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A linearizing transformation for the Korteweg–de Vries
equation; generalizations to higher-dimensional
nonlinear partial differential equations

H. J. S. Dorrena)

Department of Electrical Engineering, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

~Received 12 September 1997; accepted for publication 10 April 1998!

It is shown that the Korteweg–de Vries~KdV! equation can be transformed into an
ordinary linear partial differential equation in the wave number domain. Explicit
solutions of the KdV equation can be obtained by subsequently solving this linear
differential equation and by applying a cascade of~nonlinear! transformations to
the solution of the linear differential equation. It is also shown that similar concepts
apply to the nonlinear Schro¨dinger equation. The role of symmetry is discussed.
Finally, the procedure which is followed in the one-dimensional cases is success-
fully applied to find special solutions of higher-dimensional nonlinear partial dif-
ferential equations. ©1998 American Institute of Physics.
@S0022-2488~98!01407-8#

I. INTRODUCTION

Inverse scattering transformations~IST! form a powerful tool to solve certain classes
nonlinear partial differential equations~NPDEs!. However, the success of the applicability of th
IST is, modulo a few exceptions, limited to one-dimensional NPDEs only. This important lim
tion is caused by the fact that the IST uses the inverse problem of the Schro¨dinger equation to
generate the solutions of the differential equations which have to be solved. The inverse p
of the Schro¨dinger equation is a well-studied problem in one dimension. Higher-dimens
NPDEs are rarely solved using inverse scattering techniques. There are a few reasons
restricted applicability of inverse scattering methods in dimensions higher than one. Th
reason is that higher-dimensional inverse scattering algorithms, like, for example, the Ne
Marchenko method~the inverse scattering problem of the Schro¨dinger equation in three
dimensions!, are so complicated that is nearly impossible to apply these methods to real da
alternative to the three-dimensional inverse scattering problem is given by the so-called]̄ ap-
proach, which is successfully generalized toN dimensions~for an overview of the applications w
refer to the book by Ablowitz and Clarkson1!. But in applying the]̄ approach, we readily face
second important restriction to the application of higher-dimensional inverse scattering me
This restriction deals with the fact that for higher-dimensional inverse scattering method
existence of the obtained solutions is difficult to prove. In one-dimensional cases this pr
does not occur, since both the scattering data and the potential function depend on one
coordinate. In the three-dimensional case, where the scattering data depend on a three-com
wave vector measured at a unit sphere, the five-dimensional data are mapped onto a
dimensional potential function. As a result of this, in the three-dimensional inverse scat
problem two variables are redundant. The redundancy problem puts strong constraints
classes of potential functions to be reconstructed and introduces additional complications
application of inverse scattering methods for solving higher-dimensional NPDEs.

Another interesting and powerful approach which was successfully applied to other clas
NPDEs was developed by Calogero and Eckhaus.2,3 It was shown by these authors that lar
classes of NPDEs can be transformed into linear partial differential equations by apply
cascade of limiting procedures involving rescaling techniques and asymptotic expansions
now on we take over the Calogero terminology by denoting NPDEs which can be linearized

a!Electronic mail: H.J.S.Dorren@ele.tue.nl
37110022-2488/98/39(7)/3711/19/$15.00 © 1998 American Institute of Physics
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limiting procedures ‘‘C-integrable NPDEs,’’ whereas those NPDEs which can be solved u
inverse scattering techniques are called ‘‘S integrable.’’ Calogero2 suggested that because th
limiting procedures mentioned above all preserve the integrability, perhaps one universal eq
follows by limiting procedures form large classes~all?! NPDEs. Keeping this idea in mind, we ca
conclude that it is not clear howS-integrable NPDEs fit in this concept, since these equations
be transformed into a linear integral equation. There is another important point with respecC
integrability which should be mentioned. The concept ofC-integrability is easily generalized to
higher dimensions.4 An implication of this generalization is that if it is possible to fit in th
concept ofS integrability into the concept ofC-integrability, an effective method is obtained
find solutions of higher-dimensional NPDEs.

Without aiming to be general, it is shown in this paper that in one dimensionS-integrable
NPDEs are indeedC-integrable. We show how to find a cascade of transformations that trans
S-integrable NPDEs into an ordinary linear differential equation. Moreover, it is shown that in
dimension, there exists a clear relationship between solutions of the linearized equation a
inverse scattering transformation. From the results obtained in this paper, it must be conclud
in one dimensionS integrability is a special case ofC-integrability. Moreover, it is shown that by
generalizing the ordinary linear differential equation, large classes of other integrable NPDE
be obtained. All the obtained NPDEs contain an amount of symmetry. This symmetry is
present in its linearization. The most simple example, the linearization of the KdV equatio
only invariant under Galileian transformations. The linearization of the nonlinear Schro¨dinger
equation is also invariant under the SU~2! generators.

This paper has the following structure. In Sec. II we derive a linearization scheme for the
equation. We give explicitly the linearized partial differential equation and the cascade of
formation that leads to the KdV-equation. In Sec. III, we solve the linearized equations and
explicit solutions of the KdV equation using the transformations discovered in Sec. II. A
explicit example, the soliton solutions are constructed. In Sec. IV, the relation of the lineariz
method and the IST is highlighted. It is shown that the IST can be regarded as a special cas
linearizing procedure described in Sec. II. In Sec. V, the relation between more genera
dimensional differential equations and a generalization of the linearization procedure of Se
discussed. As an explicit example, the nonlinear Schro¨dinger equation is investigated. In Sec. V
the concepts of Sec. II are generalized to more dimensions. As an example the three-dime
equivalent of the KdV equation is investigated. We conclude this paper with a discussion.

II. A LINEARIZING TRANSFORMATION FOR THE KORTEWEG-DE VRIES EQUATION

As a starting point we consider the KdV equation:

uxxx1ut56uxu,
~1!

u~x,t50!5u0~x!.

It is well known that the KdV equation can be transformed into a linear integral equation.5,6 We
can ask ourselves the question whether it is also possible to transform the KdV equation d
into a linear differential equation. Without loss of generality, we can decompose a solutionu(x,t)
of Eq. ~1! in an infinite series of functions:

u~x,t !5 (
n51

`

f ~n!~x,t !. ~2!

If it is possible to solve all the functionsf (n)(x,t) which determine the solutionu(x,t) in Eq. ~1!,
we have solved the KdV equation. In this section it is shown that all the functionsf (n)(x,t) can be
obtained by applying nonlinear transformations to the solution of a linear differential equatio
order to find this differential equation, we substitute Eq.~2! into Eq. ~1!. We then obtain the
following result:
 2010 to 131.155.100.2. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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(
n51

`

f xxx
~n! ~x,t !1 f t

~n!~x,t !56(
n51

`

(
m51

`

f x
~m!~x,t ! f ~n!~x,t !,

~3!

(
n51

`

f ~n!~x,t50!5 (
n51

`

f 0
~n!~x!.

Before we continue, we first have to explain the main concept used throughout this pape
left-hand side of Eq.~3! describes a linear partial differential operator. The difficulties in solv
the KdV equation, however, are related to the nonlinear nature of the right-hand side of E~1!.
The presence of the nonlinear term makes that the standard techniques of substitution of
~exponential! solutions breaks down. We can overcome this problem by performing a perturb
theory. Instead of substituting a regular perturbation seriesu(x,t)5(n51

` e (n) f (n)(x,t) into Eq.~1!,
and equalizing the different orders ofe, we treat in this paper the ordern in Eq. ~2! as the
perturbation parameter. We can then find solutions of the differential equation by equalizin
sum of the perturbation parameter on both sides of Eq.~3!. To illustrate this idea we take as a
example the following solution:

u~x,t !5 (
n51

`

Anein~kx2vt !. ~4!

If we substitute, for example, then52 term of Eq.~4! onto the left-hand side of Eq.~3!, we find
that this contribution can be compared to then51 contribution on the right-hand side. If w
substitute the full perturbation series, Eq.~4! into Eq. ~1!, is clear that there are always two equ
orders on the right-hand side and the left-hand side which can be compared.

To implement this simple idea in a more general fashion~which is not valid for exponentia
solutions only! we proceed by equalizing the different orders off (n)(x,t) in Eq. ~3!. If we collect
the termsf (n)(x,t) of equal order~the sum of the upper indices of the nonlinear terms equals
upper index on the left-hand side!, we obtain the following equations:

f xxx
~1! ~x,t !1 f t

~1!~x,t !50,

f xxx
~2! ~x,t !1 f t

~2!~x,t !56 f x
~1!~x,t ! f ~1!~x,t !,

f xxx
~3! ~x,t !1 f t

~3!~x,t !56 f x
~1!~x,t ! f ~2!~x,t !16 f x

~2!~x,t ! f ~1!~x,t !, ~5!

f xxx
~4! ~x,t !1 f t

~4!~x,t !56 f x
~1!~x,t ! f ~3!~x,t !16 f x

~2!~x,t ! f ~2!~x,t !16 f x
~3!~x,t ! f ~1!~x,t !,

A

It is clear that if all the orders on the left-hand side of Eq.~5! and the right-hand side of Eq.~5!
are summed up, Eq.~3! is retained. To deal with the nonlinearity in Eq.~5!, it is convenient to
introduce the following ansatz:

6 f x
~n!~x,t ! f ~m!~x,t !5E

2`

` E
2`

`

G~x,tux8,t8! f ~n1m!~x8,t8!dx8dt8. ~6!

The ansatz given in Eq.~6! introduces a constraint on the space of all the possible funct
f (n)(x,t). In the following section it will be shown that the solutions we obtain using the lin
ization method are more general than the solutions obtained using the IST. If we can cons
satisfactory kernelG(x,tux8,t8), we can solve all the equations in Eq.~6! simultaneously. If we
substitute Eq.~6! into Eq. ~5!, we find that Eq.~5! transforms into
 2010 to 131.155.100.2. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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f xxx
~1! ~x,t !1 f t

~1!~x,t !50;

f xxx
~2! ~x,t !1 f t

~2!~x,t !5E
2`

` E
2`

`

G~x,tux8,t8! f ~2!~x8,t8!dx8dt8;

f xxx
~3! ~x,t !1 f t

~3!~x,t !52E
2`

` E
2`

`

G~x,tux8,t8! f ~3!~x8,t8!dx8dt8;

A ~7!

f xxx
~n! ~x,t !1 f t

~n!~x,t !5~n21!E
2`

` E
2`

`

G~x,tux8,t8! f ~n!~x8,t8!dx8dt8;

A

From this result we can conclude that we have transformed the KdV equation~1!, by using the
ansatz~6! and doing some bookkeeping, into an infinite series of equations which all ha
similar structure. In order to solve the integration kernelG(x,tux8,t8), it is convenient to perform
the remaining part of the analysis in the Fourier domain. The Fourier transform off (n)(x,t) is
given by

f ~n!~x,t !5
1

2p E
2`

`

f̃ ~n!~k!eikzdk, z5x2
v~k!

k
t. ~8!

We first solvef (1)(x,t) because this is the solution of a linear partial differential equation. If
~8! is applied on both sides off (1)(x,t) in Eq. ~7!, we obtain the following relationship:

f xxx
~1! ~x,t !1 f t

~1!~x,t !5
1

2p E
2`

`

i @v~k!2k3# f̃ ~1!~k!eikzdk50. ~9!

It follows from Eq. ~9! that nontrivial solutionsf (1)(x,t) exist if the following dispersion relation
is satisfied:

v~k!52k3. ~10!

It is remarkable to conclude that the functionf (1)(x,t) constraints the dispersion relation of all th
remaining equations given in Eq.~7!. As a result of this, the Fourier transform of the left-hand s
of all the equations is given in Eq.~7! can be computed simultaneously. We continue by comp
ing the Fourier transform of the right-hand side of Eq.~7!. To carry out this calculation, it is usefu
to assume that the integration kernelG(x,tux8,t8) is invariant under translations in time and spac

G~x,tux8,t8!5G~x2x8ut2t8!. ~11!

Our aim is to compute the Fourier transformF ~•! of the right-hand side of all the equation
appearing in Eq.~7!:

F S E
2`

` E
2`

`

G~x2x8ut2t8! f ~n!~x8,t8!dx8dt8D . ~12!

To perform this computation, we first define the Fourier transformG̃(k) of the integration kernel
G(x2x8ut2t8):

G~x2x8ut2t8!5
1

2p E
2`

`

G̃~k!eik@z2z8#dk. ~13!
 2010 to 131.155.100.2. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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The variablez in Eq. ~13! is specified by Eq.~8!. If Eq. ~8! and Eq.~13! are substituted into Eq
~12! and if the integrations overz8 andk8 are carried out, we obtain the following result:

F S E
2`

` E
2`

`

G~x2x8ut2t8! f ~n!~x8,t8!dx8dt8D 5
1

2p E
2`

`

G̃~k! f̃ ~n!~k!eikzdk. ~14!

Once the Fourier transform of both the left-hand side and the right-hand side of Eq.~7! are
computed, we find by combining Eq.~7!, Eq. ~9!, and Eq.~14! that

1

2p E
2`

`

i @v~k!2k3# f̃ ~n!~k!eikzdk5~n21!
1

2p E
2`

`

G̃~k! f̃ ~n!~k!eikzdk. ~15!

If we define

g~n!~z,k!5 f̃ ~n!~k!eikz, ~16!

we find that a solution ofg(n)(z,k) is given by the following differential equation:

d

dz
g~n!~z,k!1 ikq~n!~z,k!5~n21!S~k!g~n!~z,k!, S~k!52

G̃~k!

k2 . ~17!

From this final result, it follows that the cascade of equations given by Eq.~7! in the Fourier
domain is equivalent with

d

dz
g~1!~z,k!1 ikg~1!~z,k!50;

d

dz
g~2!~z,k!1 ikg~2!~z,k!5S~k!g~2!~z,k!;

d

dz
g~3!~z,k!1 ikg~3!~z,k!52S~k!g~3!~z,k!;

~18!

A

d

dz
g~n!~z,k!1 ikg~n!~z,k!5~n21!S~k!g~n!~z,k!;

A

From this simple derivation we can conclude that in the Fourier domain the KdV equatio
be linearized into an ordinary linear differential equation. If this differential equation is solve
can retain a solution of the KdV equation by using Eq.~6!. Explicit solutions of the KdV equation
can be computed by solving the following problem:

d

dz
g~n!~z,k!1 ikg~n!~z,k!5~n21!S~k!g~n!~z,k!,

6 f x
~n!~x,t ! f ~m!~x,t !5E

2`

` E
2`

`

G~x2x8ut2t8! f ~n1m!~x8,t8!dx8dt8.

~19!

With this result we have shown that the KdV equation can be transformed into an ordinary
differential equation. The second equation in Eq.~19! defines a constraint on the solution
f (n)(x,t).

In the following section the equations given above will be solved and solutions of the
equation will be computed. The solutions which are obtained by using the linearization m
 2010 to 131.155.100.2. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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described above are more general than the solutions obtained using an inverse scattering a
because the method also applies to nonexponential functionsf (n)(x,t). It follows from Eq.~3! that
the method introduced in this paper can also be applied if the functionsf (n)(x,t) are polynomials.
In the following sections it will be shown explicitly that solutions obtained by the IST form
special subclass of the solutions which can be obtained by the linearization method. An imp
conclusion that already can be drawn from the results of this section is that the lineari
method can easily be generalized to higher dimensions. This will be demonstrated later
paper. It can be concluded from the approach followed in this section that there are two imp
factors which determine the transformations from the linear ordinary differential equation t
nonlinear partial differential equation. The first factor is the dispersion relation. The dispe
relation defines the linear part of the nonlinear partial differential equation. The second fac
the ansatz given in Eq.~6! which deals with the nonlinearity. By modifying the dispersion relat
and the ansatz~6!, it is possible to construct other NPDEs which can be linearized into a sim
form as presented in Eq.~19!. It is an interesting puzzle to find out whether there are ot
equations~not in the KdV hierarchy! which can be linearized using a similar approach as p
sented in this paper. In general, one can expect that the method presented in this paper can
to find solutions of NPDEs for which the nonlinear part consists of a power series. For in
gating the integrability of these equations, it is not necessary to find a suitable Lax pair. Ex
examples are given in following sections in which it is shown that generalizations of Eq.~19! can
be transformed into otherS-integrable NPDEs. For example, it is shown that the nonlinear Sc¨-
dinger equation can be linearized into a similar form as given in Eq.~19!. Apparently symmetry
plays an important role in the linearization process of NPDEs. The linearization of the
equation is invariant under Galileian transformations. This invariance is already known for a
time7 but can be used here to consider the concept of integrability from a different point of
The Galileian invariance can be regarded as the most simple symmetry in the hierarchy of
tions which will follow. This Galileian invariance also explains the presence of solitons. If
introduce more symmetry in the linearized differential equation, we obtain that the linear d
ential equation can be transformed into more complicated NPDEs.

III. SOLUTIONS OF THE KDV EQUATION

As shown in the previous section, the KdV equation can be linearized into the ordinary
differential equation~17!. In this section we will derive explicit solutions of this equation:

d

dz
g~n!~z,k!1 ikg~n!~z,k!5~n21!S~k!g~n!~z,k!. ~20!

Equation~20! is an ordinary linear first-order differential equation. The general solution of
~20! is given by

g~n!~z,k!5C1eM ~k,n!z; M ~k,n!5~n21!S~k!2 ik. ~21!

To verify the validity of the ansatz~6!, it is convenient to defineS(k) in the complex plane. This
enables us to solve Eq.~20! using the Green’s function technique. If we formulate solutions of
~20! using a Green’s function technique, we can find a relationship between the lineariz
method described in this paper and an inverse scattering method. In order to find a s
Green’s function we first solve the following problem:

d

dẑ
G ~ ẑ,k!1 ikG ~ ẑ,k!5d~ ẑ!, ẑ5z2z8, ~22!

Eq. ~22! can be solved easily by applying the following inverse Fourier transform:

H̃~k8,k!5E
2`

`

G ~ ẑ,k!e2 ik8ẑdẑ. ~23!

If the Fourier transform~23! is substituted into Eq.~22! we obtain the following result:
 2010 to 131.155.100.2. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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ik8H̃~k8,k!1 ikH̃~k8,k!51. ~24!

From Eq.~24!, it follows that the solution ofH̃(k8,k) is given by

H̃~k8,k!5
1

i ~k1k8!
. ~25!

By applying the inverse transformation of Eq.~23! we can solve the Green’s functionG ( ẑ,k):

G ~ ẑ,k!5 lim
e→0

1

2p i E2`

` eik8ẑ

k1k81 i e
dk8. ~26!

Once the Green’s function is solved, we can formulate the general solution of Eq.~20! in the form
of an integral equation:

g~n!~z,k!5 lim
e→0

~n21!

2p i E
2`

` E
2`

` eik8@z2z8#

k1k81 i e
S~k!g~n!~z8,k!dz8dk8, nÞ1. ~27!

From the functiong(n)(z,k) given in Eq. ~27!, we can solve, using Eq.~16! and the Fourier
transformation given in Eq.~8!, the functionf (n)(x,t):

f ~n!5~x,t !5 lim
e→0

~n21!

~2p!2i E2`

` E
2`

` d~k2k8!

k1k81 i e
S~k!g~n!~z,k8!dkdk8, nÞ1. ~28!

Before formulating solutions of the KdV equation, we first have to assure that a k
G(x2x8ut2t8) indeed exists. If we compute the left-hand-side of Eq.~6! using the representatio
presented in Eq.~28! of the solutionsf (n)(x,t), we obtain

6 f x
~n!~x,t ! f ~m!~x,t !52 lim

e→0

~n21!~m21!

~2p!4 E
2`

` E
2`

` E
2`

` E
2`

`

3
6ik8S~k!S~k9!

k1k81 i e

d~k2k8!d~k92k-!

k91k-1 i e
g~n!~z,k8!

3g~m!~z,k-!dkdk8dk9dk-, n,mÞ1. ~29!

The kernelG(x2x8ut2t8) can be represented in the complex plane according to the follow
Cauchy formula:

G~x2x8ut2t8!5 lim
e→0

1

~2p!2i E2`

` E
2`

` k82eik8@z2z8#

k1k81 i e
S~k8!dk8dk. ~30!

In Eq. ~30!, it is used thatS(k)5k2G̃(k). The expression obtained in Eq.~29! is, according to Eq.
~6!, equal to:

E
2`

` E
2`

`

G~x2x8ut2t8! f ~n1m!~x8,t8!dx8dt8

52 lim
e→0

@n1m21#

~2p!3 E
2`

` E
2`

` E
2`

` E
2`

` k82S~k8!S~k9!

k1k81 i e

d~k92k-!d~k-2k8!

k91k-1 i e

3g~n1m!~z,k-!dkdk8dk9dk-. ~31!

If follows from comparing Eq.~29! to Eq. ~31!, that the ansatz is satisfied if the followin
condition is fulfilled:
 2010 to 131.155.100.2. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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3i ~n21!~m21!

p@n1m21#
S~k!d~k2k8!g~n!~z,k8!g~m!~z,k-!5k8S~k8!d~k-2k8!g~n1m!~z,k-!.

~32!

If Eq. ~32! is satisfied, we can finally formulate solutions of the KdV equation:

u~x,t !5 (
n51

`

f ~n!~x,t !

5Aeikz1 lim
e→0

(
n52

`
~n21!

~2p!2i E2`

` E
2`

` E
2`

` d~k2k8!

k1k81 i e
S~k8!g~n!~z,k8!dk8dk. ~33!

We can find explicit solutions of Eq.~33! by using the fact that Eq.~32! defines a recursion
relationship for the functionsg(n)(z,k). This recursion relation can be made explicit by verifyi
Eq. ~6! if one of the functionsf (n)(x,t) is equal to f (1)(x,t). If we choose forf (1)(x,t) the
following representation:

f ~1!~x,t !5 lim
e→0

1

~2p!2i E2`

` E
2`

` ik8eik8z

k1k81 i e
S~k8!dk8dk, ~34!

the inverse scattering transformation can be retained. From comparing Eq.~28! to Eq. ~34!, it
follows that by givingf (1)(x,t) the form~34!, we have implicitly chosen thatf̃ (1)(k8)5 ik8. If we
compute the left-hand side of Eq.~6!, we find that

6 f x
~1!~x,t ! f ~n21!~x,t !52 lim

e→0

~n22!

~2p!4 E
2`

` E
2`

` E
2`

` E
2`

` 6ik8S~k!~k9!

k1k81 i e

d~k2k8!d~k92k-!

k91k-1 i e

3g~1!~z,k8!g~m!~z,k-!dkdk8dk9dk-. ~35!

According to the ansatz, Eq.~6!, this has to be equal to

E
2`

` E
2`

`

G~x2x8ut2t8! f ~n!~x8,t8!dx8dt8

52 lim
e→0

@n21#

~2p!3 E
2`

` E
2`

` E
2`

` E
2`

` k82S~k8!S~k9!

k1k81 i e

d~k92k-!d~k-2k8!

k91k-1 i e

3g~n!~z,k-!dkdk8dk9dk-. ~36!

By comparing Eq.~35! to Eq.~36! we find that equality is obtained if the following relationship
satisfied:

3i ~n22!

p~n21!
S~k!d~k2k8!g~1!~z,k8!g~n21!~z,k-!5k8S~k8!d~k-2k8!g~n!~z,k-!. ~37!

Equation ~37! is a recursion relation which makes it possible to computeg(n)(z,k) from
g(n21)(z,k). In order to relateg(2)(z,k) to g(1)(z,k), we have to check explicitly the ansatz~6! for
the 6f x

(1)(x,t) f (1)(x,t) case. This leads to the following result:

3i

2p
S~k!d~k2k8!g~1!~z,k8!g~1!~z,k-!5k8S~K8!d~k92k-!g~2!~z,k-!. ~38!

The result we have obtained indicates that we can solve the KdV equation by using the rec
relationship defined by Eq.~37!. If we continue the process of iteration, we obtain the followi
solutionsf (n)(x,t) which determine the solution of the KdV equation:
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f ~1!~x,t !5 lim
e→0

1

~2p!2i E2`

` E
2`

` ik8eik8z

k1k81 i e
Ŝ~k8!dk8dk, ~39!

f ~2!~x,t !5 lim
e→0

1

2p~2p i !2 E
2`

` E
2`

` E
2`

` Ŝ~k8!eik8z

k1k81 i e

Ŝ~k9!eik9z

k81k91 i e
i ~k81k9!dk9dk8dk, ~40!

A

where we have used thatŜ(k)52/3iS(k). If the infinite series of solutions of which the first tw
are given by Eq.~39! and Eq.~40! are substituted into Eq.~33!, we obtain a solution of the KdV
equation of which the first two terms are given by

u~x,t !5 lim
e→0

1

~2p!2i E2`

` E
2`

` ik8eik8z

k1k81 i e
Ŝ~k8!dk8dk

1 lim
e→0

1

2p~2p i !2 E
2`

` E
2`

` E
2`

` Ŝ~k8!eik8z

k1k81 i e

Ŝ~k9!eik9z

k81k91 i e
i ~k81k9!dk9dk8dk1¯ .

~41!

In the following section it is shown that Eq.~41! describes a generalization of the inverse sc
tering solution of the KdV equation. From Eq.~41!, it is easy to derive the soliton solutions of th
KdV equation. This can be done by choosing the following representation ofS(k) ~see Ref. 8!:

Ŝ~k!5
id

k12ib
, b.0, dPR. ~42!

We find that the solution~41! reduces to

u~x,t !54dbe22~bx24b3t !116d2 e24~bx24b3t!124
d3

b
e26~bx24b3t !1¯ . ~43!

By carrying out the summation in Eq.~43!, we can reformulate the solution~43! more compactly:

u~x,t !5
8dbe22~bx24b3t !

S 11
d

b
e22~bx24b3t !D 2 . ~44!

Hence, if we set

b5
1

2
Ac, x052

1

Ac
logS 2

d

b D , d,0, ~45!

we can simplify Eq.~44! a step further to

u~x,t !52
c

2
sech2H 1

2
Ac~x2ct1x0!J . ~46!

Equation~46! describes the well-known KdV soliton.
The results obtained in this section make it clear that the approach suggested in this pa

be used to generate solutions of the KdV equation. For instance, the KdV soliton can be re
as a special case of Eq.~33!. In the following section, it is shown that the solutions obtained in t
section are, in fact, the inverse scattering solutions. The two-soliton solutions can be obtai
choosing a functionŜ(k) which has a double pole. It will be shown in the next section that
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solution ~41! is somewhat more general than the inverse scattering solution because the fu
S(k) is less restricted than the physical scattering data as used in the IST.

IV. RELATION TO THE INVERSE SCATTERING TRANSFORMATION

To show that there is a close relationship between the results obtained by the linear
method and the well-known inverse scattering results, we discuss the latter in this section in
detail. The IST uses the inverse problem of the Schro¨dinger equation to generate solutions of t
KdV equation. The inverse problem of the Schro¨dinger equation is given by the Marchenk
equation:

K~x,y,t !1A~x1y,t !1E
x

`

K~x,z,t !A~y1z,t !dz50. ~47!

The Marchenko equation relates a data functionA(x,t) to an integration kernelK(x,y,t). In Eq.
~47!, the data functionA(x,t) is given by

A~x,t !5
1

2p E
2`

`

R~k!eik@x18k2t#dt1 (
p51

N

rpe2kp@x14kp
2t#. ~48!

In Eq. ~48!, the functionR(k) describes the physical reflection coefficient. The functionR(k)
corresponds to the continuous part of the spectrum of the Schro¨dinger equation. The numbersrp

represent the discrete part of the spectrum of the Schro¨dinger equation corresponding to th
discrete eigenvalueskp . The discrete part of the spectrum of the Schro¨dinger equation is given by
the residues of the transmission coefficientT(k,t) on the positive imaginary axis. The solutio
u(x,t) of the KdV equation can be solved from the integration kernelK(x,y,t) by using the
following relationship:

u~x,t !522
d

dx
K~x,x,t !. ~49!

The relation between the linearization method and the IST becomes more transparent
analysis is performed in the wave number domain. A convenient way to do this is to rela
kernelK(x,y,t) to a functionF(x,k,t) by using the following Fourier transform:9

K~x,y,t !5
1

2p E
2`

`

dkeik~y2x!
„F~x,k,t !21…. ~50!

It is well known that the functionF(x,k,t) is related to the Jost solutions of the Schro¨dinger
equation.9 If we substitute Eq.~50! into Eq. ~47!, we obtain the following relationship:

F~x,k,t !511E
2`

`

C~k,k8,z!F~x,k8,t !dk8. ~51!

For reasons of simplicity, we do not take the contribution of the transmission coefficient
account in the analysis which follows. It can be shown that the transmission coefficient c
included in the computations in a conceptually similar manner.9 In the special case of a negligibl
transmission coefficient, we find that the kernelC(k,k8,t) in Eq. ~51! is given by

C~k,k8,z!5
1

2p i

R~k8!e2ik8z

k1k81 i e
; z5x28k2t. ~52!

If Eq. ~52! is substituted into Eq.~51!, we find the following relationship:

F~x,k,t !2151
1

2p i E2`

` R~k8!F~x,k8,t !e2ikz

k1k81 i e
dk8. ~53!
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To find a relationship between the linearization technique and the IST, we expand Eq.~52! in a
series:

F~k,x,t !511E
2`

`

C~k,k8,z!dk81E
2`

` E
2`

`

C~k,k8,z!C~k8,k9,z!dk8dk91¯ . ~54!

If we substitute Eq.~52! into Eq. ~54!, this result becomes equal to

F~k,x,t !215 lim
e→0

1

2p i E2`

` R~k8!e2ik8z

k1k81 i e
dk8

1 lim
e→0

1

~2p i !2 E
2`

` E
2`

` R~k8!e2ik8z

k1k81 i e

R~k9!e2ik9z

k81k91 i e
dk8dk91¯ . ~55!

By taking the Fourier transform Eq.~50! of both sides of Eq.~55! we can compute the integratio
kernelK(x,x,t):

K~x,x,t !5 lim
e→01

1

2p i E2`

` R~k8!e2ik8z

k1k81 i e
dkdk8

1 lim
e→01

2

2p~2p i !2 E
2`

` E
2`

` R~k8!e2ik8z

k1k81 i e

R~k9!e2ik9z

k81k91 i e
dkdk8dk91¯ . ~56!

From this result we obtain by settingx5y and using the relationship~49! that solutions of the
KdV equation are given by the following relationship:

u~x,t !5 lim
e→0

1

~2p!2i E2`

` E
2`

` 2ik8e2ik8z

k1k81 i e
R~k8!dk8dk

1 lim
e→0

1

2p~2p i !2 E
2`

` E
2`

` E
2`

` R~k8!e2ik8z

k1k81 i e

R~k9!e2ik9z

k81k91 i e
2i ~k81k9!dk9dk8dk1¯ .

~57!

Modulo some trivial rescaling, the analytical structure of Eq.~58! is equal to the result reflected i
Eq. ~41!. We can therefore conclude that the functionsg(n)(k,z) are related to the Jost solution o
an inverse scattering problem. This is not a great surprise if we realize that the kernelK(x,y,t) in
the Marchenko equation is a Green’s function by itself.9 The linearization method constructs th
Green’s function directly. However, we have to realize that the results obtained in Sec. III a
more general than the IST. It turns out that Eq.~41! is only a special case on of the linearizatio
method, depending on the initial conditions. Yet, it should be realized that although Eq.~58! and
Eq. ~41! have a similar structure; Eq.~41! is more general. This is related to the precise definit
of the scattering data in Eq.~58!. In general, the scattering data given by the reflection coeffic
R(k,t) and the transmission coefficientT(k,t) have to satisfy a number of restrictions to assur
unitary S matrix and uniqueness of the corresponding inverse problem. Moreover, addi
conditions have to be satisfied so that the Deift–Trubowits condition is not violated~an overview
of all the conditions can be found in, for instance, the book by Chadan and Sabatier9!. These
additional constraints do not have to be satisfied by the results obtained by the lineari
method. We can therefore consider the results reflected in Eq.~41! to be a generalization of the
IST.

V. THE NONLINEAR SCHRÖDINGER EQUATION

In Sec. II it is shown that the KdV equation can be be transformed into a linear p
differential equation. As concluded in Sec. II, this linear differential equation depends o
balances of the dispersion of the nonlinear problem to a functionS(k) representing the nonlinear
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ity. We can ask ourselves the question whether there are more NPDEs which can be lineariz
an equation having a similar structure as Eq.~20!. In this section it is shown that this is indeed th
case if we introduce new symmetries in the linearized equation. The most simple one-dimen
generalization of Eq.~20! is given by

c1F d

dz
gj

~n!~z,k!G1 ikc2gj
~n!~z,k!5c3Q~n!S~k!gj

~n!~z,k!. ~58!

In Eq. ~58!, we have replaced the functiong(n)(z,k) of Eq. ~20! by an N-dimensional vector
functiongj

(n)(z,k). Furthermore, in Eq.~58! theN3N matricesci are introduced. The matricesci

are assumed to have constant entries. Similarly, as in Sec. II, the variablez takes its value in a
dispersion relation so that Eq.~58! is invariant under Galileian transformations. As argued in S
II, we can expect that Eq.~58! can be transformed into a wide variety of nonlinear equati
which all have solitonic solutions. An interesting special case can be considered if we choN
52 and if the matricesci take the following representations:

c15S 1 0

0 1D , c25c35S 1 0

0 21D . ~59!

We will show in this section that if we choose the dispersion relation to be equal to

v~k!56k2, ~60!

and if the functionQ(n) is equal to

Q~n!5 1
2~n21!~n22!, ~61!

the linear equation~58! can be transformed into the nonlinear Schro¨dinger equation. To find a
similar cascade of transformations and rescaling which transforms the nonlinear Schro¨dinger
equation into Eq.~58!, we take as a starting point the nonlinear Schro¨dinger equation:

iut1uxx62uuu2u50. ~62!

It is useful to transform the nonlinear Schro¨dinger equation into the following set of couple
differential equations:

iut1uxx22u2v50, iv t2vxx12v2u50. ~63!

The two coupled partial differential equations presented in Eq.~63! are equivalent to the nonlinea
Schrödinger equation if we setv57u* . In order to simplify the bookkeeping, we formulate th
set of coupled differential equations~63! as the following matrix equation:

Iw t2 is3wxx522iAw. ~64!

In Eq. ~64!, I represents the unity matrix and the vectorw is given byw5(u,v)T. Furthermore,
the Pauli spin matricess i are introduced:

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~65!

Finally, all the nonlinearities are contained in the matrixA which is defined by the following
relationship:

S uv 0

0 2uv D S u
v D5Aw. ~66!

We carry on in a similar manner as in Sec. II by assuming that the functionsu(x,t) andv(x,t) can
be decomposed in the following infinite perturbation series:
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w~x,t !5 (
n51

`

f~n!~x,t !. ~67!

Every componentf i
(n)(x,t) of f(n)(x,t) expresses the expansion of the componentsu and v of

w(x,t). Similarly, as in Sec. II, the nonlinear Schro¨dinger equation is solved if solutions of all th
functionsf i

(n)(x,t) are constructed. If Eq.~67! is substituted into Eq.~64!, we obtain the following
result:

(
n51

`

~ I] t2 is3]xx!f
~n!~x,t !522i (

k51

`

(
l 51

`

(
m51

`

s~klm!~x,t !, ~68!

where the vector functions(klm)(x,t) is given by

s~klm!~x,t !5S f ~k!~x,t ! f ~ l !~x,t !g~m!~x,t !
2g~k!~x,t !g~ l !~x,t ! f ~m!~x,t ! D . ~69!

We proceed, as in Sec. II, by collecting all the terms of which the sum of the orders o
left-hand side equals the sum of the orders on the right-hand side. In order to have a bette
on the structure of the infinite number of equations which are then obtained, we write out th
four explicitly:

~ I] t2 is3]xx!f
~1!~x,t !50,

~ I] t2 is3]xx!f
~2!~x,t !50,

~70!

~ I] t2 is3]xx!f
~3!~x,t !5s~111!~x,t !,

~ I] t2 is3]xx!f
~4!~x,t !5s~211!~x,t !1s~121!~x,t !1s~112!~x,t !,

We can linearize the set of equations given in Eq.~70! in the Fourier domain by introducing kerne
G(x8,t8ux,t):

22is~klm!~x,t !5s3E
2`

` E
2`

`

G~x,x8ut,t8!f~k1 l 1m!~x8,t8!dx8dt8. ~71!

If Eq. ~71! is substituted into Eq.~70!, we can reformulate Eq.~70! in the following way:

~ I] t2 is3]xx!f
~1!~x,t !50,

~ I] t2 is3]xx!f
~2!~x,t !50,

~ I] t2 is3]xx!f
~3!~x,t !5s3E

2`

` E
2`

`

G~x,x8ut,t8!f3~x8,t8!dx8dt8,

~72!

~ I] t2 is3]xx!f
~4!~x,t !53s3E

2`

` E
2`

`

G~x,x8ut,t8!f~4!~x8,t8!dx8dt8,

A

~ I] t2 is3]xx!f
~n!~x,t !5s3Q~n!E

2`

` E
2`

`

G~x,x8ut,t8!f~n!~x8,t8!dx8dt8.

Similar to Sec. II, we proceed, continuing our analysis in the wave number domain, by sea
for the following wave-package solutions:
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f~n!~x,t !5
1

2p E
2`

`

f̃~n!~k!eikzdk, z5x2
v~k!

k
t. ~73!

If Eq. ~73! is substituted into Eq.~70! and if we solvef̃(1)(k), we find that dispersion relation
given by Eq.~60! has to be satisfied. If we define, furthermore, the Fourier transform of the k
G(x2x8ut2t8) to be equal to

G~x2x8ut2t8!5
1

2p E
2`

`

G̃~k!eik@z2z8#dk, ~74!

and if we defineS(k)5G̃(k)/k, we obtain that the set of equations~72! in the Fourier domain are
equal to

I
d

dz
g̃~1!~z,k!1 iks3g̃~1!~z,k!50,

I
d

dz
g̃~2!~z,k!1 iks3g̃~2!~z,k!50,

~75!

I
d

dz
g̃~3!~z,k!1 iks3g̃~3!~z,k!5s3S~k!g̃~3!~z,k!,

A

In Eq. ~75!, we have defined

g̃~n!~z,k!5 f̃~n!~k!eikz S~k!5
G~k!

k
. ~76!

Resuming, we can conclude that the nonlinear Schro¨dinger equation can be linearized into

I
d

dz
g̃~n!~z,k!1 iks3g̃~n!~z,k!5Q~n!s3S~k!g̃~n!~z,k!. ~77!

In this section it is shown that the nonlinear Schro¨dinger equation can be linearized into a gen
alization of Eq.~20!. It can be shown that the ansatz~71! leads to conditions on the solutions o
the nonlinear Schro¨dinger equation.10 Explicit solutions of the nonlinear Schro¨dinger equation
computed by using the linearization method are given in this reference. It has to be remark
the linearized equation is invariant under transformations of the SU~2! generatorss i . This reflects
that besides the Galileian invariance~which takes its value as the dispersion relation! another
symmetry is present in the linearization of the nonlinear Schro¨dinger equation.

VI. GENERALIZATION TO HIGHER DIMENSIONS

Inspired by the results obtained in the previous sections, we show that a similar procedu
be applied to find solutions of higher-dimensional NPDEs. We choose as a starting point th
simple three-dimensional generalization of Eq.~20!:

(
i 51

3

]zi
g~n!~z,k!1 i(

i 51

3

kig
~n!~z,k!5~n21!S~k!g~n!~z,k!. ~78!

In Eq. ~78!, the solutiong(n)(z,k) of the linearized problem depends now on a three-dimensio
vectorz having components (z1 ,z2 ,z3)T and a three-dimensional wave numberk with elements
(k1 ,k2 ,k3)T. We derive a three-dimensional generalization of the KdV equation by following
reverse track of Sec. II. We first define a functionĜ(k) so that
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S~k!5
Ĝ~k!

k–k
. ~79!

If Eq. ~79! is substituted into Eq.~78!, we obtain the following result:

k–k(
i 51

3

$]zi
g~n!~z,k!1 ik ig

~n!~z,k!%5~n21!Ĝ~k!g~n!~z,k!. ~80!

We have to take into account that Eq.~80! has to be solved for alln in the range from unity to
infinity. Following the recipe derived in Sec. II, we find, if we write out the lowest orders ofn in
Eq. ~80! explicitly, that

k–k(
i 51

3

$]zi
g~1!~z,k!1 ik ig

~1!~z,k!%50,

k–k(
i 51

3

$]zi
g~2!~z,k!1 ik ig

~2!~z,k!%5Ĝ~k!g~2!~z,k!, ~81!

k–k(
i 51

3

$]zi
g~3!~z,k!1 ik ig

~3!~z,k!%52Ĝ~k!g~3!~z,k!,

We proceed by defining a functionf (n)(x,t). The functionsg(n)(z,k) in Eq. ~81! are defined to be
related to functionsf (n)(x,t) by the following relationship:

f ~n!~x,t !5
1

~2p!3 E
2`

`

f̃ ~n!~k!eik–zd3k; g~n!~z,k!5 f̃ ~n!~k!eik–z; zi5xi2
v~k!

ki
t. ~82!

If we carry out the inverse Fourier transform of Eq.~82!, we find that the set of equations give
in Eq. ~81! is transformed into the following set of equations:

(
i 51

3

]xi

3 f ~1!~x,t !1] t f
~1!~x,t !50,

(
i 51

3

]xi

3 f ~2!~x,t !1] t f
~2!~x,t !5E

2`

` E
2`

`

G~x,tux8,t8! f ~2!~x8,t8!dx8dt8,

~83!

(
i 51

3

]xi

3 f ~3!~x,t !1] t f
~3!~x,t !52E

2`

` E
2`

`

G~x,tux8,t8! f ~3!~x8,t8!dx8dt8,

A

The kernelG(x,tux8,t8) in Eq. ~83! is related to the functionĜ(k) by means of the following
Fourier transform:

G~x,tux8,t !5
1

~2p!3 E
2`

`

Ĝ~k!eik–@z2z8#d3k. ~84!

We continue by defining the three-dimensional generalization of the ansatz~6! which relates the
functions f (n)(x,t) to the integration kernelG(x,tux8,t8):

6F(
i 51

3

]xi
f ~n!~x,t !G f ~m!~x,t !5E

2`

` E
2`

`

G~x,t8ux8,t8! f ~n1m!~x8,t8!dx8dt8. ~85!
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If we substitute Eq.~85! into Eq. ~83!, we obtain that the set of Eqs.~83! can be uniquely
decomposed as

(
i 51

3

]xi

3 f ~1!~x,t !1] t f
~1!~x,t !50,

(
i 51

3

]xi

3 f ~2!~x,t !1] t f
~2!~x,t !56F(

i 51

3

]xi
f ~1!~x,t !G f ~1!~x,t !,

(
i 51

3

]xi

3 f ~3!~x,t !1] t f
~3!~x,t !56(

i 51

3

„@]xi
f ~1!~x,t !# f ~2!~x,t !1@]xi

f ~2!~x,t !# f ~1!~xt !…, ~86!

(
i 51

3

]xi

3 f ~4!~x,t !1] t f
~4!~x,t !56(

i 51

3

„@]xi
f ~1!~x,t !# f ~3!~x,t !1@]xi

f ~2!~x,t !# f ~2!~x,t !

1@]xi
f ~3!~x,t !# f ~1!~x,t !…,

If we take the sums of both the left-hand sides and the right-hand sides of all the equation~86!,
we obtain, after some bookkeeping, the following result:

(
n51

` F(
i 51

3

]xi

3 f ~n!~x,t !G1(
i 51

`

] t f
~n!~x,t !56(

n51

`

(
m51

` F(
i 51

3

]xi
f ~n!~x,t !G f ~m!~x,t !. ~87!

Finally, if we define, for notational convenience,

u~x,t !5 (
n51

`

f ~n!~x,t !, ~88!

we find that Eq.~87! is equivalent with

(
i 51

3

]xi

3 u~x,t !1] tu~x,t !56F(
i 51

3

]xi
u~x,t !Gu~x,t !. ~89!

Equation~89! is a three-dimensional partial differential equation which can be linearized into
~78! by applying a similar cascade of transformations and rescaling. Equation~89! is the three-
dimensional generalization of the KdV equation. We can solve Eq.~89! by solving Eq.~78! and
transforming the obtained solutionsg(n)(x,k) into the functionsf (n)(x,t). Before we can compute
the solution, Eq.~78!, we first have to find an adequate Green’s function to solve the integra
kernelG(x,tux8,t8). We therefore first solve

(
i 51

3

~]xi
1 ik i !G ~ ẑ,k!5d~ ẑ!, ẑ5z2z8. ~90!

The Fourier transformH(k8,k) of G ( ẑ,k) is given by the following relationship:

H~k8,k!5E
2`

`

G ~ ẑ,k!e2 ik8–ẑd3ẑ. ~91!

If Eq. ~91! is substituted into Eq.~90!, we obtain the following solution ofH(k8,k):

H~k8,k!5
1

i ( j 51
3 ~pj1kj !

. ~92!

If we apply the inverse transform of Eq.~91! to Eq. ~92!, we find the following solution of the
Green’s functionG ( ẑ,k):
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G ~ ẑ,k!5 lim
e→0

1

~2p!3i E2`

` eik8–ẑ

( j 51
3 ~kj1kj81 i e!

d3k8. ~93!

Once the Green’s function is known, we can compute the general solution of the linear differ
equation, Eq.~78!:

g~n!~z,k!5 lim
e→0

~n21!

~2p!3i E2`

` E
2`

` eik8–@z2z8#

( j 51
3 ~kj1kj81 i e!

S~k!g~n!~z8,k!d3k8d3z8, nÞ1. ~94!

If we apply the Fourier transform given in Eqs.~82!–~94!, we find that solutions of the function
f (n)(x,t) are given by

f ~n!~x,t !5 lim
e→0

~n21!

~2p!6i E2`

` E
2`

` E
2`

` d~k2k8!

( j 51
3 ~kj1kj81 i e!

S~k!g~n!~z,k8!d3kd3k8, nÞ1.

~95!

In a similar manner as pointed out in Sec. III, it can be shown that if the integration k
G(x2x8ut2t8) has the following structure:

G~x2x8ut2t8!5 lim
e→0

1

~2p!6i E2`

` E
2`

` @k8–k8#eik8–@z2z8#

( j 51
3 ~kj1kj81 i e!

S~k8!d3kd3k8. ~96!

A general form of the solutionsu(x,t) of the three-dimensional KdV equation is given by t
following relationship:

u~x,t !5 (
n51

`

f ~n! f ~n!~x,t !5Aeik–x1 lim
e→0

(
n52

`
~n21!

~2p!6i E2`

` E
2`

` d~k2k8!

( j 51
3 ~kj1kj81 i e!

3S~k8!g~n!~z,k8!d3kd3k8. ~97!

It can be verified by redoing the computations which are carried out in Sec. III, that if the a
~85!, is satisfied, a recursion relation for the solutionsf (n)(x,t) can be obtained. The solution
f (n)(x,t) which lead to a solution of the three-dimensional KdV equation are given by

f ~1!~x,t !5 lim
e→0

1

~2p!6i E2`

` E
2`

` eik8–z

( j 51
3 ~kj1kj81 i e!

S~k8!F (
m51

3

ikm8 Gd3kd3k8, ~98!

f ~2!~x,t !5 lim
e→0

1

~2p!9i 2 E
2`

` E
2`

` E
2`

` ei ~k81k9!–zS~k8!S~k9!

( l ,m51
3 ~kl1kl81 i e!~km8 1km9 1e!

3F i (
m51

3

~km8 1km9 !Gd3kd3k8d3k8, ~99!

Once the functionsf (n)(x,t) are computed, we construct the solutionu(x,t) of the three-
dimensional KdV equation by summation of the functionsf (n)(x,t):
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u~x,t !5 lim
e→0

1

~2p!6i E2`

` E
2`

` eik8–z

( j 51
3 ~kj1kj81 i e!

S~k8!F (
m51

3

ikm8 Gd3kd3k8

1 lim
e→0

1

~2p!9i 2 E
2`

` E
2`

` E
2`

` ei ~k81k9!–zS~k8!S~k9!

( l ,m51
3 ~kl1kl81 i e!~km8 1km9 1 i e!

3F i (
m51

3

~km8 1km9 !Gd3kd3k8d3k91¯ . ~100!

We can conclude that the approach followed in Sec. II for the one-dimensional KdV equatio
also be used to construct special solutions for the three-dimensional KdV equation. By gen
ing Eq. ~78! and by introducing more symmetry, we can, in principle, find special solution
other higher-dimensional NPDEs. For proving the integrability, it would be necessary to p
that the set of solutions which are derived is sufficient for solving a reasonable Cauchy pro
It is also still unclear what the relationship between the procedure followed in this paper an
three-dimensional inverse scattering problem exactly is. In one dimension, this issue is clari
Sec. IV, but in three dimensions the analysis is more complicated. It is not unthinkable that
relationship is revealed, answers can be given with respect to the integrability of three-dimen
NPDEs.

VII. DISCUSSION

The following novel results are obtained in this paper. First, a new method is presen
obtain solutions of one-dimensionalS-integrable differential equations. Whereas the IST sol
S-integrable differential equations by using inversion techniques, the method presented
paper solves these equations by using a direct method. TheS-integrable nonlinear partial differ
ential equation is linearized into an ordinary linear differential equation. There are several a
tages of using a linearization method. The first advantage is that the method given is fairly ge
In principle, the machinery applies to all NPDEs which have a nonlinear part consisting
power series. Second, the method we have developed does not need Lax pairs for system
investigating the integrability of NPDEs. The method can be generalized to higher-dimen
NPDEs. This is demonstrated in Sec. VI for the three-dimensional KdV equation. This
demonstrates that at least in one dimension,S-integrable NPDEs are alsoC-integrable.

As shown in Sec. II we can conclude that the linearized equation depends on two factor
first factor is the dispersion relation which defines the space coordinate. The latter is inv
under Galileian transformations. The second factor is a generalization of the scattering data
is related by the ansatz used in this paper to the nonlinearity. By modifying the dispersion re
and the ansatz, Eq.~6!, large classes ofS-integrable NPDEs can be constructed and solved. I
remarked that the Galileian invariance of the space coordinate can be associated with a m
symmetry property of the linearized differential equation. If the linearized equation, Eq.~17!, is
generalized, for instance, by making it invariant for other symmetries, more complex NPDE
be constructed. It is shown in Sec. V that the nonlinear Schro¨dinger equation follows from a
generalization of Eq.~17! which is invariant under the SU~2! generators. The mathematical reas
for this invariance is related to the fact that the zero-curvature condition which is responsib
an infinite number of conservation laws, is invariant under gauge transformations, taking
value in a Lie group. As a result of this, the corresponding linearized problem is invariant u
similar transformations in the corresponding Lie algebra.
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