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A linearizing transformation for the Korteweg—de Vries
equation; generalizations to higher-dimensional
nonlinear partial differential equations

H. J. S. Dorren?
Department of Electrical Engineering, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 12 September 1997; accepted for publication 10 April)1998

It is shown that the Korteweg—de Vri¢ikdV) equation can be transformed into an
ordinary linear partial differential equation in the wave number domain. Explicit
solutions of the KdV equation can be obtained by subsequently solving this linear
differential equation and by applying a cascadgranlineaj transformations to

the solution of the linear differential equation. It is also shown that similar concepts
apply to the nonlinear Schdinger equation. The role of symmetry is discussed.
Finally, the procedure which is followed in the one-dimensional cases is success-
fully applied to find special solutions of higher-dimensional nonlinear partial dif-
ferential equations. €1998 American Institute of Physics.

[S0022-248808)01407-9

I. INTRODUCTION

Inverse scattering transformatiofkST) form a powerful tool to solve certain classes of
nonlinear partial differential equatiofBIPDE9. However, the success of the applicability of the
IST is, modulo a few exceptions, limited to one-dimensional NPDEs only. This important limita-
tion is caused by the fact that the IST uses the inverse problem of théd#ueo equation to
generate the solutions of the differential equations which have to be solved. The inverse problem
of the Schrdinger equation is a well-studied problem in one dimension. Higher-dimensional
NPDEs are rarely solved using inverse scattering techniques. There are a few reasons for the
restricted applicability of inverse scattering methods in dimensions higher than one. The first
reason is that higher-dimensional inverse scattering algorithms, like, for example, the Newton—
Marchenko method(the inverse scattering problem of the Sdalinger equation in three-
dimensiong, are so complicated that is nearly impossible to apply these methods to real data. An
alternative to the three-dimensional inverse scattering problem is given by the so-zaljed
proach, which is successfully generalized\t@imensiongfor an overview of the applications we
refer to the book by Ablowitz and ClarksbnBut in applying the? approach, we readily face a
second important restriction to the application of higher-dimensional inverse scattering methods.
This restriction deals with the fact that for higher-dimensional inverse scattering methods the
existence of the obtained solutions is difficult to prove. In one-dimensional cases this problem
does not occur, since both the scattering data and the potential function depend on one single
coordinate. In the three-dimensional case, where the scattering data depend on a three-component
wave vector measured at a unit sphere, the five-dimensional data are mapped onto a three-
dimensional potential function. As a result of this, in the three-dimensional inverse scattering
problem two variables are redundant. The redundancy problem puts strong constraints on the
classes of potential functions to be reconstructed and introduces additional complications in the
application of inverse scattering methods for solving higher-dimensional NPDEs.

Another interesting and powerful approach which was successfully applied to other classes of
NPDEs was developed by Calogero and Eckifauli. was shown by these authors that large
classes of NPDEs can be transformed into linear partial differential equations by applying a
cascade of limiting procedures involving rescaling techniques and asymptotic expansions. From
now on we take over the Calogero terminology by denoting NPDEs which can be linearized using
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0022-2488/98/39(7)/3711/19/$15.00 3711 © 1998 American Institute of Physics

Downloaded 07 Sep 2010 to 131.155.100.2. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



3712 J. Math. Phys., Vol. 39, No. 7, July 1998 H. J. S. Dorren

limiting procedures ‘C-integrable NPDEs,” whereas those NPDEs which can be solved using
inverse scattering techniques are called ihtegrable.” Calogerd suggested that because the
limiting procedures mentioned above all preserve the integrability, perhaps one universal equation
follows by limiting procedures form large classed?) NPDEs. Keeping this idea in mind, we can
conclude that it is not clear ho®-integrable NPDEs fit in this concept, since these equations can
be transformed into a linear integral equation. There is another important point with resfiect to
integrability which should be mentioned. The concepCointegrability is easily generalized to
higher dimension$.An implication of this generalization is that if it is possible to fit in the
concept ofS integrability into the concept of-integrability, an effective method is obtained to

find solutions of higher-dimensional NPDEs.

Without aiming to be general, it is shown in this paper that in one dimerSiotegrable
NPDEs are indee@-integrable. We show how to find a cascade of transformations that transform
S-integrable NPDEs into an ordinary linear differential equation. Moreover, it is shown that in one
dimension, there exists a clear relationship between solutions of the linearized equation and the
inverse scattering transformation. From the results obtained in this paper, it must be concluded that
in one dimensiors integrability is a special case @f-integrability. Moreover, it is shown that by
generalizing the ordinary linear differential equation, large classes of other integrable NPDEs can
be obtained. All the obtained NPDEs contain an amount of symmetry. This symmetry is also
present in its linearization. The most simple example, the linearization of the KdV equation, is
only invariant under Galileian transformations. The linearization of the nonlinear @oley
equation is also invariant under the @Jgenerators.

This paper has the following structure. In Sec. Il we derive a linearization scheme for the KdV
equation. We give explicitly the linearized partial differential equation and the cascade of trans-
formation that leads to the KdV-equation. In Sec. Ill, we solve the linearized equations and derive
explicit solutions of the KdV equation using the transformations discovered in Sec. Il. As an
explicit example, the soliton solutions are constructed. In Sec. IV, the relation of the linearization
method and the IST is highlighted. It is shown that the IST can be regarded as a special case of the
linearizing procedure described in Sec. Il. In Sec. V, the relation between more general one-
dimensional differential equations and a generalization of the linearization procedure of Sec. Il is
discussed. As an explicit example, the nonlinear Sdinger equation is investigated. In Sec. VI
the concepts of Sec. Il are generalized to more dimensions. As an example the three-dimensional
equivalent of the KdV equation is investigated. We conclude this paper with a discussion.

II. A LINEARIZING TRANSFORMATION FOR THE KORTEWEG-DE VRIES EQUATION

As a starting point we consider the KdV equation:

Uyxxt Uy =6uyu,

(1)
u(x,t=0)=ug(x).

It is well known that the KdV equation can be transformed into a linear integral equatidfe

can ask ourselves the question whether it is also possible to transform the KdV equation directly
into a linear differential equation. Without loss of generality, we can decompose a sal(Xigh

of Eq. (1) in an infinite series of functions:

u(x,t)=n§1 fM(x,t). 2)

If it is possible to solve all the function™(x,t) which determine the solution(x,t) in Eq. (1),

we have solved the KdV equation. In this section it is shown that all the functi8t{,t) can be
obtained by applying nonlinear transformations to the solution of a linear differential equation. In
order to find this differential equation, we substitute E2). into Eq. (1). We then obtain the
following result:
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[ o

> fG )+ D=6 > M H)FM(x,t),
n=1

n=1m=1

3
ngl f<">(x,t=0):n§l £V (x).

Before we continue, we first have to explain the main concept used throughout this paper. The
left-hand side of Eq(3) describes a linear partial differential operator. The difficulties in solving

the KdV equation, however, are related to the nonlinear nature of the right-hand side (@j.Eq.

The presence of the nonlinear term makes that the standard techniques of substitution of special
(exponentigl solutions breaks down. We can overcome this problem by performing a perturbation
theory. Instead of substituting a regular perturbation serfest) =3"_, M f(W(x,t) into Eq.(1),

and equalizing the different orders ef we treat in this paper the order in Eq. (2) as the
perturbation parameter. We can then find solutions of the differential equation by equalizing the
sum of the perturbation parameter on both sides of(Bg.To illustrate this idea we take as an
example the following solution:

u(x,t)= 21 Ajentxen, (4
“

If we substitute, for example, the=2 term of Eq.(4) onto the left-hand side of E¢3), we find
that this contribution can be compared to the 1 contribution on the right-hand side. If we
substitute the full perturbation series, Ed) into Eq. (1), is clear that there are always two equal
orders on the right-hand side and the left-hand side which can be compared.

To implement this simple idea in a more general fasiiwhich is not valid for exponential
solutions only we proceed by equalizing the different ordersf 6%(x,t) in Eq. (3). If we collect
the termsf(M(x,t) of equal orderthe sum of the upper indices of the nonlinear terms equals the
upper index on the left-hand sideve obtain the following equations:

£ (x, 0+ (x,1)=0,
20,0+ 12 (x,0) =6 (x,1) fD(x,1),
FED+ R, =6 (x, 1) FP(x,t) + 62 (x,H) fD(x,1), (5)

§@

XXX

(x, 1)+ P (x, 1) =6F 1 (x, ) F(x,1) + 62 (x,1) F P (x,1) + 6 (x,1) D (x,1),

It is clear that if all the orders on the left-hand side of E&).and the right-hand side of E¢)
are summed up, Eq3) is retained. To deal with the nonlinearity in E®), it is convenient to
introduce the following ansatz:

ef;“>(x,t)f<m>(x,t):J f GOx X/, t)fM M (x ¢ )dx dt’. (6)

The ansatz given in E(q6) introduces a constraint on the space of all the possible functions
f(MW(x,t). In the following section it will be shown that the solutions we obtain using the linear-
ization method are more general than the solutions obtained using the IST. If we can construct a
satisfactory kerneG(x,t|x’,t’), we can solve all the equations in §) simultaneously. If we
substitute Eq(6) into Eq. (5), we find that Eq(5) transforms into
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f O (x,0)+fM(x,t)=0;

f§§§(x,t)+f§2>(x,t)=f J GOGE X ) FD(x ) dx' dt;

f;i;(x,t)+f§3>(x,t)=2f f G(xtx' t)fP(x’ t")dx dt’;

@)

oo o

f§r;>x(x,t)+f§”>(x,t)=(n—1)f G(x,tx" tHFM(x’,t")dx'dt’;

—wJ —w

From this result we can conclude that we have transformed the KdV equ@jioby using the
ansatz(6) and doing some bookkeeping, into an infinite series of equations which all have a
similar structure. In order to solve the integration ker@¢k,t|x’,t'), it is convenient to perform

the remaining part of the analysis in the Fourier domain. The Fourier transforfit)o%,t) is

given by

1 (=~ . k
f“”(x,t)zgf f(M(k)e'*zdk, z=x—%)t. (8)

We first solvef (Y)(x,t) because this is the solution of a linear partial differential equation. If Eq.
(8) is applied on both sides dfY(x,t) in Eq. (7), we obtain the following relationship:

f&i&(x,t>+f§“<x,t)=% J i[w(k)—k3JF D (k)e*?dk=0. 9

It follows from Eq.(9) that nontrivial solutiong(*)(x,t) exist if the following dispersion relation
is satisfied:
w(k)=—k. (10
It is remarkable to conclude that the functitf¥)(x,t) constraints the dispersion relation of all the
remaining equations given in E(). As a result of this, the Fourier transform of the left-hand side
of all the equations is given in E¢7) can be computed simultaneously. We continue by comput-
ing the Fourier transform of the right-hand side of Ef). To carry out this calculation, it is useful
to assume that the integration ker@(x,t|x’,t") is invariant under translations in time and space:
G(x,t|x",t")=G(x—x[t—t"). 11
Our aim is to compute the Fourier transfori(-) of the right-hand side of all the equations
appearing in Eq(7):
7( f f G(x—x'|t—t")fMW(x" t")ydx'dt’ |. (12

To perform this computation, we first define the Fourier transféth) of the integration kernel
G(x—x'|t—t"):

1 (*~
G(x—x’lt—t’)=EJ G(k)eKz=ZIdk. (13
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The variablez in Eq. (13) is specified by Eq(8). If Eq. (8) and Eq.(13) are substituted into Eq.
(12) and if the integrations over’ andk’ are carried out, we obtain the following result:

o o 1 © o ~ .
7(] f G(x—x'|t—t')f<“>(x',t')dx'dt'>:Ef G(k)fM(k)e'*zdk. (14)

Once the Fourier transform of both the left-hand side and the right-hand side df7)Egre
computed, we find by combining E?), Eq. (9), and Eq.(14) that

1 (= - _ 1 (e _
e f,mi[w(k)_kS]f(n)(k)e'kzdk:(n_1)E J‘in(k)f(n)(k)elkzdk. (15)

If we define
g™ (z,k) =T M (Kk)e'?, (16
we find that a solution 0§ (z,k) is given by the following differential equation:

d , G(k)
33 9" @k +ikgV(zk=(-1SKg"(zk), SkK=-—7. (17)

From this final result, it follows that the cascade of equations given by(Bgn the Fourier
domain is equivalent with

d
3 9V (2K +ikg™M(z k) =0;

d
35 972K +ikg®(z,k) = S(k)g'?(z,k);

diz 9®(z,k)+ikg®(z,k)=2S(k)g®(z,k);
(18

d :
a4z g'"(z,k) +ikg™(z,k)=(n—1)S(k)g"(z,k);

From this simple derivation we can conclude that in the Fourier domain the KdV equation can
be linearized into an ordinary linear differential equation. If this differential equation is solved we
can retain a solution of the KdV equation by using E). Explicit solutions of the KdV equation
can be computed by solving the following problem:

d :
iz g'M(z,k) +ikg™(z,k)=(n—-1)S(k)g""(z,k),

(19
6f§<n)(x,t)f<m)(x,t): j f G(x—x'[t—t")fMTM™(x’ t")dx'dt’.

With this result we have shown that the KdV equation can be transformed into an ordinary linear
differential equation. The second equation in E#9) defines a constraint on the solutions
f(M(x,1).

In the following section the equations given above will be solved and solutions of the KdV
equation will be computed. The solutions which are obtained by using the linearization method
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described above are more general than the solutions obtained using an inverse scattering approach,
because the method also applies to nonexponential fundiiis, t). It follows from Eq.(3) that

the method introduced in this paper can also be applied if the functiBX{g,t) are polynomials.

In the following sections it will be shown explicitly that solutions obtained by the IST form a
special subclass of the solutions which can be obtained by the linearization method. An important
conclusion that already can be drawn from the results of this section is that the linearization
method can easily be generalized to higher dimensions. This will be demonstrated later in this
paper. It can be concluded from the approach followed in this section that there are two important
factors which determine the transformations from the linear ordinary differential equation to the
nonlinear partial differential equation. The first factor is the dispersion relation. The dispersion
relation defines the linear part of the nonlinear partial differential equation. The second factor is
the ansatz given in E@6) which deals with the nonlinearity. By modifying the dispersion relation
and the ansat), it is possible to construct other NPDEs which can be linearized into a similar
form as presented in Eq19). It is an interesting puzzle to find out whether there are other
equations(not in the KdV hierarchy which can be linearized using a similar approach as pre-
sented in this paper. In general, one can expect that the method presented in this paper can be used
to find solutions of NPDEs for which the nonlinear part consists of a power series. For investi-
gating the integrability of these equations, it is not necessary to find a suitable Lax pair. Explicit
examples are given in following sections in which it is shown that generalizations ¢ &oqan

be transformed into othes-integrable NPDEs. For example, it is shown that the nonlinear Schro
dinger equation can be linearized into a similar form as given in(Eg). Apparently symmetry

plays an important role in the linearization process of NPDEs. The linearization of the KdV
equation is invariant under Galileian transformations. This invariance is already known for a long
time’ but can be used here to consider the concept of integrability from a different point of view.
The Galileian invariance can be regarded as the most simple symmetry in the hierarchy of equa-
tions which will follow. This Galileian invariance also explains the presence of solitons. If we
introduce more symmetry in the linearized differential equation, we obtain that the linear differ-
ential equation can be transformed into more complicated NPDEs.

lll. SOLUTIONS OF THE KDV EQUATION

As shown in the previous section, the KdV equation can be linearized into the ordinary linear
differential equatior(17). In this section we will derive explicit solutions of this equation:

d .
e g™ (z,k)+ikg™(z,k)=(n—1)S(k)g™(z,k). (20

Equation(20) is an ordinary linear first-order differential equation. The general solution of Eq.
(20) is given by

g™M(z,k)=C,eMkMz  M(k,n)=(n—1)S(k)—ik. (21)

To verify the validity of the ansat@®), it is convenient to defin&(k) in the complex plane. This
enables us to solve EQRO) using the Green'’s function technique. If we formulate solutions of Eq.
(20) using a Green’s function technique, we can find a relationship between the linearization
method described in this paper and an inverse scattering method. In order to find a suitable
Green’s function we first solve the following problem:

d . - o oA
d—AZf///(z,k)+ik5§/(z,k)=5(z), z=2—-7', (22

Eq. (22) can be solved easily by applying the following inverse Fourier transform:

K k)= J Hz ke ¥z 23

—o0

If the Fourier transform(23) is substituted into Eq22) we obtain the following result;
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ik’ 72k’ k) +ik (k' k) =1. (24)

From Eq.(24), it follows that the solution of"}/(k’,k) is given by

TAK' k)= (25)

1
i(k+k')"
By applying the inverse transformation of E@3) we can solve the Green’s functicfi(z,k):
eik’i

75 H 1 * ’
se=im o | e o (20

Once the Green’s function is solved, we can formulate the general solution @®dn the form
of an integral equation:

(n 1) |k [z—2"]
g™(z,k)=lim f f K TTe S(k)g"™(z' ,k)dz’dk’, n=#1. (27)

e—0

From the functiong(™(z,k) given in Eq.(27), we can solve, using Eq16) and the Fourier
transformation given in Eq8), the functionf(™(x,t):

n) _— —h 5(k— n ’
f()—(x,t)—hm (2 )2 f f PR S(k)g( N(z,k"YdkdK, n#1. (29

e—0

Before formulating solutions of the KdV equation, we first have to assure that a kernel
G(x—x'|t—t") indeed exists. If we compute the left-hand-side of &.using the representation
presented in Eq(28) of the solutionsf(M(x,t), we obtain

6f§(”)(x,t)f(m)(X,t)=—|Lo(n 1)(m 1) f_xj_wf_wﬁw

6ik'S(k)S(k") 6(k—k")d(k"—k™)
k+k'+ie kK'+K"+ie

xgM(z,k")dkdK dk’dk”, n,m#1. (29

g(”)(z,k’)

The kernelG(x—x'[t—t") can be represented in the complex plane according to the following
Cauchy formula:

er ik'[z—2"]
G(x—x'[t—t")=lim @ )2 f_wf_m e Sk)dkdk (30)

5~>0

In Eq. (30), it is used thaS(k)=kzé(k). The expression obtained in EQ9) is, according to Eq.
(6), equal to:

f G(x—x'|t—t")fMFM(x’ t")dx'dt’

o J —ow

e~>0

X g™ (z k") dkdK dk"dK". (30)

o Lntm—1] k'2S(k")S(k") 8(K"—K") 8(K"~k')
(2 )3 J’*wf*wffmf—x k+k’+|€ k”—f—km—f—if

If follows from comparing Eq.(29) to Eq. (31), that the ansatz is satisfied if the following
condition is fulfilled:
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3i(n—=1)(m—-1)

AP ()] 7\ (M) AN ' m_ 1.\ y(n+m) "
rme 1] SO KIg Mk ) ™z k") =k S ) Sk g (2 K",

(32

If Eq. (32) is satisfied, we can finally formulate solutions of the KdV equation:
=2 fV(xt)
n=1

kz < (n 1 5(k k) () ’ '
=AkZ4 lim D 2 2md J’ f f K Tie S(k")g'"™(z,k")dk'dk. (33
E*’O — 0 — 0 — o0

We can find explicit solutions of Eq33) by using the fact that Eq.32) defines a recursion
relationship for the functiong("(z,k). This recursion relation can be made explicit by verifying
Eq. (6) if one of the functionsf(M(x,t) is equal tofM(x,t). If we choose forf((x,t) the
following representation:

/e|k z

(X t)= 2n )2 f f mS(k )ydk'dk, (34
e—»O xS ==

the inverse scattering transformation can be retained. From comparin@&do Eq. (34), it
follows that by givingf(Y)(x,t) the form(34), we have implicitly chosen thdf(k’)=ik’. If we
compute the left-hand side of E(f), we find that

6f 1 (x,t)f " V(x,t)=—

. ( —-2) = 6ik’S(k) (k") S(k— k)5(k” k")
im Gt | e e

xgM(z,k")g™(z,k")dkdK dk"dk". (35)

According to the ansatz, E¢6), this has to be equal to

f f G(x—x'[t—t)fMW(x' t")dx dt’

[n—1] f_xf_wf_wf_m k'2S(k")S(K") 8(k"—k™)8(k"—K")

=oIm e k+k +ie K'+K"+ie
xg™(z,k")dkdk dk"dK". (36)
By comparing Eq(35) to Eq.(36) we find that equality is obtained if the following relationship is
satisfied:
3i(n—2) -
STy S0Ak=K)g (kg Pz =K S(K) Sk =K)gV(zk"). (37

Equation (37) is a recursion relation which makes it possible to compgt®(z,k) from
g™ Y(z,k). In order to relatgy®(z,k) to g¥(z,k), we have to check explicitly the ansd®) for
the 6f(V(x,t) f(M)(x,t) case. This leads to the following result:

23—; S(k)a(k—k" gt (z,k" ) g (z, k") =k'S(K") 8(k"=K")g'?(z,k"). (39

The result we have obtained indicates that we can solve the KdV equation by using the recursion
relationship defined by Eq37). If we continue the process of iteration, we obtain the following
solutionsf((x,t) which determine the solution of the KdV equation:
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f J' er k")dk'dk 39
(Xt) E*}O(z )2 O k+k +ie ( ) ’ ( )

1 o o 0 S(k )elk z S(k”)e'k z
(2) — - H ! " " !
D =lm 2 LQLOLO KTk Tie KTk e (¢ TKHdKdKdk, (40

e—0

where we have used thé(k) =2/3iS(k). If the infinite series of solutions of which the first two
are given by Eq(39) and Eq.(40) are substituted into E¢33), we obtain a solution of the KdV
equation of which the first two terms are given by

k' |kz
u(x,t)= Ilm—z—ﬁ f, KK Tie S(k")dk’'dk

e—0

. S(k )elkz S(k//) |kZ g .
Tl i) (2m LCLC kK FTek ke (K TKDdK K dkee

e—0

(41)

In the following section it is shown that E¢41) describes a generalization of the inverse scat-
tering solution of the KdV equation. From E@1), it is easy to derive the soliton solutions of the
KdV equation. This can be done by choosing the following representati@il)f(see Ref. 8

id
S(k)—k+2|'8 B>0, deR. (42
We find that the solutiori41) reduces to
d3
u(x,t)=4dge 2Bx—46° 4 1642 e—4<ﬁx—4ﬁ’3t>+24ﬁ e B(Bx=48% ... (43)

By carrying out the summation in E3), we can reformulate the solutigd3) more compactly:

8dge2(Ax~ 48%)

u(x,t)= r 5. (44)
14 — e—2(Bx—4B3t))
B
Hence, if we set
Blf 1|<d>do (45)
==4C, Xo=——=logl —=|, d<0,
2 0 \/E g B
we can simplify Eq(44) a step further to
c 1
u(x,t)y=— > secﬁ(z \/E(x—ct+x0) . (46)

Equation(46) describes the well-known KdV soliton.

The results obtained in this section make it clear that the approach suggested in this paper can
be used to generate solutions of the KdV equation. For instance, the KdV soliton can be retained
as a special case of E@J). In the following section, it is shown that the solutions obtained in this
section are, in fact, the inverse scattering solutions. The two-soliton solutions can be obtained by
choosing a functiors(k) which has a double pole. It will be shown in the next section that the
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solution (41) is somewhat more general than the inverse scattering solution because the function
S(k) is less restricted than the physical scattering data as used in the IST.

IV. RELATION TO THE INVERSE SCATTERING TRANSFORMATION

To show that there is a close relationship between the results obtained by the linearization
method and the well-known inverse scattering results, we discuss the latter in this section in more
detail. The IST uses the inverse problem of the Sdimger equation to generate solutions of the
KdV equation. The inverse problem of the Sdfirmer equation is given by the Marchenko
equation:

K(x,y,t)+A(x+y,t)+ ij(x,z,t)A(er z,t)dz=0. (47)

The Marchenko equation relates a data funcégr,t) to an integration kernék(x,y,t). In Eq.
(47), the data functiorA(x,t) is given by

N
1 (= :
A(X,t)= Z J\i R( k)elk[x+8k2t]dt+ le ppe*kp[x+4k,23t]' (48)

In Eq. (48), the functionR(k) describes the physical reflection coefficient. The functR{tk)
corresponds to the continuous part of the spectrum of the 8tlyer equation. The numbeps
represent the discrete part of the spectrum of the Siihger equation corresponding to the
discrete eigenvaluds, . The discrete part of the spectrum of the Sdimger equation is given by
the residues of the transmission coefficiditk,t) on the positive imaginary axis. The solution
u(x,t) of the KdV equation can be solved from the integration ketéx,y,t) by using the
following relationship:

u(x,t)=—2%( K(x,X,t). (49

The relation between the linearization method and the IST becomes more transparent if the
analysis is performed in the wave number domain. A convenient way to do this is to relate the
kernelK(x,y,t) to a functionF(x,k,t) by using the following Fourier transforth:

K(xy1y=i%.ﬁigké“W*KF(xki)—ly (50)

It is well known that the functiorF(x,k,t) is related to the Jost solutions of the Sakinger
equatior? If we substitute Eq(50) into Eq. (47), we obtain the following relationship:

oo

C(k,k’,2)F(x,k’,t)dk'. (51)

HKKU=1+I

For reasons of simplicity, we do not take the contribution of the transmission coefficient into
account in the analysis which follows. It can be shown that the transmission coefficient can be
included in the computations in a conceptually similar maririerthe special case of a negligible
transmission coefficient, we find that the ker@dlk,k’,t) in Eq. (51) is given by

R(kr)eZik’Z.

Ckk D= T Tie

z=x—8K?t. (52

If Eq. (52) is substituted into Eq51), we find the following relationship:

1 Y R(k')F(X,k’,t)eme
F(x,k,t)—1=+ﬁ f dk’. (53

k+k'+ie
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To find a relationship between the linearization technique and the IST, we expatt82Em a
series:

F(k,x,t)=l+j C(k,k’,z)dk'+J j C(k,k",2)C(k' k", z)dk'dKk"+--- . (59

If we substitute Eq(52) into Eq. (54), this result becomes equal to

R(k/)eZik/Z
k+k'+ie

1 (=
F(k,x,t)—1=lim > fﬁx

!

e—0

+ lim

e—0

1 ® o R(kr)eZik’z R(kn)eZik”z el
2 I)zf fﬁx kKtk'+ie kK +K'+ie +eee (55)

By taking the Fourier transform E¢50) of both sides of Eq(55) we can compute the integration
kernel K(x,x,t):

K = li ! ) —R(k,)emk/zdkdk'
(X,X,t)_el}r:;- ﬁ . ktk'+ie

I|m

J f R(K")e?k'z R(K")e?ik"2 e .
|)2 ) o k+K' +ie k'+K'+i€ Heen ( )

From this result we obtain by setting=y and using the relationshi@9) that solutions of the
KdV equation are given by the following relationship:

2ik’e 2ik’z
uxt= EHO(Z )2 f—ocf—oc k+k'+ie R(k’)dk’dk

| f f f R(k)e > R(k")e” "> 2i(k' + K" dK'dk' dk
+ lim 2 (2 |)2 . k+k/+i€ k,+k"+i6 |( + ) —+ ..

(57)

Modulo some trivial rescaling, the analytical structure of E®) is equal to the result reflected in

Eq. (41). We can therefore conclude that the functigf8(k,z) are related to the Jost solution of

an inverse scattering problem. This is not a great surprise if we realize that the Kéxngjt) in

the Marchenko equation is a Green’s function by itSéfhe linearization method constructs the
Green'’s function directly. However, we have to realize that the results obtained in Sec. Il are far
more general than the IST. It turns out that E4fl) is only a special case on of the linearization
method, depending on the initial conditions. Yet, it should be realized that althougb&and

Eq. (41) have a similar structure; E§41) is more general. This is related to the precise definition

of the scattering data in E¢58). In general, the scattering data given by the reflection coefficient
R(k,t) and the transmission coefficientk,t) have to satisfy a number of restrictions to assure a
unitary S matrix and uniqueness of the corresponding inverse problem. Moreover, additional
conditions have to be satisfied so that the Deift—Trubowits condition is not violatedverview

of all the conditions can be found in, for instance, the book by Chadan and S3bafteese
additional constraints do not have to be satisfied by the results obtained by the linearization
method. We can therefore consider the results reflected if4yto be a generalization of the
IST.

V. THE NONLINEAR SCHRODINGER EQUATION

In Sec. Il it is shown that the KdV equation can be be transformed into a linear partial
differential equation. As concluded in Sec. I, this linear differential equation depends on the
balances of the dispersion of the nonlinear problem to a fun&fé representing the nonlinear-
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ity. We can ask ourselves the question whether there are more NPDEs which can be linearized into
an equation having a similar structure as E§). In this section it is shown that this is indeed the
case if we introduce new symmetries in the linearized equation. The most simple one-dimensional
generalization of Eq(20) is given by

"(z,k)

c; +ike,g|" (z,k) =c5Q(n)S(k)g;" (k). (58)

— g
dng

In Eq. (58), we have replaced the functiagi™(z,k) of Eq. (20) by an N-dimensional vector
function g](“)(z,k). Furthermore, in Eq58) the NX N matricesc; are introduced. The matrices

are assumed to have constant entries. Similarly, as in Sec. I, the varisgdes its value in a
dispersion relation so that Ep8) is invariant under Galileian transformations. As argued in Sec.
Il, we can expect that Eq58) can be transformed into a wide variety of nonlinear equations
which all have solitonic solutions. An interesting special case can be considered if we dhoose
=2 and if the matrices; take the following representations:

1 0 1 O
c1=(0 1), cz=c3=<0 _1). (59

We will show in this section that if we choose the dispersion relation to be equal to
w(k)==Kk?, (60)
and if the functionQ(n) is equal to
Q(n)=3(n—1)(n-2), (61)

the linear equatior{58) can be transformed into the nonlinear Sclinger equation. To find a
similar cascade of transformations and rescaling which transforms the nonlineadi8gero
equation into Eq(58), we take as a starting point the nonlinear Scimger equation:

iug+ Uy, + 2|ul?u=0. (62

It is useful to transform the nonlinear Schdinger equation into the following set of coupled
differential equations:

iU+ Uy —2U%0 =0, v~ vyt 20%2u=0. (63)

The two coupled partial differential equations presented in(&8).are equivalent to the nonlinear
Schralinger equation if we sat=Fu*. In order to simplify the bookkeeping, we formulate the
set of coupled differential equatiori§3) as the following matrix equation:

W —103Wy = — 21 Aw. (64)

In Eq. (64), | represents the unity matrix and the veatois given byw=(u,v)". Furthermore,
the Pauli spin matrices; are introduced:

0 1 0 —i 1 0
T1=| 4 o) 72=| | 0/ 0'3—0 4/ (65)
Finally, all the nonlinearities are contained in the matdxwhich is defined by the following
relationship:
uv 0 (u)
0 —upllv =Aw. (66)

We carry on in a similar manner as in Sec. |l by assuming that the funatipgs) andv (x,t) can
be decomposed in the following infinite perturbation series:
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w(x,t):ng1 fM(x,1). (67)

Every componenfi(“)(x,t) of f(M(x,t) expresses the expansion of the componenedv of
w(x,t). Similarly, as in Sec. Il, the nonlinear Sckifnger equation is solved if solutions of all the
functionsff”)(x,t) are constructed. If Eq67) is substituted into Eq64), we obtain the following
result:

8

> (I0—ioga)fM(x,)==2i > > > skm(x), (68)
n=1 k=11=1 m=1

where the vector functios'™(x,t) is given by

FOX, 0y (x,0)g™(x,1)

skm(x,t)=| g®(x,t)g"(x,t) f™(x,t) /"

(69

We proceed, as in Sec. Il, by collecting all the terms of which the sum of the orders on the
left-hand side equals the sum of the orders on the right-hand side. In order to have a better view
on the structure of the infinite number of equations which are then obtained, we write out the first
four explicitly:
(19—i 03dy) f P (x,1) =0,
(|&t—i0'307XX)f(2)(X,t)=0, (70)
(19— 103050 3 (x,1) =P (x, 1),
(19,— 1 03050 F P (X, 1) = 8210(x, 1) + 812V (x, 1) + s 112(x, 1),

We can linearize the set of equations given in &) in the Fourier domain by introducing kernel
G(x',t'|x,t):

—2is(k'm)(x,t)=03j f G(x,x'[t,t ) FRFHFM (7 ) dx' dt’. (71

If Eq. (71) is substituted into Eq(70), we can reformulate Eq70) in the following way:
(19" =i 0gdy) fV(x,1) =0,

(19,— 1 030y FP(x,1) =0,

(Iat—i(rgaxx)f(3)(x,t)=a3j J G(x,x'|t,t"Hf3(x’ ,t")ydx'dt’,
(72)

(Ig,—i Ug&xx)f(4)(x,t)=30'3f f G(x,x'|t,tH D (x’ ,t")dx dt’,

(I&t—ia3ﬁxx)f(”)(x,t)=a3Q(n)f f G(x,x'|t,t) M (x’,t")dx dt’.

Similar to Sec. Il, we proceed, continuing our analysis in the wave number domain, by searching
for the following wave-package solutions:
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1 [~~ . k
f<”)(x,t)=ﬁj (M (k)e'*zdKk, z=x—¥t. (73

If Eq. (73) is substituted into Eq(70) and if we solve?(l)(k), we find that dispersion relation
given by Eq.(60) has to be satisfied. If we define, furthermore, the Fourier transform of the kernel
G(x—x'|t—t") to be equal to

Y :i - ik[z—2']
G(x—x'|t—t") 5 G(k)e dk, (74

and if we definé(k)zé(k)/k, we obtain that the set of equatiof¥?) in the Fourier domain are
equal to

d _ -
| 55 8z k) +ikosgP(z,k)=0,

d
d 32 ik g2
Id—zg (z,k) +iko3g“(z,k)=0,
(75)
d _ - ~
| 35 8% @k +ikog ¥ (z k) = 058KV (2 k),
In Eqg. (75), we have defined
~ ~ . G(k
g7z k) =f" (ke S<k>=(T). (76)

Resuming, we can conclude that the nonlinear Sdihger equation can be linearized into
d N ~
| 55 3" (zk) +ikesg"(z,k)=Q(m) o3S(K)G"(z.K). (77

In this section it is shown that the nonlinear Satinger equation can be linearized into a gener-
alization of Eq.(20). It can be shown that the ansad#l) leads to conditions on the solutions of

the nonlinear Schidinger equatiort® Explicit solutions of the nonlinear Schdimger equation
computed by using the linearization method are given in this reference. It has to be remarked that
the linearized equation is invariant under transformations of th@)Sjéneratorsr; . This reflects

that besides the Galileian invarianéehich takes its value as the dispersion relatianother
symmetry is present in the linearization of the nonlinear Sdinger equation.

VI. GENERALIZATION TO HIGHER DIMENSIONS

Inspired by the results obtained in the previous sections, we show that a similar procedure can
be applied to find solutions of higher-dimensional NPDEs. We choose as a starting point the most
simple three-dimensional generalization of E20):

3 3
> 3,9M(zk)+i X, kg™M(z,k)=(n—1)S(k)g"(z,k). (78)
i=1 i=1

In Eq. (78), the solutiong(™(z,k) of the linearized problem depends now on a three-dimensional
vectorz having componentsz{,z,,z;)" and a three-dimensional wave numtkewith elements
(kq,K>,k3)T. We derive a three-dimensional generalization of the KdV equation by following the
reverse track of Sec. Il. We first define a functi@iik) so that
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S(k)=——. (79

If Eq. (79) is substituted into Eq.78), we obtain the following result:

3
k-kZ‘,l {azig(“)(z,k)Jrikig(”)(z,k)}z(n—1)é(k)g(n)(z,k). (80)

We have to take into account that E§0) has to be solved for ah in the range from unity to
infinity. Following the recipe derived in Sec. Il, we find, if we write out the lowest orders iof
Eq. (80) explicitly, that

3

k-kZ1 {3,9P(zK) +ikig(z,k)} =0,

3
k-k3, {2,097 (z k) +ikig?'(zk)}=G(K)g® (z k), (81)

3
k-k 3, (3,9 (2.k) +ikig®(2k)} =2G(k)g (2 k),

We proceed by defining a functidi™(x,t). The functiongy(™(z,k) in Eq. (81) are defined to be
related to functiong (™ (x,t) by the following relationship:

1 © . ~ . k
f<”>(x,t)=(27)3f fMWk)ekzd3k; gM(z,k)=f"(k)ek? zi:xi—%)t. (82
S i

If we carry out the inverse Fourier transform of E§2), we find that the set of equations given
in Eq. (81) is transformed into the following set of equations:

3

2 3 FP00) +af D (x,1)=0,

3
> 8 f(z)(x,t)+atf(2)(x,t)=f f G(x,t|x", 1) P (x' t")dx'dt’,
i=1 ! —o0 J —oo
(83

3
> a8 f(3)(x,t)+(9tf(3)(x,t)=2f f G(x,t|x,t")fO(x ,t")dx'dt’,
i=1 —oJ -

The kernelG(x,t|x’,t") in Eq. (83) is related to the functioré-(k) by means of the following
Fourier transform:

G(x,t|x',t)= (zl)sf G(k)e'kz-2'1g3k. (84)

We continue by defining the three-dimensional generalization of the a®atzhich relates the
functionsf(M(x,t) to the integration kerneB(x,t|x’,t’):

3
6[21 dy TM(x,)

f(m)(x,t)=f f G(x,t'|x",t")f+FM(x" t")dx'dt’. (85)
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If we substitute Eq.85) into Eq. (83), we obtain that the set of Eq$83) can be uniquely
decomposed as

w

2 g P +afP () =0,

3

3
Ea f(x,t)+d,fP(x,t)= 6[2 D) [FD(x1),
“

3 3
-21 % FAx D +afD(x,t)= 621 ([ox, TP DA +[a, FP(x,D)]F D (xt)), (86)

3 3
Zl a5 FO+at@(x )= 621 (o5 FYDTED ) + [ P, TFP (1)

+[ 05, FR D ]FD(x,1)),
If we take the sums of both the left-hand sides and the right-hand sides of all the eq&@ons
we obtain, after some bookkeeping, the following result:

> LZ R FM(x)

fMx,t). (87

3
+2 afM(x,t)= 62 2 {2 dy FM(x,1)

n=1m=1|i=1

Finally, if we define, for notational convenience,

u(x,t)=n§=)1 fM(x,t), (89)

we find that Eq.(87) is equivalent with

3

E u(x,t)

3
> afiu(x,t) +d,u(x,t)=6

u(x,t). (89

Equation(89) is a three-dimensional partial differential equation which can be linearized into Eq.
(78) by applying a similar cascade of transformations and rescaling. Equ&$ns the three-
dimensional generalization of the KdV equation. We can solve(&9).by solving Eq.(78) and
transforming the obtained solutiog§”(x,k) into the functionsf(W(x,t). Before we can compute
the solution, Eq(78), we first have to find an adequate Green’s function to solve the integration
kernelG(x,t|x’,t"). We therefore first solve

3
__21 (9 +ik)S(2K)=8(2), z=2-7. (90)

The Fourier transform7(k’,k) of £(z,k) is given by the following relationship:

TAK' K)= f Lz, k)e K 233, (91)

— oo

If Eg. (91) is substituted into E90), we obtain the following solution afZ(k’,k):

i

If we apply the inverse transform of E1) to Eq. (92), we find the following solution of the
Green’s functions(z,k):
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o eik"i

1
5.k f —— . 03
Aek)=lim oo | Sk i ©3

Once the Green'’s function is known, we can compute the general solution of the linear differential
equation, Eq(798):

M(z,k)=1lim MF f B S(k)gM(z' k)dk’'d3z’, n#1. (94
41z @m3 )] I (gt rie 09 ’ ‘

e—0

If we apply the Fourier transform given in Eq82)—(94), we find that solutions of the functions
f("W(x,t) are given by

£(M(x t):lim f f f ok—k) S(k)g™(z,k")d3kdk’, n#1.
' ﬁo(z )6 cw) e ) S (KK Fie) ’ ’
(95)
In a similar manner as pointed out in Sec. lll, it can be shown that if the integration kernel
G(x—x'|t—t') has the following structure:
. [kr .k’ ]elk' [z—2"] a3
G(x—x'|t—t )=1|210 T )e ﬁlew 1(kj+kj+ 9 S(k’)d*kd3k’. (96)

A general form of the solutions(x,t) of the three-dimensional KdV equation is given by the
following relationship:

o

“ (n— 1)f f a(k—k")
_ (n)§(m) kX
u(x. nZ P =Ae +1I£non > (2m)%1 ) ow) e ST (kK] +ie)

X S(k")gM(z,k")d3kdk’. 97

It can be verified by redoing the computations which are carried out in Sec. Ill, that if the ansatz
(85), is satisfied, a recursion relation for the solutid¥®(x,t) can be obtained. The solutions
f(M(x,t) which lead to a solution of the three-dimensional KdV equation are given by

3

ik -z
(1) — i 31, 431/
fOx,t) = lim ——— @ J_J_w STk [2 }d kd3k’, (98)

€0 +k| +|e)

|(k +k")- ZS(k )S(k")
o HO (2m )9 i J”“’J*‘”f*“ SV mo1(Ki+ K +i€)(kh+K+€)

3
x| (ki +kD)
m=1

d3kd®k’d3k’, (99

Once the functionsf(W(x,t) are computed, we construct the solutiox,t) of the three-
dimensional KdV equation by summation of the functidf8(x,t):
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1 w [ ik’ -z 3
=i R ! ile! 3 31,/
ux=lim & LOLO =7kt tie) Stk )[mz—l 'km}d kdk

Hlim fw F F eIk S(K)
MmO ) ) ) S (kK Fie) (Kt Kot ie)

3
X|i Y, (k4K | d3kdk d3k + - (100
m=1

We can conclude that the approach followed in Sec. Il for the one-dimensional KdV equation, can
also be used to construct special solutions for the three-dimensional KdV equation. By generaliz-
ing Eq. (78) and by introducing more symmetry, we can, in principle, find special solutions of
other higher-dimensional NPDEs. For proving the integrability, it would be necessary to prove
that the set of solutions which are derived is sufficient for solving a reasonable Cauchy problem.
It is also still unclear what the relationship between the procedure followed in this paper and the
three-dimensional inverse scattering problem exactly is. In one dimension, this issue is clarified in
Sec. IV, but in three dimensions the analysis is more complicated. It is not unthinkable that if this
relationship is revealed, answers can be given with respect to the integrability of three-dimensional
NPDEs.

VII. DISCUSSION

The following novel results are obtained in this paper. First, a new method is presented to
obtain solutions of one-dimension&tintegrable differential equations. Whereas the IST solves
S-integrable differential equations by using inversion techniques, the method presented in this
paper solves these equations by using a direct methodSdihegrable nonlinear partial differ-
ential equation is linearized into an ordinary linear differential equation. There are several advan-
tages of using a linearization method. The first advantage is that the method given is fairly general.
In principle, the machinery applies to all NPDEs which have a nonlinear part consisting of a
power series. Second, the method we have developed does not need Lax pairs for systematically
investigating the integrability of NPDEs. The method can be generalized to higher-dimensional
NPDEs. This is demonstrated in Sec. VI for the three-dimensional KdV equation. This result
demonstrates that at least in one dimens®imtegrable NPDEs are ald0-integrable.

As shown in Sec. Il we can conclude that the linearized equation depends on two factors. The
first factor is the dispersion relation which defines the space coordinate. The latter is invariant
under Galileian transformations. The second factor is a generalization of the scattering data which
is related by the ansatz used in this paper to the nonlinearity. By modifying the dispersion relation
and the ansatz, E@6), large classes db-integrable NPDEs can be constructed and solved. It is
remarked that the Galileian invariance of the space coordinate can be associated with a minimum
symmetry property of the linearized differential equation. If the linearized equation(1&yg.is
generalized, for instance, by making it invariant for other symmetries, more complex NPDEs can
be constructed. It is shown in Sec. V that the nonlinear Stihger equation follows from a
generalization of Eq(17) which is invariant under the S@) generators. The mathematical reason
for this invariance is related to the fact that the zero-curvature condition which is responsible for
an infinite number of conservation laws, is invariant under gauge transformations, taking their
value in a Lie group. As a result of this, the corresponding linearized problem is invariant under
similar transformations in the corresponding Lie algebra.
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