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Abstract 

An interactive numerical simulation approach to the process of glass pressing is presented. 
Glass is modelled as a strongly viscous Newtonian fluid whose deformation under pressure is de
scribed by a Stokes equation. Modelling the evolution of the glass free boundary in time poses a 
particular problem which is dealt with by a special integration technique. Next, we present how 
we integrate the numerical simulation with an interactive visualisation and computational steer
ing tool. The resulting application allows for interactive simulation control and result monitoring. 
The presented software integration technique does not require any changes to the numerical simu
lation eode and can be thus used to couple other similar computational engines with a steering and 
visualisation front-end. 

1 Introduction 

An important tool in scientific computing is the visualisation of numerical simulations. Traditionally 
the simulation is performed by a numerical package and the visualisation is seen as a separate process 
of producing one or more pictures from the computed data sets. For practical use this is often cumber
some, as insight in a time-dependent process implies the ability of the user to interactively control the 
simulation parameters and monitor its results. A second problem is that program modification, such as 
inserting a new numerical solver or mesh generator, or changing the visualisation method, usually re
quires manual editing and recompilation of the source code. In contrast to the above, one would rather 
like to have a simple, interactive way to monitor, control and construct the simulation and visualisation 
program, e.g. by means of a graphics-user interface driven tool. 

This paper describes such a system for a specific application: the pressing of glass in a mould. In 
this problem one wishes to predict the flow development (in terms of velocity and pressure quantities) 
of a gob of glass under pressure in a confinement. The ultimate goal is to obtain an optimal mould shape 
(geometry) based on the pressing simulation. The simulation evolution is affected by many parameters 
such as initial velocity, mould geometry, etc. An interactive simulation and visualisation tool is thus 
essential for solving the inverse problem of assessing the optimal mould shape, by providing steering 
and result monitoring facilities. 

In order to understand the pressing process, the mathematical model used is first described in Sec
tion 2. Next we discuss how we solve the reslting equations numerically (Section 3). The rest of the pa
per is devoted to the description of an interactive visualisation tool for the glass simulation. In Section 4 
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the advantages of steering simulation and visualisation systems as opposed to non-interactive systems 
are outlined. Section 5 shows how the glass pressing problem has been implemented in the interactive 
simulation and visualisation system VISSION. Section 6 illustrates the potential of our approach by 
showing various results. We conclude the paper with a discussion of some further possibilities. 

2 Modelling the Process 

This section describes the morphology process for producing packing glass, such as bottles or jars. 
From the oven a gob of glass is being transported to a mould and there it is pressed into a preform by 
a plunger which is moving upward. The result of this is a so called parison, which is an intermediate 
product only. The next and final step is the blowing phase where this parison is brought to its final 
shape by air pressure (see Fig.2.1). We shall only consider the pressing phase here. 

Figure 2.1: Production process. 

The pressing of glass in a mould is still a complicated process. In order to simplify our discussion 
below we will neglect the influence of the temperature on the flow. Since the viscosity of the mate
rial is strongly dependent on the temperature, one may wonder whether this is realistic. One can show, 
however, that the actual flow of the glass is nearly isothermal in most cases, because of the low conduc
tivity. As a consequence the heat exchange effectively takes places only after the motion has stopped. 
Actually, in the present problem that kind of a decoupling is a bit more complicated. One can assume 
that heat may arise because of friction if the viscous forces are high. But it is not the case here (see 
[1]). Hence, in order to describe the morphology of the glass we consider only the motion equations 
with corresponding boundary conditions, which define the velocity field and the pressure. Moreover 
we will assume the glass to be an incompressible Newtonian fluid. 

Typical values for the problem under consideration are: 

fJ = 104 kg/sec m 
p = 2.5 . 103 kg/m3 

T = 10-1 sec 
L = 10-2 m 

- the dynamic viscosity of the glass, 
the density of glass, 

the typical pressing , 
the typical scale for the parison, 

and finally the typical velocity which is dependent on T and L: 

U := L/T = 10- 1 m/sec. 

(2.1) 

Let Qt be the region occupied by the liquid at time t E [0, T]. Denote the velocity and the stress 
tensor by v and (J respectively. Consider then the Navier-Stokes equations for incompressible fluids in 
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the time dependent domain Qt: 

p (~; + v . vv) V . (J = pf, 
(2.2) 

V·v = 0, 

where p is the mass density and f are the volume forces. The stress tensor (J is related to velocity 
gradient Vv, pressure p and dynamic viscosity tL as follows: 

(J = -pI + tL (Vv + (Vvl) (2.3) 

Substitution of (2.3) into (2.2) gives us the following equations 

p (~; + v . vv) = pf + V P tL V2v in Qt> 

(2.4) 

V·v = 0, 

The same equations can be rewritten in dimensionless form. Using the definitions in (2.1) we have: 

L , 
v = -v, P 

T 

I L I 

X = Lx, t = U ' tL = I7tL , 

where Re is the Reynolds number and Vi, pi, x', t' are dimensionless variables. Then the previous sys
tem of equations (2.4) reads as follows: 

( avi 

) Re - +v'· Vv' 
at' = 

(2.5) 

V·y' = 0, 

The volume forces consist of the force of gravity only, i.e. 

IIfll :=:::; 10 kg m/sec2 

According to (2.1) the Reynolds number for the problem is approximately 10-4 ; hence the left-hand 
side of 2.5 is sufficiently small and can thus effectively be skipped from the equation. According to 
the previous remark the term which includes the volume forces is approximately 10-3, which is also 
negligible. This all means that the viscous forces dominate the volume forces. 

As a result we obtain the Stokes equations for an incompressible fluid. Ommiting the prime they 
read 

(2.6) 
V·v = 0, 

This system of equations together with boundary conditions define the velocity field and the pressure. 
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Figure 2.2: Problem domain. 

Although the initial form of the gob may not necessarily be axisymmetric, it is reasonable to employ 
the axisymmetric geometry of mould and plunger and assume the flow as such to be axisymmetric as 
well; see Fig. 2.2 a,b. Hence it can be reduced to a two dimensional case. The domain Qt will be 
associated now with the configuration in Fig. 2.2 b. 

Let r t = a Qt be the boundary of Qt. It is easy to see that r t consists of four parts: 

rt r m U rf u r p u r s , 

corresponding to the mould, free boundary, plunger, and symmetric part respectively. 
Assuming slip boundary conditions on the corresponding parts r m, r p of the boundary rt we have 

on r m, and 

v·n 
av· t 

0, 
- (1 - a)(an) . t, 

v· n = vp' n, 
{3v·t = {3vp ·t+(l-{3)(an)·t, 

(2.7) 

(2.8) 

on r p' where v p := (0, V)T is the velocity of the plunger. Both in (2.7), (2.8) the slip parameters a, {3 
are from the interval [0, 1]. It is easy to see that maximum value of the parameter corresponds to the 
no-slip boundary conditions, i.e. for a = 1 we have v = ° on r m, and for f3 = 1 we have v = v p on 
rp. 

At the free boundary, the normal stress must be equal to external pressure Po, which is assumed to 
be constant. The tangential stress must be equal to zero. Hence: 

(an)· n 
(an) . t 

4 

Po, 
0. 

(2.9) 



Figure 3.1: Clip algorithm. 

For the symmetry boundary r s the normal component of velocity must be equal to zero, as well as the 
tangential component of stress vector o-n: 

v·n = 0, 
(o-n) . t 0. 

One should note that (2.6) is not a stationary problem since we have the kinematic boundary condi
tion (2.8). Indeed, the domain Qt, corresponding to the region occupied with glass at time t, is time
dependent and changes during the process. In the next section we will discuss how we deal with this 
problem numerically. 

3 Numerical approach 

The Stokes equations (2.6) together with the boundary conditions (2.7-2.10) can be solved by a finite 
element code. One should note that the geometry of Q r is defined by mould and plunger, except for 
the free part rf. The approximation of r f requires a special technique which we shall describe now. 
First we note that the aforementioned Stokes problem, although stationary, has a kinematic boundary 
condition 2.8. The resulting velocity field v for this geometry can be used to predict the next position 
of the free boundary. More precisely, let x : [0, T] x Qo -+ lR2 be such a mapping that: 

x(O) = Qo, x(t) = Qt, (3.1) 

where Qt is the problem domain as defined before. Then the relation between velocity field and the 
domain geometry can be described by the initial value problem: 

dx(t) 

dt 
= v(x(t», 

x(O) = Qo. 

t E [0, T], 

(3.2) 

The velocity field v(x(t» can be obtained by solving the Stokes equations in Qt. However, one should 
realise that the geometry of Q r depends on that velocity field. 

In order to overcome this problem we will use the following strategy. Let us define 

tn = n 6.t , n = 1, . .. , N, 
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such that to = 0, tN = T. After discretisation and solving Stokes equations with corresponding 
boundary conditions in Qt. (which are assumed to be defined) we obtain the velocity field vn

• Instead 
of (3.2) we solve the initial value problem (3.3): 

dx(t) 

dt 
(3.3) 

In particular for any point xi at the free boundary r f we may consider this as a Lagrangian dis
placement, which we may e.g. discretise by the explicit Euler method: 

(3.4) 

The global error for this algorithm is of the first order. 
The geometry of Q tn+1 can be obtained now, and hence the boundary conditions required for solving 

the flow equations at tn+l can be defined. The same procedure is repeated then until the final geometry 
Q tN and corresponding flow quantities have been computed. One should note that Qtn , n = 1, ... ,N 
according to (3.3) is an approximation of original mapping (3.1). Instead of Euler explicit it is possible 
to use more sophisticated integration schemes. For our present problem setting however, we will be 
satisfied with (3.4). 

Consider now in more detail the deformation of the free boundary during a time step. Applying 
formula (3.4) for a point xi at the boundary fj (i.e. the boundary r f at time tn ) with corresponding 

velocities vi, we see that some of the points x7+ I don't belong to the domain as defined by the mould 
and the plunger. Let us denote the latter by Eltn+l (see Fig. 2.2 b). This configuration is changed ex
plicitly by moving the plunger at each time iteration. We now simply clip displacements outside this 
El tn+l , see Fig. 3.1. So the position of X/+ I is defined now by intersection of xi + b.JV'/ and 8 tn+1 : 

X'!+l = xn + N
1
, AtVI! E (0 1] 

1 1 "" L..l. I' ai ,. (3.5) 

Where ai is chosen such that 

We shall call this algorithm the "clip" algorithm. For the velocities that must be clipped (ai < 1) the 
erroris apparently O(h2)! The actual values of ai depend on the characteristics of the process, b.t and 
the mesh size h. In a practical implementation the term (1 - ai) II Xi (tn ) II should be first order in b.t, 
as is also the actual order of the explicit Euler method. One can analyse this in a more detailed way. 
However, we shall stick to this approach that allows the fast computations needed by our interactive 
tool presented next. 

4 Interactive Visualisation Tool Design 

We now turn to our implementational platform. To begin with, we note that there are two important 
dimensions of computer based simulations, namely controlling and interacting with the simulation on 
one hand, and examining (e.g. by direct visualisation) the generated data on the other. Combined in 
a flexible way, the above features lead to software tools which help conveying a better insight and un
derstanding of the evolution of the simulated process. 
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Based on the way they address the above process control and data interrogation requirements, sim
ulation systems range from non-interactive systems to steering systems (see [11, 15]). Most such sys
tems implement the same simulation scenario consisting of a problem definition phase, followed by 
the numerical computations phase, and finally the result interrogation phase In our case, these phases 
correspond with the initial mould geometry and velocity setup, solving the Stokes problem and moving 
the boundary at every simulation time step (Section 3), and visualising the obtained mould geometry. 

Non-interactive systems implement the above three phases in a loosely coupled, unsynchronized 
manner, usually as one or several batch applications run separately by the user who manually feeds 
the output of an application to the input of the next in terms of files (Fig. 4.1 a). Interactivity is lim
ited to configuration file editing, and simulating time dependent processes is reduced to running the 
above pipeline manually to produce a set of output files corresponding to input data at different time 
instants. Such systems can thus convey only a limited insight in time-dependent processes, as the time
dependent behaviour is manually simulated by the user. The advantage of the non-interactive system 
model is its loose coupling, meaning that various independently developed software applications can 
cooperate without having to reprogram them, based on an input-output file compatibility. As most nu
merical simulation software comes as batch monolithic applications whose interactivity is limited to 
reading and writing files, the non-interactive system simulation model is still the most widespread. 

computational applications 

a) 

data 
interrogation 

-----'-'----

data streams 

~--------~v~------~ 
computational modules 

b) 

Figure 4.1: Non-interactive (a) and steering (b) simulation systems 

Steering systems are the other implementation extreme [10,4,8, 13, 12, 14]. They treat the three 
simulation phases uniformly, providing interactive ways to control all the problem definition, com
putation, and result visualisation phases (usually by means of graphics user interfaces (GUls», and a 
pipeline synchronisation controller that makes a stage compute automatically as soon as the previous 
stage has produced its result (Fig. 4.1 b). Direct control over all the parameters enables the user to in
vestigate the process parameter space easily, tune the computational controls on the fly, and monitor 
on-line the process evolution in time. However, implementing a steering model for simulations raises 
two main problems: 

1. most steering systems have a single control thread, meaning that their interactivity is bounded by 
the speed of the slowest stage. The numerical computations are however rarely real-time, like 
the Stokes problem solving involved in our glass pressing simulation. The interactivity of all 
the stages (including e.g. tuning the parameters of the faster visualisation stage) is thus brought 
practically to zero. This diminishes considerably the attractivity of using steering systems to 
integrate the computational stage. 

7 



2. to provide unifonn control, synchronisation, and GUI policy for all stages, steering systems re
quire these stages to confonn to various software interfaces. This often implies fundamental 
modifications of the numerical simulation code requiring extensive programming knowledge. 
This makes the integration option less attractive for non-programming experts such as numeri
cal analysts. 

5 An Interactive Visualisation Application for the Glass Pressing Simu
lation 

We have developed a software application that integrates an interactive visualisation back-end with a 
numerical simulation of the glass pressing process. The numerical simulation was designed and imple
mented as a stand-alone monolithic aplication, to which an interactive visualisation environment was 
further coupled. The resulting application allows for an automatic monitoring of the time-dependent 
numerical data produced by the finite element simulation and offers an interactive way to choose and 
tune various data visualisation methods. 

The first part of the pipeline (Fig. 5.1) is a classical example of monolithic finite-element applica
tion written in Fortran that perfonns the computational domain discretisation followed by the iterative 
solving of the time-dependent Stokes equations amd boundary displacement for a sequence of time 
moments. The second part of the pipeline consists of the general-purpose object-oriented environment 
for scientific visualisation VISSION [7]. VISSION is based on the dataflow model ([5, 4]), in which 
visualisation or data processing tasks are described as networks of computational modules communi
cating by reading, processing, and writing data to each other. VISSION provides an interactive way to 
construct a visualisation or data processing task by visually assembling module icons picked from an 
available module icon library to create the desired network. Next, various data sets can be fed into the 
network to be processed (e.g. compute gradients of scalar fields, extract isosurfaces or trace stream
lines in datasets), visualized in various ways (e.g. surfaces, flow ribbons, elevation plots, stream tubes, 
wireframe meshes, etc) and manipulated in 2D or 3D interactive viewers. The user can also interac
tively change the parameters of the network modules via several GUIs to e.g. select a new isosurface 
threshold, zoom/pan the data viewers, or interactively probe the datasets to find their values in some 
points of interest. 

We could easily couple the numerical simulation stage with the visualisation environment back-end 
without having to modify a single line of the numerical software by using the so-called data sensors 
of VISSION. These are special modules which, placed at the beginning of dataflow networks, monitor 
some desired data files for specific changes such as file creation or modification. As the numerical ap
plication completes a new simulation time step, it writes the new computational mesh and solution data 
(glass pressure and velocity in our case) as a new file or set of files, or modifies existing ones. When 
this event happens, VISSION's data sensors fire and the new data is read in the input of the visualisa
tion network (Fig. 6.1) which automatically executes presenting a new view to the user. The whole 
process executes as though the data flows transparently from the numerical solvers up to the visuali
sation viewer modules, producing an effect similar with the one obtained if the numerical simulation 
had been integrated in the dataflow network as a VISSION module. 

Coupling the numerical simulation with VISSION via data sensors has several advantages: 

1. the numerical simulation and the VISSION environment can run either on the same machine or on 
different workstations sharing the same file system transparently (see Fig. 5.2 a). This was very 
useful as we could run the whole application on a single machine or use a powerful machine for 
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Glass Pressing 
Numerical 
Simulation 

data sensor 
module 

file 
system 

1°1 
file file read I 
write monitor 

The Vission Environment 

data 
interrogation _--.L...J--___ 

Figure 5.1: Pipeline for interactive visualisation of the glass pressing simulation 

performing the numerical computations and a separate fast graphics workstation for performing 
the visualisation. 

2. the second advantage of the data sensor coupling resides in the fact that the numerical simulation 
and the visualisation have independent control threads. The user can interactively choose several 
visualisation modules (i.e. edit VISSION's dataflow network), tune their parameters on-line, and 
see the changes in the visualized images almost instantly, as the visualisation modules are very 
fast, while the numerical simulation keeps computing at its own, usually slower pace. When a 
new time step is ready, the new data 'flows into' VISSION transparently. Similarly with editing or 
changing the parameters of the visualisation independently of the numerical simulation's pace, 
one can stop, reconfigure, and restart the numerical application without having to care of the 
possibly several VISSION sessions monitoring its output. 

Combining the monolithic numerical simulation with the interactive visualisation by allowing an in
dependent control thread is an attractive variant of the steering solution, as the inherently interactive 
part (the visualisation) remains interactive and still synchronized with the slower computational part. 
This setup was especially convenient in the two-machine scenario described above. 

To couple VISSION with the numerical glass simulation (or any similar computational application 
exporting its data via files or other UNIX mechanisms such as pipes, message queues, or shared mem
ory) we only have to write a simple data reader VISSION module accepting the data file format pro
vided by the numerical code. The object-oriented design of VISSION and its rich support of data set 
types (unstructured, regular, rectilinear, and curvilinear grids with multidimensional data per point or 
cell ([5]) allowed us to write such a reader in about one hour. The alternative of integrating the numer
ical application in VISSION as a computational module would have meant complex reprogramming of 
the numerical code. The file sensor approach practically extends the dataflow network outside VIS
SION's boundaries by treating the numerical simulation as an 'external module' at the network's input. 
Synchronized communication with the numerical application is thus provided transparently, without 
having to modify its code, by using the file system's file access mechanisms. 

Overall, the presented architecture combines the advantages of monolithic applications (reuse with
out reprogramming) and steering systems (interactivity, several control threads, visual programming, 
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Machine 0 

Glass Pressing 
Numerical 
Simulation 

a) 

Machine 1 

Vission 
Visualization 

Machine 2 
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Visualization 

Machine 3 

Vission 
Visualization 

Glass Pressing 
Numerical 
Simulation 

~ 
Problema 

input 

b) 

A solution 
output 

~ 
Vission 

Visualization 

Figure 5.2: Distributed computation and visualisation (a). Steering pipeline combining computation 
and visualisation (b). 

GUIs) presented in Section 4 and allows transparent execution of the numerical computations and vi
sualisation on the same or different machines. In the same time, the mentioned disadvantages of tight 
integration based on reprogramming are removed by using the data sensor mechanism. The presented 
mechanism was also used to integrate other simulations with the interactive visualisation environment 
VISSION. 

6 Results 

To illustrate the interactive visualisation system described in the previous section, several results are 
presented. Figure 6.1 presents an overview picture of an interactive glass pressing visualisation in the 
VISSION environment. In this example, a dataflow network was visually constructed to monitor the 
output of the glass pressing numerical simulation and display the computed flow velocity magnitude 
in two data viewers, overlaid with a set of stream lines for the flow field (left data viewer), respectively 
contour lines of the flow field magnitude (right data viewer). The dataflow network starts with a data 
sensor module which provides the interactive monitoring of the running numerical simulation (as de
scribed in the previous section), followed by a data file reader. When the data sensor is removed from 
the network, one can use the system as a classical off-line visualisation tool for already computed flow 
data sets. The reader module loads two data sets computed by the numerical simulator, i.e. a veloc
ity and a pressure field defined on the 2D glass mould cross-section mesh. The rest of the network 
contains various modules that compute the velocity field magnitude, stream lines, and contour lines 
from the simulation input data, and present the resulting information to the end-user in the data viewer 
windows that provide zoom, pan, and rotate facilities. Figure 6.2 shows several images produced with 
the visualisation setup described above, displaying the glass velocity magnitude (left column), respec
tively its pressure (right column) at six different time instants during a pressing simulation. The above 
application is an exact implementation of the conceptual pipeline presented in Fig. 5.1. 

The results of the glass pressing simulation are ultimately to be used in an industrial production 
environment. In order to convey a more intuitive understanding of the glass pressing process for the 
industry end-users, a tri-dimensional reconstruction of the process was performed in the VISSION en
vironment. The reconstruction pipeline takes as input the boundaries of the 2D computational meshes 
produced by the numerical simulation and rotates each of them around their symmetry axis to produce 
a 3D shape. Next, the obtained shapes are rendered with appropriate lighting and glass-like material 
properties in the same data viewer we used for the visualisation of the 2D computational data. The end-
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users can now manipulate the obtained 3D glass shapes directly in the viewers to get a better impression 
of the simulation results. In order to visualize the results independently on the VISSION environment, a 
MPEG movie production module was appended to the reconstruction pipeline. This allowed us to au
tomatically create MPEG movies of the glass pressing simulation and of its 3D reconstruction, which 
can be played back by standard MPEG players independently on the VISSION system. Figure 6.3 shows 
12 frames from a movie produced in VISSION using the above method. All the above operations (3D 
reconstruction, lighting, rendering, and MPEG production) could be done using less than 10 of the 
standard VISSION modules. 

7 Discussion 

Several other solutions to the problem of interactive visualisation and steering of scientific computa
tions exist. The Computational Steering Environment (CSE) [10] consists of a synchronisation kernel 
(the Data Manager) to which several satellites running on the same or different machines can be at
tached to perform visualisation and computational tasks. The satellites can run asynchronously, the 
data access being synchronized by the Data Manager. However, the CSE offers no capability to inter
actively build a visualisation network by visual assembly of modules as VISSION does, nor it supports 
other dataset representation besides structured grids, making it unflexible for our purposes. Finally, 
VISSION can easily provide most of the satellite-Data Manager communication facilities by implement
ing several types of data sensors that monitor various resources (e.g. files, shared memory, message 
queues, sockets) for various events. The CSE application steering capabilities could be also provided 
in the context of VISSION'S file sensors. For example, we could steer the numerical simulation from 
VISSION's interactive GUI by making the latter export the parameters it modifies as shared resources 
(e.g. files or pipes) and making the former read the data in these resources (see Fig. 5.2 b for a sketch 
of the computational steering loop). 

The AVS and Oorange systems ([4, 6]) are also based on the dataflow network and visual network 
editor concepts similarly to VISSION. However, their mUlti-programming language design exposes 
their users to several technicalities of several programming languages, making it harder to program 
new modules (e.g. data readers or data sensors) for non-programming experts. These isues are de
tailed by us elsewhere [16]. 

The Visualisation Toolkit (vtk) system ([5]) offers practically the same data representation classes 
and ease to write new modules as VISSION (which actually incorporates the vtk modules). However, 
vtk offers no visual dataflow network editor, nor module GUIs, limiting the run-time user interaction to 
scripting languages. Moreover, vtk uses a demand-driven network update policy, while AVS, VISS ION, 
and Oorange use an event-driven one (see [5, 7] for details). This would make the implementation 
of data sensors considerably more difficult in vtk than e.g. in VISSION, where a file sensor code has 
approximately 50 lines of C++. 
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Figure 6.1: Interactive visualisation session for the glass pressing simulation 
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Figure 6.2: Frames from a 3D animation of the glass pressing simulation 
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Figure 6.3: Frames from a 3D anim~~ion of the glass pressing simulation 


