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Cocktail:
A Tool for Deriving Correct Programs

Michael Franssen

cocktail /’koktell/ n 1 [C] an
alcoholic drink consisting of a
spirit, or several spirits, mixed
with fruit juice, etc: a cocktail
bar/cabinet/lounge o a cocktail
party. 2 [C,U] a dish of small
pieces of food, usu served cold
at the beginning of a meal: (a)
prawn/shrimp cocktail o (a) fruit
cocktail. 3 [C] (infml)any mixture
of substances: a lethal cocktail of
drugs. See also Molotov Cocktail

(Oxford Advanced Learner’s Dictionary)
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Chapter 1

Introduction

This thesis describes the design and implementation of Cocktail: A tool for
Deriving Correct Programs. In Cocktail, programs are derived from their
formal specification by stepwise refinement.

This simultaneous construction of a program and its correctness proof is
based on the Dijkstra-Hoare calculus (see [Dij76]). The main advantage of
this approach is that the programmer is guided to a correct program by
the specification during the program’s construction. The method has been
developed and used for many years at Eindhoven University of Technology.
It is an important instrument in the computer science curriculum: students
learn to program using this method.

Up until now there is no tool support for the method. This means that
all administration of proof obligations has to be done by hand, which is a
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lot of work for larger programs. Also, the proofs required to establish pro-
gram correctness can be complicated. Since the correctness of the program
depends on the correctness of the proofs, the latter have to be constructed
very carefully. In short: the problem of program correctness is replaced by a
problem of proof correctness. Therefore, we wanted a tool that keeps track
of all proof obligations, supports the programmer during proof construction
and checks the correctness of proofs and programs.

Such a tool has to fulfill many requirements, which have several origins.
In order to keep a better overview of all requirements, we will discuss them
from the perspectives of three representatives: the programmer, the logician
and the system designer. The programmer, as the intended user of the tool,
will be mainly interested in the usability. Hence, she! is concerned about
the extent in which the tool allows her to focus on the program and about
the extent in which the tool assists in constructing correctness proofs. The
logician, as the theoretic guardian of the tool, is concerned about the formal
basis of the tool and the correctness of its implementation. The system
designer, who has to build the tool, will be concerned about its feasibility.
It should be designed in such a way that it is usable, safe, maintainable and
extendable.

Since the time for this PhD project is limited, we will not attempt to build an
entire tool, but rather a proof-of-concept to show that it is actually possible
to build a tool that meets our requirements. This proof-of-concept has
sufficient functionality to support programming courses in the curriculum
of Eindhoven University of Technology.

1.1 A Programmer’s Tool

We want the tool to support the derivation of programs according to the
Dijkstra/Hoare method. In this method, the program is derived from its
specification, generating proof obligations on the fly. If we want the tool to
be accepted by a programmer, we must avoid to prescribe an order in which
the program is derived and the proofs are constructed. Also, a programmer
wants to focus on the program, not on the correctness proof. The tool should
support this. If the programmer has to prove a theorem, this should be as

!"Whenever we need to use a personal or a possessive pronoun to refer to a previously
mentioned person, we will use the female version. There are plenty of books were the male
version is chosen.
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easy as possible. Ideally, the tool should construct the proof automatically.
If this is not possible, the proof must be constructed interactively in a way
the programmer is familiar with.

To support this way of program derivation we need a Hoare logic combined
with a theorem prover for first-order logic.

The Hoare logic is needed, since it is the basis of Dijkstra/Hoare program
derivation. The Hoare logic links specifications, usually in first-order logic,
directly to imperative programs. Since no intermediate encodings of pro-
grams are required, Hoare logic is relatively intuitive to a programmer.

The first order logic is needed to construct correctness proofs. If a program-
mer is familiar with a formal proof logic, it is usually this logic. Higher
order logics, dynamic logics, modal logics etc. are more used by logicians
and theoretical computing scientists. Also, if we want to support automatic
proof construction, we need to keep the logic weak. Automated theorem
proving for more powerful logics is almost impossible. First-order logic can
be reasonably automated and is powerful enough to write meaningful spec-
ifications.

1.2 A Logician’s Tool

A logician will be mainly concerned about the correctness proof of the cor-
rectness of the program. For this she will not blindly rely on the correctness
of the tool used to construct this proof. But still, she requires that proofs
constructed with the tool are guaranteed to be correct. Otherwise, using a
tool will appear useless to a logician. The tool, however, will tend to be-
come large, certainly if more and more bells and whistles are added during
its construction. The logician will then lose the overview over the system
and be unable to convince herself of the correctness of the entire tool.

De Bruijn was the first to tackle this problem, by proposing the Automath
system. Proofs constructed with Automath are represented syntactically in
a simple, uniform manner. This has the following advantages:

e The correctness of proofs can be verified after they are constructed.
This is enabled by the simple representation of the proof, which ac-
tually follows the derivation rules of the formal system. The proof
representation is chosen in such a way that the proof checker is small,
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simple and hence, reliable.

e Since proofs are represented explicitly by syntactic terms, they can be
communicated to other systems. This allows the logician to build her
own tool to verify the proof.

The requirement of communicable proofs is called the De Bruijn criterion.
Examples of Modern Automath-like formalisms are Pure Type Systems,
Edinburgh Logical Framework, and Martin-L6f Type-Theory. For each of
these separate tools are available.

A drawback of this approach is that proofs have to be constructed in a very
detailed way. When constructing a proof, the user usually wants to take
larger steps than those allowed by the formal system. A tool can support
this by offering larger steps and translating these into steps accepted by the
used formalism.

Systems based on such formalisms are, almost without exception, interactive
systems based on higher order logics. Automatic proof construction is barely
supported. However, since automatic proof construction is important to
the programmer, we want to combine an Automath-like systems with an
automated theorem prover. On the other hand, this might violate the safety
of the system. Therefore, we want to translate automatically generated
proofs into the system’s proof representation, just like we do with larger
proof steps. This enables us to use automated theorem proving without
extending the logic in an unforeseen way and moreover, we can verify the
generated proofs afterwards.

Besides the proof logic, the tool also has to support a programming logic.
Usually, those logics do not conform to the De Bruijn criterion. A possible
solution for this is to encode the entire Hoare logic within the theorem prover
logic. This would have the following disadvantages:

e The programmer has to encode all programs in the theorem prover’s
logic. This shifts the focus from program towards proof, which the
programmer does not want.

e Embedding the Hoare logic usually requires higher-order logic. Sup-
porting automated theorem proving will then be harder.

e It takes more efforts to build a tool for programs embedded in a logic
than a tool that can manipulate programs directly. Given the time
constraints of this project, this is undesirable.
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We therefore want to keep the Hoare logic separated from the proof logic
and combine them by using additional derivation rules. Preferably, we want
to develop a Hoare logic that can be used to verify complete programs and
that conforms to the De Bruijn criterion.

1.3 A Designer’s Tool

Building a fully featured tool is not possible in the time available in a PhD
project. We therefore want to build a proof-of-concept of a tool. However,
we do want the tool to be powerful enough for educational purposes. Using
the tool in programming courses will also yield feedback from students,
which will help to guide future development of the tool. For these reasons,
we choose to build support for:

e A simple While-language instead of a full Pascal-like language. This
will suffice for educational purposes.

e First-order predicate logic represented by a Pure Type System (PTS)
as the specification language. This logic is well known amongst pro-
grammers and the PTS formalism allows future extensions. Also, in
PTSs, proofs can be verified through type checking and the system
will conform to the De Bruijn criterion.

e A simple tableau-based automated theorem prover. However, we then
need to be able to convert closed tableaux into A-terms of the PTS to
allow them to be checked.

Since initially we are only building a prototype, we want the tool to be
extendable, such that in the near future a full imperative programming
language and in the farther future perhaps an object-oriented language can
be supported.

To keep the tool extendable, we have to implement it in a transparent man-
ner. Therefore, we choose to design the tool modularly, such that parts of it
can be studied, maintained and replaced independently of each other. Also,
this supports the safety of the tool, since the type-checker will be a separate,
hopefully small, part of the tool that is carefully implemented independently
of the rest of the system.
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We choose to implement the tool in an object-oriented language for the
following reasons:

e Modularity is better supported in an object-oriented language than in
any other kind of current programming language.

e By using inheritance, the tool can be smaller and therefore, hopefully,
more reliable.

e Object oriented languages offer better support for building graphical
user interfaces than functional or logical programming languages.

We have chosen to implement the tool in Java, since this language is plat-
form independent. Java also comes with extensive standardized libraries for
building graphical user interfaces.

Globally, the tool consists of three parts:

A Symbolic Engine: This is the heart of the system. It consists of the
term representations and type checkers of the formal systems. Every-
thing proved by the user has to be represented in the symbolic engine
and is checked for correctness there. The symbolic engine ensures
safety and conforms to the De Bruijn criterion.

A Tactic System: To make proof construction easier, the tool offers sup-
port for larger proof steps than allowed by the symbolic engine. Each
of these larger proof steps is automatically translated into a term of
the symbolic engine to ensure safety of the system. The tactic system
also contains all means for automatic proof construction. It dictates
how the tool can be used and hence, it should support several styles
of reasoning.

A User Interface: To enable a user to work with the tool, a user interface
is needed. The cocktail of formalisms in the tool makes interaction
relatively complicated. Changes in the program result in changes in
the proof-obligations and have to be visible immediately. Therefore,
the user interface has to display all available information consistently.
Also, all displayed information has to be correct at any moment. We
want to realize this through a number of connected windows that dis-
play all information in a suitable way, i.e. programs are displayed
differently from proofs. Changes in one window automatically lead to
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changes in other windows. Interaction should take place with the dis-
played information directly instead of indirectly through commands,
issued from a separate window.

1.4 Overview of this Thesis

The thesis is divided in three parts:

Part I: This part discusses the requirements of the different representatives

and the way in which we want to meet these requirements. The pro-
grammer’s requirements, the logician’s requirements and the system’s
designer’s requirements are separately discussed in chapters 2, 3 and 4
respectively. We also compare our requirements with the state of the
art in literature and motivate our design choices.

Part II: In this part all required formal systems are discussed. Since all

formalisms used by the tool are based on first-order logic, the definition
and semantics of this logic are given in chapter 5. Chapter 6 describes
our design of an accurate model of first-order logic in a PTS. Meth-
ods for automated theorem proving are discussed in chapter 7. The
programming logic used by the tool is defined in chapter 8. Since the
formalisms discussed cannot be used directly in the way envisioned
for our tool, we show how to combine the formalisms in chapters 9
and 10: Chapter 9 describes the translation of closed tableaux into
A-terms and chapter 10 links the Hoare logic to a PTS.

Part ITI: Once the requirements of part I are known and the formal basis

of part II is available, we can design the actual tool. Chapter 12
discusses some design considerations and resolves two final issues in the
theory required for the tool. Chapter 13 states the design goals more
elaborately and extracts a number of operational requirements from
those goals. In chapter 14 the design of the graphical user interface
is discussed. It deals with formula-, proof- and program-display, as
well as interaction issues. In chapter 15 the actual implementation is
briefly discussed, casting some light on the modular design at several
levels. Finally, the results are discussed in chapter 16.

The thesis does not need to be read entirely by everyone interested in Cock-
tail. People interrested in the main features of the tool and the motivations
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behind them should read part I. For readers who are mainly interested in
the theoretical background, reading part II will suffice: people interested in
combining interactive and automatic proof construction should start with
chapters 7 and 9. Those more interested in the programming logic and its
connection to a theorem prover should read chapters 8 and 10.



Part 1

Perspectives to Deriving
Correct Programs






Chapter 2

A Programmer’s Perspective

Our aim is to build a tool that assists programmers in constructing correct
programs. However, to decide when a program is correct, the programmer
must provide a formal specification of what the program is supposed to
do. Ideally, the tool should automatically derive a correct program from
this specification, but this is only possible for the simplest programs. For
instance, H. Christensen describes a tool for automatic program derivation
in [Chr93], but this tool has only a limited capacity to use quantifications in
specifications. As a result, fibonacci numbers or factorials cannot be defined.
For such functions, at least first-order logic is needed and since this logic
is undecidable, we need an interactive tool to be able to handle meaningful
programs.

The programmer will be interested mainly in the program itself and less
in its correctness proof. To accomodate the programmer, the tool needs

11
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to represent programs as directly as possible and has to construct proofs
automatically whenever possible.

In this chapter, we will discuss which methods are available to the pro-
grammer to prove correctness of her programs and which requirements this
imposes on a tool.

2.1 Approaches to Correct Programming

Which methods are available to the programmer to prove correctness of her
programs? In literature, several methods have been proposed. We distin-
guish them here by the order in which the program and its correctness proof
are constructed.

2.1.1 Constructing the Program first

In this approach, the correctness of the program is verified after it has been
written. There are several ways to do this:

Model checking: A tool simulates all possible executions of the program
and checks if all established states satisfy the specification. If a case is
found in which the program produces faulty results, the trace leading
to this result is reported to the user. The program and its specification
have to be formulated in the tools language for this purpose. Although
these languages may resemble regular programming languages, they
are typically much more limited. Hence, the programmer still has to
code her program in an artificial way.

Theorem proving: In this method, the program is first formalized within
a theorem prover and then its correctness is proved interactively. How-
ever, this forces the programmer to encode the program in a theorem
prover logic and hence, this method is not intuitive to the programmer.

Verification Condition Generating: In this method, proof obligations
are automatically computed for a formally annotated program. These
proof obligations have to be satisfied afterwards. To compute the proof
obligations, a Hoare logic is used and consequently, the focus is mainly
on the program.
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A general drawback of constructing the program first is that no support is
available during the program construction process. Errors are only detected
after the program is completed.

2.1.2 Constructing the Proof first

In this method, the programmer first has to formally prove a theorem, which
indirectly states that there exists a program that meets the specification.
Among other restrictions, the proof must be constructive in a certain way.
A tool then automatically extracts a program from the proof of this theo-
rem. How this is done exactly is beyond the scope of this thesis, but the
interested reader is referred to [PM89]. This method is hardly suitable for a
programmer, since it focuses entirely on the proof, not on the program. The
extracted program can be very different from the programmer’s expectations
and wishes. For instance: it might turn out to be very inefficient. Since the
program is not visible during the construction of its proof, the only way to
influence the outcome is to guide the construction of the proof. However,
this requires the user to be an expert in program extraction and theorem
proving. Such users, however, are logicians, not programmers.

2.1.3 Simultaneous Construction of Program and Proof

In this method, the program and its correctness proof are constructed hand
in hand. It is based on a Hoare logic, which directly links the program to
its semantics. From Dijkstra-Hoare calculus and the works of Gries, Feijen
and Kaldewaij [Gri81, DF88, Kal90] it becomes clear that programs can
actually be derived from their specifications. When finished, the program
and its correctness proof are both available.

The initial specification is rewritten over and over again, inspiring new pieces
of program to be inserted along the way, yielding sub-specifications. This
process is sometimes referred to as (program) refinement. The Hoare logic
enables the programmer to construct proofs in any order and at any time
during the program derivation. The program under construction is available
the whole time. Poll developed a similar calculus for functional languages
in [Pol94], but for this calculus there is less practical experience with deriv-
ing programs than is available for Hoare logic. Also, we want to support
imperative languages rather than functional languages.
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2.2 Existing Tools

For all methods presented in the previous section, some tools are available.
We will discuss them in the same order.

2.2.1 Constructing the Program first

We have several options:

Model checkers: Model checkers, like SPIN [Hol97], have been applied

successfully to verify for instance communication protocols. However,
model checkers suffer from their non-scalability: since all traces of a
program are considered, the number of possible states grows exponen-
tially. This is known as the state-explosion problem. Since the method
is also not suitable for interaction, it will not be possible to apply it
to more complex algorithms. Also, programs have to be written in the
tool’s language, in SPIN’s case Promela, which resembles, but is not
equal to, a regular programming language.

Theorem provers: COQ [Coq97], LEGO [LEG97], PVS [ORS92], Yarrow

[Zwa98, Zwa97] and other theorem provers are suitable to construct
correctness proofs. However, this invariably requires the program to be
encoded within the theorem prover (using a deep or shallow embedding
as set forth in chapter 10 of this thesis). This is not interesting to a
programmer, to whom a Hoare logic is just about acceptable. Also,
since suitable theorem provers are usually based on higher order logic,
automated theorem proving is barely supported. All proofs have to be
constructed manually with the tool.

Verification Condition Generators: A tool like Sunrise [GGH98] allows

the programmer to prove correctness of a program without her having
to encode it first. It takes the program, annotated with invariants, as
input and generates a set of verification conditions. These have to be
proved correct within a theorem prover; which, in case of Sunrise, is
the HOL system. The generated conditions are typically very compli-
cated, since the VCG combines many separate proof obligations into
a few theorems. To the programmer, the relation between the pro-
gram and the verification conditions will not alway be clear. If the
original program or specification was not correct, the verification con-
ditions barely provide any hints for improvements. The advantage
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of verification condition generators is that they are able to deal with
complex programming constructs, like mutually recursive procedures
(see [HM96]).

As stated before, a general drawback of constructing the program first is
that no support is available during the programming process.

2.2.2 Constructing the Proof first

The only tool for this method that we know of is COQ. The partial program
is not visible during the construction of the proof and can be disappoint-
ing afterwards (it can be an unintended solution, turn out to be inefficient
etc). Also, the programmer has to use a theorem prover’s interface, which
she is not used to. Moreover, the result of program extraction is always a
functional program; in case of COQ, a program in ML. However, we want
to support imperative programs.

2.2.3 Simultaneous Construction of Program and Proof

There are only a few tools. We will discuss two of them:

The Karlsruhe Interactive Verifier: This is a large system, which is
based on dynamic logic. The interface is designed for proving logi-
cal theorems. Even though the Karlsruhe Interactive Verifier (KIV)
is mainly a verification system, M. Heisel also implemented Gries’
method in it to derive programs (see [Hei92]). However, since this is
not an integrated part of the system, the presentation of the program
derivation process is not suitable for the programmer. Moreover, only
few programmers know how to use dynamic logic.

The Refinement Calculator: This tool is implemented as an extension
to the HOL theorem prover; a theorem prover for higher order logic
(see [GM93]). Because of its logic, it barely supports automated theo-
rem proving. Also, rewriting is supported only in a limited way, even
though rewriting is used much in Dijkstra-Hoare calculus. Moreover,
the programmer is confronted with a theorem prover’s interface. Pro-
grams are encoded in HOL’s logic using a shallow embedding as de-
scribed in chapter 10 and hence, are less readable to the programmer.
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The language supported by the refinement calculator is not defined ex-
plicitly. For instance, it is possible to use functions within a program
that were intended for specification purposes only. These functions
might even be non-computable. As a result, it is not always clear if
and when the development of proof and program is complete.

2.3 Required Ingredients

The discussion above shows that, according to the programmer, the tool
needs at least the following two components:

A Hoare Logic, which is needed to write programs. This logic is widely
known amongst and accepted by programmers, as opposed to dynamic
logic. Also, many meta-theoretical properties of Hoare logic are known
and many advanced programming constructs can be supported (For
instance, mutually recursive procedures as described in [HM96]).

A Theorem Prover, which is needed to solve the proof obligations gener-
ated by the Hoare logic. Preferably, the proofs should be constructed
automatically. The theorem prover should also provide extensive sup-
port to rewrite specifications.

A tool with these characteristics does, to our knowledge, not yet exist.



Chapter 3

A Logician’s Perspective

This chapter explores the wishes of the logician with respect to a program-
ming tool. In the first section, a logic is chosen, based on the requirements
of the programmer. Then, additional requirements are formulated for the
logician. The second section discusses why existing tools do not satisfy our
requirements. The last section is a brief list of the requirements gathered
for the tool so far.

3.1 Choosing a Logic

In chapter 2, we found that to write useful specifications, we need at least
a first order logic. Since validity of first order formulas is undecidable, we
have to be able to support interactive proof construction.

17
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The programmer wants to use automated theorem proving whenever pos-
sible. Hence, we should avoid using a logic stronger than first order logic.
Also, a weak logic has more meta-theoretical properties that can be utilized
by a tool and has semantics that are easier to grasp for non-logicians.

In chapter 2 we argued the need to support a Hoare logic. The requirements
of the programmer also imply that we should avoid to embed this Hoare logic
in the theorem prover’s logic. Embedding the Hoare logic would probably
force us to use higher order logic. Also, we would force the programmer
to encode her programs in the proof logic, which again shifts the focus to
theorem proving.

Whatever formal system is supported by the tool, the logician wants a guar-
antee of correctness. Errors in the tool should never cause errors in final
proofs. For instance, the Boyer-Moore theorem prover (see [BMS88]) uses
many advanced techniques to automatically find a proof of a theorem, but
only reports if the theorem was correct, incorrect or if the tool could not
solve the problem. There is no way to verify the correctness of the proof.
PVS, an interactive theorem prover, suffers from the same problem. In PVS
it is not exactly known what logic is supported, since several parts of the sys-
tem use different rules (repeatedly contradictions were proved within PVS,
always leading to improvements of the tool).

The first person to tackle the safety problem of implemented logics was
De Bruijn, who proposed Automath (see [NGdV94]). In this system, the
proofs are represented syntactically in a simple, uniform way that follows
the structure of the logical rules. The advantages of this approach are:

e Proofs can be easily verified once they are complete, regardless of the
way they were constructed. One only has to check the correctness of
the syntactical representation of the proof.

e The proof can be communicated to other systems. If a logician does
not believe the original system is correct, she can write her own proof
checker, which typically is small, simple and, if needed, can be formally
proved to be correct. This is called the De Bruijn criterion.

A drawback of this approach is that proofs have to be constructed in a very
detailed way, which makes them long and, certainly to the programmer,
unattractive. Modern versions of Automath-like systems are Pure Type
Systems (PTSs, see [Bar92, Ter89]) implemented in, for instance, Yarrow
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(see [Zwa98]), Edinburgh Logical Framework (see [HMP93]) implemented
in ELF (see [Pfe91]) and Martin Lof type theory (see [ML82]), implemented
in Nuprl (see [CAB86]).

Because the level of detail in formal logics is too high, the system must
provide support for larger proof steps. To ensure safety of the system,
these larger steps have to be broken down into small steps accepted by the
formal logic. A good example is an automatically constructed proof. If
we can encode generated proofs in the formal logic, we can safely combine
automated and interactive theorem proving.

Hence, we want the tool to support first-order logic, both interactive and
automated theorem proving and it must conform to the De Bruijn criterion.

3.2 Existing Tools

Basically, there are two kinds of tools. They can be distinguished by the
logic they support:

First Order logic: Theorem provers for first order logic are usually based
on either the resolution or the tableau method. Examples are JAPE
[BS], Otter [McC94], 3Tap [HBG94] and Bliksem [dN95]. A drawback
of these tools is that they are not interactive and hence, incomplete.
An exception is JAPE, which is interactive. However, JAPE, like all
other mentioned systems, does not conform to the De Bruijn criterion.

Higher Order Logic: Since automated proof search is barely possible,
these tools are all interactive. Examples are COQ [Hue89], Yarrow
[Zwa98], LEGO [LEG97], Nuprl [CAB86], TypeLab [HLS97], HOL
[GM93], and PVS [ORS92]. We compare each system against our re-
quirements of safety, support for rewriting and automated theorem
proving.

Safety: PVS does not provide representations of the actual proof and
hence, does not provide the required safety. Type checking in
PVS differs from type checking in A-calculi and is undecidable:
type checking a term in PVS can result in proof obligations,
which have to be solved within PVS itself. Hence, PVS’s safety
check depends on PVS’s safety. COQ, Yarrow, LEGO, Nuprl and
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TypeLab all provide proof representations and use type-checking
to ensure safety.

Rewriting: Rewriting in COQ, Yarrow, LEGO, Nuprl, TypeLab and
HOL is only supported in a limited way. Once Leibniz equalities
are formulated in higher-order encodings, they can only be used
to rewrite the current goal of the theorem under construction. If
several applications of the same equality are possible, determining
the desired rewriting is complicated.

Automated Theorem Proving: Automated Theorem Proving (in
short ATP) in these systems is hardly possible, since they are
based on higher order logic. PVS does provide many facilities for
ATP, but is not suitable for our purposes by lack of safety. In
[BHNOO] a method to translate proofs of the automated theorem
prover Bliksem into proofs of the interactive system COQ is pro-
posed. Unfortunately, translation is not always possible, despite
COQ’s powerful logic. Axioms are needed to deal with skolem-
ized functions of the resolution proof. Accepting Bliksem’s proofs
within COQ then violates the safety and the De Bruijn criterion.

3.3 Required Ingredients

The logician requires the tool to support the following;:

Safety: The logic’s implementation should be safe and satisfy De Bruijn’s
criterion. Hence, we need to find a type-theory for the first-order logic
we have chosen to use.

Interaction: Since theorem proving in first-order logic is undecidable, the
user must be able to interactively construct proofs. Also, rewriting
must be supported extensively.

Automated Theorem Proving: The programmer wants the tool to con-
struct proofs automatically whenever possible. The logician demands
safety of the system. Hence, automatically constructed proofs have to
be translated into a proof representation of the formal system used by
the tool.

A tool with these characteristics does, to our knowledge, not yet exist.



Chapter 4

The System Designer’s
Perspective

The programmer and the logician outlined the requirements of the formal
foundations of the tool. When implementing a tool, many design consider-
ations enter the stage. These are usually more practically oriented than the
requirements given until now. Therefore, this chapter discusses the system
designer’s perspective, whose task is to construct a tool that does not only
meet all requirements of the programmer and the logician, but which is also
usable to the students for which it is built initially. Since in the future,
many more people should be able to use the tool, the system designer has to
consider not only the initial requirements, but also how future development
of the tool should take place. As a result, decisions have to be made about
the basic characteristics of the tool, the implementation language, the global
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design and the user interface. Once these decisions are made, we can give
the full list of requirements of the tool.

4.1 General Considerations

Since the time for this PhD project is limited, we will have to restrict our-
selves to building a tool as proof of concept. Implementing support for an
entire programming language (like Pascal) would not be possible in four
years, since we will also have to develop some theory. Also, it will not be
necessary: a simple While language will suffice to support first and second
year programming courses at Eindhoven University of Technology. Using the
tool during these courses will also provide feedback for future development
of the tool. To enable such development, the tool needs to be extendable.
For the near future our goal is to implement the full GCL, to be able to use
the tool to support more advanced programming courses. In the long run,
the tool might even evolve into a real-world programming tool.

4.1.1 Generic versus Adjustable

In practice, two methods to build extendable tools for formal systems can
be distinguished. We will briefly discuss their advantages and drawbacks.

Generic tools: Generic tools take a description of the formal system as
input and generate support for this system (for instance: a descrip-
tion of a Gentzen-style logic). The most important advantage of this
approach is that the formal system supported by the tool can easily be
altered by a user: one only has to change the system’s input. The main
drawback is that the tool cannot utilize any meta-theoretical proper-
ties of the formal system. After all, it is not known beforehand which
formalism will be used. Therefore, a generic tool is hard to build:
one has to provide meaningful support for an unknown formal system.
Examples of generic tools are JAPE (see [BS]) for Gentzen-style logics
and ASF+SDF (see [vdBvDK96]) for algebraic systems.

Adjustable tools: Adjustable tools do have a formal system built in, but
are constructed in such a way that these can be changed and extended
relatively easy. However, changing the formalisms supported by the
tool will be harder than for generic tools, since it will require altering
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of the tool. On the other hand, it is still possible to provide switches to
enable or disable certain parts of the formal system. In that case, the
formal system is not restricted to a single fixed logic, but at least all
possible systems that can be supported by the tool are known during
its construction. This enables the system designer to exploit meta-
theoretical properties of the formal system(s). Hence, it will be easier
to provide meaningful support in these systems. A nice example of
an adjustable system is Yarrow, which provides support for all single
sorted Pure Type Systems (see [Zwa98]).

We choose to build an adjustable system for the following reasons:

e In practice, most generic tools are only used for a single logic. Usually,
when designing a generic system, it requires so much time to build
support for the initial logic under consideration, that there is hardly
time to to consider entirely different logics. However, ASF+SDF has
been applied successfully for many different systems. Unfortunately
for us, ASF+SDF is aimed at algebraic systems, not at logics.

e The prototype must be built within the given amount of time for a
PhD project. It is important to have a working proof of concept,
so we cannot take the risk to end up with a generic tool that is not
yet powerful enough to be used in an educational setting. Since it is
easier to support a single logic, building an adjustable tool will yield
results faster. For instance, it took about ten times as long to build
the ASF+SDF system than the time available for this project. If we
want a working proof of concept, a generic tool is just not feasible.

In the exceptional case where a user wants to change the logic, she has to
learn about the implementation of the tool. However, this implies that the
tool must be designed carefully to remain transparent. This, in turn, raises
questions about how the tool should be implemented.

4.1.2 Choosing a Paradigm

Before we start building the tool, we have to choose what language we will
use to built it. In this subsection, we will select the software construc-
tion paradigm (or programming paradigm). In the next subsection, we will
choose the actual implementation language.
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To allow future extensions of the tool it is necessary

e for the tool to be comprehensible (transparent)

e that parts of the system are independent and replaceable (modular).
For instance, the type-checker should be a small separate module.

e to be able to re-use parts of the tool that are already implemented.

Hence, it is recommended to design the tool in a modular way, such that
parts of the tool can be studied, maintained and replaced independently
from other parts. It is also necessary to support re-use of the code.

There are two paradigms that are obvious candidates for the construction of
our tool. The following table summarizes their most important properties
related to our wishes stated above.

Functional Programming Object Oriented Programming
e similar to A-calculus e requires more work to imple-
ment new data-types
e re-use of code is non-trivial e re-use of code is supported

through inheritance
e user interfaces are still rather e user interfaces can easyly be
difficult to build build (certainly when using
visual tools)

Since modularity and re-use of code are essential in our tool, we choose to
use an object oriented programming language. This also allows us to build
a good user interface more easily.

4.1.3 Choosing a Language

In our choice of the actual implementation language, we consider the follow-
ing issues:

e We want the tool to be platform-independent for the following reasons:

— The potential users (of the initial version and all future versions)
of the tool use different platforms and operating systems.



4.2. MAIN MODULES OF THE SYSTEM 25

— We want the initial tool to work on smaller stand-alone machines
(like student’s computers) themselves, not on a network or main-
frame. Future versions of the tool, however, may require more
resources, forcing a move to a different platform.

e Since interaction with a tool like this will be non-trivial, we want
extended features for building a user interface.

e The language should be clean and readable.

Object oriented languages suitable for platform independent programs are
C++ and Java.

C++ programs run much faster than Java programs, but considering the
interactive character of our tool this is not very important. The computer
will have plenty of time for computations between the user’s actions, espe-
cially for the relatively small computations it has to do. Moreover, C++ is
not as standardized as it seems, especially when using its modern features
like templates and exceptions. Also, C++’s libraries for building (graphical)
user interfaces differ between platforms.

On the other hand, the design of Java is much more consistent. Also it
provides extensive platform-independent libraries to build graphical user
interfaces. Java is also freely available for many different platforms. Hence,
we will implement the system in Java.

4.2 Main Modules of the System

The safety of the tool, required by the logician, leads to very detailed proofs.
Since the programmer typically wants to use larger steps, we have to trans-
late these into several smaller ones. A system designer wants to do this
transparently and hence, in a modular way. Also, we should realize that the
translations are independent of the interaction with the system. Therefore,
we choose to design the system roughly in three parts, each extending the
previous one:

The symbolic engine, which ensures the safety of the system.

The tactic system, which translates larger proof steps into smaller ones
that are accepted by the symbolic engine.
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The user interface, which enables the user to interact with the system by
sending commands to the tactic system.

Each module is presented in a separate subsection.

4.2.1 Symbolic Engine

The symbolic engine consists of the representation of terms of the formal
systems and the type-checkers. The type-checkers have to verify whether or
not a term can be derived in the formal system to which it belongs.

The symbolic engine ensures that the entire system conforms to the De
Bruijn criterion. Hence, it is very important to keep this module small and
correct.

For first-order logic we will use a simple Pure Type System (PTS) as de-
scribed in chapter 6. To safely support Hoare logic, we design a specific
version in chapter 10 that conforms to the De Bruijn criterion. Also, we
design this Hoare logic in such a way that it has the same structure and
properties as a PTS. This allows us to re-use code of the PTS type-checker
for the program checker. Hence, the symbolic engine remains small, com-
prehensible and can therefore be trusted to be correct. Also, having both
systems represented by a uniform structure is more satisfying aesthetically.

4.2.2 Tactic System

The tactic system is a layer on top of the symbolic engine, which enables
the user to use larger steps in the proof than those allowed by the formal
system. All these larger steps are immediately translated into small steps
that are accepted by the symbolic engine. Constructing proofs directly with
the symbolic engine would be possible, but results in proofs that have too
much detail. To the users this is too cumbersome and this causes them to
lose the overview of their proof.

The actions a user can perform with the tool depend on the translations the
tactic system is able to make. Hence, the tactic system dictates how the
tool has to be used. Since we do not want to force one specific method of
proof construction upon the user, we want the tactic system to support at
least the following;:
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Backward Reasoning In backward reasoning, the goal of the proof is de-
composed into new goals by applying known theorems to it. For in-
stance, if one has to prove B, one can apply an already known theorem
A = B to the goal after which the new goal A remains to be proved.
This is the usual method of proof construction supported by systems
based on type-theory.

Forward Reasoning In forward reasoning, one derives new information
from information that was already available, independent of the cur-
rent goal of the proof. For instance, given A = B and A, we may
want to conclude B, even if this is not the goal of our proof. Since, to
the user, there is no apparent reason why this should not be possible,
she will expect it to be supported.

Automated Theorem Proving (ATP): We need this to alleviate the user
from constructing many (nearly) trivial proofs. Note that since auto-
matically constructed proofs are translated into terms of the symbolic
engine as described in chapter 9, the automated theorem prover is part
of the tactic system. Also, we want that ATP can be invoked by the
user at any given moment to prove a (partial) theorem.

Equational Reasoning Since equational reasoning is often needed when
using Dijkstra/Hoare calculus, we have to support it in our tool.

4.2.3 User Interface

The user interface lets the user communicate with the system. With the
user interface, the user sends commands to the tactic system to construct
proofs. Also, it shows all information about the program and its correctness
proof available at any given moment.

The cocktail of formalisms supported by the tool is not a trivial one. Any
changes in the program cause changes in the set of proof-obligations. In-
teractions with a system like this therefore have to be well thought through
and have to be presented orderly to the user. Hence, it is necessary to visu-
alize information in a comprehensible manner. Also, the information must
be consistent and up-to-date at any given moment. The programmer will
expect programs to be displayed different than proofs. To tighten the gap
between user’s expectations and the actual system, we want to use notations
that the user is accustomed to.
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Therefore, we want to build a graphical user interface (GUI), which uses
several windows to display different pieces of information in a comprehen-
sible way. The information in the windows is interconnected, such that
consequences of an action are immediately visible everywhere. Interaction
with the system should take place with the displayed information as directly
as possible and not, as is often the case, through commands issued from a
separate window. For instance, the user should be able to graphically select
a part of a formula that she wants to rewrite in equational reasoning.

4.3 Required Ingredients

In short, the requirements of the tool are the following:

e The tool should be a proof of concept of a tool for deriving correct
programs. Hence, we will restrict ourselves to using first-order logic
and a simple While language.

e The tool must be adjustable. That is, transparent, maintainable and
extendible, but not generic. We will establish this by creating a mod-
ular design and re-usable implementation of the tool.

e The tool should be platform-independent and be able to run on an
average sized computer. Platform independence is established auto-
matically through the use of Java as our implementation language.

e The tool must have a safe formal foundation that is implemented in a
trustworthy way. Safety is obtained by using a typed lambda calculus,
which conforms to the De Bruijn criterion and allows verification of
the actual proofs by type checking. The required type checker is a
small and simple program, which can be formally verified if necessary.

e Interactive theorem proving (both forward and backward) as well as
automated theorem proving must be supported. Also, the tool should
have extensive support for rewriting.

e To be useful, the tool must have an intuitive, comprehensible user
interface that allows direct interaction with the displayed information.

A tool with these characteristics does, to our knowledge, not yet exist.
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Theoretic Background

29






Chapter 5

Introduction

5.1 Purpose of Part II

The purpose of this part is to provide a theoretical foundation for a tool for
the derivation of correct programs. This foundation consists of three parts:
Firstly, an interactive theorem prover for first order logic based on type
theory. Secondly, an automated theorem prover, embedded in the interactive
theorem prover. Thirdly, a Hoare logic, which is linked to the theorem
prover. The theorem prover will be used in the programming environment,
but only to perform correctness proofs, not to model the semantics of the
programming language. The derivation of programs is supported by a Hoare
logic and is presented in chapter 8.
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An interactive theorem prover with a high degree of automation combines
the fields of interactive theorem proving and automated theorem proving.
Both approaches to theorem proving have advantages and drawbacks. We
will briefly present them here.

The reason for comparing the two is that we want to create a proof system
that combines the advantages of interactive theorem proving with the ad-
vantages of automated theorem proving. If possible, we want to have the
best of both worlds.

5.1.1 Interactive Theorem Proving

In interactive theorem proving one often uses typed lambda calculi, since
these calculi provide an easy way to represent unfinished proofs as lambda
terms with typed holes. The holes then have to be filled with terms of the
correct type to complete the proof. Besides, typed lambda calculi have the
following advantages:

e Verification of proofs is possible by type checking.

e Proofs can be communicated as A-terms, since A-terms are a standard
representation of a proof.

e There is a uniform treatment of first order logics and higher order
logics.

Examples of interactive theorem provers based on typed A-calculi are Nuprl
(see [CAB86]), COQ (see [Hue89]) and Yarrow (see [Zwa98]). For a more
elaborate overview we refer to [Fra97].

A drawback of interactive theorem provers based on typed A-calculi is that
automating the proving process is hard. The reasons for this are, among
others,

e Typed A-calculi are usually used to model higher order logics. For
automatic proof search in higher order logics no efficient methods have
been found yet. Also, in higher order logics, even simple concepts like
logical ”and” and logical ”or” are represented by complex higher order
formulas. Therefore, even proving simple theorems is difficult from the
computer’s point of view.
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e Many automated theorem proving methods use semantical concepts

during proof construction. In typed A-calculi, every proof has to be
explicitly given as a A-term. Hence, taking shortcuts in a proof, based
on meta-theoretical properties of the logic, is not possible.

Automated theorem provers usually do not provide a representation
of the actual proof. That is, they only answer the question whether
or not the theorem is correct. They do not show how this answer
was computed. In A-calculus the proof term always has to be stated
explicitly and can become very large.

5.1.2 Automated Theorem Provers

Automated theorem provers (ATPs) are usually based on the method of
tableaux or on resolution methods (see [BS98]), since these methods are
powerful enough to attack problems formulated in first order logic. Be-
sides, it is known that for every valid formula in first order logic both a
tableau proof and a resolution proof exist, although it may not always be
computable. Both methods are based on classical first order logic!.

Automated theorem provers are not the answer to all our problems. In the
following we will give a brief list of the most important drawbacks of ATPs:

e There are limits to what an ATP can prove. They can prove nontriv-

ial theorems, but not (yet) hard theorems. They are most beneficial
in proofs that are not hard but tedious (e.g. a proof consisting of
many simple case distinctions in which the ATP can prove the sepa-
rate cases). The Boyer-Moore theorem prover (see [BM88]) has been
used to proof many theorems, but for this the theorems had to be
manually split into numerous smaller theorems that could be handled
by the tool. Therefore, the Boyer-Moore theorem prover is considered
to be a tool to check proofs rather than a tool to construct proofs.

Proofs constructed by an ATP are usually not suitable for a human
reader. This gives rise to problems when the user has to interact with
the ATP if the ATP cannot find a proof fully automatically. The user
will then hardly be able to see where the difficulties arise and how

!There are versions of both methods that are suitable for intuitionistic and modal first

order logic, but these are not standard. We will not consider these methods in this thesis,
but the interested reader is referred to [dS93] and to [DGHP99].
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they should be solved. Once the user has interacted with the ATP,
the proof is no longer automatically reproducible. If the ATP had
to reproduce the proof, it would again not find it fully automatically.
To find the same proof again, the same user interaction as before is
required.

e Since the representation of the actual proof is not standard, it cannot
be communicated to other proof systems. These systems can there-
fore not be used to verify the automatically constructed proof. Tableau
based theorem provers do construct a tableau as a representation of
the proof, but this is not a communicatable representation. Resolution
methods do not produce a representation of the proof at all, although
many implementations provide an ad hoc (non-standard) internal rep-
resentation for use within the same system.

A user benefits from an ATP the most if it is embedded in an interactive
system which assists in proving hard theorems. The user can then invoke
the ATP to deal with tedious or simple parts of the larger proof. This is
exactly what is made possible with the system AP— introduced in this part:
combining meaningful ATP with an interactive theorem prover based on a
typed A-calculus.

5.2 First Order Predicate Logic

Since in this part we deal with first order predicate logic, we will formally
introduce first order logic. All formal systems used by the tool will have
semantics formulated in this logic. Hence, it connects the formal systems at
the meta-level. Therefore, it is important to describe this logic accurately.

In literature, formulas of first order predicate logic are defined as follows:

Definition 1 (First order formulas)

Let F be a set of function symbols, each with a fized arity > 0. Further-
more, let P be a set of predicate symbols, each with a fized arity > 0. For
convenience, we assume a special predicate symbol Falsum to exist in P with
arity 0. Finally, we assume the existence of an infinite set V' of variables.
The sets F, P and V are disjoint.
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Then the set T of terms is defined recursively as:

1. VCT
2. If f € F with arity n and t1,...,t, € T, then (fty...t,) € T.

The set Prop of formulas is defined recursively as:

1. If P € P with arity n and t1,...,t, € T, then (Pt;...t,) € Prop.

2. If P,Q € Prop, then (P A Q) € Prop, (PV Q) € Prop and (P = Q) €
Prop.

3. If P € Prop, then (—P) € Prop.
4. If P € Prop and x € V, then (Vz.P) € Prop and (3z.P) € Prop.

We use the variable convention, which means that:

1. Bound variables will always have a name different from free variables.

2. If formulas differ only in the names of their bound variables, they are
considered to be equal (a-equality).

Note that the special symbol Falsum will be important, even though we will
not mention it often in the formal definition of first order logic.

Definition 2 (Substitutions)
The result of substituting a term t for a wvariable x in P is denoted as
P[z :=t]. The substitution is defined as follows (we assume that x Z y):

z[z =t =t

Y[z :=1] =y

(ftr1...tp)[z:=t] = flfz:=1t])...(t[x =1)])

(Pty...tp)[z:=1t] = Ptz :=1t])... (tp[z :=1))

(PAQ)[x:=1] = Plz:=t]|AQ[x:=1]

(PVQ)z:=1] = Plz:=t]VQ[r =1

(P=Q)z:=t = Plz:=1t]=Qlz:=1]

CPai=f = ~(Ple=1)

(Vz.P)[z =] = Vz.P

(Vy.P)[z := ] = Vy.Plx:=1t] Ok, because of variable convention
(Fz.P)[z :=1] = dz.P

(Fy.P)[z := 1] = Jy.Plz:=1t] Ok, because of variable convention
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For the substitution equations of quantified formulas we can assume that
y ¢ FV (t) by using the first clause of the variable convention.

Definition 3 (Closed formulas)

We say that variable z does not occur free in P if and only if P[z :==t] = P
for all possible t € T. P is called closed if no variable occurs free in P; it is
called open otherwise.

F and P are the parameters of this framework. A weakness of the definitions
above is that all terms are treated equally. In practice, we often want to
distinguish between terms of different ”types” (for instance, booleans and
integers). Therefore, we will introduce a more general definition.

Definition 4 (multi-sorted first order formulas)

In addition to F and P we have a parameter Set that represents a set of
basic types. With every function symbol f € F with arity n, we associate a
unique tuple of types (U, ..., Uy, U), where Uy,...Uy and U are elements of
Set. We denote this as f : (Uy,...Up,U) € F. With every predicate symbol
P € P with arity n, we associate a unique tuple of types (Uy,...,Uy,), where
Ui,...,U, € Set. This is denoted as P : (Uy,...,Up) € P. Since the
arity of function and predicate symbols can now be derived from its unique
associated tuple of types it will no longer be stated explicitly. The set V of
variables in the extended framework contains variables which each have a
unique associated type U, where U € Set. We assume that for every type
there are infinitely many variables. The definition of the set T of typed terms
is:

1. a:U €T for every variable a with associated type U.
2. If f: (Ur,...,Up,U) € Fand ty:Up,...,ty: Uy €T then
(ftl...tn) :UeT.
The set Prop of formulas for multisorted first order logic is now defined as:
1. If P: (Uy,...,U,) €P and ty : Uy,... ,ty, : Uy, €T, then
(Pty...t,) € Prop.

2. If P,Q € Prop, then (P A Q) € Prop, (PV Q) € Prop and (P = Q) €
Prop.
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3. If P € Prop, then (—P) € Prop.

4. If P € Prop and x : U € V, then (Vx : U.P) € Prop and
(3z : U.P) € Prop.

Definition 5 (Atomic formulas)

One important subset of Prop is the set of atomic formulas. This is the set
of all (propositional) formulas Pty ...t, € Prop, with P € P and t1,...,t, €
T.

Definition 6 (Literals)
The set of literals is defined as the set of atomic formulas and negations of
atomic formulas.

In this thesis, we will only consider substitutions of terms for variables which
have the same associated type.

This framework is more general than the first one, since the original frame-
work can be obtained by choosing Set = {U}.

5.2.1 Semantics of First Order Predicate Logic

The semantics of first order logic is such that every closed formula represents
a proposition. The meaning of the proposition depends on the interpretation
of the predicate symbols and function symbols the user of the logic has
in mind. On the other hand, there are closed formulas that model true
propositions independent of the interpretation of the user. These formulas
are called tautologies. Tautologies provide self-contained information. They
can be seen as legal statements that will always hold, regardless of the
meaning of the predicate and function symbols.

The semantics of first order logic presented here consists of a mapping from
the syntactical set of type symbols, function symbols and predicate symbols
to real sets, functions and relations.

Definition 7 (Interpretations)
In this definition, we follow [dN95] page 25: Let T’ be a set of first order

formulas. An interpretation I of T is an ordered tuple I = (D, s), where

e D is a set of nonempty domains.
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® s is a function which attaches

— to every type symbol U in Set a domain in D. We denote this
domain by s(U).

— to every function symbol f occurring in T' which has associated
type (U1,...,Up,U) (and hence, arity n) a total function from
the function space s(U1) — ... = s(Uy,) — s(U). We denote this
function as s(f).

— to every predicate symbol P occurring in I' with associated type
(Ui,...,Uy,) (and hence, arity n) a subset of s(Uy) % ... x s(Uy).
We denote this subset as s(P). The elements of s(P) are the
tuples for which the relation holds. For the special symbol Falsum,
we assume that s(Falsum) = (.

— to every wariable v with associated type U which is free in an
F €T an element of s(U). This element is denoted as s(v).

We extend the mapping s to attach a meaning to every term t in T':

e [f the term t is a variable v, then s(v) is already defined (see above).

o Ift has the form fti...t,, then s(fti...tn) = s(f)(s(t1),--.,s(tn))-

We also define the modified mappings s[v — d| where v is a variable with
associated type U and d is an element of s(U).The value of s[v — d|(X) is
defined as:

e s(X) if X is a type, a function symbol, a predicate symbol or a variable
different from wv.

o dif X =w.

Note that s(Falsum) # {()}, the singleton set with the empty tuple as only
member, which is the only other possibility for predicate symbols with arity
0. If it was, the semantics of Falsum would have been t instead of f.

Definition 8 (Model)

We are now ready to define a model based on the interpretation I. We denote
a model of first order logic, based on interpretation I = (D,s) as M!. M!
is a function from formulas to {t,f} defined as:
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Pty ...t,) =t if and only if (s(t1),...,s(ty)) € s(P).
PAQ) =t if and only if M'(P) =t and M1 (Q) = t.

M'(
M'(
MY (PV Q) =t if and only if M'(P) =t or M1(Q) = ¢.
MI(P = Q) =t if and only if M'(P) = £ or M¥(Q) =t.
M(

—-P) =t if and only if M'(P) = f.

S om0

. M!(Vz : U.P) =t if and only if for every d € s(U) we have MI'(P) =
t with I' = (D, s[z — d]).

7. MI(3z : U.P) = t if and only if there exists a d € s(U) such that
M"(P) =t with I' = (D, sz ~ d]).

8. MY(P) = £ in all other cases.
Note that by definition M'(Falsum) = £ for any interpretation I.

To reason about the correctness of reasoning methods like natural deduc-
tion, tableau- and resolution methods, we introduce the relation = (read as
‘entails’) between sets of closed formulas. The definition is as follows:

Definition 9 (=)

T & A if and only if for all models M for which M!(P) =t for all P €T
there is at least one Q € A with M'(Q) = t, where T and A are sets of
closed formulas.

Hence, if T' is empty then for all models M! at least one formula in A is
true. This is denoted as = A. If, in addition, A contains only one element
Q, this element is a tautology since M'(Q) = t for all models M. If A
is empty then I' = A is false, even if I' is empty too, since there never
is an element in A that is mapped to ¢ in the interpretation I. If there
are no models for which M!(P) = t for every formula P in T, then the
set [ is called inconsistent. This is denoted by I' = Falsum. Obviously, if
' |= Falsum then T = @ for every closed formula Q. Since M (Falsum) = f
for all models, Falsum = @ for every closed formula Q.
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Chapter 6

Pure Type Systems

In this chapter we define and discuss Pure Type Systems (PTSs). The PTS
framework is due to Terlouw and Barendregt (see [Ter89, Bar92]). The
framework is used to describe several different logics in a uniform way. We
use such a PTS to construct correctness proofs for imperative programs.
By using a PTS as the basis of our system instead of a single fixed logic,
we enable future extensions of the logical system. Also, PTSs have proved
suitable for constructing interactive theorem provers like COQ [Coq97] and
Yarrow [Zwa98].

41
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6.1 Pure Type Systems (PTSs)

A PTS is specified by a triple (S,.A4,R) of sets, where A C § x § and
R C S xS8xS8. The elements of S are called sorts, the elements of A
are called axioms and the set R contains (II-formation) rules. Given a
specification of a PTS, say (S,.4,R), the terms, contexts and type judgment
relation of the PTS are defined as follows:

Definition 10 (Terms)
Given a set V of variables, the set T of PTS terms is defined by the following
abstract syntax:

T:=S|V|A\V:T.T|IIV:T.T|TT

Definition 11 (Contexts)

A context is a list of the form x1 : Aq,...,z, : Ay, where x; € V and A;
are terms as defined in definition 10 for 1 =1,...,n. The empty context is
denoted as <>. By convention we use I', A, ... as metavariables for contexts.
IfI'=21:A1,...,2n : Ay s a context and v € V, then v is called I'-fresh

ifvg{zi,...,Tn}-

Definition 12 (S-reduction)
On the terms of PTSs, we define a reduction relation —g C T X T as the
smallest relation such that

(Az : A.b)c—pgblz := (]

and that is closed under

if b—gbl then (Az:b.c)—p(Az:b.c)
(Az : a.b)—g(Az : a.b'),
(Oz : b.c)— Iz : b'.c),
Mz : a.b)—p(Mz : a.b'),
(be)—a(H)
and (ab)—g(al’)

—+g denotes the reflexive and transitive closure of —g. =g denotes the
symmetric, reflerive and transitive closure of —g.

B=4B' isread as ” B is f-equal to B"”, which means that there exists a B"”
such that B and B’ can both be reduced to B” by -reduction.
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start <> Foslis2 (s1,s2) € A
. TFA:s .

intro F,a:A—I—:(;A z 1s I-fresh
weaken [FA:B TFC:s xz 1s I'-fresh

T,2:C - A:B

'k A:sl T,z:AF B:s2

II-form TF (wA B)is3 (s1,s2,83) € R
Mointr Io:AFb:B Tk (Ilz:A. B):s
© I'F (Az:A. b):(Ilz:A. B)
. 'k F:(Ilz:A. B) TFaA
M-clim '+ Fa:Blz := a]
. I'-A:B Tk B''s B=3B'
conversion

'+ A:B

Figure 6.1: The type judgment derivation rules of a PTS.

Definition 13 (Type judgment relation)

The type judgment relation describes the actual PTS. A judgment always has
the form ' A : B, where A and B are terms and I is a context. T+ A: B
should be read as: ’A has type B in context I'". The type judgment relation
F is defined by the rules in figure 6.1.

We give a brief description of each type judgment rule in figure 6.1:

start This is the only rule without premises in a PTS. It supplies, starting
from the axioms in A, basic typing judgments from which all the other
typing judgments are derived.

intro Intro is used in a much more general sense than the intro-rule in
natural deduction. In natural deduction intro allows one to add as-
sumptions to the context. In a PTS intro allows one to add assump-
tions, constants (which in a PTS are equal to variables), functions and
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propositional variables (including predicates) to the context. This de-
pends on the form of A. The type of the introduced item x depends
on s, which is the type of the type of x.

weaken Weaken is needed to preserve existing derivations in extended con-
texts. It states that everything that can be derived in a certain context
can also be derived in a more extended context.

II-form 'This rule allows the construction of function types, predicates, uni-
versal quantifications, etc. The set of rules R of a PTS determines the
ways in which II-form can be used. Actually, the set R states which
abstractions are allowed.

II-intro One needs this rule to actually construct terms of a type built with
the previous rule. Without this rule, we could only assume that there
are terms of this type by using intro.

II-elim Once a term with a II-type is constructed or assumed, it can be
used to create a term with a more concrete type. The II-elim rule, also
referred to as the application rule, instantiates the body of an abstract
[I-type by substituting a term for the bound abstract variable.

conversion This rule states that we don’t distinguish $-equal types. In
several PTSs a term A can have type B where B can be rewritten to
B’ by -reduction. In the propositions-as-types isomorphism, B and
B’ then represent the same propositional formula (we will come back
to this in our example below) and hence, A is a proof of B’ just as
well as it is a proof of B. To support this switch of representation the
conversion rule is needed.

A problem with the conversion rule is that it does not affect the term A,
which makes type-checking less efficient. Suppose that a type judgment
of the form I' - p:P is given. In order to find out if this type judgment
could be derived by using the rules in figure 6.1 (type-checking), one usually
compares the syntactical structure of p with the conclusion of the rules to
find the last rule that was applied. If a match is found, the type-checking
results in a set of simpler type-checking questions. However, since the first
premise of the conversion rule contains exactly the same proof-term as the
conclusion, it is impossible to determine exclusively which rule was applied
last. This problem can be eliminated by computing the S-normal form of the
type before checking the proof-correctness, but this can be very inefficient.
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Constructing a complete type checking algorithm that is also efficient is
therefore hard.

Definition 14 (Valid (or legal) contexts)

A context is called valid or legal, if it can occur in a derivation using only
the azioms of the Pure Type System. This notion is also used for extended
PTSs, where additional rules may also be used.

For many PTSs one can automatically compute an entire derivation of I" I-
p: P for a given context I', a proof term p and a formula P provided that
at least one derivation exists (see e.g. [BJMP93]). Hence the proof-term can
be checked for correctness (type-checked). This has two advantages:

1. Even if a large tool is used to construct a proof-term p, correctness
of the proof is assured by type-checking. This algorithm is relatively
simple and can be proved to be correct.

2. Communicating proofs corresponds to communicating a syntactical
proof term. This proof term can then be checked by another proof
system based on A-calculus.

6.1.1 An example PTS for First-Order Predicate Logic

With this definition of PTSs, we are ready to demonstrate the propositions
as types isomorphism. We consider the PTS for first order predicate logic
as proposed by Berardi (presented in definition 5.4.5 of [Bar92]). The spec-
ification is:

S = {*s;*pa*f,DS;Dp}
A = {(*saDs)a(*mDp)}
R = {(*57*57*f)7(*Sa*fa*f)a(*SaDpaDp)a(*pa*pa*p)a(*b’a*pa*p)}

The sorts S have the following intended meaning: A terms U of type *;
corresponds to a type U’ € Set as used in the semantics of multi-sorted first
order logic. Terms of type x; are themselves types of functions. Terms of
type *p represent formulas. Terms of type O, represent types of predicates.
Note that since (*,,0,) € A, formulas are predicates with arity 0 (formulas
have type *,, which by this axiom is the type of predicates of arity 0).
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We introduce the following shorthand: I' - A : B : s, with s € S denotes
that ' B:sand '+ A: B. Then, if wehave ' - A : B : x4, A corresponds
to a term with a value in the set B. If we have ' - A : B : x4, then A is a
function with type B. If ' - A : B : x,, then A is a proof of the formula B.
IfI'+A:B:0, then A is a predicate.

To make these correspondences more visible, we will use different notations
for various II-types. A term (IIz : A.B) formed by II-form with (x,,%,, *,) €
R is denoted as A = B (it can be proved that in this logic z ¢ FV(B)). A
term (IIz : A.B) formed with rule (xg,%,,%,) is denoted as (Vz : A.B). A
proof of (Vz : U.(Pz = Pz)) can then be derived as:

1 <> Fx, O, (start)

2 U : x4 FU :*, (intro 1)

3 <> Foxp, 0, (start)

4 U :xg Fx,: 0, (weaken 1,3)

5 U:xgz:U Fx,:0, (weaken 2,4)
6 U: I-(Ha: U*): p (II-form 2,5)
7 U:*g, P:(zx : Usxp) FP:(Ilz : Uxp) (intro 6)

8 U:xs, P:(Mx: U*p) FU : x4 (weaken 2,6)

9 U:s,P:(Ilz : Usy),2: U FP:(Ilz : Uxpy) (weaken 7,8)
10 U:*S,P:(H:c:U*p),:c:U Fa:U (intro 8)

11 U : %4, P: (Ilz : U.xy),z: U F Pz :x, (II-elim 9,10)
12 U: s, P: Mz : Uxp),z:U,p: Pk Pz : %, (weaken 11,11)
13 U:*S,P:(Ha::U*p),;c:U,p:P;cl—p:Pm (intro 11)

14 U: x5, P: Iz : Uxp),z: U F Pz = Pz:x, (I1-form 11,12)
15 U:xs, P: Iz : Usxp),z: U F(Ap: Pz.p) : Px = Px (Il-intro 13,14)
16 U : 5, P : (Ilz : U.xp) F (Vz : U.(Pz = Px)) : %, (II-form 8,14)
17 U : 5, P : (Ilz : U.xp) F(Az : U.(Ap: Pz.p)) : (II-intro 15,16)

(Vz : U.(Pz = Pz))

The example above is quite dull, but already requires a derivation of 17
lines. Equally, we could derive the type judgment:

U:kg,P:(lz: Uxp),Q: (Ilz : Uxp) -
(Ap: (Vz : U(Px = Qx)).(Aq : (Vz : U.Pz).(A\z : U.pz(qz))))
: (Vz : U(Pz = Qx)) = ((Vz : UPz) = (Vz : U.Qx))

However, then the derivation becomes no less than 47 lines. The reason for
this is the necessity to derive type correctness judgments (II-form) and the
step-by-step usage of weakening (see lines 3,4,5).
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Since A-calculus is a language to express mathematical functions, how can
it be used to represent proofs of logical formulas? In A-calculus the proof
object (Az : U.(Ap : Pz.p)) is a function that returns for each element z
of U a proof of Pr = Pz. This proof is given by (Ap : Px.p), which in
turn is a function that given a proof of Pz returns a proof of Pz (the same
proof). Intuitively, the existence of such a function is indeed a proof of
(Vz : U(Px = Pz)): given any element a of U and any proof of Pa the
function returns a proof of Pa, hence (Vz : U.(Pz = Pzx)).

Note that, in our example above, the set U and the unary predicate P occur
explicitly in the context of the PTS. In fact the sets, functions and predicates
of the logic can be expressed in PTSs by elements in the context. In logic,
the functions and predicates are defined beforehand by the sets Set, F and
P. Explicitly stating all functions and predicates in a context allows flexible
logics to be handled by proof systems based on PTSs.

However, this PTS does not model first order logic exactly. There are a few
differences that are not always desirable:

1. Constants, like the natural number 0, are modeled in a context by
T'y,Nat : %5,0 : Nat,I'2. Therefore they are indistinguishable from
ordinary variables like the z : U in line 9 of our example derivation.

2. Functions themselves have types. More precisely, a binary function
f with arguments from sets A and B yielding a value from C has
type (IIz : A.(Ily : B.C)). If f is applied to an argument a : A
then fa has type (Ily : B.C), while in first order logic f applied to
just one argument does not have a meaning at all. The same holds
for predicates. That functions can be applied to less arguments than
indicated by their arity is called currying.

3. A single proposition corresponds to several types. For instance: in
context U : #4, P : x5,a : U the term P represents a predicate of the
logic with arity 0, but in this context the same predicate is repre-
sented by (Az : U.P)a. This is why the rule conversion is needed: a
proof p : P should also be a proof of (Az : U.P)a, since it represents
the same proposition. The problem appears to be caused by the rule
(*s,0p,0p), which allows the creation of such A-terms. This rule is
absolutely necessary, however, to construct types of predicates of ar-
ities larger than zero (See lines 6,7 in the derivation of the proof of
(Vx:U. Pz = Pzx) given above).
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6.2 PTSs with parameters

The less desirable properties of the PTS for first order logic given in the
previous part of this section can be avoided by using an extension of the
PTS definition described in [Laa97]. The extension introduces parametric
constants added to the terms of a PTS. A parametric constant is kept in the
context and can only be used if all the required parameters are supplied at
once. This corresponds to the way predicates and functions are used in first
order logic. PTSs extended with parametric constants are called CPTSs.

A CPTS is specified by a tuple (S, A, R, P), where S, A and R are the sorts,
axioms and rules of a regular PTS and P is a subset of § x §. P is called
the set of parametric rules.

Definition 15 (Parametric Terms)
Given a set V of variables and a set C of constants, the set Tc of CPTS
terms is defined by the following abstract syntax:

Te == S|V | AV :TeTc |V : TeTc | TeTe | C(Le)
Lo = ¢ |< Lo, To >

The lists of terms produced by Lo are usually denoted as < Aq,..., A, > or
Ay, ..., A, instead of < ... << g, A1 >, A > ... Ay >.

Definition 16 (Contexts of CPTSs)

A context is a list of the form x1 : Ay, ..., x, : Ay, such that every A;
is a term as defined in definition 15 and either x; € V or xz; has the form
c(yr : B1y--.,Ym : Bn), where c € C, y1,...,ym € V and By,...,B,, are
terms as defined in definition 15. A constant c is called T'-fresh if it does
not occur in L.

Definition 17 (Type judgment relation of a CPTS)

The type judgment relation of a CPTS consists of all rules of a reqular PTS
(see figure 6.1) and two additional rules to make use of parametric constants.
Let A denote 1 : By,...,z, : B, and A; denote 1 : By,...,xi_1 : B;_1.
Then the additional rules are:
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'ko:B
IA;FBiis; fori=1,...,n (Si,S)EP
C-weaken [AF A:s c is I'-fresh
I,e(A):AFb:B
Ty, c(A):A, Ty b biBi[z; :=b]'Z}  fori=1,....n
C-application T'1,c(A):A, Ty F A:s ifn=20
I'1,e(A):A, o b e(br, ..., bn):Alzy == bj]7 4

We give a brief description of the additional rules:

C-weaken The C-weaken rule allows us to add a parametric constant to the
context. In contrast to other extensions of the context this rule does
not allow us to type the parametric constant itself, while the intro-rule
(used for regular extensions of the context) allows the typing of every
newly added item.

C-application Since a parametric constant itself cannot be typed in a CPTS
it cannot be used with the usual II-elim (sometimes called application)
rule. The rule C-application allows us to use a parametric constant,
but only if we supply all the required arguments at once. This corre-
sponds to the use of functions and predicates in first order logic: these
too can only be used after all the arqguments have been supplied. The
special premise for the case n = 0 is needed to assure that the context
T'1,¢(A) : A, Ty is a valid one.

6.2.1 Properties of CPTSs

CPTSs have the usual meta-theoretical properties of Pure Type Systems.
We list the most important ones below. Proofs can be found in [Laa97].

Lemma 18 (Start Lemma)
IfT'+ A:B then T F sy:89 for any (s1,s2) € A.

Lemma 19 (Weakening Lemma)
IfT1 F A:B and T'1,T'y is a valid context, then I'1,T'y - A:B.
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Lemma 20 (Substitution Lemma)
IfT,xz: AJA+ B:C and T+ D:A thenT', A[z := D] + B[z := D]:C[z := D].

Lemma 21 (Generation Lemma)

1. If T+ s:C for an s € S then there is s' € S such that C =g s' and
(s,8') € A;

2. If T'x:C then there is s € S and B =g C such that I' - B:s and
(z:B) el

3. If I' + (Ilz:A. B):C then there is (s1,S2,53) € R such that ' - A:sq,
[ z: Al Bisy and C =g s3;

4. If T'F (Az:A. b):C then there is s € S and B such that T,z : A+ b:B;
'+ (Ilz:A. B):s; and C =g (Ilz:A. B);

5. If T'F Fa:C then there are A, B such that C =g Bz := a], ' a:A
and T'+ F:(Ilz:A. B);

6. If T c(b1,...,by):D then there exist s, A =xz1: B1,...,T, : By and
A such that D =g Alz; = b;]}_, and T'F b;:B;lz; := bj]j-;ll. More-
over, I' = T'1,c(A):A, T2 and T'1, A+ A:s. Finally, there are s; € S
such that T, A; F B;:s; and (s;,s) € P.

Lemma 22 (Correctness of Types)
IfT'+ A:B then for some s € S we have B=s or I' - B:s.

Lemma 23 (Unicity of Types)
IfT'+ A:By and T' - A:By then By =g Bs.

Lemma 24 (Subject Reduction)
IfT+ A:B and A—gA' then T+ A":B.

Lemma 25 (Permutation Lemma)

o If  does not occur free in B, then I'y,z: A,y : B,y - P:Q if and
only if ',y : B,z : A,I's - P:Q;

e If ¢ does not occur in B, then T'1,c(A) : A,y : B,T's - P:Q if and only
if T1,y: B,c(A) : A,Ty F P:Q;
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o If z does not occur free in A or B, then I'1,z: A,c¢(A) : B,T'y F P:Q
if and only if T'1,¢(A) : B,z : A,T'9 - P:Q;

e If ¢ does not occur in A" or B, then T'1,c¢(A) : A, (A") : B,y F P:Q
if and only if U1, (A") : B,c(A) : A, Ta - P:Q.

Lemma 26 (Type inference)
Let T be a context and A be a term. One can compute a term B, such that
'+ A:B if such B ezists.

6.3 PTSs with definitions

As we have seen in the example, A-terms can easily become very large.
Sometimes, their size can be cut down by a A-abstraction/A-application
pair. For instance

(AP: %, . P=P)((A=B)=(B=C)=(C=D)=(A=D))
_ﬂ((A:>B):>(B:>C):>(C:>D):>(A:>D)):>
((A=B)=(B=C)=(C=D)=(A=D))

but the first notation is shorter. Unfortunately, using the first notation is not
always possible. In the PTS for first order logic for instance, the first term is
not typable. Building the A-abstraction would require the rule (Op, Oy, O,),
which is not an element of R.

To avoid this problem we extend PTSs with a definition mechanism intro-
duced by [Pol94]. The simplest way to understand the definition mechanism
is to consider definitions to be shorthand notations for larger terms. Since
we can only introduce definitions for terms that could already be constructed
in the PTS, the definitions mechanism does not extend the expressive power
of the logic.

This definition mechanism can easily be combined with the parameter mech-
anism of the previous section. In [Laa97] this combination leads to paramet-
ric definitions, but in this thesis only plain definitions are used. Since plain
definitions are entirely independent of the parameter mechanism, we will
present only regular PTSs extended with definitions, called DPTSs. PTSs
with both extensions are called CDPTSs.
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Definition 27 (Definition Terms)
Given a set V of variables, the set Tp of DPTS terms is defined by the
following abstract syntaz:

Tp :=S |V | AV :Tp.Tp |0V : Tp.Tp | TpTp |V =Tp : Tp in Tp

In aterm xz=a:A inb the occurrences of variable x in b are bound by
the definition a:A. Such a term is read as "z s locally defined as a of type
A in b”. Hence, x is called a local definition in b.

Definition 28 (Contexts of DPTSs)
A context C is a list of the form x1 : A1,...,xp : Ap, such that every A; is a
term as defined in definition 27 and either x; € V or x; has the form y = B,
where y € V and B is a term as defined in definition 27. Items y =B : A
in a context are called global definitions.

Definition 29 (4-reduction)

On the terms and contexts of DPTSs a reduction relation
_F _—4_C Contexts x Tp x Tp

is defined as the smallest relation such that

MN,z=a: ATyt z—sa
F'F(zx=a:Ainb)—sb ifzg FV(b)

and that is closed under the following compatibility rules

if T,x=a:AFbosb then TH(z=a:Ainb)—=s(r=a:Ainb)
if T,2:AFbost  then r - (Mz:A. b)—4(TTz:A b’)
and F (Az:A. b)—s(A\z:A b’)
if TFa—sa then T F (:1: =a:Ainb)—s(zr=ad:Ainb),
r+ (a:—A ainb)—s(x=A:d inb),
= (ab)—>5(ad )
= (ba)—5(ba’),
I+ (Hm a. b)—s(Ix:a’. b)
and L'k (Az:a. b)—5(Az:a’. b)

We write I' = a—gs b if a—gb or I' = a—s b. Furthermore, _F _—g5 _
and _F _—»s _ are the reflexive and transitive closures of -t _—pgs _ and
- _—s _ respectively. - _=pgs _and _ _=5 _ are the symmetric, reflez-
we and transitive closures of -\ _—gs _ and _ = _—s _ respectively.
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In [Pol94] it is proved that —4 yields a terminating rewriting system that
has unique normal forms and has the Church-Rosser property.

Definition 30 (Type judgment relation of a DPTS)
The type judgment relation of a DPTS consists of all rules of a reqular PTS
(see figure 6.1) and the following additional rules to make use of definitions

(s€S):

) I'aA .
D-intro To—a ArzA z s I'-fresh

''Fo:B TFa:A .
D-weaken T o—a:AF 0B x is ['-fresh

I'z=a:AlF B:s

d-form TH(z=a:Ain B):s

Fr=a:AFbB T'k(z=a:AinB):s
F'F(z=a:Ainb):(z=a:A inB)

d-intro

I'-b:B T'FB's I'B=p; B
'+ b:B

Bd-conversion

Again we give a brief description of the additional rules:

D-intro D-intro enables the user of the logic to introduce a global definition
into the context.

D-weaken This additional weaken-rule states that a type judgment that
holds in a context I', also holds in the same context extended with a
definition.

d-form With §-form the user can replace a global definition by a local defi-
nition in terms that are inhabitants of sorts. This can be compared to
the II-form rule that allows the formation of types for A-abstractions.
However, this rule does not depend on the set R and hence, any defi-
nition can be introduced regardless of the logical abstractions that are
allowed.

d-intro Like Il-intro, the d-intro rule allows the construction of terms which
have a type containing a (local) definition. That is, inz =a : A in B,
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’="1is a binder, which binds all occurrences of z in B. Every z occurring
in B is a shorthand for term a : A. In contrast to A-terms that have
[T-types, the terms and types of definition constructs use the same
binder.

Bd-conversion This rule serves the same purpose as conversion, namely that
it eliminates the differences between terms that are Sd-equal. In fact,
since for any terms B and B’ and any context I" we have that B =3 B’
implies I' - B =g5 B’ the rule conversion becomes superfluous.

6.4 Theorems in PTSs

When constructing larger proofs, one usually uses lemma’s and theorems.
These lemma’s and theorems have typically been proved earlier and are used
on several occasions for differently named predicates and propositions. In a
formal framework, like PTSs, this re-use of theorems for different predicates
must be made explicit, since a proof of P A Q = PV @ is different from a
proof of ANB = AV B.

In many PTSs it is sufficient to abstract away over the actual propositions;
i.e. given a type judgment

[P :#p,Q:%p FpPANQ = PVQ
we construct the judgment
C'E(AP: %y . AQ: %y . p):(IIP: %, . (IIQ: %, . PAQ = PV Q)).

To obtain the original proof we apply the A-term to P and @ respectively;
but applying the same A-term to A and B yields a proof of AAB = AV B.

Unfortunately, the construction of such a A-term is not always possible: To
create the IT-type I1Q: x, . P A Q = PV Q we need the PTS-rule (O,, *p, *,)
in R, but not all PTSs have this rule, notably the system for first order logic.

Another solution would be to use parametric definitions, i.e. a combination of
the definition mechanism and parametric constants as described in [Laa97].
In a local context, the definition is then considered to be a parametric con-
stant and hence, it is not typeable unless the required arguments are pro-
vided. Since the parametric definition is not typeable itself, the PTS does
not have to be extended.
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However, since parametric constants are not typeable either, parametric
definitions cannot abstract away over functions and predicates and hence,
cannot be used to define theorems about functions and predicates.

For instance, consider the following theorem: Let U be a set and let P be a
predicate on pairs of U, then if there exists an = in U such that for all y in
U the predicate P(z,y) holds, then for all ¢ in U there exists a p in U such
that P(p,q) holds. In a CPTS this is stated (and proved) as follows:

U:xg, P(x: U,y :U) : %, = t:(F2:U. Vy:U. P(z,y)) (6.1)
= (Vq:U. 3p:U. P(p,q))

where ¢ is the required proof term. However, even in a higher order CPTS
one cannot abstract away over P, since it is a constant. Also, since P is
not typeable itself, it is not possible to define a parametric constant (or
definition) that takes P as an argument. Changing the rules to allow such
abstractions showed to allow ill-typed sub-terms in unused definitions. Even
though this did not lead to invalid systems, the resulting systems lost a few
aesthetically nice properties.

A third solution is not to capture the concept of theorems within the for-
malism at all, but to add the usage of theorems as a feature to the system.
Given a proved proposition, the system must then be able to construct a
proof of a similar proposition, by substituting correct sub-proofs in the orig-
inal proof. The original proof then serves as a template for constructing
similar proofs. For instance, if in the example above the proof p has the
form

AH:(3z:U. Vy:U. P(z,vy)). q¢(H),
then the system should be able to construct a proof
AH':(32":U'. vy":U'. P'(«',y")). ¢ (H')
in an attempt to prove

(Fz"U'. W"U'. P'(«',y")) = (V¢ U'. Ip"U'. P'(p',q)).

This last solution does not alter the formal system in any way, since for
every proposition to be proved a lambda term is constructed using only the
derivation rules given by the formalism. Yet, to the user the convenience of
theorems is available when constructing larger proofs.

We will now give a meta-theorem about CPTSs, justifying the way in which
our system will support theorems:
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Theorem 31 Let '=z1: A1,...,2, : Ap Fp:P be a valid type-judgment
i o CPTS. Furthermore, let A be a legal context and t; be terms such
that for i € {1,...,n} we have valid type-judgments A t;:A;[x; = tj]é.;ll.
Without loss of generality we assume {x1,...,2,} N FV(A) = 0. Then
AF p[.T,‘J = tj]?zfp[ﬂ?j = tj]?:l'

Proof sketch: From Tt p:P and the weakening lemma (lemma 19) we get
I'AF p:P. Using the permutation lemma (lemma 25) repeatedly we get
AT+ p:P. Using the substitution lemma (lemma 20) repeatedly we get
respectively:

A,z A,z Ay Fp:P
A, (.’L‘Q : AQ,. vy Lyt An)[ml = tl] |—p[.’L'1 = tl]ZP[.’El = tl]

At p[.Z'] = t]]?:lp[x] = t]]?:l
O

If one wants to use the theorem above to apply theorems within a theorem
prover, it is recommended to store the proof-template (i.e. the type judgment
[t p:P) with as little context as possible. This way, less terms t; are needed
to apply the theorem. Also, it is recommended that the system searches for
the terms ¢; automatically, either by using an automated theorem prover or
by using heuristics (like searching for variables of the correct type within
A). If a certain required term, say t;, cannot be found by the system itself,
it is also possible to add A - ?;:Alz; := tj];;ll as a goal to the proof session.
The user then has to construct the term for herself.

6.5 AP—: A CPTS for First Order Logic

We are now ready to introduce the system AP—. AP— is a CPTS that
exactly models many sorted first order predicate logic.

Definition 32 (AP—)
AP— is the CPTS specified by:

= {xs,%p, 05, Op}
{(*s,05), (*p, Op) }
{(py *py %p), (x5 %p, *p) }

= {(*s,%s), (*s, Dp)}

VAXO®
|
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Note that the sort *, used by Berardi to model function types, is not present
in AP—. Also, the only rules in AP— are those corresponding to implication
and universal quantification.

Functions and predicates are now added to the context using the new rule
C-weaken, using parametric rule (xg, *,) for functions and (x,0,) for pred-
icates. A function or a predicate can only be used to form a proposition
using the rule C-application. For instance, a function of arity 2 can only be
used when it is applied to 2 arguments at once.

Essentially the propositions-as-types isomorphism and the intended mean-
ings of the sorts of this system are equal to those of the regular PTS of
Berardi. However, AP— corresponds more closely to first order logic:

1. Constants are now modeled by a parametric constant with zero pa-
rameters. The natural number 0 is then modeled in a context as
T'1,Nat : %4,0() : Nat,I'5. Since the 0 is now a constant from C, it
cannot be confused with a variable from V', since it is not possible to
build a term like (AO() : Nat.X).

2. Functions themselves do not have types. A binary function f with
arguments from sets A and B yielding a value from C occurs in the
context as f(z: A,y : B) : C. Since f is a parametric constant with 2
arguments it cannot be applied to a single argument a : A. The same
holds for predicates.

3. A single proposition corresponds to a single type. The rule (xg, 0,, 0,)
allowing the typing of lambda terms representing predicates is no
longer available. Therefore, a predicate P is no longer represented
by (Az : U.P)a, where U corresponds to a set of first order logic and
a : U. The rule conversion is no longer needed, allowing a simpler and
faster implementation.

We will prove that the conversion rule is superfluous in AP—. For this, we
formally define what a ’type’ is and then prove that all types in AP— are in
B-normal form. These proofs can also be found in [LF00].

Definition 33 Let I' be a context. A is a type in ' if A € S or there is
s €S8 such that ' A : s.

Correctness of Types (Lemma 22) indicates that B is a type if ' - A : B.
In the proof of the theorem 35 we will need the following lemma:
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Lemma 34 IfTFP:Q and ' F Q : %5 then P is in B-normal form.

This lemma shows that the terms that represent objects are always in (-
normal form.

Proof: Induction on the structure of P. The cases P € V and P € S
are trivial. Moreover, using the lemmas above it can be shown that the
cases P = [lz:P,.P,, P = A\x:P;.P, and P = P; P, cannot occur (see the
proof of Lemma 6.82 in [Laa97]). We focus on the most important case:
P = ¢(by,...,by). It suffices to prove that the b; are in S-normal form. By
the Generation Lemma 21, there are s, s1,...,5,, A and A such that Q =g
Alzi:=b)?y, T F b : Bilwji=b;]’_}, T = (T1,c(A):A,T3) T, A F A s,
I'y,A; - Bi:s, and (s;,s) € R for all i.! By the Substitution Lemma 20,
I'y F Alzi:=b;]], : s, so by the Weakening Lemma 19, I' - A[z;:=b;]!"; : s.
As Q =g Alz;:=b;]}",, we have by Subject Reduction 24 and Unicity of
Types 23 that s = *,. As (s4,8) € R, we have that for all 4, s; = x,. Using
again the Substitution and Weakening lemmas, we find T' - B; [xj::bj];;ll :
*s[xj::bj];;ll, which means that T' - b; : Bi[szzbj]é-;ll : 5. By the induction
hypothesis, b; is in f-normal form. O

Now we prove the most important result for AP—:

Theorem 35 If P is a type in a context I then P is in B-normal form.

Proof: Since P is a type, we have two cases (definition 33). The case P = s
is trivial. So assume I' - P : s for an s € S. Use induction on the structure
of P.

P can beof the form 1. s,2. z,3. [z : A.B,4. Az : A.b, 5. Fa, 6. c(by,...,b,)
(cf. Generation Lemma 21). Cases 1 and 2 are trivial. Case 3 follows almost
immediately from the induction hypothesis. Case 4 can be shown to be
impossible.

Case 5 is also impossible: by Generation Lemma, there exist Ry and Ra,
such that ' F : (Ilz : R1.Ry) and I' - a : Ry and s =g Ra[z := a]. Hence,
by Correctness of Types and the Generation Lemma I',z : R; F Ry : %,
By Substitution Lemma, I' - Ry[z := a] : *p, hence by Subject Reduction
I' F s : %, and hence (s, *,) should be an axiom, which it is not. We conclude
that Case 5 does not occur.

1 . _ _
We write A = z1:B1,...,Zn:Bn, and A; = 21:B1, ..., xi—1:B;_1.
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Finally, we focus on the case P = ¢(by,...,by,). It suffices to prove that the
b;s are in B-normal form. Determine with the Generation Lemma 21 (case
6) ', A and A such that s =g A[z;:=bi]), T+ b; : Bi[z;:=b;]'_}, T =
(T1,c(A) : ATy), T1,A F A : &, and determine s1,...,8, € S such
that T'y,A; F B; : s; and (s4,8") € R. By Substitution Lemma, Ty
Alz;:=b;], : s’ and by Weakening Lemma, I' - A[z; := b;]"_, : s'. so by
Subject Reduction, I' F s : s’. This means that either s = *; and s’ = O,
or s = %y and s = O,. As (s;,s’) must be an element of R, the only
possibility for s’ is that s’ = O, and, moreover, s; = *,. Notice that from
I'1,A; B By s, it follows by Substitution Lemma and Weakening Lemma
that I' F B;[z; := bj];-;ll : 8;, hence ' - b; : Bi[acj::bj];;ll : 8;. So by Lemma
34, b; is in B-normal form. O

So far, we were considering minimal first order logic with only implication
and universal quantification. To model negation, conjunction, disjunction
and existential quantification we would need a more powerful PTS allowing
higher order constructs. However, this would destroy our close correspon-
dence with first order logic. Another possibility is to further extend the
abstract syntax of A\-terms and adding more rules to the type judgment re-
lation. These extended A-terms can then easily be translated into regular
A-terms of a PTS allowing higher order logic. However, our proof system
itself then keeps its close correspondence to first order logic. Therefore, we
will choose the second alternative: we extend the abstract syntax of AP—,
but only in a limited way. We will add a few rules needed for classical logic.
but we use classically equivalent formulas to encode negation, conjunction,
disjunction and existential quantification.

6.5.1 PTS extensions for \P—

In order to model full first order predicate logic, the abstract syntax of AP—
is extended to:

TP_ HER. | |4 | AV TP_.TP_ | 11V : TP_.TP_ | TP_TP_ | C(LP_)
|L| classic Tp— Tp
Lp. == e|<Lp_,Tp_ >

Formulas of first order predicate logic are coded in AP— as given in figure 6.2.
These codings are correct, since the following logical formula are equivalent
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cod(Falsum) = L1
cod(A) = A if A is an atomic formula different from Falsum
(—P) = Ilh:cod(P). L
cod(P = Q) ITh:cod(P). cod(Q)
(PVQ) =cod(-P= Q)
= (TITK':(TTh:cod(P). 1). cod(Q))

cod(PANQ) = cod(—=(P = —Q))

= (IIA":(IIA':cod(P). (Ilh:cod(Q). L)). 1)
cod(Vz:U. P) = (Ilz:U. cod(P))
cod(3z:U. P) = cod(—~(Vz:U. ~P))

= (ITIh":(Ilz:U. (ITh:cod(P). 1)). 1)

Figure 6.2: Encoding first-order predicate logic in AP—.

(they hold in the same models):

-P is equivalent with P = Falsum
PvQ@ is equivalent with —-P = Q
PAQ is equivalent with —(P = —Q)
Jdz : U.P is equivalent with —(Vz: U.-P)

Also, the type judgment relation is extended by the following three rules:

1 -form <> F Loy
F'kp: L T'F Py,
falsum e
: TR .
classic ' P, T'FpIh:(TTh:P. 1). L

I' F classic P p:P
We briefly comment on these rules:

1-form This axiom states that the special symbol L (read as bottom) rep-
resents a proposition. | represents the Falsum of first order predicate
logic.

falsum This rule states that if 1 holds and P is a proposition, then P
holds.
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classic If the second premise of the rule is read as I' - p:—=(—P), it is easy
to see that this rule claims that P holds if =P does not hold. Hence,
this rule allows classical reasoning.

The falsum rule can be eliminated by using the derived rule

'Ep: L T'F Py,
I'F classic P (Az: =P.p):P’

instead. However, we do not choose to do so, since it is unnatural to replace
the falsum rule, which can be used in constructive proofs, by a construct that
depends on the classic rule, which is not allowed in constructive proofs. Also,
the falsum rule can be translated into other PTSs more easily. In higher
order logics L is usually defined as L= IIP : x,.P and hence, contradictions
behave exactly as indicated by the falsum rule.

Except for the extensions for propositional constructs, we also need a con-
text containing the set-, function- and predicate symbols of the logic. This
context is defined as follows:

Definition 36 (I';)

Let L be a logic with set symbols Uy, ..., Uy, function symbols f1,..., f, and
predicate symbols Pi,...,P,. Furthermore, let V;; denote the set symbol
representing the type of the j’th argument of function f; and let V; denote
the set symbol representing the type of the result of function f;. Finally, let
T;; denote the set symbol corresponding to the type of the j’th argument of
predicate P;. Then the context 'z, modeling this first order logic in AP—,
is defined as:

Uy :kgyeoo, U @ o%g,
Sl Vig, o mey Vi)t Voo, fp(®1 - Vpty ooy sy, Vps,) 2 Vi,
Pl(.’,Cl :lel,...,.’Erl :Tl,h) Epy ... ,Pn(.’L‘l :Tnjl,...,.’E,,-n :Tn,rn) S ¥p

s; and rj are the arities of f; and P; respectively.

The close correspondence of logic £ to AP— with context ' is given by the
following theorems:

Theorem 37 T'z U : %, if and only if U is a set symbol of L.

Theorem 38 For any set symbol U of L we have I'z -t : U if and only if
t is a term in L whose type is represented by set symbol U.
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Theorem 39 I'; - P : x, if and only if P is a proposition of L.

Theorem 40 For any proposition P of L we have 'y = p : P for some
term p if and only if =, P.

Theorems 37 through 39 are proved by induction on the term structure. The
completeness part of theorem 40 follows from the algorithm we present in
chapter 9: the method of tableaux is complete and every closed tableau can
be converted to a proof in AP— in context .

The converse is also true: if T" is a valid context of AP—, then there exists
a logic £ such that theorems 37 through 39 with I's replaced by I' hold.
Hence, A\P— has a one-to-one correspondence with many-sorted first-order
predicate logic (for a proof see [LF00]).

Since propositions in AP— and formulas in first order logic have a one-to-one
correspondence, we will from now on also use the logical notations to denote
types in AP—. Le. we will write ——B instead of (IIH:(IIH":B. 1). 1).

Even though it is possible to prove every valid proposition with AP—, it
is not convenient. Logicians familiar with first order logic will want to use
the usual introduction and elimination rules for A, V and 3. Therefore we
will introduce a number of derived rules and their corresponding shorthands
(these shorthands will be used in this thesis in chapter 9. The implementa-
tion uses the A-terms directly, not the shorthand notation.):

'p:P TFqQ
L'k (p,q):PANQ

where (p, q) denotes (AH:P = (Q =_1). Hpq), which has as type the coding
of PAQ.

A-intro

THpPAQ

Aelimy RN

where 71 (p) denotes classic P (AH:P =1 . p(AH":P. HH'(Q =1))), which
has as type P.

'FqgPAQ

/\—e]IITIQ W s
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where m5(q) denotes classic Q (AH:Q =L . g(AH':P. H)), which has as
type Q-

'-PVQx TI'bEpP

TFingl (PVQ) pPVQ '

where injl (P V Q) p denotes (AH:P =1 . (Hp)Q@), which has as type the
coding of PV Q.

V-introp

'FPVQR:x T'EaeQ
C'kingr (PVQ) ¢PVQ ’
where injr (PV Q) q denotes (AH:P =1 . q), which has as type the coding
of PV Q.

V-introg

T-pP=R TFq¢Q=R
F'FpVge(PVQ)=R

V-elim
,where pVq denotes
(AH:(P =1) = Q. classic R (A\H":R=_1. H'(q(H(AH":P. H'(pH")))))),

which has as type the coding of (P V Q) = R.

't (3z:U. P):*, Tk p:Plz:=1]

I'Finj 3z:U. P) p t:(3z:U. P) °’
where inj (3z:U. P) p t denotes (AH:(Ilz:U. P =_1). Htp), which has as
type the coding of (Jz:U. P).

J-intro

I'Q:#*, 'k (3z:U. P)x, TFp:(Vz:U. P= Q)
' (32:U. P) p:(32:U. P) = Q ’

where < (3z2:U. P) p denotes

J-elim

AH:(Vz:U. P =1) =1 . classic @ ,
(AH":Q =L . H (Az:U. (\H":P. H'(pzH"))))

which has as type the coding of (3z:U. P) = Q.

To present the conversion algorithm in chapter 9, we need the following two
theorems:
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Theorem 41 Let A1, A: B, Ag be a legal context (i.e. it is possible to derive
Al,A : B,AQ F *g 1 Ds)- Then Al,A : B,AQ FA:B.

Theorem 42 Let Ay, A : B, Ay be a legal context such that A1, Ay is also
a legal context. If Ay,As = C : D then Ay, A: B,As+C: D.

Theorem 41 is proved by induction on the length of the context, using intro
and weaken rules. Theorem 42 is proved by induction on the derivation of
C:D.

If we want to add Leibniz equality to AP—, it suffices to add the following
rules (® denotes a special variable, that will never occur in any formula. It
is used here as a placeholder for expressions that are replaced when using
Leibniz substitution):

' U:x,

I'e:U

'k 62:U
['Fep =e*y

=-form

' U:xg
reflex 'keU
F'Freflee=e

I'F QIO = ey
I'Fp:Q[O :=e]
I'Fee =ey

I'Fleib Q p e:Q[® = €3]

Leibniz

We comment on the new rules:

=-form This rule states that if expressions e; and es both have the same
set-type U, e; = ey is a proper formula in the logic.

reflex If e is an expression of a data-type U, then e = e holds by the reflex-
ivity of equality.

Leibniz If Q[® := e1] is a proper formula in the logic and this formula holds
by means of a proof p, then a proof e of e; = e2 can be used to prove
Q[® := e3]. The ® takes the place of a variable which is replaced by
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e1 and ey respectively. One can think of () as a template that yields a
logical formula once ® is replaced by a proper expression.

Other important rules associated with Leibniz equality, like associativity
and commutativity, can be derived from the rules given above. Therefore,
we will introduce them here as derived rules and their shorthand notation:

'k p:e1 = e
assoc ' qes = e3 ,
'+ assoc p g:e; = e3

where assoc p q denotes leib (e1 = ®) p ¢, which has type e; = e3.

I'Fper =e9
comm )
'+ comm p:es = €1

where comm p denotes leib (® = e1) (refl e1) p, which has type ex = €.

I'E U:xg
E-Leibniz L B[O :=elU :
'k p:e1r = €2

Tt eleib E p:E[® :=e1] = E[® := e3]
where eleib E p denotes leib (E[® := e;] = E) (refl E[® := e1]) p, which
has type E[® := e1] = E[O® := eqg].

There is also a possible extension for the natural numbers, including natural
induction. The rules needed for this are (note that the natural numbers are
not the only possible interpretation of the type nat):

nat-form () F nat:xg
zero-form () F O:nat
suce 'k znat
[t s(x):mnat
I'F po:Qz == 0]

induction T'F p;:(Vzinat. Q = Q[z := s(z))])
T+ nat_ind py pi:(Vx:nat. Q)
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We finish the discussion of A\P— with comments on the rules for natural
numbers:

nat-form States that nat is a set-type.
zero-form States that 0 is a natural number.

succ States that each natural number z has a successor denoted by s(z).

induction If for a formula @), possibly containing occurrences of z, it can
be proved that Q[z := 0] holds and also that for each z if @ holds
then Q[z := s(z)] holds, then @ will hold for all z. The other popular
version of induction

I'Fp:(Vz : nat.(Vy : naty < z = Q(y)) = Q(z))
I'F nat_ind p:(Vz : nat.Q(z))

will not be used, since it requires us to define the smaller-than relation
on natural numbers.



Chapter 7

Automated Theorem Proving

In this chapter, we describe two methods to automatically construct proofs.
In part I we already found that the user will have to provide many simple
proofs to prove correctness of her program. To increase the usability of the
tool, we want to automate the construction of (nearly) trivial proofs. In
the end, this will also have a positive effect on the acceptance of the tool
amongst users.

67
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7.1 Resolution

7.1.1 The Resolution Method

Resolution based theorem provers use the fact that if formula P is a tautol-
ogy, then =P does not hold in any model and vice versa. In order to prove
a theorem P, a set C' of formulas is created, such that there is a model of
=P if and only if there is a model of C. A model is said to be a model of C,
if it is a model of all formulas in C. The set C is then expanded by adding
new formulas, computed from existing formulas in C, such that the set of
models of C' does not change. As soon as a formula is added that cannot
possibly hold in any model, we know that C cannot possibly hold in any
model. Hence, =P cannot hold in any model and therefore, P must hold in
all models as was to be proved.

The set C is called a clause set and all formulas in C' are called clauses.
A clause A is a formula of the form A; V...V A,, where every A; is a
literal (a literal is an atomic formula or a negation of an atomic formula;
definition 6 in chapter 5). Since resolution implicitly uses commutativity and
associativity of V, a clause is usually considered to be a set {A1,...,A4,}
of literals. As a result, we can assume that literals do not occur more than
once in a clause. Clauses can contain free variables. These free variables are
implicitly universally quantified. The empty clause is denoted by O and is
invalid in all models. To avoid problems with the special literals False and
—False, we modify the clause set as follows:

e If False occurs in a clause, it is removed from the clause.

e If = False occurs in a clause, this clause is removed from the clause set

C.

Note that the modified clause set is valid in the same set of models as the
original clause set. Hence, we can assume without loss of generality that C
does not contain the symbol False.

How the clause set is constructed will be explained later, but first we will
explain how the clause set is expanded in an attempt to prove a theorem.
As stated before, the resolution method derives new clauses from existing
clauses that are valid in the same models and adds them to C. Hence, if
the empty clause O can be derived from existing clauses, C' does not hold
in any model and therefore P holds in all models.
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To derive new clauses from existing clauses, resolution methods only need
a single rule: the resolution rule. We will give its definition, but first we
define proper substitutions:

Definition 43 (Proper Substitution)

A substitution 0 (a partial mapping from variables to terms) is called proper,
if variables in the domain of @ do not occur in any image of 8. Formally, if
xz € Dom(0) then Yy € Dom(0).z ¢ FV(0(y)). We write A to denote the
clause or literal A in which every free variable x which is in the domain of
0 is replaced by 0(z).

Definition 44 (The Resolution rule)

Let A = {Ai,..., Ay} and B = {By,...,Bn} be two clauses in C, with n
and m both non-zero and all A; and B; literals. Let 6 be a proper substitu-
tion. Then, if A10 is syntactically equal to —B10 (i.e. 0 is a unifier of Ay
and - By ), we define the resolvent R of A and B for 6 as

R=(46\ {4,:0}) U (BO\ {B:6})

This rule is sound in the sense that if M is a model of A and B, then M is
a model of R. Free variables in the result R are independent of free variables
in clauses A and B and may be renamed whenever needed. This is based on
the fact that all free variables are implicitly universally quantified.

The resolution procedure now computes resolvents from the clauses in its
clause set C and adds them to C'. The models in which C holds do not change
by this operation. If eventually the empty clause O is derived and added to
C, the procedure stops. In this case it is proved that there exist no models
for C. If the procedure does not encounter O during its computations, it
cannot conclude that the theorem is incorrect: after all, it might be the case
that the procedure is simply unable to find a derivation of O, even though
it exists.

The resolution method is refutation complete, i.e. if there are no models for
C, then the empty clause can be derived. For a proof see [dN95].

For instance, consider the clause set {{—~Pz, Py}, {Pv, Pw}}, where P is a
unary predicate and z, y, v, and w are free variables (implicitly universally
quantified). Let € be the substitution [z +— v,y — v, w + v]. Then we can
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construct the following derivation:

(1) {-Pz,~Py} given clause
(2) {Pv,Pw} given clause
(3) O derived from (1) and (2) using 6

Note that it is important that clauses are treated as sets. The unifier 6
used to derive the empty clause in the example above is found by ad-hoc
inspection of the clause set. There are general methods to find unifiers: so
called unification algorithms. These algorithms compare two terms (in the
case above this could be =Pz and = Pv) and derive a unifying substitution if
possible. However, these algorithms obtain what is called the most general
unifier, which is less specific (in the example this would be either [z — v]
or [v — x|, which yield the same result upon renaming of the variables).
Unfortunately, completeness is then lost. We will explain this in more detail,
after providing a more formal definition of unifiers and most general unifiers.

Definition 45 (Unifier)

Let A and B be terms, with possibly free variables. Let 6 be a substitution,
such that A9 = BO and for all x € Dom(6) we have z ¢ FV(A0) and
x & FV(B0). Then 0 is called a unifier of A and B.

Definition 46 (Most General Unifier)

If 0 is a unifier of terms A and B, such that any unifier o of A and B can
be written as ¢ o 8 for some substitution ¢, then 6 is called a most general
unifier (mgu) of A and B. Most general unifiers are unique but for renaming
of the variables. Hence, a mgu is a substitution that makes two terms equal,
while being as little specific as possible.

Clearly, the unifier [z — v,y — v,w — v] from the example is not a mgu:
We only need [z — v] to unify =Pz with =Pv and also it can be written as
[y = v,w — v] o[z +— v] (note that [z — v] is the most general unifier of
=Pz and —Pv). Also the given unifier of clauses (1) and (2) is not equal to
the mgu [z +— v] regardless of any renaming of the variables.

To unify =Pz and —Pv from the example, the variables y and w need not to
be substituted. Hence, when using the mgu for these formulas, the result will
contain again two literals with two variables. In fact, every result obtained
by using the mgu will have this property, regardless of which clauses and
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which literals are selected. Hence, the resolution algorithm using only mgu’s
will end up with the following clause set:

(1) {-Pz,~Py} given clause
(2) {Pwv,Pw} given clause
(3) {-Py',Pw'} derived from (1) and (2) using [z —> v]

The derived clause (3) is written as {-Py’, Pw'} instead of {—Pv, Pw'} to
indicate that all variables occurring in at are implicitly universally quanti-
fied, and are independent of variables in the other clauses.

All clauses subsequently derived from this clause set already occur in it.
Hence, depending upon the implementation, the program will either attempt
to derive new clauses indefinitely or it will exit failing to find a proof. This
does not mean that the resolution method claims that the clause set is
satisfiable. It merely cannot prove otherwise. In the literature, it is often left
unmentioned that this incompleteness is introduced by using most general
unifiers to apply the resolution rule.

However, since efficient algorithms exist to compute most general unifiers
(see [MM82]) and no information is given whether other unifiers yield better
results, there is another rule often used by resolution based theorem provers:
the factorization rule.

Definition 47 (The Factorization rule)
Let A= {A1,...,An} be a clause and suppose that 6 is a unifier of A1 and
one of the A; with i € {2,...n}, then the factor of A with respect to 0 is
defined as

F ={A,,...A,}6.

This rule is sound in the sense that M is a model of A, if and only if M s
a model of F'.

The factorisation rule is applied slightly different than the resolution rule:
replace clause A in clause set C' with clause F', where F is a factor of A with
respect to a unifier 6.

A resolution based theorem prover applying resolution and factorization
using only most general unifiers is again complete. The advantage is now
that unifiers used in factorization can be found using the structure of the
terms being unified. That the same substitution we use for « should also
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be used for y follows from factorization and is not given ad-hoc without
argument. For instance, it is now possible to derive the empty clause from
our example as follows:

(1) {—-P=z,~Py} given clause

(2) {Pwv,Pw} given clause

(3) {—Pz} derived from (1) using [y — z]

(4) {Pv} derived from (2) using [w — v]

(5) O derived from (3) and (4) using [z +— v]

Note that the composition of the substitutions that are used in this deriva-
tion yield the original substitution proposed for the first derivation.

7.1.2 Generating Clause sets

The most important and most difficult step in generating the clause set
is the skolemisation of P. Skolemising P will yield a formula P’ without
quantifiers. Instead, P’ contains free variables and new function symbols
representing skolem-functions. The free variables in the skolemised formula
represent arbitrary terms (i.e. they are implicitly universally quantified).
The skolem-functions, that are always applied to a series of variables, repre-
sent terms whose existence is claimed. The intuition behind this is as follows:
if the original formula claimed the existence of a term in a certain context,
then it is replaced during skolemisation by a function application that is
intended to represent this term, given the context. The formal definition of
the skolem-form of a formula is as follows:

Definition 48 (Skolem Normal Form)

Let P be a closed formula in first order predicate logic. Then the skolem
normal form of P is computed by the function skol defined recursively as
given in figure 7.1.

For instance, the skolemised form of (Vz:U. (Jy:U. Pzy)) is Pz(sxz), where
s is the skolem function and sz represents the required ¥, given the context
T.

Skolemisation has the property, that a model for a formula P exists if and
only if a model for the skolemised form of P exists. Note that these models
are not the same, since a model for the skolemised form also needs the
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skol(A) =A if A is atomic.
skol(—A) =-mskol(A)
skol(A N B) =skol(A) A skol(B)
skol(AV B) =skol(A) V skol(B)
skol(A = B) =nskol(A) = skol(B)
skol(Vz:U. A)=skol(Alz := y]) where y is a fresh variable.
skol(3z:U. A)=skol(A[z := sz1...xz,]) where s is a fresh skolem-
function with arity =, and
{z1,...,2n} = FV(A)\ {z}
nskol(A) =A if A is atomic.
nskol(—A) =-skol(A)
nskol(A AN B) =nskol(A) A nskol(B)
nskol(AV B) =nskol(A) V nskol(B)
nskol(A = B) =skol(A) = nskol(B)
nskol(Vx:U. A)=nskol(Alz := sz1...zy,]) where s is a fresh skolem-
function with arity n, and
{z1,..., 2} = FV(A)\ {z}
nskol(3z:U. A)=nskol(Alz = y]) where y is a fresh variable.

Figure 7.1: Skolemization of formulas.

correct interpretation of the skolem functions. For a proof of this property
see [dN95].

Conjunctive Normal Form (CNF)

Once a skolemised version of formula P is available, it is rewritten into
conjunctive normal form. A formula is in conjunctive normal form if it
consists of a series of conjuncts, each of which consists of a series of disjuncts
of literals. Hence, negations only occur in front of atomic formulas.

Definition 49 (Conjunctive Normal Form)

The conjunctive normal form of a formula is the normal form of the formula
with respect to the two rewrite systems given in figure 7.2 respectively. The
first system eliminates implications and pushes megations towards atomic
formulas. The second rewrite system eliminates conjunctions that appear as
subformulas of disjuncts.
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——A — A
A=B —»-AVB
—|(A/\B) — —AV-B
-(AVB) - -AAN-B

AV (BAC) = (AVB)A(AVC)
(AANB)VC = (AVC)A(BVO)

Figure 7.2: Rewrite systems to compute the conjunctive normal form of a
formula.

The clause set is obtained by using every conjunct of the conjunctive normal
form as a single clause. Every conjunct exists of a disjunction of literals,
which are collected in a set to form the clause. Finally, Flalse symbols are
eliminated from the clause set as described earlier. Note that it is possible
that the empty clause O already exists in the initial clause set. In such a
case, no further action is required.

We will conclude the discussion of the resolution method with two examples.
First, consider the theorem

(3z: UNVy : U.P(z,y)) = (Vq:U.3p : U.P(p,q))).

To compute the clause set, we first skolemize the negation of the theorem,
which yields
~(P(s10),y) = P(p,s2())),

where s; and sy are skolem functions and y and p are implicitly universally
quantified variables. Computing the conjunctive normal form of this result,
we obtain

P(Sl(),y) A _'P(pa 32())7

and hence clause set C' consists of the clauses { P(s1(),y)} and {—P(p, s2())}-
The empty clause can now easily be derived using the resolution rule for
these two clauses and the most general unifier [y — s2(),p — s1()].

The second example will produce the clause set used in earlier examples.
Suppose we want to use the resolution method to prove

A =3z,y,v,w:U. =(PzV Py) V (Pv A Pw),

then we generate a clause set for —A. First, we compute the skolemised form
of = A, which yields

=(=(Pz' v Py') v (Pv' A Pu')),
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where z', y', v' and w' are the fresh variables substituted for =, y, v and w
respectively. After applying the first rewrite system, we get

(Pz' v Py') A (-Pv' vV ~Puw'),

which is already in CNF. The clause set C corresponding to = A then becomes
{{Pz',Py'},{-Pv',—=Pw'}}, for which a resolution proof has been given
before. Consequently, the skolemised form of =A has no model. So, - A
itself has no model and hence A is valid (and provable).

7.2 Tableaux

Another method to prove formulas in first order logic is the method of
semantic tableaux. Like in resolution based theorem proving, the idea is
that if a formula is a tautology then its negation does not hold in any model
and vice versa. A tableau based theorem prover performs an exhaustive
search for a model for the negation —P of a formula P. If no model can be
found for =P then obviously =P does not hold in any model and hence, P
does hold in all models.

7.2.1 The Tableau Method

Tableau methods, opposed to resolution methods, attempt to construct a
model for =P by syntactic decomposition of the formula. Therefore, tableau
methods can be used for any formula in first order logic without modification
of the formula. Tableau methods are called constructive in the sense that
when a model for =P is found, one actually has a counter-example for P.
Also, when a search is finished and no model for =P is found, there is a
representation of the entire proof of P. This representation is a labeled tree
called the tableau. The labels are sets of formulas.

A tableau is constructed in the following manner:

1. Start with a single node, labeled with {—~P}, where P is the formula
to be proved.

2. Select a leaf from the partially constructed tree. Select from the corre-
sponding label L a formula X to which one of the rules from figure 7.3
can be applied. Extend the leaf with a number of nodes equal to the
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special rule --P
P
« rule PANQ —(P=Q) ~(PVQ
P, Q P, =Q P, =Q
B rule -(PANQ) P=Q PvQ

“P|-Q -P[Q P[Q

v rule —3dz : U.P Vo :U.P
-3z :U.P, =Pz :=1t] Vz:U.P, Pz :=1]

6 rule dz : U.P -Vz : U.P
Plz:=a] —Plz:=d]

Figure 7.3: Rules for the construction of tableaux for first order classical
logic. « represents a fresh variable of type U. t represents an arbitrary term
of type U.

number of conclusions of the rule. Conclusions are separated by a ’|’
and can contain several formulas separated by a ’,’. A successor node
is labeled with (L \ {X}) UY, where Y is the conclusion for which
the successor was created. There exists a model for at least one of the
successor nodes if and only if there exists a model for the parent node.

3. Repeat step 2 until:

(a) Every leaf either contains the special predicate symbol Falsum or
it contains both an X and —X for some formula X. X may be
different for every leaf. Such a leaf is called closed. If all leaves
of a tableau are closed, the tableau itself is also called closed.

(b) There exists a non-closed leaf which contains only literals different
from Falsum. Such a leaf actually provides an interpretation, and
hence a model, in which the original formula P does not hold,
hence the tableau provides a counterexample.

The process of constructing a tableau may be non-terminating. Therefore,
implementations of tableau methods usually use limits on the size of the
tableau or the time used in order to guarantee termination. If the search
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{~((Fz:U.P)A(Nz:UP= Q)= (3z:U.Q))}
{Ez:UP)ANz:UP=Q),~3z:U.Q)}

{3z :U.P),Vz:U.P=Q),~(3z:U.Q)}

{Plz:=a],(Vz: U.P = Q),~(3z: U.Q)}

{Plz :=qa],Vz: U.P = Q),Plz :=a] = Qlz = a],~(Iz : U.Q)}

L {Plz:=qa|],(Vz : U.P = Q) {Plz:=a],(Vz: U.P = Q)
N ,~Plz :=a],~(3z: U.Q)} ,Qz :==a],~ (32 : U.Q)}
{Plz:=a],(Vz : U.P = Q)

=

,“(HCE : UQ), _'Q[:E = a]}

®Ql=a
Figure 7.4: A tableau proof for ((3z : UP)A(Vz : U.P = Q)) = (3z : U.Q).
is aborted for one of these reasons, no conclusions can be drawn about the

original formula. In that case, one does neither have a counterexample, nor
a proof.

The method of semantic tableaux is complete in the sense that for every
formula P for which = P, a closed tableau exists. However, this does not
imply that it can be constructed by an algorithm in a limited amount of
time. Many heuristics are used in order to allow an implementation to cover
a larger area of provable formulae. Discussing all these heuristics is beyond
the scope of this thesis. See, for instance, [DGHP99].

A Tableau as a Proof

Figure 7.4 shows an example of a tableau that proves the formula
(Fz:UP)AN(Nz:UP=Q)) = (Fz:U0.Q).

The x below a leaf means that the leaf is closed.

A Tableau as a Counterexample

From the tableau in figure 7.5 we will derive a counterexample for

~(3z: U.(PAQ) A (P = Q).
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{-=(Fz:U(PAQ)N(P=Q))}
{@z:U(PAQA(P=Q))}

{(Plz:=a] AQ[z :=a]) AN (Plz :=a] = Q[z :=a])}
{P[z := a] AQ[z := a], P[z := o] = Qz := o]}
{P[z := a],Q[z := a], Plz := o] = Q[z := o}

L ’{f}['?[x::a].;]c}?[x = q i {P[z := a],Q[z := o], Qlz := a|}

Figure 7.5: A tableau used to find a counterexample for =(3z : U.(P A Q) A
(P = Q)).

In general, a counterexample derived from a tableau is an interpretation
in which the formula we tried to prove does not hold. To derive such an
interpretation from an open branch in a tableau we only have to create an
interpretation in which all the formulas in the label of the open branch are
true. Since the search for a closed tableau terminated with an open leaf, we
know that all formulas in the label of this leaf are literals. From these literals,
we can easily construct an interpretation that serves as a counter-example
of the original theorem.

In our example, we derive the following interpretation from the open branch
with label Pz := o], Q[z := ], Q[z := «]: Take an arbitrary closed term
u of type U. Choose the interpretation I such that [P[z := u]] = t and
[Q[z := u]] = t. This is possible, since by the nature of an open branch P is a
predicate symbol. That the chosen interpretation is indeed a counterexample
can easily be checked: In the model M! we have M!((Plz := u] A Q[z :=
u]) A (Plz :=u] = Q[z := u])) = t and hence, M!(3z : U.(PAQ) A (P =
Q)) = t and thus, M{(=(3z : U(P A Q) A (P = Q))) = £. Tt follows that
the theorem we were trying to prove does not hold in all models.

7.2.2 An Interpretation of the Method of Tableaux

One can consider the construction of a tableau for a formula P to be a search
for an interpretation I, such that M!(-=P) = t and hence, M!(P) = f. If
such an interpretation is found, we have a proof that not in all interpretations
MT(P) = t. Branching in the tableau indicates that there are two kinds of
interpretations that are candidates for the search. For instance, if =(A A B)
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must hold for the interpretation I, then either A must hold for I or -B
must hold for I. This corresponds to the tableau rule

~(A A B)

If a leaf is closed then the search for an interpretation failed. No interpreta-
tion can make a formula P to hold and make =P hold at the same time. If
all leaves are closed, the search for I failed altogether. We can then conclude
that no interpretation I exists for which M!(=P) = t, hence M!(-P) = £
for all interpretations I and therefore M!(P) = t for all interpretations I.
In short, we conclude = P.

The tableau method presented here is only valid for classical first-order pred-
icate logic. Other tableau methods exist for intuitionistic logic, modal logics
and even some higher-order logics. Soundness and completeness for an intu-
itionistic version of semantic tableaux can be proved fully intuitionistically
(see [dS93]). Soundness and completeness proofs for the method presented
above can be found in [Smu68§].

7.2.3 A Note on closing Leaves

When applying a y-rule, i.e. a tableau rule for —3z:U. P or Vz:U. P one
uses an arbitrary term ¢ of type U. Ideally, one should predict which term
t produces a closed tableau in as little more steps as possible. However, so
far we have not presented any clues about which terms are ’sensible’ in this
sense. In fact, it is quite difficult to choose a ’sensible’ term ¢ at the moment
the rule is applied (at this point, we do not yet know which formulas will
cause the leafs to close, if any). In the following paragraphs, we will discuss a
method to find adequate terms as proposed in [Oph92]. An implementation
of this method of tableaux as used in the programming system is presented
in part IIL.

The idea in [Oph92] is that since it is hard to decide on a ’sensible’ term to
be used during the application of a y-rule, this decision should be postponed
until we have more ’information’. Instead of using a term ¢ to be substituted
for z, a single, fresh variable is substituted for z, say X. Variables such as
this new X, representing substitutions that have not yet been executed,
we call tableau variables. Later, when searching for terms A and —A in a
leaf, a unification algorithm is used in order to (possibly) find a substitution
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0 for these new variables, such that Bf syntactically equals -C6 for B
and C occurring in the leaf. This substitution then instantiates the newly,
introduced variables that are ’sensible’.

However, there are some constraints on the values that may be substituted
for the new variables. For instance, it is not allowed to substitute for a new
variable X introduced by a v-rule, a variable « introduced at a later stage
by a d-rule. Indeed, at the time we needed a term ¢ and used X instead, the
variable o did not yet exist. Also, if we find for X a term ¢ by unification
in one leaf, then ¢ must be substituted for X in all leafs. Hence, we are not
allowed to create a unifier for each leaf separately, but have to create one
unifier that closes all leafs at once.

To meet these constraints a context is maintained during the computation
of a tableau. This context contains all variables introduced during the ap-
plication of - and J-rules in the order in which they are introduced. A term
that should be substituted for a variable X may contain only variables «
introduced by dé-rules that occur in the context before X; i.e. those variables
that were available at the time X was introduced. If a leaf is closed using a
substitution @, then this substitution is applied to the entire tableau. Oth-
erwise it would be possible to use other substitutions for the same variables
in other leafs.

An example of this is shown in figure 7.6. The contexts of the leaves, in
which Greek letters are used for variables introduced by d-rules and capitals
for variables introduced by 7-rules, are displayed to the right of the labels.
Note that it is not possible to close the tableau one level higher than it is.
The unifier [X — 3,Y — a] required for this is not valid, since 8 occurs in
the value for X, but X occurs in the context before S does. (In retrospect,
one could say that the X has been introduced ’too early”; it is needless since
it does not play a role in the substitution. The Z, introduced in the final
label, does the job.)
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{=((3z : UVy : U.Pzy) = (Vq: U.3p: U.Ppq))}
{(3z : UVy : U.Pzy),~(Vq: U.3p: U.Ppq))}
(Vy : U.Pay),—~(Vq : U3p: U.Ppq)}
(Vy : U.Pay), PaX,~(Vq : U3p : U.Ppq)}
(Vy : U.Pay), PaX,—~(3p: U.PpB)}
(Vy : U.Pay), PaX,~(3p : U.Ppp),~PY B}
{(Vy : U.Pay), PaX,PaZ,~(3p : U.Ppp),~PY B}
x using [Y — «,Z — f]

<>

<>

<a>
<aX >
<a,X,B8>

< aaX,;BaY >
<o, X,B,Y,Z >

Figure 7.6: A tableau constructed using Ophelder’s method
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Chapter 8

Hoare Logic

After discussing the formal logic and methods for automated proof construc-
tion, we will focus on the Hoare logic used by the programmer. The Hoare
logic links programs directly to their specifications and is the formal basis
for correctness proofs of programs. The specifications are written as logical
formulas from the theorem prover’s logic. As a result, proving correctness of
a program will require proofs to be constructed within the theorem prover.

8.1 The Language While

Imperative languages are the most common programming languages. This
is probably because they can be interpreted operationally. One can easily
imagine a computer assigning values to variables and proceeding with the
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next action. Functional languages, however, are more mathematics-based.
Logical languages are easy to read, but programming in logical languages
brings along specific problems (e.g. efficiency, termination).

In this chapter, we will define a simple imperative language called While
(see also [NN92]). Also, we will define the denotational semantics of While
and next introduce the corresponding Hoare logic. An excellent overview of
theory developed for Hoare logic can be found in [Apt81].

Definition 50 (While)

Let Set, V and F be a set of type symbols, variables and function symbols,
respectively. Assume that a special symbol bool exists in Set. Let T be the
set of terms as defined in definition 1 on page 34. The set H of pseudo-
programs is defined by the following abstract syntaz:

H == skip|V:=T|if T then H else H fi | while T do H od
||[var V:=T:Set o H ||| H;H

A pseudo-program S is well-formed if and only if:

1. For every subprogram v := e occurring in S, the associated types of v
and e are equal.

2. For every subprogram if g then S; else S, fi and while g do S5 od
occurring in S, the associated type of g is bool.

3. For every subprogram |[var v := e : U o S; ]| in S, the associated
types of v and e are both U.

The language While consists of all well-formed programs in H.

PV (S) denotes the set of program variables of program S (i.e. the variables
that are possibly altered during execution of the program, excluding locally
defined variables).
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Definition 51 (Program Variables)
The definition of PV is given by:

PV (skip) =0

PV(z :=e) = {z}

PV(if G then S1 else S2 i) = PV(S1)UPV(52)
PV (while G do S od) = PV(S)

PV(|[var z :=e: U o S]|) = PV(5)\ {=}

PV (51;52) = PV(S1)U PV (S52)

To define what it means for a well-formed program to be executed, we need
the concept of a state.

A state is a mapping from program variables to values, just like the mapping
of variables to values in an interpretation of a logic. Thus, we consider a
state to be a part of an interpretation of a logic.

Definition 52 (State)

Let I = (D,s) be an interpretation of the logic used to define While, as
in definition 7 on page 37. Then s restricted to application on program
variables is called the state.

8.2 Denotational Semantics

The denotational semantics of a program is defined as a function D : H —
state — P(state), which maps every program to a state transformer (a state
transformer is a function mapping a state to a set of states). The intended
meaning is that for a program S and a state s, D(S)(s) is the set of possible
final states in which S can terminate when executed from state s. Note
that for non-terminating programs, this set will be empty. Since While is
deterministic, the set of final states will contain at most one element. We
use sets of states instead of a single output state to avoid the need for a
special symbol L to indicate non-termination.

To define the changes in states that are made by the program, we assume
the interpretation of the set bool is defined as s(bool) = {True, False}.
Furthermore, we use the entire function s of the interpretation I = (D, s)
to define the denotational semantics, but only the state part will change.
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Definition 53 (Denotational Semantics of While)

Let I = (D,s) be an interpretation as defined in chapter 5. Then, the
denotational semantics of While is defined as follows (we use X here to
denote real functions, not A-terms of AP—):

D(skip) = As : state.{s}
D(z :=e) = As : state.{s[z —> s(e)]}
D(|[var z:=e:U o S]|) = As: state.{s'[z — s(z)] |

s' € D(S)(s[z — s(e)])}
D(81,82) = SEQ(D(S1), D(S2)),
D(lf G then Sl else 52 ﬁ) = COND(G,D(Sl),D(SQ)),
D(while G do S od) = G,
where G = A\W : state — P(state). COND(G, SEQ(D(S), W), D(skip)).

The auziliary functions SEQ and COND are defined as:

SEQ(D1, Ds) = As : state. Uyep, (5) D2(s")
COND(G, Dy, Ds)(s) = D1(s) if s(G) = True,
Dy(s) if s(G) = False

and p 1s the least fixed point operator.

Defining and discussing this operator is beyond the scope of this thesis, since
we will use the denotational semantics only as a stepping stone to the Hoare
logic. The interested reader is referred to [NN92].

An inner block, denoted as |[var v :=e:U e S ]|, allows the programmer
to declare a local variable v of type U, initialized with value e, which is
only used within the program S. Note that the semantics of the inner block
statement restores the value of the locally declared variable to its original
value. If this would not be done, the state lemma given below would not
hold.

We can easily lift these semantics to operate on interpretations or even
models instead of states. In the following we will do so without further
comment. Also, we will speak of formulas to hold in a state, meaning it holds
in any interpretation consistent with the state. Note that since ... := ..
and |[...]| cannot be used for anything but variables, the interpretation of
function- and predicate symbols will not be altered by any program.
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Lemma 54 (State lemma) Let S be a program and x be a variable, such
that x ¢ PV(S). Let I = (D,s) be an interpretation. Then for each s' €
D(S)(s) we have

s(z) = §'(z).

Proof: Induction on the structure of S. O

Hence, programs will only alter a limited part of a state.

The definition of While as given above differs a bit from usual language
definitions in the literature. Usually, expressions and types of variables are
defined explicitly and not, as above, defined using expressions and types
of a logic. However, by linking the programming language to the logical
language we avoid problems with expressibility (any expression in the pro-
gramming language must have a corresponding expression in the specifica-
tion language). Also, if we use a more powerful logic, we get a more powerful
language automatically. The programming language is merely used to define
an order in which computations are performed and to describe how results
are stored. This difference also suggests a different linking of the logic and
the programming language than usual. However, when making a choice for
the link between logic and language, we will provide more arguments (see
chapter 10).

8.3 Hoare Triples

Hoare triples express claims about the final state of a program related to
the initial state of these programs. These claims are formulated by logical
formulas rather than explicit states and hence, they deal with groups of
states rather than single states.

The formula describing (properties of) the initial state is called the precon-
dition. The formula describing (properties of) the final state is called the
postcondition.

Given a precondition, a postcondition and a program we can denote two
kinds of Hoare triples: those for partial correctness and those for total cor-
rectness. The difference is that in total correctness termination of the pro-
gram is guaranteed, while partially correct programs may not terminate.
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Definition 55 (Hoare Triples for Partial Correctness)
Let L be a logic with the sets Set, V and F as used to define While. Let P
and @ be formulas of this logic and let S be a While-program. Then

{P}s{Q}

is a Hoare triple expressing the partial correctness of S with respect to P
and Q. This Hoare triple is valid if and only if for all states s for which
P(s) is valid, Q(s") is valid for all 8" in D(S)(s).

This kind of Hoare triple should be read as: if P holds in a state s and
executing S in s yields s’, then @ will hold in s’. Note that it is not claimed
that a suitable s’ exists, i.e. it is not claimed that S terminates.

Definition 56 (Hoare Triples for Total Correctness)
Let L be a logic with the sets Set, V and F as used to define While. Let P
and @ be formulas of this logic and let S be a While-program. Then

{P}S{4 @}

is a Hoare triple expressing the total correctness of S with respect to P and
Q. This Hoare triple is valid if and only if {P}S{Q} is valid and D(S)(s)
is not empty for any s in which P holds.

This kind of Hoare triple should be read as: if P holds in a state s, then
executing S in s yields a state s’, such that Q will hold in s’. Note that now
it is claimed that a suitable s’ exists, i.e. it is claimed that S will terminate.

A Hoare triple is much like a formula in that it may be true or not. However,
a Hoare triple should never be considered to be a formula. We will illustrate
this by an example: Independent of the interpretation, the following Hoare
triple is valid:

{z=a}z =2+ 1{r=0a+1}.

But if it were regarded a formula, then
Va:U{z=alz:=z+1{z =a+1}
would also be a formula that is valid and hence, we could derive

{r=clrx:=c+{z=2+1}
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to be a valid Hoare triple, which it is certainly not.

The actual problem is that there are two different models involved in the
correctness of a Hoare triple instead of just one. (Namely, one for the pre-
condition and one for the postcondition).

8.3.1 Partial Correctness versus Total Correctness

In the remainder of this thesis, we will only consider Hoare triples for partial
correctness. For this, there are several reasons, which are discussed below.

Simpler logic Reasoning about partial correctness requires a simpler logic
than reasoning about total correctness. For repetitive constructs in
the language (e.g. a while-loop, or a recursive function) one must be
able, in the case of total correctness, to express an upper bound for
the number of repetitions performed. Hence, the logic must provide a
well founded set and the required ordering of this set.

Arbitrary functions For partially correct programs, we may allow arbi-
trary functions in the model of the logic. For total correctness it must
be claimed that all functions occurring in an expression e must be
computable to ensure that = := e terminates. These are restrictions
at a meta-level which limit the models that are usable for the logic.

Less verification conditions Since termination of repetitive constructs
in the language is not proved, less conditions have to be verified by
the programmer to prove correctness of the program. Since formal
derivation of a program already involves many of such verification
conditions, this is can be an advantage for the programmer.

Non-terminating programs Not all programs are guaranteed to termi-
nate. For instance, a program implementing the method of tableaux
presented in chapter 7 cannot be guaranteed to terminate, since there
are formulas for which infinite tableaus are generated (e.g. a tableau
to prove (3z:U. P(z))).

However, if a programmer wants to prove termination of her program she
can still use a system like the one presented in this thesis, provided that an
extension to introduce local constants is added. She then needs to specify
her own well-founded set and the required ordering relation in the logic and
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{P}
while g do {P A g = true}
|[const A:=e:nat @ {PAg=trueN A=c¢e}

.{.]5/\14 > e}
I {P}
od

{P A g = false}

Figure 8.1: The user can specify termination herself, provided that local
constants are available in the language.

add the termination conditions to the specification of the program. She
can also restrict termination proofs to those parts of the program where
termination is non-trivial. For instance, termination of a loop body could
be specified by the user as given in figure 8.1.

8.4 Hoare Logic

A Hoare logic is an axiomatic derivation system to prove the validity of
Hoare triples. To present the Hoare logic for While, we need Leibniz equality.
Moreover, we need to express whether a boolean expression is mapped to
True or False in an interpretation. Therefore, we assume that there are two
constants true and false with s(true) = True and s(false) = False. The
Hoare logic for While then consists of the following derivation rules:

Definition 57 (Hoare Logic for While)

The Hoare logic for While is defined by the derivation rules given in fig-
ure 8.2.

We briefly describe these rules:

skip Since skip does not change the state, the state after termination is

equal to the one the execution started in. Hence, the same propositions
will hold.
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[skip] {P}skip{P}
[assign] {P[z := e]}z := e{P}

{P Ne=true}Si{Q} {P Ae=false}S2{Q}

[if] {P}if e then S else Sy fi{Q}

: {P A e = true}S{P}
[while] {P}while ¢ do S 0d{P A ¢ = false}

oc {PAz=e}S{Q} i o
[block] {P}|[var z :=e:U o S]{Q} fz g FV(P,Q)
[comp] {P}si{Q} {Q}S:{R}
{P}S1; S2{ R}

[cons] =P =P {PIS{Q} FQ=¢Q

{P'}5{Q"}

Figure 8.2: The derivation rules of the Hoare logic for While.

assign If P has to hold after the value of z is changed to the value of e, then
P[z := €] had to hold before this assignment was performed. One is
often tempted to write this axiom as {P}z := e{P[z := e]}; but then
{z =0}z :=1{1 =0} and {z < 5}z : =z + 1{z + 1 < 5} would hold.

if In any state in which P holds, e evaluates either to True of False. De-
pending on this, S; or Sy will be executed respectively. From the
premises we get that if S; is executed in a state in which P holds and
e evaluates to True, then @ will hold in the resulting state. Similarly,
@ will hold after executing Sy from a state in which P holds and e
evaluates to False. Hence, regardless of the value of e, ) will hold
after execution of the if-statement.

while Operationally, the body S of the while-loop is executed as long as
evaluation of the guard e yields True. The premise of this rule states
that if S is executed in a state in which P holds and e = true, that P
will still hold upon termination of S. Hence, P remains true, regardless
of the number of executions of S. The while-loop ends when evaluating
e yields False. Hence, upon termination we have both P and e = false.
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block The block-statement introduces a local variable z and initializes it

with the value of e. Since z ¢ FV(P), it is sufficient to have P as
precondition for the block-statement. The fact that x = e is estab-
lished by initialization of the block. The premise claims that @ holds
after execution of S from a state in which P A x = e holds. Since
z € FV(Q), Q will also hold after execution of the entire block. The
condition z ¢ FV (P, Q) seems more restrictive than needed for the
denotational semantics. It is needed because z is set back to the value
it had before executing the block-command. In case the variable is
ill-named one can use the following (provable) property of programs
called a-conversion:

|[var z:=e:U o S| =|vary:=e:U o S[z:=1]]

for any variable y : U € FV(S5).

comp The composition statement first executes S1 and after that executes

cons

Ss. If @ holds after executing S; from a state in which P holds and R
holds after executing Sy from a state in which @ holds (i.e. the final
state of S1), then R holds after executing S1; S2 in a state in which P
holds.

The logical premises claim that P holds in all states in which P’ holds
and that @' holds in all states in which @ holds. Since @ holds after
executing S from a state in which P holds, @' will also hold after
executing S from a state in which P holds. Hence, Q' will also hold
after executing S from a state in which P’ holds. This rule is known
as ’'the rule of consequence’.

A proof of the soundness of these rules can be found in [NN92].

8.5

Extensions

In this section we discuss two important extensions of the language While
introduced in this chapter. The first extension, arrays, allows new types
to be constructed by the user. The second extension, procedures, allows
the user to introduce (parametric) macros, which can be used in the actual
program.

We will discuss each extension in a separate subsection.
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8.5.1 Arrays

Many interesting problems require arrays to allow efficient solutions (for
instance, the knapsack problem). In AP—, array types are not directly sup-
ported. Using Pascal-like arrays is troublesome, since it requires the bounds
of the array to be defined. Rules to extend a logic with Pascal-like arrays
would therefore require rules to define the complete ordering of the natural
numbers. Instead, we will discuss unbounded arrays. These can be con-
sidered to be partial functions from the natural numbers to any datatype
(including arrays). In contrast to ordinary functions, partial functions rep-
resented by arrays can be altered by the program.

We can think of arrays as lists of pairs. The first element of the pair rep-
resents the domain value and the second element represents the value of
the array for this domain value. When the list is extended with a new pair
(i,v), the array will return value v at domain value 4, overruling the old
array-value for ¢. The value of an array in given domain value % is computed
by searching the last pair in the list whose first element equals 7. The second
element of this pair then represents the corresponding array-value.

For instance, a user can define an array of natural numbers as follows:

array-nat : *g,
mod(z : array-nat,i : nat,v : nat) : array-nat,
val(z : array_nat,i : nat) : nat,
redl : Vz : array_nat.Vi : nat.Yv : nat.
val(mod(z,i,v),i) = v,
red2 : Vz : array-nat.Vi : nat.Yv : nat.Vj : nat.
=(1 = j) = val(mod(z,i,v),7) = val(x, j),
a : array-nat

Then a program can use variable a of type array_nat as an array of natural
numbers. Initially, nothing is known about this array (i.e. it has an empty
domain). To alter the array such that it maps domain value indez to value
y, the assignment a := mod(a,index,y) is used. To obtain the value of a
at domain value index, the expression val(a,index) is used. For instance,
the array mod(a,indez,y) yields value y at domain value indezx, which is
stated by axiom redl. Hence, the value of the original array a at domain
value ¢ndex is irrelevant to this result: the value last assigned to the array
at domain value indexr determines the result. Axiom red2 states that the
value of array mod(a,indez,y) at any domain value other than index, is
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just the value of array a at this domain value.

In order for arrays to be supported more directly by a logic, we assume the
existence of a type symbol nat, such that in every interpretation I = (D, s)
under consideration s(nat) = N. In this logic, the type and term-structure
is then extended as follows:

e If U is a set symbol, then array(U) is also a set symbol. (The set-
symbols are closed under the array operator).

e If 2, i and v are terms with associated types array(U), nat and U
respectively, then
z[i/v] is a term with associated type array(U) and
x(1) is a term with associated type U.

Intuitively, the array z[i/v] is a modified version of array z, that maps
the domain value of expression ¢ to the value of expression v. z(i) is
the value of array = at the domain value of expression .

e Let I = (D, s) be an interpretation and let z, i, j and v be terms of
type array(U), nat, nat and U respectively, then
s(array(U)) =N U
s(z[i/v]) = s(z)[s(i) — s(v)], where
s(z)[s(i) = s(v)](p) = s(z)(p) ifp# s(i)
s(z)[s(2) — s(v)](p) = s(v) if p = s(4)
s(z(1)) = s(z)(s(2))
Hence, the value of an array is a partial function f, possibly a modified
function f’[i — v] and the value of an array at a certain domain index
is the value of this function at the same index.

Arrays are considered to be functions from the natural numbers to other
types. The difference between an array and a function is that a modified
version of a function cannot be expressed directly in the logic. A modified
version of an array x can be expressed as z[i/v]. Hence, users of the logic
can change functions in certain points (which is exactly what is done in
programs using arrays).

AP— can be extended to match with this extended logic by adding the
derivation rules given in figure 8.3. Note that these rules can be replaced by
higher-order definitions and axioms in a more powerful PTS:

As usual, we comment briefly on each rule:
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[ U:xg
I' F array of U:xg

array-form

I' - z:array of U
array-val I'Finat
L'k z(i):U

'+ z:array of U
'k inat
I'kFeU

I'F z[i/e]:array of U

array-mod

I'F z[i/e]:array of U
't redl z[i/e]:z[i/e](i) = e

array-redl

I'F z[i/e]:array of U
array-red2 [ Fp=(i =j)
T F red2 z[i/e] p:z[i/e](j) = z()

I' - array of U:x;
'k ¢ U:array of U

array-start

Figure 8.3: Derivation rules for array-types in AP—

array-form This rule introduces the possibility to construct array-types,
based on a data-type U.

array-val Informally, this rule claims that values of an array with type
array of U are of type U as one would expect.

array-mod The array-modification rule allows the user to construct modified
arrays based on existing arrays. l.e., if = is of type array of U then
the same array, modified at index ¢, where its value should be e (i.e.
z[i/e]) is also a valid array of type array of U.

array-red] Once a theorem contains modified arrays, additional rules are
needed to decompose them. The first 'reduction’ rule states that the
value of array z[i/e] at index i is e.

array-red2 The second ’reduction’ rule states that the value of z[i/e] at
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index j is equal to the value of the original z at index j for all j
different from 4.

array-start This rule is given for practical reasons. Without this rule, pro-
grams will not be able to declare local variables of array-types if no
expressions of such type are derivable from the context. The reason
for this is that the initial value required by the Block-rule cannot be
given. § U represents an array of type array of U whose values are
unknown. By repetitive altering values at given indices, arrays are
constructed that give more information.

Note that the rules above are generalizations of the rules used to model
arrays of natural numbers, given at the beginning of this subsection.

8.5.2 Procedures

Usually, a programmer does not write a program all at once. Larger pro-
grams are split into separate tasks which should be accomplished. For each
task a separate sub-program is written and the 'main’ program solves the
entire computation problem by using the sub-programs. Often, many of the
smaller tasks are equal, such that one sub-program can be used more than
once, which increases the efficiency of program construction and decreases
the chance of errors.

This modular approach to writing programs is utilized by the procedure
mechanism. In its simplest form, the procedure mechanism allows the pro-
grammer to introduce a shorthand name for a series of statements. This
name may then be used to replace exactly this series of statements. Infor-
mally, this could be denoted as in the following example:

|[proc maz = if z < y then z := y else skip fi o
z:= Xy :=Y;max;y := Z; max
Il

where X, Y and Z are constant expressions. By definition, this program is
equal to:

z:=X;y:=Y;if z <y then z := y else skip fi;
y:= Z;if £ < y then z := y else skip fi

The procedure maz assigns the maximum of x and y to . The program
segment if © < y then z := y else skip fi in the first program is called the
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body of the procedure max and the last two occurrences of mazx in the first
program are called the procedure calls of max.

Unfortunately, this procedure mechanism restricts the use of max to com-
pute the maximum of variables z and y and cannot be used for variables a
and b. Therefore, procedures with parameters are introduced. In a proce-
dure with parameters, names for variables and expressions are introduced
during the definition of the procedure and are replaced by real variables and
expressions when the procedure-definition is used. For example:

|[proc maz(var a,b: nat) =if a < b then a :=b else skip fi o
z:=X;y:=Y;2z:= Z;mazx(z,y); maz(z, z)
Il

which, by definition is equal to:

z:=X; y:=Y; z:= Z;if £ < y then z := y else skip fi;
if z < z then z := z else skip fi

Hence, each procedure call is replaced by the procedure’s body with appro-
priate substitutions.

The difference with the previous program is that in the last program the
two uses of maz have different meanings, simply because other parameters
were used. As a consequence, the value of z will become the maximum of
the three values assigned to z, y and z.

The examples above are constructed to avoid any complications. Yet, as
simple as the procedure mechanism seems, there are many pitfalls. We will
demonstrate this by a number of examples:

Late Binding versus Early Binding

Consider the following program with a parameterless procedure:

|[proc maz = if z < y then z := y else skip fi o
|[var z := X : nat e y:=Y;maz ]|
]

When renaming the local variable = to z, we get

|[proc maz = if z < y then z := y else skip fi o
|[var z :== X : nat e y:=Y;maz ||
Il
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which we would want to be equal to the first program, since intuitively the
name of a local variable should not matter. But this is not the case. The
first program is, by definition, equivalent with

|[var z := X : nat e y:=Y;if z < y then z := y else skip fi ||,

which effectively is equivalent with y := Y, since the value of z is restored
to its original value at the end of the inner block. The second program is,
by definition, equivalent with

|[var z := X :nat e y:=Y;if x <y then z := y else skip fi ]|,
which also assigns the maximum of = and y to z.

The core of the problem is that we must define whether the variable z in the
procedure body refers to the ’global’ variable z defined outside the block (as
in the last example) or the ’local’ variable z defined within the inner block
(as in the previous example).

The first option is referred to as early binding, since the variables z and
y in the procedure body are bound at the time the procedure is defined.
The second option is referred to as late binding, since the variables x and
y become bound when the procedure is called which happens after it was
defined. The second option is more powerful, since the procedure can be
used for other variables than the ’global’ variable . On the other hand,
renaming of local variables can affect the semantics of the program. For
more information about early and late binding see [NN92].

Note on global variables in procedure bodies

Consider the following program containing a procedure with parameter:
|[var z := X : nat e |[proc p(var y: nat) =y := z div 2;
if y < z then y := 0;
else skip
fie

p(a);p(z)
|

Looking at the procedure body, one would expect that p(z) would set the
value of variable z to zero, which is the case for the first call, in which a
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global variable a is used. However, if p is called with argument z (as is also
done in the example) the variable is only divided by 2. The main reason for
this is that in the latter case both = and y represent the same variable during
execution of the procedure body'. Clearly, for the denotational semantics
this behavior is not a problem, but it is not very intuitive for the programmer
what the procedure does. This is captured by the fact that the axiomatic
semantics, which state the meaning of a procedure more directly, cannot
claim that the postcondition of p(z) implies z = 0 for each z.

By using a syntactic restriction that no global variables may occur in the
procedure body, we avoid that the postcondition of each procedure call must
deal with the special case of multiple names for variables. This restriction
can be checked automatically by the tool and does not have to be proved
by the programmer.

Definition 58 (Procedures with Parameters)

Given a program S, wvariables x1 till z, with associated types Uy till U,
respectively, variables y1 till y,,, with associated type V1 till Vy, and an unused
identifier p, we define a procedure with parameters as follows:

proc p(var z1: Uy,...,var z, : Up;y1 - Vi, s Um : Vin) = S,

where all z; are called var-parameters (whose value can be altered by the
procedure) and all y; are called value-parameters (of which the procedure
may only use the value, but not alter the value).

After a procedure p is defined as indicated above, it can be called as follows:
P(V1y ey Uny€ly. ey lm),

where each v; is a variable with associated type U; and every e; is an expres-
sion yielding a value with associated type V.

These definitions are only valid if the following conditions hold:

i All z; and y; are different and FV(S) C {z1,...,Zn,Y1,---,Ym} and y;
is not altered by S in any way (i.e. it does not occur at the left hand
side of an assignment statement or as argument for a var-parameter
in procedure calls). Effectively, these conditions ensure that no global

'Having multiple names for a single variable is called aliasing, which often occurs
when using pointers. It is aliasing which makes pointer semantics extremely hard and
cumbersome to work with.
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variables are used in the procedure body S and that value parameters
are not altered.

ii {v1,...,0,}NFV(er,...,em) =0 and {v1,..., 00 UFV(e1,...,ep))N
{z1,. s Tn,Y1,-- -, Ym} = 0. Effectively, these conditions ensure that
every variable exists only under a single name and that altering a var-
parameter does not alter the value of any of the value-parameters.

In that case, the denotational semantics of the procedure call are defined as:

D(p(viy-.- U €15-cy6m)) =

D(|[var ym :=€m : Vi @ |[ ... @ |[[var y; : =€ : V] ®
|[var z, :=v, : U, ® |[ ... & |[var 21 :=v; : U ®
S;
V1 :=T15...3Up 1= T

I 1D

Hence, instead of defining the semantics directly, we use the translation of
the procedure call.

Note that since we have a-conversion for block-constructs, we also have a-
conversion for the procedure parameters. Hence, we can relax condition ii
for procedure calls: we do not have to claim that variables used as parame-
ters for the procedure differ from variables used in the procedure calls, since
they can be renamed when necessary. In the following, we will add this flex-
ibility to the already used variable convention (variables used as procedure
parameters are considered to be bound variables).

Given the syntactical conditions i and ii, the denotational semantics of a
procedure call can be understood as follows:

e Copy value-parameters e, ...e; to local variables y,, ...y; (to avoid
substitution in the actual procedure body).

e Copy var-parameter values v, ...v; to local variables z,, ...z (again,
to avoid substitution in the actual procedure body).

e Execute the procedure body to perform the computation with the
given values stored in y; ...y, and z1 ... Ty,.

e Copy the results in the var-parameters z; ...z, back to the variables
V1 ...Un given by the calling program.
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The order of the variable-indices above are reversed only for convenience in
the forthcoming discussion about the Hoare rules for procedures.

Hoare rules for procedures

In Hoare logic, we want to prove that for a given procedure named p
{P'}p(v1,...,0p,€1,...,67,){Q"} holds. Certainly, it is sufficient to prove
that {P'}S'{Q'} holds, where S’ is the equivalent of the procedure call
p(vi,...,Up,€1,...,€n) as given by definition 58. Using the definition of a
procedure call this way is not desirable though, since for every procedure
call to p we have to prove correctness of the entire body with respect to the
specification.

Instead, we would like to prove { P}S{Q} for the procedure body S once and
then use a single rule to conclude {P'}p(v1,...,vn,€1,...,em){Q'} for P’
and Q' related to P and @ respectively. A procedure would then be defined
along with its specification, like

proc p(varzy : Uy,...,varz, : Up,y1 : Vi,...,ym : Vi) = {P}S{Q}-
Remains to find correct pre- and postcondition of a procedure call

p(vla"'avnaela-" aem)'

The most intuitive approach is to use as precondition
P' = Plz; = viliq[yi = eiliZy,

since this is just the precondition of S with all procedure parameters re-
placed by their counterparts used in the procedure call. Assuming condi-
tions i and ii of definition 58 hold, we can use the denotational definition of
p(vi,...,vp,€1,...,6n) and the block-rule to show that S is executed from
a state in which

P Aypn=enAN...ANyi=e1ATp=v,A...\ANx1 =11

holds. From this it follows immediately (using Leibniz) that P holds indeed.

For the postcondition Q' we use Q[z; = v;]"[y; := €], since this is
just the postcondition of S with all procedure parameters replaced by their
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counterparts used in the procedure call. From the assignment rule we get
that, upon termination of S,

Qlzi = vl [yi == ey [vi o= mli_,,

must hold. Since all variables are different and, by condition ii, none of the
e; contain any x;, this can also be written as:

Qlzi := vil{_1[vi == zili, [y = e,

which is equal to Q[y; := ;] ;.

S is executed from a state in which 4, = e, A ... Ay1 = e; holds. By
conditions i and ii, we know that neither the values of y; nor the values of
e;j are changed by S, hence these equalities will also hold upon termination
of S. Together with @) these equations imply Q[y; := ;]! as requested.

Hence, the denotational unfolding of p(v1,..., vy, €1,...,€y) is correctly an-
notated as follows:

{Plz = viliLy[yi := ey }
|[var ym :=epm : Vi, ® |[...0|[vary; :=e;: V] @
|[var z, :=v, : U, o |[...®]|[var z; :=v; : Uy ®
{Plz; :=v]l_i[yi =& Az1 =i A ... ANzy = vy
ANyr=e1N...\NYm =en}
{PAyi=e1 N...ANym = en}
S;
{QAyi=er Ao ANym = en}
[Qly = ey}
VL= T ... Up i= Ty
Il
{Qlzi := viliy [yi := ei]i“ }

Hence, we conclude that

{Plz; = vl [yi == eilZ }
P(V1,-e ey Up, €1, Em)
{Qzi == vilj[yi == e&]1}

holds. Therefore, a valid Hoare rule for procedure calls is:
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proc p(var z1 : Uy,...,var 2, : Up,y1 : Vi,. .oy Ym 2 Vin)

= {P}5{Q}
[call] {Plz; :=vi]l_1[yi == el }
p(V1,. ., Up, €1, €m)

{Qlwi = vill[yi = el 1}

However, this rule is not complete, since it restricts the use of the procedure
to situations in which the pre- and postcondition of the procedure call match
with the pre- and postcondition of the procedure body. If we want to use
procedures to solve separate parts of the programming problem, we want to
use a procedure call for parts of the specification.

For instance, let fac be a procedure computing the factorial defined as
proc fac(var z : nat,n : nat) = {True}...{z = nl}.

Now we want to write a program to compute two factorials, being specified
by precondition T'rue and postcondition z = X!Ay = Y!. Then we must first
rewrite the postcondition into either z = X! or y = Y! in order to use the
procedure call fac(xz, X) or fac(y,Y) respectively. Which version is chosen
is irrelevant to the fact that half of the specification is thrown away. Hence,
even though the Hoare triple {True}fac(z, X); fac(y,Y){z = X! Ay =Y}
is valid, it cannot be derived by our Hoare logic.

Therefore, let T be a formula, such that FV(T) N {v1,...,v,} = 0, im-
plying that its validity will not change due to a procedure call. Without
loss of generality, we can also assume that 7" does not contain any of the
z; and y; used by the procedure. It is now easy to see that {T'}S{T'} and
{T}v1 :=z1;... ;0 := 2, {T} hold. Hence, {T}p(v1,...,vn,€1,...,em){T}
also holds (the validity of T is unaffected by the procedure call) and there-
fore, we can introduce the following rule:

FV(T)N{vy,...,v,} =0
[call_extend] {Pip(v1,. .- vn,e1,---,en){Q} )
{T NP}p(vi,...,vn,e1,...,en){T ANQ}

This rule re-established completeness. Applying it to the original postcondi-
tion of the factorial example yields the pre-condition z = fac(z, X) A True.
This is equivalent with z = fac(z, X). Applying the [call]-rule to this post-
condition yields the precondition True, which was given by the original
program specification.
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This approach is also used in [Gor75]. Note, that even though we now have
two rules to derive correctness of a procedure call, it will always be decidable
which one was used by comparing the structure of the pre- and postcondition
of the procedure call to those of the procedure definition in the context.

The Hoare rule to introduce a procedure is
{P}S{Q}

[proc] proc p(var z1: Uy,...,var 2, : Up,y1 : Viny oo, Ym = Vin)

= {P}5{Q}

provided FV(P)UFV(Q) C {z1,...,Zn,Y1,---,Ym} and no y; is altered by
S (i.e. y; € PV(S)). Again, these conditions can be checked mechanically.

These three rules allow the programmer to derive valid procedures and to use
them. Formally, the entire procedure has to be derived for each procedure
call made. However, the idea is that a tool maintains a library of correctly
derived procedures and allows the programmer to use these directly. This
maintaining of a context can be made more explicit, but this is postponed
to chapter 10.

It is also possible to define procedures more generally, allowing global vari-
ables, recursion or even mutual recursion (procedure A calling procedure B
calling procedure A etc.) However, giving Hoare rules for these extended
versions is a difficult and error-prone task. For instance, in [GL80] some
rules were proposed that were later found unsound. In [HM96] a Hoare rule
for mutually recursive procedures allowing global variables is proved sound
within the HOL theorem prover.



Chapter 9

Combining PTSs and
Tableaux

In this chapter we will describe an algorithm to convert closed tableaux into
A-terms of AP—. In turn, these A-terms can easily be transformed into A-
terms of other PTSs, provided that these other PTSs are powerful enough.
The closed tableau may be produced by any tableau-based theorem prover.
This gives us the capability to use existing theorem provers as a module in
an implementation of AP— and thereby adding powerful automated theorem
proving to an interactive proof system, without the danger of extending our
logic in an unforeseen way. If there is enough trust in the correctness of the
implementation of the automatic theorem prover we can also use a special
token to encode that the proof can be constructed using the ATP. We then
do not have to actually convert the tableau and store the large A-term that

105
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is the result of converting the tableau. The ATP can then reconstruct the
tableau and convert it into a A-term on request; for instance, if we want to
communicate our proof to somebody using a different theorem prover based
on A-calculus. The translation of tableaux into A-terms is also described
in [Fra00].

The conversion is done in a structured way: for similar rules of the tableau
method, similar conversion steps are performed. The classes of similar rules
of the tableau method are usually called a-, 8-, v- and é-rules. In figure 7.3
on page 76 each class is depicted in one row. The top row displays the
special rule, which is very simple to convert. In figure 9.1 for each class the
structure of the rules is depicted. Our conversion algorithm will have one
case for every class of rules.

special _;P
. __E(PQ) 5 E(RQ)
E\(P), E2(Q) E,(P) | E2(Q)
E(U, P) s _BU.P)
" "E(U,P),E (P} E'(P);

t a term of type U 0 new variable of type U

Figure 9.1: Structure of the different classes of tableau rules.

A full conversion of a tableau consists of two steps: First one has to construct
a PTS-context for each node in the tableau. These contexts are constructed
from top to bottom. The tableau labels are related to the contexts in the
sense that every formula in the tableau label is the type of a variable in the
corresponding PTS-context. The contexts, however, also contain variables.
To modify contexts of AP— we will intensively use theorem 41 and theo-
rem 42 on page 64. Second, a contradiction, valid in the context of the root
node of the tableau, is constructed. This contradiction is constructed from
bottom to top. During this second construction it is important that the
PTS-contexts of child nodes can be used to derive contradictions in parent
nodes.
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The interdependence of these two steps in best understood if we present
both constructions interleaved. We present the conversion algorithm top
to bottom: we always start describing how the contexts for child nodes
are derived from the context of the parent node. Next, we describe how a
contradiction is derived in the context of the parent node from contradictions
derived in the contexts of the child nodes. However, we start showing how
the actual proof of the theorem is constructed from the contradiction derived
in the context of the root node.

9.1 Converting the Initial Tableau

The tableau starts with a node labeled by =P and the initial context for
AP— will be T'z,p : =P. As explained in section 7.2 the tableau represents
a contradiction derived from —P and hence, converting the tableau should
result in a contradiction ¢ : L derived from the context I'z,p : =P. The
validity of P in AP— is then given by I'z I classic P (Ap : =P.c) : P.

9.2 Converting Applications of Tableau Rules

To derive a contradiction valid in the context of the current node, we first
construct a context for the successor-nodes. By recursion, we get a con-
tradiction valid in that context. From this contradiction, we construct the
contradiction valid in the context of the current node. Suppose the context
corresponding to the current node is denoted by 'z, A1,z : X, Ao, where X
is the proposition to which the tableau rule was applied. The context of the
successor-node(s) will be stated for each case separately. For each type of
node we will describe the construction of the contradiction.

9.2.1 Conversion for the Special Rule

Our first case will deal with the special tableau-rule:

=P
P

We have to derive a contradiction ¢ from a node with context 'z, Aj,0 :
—— P, A,. First, we create for the successor-node the corresponding context
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I'z,Av,Ag,p: P. The assumption p : P is put at the end of the context in
order to ease the derivation given below. Then, by recursion, we derive a
contradiction ¢ from this successor node, hence we have 'y, Ay, Ag,p: P F
c: 1. Then the contradiction we seek is derived as shown in derivation 9.1.

{ induction hypothesis }

(0) F[,,Al,Az,p :PFc:L
{ O-intro on (0) }

(1) Tg,A1,A2F (Ap:Pec): P=>1
{ see remark 9.2.1 and theorem 41 }

(2) T, A,o:(P=>1)=1L,AFo:(P=>1)=1
{ theorem 42 on (1) }

(3) Tg,A,0:(P=>1)=1,AF(Ap:Pc): P=>1
{ H-elim on (2) and (3) }

(4) Tg,A0o:(P=>1)=1,AFo0(MAp:Pc):L

Derivation 9.1: Derivation structure for the Special Rule.

Remark 9.2.1 Formally we also need to derive types in order to apply the
PTS-rules. For instance in step (2), we indirectly apply intro on the type
(P =1) =1 by using theorem 41, but for this we also need a type judgment
saying I, A1 F (P =1) =1: x,. Such a type judgment can be derived by:

(@) Tz, A1k P:xy, Theorem 39 and P € L
(b) Tg,A1,p: PFEL: %, Aziom of AP— and repeated weaken
() T, AitE P =1: %, II-form on (a) and (b)
(d) Tz, Ar,p: (P=1)FL:x, Aziom of \P— and repeated weaken
() Tg, At (P=1)=1:%, II-form on (c) and (d)

For reasons of space and simplicity, we will omit these type derivations.
Usually it will be evident that the types are correct.

9.2.2 Conversion for a-rules

Before we present the general scheme to convert a-rules, we describe the
conversion of the typical case of an a-rule: conjunction. The tableau rule

1S:
PAQ

P,Q
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We have to derive I'z, Aj,0: PAQ,Ay 7 : L. To the successor node,
we assign the context 'y, A1, Ag,p : P,q : Q. By recursion, we get from
this context a contradiction: 'z, A1, Ag,p: P,q: Q F ¢ :L. To derive a
contradiction from the original context we use the structure of derivation 9.2.

{ induction hypothesis }
(0) Fﬂ,Al,AQ,p : P,q : Q Fe:lL
{ O-intro on (0) }
(1) T, A1,A9,p:PF(Ag:Q.0): Q=1L
{ O-intro on (1) }
(2) T, A1, AsF (Mp:P(Ng: Q) : P=(Q=1)
{ theorem 41 }
(3) Tr,A1,0: PAQ,AsF0:PAQ
{A-elim; on (3) }
(4) Tr,A1,0: PAQ, A9 Fm(0): P
{A-elimy on (3) }
(5) Tr,A1,0: PAQ,AgFma(0): Q
{ theorem 42 on (2) }
(6) T'z,A1,0: PAQ,AsF(Ap:P.(Ag:Q.0)): P=(Q=1)
{ I-elim on (4) and (6) }
(7) Tr,A1,0: PAQ, A2 (Ap: P.(A\qg:Q.c)) m(0): Q=L
{ H-elim on (5) and (7) }
(8) Tr,A1,0: PAQ, A2k (Ap: P(Ag: Q.c)) mi(0) m2(0) : L

Derivation 9.2: Derivation structure for the a-rules.
Hence, the solution is given by 7 := (Ap : P.(Aq : Q.c)) m1(0) m2(0).

In the general case we consider the tableau rule:

E(P,Q)
Ey (P)a E?(Q)

We have to derive a contradiction from the context 'z, Aj,0: E(P,Q), As.
To the successor-node we assign the context I'z, Ay, Ao, p : E1(P),q : E2(Q)
from which we get a contradiction ¢ :1 by recursion. In order to obtain
a contradiction from the original context, we use a modified version of the
scheme in derivation 9.2: Steps (0) till (2) remain unchanged, except that P
has now become F1(P) and @ has become F»(Q). In step (3) we introduce
o : E(P,Q), but to continue with steps (4) till (8) we need T'z,Aq,0 :
E(P,Q),Ay F 7' : E1(P) A E5(Q). How this is accomplished depends on
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the actual rule that is applied. For every rule we can construct a derivation
and hence a A-term to fill in for ?’. The derivation of the individual A-terms
is omitted here, but the results are given in table 9.1. In this table, the
conversion function 7T gives for a term o : E(P, Q) a term with type E1(P) A
E5(Q). Since steps (4) till (8) are performed after using the conversion
function 7', the appearances of o in these steps become T'(0). Note that
the conversion functions produce A-terms and that they are not A-terms
themselves.

PAQ QR |o
-(P = Q) -Q | (classic P (Ap:—=P.o(\q: Pp q Q))
;(Ag: Q.o(Ap : P.q)))
-(PVQ)| -P -Q | (Ap: Po (injl (PV Q) p)
,Aq : Q.o (injr (PV Q) q))

E(P,Q) | E1(P) | Ex(Q) | T(0) : E1(P) A Ep(Q) with o: E(P,Q)
P
P

Table 9.1: Conversion functions for a-rules.

9.2.3 Conversion for S-rules

Again, we start with the typical case as an example. For S-rules the typical
case is a disjunction, which has the tableau rule:

PVQ
PlQ

If the current context is I'z, Aj,0: PV @, Ay then its successors will have
contexts ['z, A1, Ag,p : P and 'z, A1, As,q : @ respectively. From the
successor contexts we have derived contradictions ¢; and ¢y by recursion.
The derivation of a contradiction from the current context is then given by
derivation 9.3.

To convert the general case we consider the tableau rule:

E(P,Q)
E\(P) | E2(Q)

We use the same strategy we used for a-rules: The derivation above is used as
a scheme in which we have to replace P by F1(P) and @ by E2(Q) in lines (0)
to (4). Instead of introducing o : PV @ in line (5), we introduce o : E(P, Q)
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{ induction hypothesis }
(0) Tr,A1,Ag,p:Plep:Ll
{ induction hypothesis }
(1) Tr,A1,A2,q:QFcy:L
{ I-intro on (0) }
(2) FL,Al,AQ H ()\p : P.Cl) :P=>1
{ I-intro on (1) }
(3) Fﬂ,Al,AQ F ()\q : Q.Cg) Q=1
{ V-elim on (2) and (3) }
(4) Tz, A1, A2 F ((Ap: Pcr)V(Ag: Que2)) : (PVQ)=>1
{ theorem 41 }
(5) Tr,A1,0:PVQ,A2F0:PVQ
{ theorem 42 on (4) }
(6) Tr,A1,0:PVQ,Axk ((Ap:Pc1)V(Ag:Q.c2)) : (PVQ) =1L
{ II-elim on (5) and (6) }
(7) Tr,A1,0:PVQ,AcF ((Ap:Pc1)V(Ag:Q.c2)) o:L

Derivation 9.3: Derivation structure for the S-rules.

and then insert a derivation between line (5) and line (6) that results in
a A-term of type E1(P) V E3(Q). These A-terms depend on o and can be
obtained by applying a transformation function 7" to o. The transformation
functions for S-rules are given in table 9.2 but their derivation is omitted.
Again, the transformation functions 7" produce A-terms but are not A-terms
themselves.

The remainder of the general case (the new lines (6) and (7)) then follows
easily.

9.2.4 Conversion for y-rules

In case of y-rules the most typical example is the rule for universal quantifi-
cation, with tableau rule:
Vz:U.P
Ve : U.P, P}

Given the current context 'z, Aj,0 : (Vx : U.P),As and the term ¢ used
to extend the tableau, we construct for the successor node the context
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E(P,Q) | E1(P) | E5(Q) | T(o) : E1(P) V E»(Q) with o: E(P, Q)
-(PAQ)| —-P -Q | dassic (=P V =Q) Ar: =(=PV =Q).
r(injl (AP V Q) (Ap: P.

r(injr (=P V -Q) (Aq : Q-0(p,q)))))
P=qQ -P Q | cassic ("PV Q) Ar: (=P VQ).
r(injl (=P V Q) (A\p: P.

r(injr (=P V Q) (o p))))

PvVQ P Q 0

Table 9.2: Conversion functions for S-rules.

Te,Av,0 0 (Vz: U.P),Aq,p : PF. Note that the original universal quan-
tifier is still present in this context. After the contradiction ¢ has been
derived from the successor’s context by recursion we derive a contradiction
from the original context according to derivation 9.4.

{ induction hypothesis }
(0) Tg,Ar,0: (Vz:U.P),Ag,p: PFFc:L
{ II-intro on (0) }
(1) Tg,Ar,0: (Vz:UP),Ae - (Ap: PFf.c): PF =1
{ theorem 41 }
(2) Tg,Ar,0:(Vz:U.P),Aqyko0: (Vz:U.P)
{ ok because of theorem 38 on page 61 }
(3) FL:,Al,OZ (V.’I? H UP),AQ Ft:U
{ II-elim on (2) and (3) }
(4) Tg,Av1,0: (Vz:UP),AsFot: PfF
{ II-elim on (1) and (4) }
(5) T'g,Ar,0: (Vo :UP),Ay(Ap: PFc) (0ot):L

Derivation 9.4: Derivation structure for the ~y-rule.

To make this derivation suitable for the general case, consider the rule:

E(U,P)
E(U,P),E'(P)}

We replace (Vz : U.P) by E(U, P) and P} by E'(P)7 in the entire derivation.
We then have to insert a derivation of a term of type (Vz : U.E'(P)) from
o: E(U, P) after line (2). The resulting A-term of this derivation is given by
the transformation functions 7' given in table 9.3.
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E(U,P) | E(P)|T(o): (Vz:U.E'(P)) with o: E(U, P)
(Vz : U.P) P Jo
=(Fz:U.P)| =P |(Az:U.(Ap:Po(inj (3z: U.P) p x)))

Table 9.3: Conversion functions for «y-rules.

9.2.5 Conversion for §-rules

The typical case for a d-rule is existential quantification, with the tableau
rule:

dz : U.P
T’

where 6 is a new variable of type U.

The current context is 'z, Aj,0 : (3x : U.P),A,. For a é-rule we have to
extend the context more than for the other cases: we do not only add p : P
to the successor’s context, but also a fresh variable  : U. The successor’s
context then reads 'z, A1, Aq,0 : U,p : P. By recursion we may assume
that we have derived a contradiction ¢ from this context. A contradiction
from the current context is derived as shown in derivation 9.5.

{ induction hypothesis }
(O) FL,Al,AQ,H :Up:Prkc:L
{ O-intro on (0) }
(1) PL,Al,AQ,g U+ (Ap : PC) :P=1
{ O-intro on (1) }
(2) Tr,A1,A0F(A0:U.(Ap:Pc)):(VO:U.(P=1))
{ 3-elim on (2) for 1L}
(3) Tz, A1, A0 (3z:UP)(A:U.(Ap:Pc)):(Fz:UP)=>1L
{ theorem 41 }
(4) Tr,A1,0: (32 :U.P),AsFo0:(3z:U.P)
{ theorem 42 on (3) }
(5) T'z,A1,0: (32 :U.P),Ae < (3z:U.P) (A0:U.(Ap: Pc))
:(Fz:U.P)=>1
{ I-elim on (4) and (5) }
(6) Tg,A1,0:(Fz:U.P),Ap (O (3z:UP) (M:U.(Ap: Pc))) o:L

Derivation 9.5: Derivation structure for the d-rule.
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Like before, we use the above derivation to obtain a scheme for the general

case. The tableau rule is:
E(U,P)

E'(P)j

First, we replace P in the derivation above by E'(P)j in lines (0) to (2). In
line (3), P is replaced by just E'(P), which is allowed since the occurrences
of z in P that were bound within E(U, P) are now explicitly bound by the
Jdz : U... occurring before E'(P). Next, we change the intro in line (4)
to an introduction of o : E(U, P). Finally, we insert a derivation of a -
term of type (3z : U.E'(P)) between line (4) and line (5). Also like before,
these A-terms are given by a transformation function 7. The transformation
functions for J-rules are given in table 9.4.

E(U,P) |E(P)|T(o): (3z:U.E'(P)) with o: E(U, P)
(3z : U.P) P o
-(Vz:U.P)| =P |dassic(3z:U—-P) (Ar:—(3z:U.—-P).
o(Az : U.classic P (Ap : —P.
r(inj (3z : U.~P) p x))))

Table 9.4: Conversion functions for d-rules.

9.3 Conversion of Closed Leaves

The recursive call ends when we convert a leaf of the tableau. However, at
a closed leaf we have a context in which both a variable of type P and a
variable of type =P occur. In AP— negation is modeled by implication and
1. Hence, in the context 'z, A1,p : P,Ay,p’ : =P, A3 we can derive the
contradiction p'p.

This concludes the conversion algorithm. Note that if during the construc-
tion of a tableau needless steps are taken these will also be translated.

9.4 Formalizing the Algorithm

The conversion algorithm can also be described as a function C' from closed
tableaux to A-terms. Although this allows us to formally prove correctness
of the conversion, we chose for the previous presentation since it is more
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descriptive in how the A-terms are obtained. For the sake of completeness,
we will now illustrate how the formal definitions are constructed.

Definition 59 (Conversion function C)
Let C :Closed Tableaur — Terms be the conversion function defined as

C(T) = classic P (\p: =P.C'(T¢,p: -P;T))

where L(T) = {=P} is the label of the root of the tableau and C' : Contexts
X Closed Tableauz — Terms is an auziliary function to be defined next.

Definition 60 (Auxiliary function C')

The auziliary function C' :(Contexts x Closed Tableauz) — Terms is defined
recursively by distinction between the type of rule applied to the label of
the oot node of the tableauz. That is, C'(con,tab) checks which rule was
applied to the root node of tab. If tab consisted of a closed leaf, it returns a
contradiction constructed as described in section 9.3. If a tableau rule was
applied to tab it constructs contexts for resulting child nodes and recursively
calls itself. The result from the recursive calls are combined to a single
contradiction as described in section 9.2.

We can now state the correctness of the algorithm by the following theorems.
We only give sketches of the proofs of these theorems, since the proofs can
easily be extracted from the presentation of the algorithm.

Theorem 61 (Correctness of contradictions)
Let T be a closed tableau, let T' be a valid context and define L(T) = {P €
P|3IpeV(p: P) €T} (P denotes the set of formulas of the logic L). Then

r-C'(T,T):L.
Proof: By induction on the depth of the tableau. We will need cases for
leaves and cases for nodes to which the special rule or one of the a-, (-,

- or §-rules is applied. It is easy to verify that the premises hold for the
recursive function calls. O

Theorem 62 (Correctness of conversion)
Let T be a closed tableau for P (i.e. L(T) = {-P}). Then

TcFC(T): P.

Proof: See 9.1 (converting the initial tableau) and use theorem 61. O
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9.5 Properties of Converted Tableaux

The converted proof may be much longer than a proof that is constructed
directly in AP—. For example: a direct proof of R = R in A\P— looks like
Iz F (Ap: R.p): R= R. However, if we convert the tableau

RSB
X

we get a much larger A-term. Following the algorithm, we start with I'z -
classic (R = R) (Mo : =(R = R).c) : R = R, where c is a contradiction
extracted from the initial context I'z,0 : =(R = R). The tableau rule
applied is an a-rule for implication. The resulting A-term of this conversion
in general is (Ap : E1(P).(\q : E2(Q).c")) m1(T(0)) m2(T'(0)) : L, in which ¢
is the contradiction derived from the successor’s context I'z,p : F1(P),q :
E5(Q). If we fillin P, QQ, Ey, FE5 and T for our example and then use the
result of this substitution in our proof, we get

classic (R= R) (Ao: =(R= R).(Ap: R.\q: ~R.C)
mi(classic R (Ap : “R.o(A\q : R.pqR)),(Aq : R.o(Ap: R.q)))
mo(classic R (Ap : ~R.0o(A\g : R.pgR)),(Aq: R.o(Ap: R.q)))) : R=R

where ¢’ is the contradiction derived from the context I'z,p : R,q : = R. This
corresponds to the context in which the tableau gets closed by R and —R,
hence the algorithm gives us ¢ = gp. The final proof then reads:

Tz b cassic (R= R) (Ao: (R = R).(Ap: R.\q: ~R.qp)
mi(classic R (Ap: "R.o(Aq : R.pqR)), (Aq: R.o(A\p: R.q)))
ma(classic R (Ap: =R.0o(Aq : R.pqR)),(Aq: R.o(Ap: R.q)))): R=R

This ’explosion’ of the proof term is certainly a drawback of this proof
method. The size of the converted tableau can be decreased in several ways:

e One can use definitions or A-abstraction/application pairs to avoid the
repetition of sub-proofs in the converted tableau.

e It is possible to decrease the size of the tableau before it is converted.
This is done by removing nodes from the tableau that only produce
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formulas that are not needed to close the tableau. A straightforward
algorithm to do this is easy to implement, but perhaps one should
attempt to find a more advanced algorithm.

e If higher order logic is available, the translation constructs can be
defined as polymorphic theorems in the context of the PTS. Instead of
repeating the entire construct for every translated tableau-node, the
translation then consists of a series of applications of these theorems.

e In an implementation one can choose not to convert the tableau at all.
Instead, the following derivation rule is used:

”a tableau for A was found”
'k tab A:A

However, this violates the safety of the system. It is therefore impor-
tant that the tableau can be reconstructed and translated by the tool
upon request. This approach is used in Cocktail.
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Chapter 10

Combining Hoare Logic and
PTSs

Our aim is to build an integrated tool for program derivation. However,
a logic for program derivation as discussed in chapter 8 contains the rule
of consequence, linking the programming language to validity statements
about logical formulas. Therefore, it will be necessary to include a logical
theorem prover into our programming tool.

Depending on the way the programming logic and the theorem prover logic
are combined, there are certain restrictions and preliminaries on the tool. In
this chapter, we discuss several methods to combine the programming logic
with the proof logic and their consequences. Based upon this discussion, we
will make a choice for our tool.

119
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10.1 Deep embedding

The deep embedding of a programming language and its Hoare logic as
described in this section was used by Homeier et al in [HM96]. In their paper,
they discuss how a verification condition generator (VCG) is built within
the theorem prover HOL (see [GM93]) using this embedding. A verification
condition generator takes an annotated program as input and computes the
theorems that have to be proved to guarantee that the program meets its
specification. Even though our goal is to support program derivation rather
than program verification, we will briefly discuss this kind of embedding.
How to represent unfinished programs, needed during program derivation,
using this embedding is not discussed.

The definition of While consists of the signature of the syntax and a function
defining its denotational semantics based on state transitions. Hence, it is
possible to define the language While in a PTS just like that: introduce a
set prog : x5 and define it to be all terms of a certain signature, by defining
constructors for prog. In a PTS, this is done with the following context:

Prog : *s,

skip : prog,

assign : var — exp — prog,

if : bool — prog — prog — prog,
while : bool — prog — prog,

block : var — exp — prog — prog,
comp : prog — prog — prog

However, several constructors refer to other syntactic categories, like var
and exp (for variables and expressions respectively). These can, in turn,
be defined in the context as given in figure 10.1 before the definition of
prog. For simplicity, we assume that the programming language only has
variables of type nat and that nat is already defined in the logic with the
usual operators.

For example, the expression x + 3 would be encoded as
plusE(varE(varz 0))(conE 3),
assuming that z is variable 0. The assignment x := x + 3 is denoted as

assign(varz 0)(plusE(varE(varz 0))(conE 3))



10.1. DEEP EMBEDDING 121

var : kg,
varz : nat — var, (creating an infinite amount of variables)
exp : *g,

conE : nat — exp, (creating numeric constants)

varE : var — exp, (creating expressions of single variables)
plusE : exp — exp — exp, (representing addition)

bool : *g,

equB : exp — exp — bool, (representing equality of expressions)
smallerB : exp — exp — bool, (representing smaller than comparison)
andB : bool — bool — bool,  (representing boolean and)
orB : bool — bool — bool, (representing boolean or)

(

notB : bool — bool representing boolean not)

Figure 10.1: The context definitions used for deep embedding of the expres-
sions of a simple programming language.

and the simple if statement if x < 0 then z := x + 3 else skip must be
denoted as

if (smaller B(varE(varz 0))(conE 0))
(assign(varz 0)(plusE(varE(varz 0))(conE 3)))

(skip)

To define the denotational semantics, we need to formalize the concept of a
state, which is a mapping from variables to values. Since, in this example,
the language only uses natural numbers as values, a state is a function of
type var — nat. If we want to model other variable types as well, we need
a set num of numerical values and use var — num as the type of a state.

If s is a state, we need to define s[v — n] in order to denote the denota-
tional semantics (see page 86). Since in a PTS it is not possible to define a
higher order function that performs exactly this altering of a state, we must
axiomatically define it. We will use the following relation

Sub sl s2 i n ,meaning that s2 is s1[(varz i) — n] (we use natural number
1 to identify variables. The constructor varz is then used to create the
actual variable. Inherently, all variables are of the same type. If we
want different types for variables, we have to change the type of ¢ to
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var and define syntactic equivalence of variables, but this is beyond
the scope of this thesis).
Hence, if we use state to denote the type var — nat then
Sub : state — state — nat — nat — *,
which is defined as
Sub = As1, s2 @ state Ai,n : nat.Vj : nat.(i = j) = sqo(varz j) =n A

(1 # j) = so(varz j) = s1(varzx j)

Furthermore, we need the following relations which for simplicity are not
given in PTS-notation:

Fens Stating that expression e evaluates to value n in state s.

Bbs Stating that boolean expression b evaluates to true in state s.

C p sl s2 Stating that program p, when started in state sl yields state
s2.

Since denotational semantics are not convenient to derive programs from
specifications, it is necessary to define Hoare triples and prove some theorems
about them.

H pre p post Means that if program p is executed in a state sl
for which pre sl holds, and p terminates in s2, then
post s2 will hold, where pre and post represent the
precondition and postcondition respectively.

Hence, if we use assert to denote the type state — *,:
H : assert — prog — assert — *p,
and is defined as

H = A\pre : assert.\p : prog.Apost : assert.
Vsl : state.(pre s1) = Vs2 : state.C p sl s2 = (post s2)

Probably, the simplest theorem to prove about H is the skip-theorem:
Va : assert.H a skip a
or the composition-theorem:

Va,c: assert.Npl,p2 : prog.(3b: assert.H a pl bAH b p2 ¢) =
(H a (comp pl p2) c)
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An embedding as presented above is called a deep embedding, since the
programming language, the specification language and the denotational se-
mantics are all embedded in the logic of the corresponding PTS. The Hoare
logic consists of a set of theorems about the denotational semantics that are
proved explicitly within the logic before they are used for program deriva-
tions. It is also possible to use an even deeper embedding in which the
assertions used for the Hoare logic are defined by syntactic categories in-
stead of being represented by predicates of the theorem prover’s logic. A
discussion of such an embedding is beyond the scope of this thesis.

Below, we discuss the advantages of deep embedding:

e The method follows exactly the definition of While as given in chap-
ter 8, first defining the syntax, then the (denotational) semantics and
finally the Hoare logic.

e Since the Hoare logic is formed by theorems proved within the theorem
prover, it is sound by definition.

e One can prove completeness and other meta-theorems within the sys-
tem. For instance, in [HM96], Homeier et al used it to prove correct-
ness of a Hoare rule for mutually recursive procedures, which is not a
trivial thing to do.

However, the method also has some drawbacks:

e Programs are encoded non-trivially in the logic, making them hard to
read or write without specific tools. (For example, take a look at the
examples given at the beginning of this section).

e Tools to construct programs that are encoded with a deep embedding
will be difficult to write. Since the theorem prover logic is available
to the user, she can add new programming constructs and derive new
rules for the Hoare logic. Although this appears advantageous to the
user, it means that the tool can encounter rules and programming
construct that it was not designed to deal with.

e To use the Hoare logic, one has to formalize the denotational seman-
tics of the programming language. Since it is already proved that
the Hoare logic is sound and complete, this is unnecessary for a tool
aimed at deriving programs. It proved to be useful, however, to design
programming logics.
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e The encoding requires higher order logic. For instance, an assertion is
a predicate over a state, i.e. a predicate over a function. Automating
the proving process will become very difficult.

To add functions and data types to the language, it is necessary to extend
the syntax and define denotational semantics. While this is safe, the tool
then needs to support those new types as well. This is not a trivial matter
for a tool, since the new types may involve higher order logic.

To alleviate some of these drawbacks, one might choose a shallow embedding,
which is discussed in the next section.

10.2 Shallow embedding

In a shallow embedding discussed in this section, due to von Wright et al
in [vW94], the semantics of While is directly defined by its Hoare logic. The
denotational semantics and the syntax of While are not formalized within
the logic. Instead, programs are functions from predicates over states to
predicates over states, based on Dijkstra’s weakest precondition calculus.
Weakest precondition calculus is a discipline on its own. We only discuss
it briefly in this section. The interested reader is referred to [Dij76]. The
weakest liberal precondition can considered to be a function wip that com-
putes for a given program S and postcondition () the weakest predicate P
for which {P}S{Q} is a valid Hoare triple. Le., {wip(S,Q)}S{Q} is a valid
Hoare triple and {P}S{Q} implies P = wip(S, Q).

For example: wip(skip,Q) = @,
wlpz = e,Q) = Q=
UIlp(Sl,SQ,Q) = ’LUlp(Sl,’wlp(SQ,Q))

In a shallow embedding, however, the weakest liberal precondition cannot
be defined as above, since programs are no syntactical entities. Informally,
a program S is now represented by S’, where

S"'=\Q : state = *,.wlp(S, Q).
Hence, in the formalization, the program itself is a predicate transformer.

Formally, a shallow embedding of While is made as follows: like before,
define var to be the set of variables and let varx : nat — var be its only
constructor. Let state = war — nat be the type of states, which map
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variables to values and let assert = state — x, be the type of predicates
over states. Statements are terms of type stat = assert — assert. Then
While-statements are defined as follows:

Skip = AQ :assert.Q
Assign e = AQ :assert.\s: state.Q) (e s)
If g pl p2 = AQ :assert.\s: state.(g s) = (pl Q s)A

—(gs) = (p2 Q s)
Comp pl p2 = AQ :assert.pl (p2 Q)

where e is a function from state to state and g is an arbitrary predicate
on states (i.e. g : assert). In order to define the while statement, a least
fixed-point operator for assertions is needed, which in [vW94] is defined as
follows:

fix = AQ : stat.\u : state.Vp : assert.(Vs: state.(Q p s) = (p s)) = (p u)

This fixed-point operator needs predicate transformers to be monotonic
(see [vW94]). A predicate transformer is called monotonic if it returns a
stronger precondition when applied to a stronger postcondition. All state-
ments of While are monotonic.

Using the fixed-point operator, the while statement is defined as:

while g p = AQ : assert.fit Aa.assert.\s : state.(g s) = (p a s)A
—(gs) = (@ s)

Intuitively, fix computes the weakest assertion which implies the postcon-
dition if the guard g is false and remains valid under execution of the body
(program p) if the guard g is true.

To represent unfinished programs in a shallow embedding, one can define a
magical statement that meets all specifications. In [vW94], this statement
is called nondeterministic assignment. Its definition is

nondass m = AQ.assert.\sl : state.Vs2 : state.(m sl s2) = (Q s2)

where m is a relation between states. Operationally, the nondeterminis-
tic assignment, when executed in a state s1, will terminate in a state s2 for
which m s1 s2 holds. If several such states exist, one is chosen nondetermin-
istically. If no such state exists, the statement will terminate in falsum. The
nondass statement can be used as a placeholder for program parts that are
not yet derived (for example, use m = Asl : state.As2 : state.(P s1) A (Q s2)
to meet the specification with precondition P and postcondition Q).
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Von Wright uses a shallow embedding in [vW94] to extend the theorem
prover HOL with a mechanism for program derivation. This tool, called
‘the refinement calculator’, takes a specification of a program as input and
solves it with a nondass statement. The user can then use tactics to focus on
nondass statements in the program and refine them with other statements,
possibly containing new nondass statements. This is not unlike theorem
proving in theorem provers based on A-calculi.

The advantages of a shallow embedding are as follows:

e The Hoare logic can directly be used to derive programs within the
theorem prover.

e One can still prove some meta-theorems about programs, such as
equality of certain program constructs. However, soundness and com-
pleteness of the logic can no longer be proved, since the denotational
semantics are not formalized.

e Tools still have to create terms of the logic in order to represent pro-
grams; but now these terms are equal to terms representing the cor-
rectness proofs.

e In order to extend the language, one only has to define the correspond-
ing predicate transformer.

Unfortunately, there are also some serious drawbacks:

e Since expressions are no longer syntactically defined, a user can use
any assertion as guard in if and while statements. For instance, (Vp :
nat.3q : nat.q > p A prime(q)) would be a valid guard, but is not
allowed in any real-life programming language. While this might be
useful to be allowed during program derivations, it is difficult to handle
with a tool. The tool would then have to allow a different syntax for
programs under construction than the syntax allowed in completed
programs.

e Using arbitrary predicate transformers as programs may lead to so-
lutions that are not implementable. For instance, a user may use a
self-defined command that turns out to be inconsistent (e.g a nondass
yielding false).
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e If a function is used to specify a problem, there is no way to prohibit
the use of this function to solve the problem (for instance, the program
{N >0}z := fib(N){z = fib(N)} is correct, but undesirable). In deep
embedding, this is not possible, since the programming language’s
syntax is explicitly defined and does not contain the function fib.

e Shallow embedding still requires higher order logic and hence, auto-
matic proof search will be limited.

For building a user-friendly tool, both embeddings have common drawbacks:
(1) The tool has to provide the programmer with a user interface for a theory
(Hoare logic) formalized within a theorem prover. Since the theorem prover
allows extensions of the formalization, the tool has to be able to cope with all
these extensions as well. The tool can therefore not assume any limits about
the creativity of the user, let alone impose restrictions on it (the restrictions
are set by the theorem prover used for formalization). Since the theorem
prover is needed to construct proofs during program derivation, it is also
not possible to shield its use from the programmer. (2) Both embeddings
require higher order logic. In this logic, simple notions like A and V are
usually encoded by higher order constructs and therefore, automatic proof
search will be very limited. As a result, the programmer has to prove many
trivial theorems by hand.

Therefore, we consider yet another way to combine Hoare logic with a the-
orem prover in the next section. However, this time we will not formalize
the Hoare logic within a theorem prover.

10.3 No embedding

In the previous two sections, Hoare logic was formalized within a theorem
prover. This required higher order logic and hence, automatic proof search
became very difficult. However, in an environment for program derivation,
one will often encounter proof obligations that are very simple. Hence, in
practice, the user will have a need for automatic support to solve these proof
obligations.

Also, we want the tool to focus on the program rather than its correctness
proof. It should also be possible for the user to enter a program without its
specification or to postpone the construction of a correctness proof till the
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program is completed. Hence, we do not want the programming process be
dependent on the proving process.

In this section, we will link a Hoare logic to a theorem prover without
embedding it. Instead, we will create derivation rules for programs, that
depend on derivations in a PTS. This allows us to restrict the PTS to first-
order logic and support automated theorem proving as described in the
chapters 7 and 9.

The only rule in the Hoare logic of While that refers to theorems, is the rule
of consequence:

EP =P {P}S{Q} FQ=>C
{P'}5{Q'}

Stated this way, one assumes |= to denote semantical validity of formulas in
a logic, which is left implicit. This logic, however, must be powerful enough
to deal with all possible expressions allowed in the language. This is usually
referred to as the expressibility requirement.

Since, in our definition of While, the expressions in the programs are those
defined in the logic, we automatically fulfill the expressibility requirement.
In case of first-order logic, one can use AP— to construct the required proofs.
The rule of consequence then becomes:

T bpP' =P {PYS{Q} T.FqQ=Q
{P'}S{Q'} ’

where L is the logic used to define While and I' is the corresponding context
for AP— as defined in definition 36 on page 61.

The advantages of this approach are:

e Programs are directly accessible by tools, since they are syntactical
terms themselves.

e Boolean expressions allowed in programs are defined within the logic,
but are separated from the specification language (e.g. one cannot
use (Vp : nat.3q : nat.qg > n A prime(q)) as a guard, since it is a
propositional formula, not a boolean).

e The logic can be restricted to first-order logic and hence, meaningful
automatic proof search is possible.
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Even though this "new” rule of consequence is sufficient to implement a
sound and complete Hoare logic, it still suffers from several drawbacks we
encountered in the embeddings:

e Programs cannot be checked after they have been constructed. There
is no term representing a correctness proof of the entire program.

e There is no way to prevent the usage of specification functions in
programs. For instance, z := fib(N) is a valid, although undesirable,
program.

In the following, we show how these drawbacks can be alleviated.

Programs cannot be checked for correctness after they have been construc-
ted, because the proofs used for application of the rule of consequence are
usually not stored within the program and cannot be (re)constructed auto-
matically. Since proofs are syntactically represented in A-calculus, we can
easily incorporate those proofs by extending the program-syntax and change
the rule of consequence to something like:

TobpP =P {P}S{Q} Tt qQ=Q
{P'}cons p S ¢{Q'}

However, during program derivation, one usually alters only the precondition
or the postcondition, not both at once. Also, since program S now has
become embedded in cons p S ¢, it is less accessible to the tool. If one
regards the change of P to P’ as a re-formulation of a state-property, one
could consider application of the rule of consequence to be an application
of the theorem P’ = P to a state in which P holds. The same can be said
about Q = @'. We denote this application of a theorem by the program
fake p, which has the same denotational semantics as skip, since the state
does not change. The rule of consequence can now be replaced by the simpler
rule:

FeFpP=Q

{P}fake p{Q}
The original rule of consequence can now be derived as follows: From
Tk p:P'= P and Tz F ¢:Q = Q' we respectively derive {P'}fake p{P}
and {Q}fake ¢{Q'}. Since {P}S{Q}, we use the composition rule to con-
clude

{P'}fake p; S; fake ¢{Q'}.
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The fake-statement has the advantage that it allows separate treatment of
pre- and postconditions. Also, all proofs are now stored in separate state-
ments, not having other programs as sub-programs.

Using While, extended with fake-statements, yields programs that can be
checked once they are constructed. This is nearly a trivial matter, since every
statement can only be derived by a single rule, including the fake-statement.
The premise of the fake-statement could also read I' F p: P = (@ for any other
PTS, as long as this type judgment can be checked automatically.

However, this ”type-checking” for programs has limited applicability: One
could for instance derive a program

{a = 4}fake p;a := a + 1{a = 5},
where p is a proof of (a = 4) = (a + 1 = 5). However, checking
{a > 0}fake p;a:=a+ 1{a > 1}

would fail, since the proof p stored in the fake-statement has the wrong type;
instead we need a proof g of (a >0) = (a+1>1).

Since our tool only needs to check if programs meet the specification for
which they were derived, this is an acceptable restriction.

Having proofs explicitly stated in programs seems unnatural. However, this
is not necessarily true, since one can consider programs to be proofs of the
satisfiability of their specification. From this point of view, programs are
the A-terms of a Hoare logic. Since, in our tool, the Hoare logic is linked to
a PTS this view is also more consistent with the formalism used for proofs.
Therefore, we will introduce a different notation for programs and their
specifications.

Definition 63 (Program Specification)

Let P and Q) be a pre- and postcondition respectively. Then P> (Q is a
program specification. The Hoare triple {P}S{Q} can now be denoted as
S : P> Q), stating that program S satisfies specification P> Q.

The reason that programs like z := fib(IN) are allowed, is that programs are
based on exactly the same logic as specifications. Therefore, all function-
symbols and expressions available in the specification are also available in
programs.
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However, in a PTS like AP—, all function symbols of a logic L are explicitly
declared within the context I'z. If we add contexts to the Hoare logic, we
can use a larger context for specifications than for programs. The context
accessible from the program should always be part of the context accessible
from the specification though, since we might get expressibility problems
otherwise. For instance, consider a function sqr, computing the square of
a natural number, that only exists in the programming language context
and not in the specification language context. Then the precondition of
the assignment x := sqr(2) with respect to the postcondition z = 4 reads
sqr(2) = 4, but cannot be expressed in the specification.

Therefore, we split contexts for Hoare triples into three parts:

e The first part is accessible from programs as well as specifications.
Programs can use this context, but not alter its variables. Typically,
it contains all function symbols, constants and definitions that are
default to the language (e.g. the type bool of booleans). This context
is referred to as the language context.

e The second part contains (locally) defined program variables that can
be altered by programs'. This context can depend on the first context,
e.g. a program variable could have pre-defined type bool. Typically,
this context is used to store constants and variables needed to specify
a programming problem, for instance the variable x from the postcon-
ditions « = fib(IN). This context is called the program context.

e The third context contains all other logical elements needed to specify
programs, like abstract data types or auxiliary functions. This context
cannot be used by programs, only by specifications. It may depend on
both previous contexts, since a postcondition may specify that some
language expression must be equal to an auxiliary function (e.g. z =
fib(N), where fib is an element of the third context and hence, cannot
be used by the program). This context is referred to as the specification
context.

The order of these contexts is quite natural: there would be little need for
functions and variables accessible only from programs and not from specifi-
cations.

!The second context can also contain constants, function symbols etc, but by the
definition of the abstract syntax of programs, these can never be altered by the program.
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Hence, we will add triples of contexts to Hoare triples in the following man-
ner:

Definition 64 (Hoare Contexts)
Let Ty, I's and I's be contexts of a CPTS as described in definition 16 on
page 48, then (I'1,T'9,T'3) is a Hoare context.

Note the following important differences:

1. (I'1,T9,T'3) is a triple of contexts, hence a Hoare context.

2. Since T';, T'y and T's are contexts of CPTSs, I'1,I'; (the concatena-
tion of I'y and T'9, denoted without the triple-brackets) and I'y, ', '3
(concatenation again) are CPTS-contexts too.

Definition 65 (Hoare logic with explicit contexts)
Let =) be the type-judgment relation of a CPTS. Then we define by to be a
Hoare derivation system defined by the rules shown in figure 10.2.

We briefly comment on the use of the context for each rule:

Spec This rule repeats the definition of a specification. It could be elimi-
nated, but is used for consistency with the formal definition of PTSs.
Note that the pre- and postcondition may depend on the entire con-
text.

Skip In order for skip : P> P to hold, P> P must be a well-formed speci-
fication.

Assign For z := e : P[z :=e]> P to hold, P[z := e] > P must be a specifi-
cation and e must be an expression of the same set-type as variable
z. Moreover, x must occur in the program context and e may only
depend on the language and program context.

If The first premise claims that e is a boolean expression that can be derived
from the language and program context. The other premises are direct
translations from the original Hoare logic.

While Similar to If.
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Fl,rg,rg [ P:*p Fl,rg,rg [ Ql*p

[Spec] <F1, FQ, F3> P> Q:Spec
. (T'1,T9,T'3) - P> P:Spec
i (T'1,T9,T'3) F skip:P > P
Fl,(Al,:L‘ M U, A2) |— U:*S
[Assign)] I, (AL z U Ag) FeU

<F1, (Al,.’E : U, AQ),Pg) F P[.’I} = 6] DP:Spec
(T, (A1,z:U,Ay),I'3) Fz:=e:Plz:=¢]> P

Pl,rg F e:bool
[If] <F1,P2,P3) I—Sl:P/\e:truebQ
<P1,F2,F3) F SQ:P A e = false > Q
<F1,F2,F3> F if e then Sl else 52 fi:P > Q

Pl, FQ F e:bool
[ While] (T',T9,T'3) - S:P Ae=true> P
(T'1,T2,T'3) - while e do S od:P> P A e = false

Fl,FQ F U:*s
I',I'sFeU z is I'1, o, '3-fresh
[Block] (T'1,T9,T'3) F P> Q:Spec
<F1,(P2,.’L‘ : U),Fg) FS:PAz = 6l>Q
(I, T, T3)F|lvarz:=e: U o S]:P>Q

<F17P27P3> F SliPl> Q
[Comp] (T1,T2,T3) F S2:Q> R
(T'1,T9,T3) F S1;52:P> R

P17F2ar3 l_p-F) = Q
<F1,F2,P3> F fake p:PD Q

[Fake]

Figure 10.2: A Hoare logic with explicit contexts.
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Block Contexts play a main role here. The first two premises claim that e
is an expression of some set-type available to the program (i.e. both
U and e are derived from only language and program context). P> Q
must be a valid specification in the full context; but without the fresh
variable z. S is a program, which may use a fresh variable x in its
program context and which satisfies PAz =e> Q.

Comp This rule is a direct translation of the original rule from the Hoare
logic.

Fake The Foke rule was explained before. Note that since P = @ is a
proposition, so are P and (). Hence, the program is correctly specified.

The Hoare logic now has a notation and a set of derivation rules similar to
those of a pure type system. Through the following theorems, we will prove
that the Hoare logic also has some important meta-theoretical properties in
common with the PTSs: programs can be checked for correctness once they
are completed. This also enables the communication of those programs:
programs which include fake-statement are self-contained and require no
further proof of correctness.

Definition 66
Given a Hoare logic with explicit contexts as defined above and a context
I'=(I'1,T9,T'3), we define the following concepts:

Program synthesis: Given precondition P and postcondition @, automati-
cally find a program S, such that T' - S:P> Q.

Backward inference: Given a program S and a postcondition Q, automati-
cally find a precondition P, such that '+ S:P> Q.

Forward inference: Given a program S and a precondition P, automatically
find a postcondition Q, such that '+ S: P> Q.

Specification inference: Given a program S, automatically find a precondi-
tion P and a postcondition Q, such that ' - S:P> Q.

Program checking: Given precondition P, postcondition Q) and program S,
automatically verify if T = S:P > Q.
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Program synthesis is decidable, but not useful. This may sound contradic-
tory, since program synthesis appears very desirable, but the property is
decidable through the existence of a trivial solution.

Theorem 67
Program synthesis is decidable.

Proof: For an arbitrary precondition P and postcondition ), the program
S = fake p; while true do skip od; fake g,

has specification P > (), where p and ¢ represent proofs of P = (- 1) and
(= L Atrue = false) = @ respectively, which can easily be constructed. O

Clearly, this program may be theoretically correct, but it does not solve the
programming problem at hand, since it does not terminate.

Useful solutions cannot be found fully automatically. For example, consider
a precondition P which implies a postcondition @). A useful solution would
be the statement fake p, where p is a proof of P = (@), but it is known that,
in general, such a proof cannot be generated fully automatically.

Theorem 68 (Backward inference is decidable)
Let T' be a Hoare context, let S be a program and let () be a postcondition.
One can compute a unique P such that I' S:P > Q if it exists.

Proof: Let T' = (I'1,T'2,T'3) denote a Hoare context. We use induction on
the structure of S:

case S = skip: Use P = Q.
case S=z:=e: Use P=Q[z:=¢].

case S = if g then S; else S5 fi: By induction, compute P; and P, such
that I'F S1:Pi>Q and I' - So: Py > Q. If P has the form RA g = true
and P, has the form R A g = false then P = R will suffice. Otherwise,
no solution exists since the Hoare logic is purely syntax-driven. To
change an assertion into an equivalent one that is syntactically different,
a fake-statement must be used.
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case S = while g do S; od: In order for P to exist, ) must have the form
INg = false. By induction we can compute P;, such that I' - S1:P; > I.
P must have the form I A g = true. If so, choose P = I. Otherwise,
no solution exists.

case S =|[var z:=e:U e Si]|: z may not occur free in (). By induc-
tion hypothesis, compute P; such that (I'1, (['y,z : U),I's) - S1:P1 > Q.
Now P; must have the form R A z = e, where z does not occur free in
R. If so, choose P = R. Otherwise, no solution exists.

case S = 51; S2: By induction hypothesis, compute P, with I' - So: Py > Q).
Then compute P; such that I' - S1: P, > P,. If both computations suc-
ceed, choose P = P;. Otherwise no solution exists.

case S = fake p: From type theory it is known how to construct 7}, such
that I'1,I'9, '3 = p:T}. T, must have the form R = Q. If so, choose
P = R. Otherwise, no solution exists.

Corollary 69 (Program checking is decidable)
From theorem 68 it immediately follows that given a Hoare context I, a pro-
gram S and a specification P> @, it is decidable whether or notI' = S:P 1> Q).

In the following theorems we will sometimes need the set of postconditions
that correspond to a certain precondition. Since programs may contain
assignments, we need to invert the substitutions performed by these assign-
ments. Therefore we define inverse substitutions.

Definition 70 (Inverse substitution)
Let ¢ be a mapping from variables to expressions (i.e. a substitution). We
define ¢~ as the function from propositions to sets of propositions by:

¢~ (P)={Q | P = ¢(Q)}

Without further proof we claim that ¢~ is computable and that ¢ 1(Q) is
finite for every Q, provided that ¢(x) # = only for a finite number of known
variables x.

For example, consider the substitution ¢ = {z +— 30}. Then ¢ !(r =
30+30) ={r=30+30,r =2+30,r =30 +z,7r =z +2z} and ¢~ }(r =
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z+1)=0. Fory = {r— v+ 1}, weget ¥ (z+1 < 8) = {z < 8} and
%71 (z + 3 < 6) = 0. Note that it is important to know the domain of the
substitution and that this domain is finite if we want to compute the inverse
substitution.

Theorem 71 (Forward inference is decidable)
Given a Hoare context T', a program S and a precondition P, one can com-
pute a set Q° of propositions, such that

Q€ Q’ if and only if T+ S:P> Q.

From this it immediately follows that forward inference is computable.

Proof: Let T' = (I'1,T'9,I's) denote a Hoare context. We use induction on
the structure of S:

case S = skip: Use Q° = {P}.

case S =z := e: Compute Q° = ¢~ '(P), where ¢ = {z - e}.

case S = if g then S; else S; fi: By induction, compute sets f and Q3,
such that for each @1 € Q)] we have I' - §1:P A g = true > Q1 and for
each Q2 € 5 we have I' - S9:P A g = false > (2. Since S can only be
derived if ()1 = @2, choose Q° = Q] N Q5.

case S = while g do S; od: By induction, compute @3 such that for each
Q1 € QF we have I' - S1:P A g = truer> Q. Since S can only be de-
rived if P € Qf, choose Q* = {P Ag = false} if P € ()] and Q° =
otherwise.

case S=|[var z:=e:U e Si]|: If z occurs free in P choose Q° = (). Oth-
erwise, compute by induction hypothesis Q)§ such that for each @1 € Q3
we have (I'1, (Tg,z : U),T'3) - S1:P Az = e> Q1. Since £ may not oc-
cur in the postcondition of S, choose Q° ={Q € Q5 | z € FV(Q)}.

case S = S1; S2: By induction hypothesis, compute @3 such that for each
Q1 € Qf with T'FHS;:P>@y. For each Q1 € QF, compute the set
Q”"Ql such that for each Qo € QSQI we have I' F S5:Q1 > Q2. Choose
Q° = UQlng QsQl

case S = fake p: From type theory it is known how to construct Tj, such
that I'1,Ty,I's = p:T,. T, must have the form P = (). If so, choose
Q° = {Q}. Otherwise, choose Q° = 0.



138 CHAPTER 10. COMBINING HOARE LOGIC AND PTSS

Lemma 72 (Specification inference with fake)

Let T' be a Hoare context and S be a program containing at least one fake-
statement. It is possible to compute a unique proposition P and a set of
propositions Q°, such that

Q € Q° if and only if T+ S:Pv> Q.

Proof: Let T' = (I'1,T'9,I's) denote a Hoare context. We use induction on
the structure of S:

case S = skip: Since skip contains no fake statement, this case does not
occur.

case S =z := e: See skip.

case S = if g then S; else S, fi: Without loss of generality, assume that
S1 contains a fake-statement. Compute P; and @3, such that for
every Q1 € QF we have I' - S:P; > Q1. If P, is not of the form RA g =
true, choose P = P; and Q° = (). Otherwise, use Forward inference
(theorem 71) to compute @3, such that for every Q2 € Q5 we have
I'F S9:R A g =false> (3. Since S can only be derived if @1 = Qo,
choose P = R and Q° = Q5 N Q5.

case S = while g do S; od: By induction, compute P; and @7 such that
for each Q1 € Q7 we have I' = §1:Pi > Q1. If P; is not of the form
I A g = true, choose P = P; and Q* = (). Otherwise, choose P = I.
Since S can only be derived if I € QF, choose Q° = {I A g = false} if
I € Q3 and Q° = () otherwise.

case S = |[var z:=e:U e Si]|: From the induction hypothesis we com-
pute P; and QF such that we have (I'y, (I'y,z : U),I'3) - S1:P; > @ for
each Q1 € @QF. If P is not of the form R Az = e where = does
not occur free in R, choose P = P; and Q° = 0. Otherwise, choose
P = R. Since z may not occur free in the postcondition of S, choose
Q' ={QeQi |z ¢ FV(Q)}

case S = S1;S9: If S1 contains a fake-statement, use the induction hy-
pothesis to compute P; and @Qf, such that for each Q)1 € Q] we
have I' - S1:P; > Q1. For each Q1 € Qf, use Forward inference (theo-
rem 71) to compute the set Qp, such that for each Q2 € QF),, we have
Ik SQ:Ql > QQ. Choose P = P; and Qs = UQlle QSQl
If So contains a fake-statement, use the induction hypothesis to com-
pute P> and ()3, such that for each Q2 € Q5 we have I' F So: P > Qs.
Use Backward inference (theorem 68) to compute the precondition P
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such that I' - S1:P; > P, if it exists. If it does not exist, choose P = P,
and Q° = (. Otherwise, choose P = P; and Q° = Q5.

case S = fake p: From type theory it is known how to construct Tj, such
that I'y,T',I's & p:T,. T, must have the form R = (). If so, choose
P = R and Q° = {Q}. Otherwise, choose P =T, and Q* = 0.

What remains is to compute specifications for While programs without fake
statements. In all previous inference theorems, the structure of the pro-
gram specification was derived from the types of the proofs stored in fake-
statements. Since this is no longer possible, we define the relation between
pre- and postcondition in such a way that we can search for specifications
with this relation.

From the rule Assign, we can already see that the precondition depends
on the postcondition using a substitution. Also, we can see from the rules
for Block, If and While that the postcondition will have a more complex
structure than the precondition, since we have no fake-statements to sim-
plify the formulas (the Hoare logic for While is purely syntax based!). Also,
the specification must meet certain constraints (for instance, to derive an
if-statement, both premisses must have the same precondition).

These ingredients together form the basis of the complex relation between
pre- and postcondition of a program, given in theorem 75. Therefore, we
will first define propositional patterns and a notion of constraints.

A propositional pattern is a series of left-associative conjuncts with a place-
holder at the bottom-left of its tree-representation. Hence, if the placeholder
is replaced by a propositional pattern, we get a new propositional pattern.
If it is replaced by a proposition, we get a proposition.

Definition 73 (Propositional patterns)
The set of propositional patterns is defined as:

o The special symbol « is a propositional pattern.

e If P is a propositional pattern and Q is a proposition, then (P AQ) is
a propositional pattern.



140 CHAPTER 10. COMBINING HOARE LOGIC AND PTSS

We also define the application of a pattern P to a propositional pattern or
a proposition X as:

PX)= X ifP=a
P(X)=Pi1(X)ANP, if P has the form P1 A\ P,

Note that if X is a pattern, P(X) is also a pattern and if X is a proposition,
P(X) is a proposition. For sets P° of patterns we define

PI(X) = {P(X)|PeP®} and
PI(X®) = {P(X)|PeP’XeX®}

Also, define for pattern P and substitution ¢ that

dP)=a if P =«
d(P) = ¢(P1) AN p(P) if P has the form P A Py

For sets P° of patterns we define ¢(P°) = {¢p(P) | P € P°}.

For example, let ((a A P1) A P2) be a pattern. Then ((a A P1) A Py)(FP)
yields the proposition ((Py A P;) A P,). When applied to (a A Py) we get
propositional pattern (((a A Py) A P1) A Py)

Definition 74 (Constraints)

A constraint C is a pair of substitutions. If P is a proposition, P is said
to satisfy constraint C = (¢1, ¢2) if and only if $1(P) = ¢2(P). P is said
to satisfy the set C° of constraints if and only if it satisfies all constraints
in this set. For a constraint set C' and a substitution o, we define C oo =

{<¢1 © 0, ¢2 oU) | <¢1a¢2> € C}

For instance, let (¢1,¢2) be a constraint with ¢; = id and ¢2 = {z — y}.
Proposition P(z) does not satisfy this constraint, since ¢1(P(z)) = P(z),
whereas ¢2(P(z)) = P(y). However, P(z) does meet the constraint, since

$1(P(2)) = ¢2(P(2)) = P(2).

Lemma 75 (Inference of specification constraints without fake)
Let T be a Hoare context and S be a program without fake statements. We
can compute a triple T = (¢, Q°, C*°) where ¢ is a substitution, Q° is a set of
propositional patterns and C® is a set of constraints, such that ' - S:P > Q)
if and only if there exists a P' satisfying C° such that Q@ € Q°(P') and
P = ¢(P).
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Hence, for each P’ satisfying C* we have for each propositional pattern
Q € Q° that
L'k S:p(P') > Q(P).

Intuitively, P’ satisfying C* is the piece of the postcondition that corresponds
to the precondition. The remaining part of the postcondition, introduced
by If-guards and blocks, is given by the patterns stored in Q°.

Proof: Let I' = (I';, ', I'3) denote a Hoare context. We use induction on the
structure of S (Note that Py A Py A... A P, stands for (PLAP)A...APy)
and not Py A (P, A... A\ P,) etc.):

case S = skip: Use T = (id, {a},0).

case S=z:=e: Use T = ({z — e},{a},D).

case S = if g then S; else S5 fi: By induction we compute for S; and Ss
the triples T} = (¢1, Q7,C$) and Ty = (¢9, Q3, C5) respectively. We
choose T' = (¢1, Q%,C°), where Q° = [J,c(QF N Q3)(¢') with G =
{g' € ¢7'(g = true) N ¢;'(g = false) | ¢ satisfies C U C5} and
C* = C{ UCS U {{(¢1,¢2)}. Since this is not obvious, we will provide
further proof:
Suppose I' F S:P > (. Hence, from the premises of If in the Hoare logic
we get ' S1:PAg=true> @ and I' - S5: P A g = false > ). Hence,
by induction there exist P, and P, satisfying C{ and C§ respectively,
such that P A g = true = ¢1(P1) and P A g = false = ¢o(P,) and
Q € Qi(P) and Q € Q3(FP). Hence, P; is of the form P{ A Gy
and Py is of the form Pj A Go, such that P = ¢1(P]), P = ¢2(Py),
g = true = ¢1(G1) and g = false = ¢5(G2). Hence, Q is of the form
PIANGiANAA...NA,, and of the form PyAGo AB1A...ABy,. Tt follows
that m =n, Pl = Py, G1 = G2 and for all 4, 1 <4 < n A; = B;. Hence,
aNALAN...NA, € QTN Q5 and also Q € ((QF N Q) (a A G1))(P)).
G1 = Gy satisfies both C7 and C5. Since ¢ = true = ¢1(G1) and
g = false = ¢2(G1), we have G; € qﬁl_l(g = true) N ¢2_1(g = false),
hence @ € Uyeq(Qi N Q5) (A G1)(P]). Also, P/ = Py, so Pj satisfies
C; and C5 and ¢1(P]) = ¢2(P]), hence P satisfies C;UCSU{(¢1, p2)}.
If follows that there exists a P’ satisfying C* such that P = ¢;(P') and
Q € &°(P).
Conversely, suppose there exists a P’ satisfying C*°. Let @ be an el-
ement of Q°(P’), i.e. @ has the form P’ A G A A1 A ... A A, where
G € ¢7'(g = true) U ¢ (g = false) and a A A; A ... A A, is an ele-
ment of both Qf and Q3, and where G satisfies C{ and C5. Hence,
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P’ A G satisfies Cf and C5 and hence, by the induction hypothe-
sis, ' F S1:01 (P AG) > Q and T' - Sa:¢2(P' A G) > Q. This is equal to
T'F S1:¢1(P')Ag=true>QandT F Sy:¢o(P') A g = false > Q. Since
P’ satisfies (¢1,¢2) we can now derive T' F S:¢1(P) > Q for any Q €
Q*(P).

case S = while g do S; od: By induction, compute T} = (¢1, QF, C5) for
S1. Now suppose I' = S: P> @ for certain P and (). From the Hoare
logic we get that @) = P A g = false and that I' - S1:P A g = true» P.
Hence, there exists a Py, satisfying C} such that PAg = true = ¢1(P))
and P € Qj(P1). But if P A g = true = ¢1(Py), then P; must have
the form P| A G such that P = ¢;(P/) and g = true = ¢;(G). Hence,
P € Qi(P{ AG) and P = ¢(P{), which is impossible, since P is of the
form (... ((P{ ANG)ANA1)A... AN Ay). Therefore, in a program without
fake statements, while statements do not occur.

case S = |[var z :=e: U e Si||: By induction, compute 71 = (¢1, QF, C})
for S;. Use T = (1, Q°,C%), where Q° = {Q(X) | X € ¢7 (z =€), X
satisfies C7,Q € Qf,z ¢ FV(Q(X))} and C* = C; U {(id, {z —
y}), (é1,{z — y} o ¢1)} for some arbitrary y # .

Suppose I' - S:P > @ for certain P and (). From the Hoare logic we get
that (I'1, (Do, z: U),I's) F S;:PAxz =e>Qand z ¢ FV(P,Q). Hence,
there exists a P; satisfying C{ such that Q@ € Qj(P,) and PAz =
e = ¢1(Py). Hence, P, has the form P{ A X with P = ¢;(P{) and
z = e = $1(X) with P/ and X satisfying C{. Hence, @ has the
form PPAX ANA; A...\NA,. Since z ¢ FV(P,Q), we know z ¢
FV(P{,X,A:,...,A;), hence P| = {z — y}(P]) and ¢1(P]) = {z —
y} o ¢1)(P]). Hence, Pj satisfies C°. Also, since z = e = ¢1(X),
x g FV(Ay,...,Ap) and a AN A1 A ... N A, € QF, we get Q € Q°(P).

Conversely, suppose P’ satisfies C*. Let Q be an element of Q°(P’).
Then @ has the form PPAXAAIA...NA,, withz &€ FV (X, A1,... Ay).
Also, since P’ satisfies (id, {z — y}), z ¢ FV(P'). Hence, z ¢ FV(Q).
Also, since P’ satisfies Cf and X satisfies Cf, P' A X satisfies Cj. By
T we get (I'y,(Te,z2:U),T's) - S1:¢1(P' A X) > Q. Since P’ satisfies
(¢p1,{x = y}od1), x & FV(¢1(P')). Hence, since z = e = ¢1(X), we
can use Block to derive T' - S:¢1(P') > Q.

case S = S1;52: By induction compute 71 = (¢, Qf, C%) for S; and Ty =
(¢, Q5,C3) for So. Use T = (¢1 o o, Q°, C%), where Q° = Q5({Q |
$2(Q) € Qf,Q satisfies C5}) and C® = Cf o ¢ U C5. This requires
further proof:

Suppose I' - S:P > Q. From the premises of Comp we get I' - S1:P> R
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and I' - So: R > @ for certain R. Hence, there exists a P, satisfying C3
such that Q € Q5(P,) and R = ¢2(P,) and a P; satisfying C} such that
R € Qj(P1) and P = ¢1(Py). Hence, R has the form P, AA; A...NA,
and since R = ¢9(P2), P> must have the form P{ A A} A ... A A],
with P; = ¢2(P]), Ai = ¢2(A) and P| and A} satisfying C5. Since
Py satisfies Cj, we have that P| satisfies Cf o ¢, hence P| satisfies
CiogaUCS. Also P = ¢1(P1) = ¢1(p2(Py))- It remains to show that
Q € BHQ | $2(Q) € Qf,Q satisfies C5}). Since P, has the form
P/ NAY N .LA] with A; = ¢o(AL) and A] satisfying C5, P, € {Q |
$2(Q) € Qf,Q satisfies C5}. From Q € Q3(P2) we get Q € Q5({Q |
$2(Q) € Qf, Q satisfies C5}). Hence, P satisfies C°, P = ¢ o ¢o(P])
and Q € Q°(P)).

Conversely, suppose P’ satisfies C§ogoUCS. Let Q € Q°(P'). Hence, P’
satisfies C5 and @ has the form P’AA{A...AA, AB1A...A By, with A}
satisfying C5. From T, we get I'F Sao:go(P' AN A AL ANAL) B Q, ie.
T'F So:po(PYNALA ... NAp > Q withaANATA...ANA, € QF. Since P’
satisfies C} o 2, we know ¢o(P) satisfies Cj. Hence, by induction we
get T'F Sy:¢1 0 do(P') > dpo(P') AN AL A ... A Ay, Using Comp we derive
'k S:(ﬁl o ¢2(P) > Q

Since Q € Q5(P,), it has the form PoAB;i A...ABy,, which has the form
PINAYN. . NALANBy A .. A By,. with aAgo(A)) A Aga(AL) € OF.
Also, for i, 1 < i < n we have that A/ satisfies C5 and A} € ¢35 (A;)-
Hence, @ has the form P/ A A\ A... AN Al € Of

case S = fake p: Since S contains no fake statements, this case cannot
occur.

O

As an example, consider the following simple program?(in this program, g
and b are variables of type boolean):

S =if g then b := true
else b := false
fi

For the assignments b := true and b := false, the triples 77 = ({b —
true},{a},0) and To = ({b +— false},{a},()) are computed. Then, for
*Programs without fake statements for which valid specifications exist will always be

somewhat artificial. However, for the sake of completeness of the theory, these programs
must also be considered.
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the if-statement, the constraint set becomes ) U @ U {{({b — true}, {b —
false})}. To compute the propositional patterns, we first compute the in-
verse substitutions {e ~ true}~!(g = true) = {g = true,g = b} and
{e + false}~!(g = false) = {g = false,g = b}. The intersection of these
sets is {g = b}, which trivially satisfies the empty sets of constraints. Hence,
the triple for the if-statement becomes T' = ({b — true}, {aAg = b}, {{({b —
true}, {b — false}}).

To check the result, consider the proposition a = true. It meets all con-
straints, hence S : ¢ = true > a = true A ¢ = b must hold, which is easy to
derive from the If and Assign rules of While.

Conversely, the proposition a = b does not meet the constraint and hence, S :
a =true>a = b A g = b should not hold. Indeed, the Assign-rule of While
states b := true : a =trueAg=truera=bAg=">0 and b := false :
a = false Ab = falsera = bA g =0>. Hence, the If-rule of While cannot be
applied.

Corollary 76 (Specification inference is decidable)

From lemma 72 and lemma 75 it immediately follows that specification infer-
ence is decidable. (For programs without fake, the proposition true = true
will always meet all constraints).



Chapter 11

Results

We now have a formal system combining interactive theorem proving with
both automated theorem proving and program derivation. Moreover, the
entire system is based on the semantics of first-order logic described in chap-
ter 5. Also, the correctness of both proofs and programs can be verified, even
if parts of the proof were generated automatically.

AP— was designed to accurately describe first-order logic in a PTS, hence
enabling the combination of interactive and automated theorem proving.
Yet, since it is a PTS, proofs can be communicated to other PTS-based
systems. Even the additional features are easily converted, provided that
the target PTS is powerful enough to express the features axiomatically.

Translating tableaux into A-terms showed some advantages: the automated
theorem prover can be extended without extending the logic unexpectedly,
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provided that its result will remain an ordinary closed tableau. However, to
incorporate Leibniz-equality, more work needs to be done. Although tableau
methods dealing with equality are known (see [dK95, DGHP99, BS98]), we
have not yet investigated how these tableaux can be translated into A-terms.

The Hoare logic was designed to have properties similar to those of a PTS,
which eased the combination of the two formalisms. Also, this enabled us to
use a simple logic, rather than the higher order logics required to embed the
entire Hoare logic. However, it is desirable to extend the Hoare logic with
more advanced features like records, sub-typing, classes and pointers. Some
of these features require an extension of the logic and hence, of AP—. For
instance, in [Zwa99] Jan Zwanenburg discussed PTSs with records and sub-
typing. Richard Bornat is currently using JAPE to verify pointer semantics
for Hoare Logic based on an idea of Rod Burstal (see [Bor00, Bur72]).

However, since the goal of this thesis is to create an educational tool as a
proof of concept, we will not discuss further extensions of the formal basis
of the system. Instead, we will focus on the construction of a tool for the
presented formalism in the next part.



Part 111

System Design

147






Chapter 12

Introduction

This part of the thesis describes the actual design and implementation of
Cocktail. If one wants to implement a tool to support the formalisms de-
scribed in part II, one must realize that there is a large gap between the
formalisms and a useful system. The fact that the formalism is sound and
complete does not imply that it reflects the way programmers think about
their programs. The formalism merely embodies the axioms that are used
by the system.

In practice, systems are built to construct and keep account of a whole set of
theorems, as opposed to the formalism which, in general, deals with a single
theorem. Cocktail uses the same approach to building sets of theorems
as Yarrow, COQ and LEGO: Instead of re-constructing a context for each
theorem to be proved, it uses a single context that is globally available
throughout the system. Whenever a theorem has been proved within this
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global context, the context will be extended to include it. That is, if the
derivation I' - A:B is completed, the global context I' is extended with a
definition H = A : B, where H is the name of the theorem. During the
construction of any other theorem, H can be used where necessary.

12.1 Design considerations

Programmers will often use several rules in the same order to achieve a
certain goal. These series of rule-applications are called tactics. Instead of
providing the rules of the formalism directly to the user, it is recommended to
provide useful tactics that reflect the way programmers think about program
derivation (or proof construction). An even better approach is to allow the
programmer to construct such tactics herself from the rules of the formalism.

Another issue is the presentation of the data to the user. Certainly, dis-
playing the A-term or program under construction is not sufficient: special
attention is needed for the lay-out of formulas, proofs and programs. Sim-
ply presenting a huge bulk of text representing context, proof and theorems
does not look very attractive to a potential user. Moreover, the user will
not be able to overview the problem at hand and hence, might be unable to
construct simple proofs. Also notations must appear as natural as possible:
having a user deciphering every formula displayed will cost much energy
that is better spent on constructing proofs and programs. Hence, what in-
formation should be displayed and how it should be displayed is a major
issue if the system is to be used by users other than the system’s designer.

However, even a system providing a good symbolic engine, useful tactics and
easy to read formulas and proofs will not be used if users are barely able to
interact with the system. Hence, an intuitive user-interface is needed, which
enables the user to apply the desired tactic in a simple way. The design of
the actual user interface will be based on the way in which formulas and
proofs are displayed.

12.2 Implementation issues

The implementation of Cocktail was done incrementally. First the symbolic
engine was constructed, which consists of data structures to represent for-
mulas, proofs and programs and an algorithm to check the correctness of
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these data structures. This algorithm, known as type-checking, ensures the
reliability of the entire system, since the correctness of every proof and pro-
gram is checked after it has been constructed. Hence, if errors were made
by the more complex parts of the tool during the construction of the data
representations, these will be detected in the end.

Because of the importance of type-checking, the correctness of the type
checker is crucial, which is one of the main reasons for using a small and
simple logic. Type checking for AP— is straightforward since it has no
conversion rule. The type-checker for programs is syntax-driven, since the
conclusions of each of the axioms and rules of While has a different syntactic
structure.

Once the symbolic engine was finished, editors were implemented to ma-
nipulate syntactic structures of the system. These editors enabled the con-
struction of proofs and programs. Since the proof and program editors are
able to apply tactics to open parts of the structures based on their type or
specification, the level at which the user will construct proofs will surpass
the level of the axiomatic systems defined in part II. For instance, instead
of only providing a Leibniz-equality rule, it is possible to define groups of
rewrite-rules (either assumed axioms or proved theorems) that can be ap-
plied to a formula at once. The editor will then repeatedly apply one of
these rules to the formula, until no more rules apply (hence, the formula is
rewritten into a normal form of the defined system, if it exists).

In order to make Cocktail more applicable and workable, a graphical user
interface was designed on top of the symbolic engine and the tactic system.
This user interface consists of the display of formulas, proofs and programs
and the interaction with the system. The display was designed to be as
natural as possible, using notations the users are familiar with (e.g. infix
notation for propositional and functional constructs). The user interface
utilizes modern interface techniques like simple mouse-clicks, pop-up menus,
drag-and-drop of formulas etc.

The implementation is described in more detail in chapter 15. However,
there are two issues to be treated that are difficult to place in this thesis, yet
are important to the tool: equality for propositions and unification. Equality
for propositions is important, since users will want to rewrite propositions
as well as expressions, even though Leibniz equality is defined only for the
latter. Unification is important for the implementation of the tableau based
automated theorem prover (see chapter 7), but also for some of the tactics
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(see section 15.3). We will discuss both issues here in separate subsections.

12.2.1 Leibniz equality for propositions

In our definition of AP—, we added rules to allow Leibniz equality for values
of data-types. In practice, however, the user also wants to use equality for
propositions, like A A B = —(-A V —=B). Adding Leibniz for propositions
would not extend the logic, which is stated by the following lemma:

Lemma 77 If '+ a:A= B and ' - b:B = A for certain propositions A
and B in AP—, and Tt p:Q[® := A] for certain proposition Q[® := A],
then there exists a p' such that T+ p:Q[® := B].

Proof: By induction on the structure of Q. O

The premises of this lemma are similar to the premises of the Leibniz rule
of AP— on page 64, except that it requires A = B and B = A to be proved
rather than A = B. Hence, adding Leibniz equality for propositions does
not extend the logic (A = A is trivial to prove for any proposition A, hence
reflexivity is also valid). This is not done for two reasons:

1. AP— should remain as small as possible, hence adding rules that do
not extend the logic is avoided.

2. Logicians would object to the identification of A = B and B = A
with A = B. It should read A < B instead. In logic, however, Leibniz
equality is usually not defined for < but applied in theorems at the
meta-level of the logic.

Cocktail could transparently allow rewriting, constructing proof-terms as
prescribed by the proof of the lemma (not given in detail). This, however,
would result in large proof structures, slowing the system down unnecessar-
ily. Instead, the implementation internally uses the additional rule

'a:A= B
= intro 'FbB= A
I'Finequ a bA=1B
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Similarly, a rule to incorporate tableau-based proofs in A-terms without
translating is used:

”a tableau for A was found”
'k tab A:A

tab-intro

Note that both rules can be eliminated by computing the proof terms for
in_equ a b and tab A respectively. Therefore, these rules are considered to
be part of the implementation and not of the formalism.

12.2.2 Unification

As discussed in chapter 7, a unification algorithm computes the most general
unifier for two expressions e; and e;. That is, it computes a substitution
0, such that O(e;) = O(ez). Computing most general unifiers is needed, for
instance, to decide whether a tableau-leaf is open or closed or to derive new
clauses in a resolution proof. In interactive theorem proving, unification is
used to automatically compute arguments for universally quantified formu-
las, such that the instantiation of this formula matches with a given goal.
An algorithm to compute most general unifiers for first-order formulas was
first described by Robinson in [Rob65].

In [MMS82], Martelli and Montanari describe an efficient unification algo-
rithm. Their algorithm, however, requires somewhat complicated data-
structures and requires the tree-representation of formulas to be inspected
in a specific order. In this section, we will show how an efficient unification
algorithm can be constructed that uses no complicated data-structures and
that does not require the tree-representation of formulas to be inspected in
any specific order. Unfortunately, we have not yet been able to compare
computing times of our algorithm with computing times of Martelli and
Montanari’s algorithm.

We start with a basic unification algorithm that can be formulated as follows
(see [NN92]).

0:=1id;S :={e; = e}

1. If S = () we are done: 6 is a most general unifier.
2. Select an equation from S, say s = ¢, and remove it from S.

3. If s is a variable then
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(a) if ¢ is the same variable, then go to step 1.
(b) else if s occurs in ¢, then abort with failure (occurs check).

(c) else replace s by ¢ in S and replace 0 by [s — t] 0 6.

4. If s has the form fs;...s,, and ¢ is a variable then add t = s to S.

5. If s and t have the forms fs;...sy,, and gt; ...t, respectively, then
(a) if f = g add s1 = t; till s, = ¢, to S (since f = g we know

m=n).

(b) else abort with failure (function mismatch).

6. Return to step 1.

Correctness and termination of this algorithm follow from the observation
that the set of most general unifiers of S does never change under applica-
tion of the algorithm and that the overall complexity of the formulas in S
decreases. A proof can be found in [NN92].

We will show how efficiency can be increased by choosing the correct repre-
sentations for S and 6.

Note that every substitution in S is followed by the incorporation of the
corresponding mapping in 6. Hence, instead of S, we can maintain a set
S’ of equations and maintain invariant that 6(S’) = S. We then get the
following version of the unification algorithm:

0 :=id; S" := {e1 = e}
1. If §' = () we are done: 6 is a most general unifier.
2. Select an equation from S, say s = ¢, and remove it from S’.
3. If 6(s) is a variable then

(a) if 6(¢) is the same variable, then go to step 1.
(b) else if O(s) occurs in 6(t), then abort with failure (occurs check).
(c) else replace 0 by [0(s) — 6(t)] o 6.

4. If 6(s) has the form fs;...s,, and 6(t) is a variable then add t = s to
S’
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5. If 6(s) and 6(¢) have the forms fs;...s, and gt ...t, respectively,
then

(a) if f =g add s; = t; till s, = t, to S’ (since f = g we know
m=n).

(b) else abort with failure (function mismatch).

6. Return to step 1.

The substitution # can be represented as a list
0 =<[z1 = t1],.. ., [Tn > ty] >
of one-point mappings, if we maintain invariant that
0 =[z1—t1]o...0[zy > ty]

The representation for [z — 6(¢)] o € is then computed by prepending [z —
6(t)] to @'. But this still requires the computation of 6(¢). However, since
this is the only modification we ever make to €', we choose to represent
@' in turn by another list of one-point substitutions 6", and maintain the
invariant

o' =< [iL‘l — 91(t1)], ceey [iL‘n — Gn(tn)] >

where
0" =< [.’L‘1 — tl], cee [.Tn — tn] >

and

0i = [Tis1 = Oip1(tiv1)] 0. .. 0 [zn = Op(tn)]

0, = id
Note that 6§ = 6y and hence, 6 can be computed directly from 6" and we no
longer need €' at all. Prepending [z — 0(t)] to 8’ is then equal to prepending
[z — 1] to 6".

During the computation of the unifier, it is necessary to compare the first
symbols of terms, i.e. the variable if the terms are variables and the function
symbol if the terms are function applications. Whatever the representation
of our unifier 6 is, we must be able to compute the first symbol of 6(s) for
a term s. Therefore, we use the following lemma.

Lemma 78 Let 0" =< [z1 — t1],...,[xn = tp] > be a list of one-point
mappings and let 0 be the corresponding substitution as defined above. Also
assume that x; does not occur in 6;(t;) for any i, and that all z; are different.
Let v be a variable, such that v = x; for certain i. Then 0(v) = 6(t;)-
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Proof:
0(v)
= {definition of 0}
([3:1 = 91(t1)] 0...0 [37n = en(tn)])(v)
= {v&{xit1, .., zp}}
([ = 01(t1)] 0. o [zs = 0i(ti)]) (v)
= {v = z;;definition of o}
([z1 = 61(t1)] o ... o[z 1 — O 1(ti-1)])(6:(ti))
= {z; does not occur in 6;(t;)}
([z1 = 01(t1)] o ... o [m; = O5(£:)]) (0 (¢:))
= {definition of o and 6;}
0(t:)
a

This lemma allows us to insert steps 2(a) and 2(b) into the algorithm. These
steps will compute the image 6(s) and 6(¢) until a non-variable is encountered

or

until the full image is computed. This will eliminate most terms of the

form 6(z) in the algorithm. The algorithm then becomes:

9//

=<>; 5" :={e; = ez}

1. If S’ = ) we are done: 6" represents a most general unifier.
2. Select an equation from S, say s = ¢, and remove it from S’.

(a) While s = z; for some z; occuring in 6", replace s by the corre-
sponding ;.

(b) While ¢t = z; for some z; occuring in 6", replace t by the corre-
sponding ;.

3. If s is a variable then

(a) if ¢ is the same variable, then go to step 1.
(b) else if s occurs in 0(t), then abort with failure (occurs check).

(c) else prepend [s > t] to 0".
4. If s has the form fsq...s,, and t is a variable then add ¢t = s to S".
5. If s and ¢ have the forms fsy... sy, and gt; ..., respectively, then

(a) if f =g add s; = t; till s, = t, to S’ (since f = g we know
m=n).
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(b) else abort with failure (function mismatch).

6. Return to step 1.

The only occurrence of 6 in this version is in step 3(b), where we need to
compute if s occurs in @(t). Since we do not want a direct representation of
6, but we already have a representation of 6", we will check for occurrences
of s in A(t) with the following algorithm:

V= {t}

1. If V = ( we are done: s does not occur in ¢.
2. Select a term from V, say ¢’ and remove it from V.

3. While ¢’ = z; for some z; occurring in 8", replace t' by the correspond-
ing t;.
4. If ¢ is the same variable as s, we are done: s does occur in t.

5. If ¢’ has the form gt; ...t, then add #; till ¢, to V.

6. Return to step 1.

Hence, our final algorithm does not impose any order in which formulas of
the set of equations have to be chosen. Also, the only required data-structure
is a list of pairs, in which the first element of each pair refers to a variable
and the second element refers to the subtree that should be substituted for
this variable.
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Chapter 13

Design Goals

This chapter discusses a number of design issues we want to keep in mind
when designing Cocktail. These issues, however, are not specific for Cocktail:
they should be considered for every system one designs. We address the
issues of modularity, flexibility and usability in separate sections.

13.1 Modularity

The main reasons for a modular design are the transparency and maintain-
ability of the code. By keeping concepts apart and implementing these in
separate chunks, it will be easier to find and change all pieces of code related
to the concepts. For instance, the way in which formulas are drawn on the
screen (rendered) should not depend on code scattered all over the system.
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Instead, all parts used to render formulas should be kept in a limited number
of classes, packages or components.

Modularity affects the system at all levels: the symbolic engine can be set
apart from the user-interface. Within the symbolic engine, the type-checker
can be set apart from the term representation. Then, within the type-
checker, rules for regular CPTSs can be set apart from rules specific for
AP— etc.

Modularity is supported by virtually all programming languages. C uses
headers and libraries, C++ adds object to this, Turbo-Pascal uses units and
Object Pascal (Delphi) combines units and objects. Java has packages, being
collections of objects. Hence, the modularity of the design is not dependent
on the language used for implementation.

Cocktail has been designed modularly at many levels. For instance, the
formalisms for CPTSs in general, AP—, the tableau based theorem prover
and the Hoare logic are kept in separate packages. Also, the user-interface is
kept apart from the editors, that do the actual manipulation of proof terms.
Within the user-interface, the display routines are implemented apart in only
a few classes. Modularity is also established by using some design patterns
(see [GHJIV95]).

13.2 Flexibility

The tool should be flexible in the sense that it must allow the user to work
in her own way. One must be able to define functions in one’s own preferred
way, use notations one is used to and perform reasoning steps in a natural
order.

Also, the tool should be reasonably adjustable to other logics, although it
will be necessary to change the program to change the logic it uses. If we
would make the logic a parameter of the system, the tool would become
generic which can be considered to be the ultimate state of flexibility. How-
ever, this is not done for two reasons:

e Not all logics will be suitable, which becomes apparent if one con-
siders the requirements needed to link the Hoare logic to the theorem
prover. Implementing the combination of program-derivation and the-
orem prover would become more difficult in a generic system (see also
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chapter 10).

e Generic systems are, in general, usually applied to only one logic.
For instance, Isabelle is used with the HOL logic most of the time
(see [Pau94]). JAPE comes with only one logic that really uses the
capabilities of the generic tool (see [BS]). Most other logics supported
by such tools are more used as proofs of concept than as actual systems
themselves. We rather concentrate on building a tool using a single
logic than trying to build a generic system which, because of time
constraints, could only be tested for one logic. This makes our job
considerably easier and gives hope to obtain more results in the same
amount of time. It also enables more specific support for the logic
being used.

Flexibility is made easier by the modular approach: to provide a flexible,
user definable notation, one only has to change the module responsible for
displaying terms. To allow new ways of reasoning, only the proof-editor has
to be adjusted instead of the entire system.

13.3 Usability

Flexibility is necessary to create a usable tool, but it is not sufficient. In or-
der for the tool to become usable, it must provide many additional features,
enabling the user to use the tool with a minimum of fuss. These features
include, but are not limited to:

1. cut, copy and paste functionality.

2. an embedded automated theorem prover

3. extensive help functions and documentation.
4. a useful, extensible tactic system.

5. a well-organized workspace.

6. the possibility to reorganize the information, notably the global con-
text.

7. load and save functionality, if possible for parts of context as well as
the full workspace.
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8. theory browsing facilities.

Although Cocktail aims to become a useful system, not all of these features
have been implemented yet (notably, the features 3,6,8). Technically, these
features are not hard to realize, but it would take a considerable amount of
time, which was not available at the time of this writing. However, many of
such features are scheduled for implementation in the near future.



Chapter 14

A Graphical User Interface

To increase the acceptance of the system, it is necessary to provide the user
with an easy-to-use user interface. Therefore, this chapter describes the way
we want to visualize formulas, proofs and programs (display) and how we
want to let the user communicate with the system (interaction).

14.1 Displaying formulas, proofs and programs

In Cocktail, the difference between a formula, a proof and a program is
small, since they are all represented by terms of AP— or the Hoare logic
for While. Nevertheless, in the mind of a user there is a clear distinction
between the three: formulas are either expressions resulting in some data
type or propositions that need to be proved. Proofs are logical derivations
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proving propositions. Programs are algorithms describing an executable
computation. Hence, it is not sufficient to simply write the terms of the for-
malism to the screen, since it will scare away most users by its unreadability.
Instead, Cocktail provides extended features to display formulas, proofs and
programs. We will discuss them in this order.

14.1.1 Displaying formulas

Cocktail uses AP— for its resemblance with first-order logic. Since most
users will be familiar with first-order logic, but not necessarily with typed
A-calculi, we want Cocktail to display all formulas as if they were in first-
order logic. In practice, the consequences of this decision are:

e Cocktail must display real symbols like V, 3, A etc. instead of using
ASCII representations of those (like forall, exists, and).

e It is possible that equal formulas must be displayed in different ways.
For instance, in AP— the term ITH:A. 1 represents both A =1 and
—-A. Which display version is preferred is context dependent. For
instance, how did the user enter the formula?

e There must be facilities for the user to specify notations for newly
declared functions and predicates. For instance, if the user adds a
function st(z : nat,y : nat) : bool to the language context to repre-
sent the smaller-than relation, she will probably prefer x < y to be
displayed over st(z,y). Also, it should be possible to specify priorities
for these functions, to reduce the number of brackets.

The first two consequences are easily implemented: Java, in which Cocktail
is implemented, supports Unicode characters and hence, logical symbols can
be displayed directly. Information about how propositions must be displayed
is stored in the root node of their tree representation during parsing. Hence,
propositions are displayed the way they were entered. The third consequence
requires more attention and will be discussed in the following paragraph.

Since AP— was specially designed to eliminate the conversion rule of PTSs,
all functions and predicates are defined as parametric constants. That is, the
definitions will always be of the form C(z1 : Uy,...,zy : Uy) : U. To support
infix notations, we have to let the user specify how to display C(eq,...,e,),
where e; till e, are expressions of the correct types. Note, that since all e;
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have a type U : %4, they are either of the form E(y,...,y;) or they are
a variable. Let the display-string for formula C(e,...,e,) be denoted by
F(C(e1,...,e,)). To keep displaying feasible, we make two assumptions:

1. Displaying will be compositional, i.e. the display-string of expression
C(e1,...,en) consists of the strings of F(e) till F(ey,) and some ad-
ditional constant strings.

2. The display strings F(e;) till F(ep) will occur in this order. That is,
F(e1) is displayed to the left of F(e;+1) for every ¢ with 1 <14 < n.

Under these restrictions, it is sufficient to let the user specify n + 1 strings
s through s, such that

F(C(er,-..,en)) =50’ (F(e1)’)s1...5n-1CF(en)’) sn.

The forced syntactic brackets, denoted as ’(’ and ’)’ to distinguish them
from the usual meta-brackets, that surround all F(e;) are required to avoid
confusion about the structure of the expression. Otherwise,

F(times(plus(a,b),d))

would be equal to
F(plus(a,times(b,d))),

for instance a + b x d. With the additional brackets, it is displayed as (a) +
((6) * (d))-

The number of displayed brackets can drastically be reduced by specifying
priorities for each function and predicate. Constants (nullary functions) and
variables should always have the highest priority, hence it is best to represent
the highest priority by the lowest number 0. All other numbers can then be
used for functions and predicates. Brackets will only be displayed around
F(e;) if e;’s main symbol has lower priority than C has. Hence, if it has a
higher associated number.

Now that the user specified how formulas should be displayed, she will also
want to use the same notation to enter them. This results in an impossible
parsing problem, since we did not impose any restrictions on the strings
specified by the user. Hence, C(z,y : nat) : nat and F(z,y : nat) : bool
might both be displayed as x + y. Conversely, it is not clear whether = 4 y
denotes C(z,y) or E(z,y). For practical reasons, we want to be able to
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parse not only small expressions entered by the user, but also larger files.
For this, we want to use a recursive-decent parser, restricting our possible
solutions. However, parsing is still possible, if we ensure that the type of
the first argument, along with the first non-prefix string uniquely determines
which parametric constant was used. Therefore, we will impose the follow-
ing restrictions on the strings a user is allowed to specify for function and
predicate symbols.

Suppose a user has specified string sq till s, for C(z1 : Uy,..., 2y : Uy) : U
and strings tg till t,,, for E(y1 : Vi,...,Ym : Vi) = V, then:

1. s1 till 5(5,1) and 1 till ¢, 1) must be non-empty and all s; and ¢; that
are not empty, must be identifiers as specified by the lexical scanner.
We will not discuss the definitions of the lexical scanner in detail, but
the strings must be recognizable as such.

2. if neither sg nor ¢y is empty, they must be different.

3. If sp and ty are both empty and U; and V; are equal, s; must be
different from ¢;.

Under these restrictions, parsing an expression is unambiguously done as
follows:

e Read the first token. Assume that a priority p is given, such that
operators must exceed this priority in order to be parsed. Initially the
value will be the highest possible value (i.e. the lowest priority), since
we want to parse all operators.

e If the first token is the name of a variable or a constant, determine its
type and store it in a variable, say Up.

o If the first token is an identifier, then by restriction 2, we can already
determine which parametric constant is meant. In that case, parsing is
only a matter of recursively parsing the sub-expressions and checking
whether the other substrings occur at the correct places. Use the
constant’s priority as the new limit. After parsing, determine the type
and store it in Uy,.

o If the first token is a bracket, recursively parse the expression within
and determine its type and store it in Uy. Skip the closing bracket.
The priority to parse the sub-terms is set to the highest possible value
again, since the brackets overrule priorities.
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e By now, Ur, is the type of the expression that was just parsed. If the
parser has more input and the next token is an identifier s;, then, by
restriction 1, the parsed expression is apparently the first argument
of a parametric constant whose first display string sg is empty. By
restriction 3, we can determine which parametric constant is instanti-
ated, since for every type Ur and s; at most one parametric constant
can be found. If the priority of the parametric constant exceeds the
given maximum, use recursive calls to parse the remaining arguments,
using the priority of the current parametric constant as the new limit.
Then return to the beginning of this step. Otherwise, return to the
calling procedure.

For example, assume we have parametric constants times(z,y : nat) : nat
and plus(z,y : nat) : nat displayed as z*y and z+y and with priority values
10 and 20 respectively. Now we want to parse x + y * z. We set the priority
limit to 30. First, = is parsed. Then the 4+ symbol is encountered, which
has higher priority than 30 (indicated by a lower value). Therefore, parsing
proceeds recursively with y % z, but the limit is set to 20. y is successfully
parsed and the * symbol is encountered. Again, it has a higher priority than
the limit (now 20) and hence, z is recursively parsed. After that, y * z is
returned to the recursive call made while parsing +. Therefore, the parsed
formula is = + (y * z).

But if we parse z * y + 2, the following happens: z is parsed successfully.
Then * is read and hence, an attempt is made to parse y + z recursively with
priority 10. y is parsed successfully and then + is read. But this symbol has
a lower priority than the given limit and hence, z is not yet parsed, but the
parser returns y as the result, yielding a state in which x x y is parsed and
+ is the next symbol available. Now, z is successfully parsed with a limit of
20, yielding the parsed formula (x * y) + z as desired.

Perhaps that a more complicated parser would allow even more general
definitions of the display function F, like different ordering of arguments,
non-compositionality etc, but for most purposes the mechanism described
above will do.

14.1.2 Displaying proofs

From the display of a proof, the reasoning pattern should become clear.
Hence, it should be readable in such a way that the user gets an idea of the
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PP r
FP=> P P
P=P

(a) (b)

Figure 14.1: A proof of identity, shown as a tree derivation (a) and a natural
deduction style proof in flagpole notation (b).

way in which the theorem was proved. Clearly, A-terms do not have this
property when displayed directly.

However, there is a close correspondence between A-terms and natural de-
duction style proofs. For instance, a A-term proving P = P can be Ap : P.p.
The p in the body of the A-term is actually a repetition of the assumed
proof p : P in the binder of the A-term. In natural deduction, this would be
displayed as a tree (figure 14.1a) or in Fitch-style notation (figure 14.1b).
The Fitch-style notation (see [Fit52]), also called box-line proofs (e.g. in
Jape, see [BS]), has the advantage that it is linear. IL.e. only one formula
has to be displayed on each line. For this reason, Cocktail will use the
latter display. We will define a mapping from A-terms representing proofs
to a display in the next paragraph. The display version used is due to R.
Nederpelt (see [Ned77]) and is a more detailed notation than the original
Fitch-style display. It has been used many years by students at the Eind-
hoven University of Technology, and is used in a slightly different way since
1999.

Let p : P be a A-term representing a proof p of P : *,. Then the display
P(p) for proof p is defined as shown in figure 14.2 (F is the display function
for formulas described in the previous subsection).

Following this definition, we can display the proof
(MH:A. A\G:B. \I:A = -B. 1 H G)

of
A= B=ANANB

as (the numbers are added for referencing purposes):
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casepeV

case p = Fa

case p = (AH:A. b)

case p = classic A b

case p=refl €

case p=leib@ pe

case p = nat_ind pg p;

Il

P(po)
P(pi)
F(P)

if P:xp,
nothing otherwise.

if A:xp

if A:xg

Figure 14.2: Displaying A-terms in the flagpole notation.
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(1) |A

(2) || B

(3) A= -B
4) |||A=—B
() 1] 4

6) ||| B

(1) ||| B

®) ||+

9) lAAB
(10) I B=ANAB
(11) A=B=AAB

Note that the formula in line (9) might also be displayed as —=(A = —B),
but this depends on the information stored in the root node of its tree-
representation. The proof demonstrates exactly what we want to avoid: it
shows the internal encoding of AA B as =(A = —B) in AP—. But if we hide
the flag starting in line (3) and its contents on lines (4) till (8), we get:

(1) A

2) ||.B

(3) [lAAB

(4) IB=>AAB

(5) A= B=AAB

which is what we want. To facilitate this selective hiding, we use a mecha-
nism like the one used for flexible displaying of formulas: we store additional
information in the tree representation of the proof term to hide (parts of)
a proof. For instance, for a A-construct, we can choose to hide the as-
sumption (the flagpole), the sub-proof (everything under the flagpole) or
the result type (the conclusion directly under the flagpole) independently of
each other.

In addition to complete proofs, we also need to display proofs under con-
struction. In such proofs, holes may exist (denoted by the syntactic term
?7), but they will always have an associated type stored as additional infor-
mation. This type represents the subgoal which has to be proved in order
to eliminate the hole. Holes will be displayed as follows:
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casep=? P(p) = ...

F(P)

where P is the subgoal to be proved. Intuitively, the horizontal dots indicate

very clearly that the proof is incomplete.

For instance, using typed holes 71 : A and 79 : B, the partial proof
M:A=-B. T ?1 ?2

of A A B can be displayed as:

(1) 4
(2) B
(3) AAB

if we hide the assumption A = —B.

14.1.3 Displaying programs

Since our derivation system for programs was based directly on the language
While, displaying programs is easier than displaying formulas and proofs.
However, programs in our formalism contain proof-terms which should not
be displayed entirely within the program. If we (1) use line-breaks between
composed statements, (2) add indentation to the display of block statements,
(3) display expressions in assignments etc. as described above and (4) omit
displaying fake-statements we already get a decent display of programs. For
instance, a program computing the factorial of natural numbers would be
displayed as:
|[var n :=0: nat o

T :=1;
while n <> N do
n:=n+1;
T:=x*n
od

]

which meets the specification — 1 > = N! for constant N : nat and pro-
gram variable z.
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Two additions need to be made to this display: (1) we need to display partial
programs and (2) we want annotations to be displayed at useful locations.
We will discuss these features in the next paragraphs.

Displaying partial programs is done exactly like displaying partial proofs: If
? denotes a hole in a program with sub-specification P > ), we will display
it as

{F(P)}
{F(Q)}
Clearly, the precondition and postcondition of the hole must be displayed,

since otherwise the programmer would not be able to complete the program.
Ellipsis indicate again the hole.

Displaying annotations at selected locations in the program is established by
additional information stored in the nodes of the tree-representation of the
program. In this case, annotation is used to denote independently whether
the pre- and postcondition of a statement should be displayed.

As an example, consider the unfinished factorial program, without the n :=
n + 1 statement, which can now be displayed as:

{~1)
|[var n :=0: nat e
T =1
{z =nl}
while n <> N do
{zr =nlA=(n=N)}

'{'x'*n:n!}
od -
{z =n!'An=N}
Il
{z = N}

Note that —(n = N) is a propositional simplification of the equation n <>
N = true which (according to the Hoare rule While) is the precondition
of the body of the while-statement. Apparently, the body of the while
statement so far is fake p;?;2 := x *n, where p : (zx = n!lAn <> N =
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true) = (z = n!A-(n = N)) and ? : z=nlA=(n=N)>z*n=nl
Similarly, there must be a fake statement establishing the postcondition z =
n!An =N from z =n! An <> N = false. These kind of simplifications of
boolean equations will be generated and inserted automatically by Cocktail
as we will see later.

14.2 Interaction

Now that we have specified how proofs and programs are displayed, we need
to specify how a user should interact with them. Most theorem provers use a
command-line interface as a basis (e.g. [Coq97, Zwa97]), but more recently,
graphical user interfaces (GUIs) are optional (see also [TBK92]). Often,
these GUIs only support proof-construction in a specific style (e.g. proof-
by-pointing [BK'T94]) or merely allow the user to invoke the command-line
tactics through menus and use non-intuitive structure editors to provide
command arguments. Since we want Cocktail to be a user friendly system
that invites users to actually use it, we want a GUI that is intuitive and
allows the user to construct a proof in her own style. To facilitate this,
we will use interaction mechanisms offered by modern GUI-toolkits, i.e.
scroll-down menus (context sensitive) pop-up menus, dialogs, drag-and-drop
actions etc.

For GUIs, however, there are no formal ways to specify a design. This is
mainly caused by the complexity of graphics and interactions. Also, the
event-driven character of these interfaces are not formally understood well
enough to provide formal support for their design. Therefore, in what fol-
lows, we will not attempt to formally specify a GUI or to derive a GUI from
the user requirements. Instead, we will describe the motivations that led to
the design actually implemented in Cocktail, thereby explaining why certain
choices have been made. We hope to have succeeded in presenting our moti-
vations in a sensible way. In practice, design decisions are often withdrawn
when it turns out that the result is not satisfying the user’s expectations.
The design of Cocktail’s user interface has not yet needed to undergo such
re-design, which gives hope that we have made the right decisions.

Considering how Cocktail displays proofs, the user sees two kinds of infor-
mation: (1) What has to be proved (i.e. the goals) and (2) what is already
known (i.e. axioms, proved theorems and hypotheses). The latter part of
information is further divided into two parts: global information available
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in all proofs to be constructed and local information only available within
the current proof. The local information is usually more closely related to
the task at hand than the global information. Hence, although global in-
formation must also be available, the user will interact more with the local
information, which therefore deserves more attention.

The user uses information items to gradually solve the proof obligations.
We can distinguish four kinds of possible operations:

e Operations that only require a goal (e.g. decomposing a proof obliga-
tion for A A B into proof obligations for A and B).

e Operations that refine a goal using an information item (e.g. refining
a proof obligation B to a proof obligation for A, using the information
A= Bor A=B).

e Operations that dissect one information item into smaller items (e.g.
concluding A and B separately from the fact A A B). This also is
a form of forward reasoning, since the goal is not used to draw the
conclusions.

e Operations that extract new information from existing information
(forward reasoning, e.g. AV B and —B allow the conclusion of A).

Since the user will spend most of her time working towards a specific goal,
we choose to use the concept of a focus, which will always be on one of the
(sub)goals. This focus should be selected intuitively by the user. In most
applications selecting items is done by pressing the left mouse button, so we
will adopt this in Cocktail to select the focus.

In many applications the left mouse button automatically invokes a standard
action. For goals this is not desirable, since more than one option can exist.
We do not want the user to get irritated by undesired automatic invocation of
an action whenever she selects a new focus (in fact, there is enough software
famous for suffering from such behavior). A default action can be performed,
however, when the user selects an information item in the displayed proof
(i.e. a locally available item). The most natural default action is to use the
item to prove or refine the selected goal. This is best accomplished by the
apply-tactic (see 15.3).

Now that simple mouse clicks have been assigned to simple functionality, we
need a useful method to invoke other operations, notably when the user can
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choose out of several actions. Which actions are available mainly depends
on the formula the action is applied to. To avoid presenting the user lots of
actions that are not applicable in the case at hand, we use context-sensitive
selection menus (Pop-up menus) to let the user select from a list of sensible
options. Pop-up menus are triggered in different ways on different platforms.
This is supported by Java and used in Cocktail. In all cases, the options
shown in the menu depend on the formula under the mouse-cursor at the
time of invocation and on the kind of the formula (information or goal).
If necessary, the selection of the actions is followed by dialogs to obtain
additional information (e.g. what rewrite-rule to use for Leibniz equality
etc).

Some rules (like classic) can always be applied to any goal. Since menus
become confusing when they contain too many items, these rules are invoked
by buttons that are displayed to the left of the proof. This is only possible
for goal-based actions, since information items cannot be selected and hence,
the action associated with pressing a button cannot determine on which item
it should be applied.

By now, using menus, all actions can be invoked, but there is still room
for improvement. Simply clicking on an information item invokes the most
natural action for the information, given a selected goal. Equally, there is
a most natural action to combine two information items, namely to derive
new information from the two items given. For instance, given information
items stating A V B and =B combining them would naturally lead to an
information item stating A. Combining a pair of information items is easily
done by drag-and-drop: the first item is dragged to the second item.

All actions so far only apply to locally available information items. Since
globally available items are displayed only once in a separate window, we
cannot directly link actions on them to goal directed tactics, since it is not
clear which goal is targeted when more proofs are constructed simultane-
ously. Instead, we choose to have one selected global item, which can be
imported into local proofs (i.e. repeated). Once the item is visible in the
local proof, all actions mentioned above can be used on it. Repetition can
be used at any moment and hence, is invoked by a button to the left of the
display.

This GUI has been implemented in Cocktail for the theorem proving part
and turns out to work pleasantly. Figure 14.3 shows a screen-shot of a proof
under construction.
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Figure 14.3: A proof under construction in Cocktail. On screen, the current
focus is displayed in red.



Chapter 15

Implementation

Cocktail has been implemented in Java. This chapter describes the most im-
portant classes and their categorization in packages. We assume the reader
is already familiar with imperative object oriented programming languages.
Nevertheless, we will discuss a few concepts specific to Java in the following
paragraph.

Java is an object oriented language based on C++. To avoid many of the
problems inherent of C++, many improvements and simplifications have
been made in the design of Java. For instance, Java does not allow pointer-
calculations and handles dynamic memory allocation and de-allocation au-
tomatically. Objects that are no longer used are detected by a garbage
collector and removed automatically, thereby eliminating the possibilities
for dangling pointers and memory leaks. Also, Java has many standard
libraries, available for all platforms, to enable networking, graphical user-

177
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Class
Interface
other package
implements

A |isextended by B

package

Figure 15.1: The symbols used for schematics of the class structures.

interfaces and file-access.

Multiple inheritance is not supported by Java. Instead, the concept of Inter-
faces is introduced. An Interface in Java is just a class description in which
none of the specified methods is really implemented. Also, data-fields are
not allowed, except for constants. Interfaces can inherit from an arbitrary
number of other interfaces. A class can inherit from no more than one other
class, but it may implement many interfaces. The interfaces implemented
must be declared explicitly and the class must overrule all methods declared
in its interfaces.

In Cocktail, most interfaces are used to define constants representing types
of messages. These interfaces will not be discussed in detail. We will only
discuss interfaces used for other purposes.

Along with the descriptions, we also depict Cocktail’s class hierarchies sche-
matically, using a diagram notation similar to the one used in [Fla97]. A
legend is given in figure 15.1.



15.1. INFRASTRUCTURE 179
15.1 Infrastructure

The infrastructure used by Cocktail was designed by C. Hemerik. Conceptu-
ally, the infrastructure deals with messages sent between a number of tasks.
These messages are sent over a bus, of which the user of the infrastructure
needs not to be aware. The bus is managed by a special task called the
director. The director is the only entity that is allowed to create new tasks
and register them on the bus or that can remove tasks from the bus. Tasks
are identified by a unique number that is assigned upon creation. Instead of
explicitly sending a message over the bus, each task has methods to send a
message to (1) a specific recipient, (2) all recipients interested in messages
from this task, (3) all existing tasks, (4) the director.

For example, consider a text editor to be used to write large programs. Such
a text editor must be able to deal with several files at once, some of which
may be visible in several views. Using the infrastructure mentioned above,
this can relatively easy be achieved by creating one task for each file being
edited and one task for each view. Every command given by the user of the
editor is initially received by a view (since the view is the visible part on
the screen) and then sent directly to the task holding the corresponding file,
using a method of type (1). Hence, even if the user alternately uses different
views to edit a single file, there is one task ensuring that all changes are
made to a single file. However, there are also messages sent from the non-
visible tasks to the views: every time the file changes, all views need to be
updated. Therefore, the non-visible task holding the file sends a message
to all its views, using a method of type (2). If the user sends a command
to save all files, a message is sent using a method of type (3). In order to
close a view, the view itself sends a message to the director with a method
of type (4). The director then removes the task and if it was the last view
showing a certain file, it will also close the task holding the file.

Cocktail uses the infrastructure in a similar way, except that it does not
deal with several files being edited, but with several proofs and program
derivations in progress.

How the infrastructure is implemented in Java is depicted in figure 15.2. We
describe the added functionality for each class and interface briefly:

BusMessage This simple class represents the messages that are sent over
the bus. It contains the identity of the sender, the recipient (if one
is specified), the type of message (one-to-one, one-to-subscribers, one-
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BusMessage Visitor
Node
T
I —— e e e e e e e e e e e e e e e e e e e e e - o
Actor Subscriber + Task
P
Director
cocktail.bus

Figure 15.2: The class structure of the bus-system used by Cocktail.

to-all or one-to-director), a message-code and a field for additional
message-information (e.g. command arguments).

MessageTypes The constants to distinguish between messages sent to a
single recipient, all tasks, subscribers etc. are defined in this interface.

Handler This interface specifies methods that must be implemented by all
classes that want to deal with messages. It provides methods to check
if the message should be passed to the object, to check if the message
is valid for the object and to send the message to the object. Since all
its implementations will be able to send messages over the bus, this
interface extends the MessageTypes interface.

Actor The actor class is the simplest class that can send messages over the
bus. It implements the handler interface. It also provides the methods
to send messages over the bus, such that the bus no longer has to be
addressed directly by its descendents.

Subscriber This is a direct descendent of Actor. Subscribers are objects
that can subscribe to other tasks on the bus (i.e. they will be inter-
ested in all messages these tasks send to their subscribers). Hence, a
subscriber maintains a list of task identities in whose messages it will
be interested.

Director This special inhabitant of the bus is the entity that controls all
access to the bus. It should be created during initialization of the
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system. After creating the director, all tasks on the bus should be cre-
ated by calls to the director. Descendents of Director will be needed
to add the capability to create specific tasks implemented by descen-
dents of Task. Of all existing tasks, the director will focus on one.
What it means for a task to have the focus, depends on the use of
the infrastructure in Director’s descendents. Since the director is not
subscribing itself to other tasks, it is a direct descendent of Actor.

Task This descendent of Subscriber is the parent of all tasks that really do
the work. It also stores a name for the task, which can be used to
identify the task to the user (e.g. a filename). After all, a user wants
more specific information about a task than an ID-number.

Node Many applications will use tree-structures. The Node class provides
methods to utilize most operations usually performed on trees. To ac-
tually build any meaningful trees, Node must be extended by classes
implementing methods like NrOfSons returning the number of sons of
the node, Son(i:integer) returning son number i etc. Most impor-
tantly, the node class supports the Visitor pattern by means of mes-
sages traveling through the tree (which are represented again by the
BusMessage class). Therefore, the Node class implements the Handler
interface. Often, a message traveling through a tree contains a Visitor
object as extra information. This Visitor is passed to the visited node
and can perform some action on this node (e.g. gathering some infor-
mation about the node, changing some values stored in node labels
etc.)

Furthermore, a Node can be annotated with extra information. The
methods to add, extract and check for the availability of informa-
tion are provided, but the actual storage of this information must be
implemented by its descendents. This ensures a uniform application
programming interface for information stored in nodes.

Visitor This class represents the top-class of all visitors. These visitors are
sent through a tree using a BusMessage and the appropriate methods
of Node. In order to determine the action performed by a specific
visitor, one has to extend the Visitor class and re-implement the Visit
method that accepts the visited Node as an argument. Also, one has
to re-implement the Condition method, accepting a Node argument
and returning a boolean whether or not the visitor needs to perform
an action on the visited node.
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15.2 Symbolic Engine

The symbolic engine consists of (1) a representation of type judgments
'+ A:B for AP— and programs and (2) an algorithm to check the cor-
rectness of these judgments. Once we have these, the tool has to let the user
create type judgments by using tactics and use the type checker to verify
their correctness. Using this approach, correctness of the final result is fully
ensured by the type checker, regardless of the complexity of the tactics used
to construct the type judgments.

In Cocktail, all terms are represented by trees. For this, a number of de-
scendents of the Node class are defined: Name, representing the name of
a variable or constant; Term, being the superclass of all terms used and
Item, which is a representation of NamexTerm to denote typed variables.
An independent class ItemCollection is used to represent lists of Items, like
contexts. The Term class overrules the SetAnno and GetAnno methods in-
herited from Node to allow annotation of terms with their type, display and
hiding information.

In turn, Term has three more descendents, used to add functionality used by
several subclasses: BindingTerm, which introduces a bound, typed variable
that can be used within its body (i.e. BindingTerm represents Item x Term);
RefTerm, which represents a reference to a global or bound variable by stor-
ing a reference to the corresponding binding Item; and ChainTerm, which
represents a list of terms (e.g. the argument list of an instantiated paramet-
ric constant). All of these classes implement the clone method, returning an
exact copy of the tree they represent. However, copying terms with bound
variables deserves special attention. If RefTerm objects occurring in the
body of a BindingTerm would be copied exactly, then the copy of the bind-
ingterm would contain in its body references to the variables bound by the
original bindingterm (see figure 15.3).

In order to create correct copies of bindingterms, the Item class was ex-
tended to contain an auxiliary reference, which refers to a copy of the item
during copying of bindingterms and to null otherwise. When a refterm is
requested to provide a copy of itself, it will check if the auxiliary field of
its corresponding item refers to a copy of the item. If so, a refterm based
on the item’s copy is returned. If not, an exact copy of the refterm is re-
turned. Copying a bindingterm is correctly done in the following way (see
figure 15.4):
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(A BindingTerm (A BindingTerm

Figure 15.3: When creating copies of bindingterms, using exact copies of
item and body yields incorrect references to bound variables.

1. Create a copy of the BindingTerm’s item and set the auxiliary field of
the original item to this copy.

2. Create a copy of the BindingTerm’s body. Due to the modified way
in which RefTerms are copied, all references to the bindingterm’s item
are replaced by references to the copied item in the body’s copy.

3. Create the new bindingterm, using the item’s copy and the body’s
copy. The auxiliary field in the original item is restored to null.

Terms also provide a variant of the clone method, called Substitute. Sub-
stitute requires two arguments: an Item and a Term. It returns a copy of
the original term, in which all references to the given item are replaced by
copies of the given term. The implementation of Substitute is similar to the
implementation of clone, except that Substitutes of child nodes of the terms
are used instead of copies.

Based on these classes, derived classes are used to represent directly the
syntactic structure of A\P— and While; e.g. we have a class Term_Pi derived
from BindingTerm representing II-terms etc. For a complete overview, see
figures 15.5 and 15.6.

Now that we can represent terms and contexts of AP— and While, we can
build a type checker. Instead of type-checking, Cocktail constructs the type
of a given term from scratch, causing an error if the term is not typeable.
If a type for a term is constructed and the term was not already typed, the
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Figure 15.4: Copying bindingterms correctly in three steps: (a) copy item
and create an auxiliary reference, (b) copy body, taking care of refterms, (c)
create the bindingterm’s copy and delete the auxiliary reference.
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Visitor TermVisitor Typer_SD -‘— Typer_LPM
Item_Par Item_Cons Term_Var
Item_Def RefTerm Term_Cons
Node Item ChainTerm — Term_Pars
cocktail.bus
Name — Term_Args
Term_Tab Term BindingTerm — Term_Pi
Term_EQU Term_Hole Term_Nat — Term_Lambda
Term_EQU_In Term_Sort Term_Zero — Term Delta
Term_Refl Term_App Term_Succ — Term_Falsum
Term_Leb Term_CApp Term_Ind || Term_Classic
cocktail.terms

Figure 15.5: The class structure to represent formulas and proofs in Cocktail
and to compute their types
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Figure 15.6: The class structure to represent programs in Cocktail and to
compute their specification. All terms in this package implement the empty
Hoare interface to distinct them from formulas and proofs.

type is added as annotation to the term. If a type was already given for
the term, the constructed type is compared to the given type, leaving the
original type intact in order not to destroy any annotation stored in the
term’s type.

The type of a term is constructed bottom-up: First the types of all sub-
terms of the given term are computed and stored as annotation in their
corresponding nodes. Then the type of the given term is computed from
these types, checking all preliminaries of the PTS-rule used to obtain the
original term. Since the conversion rule is not present in AP —, there is never
more than one rule to consider (type checking is entirely syntax-directed).
Cocktail does support the definition mechanism for PTSs described in sec-
tion 6.3 and hence, special care has to be taken for definition terms. This
is eased by the restriction that Cocktail only uses definitions in proof terms
and the global context. That is, a term z =a : A in b can only occur for
A :x, and b: B with B : %, in the corresponding contexts. Since a propo-
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sition P can never depend on a proof term, this restricted use implies that
z=a:Ain P =5 P. Therefore, the type constructed for any definition
term £ =a: A in b will be B, rather than £ =a: A in B. The definition
terms in the context are used to store proved theorems. For example, if
in global context I' the user proved I' - p:P with P : x,, then the global
context is extended with H = p : P, where H is the name of the proved
theorem.

Although it seems advantageous to allow definitions in large formulas as
well, we do not use them in that way. If we would, unification and type
checking would become less efficient, since we need a d-expansion rule in the
logic. The tool’s flexible hiding mechanism for terms can easily be extended
to allow shorthand notations to be used for formulas, without the need for
PTS definitions.

The type constructor is implemented in classes TermVisitor, Typer_SD and
Typer_LPM. The termvisitor class implements the Handle method such that
for every kind of visited node used in a regular CPTS, a suitable method is
called. Also, it provides dummies (empty method implementations) for all
of these methods. This class will also be used for other purposes than type
construction later on. The Typer_SD class (SD stands for Syntax-Directed)
inherits from TermVisitor and implements the methods for each type of node
such that their types are computed and stored. To check the correctness of
[I-types, constants and sorts, Typer_SD uses a general representation of a
CPTS, which can easily be replaced by another CPTS. The definition of
AP— is loaded by default. The classes for this CPTS representation will not
be discussed any further. Finally, Typer LPM (LPM stands for Lambda P
Minus) extends Typer_SD to deal with terms that only exist in AP— (e.g.
natural induction, Leibniz equality etc.)

To check the correctness of programs, Typer_LPM is extended by the class
Typer_Hoare. Note that all methods of Typer LPM are needed to check the
correctness of fake-statements.

15.3 Tactics

Now that we can represent type judgments and check their correctness, we
must provide editors to create these terms, i.e. we need formula editors
to write theorem and program specifications, proof editors to prove logical
theorems and program editors to derive programs. All smart ways of proof
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construction will be implemented in this part, including the tableau-based
automated theorem prover. However, due to the type-checker, correctness
of the final result will always be ensured (or at least errors are detected in
time).

Terms and contexts are maintained by subclasses of Editor, which in turn
is a subclass of Task. Editors perform all the operations allowed on the
information they maintain. In general, they notify their subscribers of all
changes made. For instance, if a proof is further refined, all subscribers are
notified so they can react to the changes (e.g. update the display). Note
that editors do not provide a user-interface. They provide the means to
construct and edit terms through sending messages.

The class Manager is a marker class, used as the superclass of all editors that
maintain a global source of the system. It has subclasses Manager_Context
and Manager_PTS, that maintain the global context and the specified PTS
respectively. All changes made to the global context, are caused by mes-
sages sent to Manager_Context. Like the Director, only one instance of each
type of Manager should be present on the bus. However, Managers are not
allowed to create new tasks registered to the bus.

Editor_Node is a descendent of Editor which maintains information about
a single tree. Within this tree one node is focussed to determine where
all actions are targeted. Editor_Node maintains the following information
about the tree:

e The frontier: a list of all leaves of the tree in the order they appear. If
one of the leaves is focussed, its index in the frontier is also computed.

e A hole list, which is a sublist of the frontier and lists all leaves that
are holes (holes are leaves by definition). Also, if the focus is a hole,
the index in the hole list is computed.

e The path, being the list starting at the root node, ending with the
focussed node, in which every node is a child of the previous node.

Editor_Term is an extension of Editor_Node, which also maintains a local
context consisting of all items of BindingTerms found on the focus’s path.

Editor_Lambda, a descendent of Editor_Term, accepts messages to replace
the focussed node F' by propositional constructs, such as FA?;, where 7; is
a newly created hole.
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Editor_Proof, extending Editor_Lambda, is the first editor in the hierarchy
that takes the type of the focussed node into account. It provides tactics to
construct proofs of theorems that are stored as the type of the root node.
Initially, the root node will be a single hole. This hole will be replaced
by A-terms that possibly contain new holes, each annotated with a type
representing a new subgoal. A theorem is proved if the tree contains no
more holes.

To replace a hole by a A-term, the Editor_Proof constructs terms based on
the type of the hole. For instance, the intro-tactic replaces a hole typed
as IIA:B. C by a A-term AA:B. 7,,, where 7, is a new hole annotated with
type C. Note that the type of this A\-term is equal to the type of the original
hole, provided that 7, is replaced by a A-term of the type indicated by its
annotation.

Where necessary, the A-terms constructed are annotated with display infor-
mation to hide parts of the proof as explained in section 14.1.2. For instance,
a hole annotated with A A B may be replaced by the A-term

(AH:A = -B. H 7, ),

where 7, and 7, are annotated with types A and B respectively. The as-
sumption A = —B, however, is annotated to be hidden on screen (see the
example on page 171 of section 14.1.2).

Forward reasoning is implemented by inserting local definitions in the proof
term. For instance, suppose we have the partial proof

AH1:A = B. AH2:A. 7,

where 7 is annotated with type C, the user will see the following:

A= B
A

A=C
(A=B)=A=C

When (s)he drags the hypothesis A to the hypothesis A = B, Cocktail
will combine H1 and H2 by an application H1 H2 of type B. This term
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is inserted as a definition H3 = H1 H2 : B in 7 at the place of the hole to
yield AH1:A = B. A\H2:A. H3 = H1 H2: B in 7, displayed as:

A= B

A
B

A=C
(A=B)=A=C

Although most tactics are straightforward to implement, some require more
complex computations, usually using unification. Of the latter ones, the
most important tactic, Apply, is described here in more detail.

The apply tactic constructs a proof term for goal P, using an information
item A : B passed as the tactic’s argument. In order for apply to work, P
must be an instantiation of B. That is, if B is of the form ITv; : By ... Ilv, :
B,.B', then P must be equal to B'[v; := e;]_; for certain expressions e;,
i€ {l,...,n}. The M\-term A e;...e, will then have type P as requested.
These expressions e; can be found using unification on B’ and P. However,
even if B’ and P unify, the apply tactic may fail if no substitute is found
for one or more v; with B; : %,. For instance, applying Vp,q,r : nat.p <
gNqg<r=p<rtoa< cyields substitution [p — a,r > c|, but fails since
no value for g is given. On the other hand, there will never be values for v;
with B; : %y, since these can never occur in B'. These B; will become the
new subgoals. Hence, for each v; with B; : x,, we create a hole 7; annotated
with type B;lv; := ej]z-;ll and use it instead of e;.

For instance, if the current goals is to prove Q(y) for some y : U, and the
user applies an information item stating H : Vz : U.P(z) = Q(z), then
Q(z) is unified with Q(y), yielding unifier [z — y]. A hole, annotated with
type P(y) is created, say 7;. Now the term H y 71 has type Q(y) and is
substituted for the original hole. The new goal is now P(y), as was expected.

Similar approaches are used to compute proof terms for apply-forward, Leib-
niz equality etc. It is always checked if universally quantified variables
can be instantiated through unification. If so, hypotheses are replaced by
fresh holes. For instance, rewriting a goal C(y) to B(y), using hypothesis
H :Vz : nat.A(z) = (B(z) = C(z)) will succeed (for the symbol '=’, see
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section 12.2.1), resulting in subgoals B(y) and A(y). Compared to most
other systems, this is a very general rewrite tactic.

In practice, rewriting is used very much and often for the same purpose,
like rewriting a while statement’s postcondition I A g = false into I A G,
where G is a propositional version of the guard g. To ease this type of
rewriting, a user can compose lists of rewrite rules. Such a list contains a
number of (quantified) equalities taken from the hypotheses and proofs of
the global context in a certain order. Also, a direction is specified for each
rule in the system. Cocktail can apply such a set of rules instead of a single
rule, by repetitively applying the rules in the system in the given order and
direction until no more rules apply. Since no checks are performed to test
the termination properties of the specified rewrite systems, the user must
be careful when constructing them. For instance, one might use a rewrite
system to compute plus, times and factorial expressions. Since rewrite-
systems cannot be considered separate from the global context of which they
obtain their individual rewrite rules, the set of rewrite systems is stored in
the Manager_Context, which also maintains it.

Another elaborate tactic is the Auto tactic, which implements the tableau-
based automated theorem prover. This tactic is implemented in the class
Editor_Tableau in the auto-package (see figure 15.7). This editor extends
Editor_Node and builds a tableau as a tree consisting of Node-descendents
Alpha_Node till Special Node as soon as a theorem is provided. Instances of
TabNode are used to store labels of leaves which yet have to be expanded.
In order to force termination, the user may limit the maximum amount of
leaves, the maximum depth of the tableau and even the maximum amount of
time spent in constructing a tableau. When finished, the Editor_Tableau ob-
ject contains the tableau and, if it is closed, can compute the corresponding
lambda-term on request. The TAuto tactic uses the same theorem prover,
but initialises it with a start label that only contains the local context, which
often yields more efficient proofs.

Editor_Hoare is a descendent of Editor_Lambda, which implements tactics
for deriving programs. Although Editor_Hoare’s tactics are rather different
from those of Editor_Lambda, no complex programming was required to
implement this class. For example, the tactic that replaces a constant N by
a variable n in postcondition () takes two arguments: a template T', being the
postcondition () in which several occurrences of a constant are replaced by a
special token ® (in the implementation the only hole with number 0) and an
assignment n := e specifying the name and initial value of the variable. The
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Node 4—— TabNode -{-— SpecialNode
) AlphaNode BetaNode
cocktail.bus
cocktall.terms GammaNode DeltaNode
Editor_Node |4t Editor_Tableau TabL abel

cocktail .auto

Figure 15.7: Classes needed to construct tableaux.

tactic first constructs a A-term p of type (T[® := n]An = N) = @, which is
easy since Q = T[® := N| and we have Leibniz equality (see section 12.2.1).
Then the program term |[var n := e : U e 71; fake p]| is constructed where 7;
is specified as P An =e>T[® :=n] An = N, where P is the precondition
of the original hole. Obviously, the program has indeed the specification
P> Q.

If the user specifies rewrite systems named ’bool2prop’ and ’prop2bool’,
Editor_Hoare will use these automatically. Bool2prop will be used to auto-
matically rewrite a guard g of an if- or while-statement into a more suitable
proposition than g = true or g = false. Prop2bool is used during the con-
struction of while-statements and should attempt to rewrite a proposition to
the form g = false, where g will become the guard of the while statement.

Similarly, Editor_Hoare deals with other tactics, creating proof terms for
fake statements to use the Hoare logic more flexibly. In particular, the tactic
close invokes an Editor_Proof to let the user interactively prove P = (@ to
generate a fake statement satisfying P> () that exactly closes a hole. A
program is finished when no more holes exist.

An overview of the editor-classes is given in figure 15.8
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Figure 15.8: Editors and Directors in the editors-package.

15.4 Formula and Program Display

This section describes how formulas, represented in Cocktail by trees, are
displayed on the screen. We also take into account that the graphical user
interface lets the user interact with displayed proofs and provide the infor-
mation needed to do so during displaying.

Cocktail’s display method makes a distinction between a display and a dis-
player. A display is used to make information visible to the user, whereas a
displayer is used to convert internal representations of data into displayable
format, which is then sent to the display.

In the implementation, each display must implement the TermDisplay in-
terface, which specifies methods to append a string to the display, start a
new line and increase or decrease the indentation. A display is passed to
the TermDisplayer-object during initialization. The TermDisplayer is an ex-
tension of TermVisitor, that calls the Display’s methods while traversing a
formula’s tree. Whenever a string is appended to the display, the node to
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which this display-string refers is passed to the display too. The display can
use this information during interaction, when it is necessary to link a screen
location to a sub-term in the tree (see also section 15.6). The TermDisplayer
uses the notations specified by the user to display parametric constants and
the display-annotation in the nodes to display propositional constructs.

A notable class implementing the TermDisplay interface is StringDisplay,
which does not display the formula at all. Instead, all strings sent to
StringDisplay are concatenated to form a single formatted string for the
formula. This string representation can be used to display the formula as
part of a bigger whole, like a proof.

TermCanvas is an implementation of TermDisplay that displays terms di-
rectly onto the screen. It does not store the visual layout, hence to redraw
a term after it has been changed, the TermDisplayer, sending commands to
the TermCanvas, has to re-traverse the entire tree. Although this is inef-
ficient, it does not result in an unworkable slow display, since TermCanvas
is only used for displaying logical formulas and programs and these tend to
remain small in practice.

Programs are displayed in exactly the same way, but use an extension of
TermDisplayer called HoareDisplayer. The main difference is, that Hoare-
Displayer, depending on hiding information in program nodes, can display
pre- and postconditions of programs. Note that this information is not part
of the program tree, but of its type-annotation.

15.5 Proof Display

The displaying of proofs is done slightly different from displaying formulas
and programs. Again, there is a ProofDisplay interface and a ProofDis-
player class extending TermVisitor, distinguishing display from displayer.
The ProofDisplay interface does not accept pieces of text, but rather for-
mulas and information items. These are passed through various methods,
depending on whether they represent definitions, assumptions, variable-
introductions, holes or regular pieces of proof. The ProofDisplayer chooses
how to display pieces of proof by the term-structure and the display anno-
tation in the proof’s nodes.

Since, in contrast to formulas and programs, proof-terms can become quite
large, it is necessary to build a display representation of the proof. Re-
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traversing the proof term during scrolling would slow Cocktail down unac-
ceptably.

In ProofCanvas, the only implementation of ProofDisplay so far, each item
to be displayed is stored in a ProofLine object. Each ProofLine object
represents a single line of the proof visible on the screen. It stores the Node
to which the displayed line refers, the type of the line (i.e. how it should be
displayed) and the depth of the local context (the number of vertical lines
drawn before the formula). Once the entire proof has been converted into
ProofLines, the proof can be displayed without referring to the proof term.
To convert formulas to be displayed in a single proofline, the StringDisplay
discussed in the previous section is used, yielding a formatted string. For
instance, the example proof of section 14.1.2 on page 170 is converted into
the following set of prooflines:

A
B

lAAB
|B= AAB
A=B=ANAB

(The openings between prooflines are not shown on screen).

15.6 Interaction

The implementation of the user interface described in section 14.2 is mostly
a matter of combining widgets and user-interface components from the ab-
stract windowing toolkit (AWT) of java. We will not discuss this in more
detail in this thesis.

However, to invoke the actions and menus, Cocktail must determine which
sub-terms were selected by the user. Hence, a location on the screen must
be mapped onto a sub-term in the representation.

For terms and programs, this is done by repainting the formula, having a
termdisplayer traverse the formula’s tree. The TermCanvas implementation
of the TermDisplay interface keeps track of the location at which data is
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currently drawn on the screen. At the point when the selected screen lo-
cation is overwritten by strings belonging to a sub-term, the TermCanvas
remembers the node passed along with the string. This node is the root of
the selected sub-term. Although this method tends to be slow because of its
redrawing, in practice the formulas and programs are small enough to allow
real-time interaction.

For proofs, a complete traversal of the term becomes too time consuming.
Therefore, the node corresponding to a proof’s line on the screen is stored
within the ProofLine object. Cocktail can simply compute which line was
selected and extract the sub-term from its representation.

The user-interface is implemented by descendents of View. Each View is a
task registered on the bus and created by the bus’s director that shows a
single window on the screen. Basically, the View class provides the basic
lay-out of Cocktail’s windows: a window with possibly a menu-bar at the
top, a panel of buttons to the left, a message-bar at the bottom and a main
panel in the middle. The actual menu-bar, button-panel and main-panel
are provided by the descendents and can range from a single TermDisplay
as the main panel (View_Term) to a split-window to separately display the
pre- and postcondition of a program’s specification. The full-class overview
is depicted in figure 15.9. In general, each View belongs to an editor, whose
contents it displays. Conversely, however, one Editor can have several views
even though this is not utilized in the current implementation of Cocktail.

The classes View_Term and View_Proof provide the graphical components
to show a term or a proof in a window on the screen. The extended
classes View_Term_Edit and View_Proof_Editor also provide the user but-
tons and menus to interact with the terms and proofs. The descendents
View_TEdit_Goal and View_TEdit_Spec of View_Term_Edit provide slightly
different views for accurate viewing of goals and specifications respectively.

View_Context implements a frame showing the global information of the sys-
tem (i.e. the global context). View_Context_Edit is the class that ties the en-
tire user-interface together. When the user issues a command to extend the
context with a theorem, View_Context_Edit asks the Director of the bus to
create an Editor_Term and a View_TEdit_Goal linked to this editor to let the
user construct the theorem. In turn, the View_TEdit_Goal will ask the Di-
rector to create an Editor_Proof and a corresponding View_Proof_Edit to let
the user prove the theorem she just specified. Finally, the View_Proof_Edit
sends the proved theorem back to the Manager Context, which adds it
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Figure 15.9: Views and GUI-components in the views-package.

to the global context. Since the Manager_ Context notifies its subscribers
(hence, the View_Context_Edit object we started with), the new theorem
automatically shows up on the screen. The classes View_FormulaLayout
and View_RewriteSystem are used to view and edit the layouts of formulas
and the rewritesystems stored in the Manager_Context respectively.
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Chapter 16

Results

This chapter discusses the results of our labour. We look back to see if
Cocktail has become what we wanted: A tool for deriving correct programs.
Also, we will analyze a few weaknesses still present in the tool and discuss
what steps can to be taken to eliminate them.

16.1 Comparison with the Initial Requirements

In order to find out if Cocktail has become what we aimed for, we compare
the capabilities of the current version of the tool with the requirements
initially put forth by the programmer, the logician and the system’s designer.

199
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16.1.1 The Programmer’s Requirements

The programmer stated two main requirements in chapter 2:

e The programmer wanted a tool that was mainly focussed on the pro-
gram. In Cocktail, the focus is indeed on the program. Encoding of
the program in a theorem prover’s logic is not necessary. The user in-
terface for programs is not based on theorem proving, but on program
derivation.

e Also, the programmer wanted proofs to be constructed automatically
whenever possible. Theorem proving in the tool is (partially) auto-
mated. However, Cocktail’'s ATP does not yet support equational
reasoning.

In cases where a proof cannot be constructed automatically, the pro-
grammer has to construct it herself, but she wants this to be as easy as
possible. Interactive theorem proving in our tool is based on first-order
logic and includes extensive support for rewriting. The user interface
for proof construction is based on natural deduction.

16.1.2 The Logician’s Requirements

The logician was mainly concerned about the safety of the tool. She came
up with three requirements, which are briefly discussed below.

e The logician wanted the implementation of the systems to be safe and
to conform to the De Bruijn criterion. These requirements are auto-
matically fulfilled by the theorem prover, since it is based on a typed
A-calculus. The tool uses a special variant of Hoare logic, which rep-
resents proofs explicitly within programs and thereby allows checking
the correctness of programs (see chapter 10). Also, programs can be
communicated, including their proofs. Hence, even the programming
logic is safe and conforms to the De Bruijn criterion.

e The theorem prover should support several styles of reasoning. Cock-
tail seamlessly combines:

— Backward reasoning: As is usual for interactive systems based on
type-theory
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— Forward reasoning: Supported through the use of a PTS (AP—)
with definitions. Definitions are inserted that represent the result
of the forward reasoning step that is performed. Since definitions
only occur within proof-terms and only due to forward reasoning,
type checking does not become more difficult than type checking
for AP— without definitions.

— Automated Theorem Proving: A Tableau based theorem prover
is integrated in the system. Closed tableaux can be translated
automatically into proof terms of the underlying PTS.

— Equational Reasoning: Leibniz equalities can be used for both
expressions and formulas. Rewriting is supported by Leibniz sub-
stitutions and rewrite systems. Both can be used in forward and
backward reasoning in a natural way.

16.1.3 The Designer’s Requirements

The designer had a number of requirements related to the design and im-
plementation of the tool. These requirements stated that the tool should
be:

Adjustable: The PTS description at the base of the system can easily be
changed. The programming logic is linked to the theorem prover logic
only by the fake-statement. Hence, the programming logic and the
proof logic can be altered independently.

Platform independent: this is achieved automatically by using Java as
the implementation language. In practice, Java’s speed is more than
sufficient for the tool.

Modular: The tool is highly modular at all levels.

e Modules communicate the intended actions to each other by send-
ing structured messages over a bus, allowing them to work to-
gether in a setting where they do not have to be aware of each
others internal workings. Therefore, the editors, views, managers,
automated theorem provers and other modules can be maintained
and replaced independently of each other.

e The symbolic engine is a separate module, ensuring safety of the
system. It is the only module that determines the formalisms
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supported by the tool. Using a special Hoare logic allows the
re-use of code from the type checker for the program checker
(see chapter 15). This keeps the symbolic engine small. The
logic can easily be extended by providing new classes to represent
new syntactic structures. A type checker for the extended logic
only has to deal with the new syntax and leave old syntax to
the original type checker. This is already used in the tool: the
program checker is an extension of the type checker of AP—.

e The Tactic system contains support for backward, forward, au-
tomated and equational reasoning. Translating these tactics to
smaller steps accepted by the symbolic engine is done by edi-
tors. Editors can also easily be extended with new tactics by
inheritance of existing classes. This is already used in the system
where, for example, the proof editor is an extension of the term
editor.

e The user interface too is highly modular: displaying formulas,
proofs and programs is done by using a displayer object that tra-
verses their syntax trees (see chapter 15). To change the layout
of formulas, proofs and programs, one merely has to change these
displayer objects. Also, it is easily possible to have several dis-
player classes available and let the user choose her own display.
New types of windows can easily be constructed by extending
the view class. These windows can re-use the dedicated user in-
terface components already available to render and interact with
formulas, proofs, programs and tableaux.

Usable: Cocktail is remarkably easy to use through its advanced graphical

user interface. As required, the Graphical User interface consists of
a set of connected windows, displaying the global context (with ax-
ioms and proved theorems), proofs and programs. Through a flexible
display system, proofs and programs are displayed like their pen and
paper counterparts. Flexible formula display and parsing allow the
usual infix notations of first order formulas and expressions. Interac-
tion takes place directly with the displayed information. Buttons and
menu’s are only used for actions that cannot intuitively be linked to
graphically displayed information. To ease selection of tactics, pop-
up menu’s are sensitive to the formula to which the tactic should be
applied. Only relevant tactics are listed. Even when during rewriting
of a formula several options exist, Cocktail simply prompts the user
with several options from which she can select instead of resorting to
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complicated tree path notations to offer a selection mechanism.

16.2 Analysis of Cocktail’s Shortcomings

Although Cocktail in its current state meets most of the requirements put
forth by the programmer, the logician and the system’s designer, there are
a number limitations and improvements that we have to address. In this
section, we will discuss which improvements for the tool are, in our judgment,
needed in the future. We discuss them separately for each formal method
supported by the tool to get a clear idea of the theory required for such
improvements.

16.2.1 The Programming Part

Restricted Programming Language: In the near future extensions are
needed for Arrays and Procedures. For these extension, the theory has
already been discussed in chapter 8. Hence, they can be implemented
in a couple of weeks. Later recursion, records, objects, pointers, mod-
ules/packages etc should be added as well. For these extensions the
literature also offers numerous Hoare rules, but they should be selected
with care in order not to destroy the safety of the system. Selecting
and implementing those extensions would take somewhat more time
and may be suitable topics for graduate projects.

Management of finished Programs: In the current version of the tool,
completed programs cannot be re-used. Once we have procedures,
this becomes easier. Every completed program can then be stored
as a procedure and can be used within other programs as a single
command, enabling the user to construct more complicated programs.
Also, it should be possible to store and load programs and procedures
independently of each other. Since all required theory is already in
place (see chapter 8), this option could be added within about a month.

Theorem Proving within the Programming Editor: Rewriting spec-
ifications is not yet possible from within the program editor itself. A
dedicated theorem prover interface for predicate calculus style of rea-
soning should be provided in addition to the natural deduction style
theorem prover that is already implemented. Since such a theorem
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prover only requires rules for equational reasoning, it is easily imple-
mentable as an extension of the existing theorem prover: the required
tactics are already available, one only has to adjust the user interface.
(This is not difficult, but will take some time.) Also, this style of equa-
tional reasoning should be directly accessible from the programming
window in the form of rewriting of pre- and postconditions.

Exporting algorithms: Procedures and programs should be export-able
to (user defined) syntax other than that used by Cocktail (e.g. C, Java,
Pascal). By providing specialized display algorithms this is technically
easy and will take only little time. However, the user who supplies the
syntax of the target language is responsible for the correctness of the
translation. Functions declared within the program language context
(T'; in the Hoare logic of chapter 10) must exist in the target language
and meet the specifications used by Cocktail.

16.2.2 The Interactive Theorem Prover

Management of large amounts of Theory: Facilities for creating and
managing of packages of theory are needed. Re-ordering, renaming
and deleting of theorems should be made possible. Also, it should be
possible to replace an axiom (assumption) in a theory by a theorem
and its proof. This allows hard theorems to be assumed and used
as axioms first and be replaced by a proved theorem later (similar
to COQ’s ’grab axiom’). Although these are merely practical issues
that have no theoretical impact, they are important for bookkeeping
when developing large theories and programs. Implementing them,
however, should be done very carefully, since re-ordering the context
is not always possible (proofs are only allowed to depend on theorems
and axioms occurring in the context before the proof itself). Hence,
at least a few weeks are needed to add these facilities.

Displaying large proofs: For large proofs, it should be possible to hide
parts that are already finished. Although the display algorithm easily
allows this by annotating the root node of the sub-proof with a Hide-
All value, the user is not authorized to do so yet. Implementing this
should be a breeze.

Un-annotated proofs: Proofs should be annotated with formal comments
(as proposed by Dijkstra and Feijen in their notation of predicate style
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proofs in [DF88]), written between the lines of the flagpole notation.
This increases the readability of the proofs. Of course, this should
be an option that can be switched on and off by the user, since it
makes proofs substantially longer. This can be accommodated rather
easily by adding new types of proof lines (namely comment lines) to
the display algorithm. However, since all tactics then have to generate
comments along with the proof-terms, implementation may take a bit
of time.

16.2.3 The Automated Theorem Prover

Equational Automated Theorem Proving: The current version of the
tool does not support equational reasoning during automatic proof
construction. To support this, the ATP should be extended with rigid
E-unification instead of the syntactic unification it uses now. Since
tableaux have to be translated into A-terms checkable by the tool for
this to be safe, however, we first have to find a way to translate equa-
tional tableaux. As a result, we cannot yet estimate how long it would
take to include this extension.

Cleaning up tableaux: Even without translation, tableaux can be unnec-
essary large. An algorithm should be used to reduce the size of the
closed tableaux. This is possible by computing the subset of formulas
at each node that is actually being used. Nodes that are inserted by
rules that only produce unused formulas can then be removed. This
might even lead to removal of entire branches of tableaux. A straight-
forward algorithm of this kind should be implementable in a few days.
However, if one wants to use more sophisticated methods, the required
effort may be larger.

Inefficient Translation of Tableaux: Translation of closed tableaux is
inefficient at the time of this writing. The translation should be made
an option, allowing the user to rely on the theorem prover’s correctness.
However, when the user is uncertain about a result she obtained, the
tool should be able translate the automatically constructed proofs and
check them for correctness afterwards. Implementing this is only a few
days work. Since some users (for instance, programmers) may be less
concerned about the safety and more about the performance, linking
Cocktail to other ATPs, like Otter, Bliksem, Boyer-Moore etc should
also be made an option. Of course, proofs of these systems cannot be
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translated to A-terms, but they are usually capable of proving more
theorems. Upgrading Cocktail’s in-built ATP to the level of support
that those systems offer would be a lot of work. Entire teams worked
for years to build some of the other systems.

16.3 Conclusions

Cocktail has indeed become what we set out to build: A tool for deriving
correct programs. It proves that it is possible to create a tool that meets the
requirements formulated in part I. Cocktail combines a program editor with
a theorem prover that allows the programmer to focus on the program and
provide proofs at any moment she desires. The theorem prover allows the
use of automated theorem proving whenever possible, but also has extensive
support for interactive theorem proving and equational reasoning. It sup-
ports both backward and forward reasoning, including forward rewriting.
The user can use familiar notations for proofs, programs and formulas. In
fact, the notations are those used in pen and paper proofs.

Compared to other systems that support correct programming, Cocktail
leaves the user with much more freedom in the order in which programs
and proofs are constructed. If no full specification of the program is avail-
able (or the user does not wish to provide one), the program can easily be
entered with a trivial specification. This specification can then be strength-
ened when the program is completed and the tool will compute the necessary
proof-obligations. Hence, even though Cocktail is intended for hand in hand
development of program and correctness proof, a process similar to gener-
ation of verification conditions (VCG) is supported. Cocktail provides a
better integration of automated and interactive theorem proving than used
in other systems. The ATP can be used at any given moment without
compromising the safety of the system. Cocktail’s advanced graphical user
interface and its extensive support for forward reasoning allow the user to
choose her own way to prove theorems. Interacting directly with the proofs
as displayed appears to be intuitive and fast, but the use of the tool in an
educational setting has yet to confirm these initial findings.

In order for the tool to become more practical and useful to a wider audience,
a number of extensions are necessary. The programming language has to
be extended to allow more advanced programs to be written and to re-use
programs that have already been proved correct. The automated theorem



16.3. CONCLUSIONS 207

prover must be enabled to use equational reasoning, but this requires the
translation of equational tableaux which we have not yet investigated. Also,
the tool must be able to deal with larger amounts of theory and programs.
Most of these issues are mainly software engineering matters, that have little
or no impact on the theoretical foundations of the tool. The required theories
for Hoare logic are already available in literature and the flexible architecture
of Cocktail will allow these extensions to be written relatively easy. However,
since these extensions range over all parts of the tool, implementing all of
them will require a few months. Still, we are planning to do so in the near
future, probably with the help of graduate students.

Finally, we want to explain why the tool is called Cocktail and what the
logo stands for. The name Cocktail was chosen because the tool implements
a cocktail of formalisms, mixing PTSs, tableau methods and Hoare Logic.
The logo, a cocktail glass with three spheres, represents the tool. Each
sphere represents one formalism and the position in which they lay together
represents the way in which these formalisms are related. The glass itself is
a funnel, which combines the formalisms in the formal basis of the system,
which is represented by the foot of the glass. The environment in which
the glass is situated represents the participants in the project and all the
additional bells and whistles of the tool.
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Appendix A

A Small Demo Session

In this appendix, we will demonstrate Cocktail by deriving a program to
compute Fibonacci numbers. For brevity, only part of the derivation is
given in detail.

At the time of this writing, the implementation of the tactic system and
the user-interface for the programming logic are not yet finished. As a
result, not all tactics shown in this presentation are available in the actual
tool. Instead, they were simulated by using smaller derivation steps that are
already implemented. Since we expect that the mentioned tactics will be
available by the time this thesis is defended, we have chosen to present them
here as if they were available already. Hence, in the first version that will
be made publicly available, there may be some minor differences with this
presentation. All demonstrated features of the theorem prover, however, are
fully functional as demonstrated.

After starting Cocktail, two windows appear: a control bar at the top of the
screen and an empty theory-window (see figure A.1). Since we do not want
to start building theory from scratch, we load some basic theory by clicking
on the ’open’ button in the control bar and selecting the file 'prog.thm’.
After loading, these theories appear in the theory window.

To derive a program to compute Fibonacci numbers, we first have to add the
Fibonacci function £ib to the specification context. For this, we check the
'‘Only for specifications’ box and enter fib(x:nat):nat in the text-
field at the bottom of the theory-window, thereby stating that fib is a
function with one natural number as argument (the x:nat) that returns a

209
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Figure A.1: Cocktail’s control bar and the empty theory window.

natural number (the last :nat). Also, we enter the following axioms':

AxFib0:£ib(0)=1,
AxFibl:fib(s(0))=1 and
AxFibN:@x:nat.fib(s(s(x)))=fib(x)+fib(s(x)).

The Fibonacci function and its specification are now available in the theory
window (see figure A.2).

We can now specify the programming problem. First, we need to declare
an initial constant N() and program variable x. We check the 'changeable
by programs’ box and enter N() :nat and x:nat in the theory window re-
spectively. Next, we press the 'new’ button on the control bar to start a
new program. A window appears in which we have to enter the new pro-
gram’s specification (see figure A.3). We enter the pre- and postcondition
respectively as ~_ (not false, i.e. true) and x=fib(N). Finally, we select
’done’ from the specification menu and the program window appears (see
figure A.4).

We start programming with the tactic replace constant, available from
the tactic menu. Since there is only one occurrence and only a single con-
stant, we do not need to select a constant. When prompted for a variable

'"When entering logical formulas, @ means V, ~ means — and _ means L. In future
versions, buttons will be displayed below the text-field to enter special symbols.
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Bl Language Theory in prog.thm CE X

Figure A.2: The basic theory for programs and the specification of the
Fibonacci numbers are available in the theory window.

=8 Specification of noname0.prg - X

Figure A.3: A program specification window.
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Figure A.4: The program window, showing the specification.

name and an initial value we enter n and O respectively. The program is
now refined as shown in figure A.5: the new precondition is displayed as
= 1 An =0 and the postcondition is z = fib(n) An = N.

Next, we select the basic while-tactic, which prompts for an invariant and
a boolean expression as guard. We enter x=fib(n) and not (n==N) respec-
tively (== is defined as infix notation for equ(x,y:nat) :bool and was loaded
along with the basic theory). Also, we select the gap representing the body
of the loop and enter n:=s(n) in the text-field at the bottom of the pro-
gram window. The postcondition of the new gap becomes x=fib(s(n)).
The result is shown in figure A.6. Among other things, we have a gap with
a precondition displayed as z = fib(n) A not(n == N) = false and postcon-
dition z = fib(n) An = N. This gap requires no more program refinement,
but can be closed with a fake statement and a proof of

(z = fib(n) Anot(n == N) = false) = (z = fib(n) An = N)

To construct this proof, we select the gap by clicking on it and select the
‘close’ tactic. As a result, a theorem prover window appears.

The theorem prover window (see figure A.7) shows the proof obligation we
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==l noname0.pry - B X

Figure A.6: The initial loop. We now have three gaps (proof obligations) in
the program.
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Figure A.7: The theorem prover window, showing a proof obligation.

have to fulfill. Since we are dealing with an implication, we use the button
labeled with ’intro’ to raise a flag. The new goal is to prove z = fib(n)An =

N, given the assumption z = fib(n) Anot(n == N) = false. To split the new
goal into two separate parts, we use the right mouse button to click on the
goal. Right-clicking on the assumption z = fib(n) A not(n == N) = false

shows a number of options for forward reasoning (see figure A.8).

We select the option ’E1A’ to obtain both parts of the assumption as separate
items. To resolve the goal z = fib(n), first select it and then click on the new
item with the same statement. We are left with one goal (see figure A.9):
proving n = N.

Since we already have not(n == N) = false, we can use the theorems
in the theory window to rewrite this formula into n = N using Leibniz-
equalities. Rewriting a boolean to a proposition, however, is often needed in
program derivations. Therefore, we do not use individual Leibniz-equalities,
but use the rewrite system 'bool2prop’, loaded with the initial theory. To
do this, right click the item not(n == N) = false and select the 'rewrite’
option. Select 'bool2prop’ at the top of the displayed list of rewrite-rules
(see figure A.10) and press either the ’left’ or the 'right’ button (Since
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Figure A.8: A natural deduction proof with two subgoals in flagpole nota-
tion. Tactics for forward reasoning are displayed in a pop-up menu.
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Figure A.9: The first goal has been resolved.
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Left Camoel Right

L [Ox

Figure A.10: A list of possible rewrite rules.

the rewrite-directions are specified within the rewrite-system, there is no
difference between left- and right rewriting).

The result of the rewriting is added as an item to the context, hence we now
have n = N available in our proof. Clicking on this new item closes the final
gap and yields the final proof (see figure A.11). We now close the window
by selecting ’done’ from the proof-menu (the result is type-checked before
the window closes). The gap in the program is now closed (see figure A.12).

After a few more refinements and proofs, our program looks as shown in
figure A.13. At this point, we need to strengthen the invariant by adding
a conjunct y = fib(s(n)) to it, where y is a fresh-variable. This is done in
two steps: (1) Selecting the loop and adding a fresh variable, yielding the
situation in figure A.14. (2) Strengthening the invariant with y = fib(s(n)),
yielding figure A.15.

Some more refinements are needed to obtain the final program (see fig-
ure A.16). At this point, we merely have to provide the proofs required to
close the gaps. Figure A.17 shows the completed program, which has been
checked by Cocktail.
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Figure A.11: The completed proof, which will be type-checked before it is
used.

Sl noname0.pry - B X

Figure A.12: The same program as in figure A.6, but with one gap closed.
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=1 honame0.pry - X

Figure A.13: Some more refinements done.

=1 honame0.pry - X

Figure A.14: A fresh variable named y was added.
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Sl noname0.pry - B X

Figure A.15: After strengthening the invariant, many sub-specifications have
changed.

=1 honame0.pry - X

Figure A.16: The final program, but with some unresolved proof-obligations.
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==l nonamel.pry - B X

Figure A.17: The completed program, derived with and verified by Cocktail.



Appendix B

Factsheet

Since Cocktail is still under construction, the following facts about its im-
plementation are preliminary. All data were measured at Friday, 13 October
2000.

B.1 Implementation

To install Cocktail, one needs its binary files and a Java Virtual Machine
(JVM). Virtual machines for Java are freely available for many platforms
through the website of SUN microsystems (http://java.sun.com/). The
size of the JVM depends on the platform.

About the java implementation of Cocktail, the following facts were mea-
sured:

Number of packages: 8
Number of files: 197
Number of lines: 15738
Number of methods: 2520
Number of classes: 234
Number of interfaces: 47
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The file sizes are measured for each package separately in kilobyte:

Package || total | source | binary
auto 108 56 56
bus 168 88 84
editors 420 232 192
hoare 248 128 124
misc 292 128 168
terms 496 244 256
views 492 200 304
main 184 160 168
total 2404 1236 1352

B.2 Javadoc documentation

Java supports automatic extraction of API documentation in HTML format
from the source code. Also, additional comments can be added by the
programmer which will automatically be added to the API documentation.
Facts about the API documentation of Cocktail are:

Total size (kByte): 2444
Number of files: 204
Number of lines: 43606

B.3 Availability
Cocktail will be available in due time through its website at
http://www.win.tue.nl/"michaelf/cocktail.html

At this site, documentation, tutorials, references and all other information
will also be made available.
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Summary

The goal of this thesis is to obtain machine assistance for the Dijkstra/Hoare
calculus. This calculus has already proved itself valuable as a pen-and-
paper method to derive correct programs, but when program derivations and
correctness proofs are carried out manually, it is prone to human mistakes.
By offering machine assistance for the method, we get help when deriving
programs, gain precision, avoid errors and can verify the result once the
program and proof are complete. This machine assistance has been designed
in the form of Cocktail.

Cocktail is an interactive tool to derive correct programs from their specifica-
tions using Dijkstra/Hoare calculus. In this calculus, programs are refined,
guided by their specification, leading to a number of proof obligations, which
have to be resolved. The tool allows the user to interactively construct an
entire program and a complete proof of its correctness. For the construc-
tion of correctness proofs, Cocktail offers a proof-editor for first-order logic,
which is partially automated by a tableau based theorem prover.

The tool is initially designed to support courses for first and second year
students of computer science at Eindhoven University of Technology. In
the future, we want to extend the tool in order to support more advanced
courses and perhaps industrial-type programs.

The main characteristics of Cocktail are:

Program targeted: The tool allows the user to focus on the program,
rather than on its correctness proof.

Full support: Programs and proofs can interactively be constructed by the
user entirely within the tool.

Natural: Programs are developed using a well-established, natural method
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which promotes a standardized design method. The same holds for
theorem proving: several styles of reasoning are supported in a uni-
form way (backward reasoning, forward reasoning, automated theorem
proving and rewriting). Moreover, the tool is equipped with an ad-
vanced graphical user interface that allows the user to keep a good
overview of the program and its correctness proofs during the entire
process.

Safe: Once the program and its correctness proof are complete, they are
automatically checked for correctness by a simple algorithm. This
check will only fail if errors exist in the implementation of the tool:
the construction method implies that the program should have been
correct.

Flexible: The tool is easy to maintain, adjust and extend due to its mod-
ular, object oriented design.

To accomplish this, the following theoretical work was done:

e A Pure Type System (PTS) was designed to accurately model first-
order logic. Using the PTS framework makes it easier to extend the
logic of the tool in the future.

e An algorithm to translate closed tableaux into A-terms of the pre-
mentioned PTS was designed. This enables the tool to use meaningful
automated theorem proving in the logic.

e A special kind of Hoare logic was designed. Hoare logic enables the
tool to focus on the program and allows it to perform refinement steps.
The Hoare logic used is special by the way it is linked to the theorem
prover’s logic and by its explicit use of contexts and proofs. These
novelties, however, enable the verification of completed programs and
ensure that even the Hoare logic conforms to the De Bruijn criterion
(this criterion states that proofs should be communicable to other
systems).

The implementation of the formal systems, in the form of Cocktail, resulted
in a coherent tool for deriving correct programs focused at the programming
process. The automated theorem prover should be extended to deal with
equations. Cocktail’s formal foundation, including the automated theorem
prover and the Hoare logic, is safe: all constructed programs and proofs
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are checked by the tool and conform to the De Bruijn criterion. The tool
offers a graphical user interface that is remarkably easy to use, since it
allows the user to interact directly with the displayed proofs and programs
instead of resorting to a command line interface. Also, the tool can easily be
extended. Although Cocktail is currently not suitable to be used to derive
large programs, it certainly has the required potential to do so in the future.
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Samenvatting

In dit proefschrift ontwikkelen we een programma dat ondersteuning biedt
voor de Dijkstra/Hoare-calculus. Deze calculus heeft reeds bewezen nuttig
te zijn voor het op papier afleiden van correcte programma’s. Doordat echter
alle afleidingen en bewijzen tot dusver met de hand werden gemaakt, is de
methode gevoelig voor menselijke vergissingen. Door de methode met een
programma, te ondersteunen krijgen we hulp bij het afleiden, werken we
nauwkeuriger, voorkomen we fouten en kunnen we het resultaat controleren
als het programma en het bewijs af zijn. De ontwikkelomgeving die hiervoor
is ontwikkeld heeft de naam Cocktail gekregen.

Cocktail is een interactief systeem waarmee programma’s kunnen worden
afgeleid uit hun specificaties door gebruik te maken van Dijkstra/Hoare-
calculus. Hierbij worden programma’s, op basis van hun specificatie, staps-
gewijs verfijnd, hetgeen leidt tot een aantal bewijsverplichtingen waaraan
moet worden voldaan. De ontwikkelomgeving biedt de mogelijkheid voor
het maken van het volledige programma, en het volledige correctheidsbewijs.
Voor het maken van het correctheidsbewijs biedt Cocktail een bewijseditor
voor eerste orde logica, die deels geautomatiseerd is door middel van een
tableau-bewijzer.

De omgeving is in eerste instantie ontworpen om eerste- en tweedejaars stu-
denten van de Technische Universiteit Eindhoven te ondersteunen bij het
programmeren. In de toekomst willen we de ontwikkelomgeving uitbreiden
voor ondersteuning van hogerejaars cursussen en wellicht industri€le pro-
gramma’s.

De belangrijkste kenmerken van Cocktail zijn:

Programmagerichtheid: De omgeving is gericht op het programma en
niet zozeer op het correctheidsbewijs ervan.
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Volledige ondersteuning: Zowel het programma als alle benodigde be-
wijzen kunnen volledig met Cocktail worden gemaakt.

Natuurlijk: Programma’s worden ontwikkeld met een natuurlijke methode
die zich al bewezen heeft en die een standaard programmeeraanpak
bevordert. Hetzelfde geldt voor de bewijzen: verschillende manieren
voor het maken van logische bewijzen worden op een uniforme wijze
ondersteund (achterwaarts redeneren, voorwaarts redeneren, automa-
tisch stellingen bewijzen en herschrijven). Bovendien biedt de om-
geving een geavanceerd grafisch user-interface waardoor de gebruiker
gedurende het hele proces een goed overzicht behoudt over het pro-
gramma en het bewijs ervan.

Veilig: Als het programma en het bewijs eenmaal af zijn, worden ze nog-
maals gecontroleerd met een eenvoudig algoritme. Als hierbij fouten
worden gevonden, wijst dat op fouten in Cocktail: wegens de gehan-
teerde ontwikkelmethode hadden de resultaten foutloos moeten zijn.

Flexibel: De ontwikkelomgeving is gemakkelijk te onderhouden, aan te
passen en uit te breiden dankzij haar modulaire, object georiénteerde
ontwerp.

Om dit voor elkaar te krijgen is het volgende theoretische werk verricht:

e Er is een puur typesysteem (PTS) ontworpen dat precies overeenkomt
met eerste orde logica. Het gebruiken van het PTS-raamwerk maakt
het makkelijker om de logica in de toekomst nog uit te breiden.

e Er is een algoritme geschreven om gesloten tableaus te vertalen naar
A-termen van het voornoemde PTS. Hierdoor kan de bewijslogica op
een zinvolle manier worden geautomatiseerd.

e We hebben een speciaal soort Hoare-logica ontwikkeld. De Hoare-
logica is nodig om de omgeving programmagericht te houden en om
verfijningsstappen van het programma te kunnen uitvoeren. De ont-
wikkelde Hoare-logica is afwijkend door de manier waarop deze gekop-
peld is aan de bewijslogica en doordat contexten en bewijzen expli-
ciet zijn gemaakt. Deze kenmerken zorgen ervoor dat afgeleide pro-
gramma’s op correctheid gecontroleerd kunnen worden en dat zelfs de
Hoare-logica aan het De Bruijn-criterium voldoet (dit criterium eist
dat bewijzen naar andere systemen gecommuniceerd kunnen worden).
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De implementatie van de formele systemen in de vorm van Cocktail heeft
geleid tot een coherent stuk gereedschap voor het afleiden van correcte pro-
gramma’s dat gericht is op de programmeertaak. De automatische stel-
lingenbewijzer moet nog uitgebreid worden om met gelijkheden te kunnen
werken. Cocktails formele grondslagen, inclusief de automatische stellingen-
bewijzer en de Hoare-logica, zijn veilig: de omgeving verifieert alle gemaakte
programma’s en bewijzen en voldoet aan het De Bruijn-criterium. Cocktail
biedt een opmerkelijk gemakkelijk te gebruiken user interface, doordat het
de gebruiker rechtstreeks de afgebeelde programma’s en bewijzen laat mani-
puleren in plaats van gebruik te maken van het gebruikelijke command-line
interface. Bovendien is de ontwikkelomgeving gemakkelijk uit te breiden.
Hoewel Cocktail momenteel nog niet geschikt is voor het afleiden van grote
programma’s, heeft het wel het potentieel om dat in de toekomst te kunnen.
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