

An interactive visualisation tool applied to the simulation of
glass pressing
Citation for published version (APA):
Laevsky, K., Telea, A. C., & Mattheij, R. M. M. (1999). An interactive visualisation tool applied to the simulation
of glass pressing. (RANA : reports on applied and numerical analysis; Vol. 9941). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/5d3976c0-cf65-4cd4-98b2-e60c508ee256

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

RANA99-41
November 1999

An Interactive Visualisation Tool
applied to the Simulation of

Glass pressing

by

K Laevsky, A. Telea, R.M.M. Mattheij

Reports on Applied and Numerical Analysis
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven, The Netherlands
ISSN: 0926-4507

An Interactive Visualisation Tool Applied to the Simulation of
Glass Pressing

K.Laevsky, A. Telea, RM.M. Mattheij
Department of Mathematics and Computer Science,

Eindhoven University of Technology,
PO Box 5613, 5600 MB The Netherlands

November 10, 1999

Abstract

An interactive numerical simulation approach to the process of glass pressing is presented.
Glass is modelled as a strongly viscous Newtonian fluid whose deformation under pressure is de
scribed by a Stokes equation. Modelling the evolution of the glass free boundary in time poses a
particular problem which is dealt with by a special integration technique. Next, we present how
we integrate the numerical simulation with an interactive visualisation and computational steer
ing tool. The resulting application allows for interactive simulation control and result monitoring.
The presented software integration technique does not require any changes to the numerical simu
lation eode and can be thus used to couple other similar computational engines with a steering and
visualisation front-end.

1 Introduction

An important tool in scientific computing is the visualisation of numerical simulations. Traditionally
the simulation is performed by a numerical package and the visualisation is seen as a separate process
of producing one or more pictures from the computed data sets. For practical use this is often cumber
some, as insight in a time-dependent process implies the ability of the user to interactively control the
simulation parameters and monitor its results. A second problem is that program modification, such as
inserting a new numerical solver or mesh generator, or changing the visualisation method, usually re
quires manual editing and recompilation of the source code. In contrast to the above, one would rather
like to have a simple, interactive way to monitor, control and construct the simulation and visualisation
program, e.g. by means of a graphics-user interface driven tool.

This paper describes such a system for a specific application: the pressing of glass in a mould. In
this problem one wishes to predict the flow development (in terms of velocity and pressure quantities)
of a gob of glass under pressure in a confinement. The ultimate goal is to obtain an optimal mould shape
(geometry) based on the pressing simulation. The simulation evolution is affected by many parameters
such as initial velocity, mould geometry, etc. An interactive simulation and visualisation tool is thus
essential for solving the inverse problem of assessing the optimal mould shape, by providing steering
and result monitoring facilities.

In order to understand the pressing process, the mathematical model used is first described in Sec
tion 2. Next we discuss how we solve the reslting equations numerically (Section 3). The rest of the pa
per is devoted to the description of an interactive visualisation tool for the glass simulation. In Section 4

1

the advantages of steering simulation and visualisation systems as opposed to non-interactive systems
are outlined. Section 5 shows how the glass pressing problem has been implemented in the interactive
simulation and visualisation system VISSION. Section 6 illustrates the potential of our approach by
showing various results. We conclude the paper with a discussion of some further possibilities.

2 Modelling the Process

This section describes the morphology process for producing packing glass, such as bottles or jars.
From the oven a gob of glass is being transported to a mould and there it is pressed into a preform by
a plunger which is moving upward. The result of this is a so called parison, which is an intermediate
product only. The next and final step is the blowing phase where this parison is brought to its final
shape by air pressure (see Fig.2.1). We shall only consider the pressing phase here.

Figure 2.1: Production process.

The pressing of glass in a mould is still a complicated process. In order to simplify our discussion
below we will neglect the influence of the temperature on the flow. Since the viscosity of the mate
rial is strongly dependent on the temperature, one may wonder whether this is realistic. One can show,
however, that the actual flow of the glass is nearly isothermal in most cases, because of the low conduc
tivity. As a consequence the heat exchange effectively takes places only after the motion has stopped.
Actually, in the present problem that kind of a decoupling is a bit more complicated. One can assume
that heat may arise because of friction if the viscous forces are high. But it is not the case here (see
[1]). Hence, in order to describe the morphology of the glass we consider only the motion equations
with corresponding boundary conditions, which define the velocity field and the pressure. Moreover
we will assume the glass to be an incompressible Newtonian fluid.

Typical values for the problem under consideration are:

fJ = 104 kg/sec m
p = 2.5 . 103 kg/m3

T = 10-1 sec
L = 10-2 m

- the dynamic viscosity of the glass,
the density of glass,

the typical pressing ,
the typical scale for the parison,

and finally the typical velocity which is dependent on T and L:

U := L/T = 10- 1 m/sec.

(2.1)

Let Qt be the region occupied by the liquid at time t E [0, T]. Denote the velocity and the stress
tensor by v and (J respectively. Consider then the Navier-Stokes equations for incompressible fluids in

2

the time dependent domain Qt:

p (~; + v . vv) V . (J = pf,
(2.2)

V·v = 0,

where p is the mass density and f are the volume forces. The stress tensor (J is related to velocity
gradient Vv, pressure p and dynamic viscosity tL as follows:

(J = -pI + tL (Vv + (Vvl) (2.3)

Substitution of (2.3) into (2.2) gives us the following equations

p (~; + v . vv) = pf + V P tL V2v in Qt>

(2.4)

V·v = 0,

The same equations can be rewritten in dimensionless form. Using the definitions in (2.1) we have:

L ,
v = -v, P

T

I L I

X = Lx, t = U ' tL = I7tL ,

where Re is the Reynolds number and Vi, pi, x', t' are dimensionless variables. Then the previous sys
tem of equations (2.4) reads as follows:

(avi

) Re - +v'· Vv'
at' =

(2.5)

V·y' = 0,

The volume forces consist of the force of gravity only, i.e.

IIfll :=:::; 10 kg m/sec2

According to (2.1) the Reynolds number for the problem is approximately 10-4 ; hence the left-hand
side of 2.5 is sufficiently small and can thus effectively be skipped from the equation. According to
the previous remark the term which includes the volume forces is approximately 10-3, which is also
negligible. This all means that the viscous forces dominate the volume forces.

As a result we obtain the Stokes equations for an incompressible fluid. Ommiting the prime they
read

(2.6)
V·v = 0,

This system of equations together with boundary conditions define the velocity field and the pressure.

3

y

x

a) b)

Figure 2.2: Problem domain.

Although the initial form of the gob may not necessarily be axisymmetric, it is reasonable to employ
the axisymmetric geometry of mould and plunger and assume the flow as such to be axisymmetric as
well; see Fig. 2.2 a,b. Hence it can be reduced to a two dimensional case. The domain Qt will be
associated now with the configuration in Fig. 2.2 b.

Let r t = a Qt be the boundary of Qt. It is easy to see that r t consists of four parts:

rt r m U rf u r p u r s ,

corresponding to the mould, free boundary, plunger, and symmetric part respectively.
Assuming slip boundary conditions on the corresponding parts r m, r p of the boundary rt we have

on r m, and

v·n
av· t

0,
- (1 - a)(an) . t,

v· n = vp' n,
{3v·t = {3vp ·t+(l-{3)(an)·t,

(2.7)

(2.8)

on r p' where v p := (0, V)T is the velocity of the plunger. Both in (2.7), (2.8) the slip parameters a, {3
are from the interval [0, 1]. It is easy to see that maximum value of the parameter corresponds to the
no-slip boundary conditions, i.e. for a = 1 we have v = ° on r m, and for f3 = 1 we have v = v p on
rp.

At the free boundary, the normal stress must be equal to external pressure Po, which is assumed to
be constant. The tangential stress must be equal to zero. Hence:

(an)· n
(an) . t

4

Po,
0.

(2.9)

Figure 3.1: Clip algorithm.

For the symmetry boundary r s the normal component of velocity must be equal to zero, as well as the
tangential component of stress vector o-n:

v·n = 0,
(o-n) . t 0.

One should note that (2.6) is not a stationary problem since we have the kinematic boundary condi
tion (2.8). Indeed, the domain Qt, corresponding to the region occupied with glass at time t, is time
dependent and changes during the process. In the next section we will discuss how we deal with this
problem numerically.

3 Numerical approach

The Stokes equations (2.6) together with the boundary conditions (2.7-2.10) can be solved by a finite
element code. One should note that the geometry of Q r is defined by mould and plunger, except for
the free part rf. The approximation of r f requires a special technique which we shall describe now.
First we note that the aforementioned Stokes problem, although stationary, has a kinematic boundary
condition 2.8. The resulting velocity field v for this geometry can be used to predict the next position
of the free boundary. More precisely, let x : [0, T] x Qo -+ lR2 be such a mapping that:

x(O) = Qo, x(t) = Qt, (3.1)

where Qt is the problem domain as defined before. Then the relation between velocity field and the
domain geometry can be described by the initial value problem:

dx(t)

dt
= v(x(t»,

x(O) = Qo.

t E [0, T],

(3.2)

The velocity field v(x(t» can be obtained by solving the Stokes equations in Qt. However, one should
realise that the geometry of Q r depends on that velocity field.

In order to overcome this problem we will use the following strategy. Let us define

tn = n 6.t , n = 1, . .. , N,

5

such that to = 0, tN = T. After discretisation and solving Stokes equations with corresponding
boundary conditions in Qt. (which are assumed to be defined) we obtain the velocity field vn

• Instead
of (3.2) we solve the initial value problem (3.3):

dx(t)

dt
(3.3)

In particular for any point xi at the free boundary r f we may consider this as a Lagrangian dis
placement, which we may e.g. discretise by the explicit Euler method:

(3.4)

The global error for this algorithm is of the first order.
The geometry of Q tn+1 can be obtained now, and hence the boundary conditions required for solving

the flow equations at tn+l can be defined. The same procedure is repeated then until the final geometry
Q tN and corresponding flow quantities have been computed. One should note that Qtn , n = 1, ... ,N
according to (3.3) is an approximation of original mapping (3.1). Instead of Euler explicit it is possible
to use more sophisticated integration schemes. For our present problem setting however, we will be
satisfied with (3.4).

Consider now in more detail the deformation of the free boundary during a time step. Applying
formula (3.4) for a point xi at the boundary fj (i.e. the boundary r f at time tn) with corresponding

velocities vi, we see that some of the points x7+ I don't belong to the domain as defined by the mould
and the plunger. Let us denote the latter by Eltn+l (see Fig. 2.2 b). This configuration is changed ex
plicitly by moving the plunger at each time iteration. We now simply clip displacements outside this
El tn+l , see Fig. 3.1. So the position of X/+ I is defined now by intersection of xi + b.JV'/ and 8 tn+1 :

X'!+l = xn + N
1
, AtVI! E (0 1]

1 1 "" L..l. I' ai ,. (3.5)

Where ai is chosen such that

We shall call this algorithm the "clip" algorithm. For the velocities that must be clipped (ai < 1) the
erroris apparently O(h2)! The actual values of ai depend on the characteristics of the process, b.t and
the mesh size h. In a practical implementation the term (1 - ai) II Xi (tn) II should be first order in b.t,
as is also the actual order of the explicit Euler method. One can analyse this in a more detailed way.
However, we shall stick to this approach that allows the fast computations needed by our interactive
tool presented next.

4 Interactive Visualisation Tool Design

We now turn to our implementational platform. To begin with, we note that there are two important
dimensions of computer based simulations, namely controlling and interacting with the simulation on
one hand, and examining (e.g. by direct visualisation) the generated data on the other. Combined in
a flexible way, the above features lead to software tools which help conveying a better insight and un
derstanding of the evolution of the simulated process.

6

Based on the way they address the above process control and data interrogation requirements, sim
ulation systems range from non-interactive systems to steering systems (see [11, 15]). Most such sys
tems implement the same simulation scenario consisting of a problem definition phase, followed by
the numerical computations phase, and finally the result interrogation phase In our case, these phases
correspond with the initial mould geometry and velocity setup, solving the Stokes problem and moving
the boundary at every simulation time step (Section 3), and visualising the obtained mould geometry.

Non-interactive systems implement the above three phases in a loosely coupled, unsynchronized
manner, usually as one or several batch applications run separately by the user who manually feeds
the output of an application to the input of the next in terms of files (Fig. 4.1 a). Interactivity is lim
ited to configuration file editing, and simulating time dependent processes is reduced to running the
above pipeline manually to produce a set of output files corresponding to input data at different time
instants. Such systems can thus convey only a limited insight in time-dependent processes, as the time
dependent behaviour is manually simulated by the user. The advantage of the non-interactive system
model is its loose coupling, meaning that various independently developed software applications can
cooperate without having to reprogram them, based on an input-output file compatibility. As most nu
merical simulation software comes as batch monolithic applications whose interactivity is limited to
reading and writing files, the non-interactive system simulation model is still the most widespread.

computational applications

a)

data
interrogation

-----'-'----

data streams

~--------~v~------~
computational modules

b)

Figure 4.1: Non-interactive (a) and steering (b) simulation systems

Steering systems are the other implementation extreme [10,4,8, 13, 12, 14]. They treat the three
simulation phases uniformly, providing interactive ways to control all the problem definition, com
putation, and result visualisation phases (usually by means of graphics user interfaces (GUls», and a
pipeline synchronisation controller that makes a stage compute automatically as soon as the previous
stage has produced its result (Fig. 4.1 b). Direct control over all the parameters enables the user to in
vestigate the process parameter space easily, tune the computational controls on the fly, and monitor
on-line the process evolution in time. However, implementing a steering model for simulations raises
two main problems:

1. most steering systems have a single control thread, meaning that their interactivity is bounded by
the speed of the slowest stage. The numerical computations are however rarely real-time, like
the Stokes problem solving involved in our glass pressing simulation. The interactivity of all
the stages (including e.g. tuning the parameters of the faster visualisation stage) is thus brought
practically to zero. This diminishes considerably the attractivity of using steering systems to
integrate the computational stage.

7

2. to provide unifonn control, synchronisation, and GUI policy for all stages, steering systems re
quire these stages to confonn to various software interfaces. This often implies fundamental
modifications of the numerical simulation code requiring extensive programming knowledge.
This makes the integration option less attractive for non-programming experts such as numeri
cal analysts.

5 An Interactive Visualisation Application for the Glass Pressing Simu
lation

We have developed a software application that integrates an interactive visualisation back-end with a
numerical simulation of the glass pressing process. The numerical simulation was designed and imple
mented as a stand-alone monolithic aplication, to which an interactive visualisation environment was
further coupled. The resulting application allows for an automatic monitoring of the time-dependent
numerical data produced by the finite element simulation and offers an interactive way to choose and
tune various data visualisation methods.

The first part of the pipeline (Fig. 5.1) is a classical example of monolithic finite-element applica
tion written in Fortran that perfonns the computational domain discretisation followed by the iterative
solving of the time-dependent Stokes equations amd boundary displacement for a sequence of time
moments. The second part of the pipeline consists of the general-purpose object-oriented environment
for scientific visualisation VISSION [7]. VISSION is based on the dataflow model ([5, 4]), in which
visualisation or data processing tasks are described as networks of computational modules communi
cating by reading, processing, and writing data to each other. VISSION provides an interactive way to
construct a visualisation or data processing task by visually assembling module icons picked from an
available module icon library to create the desired network. Next, various data sets can be fed into the
network to be processed (e.g. compute gradients of scalar fields, extract isosurfaces or trace stream
lines in datasets), visualized in various ways (e.g. surfaces, flow ribbons, elevation plots, stream tubes,
wireframe meshes, etc) and manipulated in 2D or 3D interactive viewers. The user can also interac
tively change the parameters of the network modules via several GUIs to e.g. select a new isosurface
threshold, zoom/pan the data viewers, or interactively probe the datasets to find their values in some
points of interest.

We could easily couple the numerical simulation stage with the visualisation environment back-end
without having to modify a single line of the numerical software by using the so-called data sensors
of VISSION. These are special modules which, placed at the beginning of dataflow networks, monitor
some desired data files for specific changes such as file creation or modification. As the numerical ap
plication completes a new simulation time step, it writes the new computational mesh and solution data
(glass pressure and velocity in our case) as a new file or set of files, or modifies existing ones. When
this event happens, VISSION's data sensors fire and the new data is read in the input of the visualisa
tion network (Fig. 6.1) which automatically executes presenting a new view to the user. The whole
process executes as though the data flows transparently from the numerical solvers up to the visuali
sation viewer modules, producing an effect similar with the one obtained if the numerical simulation
had been integrated in the dataflow network as a VISSION module.

Coupling the numerical simulation with VISSION via data sensors has several advantages:

1. the numerical simulation and the VISSION environment can run either on the same machine or on
different workstations sharing the same file system transparently (see Fig. 5.2 a). This was very
useful as we could run the whole application on a single machine or use a powerful machine for

8

Glass Pressing
Numerical
Simulation

data sensor
module

file
system

1°1
file file read I
write monitor

The Vission Environment

data
interrogation _--.L...J--___

Figure 5.1: Pipeline for interactive visualisation of the glass pressing simulation

performing the numerical computations and a separate fast graphics workstation for performing
the visualisation.

2. the second advantage of the data sensor coupling resides in the fact that the numerical simulation
and the visualisation have independent control threads. The user can interactively choose several
visualisation modules (i.e. edit VISSION's dataflow network), tune their parameters on-line, and
see the changes in the visualized images almost instantly, as the visualisation modules are very
fast, while the numerical simulation keeps computing at its own, usually slower pace. When a
new time step is ready, the new data 'flows into' VISSION transparently. Similarly with editing or
changing the parameters of the visualisation independently of the numerical simulation's pace,
one can stop, reconfigure, and restart the numerical application without having to care of the
possibly several VISSION sessions monitoring its output.

Combining the monolithic numerical simulation with the interactive visualisation by allowing an in
dependent control thread is an attractive variant of the steering solution, as the inherently interactive
part (the visualisation) remains interactive and still synchronized with the slower computational part.
This setup was especially convenient in the two-machine scenario described above.

To couple VISSION with the numerical glass simulation (or any similar computational application
exporting its data via files or other UNIX mechanisms such as pipes, message queues, or shared mem
ory) we only have to write a simple data reader VISSION module accepting the data file format pro
vided by the numerical code. The object-oriented design of VISSION and its rich support of data set
types (unstructured, regular, rectilinear, and curvilinear grids with multidimensional data per point or
cell ([5]) allowed us to write such a reader in about one hour. The alternative of integrating the numer
ical application in VISSION as a computational module would have meant complex reprogramming of
the numerical code. The file sensor approach practically extends the dataflow network outside VIS
SION's boundaries by treating the numerical simulation as an 'external module' at the network's input.
Synchronized communication with the numerical application is thus provided transparently, without
having to modify its code, by using the file system's file access mechanisms.

Overall, the presented architecture combines the advantages of monolithic applications (reuse with
out reprogramming) and steering systems (interactivity, several control threads, visual programming,

9

Machine 0

Glass Pressing
Numerical
Simulation

a)

Machine 1

Vission
Visualization

Machine 2

Vission
Visualization

Machine 3

Vission
Visualization

Glass Pressing
Numerical
Simulation

~
Problema

input

b)

A solution
output

~
Vission

Visualization

Figure 5.2: Distributed computation and visualisation (a). Steering pipeline combining computation
and visualisation (b).

GUIs) presented in Section 4 and allows transparent execution of the numerical computations and vi
sualisation on the same or different machines. In the same time, the mentioned disadvantages of tight
integration based on reprogramming are removed by using the data sensor mechanism. The presented
mechanism was also used to integrate other simulations with the interactive visualisation environment
VISSION.

6 Results

To illustrate the interactive visualisation system described in the previous section, several results are
presented. Figure 6.1 presents an overview picture of an interactive glass pressing visualisation in the
VISSION environment. In this example, a dataflow network was visually constructed to monitor the
output of the glass pressing numerical simulation and display the computed flow velocity magnitude
in two data viewers, overlaid with a set of stream lines for the flow field (left data viewer), respectively
contour lines of the flow field magnitude (right data viewer). The dataflow network starts with a data
sensor module which provides the interactive monitoring of the running numerical simulation (as de
scribed in the previous section), followed by a data file reader. When the data sensor is removed from
the network, one can use the system as a classical off-line visualisation tool for already computed flow
data sets. The reader module loads two data sets computed by the numerical simulator, i.e. a veloc
ity and a pressure field defined on the 2D glass mould cross-section mesh. The rest of the network
contains various modules that compute the velocity field magnitude, stream lines, and contour lines
from the simulation input data, and present the resulting information to the end-user in the data viewer
windows that provide zoom, pan, and rotate facilities. Figure 6.2 shows several images produced with
the visualisation setup described above, displaying the glass velocity magnitude (left column), respec
tively its pressure (right column) at six different time instants during a pressing simulation. The above
application is an exact implementation of the conceptual pipeline presented in Fig. 5.1.

The results of the glass pressing simulation are ultimately to be used in an industrial production
environment. In order to convey a more intuitive understanding of the glass pressing process for the
industry end-users, a tri-dimensional reconstruction of the process was performed in the VISSION en
vironment. The reconstruction pipeline takes as input the boundaries of the 2D computational meshes
produced by the numerical simulation and rotates each of them around their symmetry axis to produce
a 3D shape. Next, the obtained shapes are rendered with appropriate lighting and glass-like material
properties in the same data viewer we used for the visualisation of the 2D computational data. The end-

10

users can now manipulate the obtained 3D glass shapes directly in the viewers to get a better impression
of the simulation results. In order to visualize the results independently on the VISSION environment, a
MPEG movie production module was appended to the reconstruction pipeline. This allowed us to au
tomatically create MPEG movies of the glass pressing simulation and of its 3D reconstruction, which
can be played back by standard MPEG players independently on the VISSION system. Figure 6.3 shows
12 frames from a movie produced in VISSION using the above method. All the above operations (3D
reconstruction, lighting, rendering, and MPEG production) could be done using less than 10 of the
standard VISSION modules.

7 Discussion

Several other solutions to the problem of interactive visualisation and steering of scientific computa
tions exist. The Computational Steering Environment (CSE) [10] consists of a synchronisation kernel
(the Data Manager) to which several satellites running on the same or different machines can be at
tached to perform visualisation and computational tasks. The satellites can run asynchronously, the
data access being synchronized by the Data Manager. However, the CSE offers no capability to inter
actively build a visualisation network by visual assembly of modules as VISSION does, nor it supports
other dataset representation besides structured grids, making it unflexible for our purposes. Finally,
VISSION can easily provide most of the satellite-Data Manager communication facilities by implement
ing several types of data sensors that monitor various resources (e.g. files, shared memory, message
queues, sockets) for various events. The CSE application steering capabilities could be also provided
in the context of VISSION'S file sensors. For example, we could steer the numerical simulation from
VISSION's interactive GUI by making the latter export the parameters it modifies as shared resources
(e.g. files or pipes) and making the former read the data in these resources (see Fig. 5.2 b for a sketch
of the computational steering loop).

The AVS and Oorange systems ([4, 6]) are also based on the dataflow network and visual network
editor concepts similarly to VISSION. However, their mUlti-programming language design exposes
their users to several technicalities of several programming languages, making it harder to program
new modules (e.g. data readers or data sensors) for non-programming experts. These isues are de
tailed by us elsewhere [16].

The Visualisation Toolkit (vtk) system ([5]) offers practically the same data representation classes
and ease to write new modules as VISSION (which actually incorporates the vtk modules). However,
vtk offers no visual dataflow network editor, nor module GUIs, limiting the run-time user interaction to
scripting languages. Moreover, vtk uses a demand-driven network update policy, while AVS, VISS ION,
and Oorange use an event-driven one (see [5, 7] for details). This would make the implementation
of data sensors considerably more difficult in vtk than e.g. in VISSION, where a file sensor code has
approximately 50 lines of C++.

References
[1] T. D. CHANDRA, S. W. RIENSTRA, Analytical Approximation to the Viscous Glass Flow Problem in the Mould-Plunger

Pressing Process, RANA 97·08, Technical University of Eindhoven, 1997.

[2] B. STROUSTRUP, The c++ Programming Manual, Addison-Wesley,1993.

[3] J. WERNECKE, The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open Inventor, Addison
Wesley, 1993.

11

[4] C. UPSON, T, FAULHABER, D, KAMINS, D. LAIDLAW, D, SCHLEGEL, J. VROOM, R. GURWITZ, AND
A. VAN DAM, The Application Visualization System: A Computational Environment for Scientific Visualization., IEEE
Computer Graphics and Applications, July 1989,30-42,

[5] W. S CHRO ED ER, K, MARTIN, B. Lo RENS EN, The Visualization Toolkit: An Object -Oriented Approach to 3D Graph
ics, Prentice Hall, 1995

[6] C. GUNN, A. ORTMANN, U. PINKALL, K, POLTHIER, U. SCHWARZ, Oorange: A Virtual Laboratory for Exper
imental Mathematics, Sonderforschungsbereich 288, Technical University Berlin. URL http://www-stb288.math.tu
berlin.deloorangeiOorangeDoc.html

[7] A.C. TELEA, J.J. VAN WIlK, VISSION: An Object-Oriented Dataflow System for Simulation and Visualization, in
Proceedings of the VisSym '99 IEEE-Eurographics Symposium on visualization and scientific simulation, Vienna, Aus
tria

[8] A.C. TELEA, C. W.A.M, VAN OVERVELD,An Object-Oriented Interactive System for Scientific Simulations: Design
and Applications, in Mathematical Visualization, H.-c' Hege and K. Polthier (eds.), Springer Verlag 1998

[9] B. MEYER, Object-oriented software construction, Prentice Hall, 1997

[10] J. J. VAN WIJK AND R. VAN LIERE,An environment for computational steering, in G. M. Nielson, H. Mueller and H.
Hagen, eds, Scientific Visualization: Overviews, Methodologies and Techniques, Computer Society Press, 1997

[11] J.E, ROSENBLUM AND R.A. EARNSHAW, EDITORS, Scientific visualization: advances and challenges, Academic
Press, London, 1997

[12] S. RATHMAYER AND M. LENKE, A tool for on-line visualization and interactive steering of parallel hpc applications,
in Proceedings of the 11th International Parallel Processing Symposium, IPPS 97,1997

[13] D. JABLONOWSKI, J. D, BRUNER, B. BLISS, AND R. B. HABER, VASE: The visualization and application steering
environment, in Proceedings of Supercomputing '93, pages 560-569, 1993

[14] G. A. GEIST, J. A, KOHL, P. M. PAPADOPOULOS, CUMULVS: Providing fault tolerance, visualization, and steering
of parallel applications, in The International Journal of Supercomputer Applications and High Performance Comput
ing, 11(3): 224-235, 1997

[15] M, J. NOOT, A. C, TELEA, J. K. M. JANSEN, R. M, M, MATTHEIl, Real time numerical simulation and visualization
of electrochemical drilling, Computing and Visualization in Science, vol. 1, Springer, 1998, pp. 105-111

[16] A, C. TELEA Combining Object Orientation and Dataflow Modelling in the VISSION Simulation System, in Proceed
ings of the TOOLS '99 Europe Conference, ACM Press, 1999, pp 56-65

12

Figure 6.1: Interactive visualisation session for the glass pressing simulation

13

Figure 6.2: Frames from a 3D animation of the glass pressing simulation

14

Figure 6.3: Frames from a 3D anim~~ion of the glass pressing simulation

