a much higher learning curve was found when using Random Recycling 
as the strategy. So, in .this particular case a higher learning rate of the atten
tion strengths reduces learning, as it produces lower learning curves. 
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5.6 Use of the Situated strategy: Another view on items 

Up to now, we have regarded every house as an item. So, the Situated strat
egy has been working on the set of houses, presenting houses that had been 
categorized incorrectly more frequently than houses that had been catego
rized correctly on the last presentation. However, this may not be a good 
approach for concept learning. In the case of concept learning, the student bas 
to learn something more general than the classification of individual houses, 
namely concepts. Therefore, learning to classify an individual house may 
depend on learning to classify other houses. For instance, it is probably easier 
to remember that a sparrow is a bird and not a mammal when being 
confronted repeatedly with other animals similar to sparrows that are also 
birds. 

Each disjunction of a classification rule can be associated with a subset 
of the houses, namely with those houses that meet the disjunction. Given this 
hierarchy of a set of houses consisting of a number of subsets that consist in 
their turn of individual houses, the selection of a house for presentation can 
be clone in two phases. First, a subset is selected. Next, from that subset a 
house is selected for presentation. The advantage of this division into two 
phases is that the selection process can take account of the intemal structure 
of the set of houses. 

For each of these two phases a sequencing strategy can be used. So, 
there are four possible combinations of using Random Recycling and Situ
ated in such a setting. We decided to focus first on the effect of using the Sit
uated strategy as a subset selection strategy. Therefore, only two 
combinations were considered, namely those with Random Recycling as a 
strategy of selecting a house given a subset. lt remains interesting, however, 
to investigate the other two possibilities as well. 

With this choice of combinations, we are actually not changing the Situ
ated strategy, but merely changing the view on items: in this case, subsets are 
viewed as the items on which the Situated strategy works. That this is area
sonable choice can be seen in the following example. Consider, for instance, 
a case in which clock times have to be learned. Once a student shows to know 
"two o'clock", it seems reasonable to present full hours less often, because 
there is a high likelihood that the subject will also know "three o'clock" etc. 
Hence, in this example, the Situated strategy should work with "full hours'', 
"half hours", etc., as items rather than with "two o'clock", "three o'clock", 
etc" as items. It could be given as a guideline that the Situated strategy should 
work on items which are learned independently of each other. 
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5.7 The quest continued 

In order to be able to compare both item sequencing strategies, we still need 
gradually increasing learning curves. The approach used above did lead to 
increasing learning curves, hut the increase was too steep and, besides, too 
many subjects still performed at a relatively low level during most of the 
experimental session, which was very demotivating for them. Though the use 
of a well-chosen and fixed initial sequence clearly reduced the variance 
between subjects and inftuenced the moment of the rise in performance, 
something else was needed to obtain a gradual rise. 

A gradual rise is obtained when disjunctions of the classification rules 
are learned independently of each other. In the classification rules as used 
above (A = OOOxxx + lllxxx, and B = OOlxxx + llOxxx) this is not the case. 
For instance, once the subjects discover that the white houses belong to A 
when they have two windows and to B when they have one window, it is very 
straightforward to discover that it is precisely the reverse in the case of the 
coloured houses. So, this category structure was not very well suited for grad
ual learning. 

Another argument against that category structure is that the classifica
tion rules only contain two disjunctions. So, the learning can only contain one 
intermediate stage: a stage in which one disjunction is mastered and the other 
one is still unmastered. Though we could evaluate sequencing strategies with 
such a category structure, it seems preferable to widen the scope on which the 
strategies may work, hence to increase the number of disjunctions from two 
to three again. 

Given that the classification rules must consist of three disjunctions and 
that the learning of each disjunction must be independent of the learning of 
the other disjunctions, this raises the question of how to make sure that the 
learning curves increase. Three disjunctions are even harder to learn than two 
disjunctions, and the independence of the learning of the disjunctions will 
also increase the difficulty. 

A possible solution is to ensure that at least one of the disjunctions is 
relatively easy to leam by using very salient dimensions as a classification 
criterion. Therefore, we decided to use the colour (of the roof and facade) and 
shape of the roof as relevant dimensions, in accordance with their salience as 
discovered in the exploratory studies reported in Section 5.3. 

The colour (of the roof and facade) is used to distinguish between the 
disjunctions: colour is constant within each disjunction, and varies between 
the disjunctions of the same category. As can be seen in Figure 51, houses 
with the same colour pattern are very readily distinguishable from the other 
houses. The first disjunctions of the rules have been chosen such that they are 
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easy to 1earn: all houses with a coloured facade and roof be long to A, and all 
houses with a white facade and roof belong to B. The houses of both other 
colour patterns are divided equally over the categories. 

The shape of the roof is used to classify houses with a white facade and 
coloured roof: houses with a flat roof be long to A, and those with a pyramidal 
roof belong to B. The number of windows is used to classify houses with a 
coloured facade and white roof: houses with two windows beloog to A, and 
those with one window belong to B. This leads to the classification rules 
A = llxxxx + lOxxxl + OlOxxx, B = OOxxxx + lOxxxO + Ollxxx. 

As the shape of the roof is a very salient dimension, it is expected that 
the disjunctions which use it as a criterion for classification will be easier to 
learn than those that use the number of windows. However, this is not very 
important: it suffices that subjects who attend to the shape of the roof will 
have more difficulty with the disjunctions using the number of windows and 
vice versa. So, the learning of the disjunctions is independent and gradual 
learning is possible. 

In order to enlarge the natural salience of the colour even further and to 
give the subjects a hint as to the kind of classification rules to look for, the 
following sentence was added to the instructions: "The colour of the houses 
(facade and root) determine which other dimensions you should pay attention 
to.". This addition may also lead the subjects to use an analytic learning strat
egy, hut this is not considered a problem as the previous experiment already 
indicated that subjects tend to use an analytic strategy anyway. 

5.7.1 Pilotstudy 4: Effect of salience (three disjunctions) 

Method 
Design and Procedure. The same design and procedure were used as in 

Experiment 1, except that in this case the order in the first test phase was ran
dom again, and the order in the first practice phase was determined by the 
strategy. 

Subjects. Six subjects with university or higher vocational training par
ticipated voluntarily in the pilot study. Subjects were randomly assigned to 
one of the two experimental conditions. 

Materials. The same kind of houses were used as in Experiment 1. The 
following classification rules were used: 
A = llxxxx + lOxxxl + OlOxxx, B = OOxxxx + lOxxxO + Ollxxx. 
Not all 64 houses that meet these rules were used, but a selection was made 
such that, with the exception of the presence of a chimney, all irrelevant 
dimensions were balanced within each disjunction. For instance, for the first 
disjunction of A (which contains houses with a grey facade and root), houses 
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were selected such that an equal number of houses had one window and two 
windows, a dark door and a white door, and a flat roof and a pyramidal roof. 
The selected houses are shown in Figure 51. 

A 

B 

Figure 51: Stimuli used in Pilotstudy 4 and 5. Transfer stimuli are marked with an 
asterisk. 

Results and Discussion 
The results of the pilot study are shown in Figure 52. The learning curves 
look very promising in the sense that they gradually increase for all subjects. 
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Figure 52: Results of Pilotstudy 4. Each line in the left-hand graph represents a 
subject, and each line in the right-hand graph represents the average over subjects in 
the Random Recycling condition ( dashed line) and the Situated condition ( solid line), 
respectively. The test phases are given on the x-axis and the number of correct 
responses on the y-axis. 

However, the effect of strategy is not what was expected: the subjects 
with Random Recycling clearly outperform those with Situated. The large 
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difference in the second test phase is striking. A possible explanation for this 
difference is the order in which stimuli were presented during the first prac
tice phase. In the case of Random Recycling, all houses are presented in such 
a way that houses from the various disjunctions are distributed homogene
ously over the sequence. On the other band, in the case of Situated, it may 
well be that houses of one disjunction are presented rnuch more frequently 
than houses of the corresponding disjunction of the other category. The 
guessing probability of a correct classification of 50%, in particular, makes it 
very likely that this will occur. This may lead to confusion of the subjects, 
who are biased to expect as much houses in both categories. Subjects may 
start to pay attention to irrelevant dimensions as the relevant dimension does 
not vary in most of the houses (Elio & Anderson, 1984). 

This is confirmed by the loggings of the subjects in the Situated condi
tion. Two out of three subjects had a rather unequal distribution of the presen
tation of houses from the different disjunctions: on average, four houses were 
presented more as belonging to a disjunction of one category than to the cor
responding disjunction of the other category. For instance, six houses were 
presented with a white facade and coloured roof that beloog to A, and only 
two that belong to B. These two subjects perforrned very badly on the second 
test phase. The third subject only had such an unequal distribution for one of 
the disjunctions. This subject performed almost as well in the second test 
phase as the subjects in the Random Recycling condition. 

We decided to use a fixed initial sequence during the first test and prac
tice phase, as we had done before (cf" discussion Pilotstudy 2). However, in 
this case the initial sequence was chosen such that it corresponds to the kind 
of initial sequences produced by Random Recycling: a house of a certain dis
junction was only presented when a house of all other disjunctions had been 
presented. In correspondence with the initial sequence as used in Pilot study 3 
and Experiment l, the variance within the first part of the sequence was 
reduced by presenting all houses with a chimney in the second part. The ini
tial sequence chosen is shown in Figure 53. 

5. 7.2 Pilot study 5: Effect of a fixed initial sequence on Situated 

Method 
Design and Procedure. The same design and procedure were used as in 

Pilot study 4, except that in this case the order in which stimuli were pre
sented during the first test and practice phase was determined beforehand and 
was the sarne for all subjects. This order is shown in Figure 53. 

Subjects. Three subjects with higher education participated voluntarily 
in the pilot study. All subjects were assigned to the Situated condition. 
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Materials. The same stimuli were used as in Pilotstudy 4 (see Figure 
51 ), with classification rules: A = 11 xxxx + 1Oxxx1 + 01 Oxxx, 
B = OOxxxx + lOxxxO + Ollxxx. 

A A A B B B A A A B B B 

A A A 

Figure 53: The order in which the stimuli we re presented during the first test and 
practice phase of Pilotstudy 5 (/rom left to right, from top to bottom). The letters 
below the houses indicate the category to which they belong. 

Results and Discussion 
The results of the pilot study are shown in Figure 54. There is no clear advan
tage of using this fixed initial sequence: though one subject performs very 
well, the other two remain at a relatively low level of performance, lower 
even than the subjects in the Situated condition of the previous pilot study. 
Nevertheless, the performance of these subjects on the second test phase is 
somewhat better than the performance of the subjects in Pilot study 4. 
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Figure 54: Results of Pilotstudy 5. Each line in the left-hand graph represents a 
subject, and each line in the right-hand graph represents the average over subjects in 
the Random Recycling condition of Pilotstudy 4 ( dashed line), the Situated condition 
of Pilotstudy 4 (solid line), and the Situated condition of Pilotstudy 5 (bold solid 
line), respectively. The test phases are given on the x-axis and the number of correct 
responses on the y-axis. 
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A possible explanation of the decrease in performance lies in the order 
of the initial sequence. Though this order implicitly indicates the irrelevance 
of the chimney, it also bas the property that the houses frorn each disjunction 
of both rules are spread homogeneously over the sequence as a whole. One 
consequence of this may be that for the first disjunction of both rules (each of 
which differs frorn all other disjunctions in respect of very salient dimen
sions) it is less obvious that similar houses are classified in the same way than 
they would have been if the houses were presented closer to each other. 

This kind of initia! order (though not exactly the same) was also a natu
ra! consequence of the Random Recycling strategy in Pilot study 4. So, there 
must be some reason other than the lack of a good initia! sequence for the Sit
uated strategy perforrning worse than Random Recycling in Pilotstudy 4, and 
even worse in Pilot study 5 under a condition which was even closer to that of 
Random Recycling. 

We conclude that the problem is intemal to the Situated strategy and that 
sorne changes in the use of the strategy may be needed. 

5.7.3 Changes in the Situated strategy 

Value of the strategy's parameter 
A first adjustment which can be made to the Situated strategy is the value of 
its parameter. As discussed in Chapter 3, this value was fixed at 10, based on 
an assurnption that we would like the probability of an item frorn the bad set 
being presented to be approxirnately 50% when the number of items in the 
bad set is only 5% of the total number of items. This assumption was meant 
to guarantee that learning still takes place for the last 5% of the items, hut 
also that forgetting is prevented by presenting members of the good set with 
an equal probability in the end of learning. 

Though this may be true and, hence, 10 may be a reasonable value for 
larger sets of items, problems rnay arise when the set of items is fairly small. 
In the case of the above classification rul es, the number of items on which the 
strategy works equals six. Tuis implies that 5% of the items amounts to zero 
items when rounded to a whole number. So, in the end, when the last item has 
to be learned, the probability of presenting an item of the good set is still only 
33%. When learning starts and only the first item has been leamed, the likeli
hood of this item being presented again is only 2%. Hence, it may be a very 
long time before an item of the good set is presented again, and forgetting or 
an unjustified addition to the good set (likely with a high guessing probabil
ity) may affect performance very badly. 
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We decided to change the value of the parameter to 5, in order to obtain 
a probability of approximately 50% in the final phase of learning. 

Criterion for transfers to the good set 
In contrast to the tasks in the case of paired associates learning, there is a very 
high likelihood of transferring an item to the good set even though the subject 
does not know it yet, as the likelihood of classifying an item correctly by 
chance is 50%. In order to cope with this high guessing probability, we 
decided to change the criterion for a transfer to the good set. A subset is no 
longer transferred to the good set when a house of that subset bas been classi
fied correctly, but only when the classification was correct the last three times 
(a house of) that subset was presented. 

5. 7 .4 Changes to reduce variance 

In order to reduce the variance between subjects as far as possible, two addi
tional changes were made in the conditions under which the experiment will 
be perf ormed. 

In the first place, it was decided to use only one shade of gray in the 
stimuli. In the pilot studies some subjects indicated that they believed that 
some dimensions could take more than two values, as various shades of gray 
were present in the stimuli. Therefore, all shades of gray were replaced by the 
same colour. The implication for the stimuli can be seen in Figure 55. A pos
sible side effect of this change may be that the various parts of the house 
(facade, roof, and door) are less distinguishable from each other when they 
happen to have the same colour. However, we do not expect this effect to be 
harmful to the learning. 

... 

Figure 55: Change of gray shades in the stimuli. Left a house as in Pilotstudy 4 and 
5, to the right the same house after the transformation of color. 

In the second place, it was decided to restrict the use of houses with a 
chimney to the transfer test and to use only houses without a chimney in the 
practice and test phases. The presence of a chimney is irrelevant for the clas
sification, but a subject still occasionally forms hypotheses on the basis of the 
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presence of a chimney, sometimes even complicated hypotheses in which the 
number of windows is added to the number of chimneys. 

5.8 Experiment 2 

5.8.1 Method 

Design and Procedure 
The same design and procedure were used as in Pilotstudy 5. Again, the 
order in which stimuli were presented during the first test and practice phase 
was determined beforehand and was the same for all subjects. This order is 
shown in Figure 56. 

Subjects 
Eighteen subjects wîth university or higher vocational training participated 
voluntarily in the experiment. None of them had any prior experience with 
the stimuli and this kind of task. Subjects were randomly assigned to one of 
the two experimental conditions. 

Equipment 
The experiment was run on PC's (386 & 486, 14 inch screen) under Windows 
in a network configuration. The subjects used an ordinary keyboard to 
respond; use of the mouse was not needed. No audio was used. All instruc
tions and feedback were given in the form of text on the screen. 

Materials 
The same category structure was used as in Pilotstudy 4 and 5. So, 
A = 11 xxxx + lOxxx 1 + 0 lOxxx, B = OOxxxx + lOxxxO + 011 xxx. 

~tl;a~~tilt• 
A A A B B B A B 

A B 

m. 
B 

• B 

Figure 56: The order in which the stimuli we re presented du ring the first test and 
practice phase of Experiment 2 (/rom left to right, /rom top to bottom). The letters 
below the houses indicate the category to which they belong. 
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5.8.2 Results 

The results of the experiment are shown in Figure 57. A MANOVA was 
performed on logit-transformed proportions of correct responses, with the 
test phase as a within-subjects repeated measures factor and the experimental 
condition (strategy used in the practice phases) as a between-subjects. factor. 
When a subject was presented with the transfer test due toa score of 100% on 
two sequential test phases, a score of 100% correct was assigned to the 
skipped test phases. The results of the analysis are summarized in Table 26. 
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Figure 57: Results of Experiment 2. Each line in the two left-hand graphs represents 
a subject, and each line in the right-hand graph represents the average over subjects 
in the Random Recycling condition (dashed line), and the Situated condition (solid 
line), respectively. The test phases are given on the x-axis and the number of correct 
responses on the y-axis. 

There is a significant main effect of strategy [F(l,1)=6.44, p < .05]. 
There is no main effect of test, and the interaction between test phase and 
strategy is not significant either. 

Table 26: Results of the MANOVA on the data of Experiment 2. 

Source Num OF Den DF F 

Between subjects 

Strategy 1 6.44 * 

Within subjects 

Test 15 2 2.68 
Test x Strategy 15 2 1.11 

*p <.05, **p <.01, ***p <.001 
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A MANOVA was also performed on the last eight test phases. The 
results of this analysis are summarized in Table 27. There are significant main 
effects of strategy [F(l,1)=6.12, p < .05] and test phase [F(7,10)=9.45, 
p < .01]. A significant interaction was found between test phase and strategy 
[F(7,10)=3.24, p < .05]. 

Table 27: Results of the MANOVA on the data of Experiment 2 
over the last 9 test phases. 

Source Num DF Den DF F 

Strategy 

Test 7 
Test x Strategy 7 

Between subjects 

1 6.12 * 

Within subjects 

10 9.45 •• 
10 3.24 * 

*p <.05, **p <.01, ***p <.001 

5.8.3 Discussion 

The lack of a significant effect of test phase for the analysis over the total 
range of test phases may be due to the irregularity of the learning curves, 
especially in the beginning, which introduces a lot of variance. Tuis irregular
ity can be explained by the high probability of classifying a house correctly 
by chance. The main effect of test over the last eight test phases indicates that 
subjects did indeed learn. 

The main effect of strategy, both over the total range and over the last 
eight test phases, indicates that the use of the Situated strategy increased the 
subjects' performance. However, the difference in the first eight test phases is 
rather minimal, so the effect of the Situated strategy only becomes prominent 
in the last eight test phases. This is reftected by the fact that the interaction 
between strategy and test phase is significant over the last eight test phases, 
while it is not significant over the total range. So, the increase in performance 
due to the Situated strategy produces steeper learning curves in the second 
half of the range. Tuis can be explained by the fact that the Situated strategy 
needs time to adapt to the subjects. The Situated strategy can only produce an 
advantage once the subjects have learned something. 

The group subjects in the Situated condition perf orm more homogene
ously than the group subjects in the Random Recycling condition. The aver
age standard deviation over the last eight test phases is 14.2% for the Random 
Recycling condition and 9% for the Situated condition. The subjects in the 
Random Recycling condition can be divided into two groups: one group with 
a score of between 65% and 70% correct on the last test phase and a second 
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group with a score between 96% and 100% correct. The subjects in the Situ
ated condition all have scores which are between 96% and 100% correct, 
with the exception of one subject with a score of 83% correct. This indicates 
that the advantage of using the Situated strategy is mostly due to an increase 
in the performance of the low performing subjects, reducing the difference 
between high and low performers. 

5.9 Conclusions 

As far as the effectiveness of the Situated item sequencing strategy is 
concerned, the results indicate an advantage of using the Situated strategy 
compared to Random Recycling in a concept learning task. This advantage 
was due to an increase in the performance of the low performing subjects. 
These results are similar to those found for paired associates learning. A 
different view of items was needed to obtain these results: not every exemplar 
(house) was regarded as an item, but the item sequencing took place on 
subsets. Future research should investigate the effect of using the Situated 
strategy also within the subsets. 

The applicability of the above to interactive instruction may be chal
lenged in several ways. In the first place, one might argue that concept learn
ing mainly occurs in daily life, in which an item sequencing strategy cannot 
be used. However, concept learning plays an important role in various 
instruction situations, including the classroom. Examples include biology 
(e.g., mammals, birds, insects), chemistry (e.g" metals, acids, salts), and art 
history (e.g., Impressionism, Baroque, Jugendstil). In all these cases, interac
tive instruction can be used and, hence, an item sequencing strategy. 

In the second place, one might argue that classification rules were used 
in the experiments that were explicitly constructed as disjunctions of subsets, 
and that it may be more difficult to identify what to use as items in real life. 
However, the subsets used above reflected similarity rather than subrules, and 
it seems undeniable that within concepts in real life it is often possible to 
identify subgroups of exemplars with salient features that are very similar to 
each other. These subgroups can then be used as items. For instance, when 
designing a lesson on the concept of mammals, subgroups like whales, 
f elines, and rodents could be distinguished. 

The application of the results to interactive instruction is not restricted to 
concept learning. One outcome is that in order for the Situated strategy to be 
effective, a different view of items is sometimes needed. This can be applied 
to other kinds of learning as well. For instance, it bas been used in the Appeal 
prototype (Dutch for English speaking persons) for learning clock times. 
Instead of using items for "5 o'clock", "6 o' clock", "5 minutes past 11 ", etc" 
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items have been used for "full hours", "half hours", "minutes between the full 
hour and a quarter past the full hour", etc. 

As far as the validity of concept learning models is concerned, a com
parison of the fits of ALCOVE and Configural Cue to the data of the first 
experiment showed two major shortcomings of the models. In the first place, 
the learning curves of the models rose very early in the learning process, but 
with a slope that decreased quite fast. The curves of the high performance 
subjects rose some test phases later, but wîth a steeper and more constant 
slope. In the second place, the parameter values found for both strategies dif
fered: much higher parameter values were found for the Situated strategy 
than for Random Recycling. The use of varying initial attention strengths in 
Alcove reduced this effect considerably. This suggests that it may be prefer
able to use Alcove with initial attention strengths that refiect the initial sali
ence of the dimensions, and that the possibility of doing this makes Alcove 
preferable to Configural Cue. 
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Chapter 6 

The Navigation Agent: 
implementing a mixed locus of control 

Abstract 
The function of the Navigation Agent is to determine a path through the 
course material adapted to the interests, foreknowledge, and capabilities of 
the individual student. On the other hand, it should remain possible for the 
student to select topics himself. The moment at which a topic changes may 
also be determined both by the student and the agent. The agent should base 
this moment on the student's peiformance. A method for topic selection in a 
"mixed locus of control" setting is discussed. In two experiments, the effec
tivity of topic selection and initiative by the agent was explored. Topic selec
tion by the agent showed an advantage for students who we re unable to 
monitor their own learning process. Jnitiative by the agent reduced the time 
needed to finish the task by stimulating the subjects to study the lessons in a 
balanced way. The experiments provide evidence that a mixed locus of 
control is preferable to either the student or the agent taking the initiative and 
selecting other lessons. This implies that both the student and the agent can 
take the initiative and can select other lessons. 
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6.1 The task of the Navigation Agent: topic selection 

In its most basic form, a course can be regarded as a set of items the student 
bas to study. An interactive instruction system can help the student by deter
mining the order in which these items are presented. Tuis is what we have 
called item sequencing above, and have discussed in the previous three chap
ters as a task of the Practice Agent. No prior knowledge about the items and 
their relations was used in the item-sequencing algorithm discussed above . 

For several reasons, this needs not, however, be sufficient for optimal 
learning. In the first place, the order in which items should be presented to the 
student may depend on content-specific information about the items. For 
instance, it seems preferable to present clock times when the student bas mas
tered numbers, and not the other way around. In the second place, the set of 
items may be very large, imposing a high cognitive load on the student. It 
seems preferable to restrict the set of items the student is learning concur
rently. Lastly, it seems preferable to have some semantic coherence in the 
sequence. For instance, when studying clock times it is more natural to do all 
the clock times and not to interrupt this process by, for instance, introducing 
the study of the past tense. 

So, in order to keep item sequencing as simple as possible (so that we 
can use the algorithm described above ), it bas to take place on a set of items 
which are semantically close and independent of each other (in the sense that 
no item is prerequisite for any other item in the set). Therefore, we divide the 
set of items into subsets which meet these requirements. These subsets do not 
have to be disjoint. Given a particular subset, we use item sequencing to 
determine at any moment which item of that subset should be presented. Tuis 
remains the task of the Practice Agent. We will use the term topic selection to 
indicate the process of determining the subset of items for the Practice Agent 
to employ. Tuis will be the task of the Navigation Agent, together with deter
mining when topic selection should take place. In this chapter, the task of this 
agent will be analysed in more depth, and an algorithm will be described, as 
well as its evaluation. 

6.2 Two views of navigation: user navigation and 
guidance 

Many applications enable the user to access a large database of information in 
alt kinds of formats (like text, video, sound tracks), say presentations. Exam
ples of such applications are CD-I's such as the Smithonian CD-I and CD
ROMs such as Encarta. An interactive instruction system can also be viewed 
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as such an application. In this case, the presentations are often interactive and 
are usually called exercises. In the terms we have used above, presentations 
constitute the units on which the Navigation Agent operates, and a presenta
tion may contain several items on which the Practice Agent operates. 

In existing applications, there are two general approaches. In the first 
approach, the users navigate through the database themselves, using, for 
instance, menu structures. They can be aided in their task by various ways of 
visualizing the database, for instance with cone trees visualizing hierarchical 
information (Robertson, Mackinlay & Card, 1991), or with "subway lines" 
visualizing cohesion (Espinosa & Baggett, 1993). Nevertheless, navigation 
often remains a difficult task, particularly in the case of a large database. 

In the second approach, 'guidance' is used: part of the application navi
gates for the user in the database. For instance, in the Smithonian CD-I, the 
user can get a kind of guided tour through the museum. In Laurel, Oren, and 
Don (1990) a system is described in which anthropomorphic agents guide the 
user through a database using a narration metaphor. In an interactive instruc
tion system, guidance means that the successive lessons and exercises are 
selected by the system. As described above, this is a task of the Navigation 
Agent. 

A possible <langer of pure guidance may be that users feel a lack of con
trol (Norcio & Stanley, 1988). As argued in the first chapter, we advocate a 
mixed locus of control (Gentner, 1992), in which both the user and the system 
(i.e" Navigation Agent) can navigate and the decision about who navigates 
depends on the interaction. In the case of an interactive instruction system, 
this decision may depend on the student's performance. Such a mixed locus 
of control in the area of navigation is also described by Takeuchi and Otsuki 
(1990). As argued in the first chapter, the system should take over control 
especially in case of low performance. 

6.2.1 Problems with current approaches to guidance in IIS's 

There are several problems associated with the current approaches to guid
ance in interactive instruction systems. 

1. Flexibility concerning the foreknowledge of the student is lîmited. lt is 
generally assumed that the foreknowledge of all students is equal, and that all 
students have exactly the foreknowledge needed for the course and nothing 
more. This is not necessarily the case, however. 

Sometimes, user profiles or stereotypes are used, and the user is initially 
assigned to one of the dîsjoint classes (Rich, 1989). A classification often 
mentioned is that of novices and experts. Hensgens, Rosmalen, and Baaren 
(1995) describe a system in which students gain access toa subset of the 
course material with a pre-set path, depending on their profiles. Sometimes 
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separate applications are developed for separate market segments. For 
instance, there may be a course in "Spanish for beginners", and a separate 
course in "Spanish for advanced learners". However, the use of a restricted 
number of discrete classes cannot really capture the continuum of the differ
ence in foreknowledge. 

2. Flexibility concerning the learning objective is limited. It is generally 
assumed that the learning objective of all students is equal, and that all stu
dents have to learn everything the course has to offer. This is not necessarily 
the case, however. 

Sometimes, the student profiles mentioned before are used, which in this 
case should capture what the student should learn or wants to learn (Hens
gens, Rosmalen, & Baaren, 1995). Again, separate applications are some
times developed for separate market segments. For instance, there may be a 
course in "Spanish for business men'', and a separate course in "Spanish for 
holiday-makers". Of course, the discrete classes form only an approximation 
of the continuum of the difference in learning objectives. 

3. Flexibility concerning the capabilities of the student is limited. Even 
when the initial level and the learning objectives of two students are the 
same, it may be that the path towards the learning ohjective should be differ
ent for the two. Tuis may be because one student bas a quicker understanding 
than the other one: a somewhat slower student may reach the goal in smaller 
steps than a fast student. But it rnay also be because one student prefers vid
eos while another prefers text, or because one student prefers forrnulas and 
another examples. So, different paths through the course material may he 
needed even when the sarne foreknowledge and learning objectives are 
assurned for all students. 

4. The character of guidance tends to be statie and often also linear. 
Even assurning a flexible use of foreknowledge, learning objectives, and 
capabilities, the problem remains that these are taken to be established facts 
that are initially true and do not change during the interaction with the appli
cation. Foreknowledge is, however, only an estirnation of what a student 
knows, just like capabilities. A student may forget, which may lead to an 
apparent change of foreknowledge during the interaction. A student who is 
initially judged as slow rnay turn out to be faster than expected during the 
interaction with the application, and a student who was judged as fast may 
turn out to have more problems than expected. Also, the learning objectives 
may change during the interaction. During the interaction, a student may indi
cate an interest in achieving another learning objective in addition to (or per
haps instead of) the one chosen initially. 
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6.2.2 A combination of user navigation and adaptive guidance 

In order to avoid the problems mentioned above, the Navigation Agent 
should determine a path through the course material at run time, taking the 
current estimation of the foreknowledge, goals, and capabilities of the student 
into account at any moment. Therefore, the course material should consist of 
separate modules which are described by attributes such as the foreknowl
edge needed to study the module, the goals accomplished by studying the 
module, and the difficulty of the module. 

The idea to analyse course material in order to make the relations 
between concepts in the material explicit bas been argued before in a differ
ent setting (see Pask, Kallikourdis & Scott 1975; Jochems, 1980). The idea of 
modularity is also advocated by Koehorst, Baaren, and Rosmalen (1991), but 
they stress the importance of modularity for the course design process. They 
mention casually that modularity can also be used to adapt a course to a group 
of students by a non-programmer. 

The global structure of topic selection in the case of a mixed locus of 
control is shown in Figure 58. Both the agent and the student can select a 
topic. The selection by the agent is influenced by the estimated knowledge, 
goals and capabiJities of the student, and the description of the course mate
rial. The estimations are changed on the basis of the interaction with the stu
dent, the topic selection by the student, or explicitly by the student. 

Estimation Estimation Estimation 
Student's Student's Student's 
capabilities knowledge interests 

Topic selection 
by the agent 

Information presentations 
i.....-- (foreknowledge, goals, difficulty) 

Topic 

(lnteractive) Presentation 

Information set of 
presentations (coherence) 

Topic selection 
by the student 

Figure 58: Global structure of topic selection in the case of a mixed locus of control. 
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6.3 A topic selection algorithm 

A topic should be chosen that is sufficiently easy, contributes to reaching the 
student's goals (eventually), and allows the student to reach his goals in the 
most effective way. The foreknowledge, goals, and capabilities of the student 
as estimated by the agent may be adjusted during run time, either explicitly 
by the student or teacher, or implicitly because assumptions turn out to be 
incorrect. The global structure of the topic selection algorithm used by the 
agent is shown in Figure 59. 

Determination of 
a sequence of topics 

No 

Selection of the 
direction of navigation 

Selection of 
the topic 

Topic 

r--------, 
... (lnteractive) Presentation 

L-------.J 

Figure 59: Global structure of the topic selection algorithm used by the agent. 

Determination of a sequence of topics 
A sequence of topics is detennined that meets the following criteria: 

1. If the sequence is studied from beginning to end, the student bas suffi
cient foreknowledge to study each subsequent topic, and eventually all the 
student's goals are reached. 

2. The sequence meets a certain criterion, which may be related to the 
effort it takes the student to study a topic of the sequence, or, in other words, 
the inherent difficulty of the topics. For instance, this eff ort or difficulty 
should be smaller than a certain amount for every topic of the sequence. 

The level of difficulty can be implemented in several ways. In the first 
place, the course designer can associate numbers with the topics or exercises, 
retlecting their relative difficulty. This may, however, be rather difficult and 
time-consuming. In the second place, the relative levels of difficulty can be 
determined experimentally. During prolonged use of the system, the levels of 
difficulty will increasingly reflect the relative difficulty as experienced by the 
average student. In the third place, a limited number of categories of diffi
culty can be used, indicated, for example, by a 3 for items suitable for very 
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bright learners only, a 2 for items suitable for average learners, and a l for 
items suitable for even poor learners. 

The criterion may also impose requirements on the coherence of the 
sequence: the semantic relation between successive topics. Coherence is 
partly a natural consequence of the sequence determination (see below): top
ics needed for the same goal are likely to be close together in the sequence. 
Furthermore, the semantic structure can be used which is mostly imposed on 
the topics by the course designer, like a division into themes, chapters, and 
paragraphs (possibly during post-processing of the sequence). 

3. The sequence has approximately the minimal costs of the sequences 
that meet the criterion. We have used the word "approximately", because for 
efficiency reasons heuristics will be used instead of a complete search (which 
would lead to an exponential growth in calculation time). The costs area 
measure of the effort needed for the individual student to study the complete 
sequence. A possible implementation is to sum up the difficulty of the topics 
of the sequence. 

The implementation of a sequence that meets these criteria takes place 
as follows. A simpte form of recursion is used. Departing from the goal of a 
particular student, topics are searched with which that goal can be reached. 
Only topics that are not too difficult for that student are considered. The fore
knowledge associated with these topics should be achieved before they are 
studied, and the same procedure can be used to obtain a sequence resulting in 
that foreknowledge. During the recursion the costs of every sequence are cal
culated, and the cheapest sequence is chosen. When no sequence meets the 
criterion, the criterion may be changed. 

Selection of the direction of navigation 
Given this sequence, and a position in the sequence, navigation by the agent 
can be in two directions: either towards the end of the sequence, i.e., a more 
difficult lesson, or towards the beginning of the sequence, i.e., an easier 
lesson. An easier lesson should be selected if the student is performing poorly 
in the current lesson and a more difficult lesson should be selected if the 
student performs well. When an easier or more difficult lesson is not availa
ble, the current lesson should be selected. 

There are several ways in which "poorly" and "well" can be defined, for 
instance by using the number of successive correct or incorrect responses. 
Inspired by the concept of a good set (see Chapter 3 for an explanation of the 
good set), we have chosen the following definitions. 

The student's performance in a particular lesson is considered to be 
"poor" if the he or she bas given an incorrect answer to the item last presented 
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in the exercise of that lesson and less than 50% of the items of that lesson 
have been mastered, in the sense that they belong to the good set. The stu
dent' s performance in a particular lesson is considered to be "good" in all 
other cases. 

There are two situations in which the student's performance in the cur
rent lesson cannot be used.The first situation occurs when the student was not 
in any lesson at the moment of navigation, for instance at the beginning of the 
course or when trying a so-called final test (see below). In that case amore 
difficult lesson will be selected. 

The second situation occurs when the student was reading the instruc
tions of a lesson and had not started practising. There are three possible inter
pretations of the student choosing another lesson while reading the 
instructions of a lesson for the first time. Either the lesson seerned uninterest
ing (not leading towards a certain goal), or it seemed too easy (understanda
ble without practising), or it seemed too difficult. In the first two alternatives, 
a more difficult lesson is needed. In the last alternative, an easier lesson is 
needed. It is hard to determine which alternative is true, but we hypothesized 
that it is more likely that it is one of the first two. So, we decided that a more 
difficult lesson would be selected always when the student was reading 
instructions for the first time. The experiment will explore whether this deci
sion was correct. 

Selection of the topic 
Given the sequence and the direction of navigation, the selection of the topic 
is easy unless there is a mixed locus of control. When only the agent can 
select topics, the next topic should be the previous or next topic from the 
sequence for an easier or more difficult topic, respectively. 

However, in the case of a mixed locus of control, the student could also 
have selected topics and, hence, the current topic may not be part of the 
sequence, or an easier or more difficult topic may require more than one step 
in the sequence. For instance, consider a sequence 1-2-3-6-12. When the stu
dent bas selected 12 and next navigation towards an easier topic is required, 
the selection of that easier topic should depend on the past performance of the 
student on topics 1, 2, 3, and 6. 

The last topic selected by the agent could be used as the index in the 
sequence from which the previous or next one is chosen. However, if, for 
instance, the student had selected topic 3 before and had perf ormed well at it, 
it seems reasonable to use topic 3 as the index in the sequence rather than, for 
instance, topic 1. So, we decided to increase the index in the sequence to a 
topic selected by the student whenever the student performed well on that 
topic, "well" being defined as above. 
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When is a new sequence needed? 
There are several situations in which a new sequence has to be determined. In 
the first place, a new sequence has to be determined when the capabilities of 
the student turn out to differ from the expectation. Tuis may be because the 
student is performing very well and a faster, though more difficult, path 
through the course material can be chosen. Or it may be because the student 
perf orms very poorly and an easier, though longer, path through the course 
material is needed. There are several ways to determine when and how the 
level of difficulty that a student can handle should be changed. One possibil
ity is to use the speed with which a student learns a topic in relation to a refer
ence criterion. A second possibility is to use the interaction history, for 
instance raising the level of difficulty that the student can handle when the 
student bas learned two topics with that particular level of difficulty without 
any problems. A third possibility is to let the student or a human teacher 
change the level himself or herself. A combination of these possibilities can 
be used also, in which the agent makes small adjustments and the student (or 
human teacher) can make larger adjustments. 

In the second place, a new sequence bas to be determined when the stu
dent' s goals have changed. A change of goals may be announced explicitly to 
the agent by the student or a human teacher. The agent may also perceive a 
change in interests implicitly because the student keeps on navigating to other 
topics. 

In the third place, a new sequence bas to be determined when the fore
knowledge of the student turns out to be different from the expectation. The 
agent can discover this, e.g., when the student performs very poorly on the 
first topic of the sequence, or when the student perf orms very well. 

Finally, a new sequence has to be determined when the database with 
course material bas changed. 

6.4 Experiment 1: student-initiated topic selection via 
menu structures, guidance, or a mix of both 

In the two experiments reported in this section and the next, the task of the 
Navigation Agent was relatively easy. The foreknowledge of all subjects with 
respect to the course material was the same and known beforehand, namely 
none. The goal of all subjects was the same and determined by the experi
mental setting. The course material was limited so that no alternative paths 
with different levels of difficulty could be constructed. In this first experi
ment, the Navigation Agent had only to decide the next topic; the timing of 
the navigation was determined by the student. 
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The purposes of this experiment were as follows. In the first place, the 
advantage of an efficiently-functioning topic selection mechanism should be 
determined. A simp Ie, hut regularly applied form of user navigation, narnely 
a menu structure, was used as a baseline. The effect of combining user navi
gation and guidance should also be deterrnined. 

In the second place, the acceptance by the students of automatic topic 
selection should be determined. This acceptance may depend, among other 
things, on the correctness of the choice of an easier or more difficult les
son.We have adopted the hypothesis that automatic topic selection is more 
effective and acceptable when combined with the possibility of user naviga
tion. 

6.4.1 Method 

Design and Procedure 
Three conditions were used in a between-subjects design: a "Menu condi
tion'', a "Guidance condition", and a "Mixed condition". In all conditions, the 
subjects were instructed to study "Square Dance" lessons in such a way that 
they would learn to perform the "Slide through" as quickly as possible. They 
could try to pass the "Slide through" test as often as and whenever they 
wanted. The experiment ended when the test was completed correctly. No 
feedback was given during the test with respect to the correct responses. 

Subjects could practise lessons for as long as they wanted. In the "Menu 
condition" and the "Guidance condition" they were instructed to press a 
"Quit lesson" button whenever they wanted to study another lesson. In the 
Menu condition, pressing this button resulted in the appearance of a menu 
screen as shown in Figure 60. From the menu, the subjects could select a les
son. In the Guidance condition, pressing the button resulted in the automatic 
selection of a lesson according to the algorithm described above. In the 
"Mixed condition" subjects could use both a menu and guidance. They were 
instructed to press a "Menu" button whenever they wanted to select a lesson 
through the menu, and to press a "Pick lesson" button whenever they wanted 
a lesson to be automatically selected for them. The effect of pressing the 
Menu button was exactly the same as pressing the Quit lesson button in the 
Menu condition, and the effect of pressing the Pick lesson button was exactly 
the sarne as pressing the Quit lesson button in the Guidance condition. In all 
conditions, the name and number of the current lesson was always shown in 
the left upper corner of the screen (as in Figure 61 ). 
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Figure 60: Screen layout of the menu of the Square Dance course 

The times were recorded at which subjects decided to change lesson, 
selected a lesson, and selected the test. It was also recorded which lesson was 
selected by the subject or the agent, which exercise items were studied and 
whether the subject responded correctly to the exercise or test item. 

Immediately after the experimental session, subjects had to fill out a 
questionnaire in which they could indicate any problems they had experi
enced during the course, how well they liked it, why they selected the lessons 
in that particular order (in the Menu and Mixed condition), how they liked the 
order selected for them (in the Guidance and Mixed condition), and when 
they used the menu and when the automatic selection (in the Mixed condi
tion). 

Subjects 
Forty-two subjects with university or higher vocational training participated 
voluntarily in the experiment. The average age was 24. All subjects had some 
computer experience. None of the subjects had ever heard of Square Dancing 
before. Subjects were randomly assigned to one of the three experimental 
conditions. 
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Figure 61: Screen layout of an exercise of the Square Dance course 

Materials 
Square Dance is an American dance that is perf ormed by a group of eight 
dancers consisting of four couples. In the starting position, the couples stand 
around the sides of an imaginary square. Dancers move according to the 
instructions given by a "caller". In the computer course, subjects had to move 
the dancers by remote control according to the instructions they heard. The 
understandability of the interface and the course material had been tested in 
pilot studies and was improved accordingly (Claessens, 1996). 

The course consisted of fourteen lessons. Bach lesson comprised an 
instruction part and an exercise part. The first two lessons explained some 
basic terminology, e.g" that circles represent girls and squares boys, and that 
a dancer can be activated by clicking on it. In the third lesson, the remote 
control was explained and the basic movements of the dancers were prac
tised. In the other lessons, more advanced dance movements were presented. 
According to an experienced square dancer, the order in which the lessons 
were presented in the menu is a reasonable order for a student who has to 
leam all the movements present in the course. The sequence determined by 
the topic selection algorithm (see Section 6.3) consisted of Lesson 1, 2, 3, 6, 
and 12. The instructions of Lesson 12 gave an indication that Lesson 6 was 
prerequisite. 
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The interface of an exercise is shown in Figure 61. The eight small but
tons in the upper part of the screen represent the dancers, the ten small but
tons in the lower part of the screen constitute the remote control. 

6.4.2 Results: General 

The results of the experiment are shown in Figure 62 and 63, for the 'total 
time', and the time spent on each lesson, respectively. The total time was 
calculated from the moment the subjects started the course after reading the 
general instructions till the moment they started the last test. The mean and 
standard deviations of the total time were m=33' 42", sd=14'3" for the Menu 
condition, m=27' 12", sd=9' 11" for the Guidance condition, and m=27'24", 
sd=l2'23" for the Mixed condition. 
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Figure 62: Total times in Experiment 1 per subject/or the Menu condition, the 
Guidance condition, and the Mixed condition, respectively, and the average over the 
conditions. Each bar in the top graphs represents a subject. The bars in the bottom 
graph represent the average over subjects. The total time is given on the y-axis. 
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Figure 63: Times per lesson in Experiment 1 per subject/or the Menu condition, the 
Guidance condition, and the Mixed condition, respectively, and the average over 
both conditions. Each line in the top graphs represents a subject. The bars in the 
bottom graph represent the average over subjects in the Menu condition (white), the 
Guidance condition (gray), and the Mixed condition (black), respectively. The 
lessons are given on the x-a.xis and the time spent in that lesson is given on the y-a.xis. 

Some representative paths followed through the course material are 
shown in Figure 64. In the Menu condition, a lot of subjects followed the les
sons in the order of the menu till they decided to select the lesson on the Slide 
through (e.g., see the third path for the Menu condition in Figure 64). Three 
subjects started with the lesson on the Slide through, like the subject of the 
first path for the Menu condition in Figure 64. The Quit lesson button was 
used on average 10.2 times, excluding the selection of the first lesson. On 
average 9 minutes and 23 seconds were spent on superfluous lessons, where 
"superfluous" was defined as lessons other than 1, 2, 3, 6, and 12. 
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In the Guidance condition, all the subjects followed the same path, 
which is shown in Figure 64. The Quit lesson button was used on average 6.6 
times, excluding the selection of the first lesson. 

In the Mixed condition, three subjects always used the Menu button, 
three subjects always used the Pick lesson button, and eight subjects used 
both. When both were used, the Menu button was used frequently to select an 
easier lesson (see the two paths shown in Figure 64). On average1, the Menu 
button was used 4 times and the Pick lesson button 3.3 times, excluding the 
selection of the first lesson. On average, 4 minutes and 17 seconds were spent 
on superfluous lessons. 
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=+ " " !~ 

" " " • • " 
Guidance condition 
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Mixed condition 

2 3 4 5 6 

Lesson 

" " ~ 
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Figure 64: Some paths through the course material /or the Menu condition, the 
Guidance condition, and the Mixed condition, respectively. The heads of the arrows 
indicate whether the lesson was selected by the subject (filled) or by the agent 
(hollow). 

1. One subject is excluded who used the Menu button 36 times and the Pick lesson 
button 28 times is excluded from the average. 
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A MANOVA was performed on the total time and the time spent on 
each lesson, with the experimental condition (Menu, Guidance, Mixed) as a 
between-subjects factor. The three experimental conditions were contrasted 
pairwise. The results of this analysis are summarized in Table 28. 

Table 28: Results of the MANOVA on the data of Experiment 1, with Condition as the 
source, and Df=l. a 

Dep. var. F Dep. var. F Dep. var. F 

Menu Condition versus Guidance Condition 
Total time 2.02 Lesson 5 14.18 *** Lesson 10 3.83 
Lesson 1 3.34 Lesson 6 0.09 Lesson 11 1.67 
Lesson 2 2.50 Lesson 7 14.48 *** Lesson 12 1.06 
Lesson 3 2.28 Lesson 8 15.05 *** Lesson 13 3.20 
Lesson 4 3.13 Lesson 9 4.08 Lesson 14 1.58 

Menu Condition versus Mixed Condition 
Total time 1.90 Lesson 5 5.03 * Lesson 10 1.16 
Lesson 1 0.60 Lesson 6 l.23 Lesson 11 0.07 
Lesson 2 0.01 Lesson 7 10.47 ** Lesson 12 3.30 
Lesson 3 0.51 Lesson 8 11.80 ** Lesson 13 3.04 
Lesson4 1.73 Lesson 9 1.48 Lesson 14 1.58 

Guidance Condition versus Mixed Condition 
Total time 0.00 Lesson 5 2.32 Lesson 10 0.77 
Lesson 1 1.11 Lesson 6 1.97 Lesson 11 2.40 
Lesson 2 2.80 Lesson 7 0.32 Lesson 12 0.62 
Lesson 3 4.96 * Lesson 8 0.20 Lesson 13 0.00 
Lesson 4 9.52 ** Lesson 9 0.64 Lesson 14 0.00 

* p <.05, ** p <.01, *** p <.001 

a. With the Student-Newman-Keuls rnethod, the sarne effects were found to 
be significant with a familywise a-level of .05 except the effect on the third 
lesson, which is not important for the discussion below. With the Bayesian 
approach of Waller and Duncan exactly the same effects were found to be 
significant as above. 

There is no significant effect of the condition on the total time for any of 
the contrasts. For the contrast between the Menu condition and the Guidance 
condition, there are significant effects of the condition on the time spent on 
the fifth, seventh, and eighth lessons [F(l,1)=14.18, p <.001; F(l,1)=14.48, 
p <.001; F(l,1)=15.05, p <.001]. For the contrast between the Menu condi
tion and the Mixed condition, there are also significant eff ects of the condi
tion on the time spent on precisely these lessons [F(l,1)=5.03, p <.05; 
F(l,1)=10.47, p <.01; F(l,1)=11.8, p <.01]. For the contrasts between the 
Guidance condition and the Mixed condition, there are significant effects of 
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the condition on the time spent on the third and the fourth lessons 
[F(l,1)=4.96, p <.05; F(l,1)=9.52, p <.01]. 

6.4.3 Discussion: General 

189 

There is no significant effect of the experimental condition on the total time. 
However, there is certainly a tendency in favour of both the Guidance condi
tion and the Mixed condition (see means and Figure 62): on average, six and 
a half minutes more were needed in the Menu condition. The large variance 
between subjects may partly be due to the time measure we used: subjects 
had to decide when to try the final test for themselves. 

The results of the individual subjects in the Guidance condition are 
much more homogeneous than in the other two conditions (see standard devi
ations and Figure 62). The top graphs of Figure 62 suggest that, especially in 
the Menu condition, the group of subjects can be divided into two groups: a 
slow group and a fast group. An explanation may be that in the Menu condi
tion some subjects merely follow the sequence of the menu from top to bot
tom, white other subjects are much better at deciding for themselves which 
lessons are relevant, given the objective of learning the Slide through. The 
heterogeneous results in the Mixed condition may be explained by some sub
jects being more reluctant to use guidance than others. These explanations are 
confirmed by the navigation paths (such as shown in Figure 64), and by the 
time spent per lesson for each individual subject as shown in Figure 63. A 
post-hoc analysis was performed in which the subjects of both the Menu and 
the Mixed condition were divided into good and poor navigators (see below). 

The Menu condition bas the disadvantage that a great deal of time was 
spent on superfluous lessons: on average almost nine and a half minutes, 
which is one third of the total time in that condition. This is confirmed by the 
significant effect of condition on the fifth, seventh, and eighth lessons in the 
comparison with both of the other conditions. The absence of a significant 
effect on the fourth lesson is probably due to the relative simplicity of that 
lesson. The absence of a significant effect on the tenth, eleventh, thirteenth, 
and fourteenth lessons is due to the fact that only a few subjects spent any 
time on these lessons (see the top-left graph in Figure 63). This may be 
explained by the subjects realizing that it would take a long time to do all the 
lessons before trying the twelfth lesson or the test. 

The Guidance condition bas the advantage that only relevant lessons are 
studied as a natura) consequence of the topic selection algorithm used. It is 
striking to note that, on average, in the Guidance condition subjects spent a 
relatively long time on the first three lessons (see the bottom graph in Figure 
63). From Figure 63 (middle top graph) it can be concluded that this is due to 
only a few subjects. This explains why the effect is not significant (see Table 
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28). An explanation of the long time spent on the first lessons may be that 
subjects expect that the agent will not only select a new lesson, but can also 
take the initiative for the selection. The effect of the agent taking the initiative 
for the selection will be investigated in the next experiment. 

The Mixed condition bas the advantage that less time is spent on super
ftuous lessons than in the Menu condition (five minutes less) and also less 
time is spent on the first lessons than in the Guidance condition (three and a 
half minutes less). In the Mixed condition subjects may be more aware of the 
need to decide on the moment of navigation for themselves, because they also 
have the possibility to select the topic themselves, as in the Menu condition. 

Strikingly, in both the Guidance condition and the Mixed condition 
more time was spent, on average, on the twelfth lesson than in the Menu con
dition. However, there was no significant effect of condition on that lesson. In 
the Guidance condition this effect is clearly due to one subject (see the mid
dle top graph in Figure 63). The performance of this subject illustrates a prob
lem which many subjects in this condition complained about in the 
questionnaire: it seemed impossible to them to obtain an easier lesson. Tuis 
particular subject used the "Quit lesson" button in the instruction part of the 
lessons, without doing any exercises, till she reached the twelfth lesson and 
did not manage to quit that lesson. She did not realize that it would make a 
difference if she tried to quit the lesson after having done some of the exer
cises, and spent a long time doing exercises in this most difficult lesson. Tuis 
problem suggests that it is incorrect always to select a more difficult lesson 
when topic selection is requested while the student is reading the instructions 
of a lesson for the first time. 

In the Mixed condition, on the other hand, the long time spent on the 
twelfth lesson was caused by four of the subjects. This can be explained by 
the fact that these subjects experienced more difficulty with this lesson, 
because three of them did not spend any time on the sixth lesson. All of these 
subjects tended to use the Menu for navigation. 

6.4.4 Results: Good navigators versus poor navigators 

A post-hoc analysis was performed in which the subjects of both the Menu 
condition and the Mixed condition were divided into two groups: one group 
with subjects who studied at least two superftuous lessons, and one group 
with the remaining subjects. We will call the first group the poor navigators 
and the second group the good navigators. In the Menu condition nine 
subjects belonged to the poor navigators, and five subjects to the good navi
gators. In the Mixed condition four subjects belonged to the poor navigators, 
and ten subjects to the good navigators. 
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The average results per group are shown in Figure 65. The results of the 
MANOVA on these groups is summarized in Table 29. 
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Figure 65: Total times in Experiment 1 for the average over the conditions with the 
Menu condition and the Mixed condition divided into two groups. Each bar 
represents the average over subjects. The total time is given on the y-axis. 

There is a significant effect of condition on the total time for the con
trasts between the poor navigators and the good navigators of the Menu and 
Mixed condition [F(l, 1 )=22.05, p <.0033], and the poor navigators of the 
Menu and Mixed condition and the Guidance condition [ F( l, 1)=11.31, 
p <.00033]. The contrast between the good navigators of the Menu and 
Mixed condition and the Guidance condition was not significant. 

Table 29: Results of the MANOVA on the total time in Experiment 1 with a division 
into two groups of the Menu condition and the Mixed condition.a 

Source Num OF Den DF F 

Poor navigators vs. Good navigators 1 1 22.05 
Poor navigators vs. Guidance 1 1 11.31 
Good navigators vs. Guidance 1 1 2.12 

*p <.017, **p <.0033, ***p <.00033 

a. According to the Bonferroni principle, effects are significant with a family
wise ex-level of .05, .01, or .001, respectively, when p<.017, p<.0033, or 
p<.00033, respectively. 

6.4.5 Discussion: Good navigators versus poor navigators 

The significant effect of condition for the two above-mentioned contrasts 
indicates, in combination with Figure 65, that the poor navigators of the 
Menu condition and the Mixed condition need more time than the good navi-
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gators and the subjects in the Guidance condition. Tuis implies an advantage 
of using guidance for students who are unable to monitor their own learning 
process (like low performers or children). As nine of the fourteen subjects of 
the Menu condition are poor navigators, determining a good path through the 
course material seems a difficult task, so, guidance seems necessary. 

lt can be argued that subjects had only limited information available for 
the navigation. On the other hand, the number of lessons in this course was 
very limited (only 14), the foreknowledge relations between the lessons was 
limited, and the lessons needed to reach the goal were quite easy to find: Les
son 12 had the same name as the goal and mentioned the need for Lesson 6, 
and besides these two lessons only the first lessons were needed, which all 
had a name beginning with "basic". So, perhaps some improvement in per
formance can result from providing the subjects with more information, but 
on the other hand this information may be more difficult to provide and per
formance can be expected to decrease when the number of lessons increases. 

The lack of a significant effect for the contrasts between the good navi
gators and the subjects of the Guidance condition suggests that the guidance 
works quite well, even though subjects cornplained that it was not possible to 
return to the easier lessons. Figure 65 suggests a small advantage for the 
Menu condition, but it is likely that the good navigators are also the better 
leamers, so, this effect is negligible. 

6.5 Timing of guidance 

The Navigation Agent should take the initiative to navigate whenever the 
student is performing very well or very poorly on the current lesson. There 
are several ways in which "very well" and "very poorly" can be defined, for 
instance by using the number of successive correct or incorrect responses, or 
by looking at asymptotic performance. Inspired by the concept of a good set 
(see Chapter 3 for an explanation of the good set), we have chosen the 
following definitions. 

The student's performance in a particular lesson is considered to be 
"very good" if the student has answered the item last presented in the exercise 
of that lesson correctly and at least 80% of the items in that lesson have been 
mastered, in the sense that they belong to the good set. The student's perform
ance in a particular lesson is considered to be "very poor" if the student has 
made more than three mistakes in the exercise of that lesson, when the item 
last presented was answered incorrectly, and at most 20% of the items of that 
lesson have been mastered, in the sense that they belong to the good set. 

As a consequence of these definitions, the agent will only take the initia
tive to navigate when the student is doing exercises, and not when the student 
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is reading instructions. More sophisticated mechanisms might include the 
time spent on the instructions relative to the time spent on the exercise, and 
the number of times the instructions are consulted. 

6.6 Experiment 2: timing of guidance 

6.6.1 Method 

Design and Procedure 
The same design and procedure were used as in Experiment 1, except that 
there were two conditions: a Guidance condition and a Mixed condition. In 
contrast to the previous experiment, the initiative for the selection of another 
topic could be taken both by the Navigation Agent and the user. The agent 
used the criteria as described above to decide when guidance was needed. To 
be able to compare these conditions with the conditions of the previous 
experiment the Guidance condition of this experiment will be denoted by 
TGuidance, and the Mixed condition by TMixed. 

Subjects 
Fourteen subjects with university education participated voluntarily in the 
experiment. The average age was 26. All subjects had some computer experi
ence. None of the subjects had ever heard of Square Dancing before. Subjects 
were randomly assigned to one of the two experimental conditions, seven to 
each condition. 

Materials 
The same materials were used as in Experiment 1, except that the instructions 
were changed to inform the subjects that the system might also take the initi
ative. 

6.6.2 Results 

The results of the experiment are shown in Figure 66 and 67 for the total time 
and the time spent in each lesson, respectively. The mean and standard devia
tions of the total time were m=22'50", sd=8'32" for the TGuidance condi
tion, and m=22'3", sd=3'37" for the TMixed condition. 
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Figure 66: Total times in Experiment 2 per subject/or the TGuidance condition and 
the TMixed condition, respectively, and the average over both these conditions and 
the conditions of Experiment 1. Each bar in the two left-hand graphs represents a 
subject. The bars in the right-hand graph represent the average over subjects in the 
Menu condition (white), the Guidance condition (light gray), the Mixed condition 
(gray), the TGuidance condition (dark gray), and the TMixed condition (black), 
respectively. The total time is given on the y-axis. 

In the TGuidance condition, the Quit lesson button was used 1. 7 times 
on average ( excluding the selection of the first lesson), and the use of this but
ton always resulted in the selection of the current lesson. The agent took the 
initiative for topic selection 4 times on average . All subjects followed the 
path 1-2-3-6-12 through the course material. 

In the TMixed condition, the Menu button was used 1.7 times on aver
age and the Pick lesson button 3.9 times (excluding the selection of the first 
lesson). The Menu button was mostly used to return to an easier lesson, and 
the use of the Pick lesson button often resulted in the selection of the current 
lesson. The agent took the initiative for topic selection 3.3 times on average. 
Only one subject spent some time on superftuous lessons. 

The data of the previous experiment were included for the analysis of 
these data. A MANOVA was perforrned on the total time and the time spent 
on each lesson, with the experimental condition as a between-subjects factor. 
Three contrasts were perforrned: between the Menu condition and the TGuid
ance and TMixed conditions, between the Guidance and Mixed conditions 
and the TGuidance and TMixed conditions, and between the TGuidance con
dition and the TMixed condition. The results of this analysis are summarized 
in Table 30. 

There is a significant effect of the condition on the total time for the con
trast between the Menu condition and the TGuidance and TMixed condition 
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[F(l,1)=7.17, p <.017]. There is no significant effect of the condition on the 
total time for the other two contrasts. 
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Figure 67: Times per lesson in Experiment 2 per subject for the TGuidance condition 
and the TMixed condition, respectively, and the average over both conditions. Each 
line in the two top graphs represents a subject. The bars in the bottom graph 
represent the average over subjects in the Menu condition (white), the Guidance 
condition (light gray), the Mixed condition (gray), the TGuidance condition (dark 
gray), and the TMixed condition (black), respectively. The lessons are given on the x
axis, and the time spent on that lesson is given on the y-axis. 

For the contrast between the Menu condition and the TGuidance and 
TMixed conditions, there are significant effects of the condition on the time 
spent on the fifth, seventh, and eighth lessons [F(l,1)=18.55, p <.00033; 
F(l,1)=18.93, p <.00033; F(l,1)=19.69, p <.00033]. There are no significant 
effects of the condition on the time spent on any lesson for the other two con
trasts. 
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Table 30: Results of the MANOVA on the data of Experiment 2, with Condition as the 
source, and Df= 1. a 

Dep. var. F Dep. var. F Dep. var. F 

Total time 
Lesson 1 
Lesson 2 
Lesson 3 
Lesson 4 

Menu Condition versus TGuidance and TMixed Conditions 
7.17 * Lesson 5 18.55 *** Lesson 10 4.34 
0.13 Lesson 6 1.00 Lesson 11 2.18 
0.03 Lesson 7 18.93 *** Lesson 12 1.30 
0.41 Lesson 8 19.69 *** Lesson 13 3.52 
4.10 Lesson 9 5.34 Lesson 14 2.07 

Guidance and Mixed Conditions versus TGuidance and TMixed Conditions 
Total time L78 Lesson 5 1.01 Lesson 10 0.17 
Lesson 1 1.47 Lesson 6 2.64 Lesson 11 1.05 
Lesson 2 4.31 Lesson 7 0.14 Lesson 12 0.29 
Lesson 3 1.52 Lesson 8 0.09 Lesson 13 0.02 
Lesson 4 4.15 Lesson 9 0.28 Lesson 14 0.00 

Total time 
Lesson l 
Lesson 2 
Lesson 3 
Lesson 4 

TGuidance Condition versus TMixed Condition 
0.02 Lesson 5 0.00 Lesson 10 0.04 
0.62 Lesson 6 0.11 Lesson 11 0.00 
1.14 Lesson 7 0.00 Lesson 12 0.33 
0.79 Lesson 8 0.00 Lesson 13 0.05 
0.00 Lesson 9 0.00 Lesson 14 0.00 

*p <.017, **p <.0033, ***p <.00033 

a. According to the Bonferroni principle, effects are significant with a family
wise ex-leve] of .05, .01, or .001, respectively, when p<.017, p<.0033, or 
p<.00033, respectively. 

6.6.3 Discussion 

The effect of condition on the total time is not significant for the contrast 
between the Guidance and Mixed conditions and the TGuidance and TMixed 
conditions. However, there is certainly a tendency in favour of the TGuidance 
and the TMixed conditions (see means and Figure 66): on average Guidance 
took 4'22" more than TGuidance, and Mixed took 5'21" more than TMixed. 
This is supported by the fact that there is a significant effect of condition on 
the total time for the contrast between the Menu condition and the TGuidance 
and TMixed conditions, while the contrasts between the Menu and Guidance 
conditions and between the Menu and Mixed conditions were not significant. 
So, the initîative of the Navigation Agent with respect to the moment of navi
gation seems to decrease the time needed to complete the task. 

On average, less time was spent on the first three lessons in the TGuid
ance and Tmixed conditions than in the Guidance and Mixed conditions, 
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respectively (see Figure 67): 10'1" compared to 13'8'', and 7'26" compared 
to 9' 35", respectively. There was no significant effect of condition on the 
time spent on any of these lessons for this contrast. However, it suggests that 
the problem posed by some of the subjects in the Guidance condition spend
ing too much time on the first lessons has disappeared. 

In the TMixed condition, in contrast to the Mixed condition, hardly any 
time was spent on superfluous lessons: only one subject spent some time on 
these. A possible explanation is that the agent frequently took the initiative 
for the selection of another lesson and that the subjects agreed with that selec
tion. This is confirmed by the fact that the agent took the initiative 3.3 times 
on average, and that the Menu button was less often used than in the Mixed 
condition: 1.7 times on average in the TMixed condition compared to 4 times 
in the Mixed condition. 

The significant effect of condition on the time spent on the fifth, seventh, 
and eighth lessons for the contrast between the Menu condition and the 
TGuidance and TMixed conditions merely illustrates that less time was spent 
on superftuous lessons in the last two conditions. This is the same effect as 
was found in the previous experiment for the contrasts between the Menu 
condition and the Guidance and Mixed condition. 

On average, more time was spent on the sixth lesson in the TGuidance 
and TMixed condition than in the Guidance and Mixed condition respectively 
(see Figure 67): 5'9" compared to 3'53", and 4'40" compared to 2'44". 
There was no significant effect of condition on the time spent on this lesson 
for this contrast. However, it suggests that the cause of the difficulty which 
some of the subjects experienced with the twelfth lesson, especially in the 
Mixed condition -namely that they did not spend enough time on the sixth 
lesson- has disappeared. Again, a possible explanation may be that the agent 
frequently took the initiative for the selection of another lesson, like the sixth 
lesson, and that the subjects agreed with that selection. Another explanation 
may be that the subjects explicitly waited until the agent took the initiative to 
leave the sixth Jesson, thereby showing an increased motivation for studying 
the lesson. Both explanations are supported by the data. Firstly, now all sub
jects spent time on the sixth lesson, while in the Mixed condition three sub
jects <lid not study that lesson at all. Secondly, the average number of 
exercises perf ormed in that lesson bas increased. 

On average, less time was spent on the twelfth lesson in the TGuidance 
and TMixed conditions than in the Guidance and Mixed conditions, respec
tively. On the one hand, we expected this decrease in time, because the two 
main problems causing a long stay in that lesson were removed. Firstly, in the 
TGuidance and TMixed conditions, the agent could take the initiative to 
select an easier lesson. This did not occur, however. But in the TMixed condi-
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tion the Pick lesson button was used relatively more frequently compared to 
the Menu button than in the Mixed condition, and an easier lesson was 
selected automatically three times. Secondly, the time spent on the sixth les
son had increased, thus decreasing the added complexity of the twelfth les
son. 

On the other hand, we expected an increase in the time spent on the 
twelfth lesson, as the initiative of the agent may lead to the incorrect expecta
tion that the agent can also determine the moment of the test. Tuis may 
explain why the time spent on the twelfth lesson in the TGuidance and 
TMixed condition is still Jonger than in the Menu condition. If this is the 
cause, then it is a pure experimental effect, in the sense that it is not relevant 
for a real application. 

The results of the individual subjects in the TMixed condition are much 
more homogeneous than in the other conditions (see standard deviations and 
Figure 62 and 66). The variance may have been reduced by a combination of 
two factors, namely a stimulation due to the initiative of the agent to spend 
enough time studying the relevant lessons (this seemed to be lacking in the 
Mixed condition) combined with a possibility to use the Menu button for fast 
consultation of a specific easier lesson (this is lacking in both the Guidance 
and TGuidance conditions). Tuis suggests that the TMixed condition should 
be preferred to the TGuidance condition. 

6. 7 Conclusions 

A new approach has been described in which initiative and topic selection by 
the Navigation agent can be combined with initiative and topic selection by a 
student. The topic selection of the agent is based on the foreknowledge, 
goals, and capabilities of the individual student. The moment of initiative is 
based on the student's performance. 

In two experiments the effectivity of both topic selection and initiative 
by the agent was explored. Topic selection by the agent had an advantage for 
students who were unable to monitor their own learning process. Initiative by 
the agent reduced the time needed to finish the task by stimulating the sub
jects to spend enough time studying the relevant lessons. 

Both guidance initiated by the agent and a mix of user navigation and 
guidance are interesting new functionalities as they lead to a reduction in 
learning time. The results of the experiments suggest that a mixed locus of 
control is preferable, in which both the student and the agent can take the ini
tiative and select another lesson. Tuis reduces the variance between students, 
thus making the learning process more predictable. The groups of subjects 
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used in these experiments were already quite homogeneous. So, the effect 
will probably be even larger when the groups are less homogeneous. 
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There are several directions for further research. In the first place, 
research should be done on how quickly the Navigation Agent can discover 
deviations from the initially assumed foreknowledge and goals, and how f ast 
it can adjust the difficulty of the path through the course material to the abili
ties of the individual student. Por that purpose, simulations of students may 
also be used. In the second place, the algorithm for topic selection should be 
tested in more complex domains than the simple one used in the experiments. 
In the third place, research should be done to further improve the timing of 
initiative, especially with respect to the initiative to return to an easier lesson. 
Finally, the effect of providing the student with more information for self
navigation should be investigated. 
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Chapter 7 

The Explanation Agent, 
Feedback Agent, and Presentation Agent 

Abstract 
Based on examples of the interaction between students and the current 
Appeal prototype, further insight is given into the behaviour of the Explana
tion Agent, the Feedback Agent, and the Presentation Agent, and the theoret
ica[ foundation of that behaviour. These three simple agents maintain the 
instruction dialogue with the student, and are perceived by the student as one 
person. No experiments have been peifonned with these Agents as yet, but 
some directions in which experiments should be peifonned are indicated. 
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7.1 The instruction dialogue 

The previous two agents, namely the Practice Agent and the Navigation 
Agent, were both concemed with sequencing: the topics and the items within 
the topics were presented to the students in an order adapted to their interests 
and capabilities (see Chapter 3,4, 5, and 6). The three agents described in this 
chapter, namely the Explanation Agent, the Feedback Agent, and the Presen
tation Agent, maintain the instruction dialogue with the student. From these 
three different, simple agents a dialogue partner for the student emerges, 
which ensures a sensible level of communication. The student does not 
perceive the different agents, hut only one person who is a kind of teacher 
and gives a dynamic and understanding impression. 

The communication takes place regardless of whether the student learns 
or not. The Explanation Agent determines the amount and timing of the infor
mation to be presented to the student. The Feedback Agent determines the 
feedback on actions of the student. The Presentation Agent determines the 
form in which the information is presented, for instance a formula or a pic
ture. 

To avoid schizophrenic actions of the emerging teacher, the Feedback 
Agent has been designed to react faster than the other two agents. In its turn, 
the Presentation Agent has been designed to react faster than the Instruction 
Agent. 

7.2 The Explanation Agent 

As described in Chapter 2 (Section 2.6.2), the main task of the Explanation 
Agent is to give explanations adapted to the student whenever the student 
needs them. The behaviour of the Explanation Agent should be contingent on 
the performance of the student (cf" situatedness principle); the most appro
priate intervention is chosen on the basis of the student's success. 

7.2.1 Theory underlying the Explanation Agent 

In Chapter 1 (Section 1.2.3), an overview was given of research indicating 
aspects of explanation that should be adapted to the student. Tuis included the 
amount and timing of explanations (for references see Chapter 1 ). 

According to Wood, Wood, and Middleton (1978), the content of expla
nation should be based on a layered model of intervention varying between 
the "general verbal encouragement" level and the "demonstration" level, 
whereby each layer represents a different level of control from the side of the 
agent. So, the amount of explanation should depend on the overall perform
ance of the student. 
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For the purpose of explanation, communication is needed. Layered pro
tocol theory (Taylor, 1988) provides a model for the structuring of communi
cation. According to layered protocol theory information should be provided 
at the appropriate layer of abstraction: always providing the information 
needed at that point of the communication. It implies that the instruction dia
logue is finished successfully. 

In any case, the explanation should satisfy the Gricean maxim of quan
tity (Grice, 1975): the minimal amount of information should be provided as 
needed for successful communication. 

The application of these ideas is, however, no easy task. A distinction 
bas to be made between several kinds of information. In the first place, there 
is content information which is learning-domain specific. This category 
encompasses, for instance, explanations on how clock times are expressed in 
Dutch, or which word can be put into which frame in ajigsaw exercise. 

In the second place, there is interface information which explains the 
proper use of the user interface and is not necessarily learning-domain spe
cific. Tuis category encompasses, for instance, explanations on how to select 
an altemative in a multiple choice exercise, or how to perform a transforma
tion exercise. 

In the third place, there is meta information which is an explanation 
about obtaining information or the type of information that will be provided. 
Tuis category encompasses, for instance, explanations on how to get help, or 
how to see an example again. 

For all types of information, an adequate level of concreteness has to be 
determined. For instance, a student may understand the interface of an exer
cise, but may still need explanation on the subject matter. On the other hand, 
it may also happen that a student understands the subject matter, but does not 
understand the interface of an exercise. Information is omitted when it has 
been provided before and the student has demonstrated an understanding of 
the information successively, or not much time has passed since the last pres
entation of the information. 

As far as the timing of the explanation is concerned, this depends on 
changes of situation, such as the navigation to a new topic, which are caused 
by the other agents or the student, and on the performance of the student. A 
lack of action from the student is also considered as a situation in which 
instruction is needed. 

The choice between instruction strategies -like, for instance, the choice 
between first giving the rules on how clock times are expressed in Dutch and 
then letting the students practise, and letting the students discover for them
selves how clock times are expressed in Dutch- is currently not made by the 
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Explanation Agent, but a natural consequence of the information provided by 
the course designer. 

7.2.2 Example of the Explanation Agent's behaviour 

The following fragments show interactions between a student and the Appeal 
prototype system for learning Dutch by English-speaking persons. They illus
trate the behaviour of the Explanation Agent as it is currently implemented. E 
denotes the Explanation Agent, S denotes the student, and P denotes the Prac
tice Agent. 

In the first fragment the student is presented with a jigsaw exercise on 
the use of the passive form in Dutch: a sentence is presented, and the student 
has to transform it into the passive form. 

(E1) "The subject of the fo/lowing exercises is verb forms." 
(E2) 'The type of this exercise is transformation." 
(E3) "Look carefully at the following example." 

Figure 68: lnteiface of the jigsaw exercise. 

(E4) An example is shown, consisting of an assignment ("Transform the following 
sentence into the passive form"), a small piece of video of a real life situation, a 
sentence which describes the situation ("Jan werkt in de tuin") both in text and audio, 
and a collection of words which are put into frames and consequently into bigger 
frames in order to construct the passive form of the sentence. 
(E5) "So, look at the sentence in the Presentation Area and transform it as required. 
Start with the smal/est parts and put them into the frames. Finally put the /argest parts 
from left to right into the sentence frame." 
{E6} 'Transform the fol/owing sentence into the passive form". 
(P1) An exercise is displayed, and the student can start constructing the sentence. 
(S1) The student does not do anything. Time passes. 
(E7) "Raise your finger to get help." 
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(82) The student does not do anything. Time passes. 
(EB) "/wil/ help you a bif' 
(E9) A word, or frame containing multiple words, is put on the right spot, thereby 
making the exercise easier. 
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In this fragment, actions El and E6 are typically meant to provide con
tent information, actions E2 and E5 are meant to provide interface informa
tion, and actions E3, E7, and E8 are meant to provide meta information. It is 
also possible to provide different kinds of information in one action. For 
instance, action E4 (showing an example) provides both interface informa
tion, namely how to perf orm the exercise, as content information, namely a 
correct transformation of a certain sentence. Similarly, action E9 (putting a 
block on the right spot) provides both content and interface information. 

When the student bas already seen an example of that type of exercise, 
or no example is available, actions E3 and E4 are omitted. When the student 
shows an inability to perform the exercise, the example may be repeated. The 
student can also ask for the example. 

When the student bas already demonstrated an understanding of the user 
interface of the exercise, action E7 ("Raise your finger to get help.") is 
replaced by an incentive to act ("You must do something to proceed."). 

Actions like E8 and E9 depend on the material provided by the course 
designer. For some exercises, these actions may not be possible. For other 
exercises, more levels of hints may be distinguished 

In the second fragment the student is presented with an exploration exer
cise on clock times, in which he is supposed to study full hours, half hours 
and quarters of an hour. The student has to set the hands of a clock at a time, 
and can successively hear and see a Dutch sentence describing this time. 

(S1) The student sets the hands of the clock to one o'clock and obtains as the result 
"het is een uur"1. 

(82) The student sets the hands of the clock to five o'clock and obtains as the result 
"het is vijf uur". 
(83) The student sets the hands of the clock to eleven o'clock and obtains as the 
result "het is elf uur". 
(E1) ''Now try something different. Try a haff hour." 

In this fragment, action El illustrates that the Explanation Agent can 
take over control whenever necessary. As the student keeps on trying full 
hours, while he also has to leam half hours and quarters of an hour, the Expla
nation Agent reminds him to study the other subjects as well. So, on the one 

1. This kind of feedback is handled by the domain-dependent module of Appeal. 
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hand, students have the opportunity to discover for themselves how doek 
times are expressed in Dutch, but on the other hand the learning process is 
still monitored. 

In the Appeal prototype system, information is not only provided explic
itly, but also implicitly. The students know when it is their turn to act when 
the artificial teacher is reading bis book (see Figure 69). As a matter of fact, 
this is an emergent property of how the video of the artificial teacher was con
structed. Because the messages of the teacher have to be adapted to the stu
dent, it was not clear beforehand what the teacher would have to say 
successively. Sentences and parts of sentences were recorded beforehand, and 
concatenated at run time. For the concatenation process to succeed the 
teacher needed to return to a standard position at the end of each message, 
which was reading the book. 

Figure 69: Snapshots of the artificial teacher. In the left-hand snapshot, the student is 
supposed to do something, such as doing an exercise. In the middle snapshot, the 
teacher is talking. In the right-hand snapshot, the student is instructed to askfor help 
when he needs it. 

7 .2.3 Directions for experimental research 

As yet no experiments have been performed to evaluate the effectiveness of 
the behaviour of the Explanation Agent. However, its behavioural repetoire 
turned out to be sufficiently expressive to deal with all kinds of different exer
cise formats, and the interaction emerging from its behaviours is feit by 
students to be quite natural and transparent. 

In the first place, experiments should be performed on the eff ectivity 
and acceptability for the students of receiving information in the form of hints 
during the exercises. A condition in which hints are given spontaneously by 
the agent should be compared with a condition in which no hints are given, a 
condition in which hints can be requested by the student, and a mixed condi
tion in which hints can both be requested by the student and be spontaneously 
given by the agent. The Square Dance course (see Chapter 6) can be used as a 
possible task domain. 
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In the second place, evidence should be collected to support the validity 
of the rules used by the agent to omit information. The domain-independence 
of these rules should also be explored further. 

7.3 The Feedback Agent 

As described in Chapter 2 (Section 2.6.2), the main task of the Feedback 
Agent is to give feedback adapted to the student. This includes providing the 
students at the right moment with information about the correctness of their 
responses and with the correct responses themselves. 

7.3.1 Theory underlying the Feedback Agent 

In Chapter 1 (Section 1.2.3), an overview was given ofresearch indicating 
aspects of feedback that should be adapted to the student. This included the 
amount and timing of feedback, and the degree of enthusiasm and disappoint
ment (for references see Chapter 1). 

The degree of enthusiasm and disappointment mainly depends on the 
student' s performance and is fairly independent of the topic. Therefore, we 
focused on that issue in the first design of the Feedback Agent. The adapta
tion of the degree of enthusiasm was based on the idea that a student who bas 
made a mistake should be additionally motivated when answering correctly 
afterwards. In explorative studies aimed at optimizing the interface of the 
Square Dance course (described in Chapter 6), subjects indicated that they 
also expected the artificial teacher to become enthusiastic when they had 
made a number of correct responses. They showed a tendency to make mis
takes on purpose, just to get the teacher enthusiastic when answering cor
rectly afterwards. Therefore, an extra behaviour was added in which the 
Feedback Agent increased the degree of enthusiasm after a certain number of 
successive correct responses. 

With respect to the timing of feedback, we opted for immediate feedback 
instead of delayed feedback. Immediate feedback seems more readily appli
cable in the case of domain-independence: it is hard to determine in a 
domain-independent way how much feedback should be delayed. 

The agent chooses between single-try feedback (feedback after one 
response) and multiple-try feedback (feedback after several responses) 
depending on the student's performance. When the student gives an incorrect 
answer to an item that bas been answered correctly before, a second opportu
nity is given before feedback is provided. 

Like the Practice Agent and the Navigation Agent, the Feedback Agent 
uses a good set (see Chapter 3) to record which items have been answered 
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correctly the last time they were presented. In a sense, the good set gives an 
indication of the prior knowledge of the student when doing a particular exer
cise. So, in this simple way the results of Clariana (1993) are used, which 
indicated that low prior-knowledge students benefited more from single-try 
feedback and high prior-knowledge students benefited more from multiple
try feedback. 

If feedback is displayed visually, the agent should determine the dura
tion of the display. The most effective display duration of the correct response 
-say "het is half een" in Dutch expresses "it is half past twelve"- depends 
very much on the topic and the specific exercise, since it depends on the com
plexity of the response. Adaptation could be performed on the basis of a dis
play duration provided by the course designer, increasing it when the student 
is performing very poorly. Another possibility is to provide the student with 
an opportunity to adjust the "patience" of the Feedback Agent. The possibil
ity for this kind of run-time parameter adjustment has been incorporated in 
the Appeal prototype. 

The amount of feedback can vary between no feedback at all, feedback 
indicating the correctness of the response, presentation of the correct 
response, and more elaborative forms of feedback with the reason why a cer
tain answer is incorrect (Kulhavy, 1977). The amount of feedback used by the 
agent currently depends merely on the specific exercise involved. For 
instance, no feedback has to be given in explorative exercises in which the 
answer is always correct The correctness of the response does not have be 
indicated by the agent in exercises in which the students can judge the cor
rectness themselves, as in the jigsaw exercise discussed above where the 
words and frames bounce back automatically when put at a place where they 
do not fit. The correct answer does not have to be shown in exercises in which 
the students automatically know the correct answer when they see that their 
response was incorrect.Tuis kind of information about the exercises is cur
rently provided by the course designer. 

The use of no feedback for a correct response for the high perf orming 
students, as suggested by Bouwhuis and Bunt (1993), is not needed. Because 
of the functioning of the Practice and Navigation Agents, the students are 
mostly confronted with problems that lie just beyond their current ability. So, 
it is not very likely that a situation will occur in which students have to 
endure a long sequence of items to which they can respond correctly. How
ever, this argumentation does not apply when the student is training on speed 
of response instead of on correctness. 

The reason why a certain response is incorrect can only be provided by 
the agent to the student when the domain-specific part of the application sup
plies this information. Adaptation could take place with respect to whether 
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this kind of elaborate feedback is presented. This may, for instance, depend 
on the perceived confidence a student bas in bis answer (Kulhavy & Stock, 
1989). 

7.3.2 Example of the Feedback Agent's behaviour 

The following fragment shows an interaction between a student and the 
Appeal prototype system for learning Dutch by English-speaking persons. It 
illustrates the behaviour of the Feedback Agent as it is currently imple
mented. In the fragment the student is doing an exercise on the expression of 
clock times in Dutch: a clock time is expressed in Dutch, and the student is 
supposed to set the hands of a clock to that time. P denotes the Practice 
Agent, S denotes the student, and F denotes the Feedback Agent. 

(P1} "Het is zes uur."(lt is six o' clock.) 
(81) The student sets the hands of the clock to six 'o clock. 
(F1) "Correct." 
(P2) "Het is half acht." (lt is half past seven.) 
(82) The student sets the hands of the clock to half past eight. 
(F2) "That is not quite right." 
(F3) 'The correct answer is" 
(F4) The correct answer is shown. 
(P3) "Het is kwart over twee." (lt is a quarter past two.) 
(S3) The student sets the hands of the clock toa quarter past two. 
(F5) "Excellent!" 
(P4) "Het is half vijf." (lt is half past tour.) 
(84) The student sets the hands of the clock to half past four. 
(F6) "That is correct." 
(PS) "Het is tien uur." (lt is ten o' clock.) 
(85) The student sets the hands of the clock toeleven o' clock. 
{F7) "That is not correct." 
(F8) 'Try again!" 
(P6) The same exercise is presented again. 
(86) The student sets the hands of the clock to nine o' clock. 
(F9) "No, that is not correct." 
(F10) "/ wil/ show you the correct answer." 
(F11) The correct answer is shown. 

In this fragment, actions Fl, F2, F5, F6, and F7 are intended to inform 
the student about the correctness of the response. They illustrate an adapta
tion of the degree of enthusiasm and disappointment to the student's perform
ance. The degree of enthusiasm increases from Fl("Correct.") to F5 
("Excellent!"), because the student has made an error (S2) just before the cor
rect response (S3) leading to F5. The degree of enthusiasm decreases again 
from F5 ("Excellent!") to F6 ("That is correct."). Different degrees of disap-
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pointment, like F2 ("That is not quite right.") versus F7 ("That is not cor
rect."), require information coming from the domain specific part of the 
application about the degree of severity of the error. 

Actions F3, F4, FlO, and Fll are intended to inform the student about 
the correct response. These kinds of actions are not needed when students can 
see the correct response immediately themselves, knowing that their own 
response was incorrect. Tuis occurs, for instance, when the student has to 
choose between two altematives. 

Action F8 ("Try again") illustrates the distinction that the Feedback 
Agent tries to make between errors and slips. Because the student answered 
correctly the last time a full hour was presented (see Sl), the agent assumes 
that the student made a slip when answering incorrectly on the full hour (S5), 
and the student gets a second opportunity to produce the correct answer. 

Incidentally, this fragment also illustrates the item sequencing behaviour 
of the Practice Agent as discussed in Chapter 3, 4, and 5: a half hour is pre
sented again very soon (P4) because the student had given an incorrect 
answer to a half hour (S2) before. 

7 .3.3 Directions for experimental research and extensions 

No experiments have so far been performed to evaluate the effectiveness of 
the behaviour of the Feedback Agent. In the first place, experiments should 
be performed in which the effect of adaptation of the degree of enthusiasm 
and disappointment is tested. This adaptation is supposed to have a positive 
impact on the student's motivation and the student's feelings towards the arti
ficial teacher. So, it would only infl.uence the student's learning process indi
rectly. This indirect influence is unlikely to be found in an experimental 
setting (also due to the Hawthorn effect). However, motivation and feelings 
towards the arti:ficial teacher can be rneasured with scales, and the number of 
trials a subject would like to practise can perhaps also be measured. 

In the second place, experiments should be perf ormed in which the 
effect of the "try again" is tested. The number of times when the student 
answers an item correctly after the "try again" option can be measured. When 
this nurnber is relatively high, say above 50%, slips occur frequently, so, the 
"try again" behaviour is needed. Of course, this rnay depend on the instruc
tion domain and the individual. Therefore, it rnay be preferable to let the 
agent learn this itself, so that the agent represses this behaviour whenever it is 
not necessary. 

The behaviour of the Feedback Agent should be extended to include the 
capability of adapting the display duration of a correct response, as the dis
play duration is an important factor in determining the tempo at which the 
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student can study. The possibility of adapting the use of elaborate forms of 
feedback to the student should also be explored. 

7.4 The Presentation Agent 

As described in Chapter 2 (Section 2.6.2), the main task of the Presentation 
Agent is to adapt the form in which information is presented to the student. 
This includes, for instance, choosing whether to use formulas or pictures, and 
whether to use audio or text. 

7.4.1 Theory underlying the Presentation Agent 

In Chapter 1 (Section 1.2.3), an overview was given of research indicating 
that the presentation of information should be adapted to the student. Two 
aspects seem to be important in the adaptation of the presentation format to 
the student. 

In the first place, the presentation format should be such that informa
tion can be represented as effectively as possible in memory. According to the 
dual coding theory of Paivio (1971, 1978), there are at least two mental repre
sentation forms: a verba! representation which is modality-independent and 
encodes linguistic information, and a non-verba! representation which is 
modality-dependent and encodes, for instance, pictorial information. 
Whereas text information is usually encoded only verbally, pictorial informa
tion is encoded both verbally and pictorially. According to the mental model 
theory (Johnson-Laird, 1983), which is an extension to the dual coding the
ory, a runnable mental model is constructed by making cross-referential con
nections between verbal and pictorial encodings. 

Information is recalled better when it bas been encoded both verbally 
and pictorially (Kulhavy, Lee, and Caterino, 1985). So, dual coding theory 
predicts that recall is best when information has been presented both verbally 
and pictorially (not necessarily simultaneously). This has been confirmed by 
empirical research (Paivio, 1986), though there is also some research that 
does not support this prediction (Kirby, 1993). Presenting information picto
rially does not only lead to better recall, hut also provides a better understand
ing of the subject matter (Schnotz, Picard, and Hron, 1993). 

In the second place, the presentation format should be adapted to the 
student's learning strategy. Some students may have a higher spatial ability 
than others, in the sense that they have a higher ability to generate, retain, and 
transform abstract visual images (Lohman, 1979). This may lead to the use of 
different learning strategies such as an analytic strategy or a spatial strategy 
in a spatial visualization task (Kyllonen, Lohman, and Snow, 1984). Some 



students may pay more attention to text information, and others more to pic
torial information. 

These two aspects may conflict: the learning strategy of the student may 
not always be the most effective. The learning strategy can be influenced by 
training, but this may lead to a decrease in the performance of the able stu
dents (Kyllonen, Lohman, and Snow, 1984). Nevertheless, Kyllonen, 
Lohman, and Snow (1984) found, for the spatial visualization task, that even 
though verbal-analytic training could disrupt the performance on less difficult 
problems, verbal-analytic skills were required to process some more difficult 
problems. They suggested that a strategy shift was required for able students 
to meet aspects of increasing item difficulty. This suggests that though picto
rial information may be very important for the initia! model building, text 
information may be very important for abstraction. 

Taking this into consideration, the Presentation Agent can use Dale's 
"Cone of Experience" (Dale, 1969) (see Chapter 1, Section 1.2.3) in several 
ways. Two strategies have been implemented. In one strategy, the agent starts 
with the most pictorial presentation form to support model building, and then 
goes progressively higher on the scale towards verbal information. In the 
other strategy, the agent starts with the most abstract (verba!) presentation 
form, and then goes progressively lower on the scale toa level the student can 
manage. 

For both strategies, the step size can be adapted to the student, in the 
sense that it is larger when going in the direction of the student's preference, 
that it is larger when going to a higher level if the student is a high performer, 
and that it is larger when going to a lower level if the student bas a history of 
low performance. The moment when the form of presentation changes 
depends on the student's performance. The following three general rules 
apply toa step to a lower level. The student should have answered incorrectly 
to the item last presented, the percentage of items in the good set (see Chapter 
3) should be small, and the student should have had the opportunity to prac
tise fora while with the current presentation style. The same kind of general 
rules apply to a step to a higher level. 

Both strategies require the course designer to order the possible presen
tations with respect to the level of abstractness. Another possibility is that the 
agent bas some knowledge about different types of presentations, and that the 
course designer should only provide the type of presentation, e.g" video or 
text. 

Apart from using the level of abstractness, the Presentation Agent could 
also adapt the modality of the presentation form to students with perceptual 
handicaps. For instance, more use of audio could be made for students with 
low vision. 



7.4.2 Example of the Presentation Agent's behaviour 

The following gives an example of the Presentation Agent's behaviour. 
Suppose a child is learning addition. P denotes the Practice Agent, S denotes 
the student, PR denotes the Presentation Agent, and E denotes the Explana
tion Agent. 

(P1) An exercise is presented in which two small numbers have to be added. 
(PR1) The numbers are represented by a corresponding number of apples. 
(S1) The student does not do anything. Time passes 
(E1) "Let me give you a hint." 
(E2) lt is shown how an addition can be performed. 
(PR2) The instruction is represented by the group of apples being joined together . 
. ".[Aftar a number of correct responses.] 
(PR3) "Let's make it somewhat more difficult." 
(P2) An exercise is presented in which two small numbers have to be added. 
(PR4) The numbers are represented by text. 

In this fragment, actions PRl, PR2, and PR4 show that the Presentation 
Agent determines the form in which an exercise and instruction are given to 
the student. Action PR3 shows a step to a higher level, because of the 
student's good performance. 

Actions El and E2 of the Explanation Agent may not have taken place if 
the presentation level had been different. The level of presentation as deter
mined by the Presentation Agent limits the other agents in the actions they 
can perf orm. Por instance, if the course designer has not provided instruction 
at the appropriate presentation level, no instruction can be given. The fact of 
whether instruction bas been given is used by the Presentation Agent in deter
mining the moment of a change (for instance to a lower level) in the form of 
presentation. So, if no instruction is given and the student is not doing any
thing, this can trigger the Presentation Agent to change the form of presenta
tion to a lower level. 

7 .4.3 Directions for experimental research 

Preliminary versions of the Presentation Agent have been implemented and 
an exploratory experiment bas been perf ormed. However, more research is 
needed to develop a good experimental task. An artificial task should be 
constructed in which learning occurs gradually, and different representation 
forms make sense. The degree to which different learning tasks may require 
different representations should also be explored. 

Another issue is that the effectiveness of the Presentation Agent largely 
depends on the effectiveness of the Practice Agent, Navigation Agent, and 
Explanation Agent. In combination with the fact that course designers are not 
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used to providing different versions of presentations at various levels of 
abstractness, and therefore may be somewhat reluctant to do so, this gives 
research on this agent a lower priority than research on the other agents. 

7 .5 Conclusions 

A short overview bas been given of the current status of the Explanation 
Agent, Feedback Agent, and Presentation Agent, and the connection of their 
behaviour with the theory. As no experiments on the behaviour of these 
agents have so far been perf ormed, it is not possible to draw any conclusions 
regarding their effectiveness. 
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Chapter 8 

Conclusions 

8.1 lntroduction 

The main goal of this dissertation was to determine how instruction can best 
be adapted to the individual student. A completely different approach has 
been chosen than the ITS approach: the focus bas been on the instruction 
dialogue, hence, on domain-independent adaptation, with a mixed locus of 
control as an important issue. Instead of more traditional artificial intelli
gence, situated agents have been used to attain adaptivity. While the present 
research was being carried out, a prototype of an interactive instruction 
system, called Appeal, was developed. The knowledge acquired in this 
research served as a basis for the implementation of a domain-independent 
teaching module in the Appeal prototype. This domain-independent teaching 
module bas successively been applied in various instruction domains. 

Research presented in this dissertation bas shown that several aspects of 
instruction can be adapted to the individual student without using domain
knowledge. Furthermore, it bas been shown that it is possible to construct 
such a domain-independent teaching module as the interaction of a number of 
highly autonomous agents which, in their turn, can be designed as the interac
tion of a collection of relatively simple mies. Consequently, the design effort 
is limited compared to that needed in the case of ITS's. 

The agent design process (see Chapter 2) has been illustrated as an itera
tion of using knowledge of the human learning process (see Chapter 3, 5, 6, 
and 7) and experimental research (see Chapter 4, 5, and 6). It has been shown 
that well-controlled experiments can be used to evaluate adaptivity. 

Parts of the behaviour of the Practice Agent and Navigation Agent have 
been evaluated empirically. Future research should be aimed at extending 
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these evaluations, and also at evaluating the behaviour of the other agents 
(see Chapter 7), and adjusting the behaviours of the agents accordingly. 

8.2 Summary of the research results 

8.2.1 The learning process 

An important general finding from the research presented in this thesis is that 
the adaptive behaviour of the agents reduced the variance between students. 
The performance of the poor learners increased, while the performance of the 
good leamers stayed at the same level. Tuis was found for item sequencing in 
paired associates learning (Experiment 1, Chapter 4), item sequencing in 
concept learning (Experiment 2, Chapter 5), and navigation through the 
course material (Experiment 2, Chapter 6). 

Another finding is that initiative of the agents (as in navigation, see 
Chapter 6) is particularly essential when students are unable to monitor their 
own learning process. Initiative of the agents also reduces the variance, espe
cially in a situation with a mixed locus of control (see Chapter 6). 

8.2.2 Guidelines 

On the basis of the research presented in this thesis, guidelines can be given 
with respect to the kind of interactive instruction systems needed, the design 
of such systems, and the evaluation. 

Guidelines with respect to the kind of IIS's needed 

1. Adapt to the individuaJ students. 
Adaptivity reduces the differences in performance between students, which 
makes it easier to predict the effect of instruction (see Chapter 4, 5, and 6). 

2. Use a mixed locus of control. 
Control and initiative of the systern is needed to monitor the learning process 
of the poor performers. Student control is suitable for high performers and 
enables the students to intervene when suboptimal choices are made by the 
system (see Chapter 6). 
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Guidelines with respect to the design of such systems 

1. Use an architecture of simpte, independent agents. 
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Adaptivity and a mixed locus of control can emerge from the interaction of a 
collection of simple agents, each of which represents a task of the teacher. 
These independent modules can be developed in parallel (see Chapter 2). 

2. Start with simple behaviours and extend these gradually. 
Not all functionality has to be developed simultaneously: it is better to start 
with very simple behaviours and extend these gradually, using a differentia
tion process (see Chapter 2) and the results of experiments (see Chapter 4, 5, 
and 6). 

3. Base behaviour on existing knowledge of the human learning process. 
In the design of initial behaviour, existing knowledge of the human learning 
process can be used (see Chapter 3 and 7). The main idea is not to use execut
able student models, but to use the functional prnperties of such models in 
combination with direct observation (see Chapter 3). 

4. Focus on domain-independent aspects. 
It is already possible to obtain a considerable degree of adaptation without 
using domain knowledge. Focusing on domain-independent aspects of 
instruction leads to the design of modules that can be reused in various learn
ing domains (see Chapter 3, 4, 5, 6, and 7). 

Guidelines with respect to the evaluation of such systems 

1. Incorporate experiments in the design process. 
Experiments can be used to evaluate an agent's behaviour and adjust it 
accordingly. As a result of experiments, extra behaviours can be added, or 
existing behaviour can be changed (see Chapter 4, 5, and 6). 

2. Look at the learning process rather than asymptotic performance. 
Asymptotic performance does not give much insight into the learning proc
ess: the way in which learning occurs is more important for measuring the 
effectiveness of instruction, and why it is or is not effective (see Chapter 4, 5, 
and 6). 

3. Look at individuals instead of averages. 
In the evaluation of adaptivity it is important to look at the results of individ
ual subjects rather than to focus on averages. A typical result of adaptivity is 
a reduction of variance (see Chapter 4, 5, and 6). 

4. Use models. 
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It takes a lot of eff ort and time to perform user experiments. Models can be 
used as simulations of students in order to obtain predictions of the effectivity 
of the behaviour of an agent, and to explore the effect of different parameter 
settings of the behaviour (see Chapter 3). However, in the end real-user 
experiments still have to be performed as the models are not always correct 
(see Chapter 4, and 5). 

8.3 Questions and limitations 

8.3.1 Wbat is the benefit ofusing agents? 

One might argue that the use of the term "agent" does not contribute much; 
that the algorithms described in, for instance, Chapter 3 and 6 do not need 
this term. However, it is not the use of the term we advocate, but the different 
mind set, the other perspective it gave on the problems we were dealing with. 
The approach of designing very simple behaviours with the observable 
behaviour of the student as the main input proved to be very useful. Problems 
that seemed very difficult initially, turned out to be relatively simple when 
viewed from that perspective. The notion of autonomy also naturally led to 
the idea of the agents taking initiative. 

The notion of agents is also important because of the modularity it 
implies. It turned out to be very easy to add, remove, and change agents. 
Adaptivity on different aspects could be implemented and tested gradually 

8.3.2 Is this the answer to the problem of introducing 
interactive instruction systems in schools? 

The added value of interactive instruction systems for regular education is 
more obvious when they can adapt instruction to the individual student. 
However, this in itself does not solve the problem of introducing interactive 
instmction systems in schools. 

The main problem for publishers seems to be the high costs of produc
ing a high-quality interactive title. These costs only make it profitable to pro
duce titles that can be used for a very large group of students, as in 
elementary schools, but then the profit margin is generally rather small. Of 
course, it can be argued that more adaptivity makes a title suitable fora larger 
group of students. However, the adaptive power is limited by the material 
provided by the course designer. So, the introduction of adaptivity certainly 
requires extra effort on the part of the course designer. Under these condi
tions, publishers are not very eager to introduce more functionality -and 
hence extra costs- into their titles. 
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The high costs of producing a title seem mainly to be due to 
• the current development process, which is difficult to control 
• expensive assets and complex software that are hard to reuse. 
Methods should be developed to control the complexity of creating and main
taining multimedia software better. Tuis is one of the goals of the Multimedia 
& Education project which is currently taking place as a cooperation between 
Philips Research and the Institute for Perception Research. The focus in this 
project is on explicit structuring of course material and modularity. 

The general idea is that the gap between current approaches to interac
tive instruction design and the higher end ideas as presented in this thesis 
should be bridged gradually. The architecture should, however, be chosen 
such that a gradual addition of more adaptivity is possible. The agent-based 
architecture as presented in this thesis is very suitable for this purpose. 

8.3.3 What kind of adaptivity should be introduced first? 

Given that it is unrealistic to expect that publishing firms would want to add 
fully ftedged adaptivity at once, the question arises as to what kind of adap
tivity should be realized first. Two aspects seem to be important. 

In the first place, the kind of adaptivity should require as little effort as 
possible from the course designer. Tuis reduces the suitability of adaptivity 
with respect to the form of presentation, as this would involve the production 
of many extra assets (for different variants of the same presentation). For the 
same reason, adaptivity with respect to explanation is less suitable. 

In the second place, the kind of adaptivity should have the greatest pos
sible effect on the learning process of the students. Tuis reduces the suitabil
ity of adaptivity in feedback, as the effect of domain-independent adaptation 
of feedback is certainly not as great as adaptivity in navigation. 

Considering these two aspects, the kind of adaptivity that we would add 
first is adaptivity with respect to navigation. This requires explicit structuring 
of the course material and modularity, but these are also important for con
trolling the development process. 

8.3.4 Is domain knowledge really not necessary? 

One might argue that for really high level adaptivity it is not sufficient to use 
only domain-independent instruction rules. The student should, for instance, 
be able to ask questions about the domain. The goal of this research was, 
however, not to make domain knowledge completely superftuous, but to 
show that a lot of adaptivity can already be obtained in a domain-independent 
way. Indeed, for high level applications the domain-independent teaching 
module should be combined with a domain expert module. Tuis has already 
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been done in the Appeal prototype system, though in that case the domain 
expert module was still rather primitive. 

We are currently exploring the possibility of combining the domain
independent teaching module of Appeal with the DenK system (Ahn, Beun, 
Borghuis, Bunt, and Vanüverveld, 1994 ). DenK offers a cooperative assistant 
that bas knowledge about the domain, can reason about that knowledge and 
can communicate with a user in natural language. In a combination of Appeal 
and DenK, the assistant of DenK could handle the symbolic interaction with 
the student (like typed natural language), and could answer various questions 
from the student about the domain. Appeal would offer initiative, which is 
currently lacking in DenK, and a higher degree of adaptivity. The integration 
of both approaches would lead to a system that is very suitable for special 
user groups. 
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Samenvatting (Summary in Dutch) 
Dit proefschrift beschrijft het ontwerp van een interactief instructiesysteem. 
dat zich aanpast aan de prestaties van de individuele leerling. Centraal in het 
proefschrift staat niet het systeem zelf. maar een manier waarop zo'n systeem 
ontworpen kan worden: met gebruikmaking van, enerzijds, bestaande model
len over leergedrag en, anderzijds. experimentele toetsing. 

Het ontwerpen van een interactief instructiesysteem kan beschouwd 
worden als het ontwerpen van een artificiële leraar. Het verschil tussen een 
goede en een slechte leraar wordt nauwelijks bepaald door een verschil in 
domeinkennis, maar vooral door een verschil in het vermogen zich aan te 
passen aan de leerlingen, een vaardigheid die onafhankelijk is van het 
domein. Tot dusverre heeft het onderzoek naar interactieve instructiesyste
men zich echter voornamelijk gericht op domeinafhankelijke aspecten van 
instructie, zoals het soort fouten dat op kan treden bij het optellen van twee 
getallen. De doelstelling van dit project was juist die algemene, domeinonaf
hankelijke aspecten van instructie te modelleren. Daartoe is onderzocht hoe 
een artificiële leraar geconstrueerd kan worden die zich aanpast aan de indivi
duele leerling en bruikbaar is in verschillende instructiedomeinen. 

Een benadering is gekozen waarbij de domeinonafhankelijke leraar 
gezien wordt als een zeer autonome agent die in staat is in te spelen op de 
(moeilijk voorspelbare) gedragingen van de leerling. Deze agent bestaat uit 
een collectie van simpelere agenten, die elk een bepaalde competentie van de 
leraar vertegenwoordigen. Iedere agent wordt gekenmerkt door een verzame
ling gedragingen die gebaseerd zijn op kennis van en experimenteel onder
zoek naar menselijke leerprocessen. De agenten opereren parallel aan elkaar 
en vertonen een nauwe koppeling tussen hun acties en hun perceptie van de 
omgeving (bijv. acties van de leerling en acties van andere agenten). De inter
actie tussen de agenten onderling en tussen de agenten en hun omgeving 
resulteert in de adaptieve functionaliteit van een domeinonafhankelijke 
leraar. 

De belangrijkste taak van de "Oefen Agent" is te bepalen welk item te 
presenteren aan de leerling, uit een verzameling van items die geleerd moeten 
worden en die allemaal te maken hebben met een en hetzelfde onderwerp. 
Onderzocht is hoe modellen van menselijke leerprocessen gebruikt kunnen 
worden voor het ontwerp van een adequate selectiestrategie voor deze agent, 
en een nieuwe selectiestrategie is ontwikkeld. Het effect van deze strategie is 
empirisch getest op twee soorten leergedrag waarnaar veel onderzoek gedaan 
is, namelijk het leren van zogeheten "gepaarde associaties" en het conceptle
ren. De resultaten van deze experimenten hebben implicaties zowel voor het 
gedrag van de agent als voor de modellen. Dit illustreert het gebruik van 



empirisch onderzoek en cognitieve modellen in het ontwerpproces. Tevens 
illustreert het wat de moeilijkheden zijn bij het ontwerp van adaptief gedrag 
van een agent en hoe zulk gedrag geëvalueerd kan worden. 

De "Navigatie Agent" bepaalt, afhankelijk van de interesses, kennis en 
capaciteiten van de leerling, wanneer een ander onderwerp (d.w.z. een andere 
verzameling items voor de "Oefen Agent") aan bod komt en wat dat onder
werp dient te zijn. Een belangrijke vraag die in dit verband opkomt is, hoe
veel initiatief de leraar (d.w.z. het systeem) bij het bepalen van de les
volgorde moet nemen, respectievelijk hoeveel initiatief aan de leerling zelf 
moet worden gelaten. Door middel van empirisch onderzoek zijn de objec
tieve en subjectieve voordelen vastgesteld van een zogeheten 'mixed locus of 
control' situatie, waarin zowel de leraar als de leerling initiatief kan nemen 
met betrekking tot de keuze van het lesonderwerp. 

Naast de tot hiertoe besproken agenten zijn drie andere agenten te 
onderscheiden die zorg dragen voor een zinnige dialoog met de leerling, en 
door deze waargenomen worden als een 'persoon'. Dit zijn de zogeheten 
"Uitleg agent", de "Feedback Agent" en de "Presentatie Agent". Afhankelijk 
van het leergedrag van de leerling bepaalt de "Uitleg Agent" de hoeveelheid 
en timing van uitleg, de "Feedback Agent" de hoeveelheid en aard van feed
back (d.w.z. correctie of bevestiging van het antwoord), en de "Presentatie 
Agent" de manier waarop de informatie gepresenteerd wordt, bijvoorbeeld 
door middel van plaatjes of formules. Bij het ontwerp van deze agenten ligt 
de nadruk op het gebruik van bestaande kennis van het menselijke leerproces. 

De belangrijkste conclusies van dit onderzoek zijn dat het mogelijk is 
met een verzameling simpele gedragingen adaptief en ogenschijnlijk intelli
gent gedrag van een domeinonafhankelijke leraar te realiseren, en dat het 
hierbij wezenlijk is empirisch onderzoek te incorporeren in het ontwerp
traject. 
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I 

Om te voorkomen dat een groot deel van de bevolking uitgesloten wordt 
van een van techniek doordrenkte maatschappij, is onderzoek naar de 
bediening van apparaten nodig. 

II 

In plaats van de gebruiker te dwingen zich aan te passen aan complexe 
apparaten, dient de ontwerper gedwongen te worden apparaten te maken 
die zich aanpassen aan de gebruiker. 

III 

Bij complexe apparatuur met veel functionaliteit is het zinvol de gebruiker 
slechts geleidelijk te confronteren met de bedieningsmogelijkheden, door 
aanvankelijk veel initiatief van het apparaat uit te laten gaan en stapsgewijs 
de controle naar de gebruiker te verleggen. 

IV 

Als systemen initiatief nemen is het van groot belang dat gebruikers deze 
initiatieven kunnen negeren. Tactiele media (Keyson, 1996) bieden een uit
gelezen mogelijkheid om aan deze eis te voldoen. 

v 

Het is mogelijk om een adaptieve, domein-onafuankelijke, artificiële 
leraar te maken die gebaseerd is op eenvoudige principes over hoe mensen 
leren (zie proefschrift). 



VI 

Het gebruik van hyperlinks zou voor de gebruiker af geschermd moeten 
worden en vervangen door een combinatie van een ruimtelijke metafoor 
met op agent-technologie gebaseerde gidsen. 

VII 

Bij dialoogsystemen is niet het ontwerpen van een efficient en correct 
programma op basis van een gegeven specificatie het grootste probleem, 
maar veeleer het komen tot een goede specificatie. Hier zou in de infor
maticaopleidingen meer aandacht aan besteed moeten worden. 

VIII 

Voor hoogwaardige adaptiviteit in de dialoog tussen een systeem en een 
gebruiker is taalgeneratie noodzakelijk. 

IX 

Het idee van een strakke planning van onderzoeksprojecten is in tegen
spraak met het principe van 'gesitueerdheid' (zie hds 2): de voortgang 
van interessant onderzoek is namelijk per definitie onvoorspelbaar. 

x 

Het belangrijkste doel van een aio-project is niet het verkrijgen van een 
proefschrift, maar het opleiden tot onderzoeker. Aio-projecten dienen 
derhalve meer als een mogelijkheid tot verbreding dan tot specialisatie 
gezien te worden. 


